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SINGULARITIES OF AFFINE EQUIDISTANTS:

PROJECTIONS AND CONTACTS

W. DOMITRZ, P. DE M. RIOS, AND M. A. S. RUAS

Abstract. Using standard methods for studying singularities of projections and of contacts,

we classify the stable singularities of affine λ-equidistants of n-dimensional closed submanifolds
of Rq , for q ≤ 2n, whenever (2n, q) is a pair of nice dimensions [12].

1. Introduction

When M is a smooth closed curve on the affine plane R2, the set of all midpoints of chords
connecting pairs of points on M with parallel tangent vectors is called the Wigner caustic of M ,
or the area evolute of M , or still, the affine 1/2-equidistant of M , denoted E1/2(M).

The 1/2-equidistant is generalized to any λ-equidistant, denoted Eλ(M), λ ∈ R, by consid-
ering all chords connecting pairs of points of M with parallel tangent vectors and the set of
all points of these chords which stand in the λ-proportion to their corresponding pair of points
on M . In this case, when M is a curve on R2, the local classification of stable singularities of
Eλ(M) is well known [2, 5].

The definition of the affine λ-equidistant of M is generalized to the cases when M is an n-
dimensional closed submanifold of Rq, with q ≤ 2n, by considering the set of all λ-points of
chords connecting pairs of points on M whose direct sum of tangent spaces do not coincide with
Rq, the so-called weakly parallel pairs on M .

In addition to curves in R2, the possible stable singularities of Eλ(M) have been previously
studied in the general setting when M is a hypersurface [5, 6], or when M is a surface in R4 [7].
The cases of curves in R2 and surfaces in R4 have also been studied in the particular setting of
Lagrangian submanifolds of affine symplectic spaces [3].

In this paper, we classify the possible stable singularities of Eλ(M) in a quite more general
circumstance, namely, when the double dimension of M , 2n, and the dimension of the ambient
affine space, q, form a pair of nice dimensions [12], see Theorem 5.3 below.

In order to obtain such a classification, we start in Section 2 by defining an affine λ-equidistant
of Mn ⊂ Rq as the set of critical values of the λ-point map (projection)

πλ : Rq × Rq → Rq, (x+, x−) 7→ λx+ + (1− λ)x−

restricted to M ×M , thus locally a map

π̃λ : R2n → Rq ,

see Definition 2.8, Remark 2.9 and equation (5.2), below. Then, we also present the characteri-
zation of affine equidistants by a contact map, extending previous construction for the Wigner
caustic ([14, 7]).
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In Section 3 we review the standard K-equivalence and the classification of K-simple singu-
larities [10, 12], Theorem 3.9 below. Then, in Section 4 we combine the study of singularities of
projections and of contacts, in view of Theorem 4.6 below ([12, 11]), with emphasis on contact
reduction to rank 0 map-germs, Proposition 4.14.

Our main result is obtained in Section 5. First, in Theorem 5.2 we apply the Multijet Transver-
sality Theorem [8] to a K-invariant stratification of the jet space. When (2n, q) is a pair of nice
dimensions, the relevant strata of this stratification are the K-simple orbits in jet space. Then,
we use the results of Section 4 in the context of affine equidistants: Proposition 5.4 and Corollary
5.5, as well as equations (5.8)-(5.12). The following table summarizes our main result, Theorem
5.6, which is presented more extensively as subsection 5.1. The normal forms for the A-stable
singularities of the map π̃λ follow the notation of [10] (see Theorem 3.9 below) for the K-simple
rank-0 contact map-germ

θλ : (Rk, 0)→ (Rk−(2n−q), 0) ,

where k is the degree of parallelism of the pair of points on M joined by the chord (cf. Definition
2.1 and Tables I, II, III in Theorem 3.9).

(n , q) Stable Eλ(M), Mn ⊂ Rq Restrictions

(1 , 2) Aµ µ ≤ 2

(2 , 3) Aµ µ ≤ 3

(2 , 4) Aµ, C
±
2,2 µ ≤ 4

(3 , 4) Aµ, D
±
4 µ ≤ 4

(3 , 5) Aµ, D
±
4 , D

±
5 , S5 µ ≤ 5

(3 , 6) Aµ, C
±
ρ,τ , C6 µ ≤ 6, 2 ≤ ρ ≤ τ , ρ+ τ ≤ 6

(4 , 5) Aµ, D
±
4 , D

±
5 µ ≤ 5

(4 , 7) Aµ, D
±
ν , E6, E7, Sβ , T7, T̃7 µ ≤ 7, 4 ≤ ν ≤ 7, 5 ≤ β ≤ 7

(4 , 8) Aµ, C
±
ρ,τ , C6, C8, F7, F8 µ ≤ 8, 2 ≤ ρ ≤ τ , ρ+ τ ≤ 8

(5 , 6) Aµ, D
±
ν , E6 µ ≤ 6, 4 ≤ ν ≤ 6

We note that the case M4 ⊂ R6 is absent from the table of results. This is due to the fact that
(2n = 8, q = 6) is not a pair of nice dimensions (see Theorem 5.3 below). Similarly, (2n, q > 6)
is not a pair of nice dimensions, for all n ≥ 5. Classification of stable singularities of Eλ(M), in
these cases, lies outside the scope of this paper.

As mentioned before, the cases in the table of results when

(n, q) ∈ {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}

correspond to hypersurfaces and have been previously studied in [5, 6], and the case (n, q) = (2, 4)
was partially studied in [7]. On the other hand, the results for the cases when

(n, q) ∈ {(3, 5), (3, 6), (4, 7), (4, 8)}

are entirely new.
We emphasize that, in all of the above, we are excluding the cases of vanishing chords, that

is, when the λ-point of the chord connecting two points on M touches M because the pair of
points on M lies in the diagonal of M ×M . Such “diagonal singularities” or singularities on
shell for Eλ(M) possess additional symmetries when λ = 1/2 and these have been studied for
the cases of curves on the plane and surfaces in R4, both in the general setting [7] and in the
more particular setting of Lagrangian submanifolds of affine symplectic space [4]. In this paper,
we don’t study such singularities on shell for Eλ(M).
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2. Affine equidistants

2.1. Definition of affine equidistants. Let M be a smooth closed n-dimensional submanifold
of the affine space Rq, with q ≤ 2n. Let a, b be points of M and denote by

τa−b : Rq 3 x 7→ x+ (a− b) ∈ Rq

the translation by the vector (a− b).

Definition 2.1. A pair of points a, b ∈M (a 6= b) is called a weakly parallel pair if

TaM + τa−b(TbM) 6= Rq.

codim(TaM + τa−b(TbM)) in TaRq is called the codimension of a weakly parallel pair a, b.
We denote it by codim(a, b).

A weakly parallel pair a, b ∈M is called k-parallel if

(2.1) dim(TaM ∩ τb−a(TbM)) = k.

If k = n the pair a, b ∈M is called strongly parallel, or just parallel. We also refer to k as the
degree of parallelism of the pair (a, b) and denote it by deg(a, b). The degree of parallelism
and the codimension of parallelism are related in the following way:

(2.2) 2n− deg(a, b) = q − codim(a, b).

Definition 2.2. A chord passing through a pair a, b, is the line

l(a, b) = {x ∈ Rq|x = λa+ (1− λ)b, λ ∈ R}.

Definition 2.3. For a given λ, an affine λ-equidistant of M , Eλ(M), is the set of all x ∈ Rq
such that x = λa+(1−λ)b, for all weakly parallel pairs a, b ∈M . Eλ(M) is also called a (affine)
momentary equidistant of M . Whenever M is understood, we write Eλ for Eλ(M).

Note that, for any λ, Eλ(M) = E1−λ(M) and in particular E0(M) = E1(M) = M . Thus,
the case λ = 1/2 is special:

Definition 2.4. E1/2(M) is called the Wigner caustic of M [2, 14].

2.2. Characterization of affine equidistants by projection. Consider the product affine
space: Rq × Rq with coordinates (x+, x−) and the tangent bundle to Rq: TRq = Rq × Rq with
coordinate system (x, ẋ) and standard projection π : TRq 3 (x, ẋ)→ x ∈ Rq.

Definition 2.5. For λ ∈ R, a λ-chord transformation

Γλ : Rq × Rq → TRq , (x+, x−) 7→ (x, ẋ)

is a linear diffeomorphism defined by the λ-point equation:

(2.3) x = λx+ + (1− λ)x− ,

for the λ-point x, and a chord equation:

(2.4) ẋ = x+ − x−.

Remark 2.6. For our purposes, the choice (2.4) for a chord equation is not unique, but is the
simplest one. Among other possibilities, the choice ẋ = λx+ − (1 − λ)x− is particularly well
suited for the study of affine equidistants of Lagrangian submanifolds in symplectic space [3].
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Now, let M be a smooth closed n-dimensional submanifold of the affine space Rq (2n ≥ q)
and consider the product M ×M ⊂ Rq ×Rq. LetMλ denote the image of M ×M by a λ-chord
transformation,

Mλ = Γλ(M ×M) ,

which is a 2n-dimensional smooth submanifold of TRq.
Then we have the following general characterization:

Theorem 2.7 ([3]). The set of critical values of the standard projection π : TRq → Rq restricted
to Mλ is Eλ(M).

Definition 2.8. For λ ∈ R, the λ-point map is the projection

πλ : Rq × Rq → Rq , (x+, x−) 7→ x = λx+ + (1− λ)x− .

Remark 2.9. Because πλ = π ◦ Γλ we can rephrase Theorem 2.7: the set of critical values of
the projection πλ restricted to M ×M is Eλ(M).

2.3. Characterization of affine equidistants by contact. In the literature, if M ⊂ R2 is
a smooth curve, the Wigner caustic E1/2(M) has been described in various ways. A particular

description says that, if Ra : R2 → R2 denotes reflection through a ∈ R2, then a ∈ E1/2(M)
when M and Ra(M) are not transversal [2, 14]. This description has also been used in [14] for
the case of Lagrangian surfaces in symplectic R4 and, more recently [7], for the case of general
surfaces in R4.

We now generalize this description for every λ-equidistant of submanifolds of more arbitrary
dimensions.

Definition 2.10. For λ ∈ R \ {0, 1}, a λ-reflection through a ∈ Rq is the map

(2.5) Rλa : Rq → Rq , x 7→ Rλa(x) =
1

λ
a− 1− λ

λ
x

Remark 2.11. A λ-reflection through a is not a reflection in the strict sense because

Rλa ◦ Rλa 6= id : Rq → Rq,

instead,

R1−λ
a ◦ Rλa = id : Rq → Rq ,

so that, if a = aλ = λa+ + (1− λ)a− is the λ-point of (a+, a−) ∈ R2q,

Rλaλ(a−) = a+ , R1−λ
aλ

(a+) = a− .

Of course, for λ = 1/2, R1/2
a ≡ Ra is a reflection in the strict sense.

Now, let M be a smooth n-dimensional submanifold of Rq, with 2n ≥ q, and let

a = aλ = λa+ + (1− λ)a−

be the λ-point of (a+, a−) ∈ M ×M ⊂ Rq × Rq. Also, let M+ be a germ of submanifold M
around a+ and M− be a germ of submanifold M around a−. We have:

Proposition 2.12. The following statements are equivalent:
(i) The λ-point a belongs to Eλ(M).
(ii) M+ and Rλa(M−) are not transversal at a+.
(iii) M− and R1−λ

a (M+) are not transversal at a−.
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Remark 2.13. Furthermore, from Remark 2.9 we see that the study of the singularities of
affine equidistants is the study of the singularities of πλ. But this is the same as the study of
the singularities at a = 0 of

(x+, x−)→ x+ +
1− λ
λ

x− = x+ −Rλ0 (x−) .

In other words, the study of the singularities of Eλ(M) 3 0 can be proceeded via the study of the

contact between M+ and Rλ0 (M−) or, equivalently, the contact between M− and R1−λ
0 (M+).

3. K-equivalence

We recall some basic definitions and results (for details, see [1]).
Henceforth, Es denotes the local ring of smooth function-germs on Rs, and ms its maximal

ideal.

Definition 3.1. Map-germs f, f̃ : (Rs, y0) → (Rt, 0) are K-equivalent if there exists a diffeo-
morphism-germ φ : (Rs, y0) → (Rs, y0) and a map-germ A : (Rs, y0) → GL(Rt) such that

f̃ = A · (f ◦ φ).

Theorem 3.2 ([1]). For the K-equivalence of two map-germs it is necessary and sufficient that
two ideals generated by the components of these map-germs may be mapped one to the other by
an isomorphism of Es induced by a diffeomorphism-germ of the source space (Rs, y0).

Definition 3.3. A map-germ F : (Rs × Rp, (y0, z0)) → Rt is a deformation of a map-germ
f : (Rs, y0)→ Rt if F |Rs×{z0} = f , where p is the number of parameters of deformation F .

Definition 3.4. A diffeomorphism-germ Φ : (Rs × Rp, (y0, z0)) → (Rs × Rp, (y0, z0)) is called
fiber-preserving if Φ(y, z) = (Y (y, z), Z(z)) for a smooth map-germ

Y : (Rs × Rp, (y0, z0))→ (Rs, y0)

and a diffeomorphism-germ Z : (Rp, z0)→ (Rp, z0). It means that Φ preserves the fibers of the
projection pr : (Rs × Rp, (y0, z0))→ (Rp, z0).

Definition 3.5. Deformations F, F̃ : (Rs × Rp, (y0, z0)) → (Rt, 0) of respective map-germs

f, f̃ : (Rs, y0) → (Rt, 0) are fiber K-equivalent if there is a fiber-preserving diffeomorphism-
germ Φ : (Rs×Rp, (y0, z0))→ (Rs×Rp, (y0, z0)), i.e. Φ(y, z) = (Y (y, z), Z(z)), and a map-germ

A : (Rs × Rp, (y0, z0))→ GL(Rt) such that F̃ = A · (F ◦ Φ).

Corollary 3.6. For the fiber K-equivalence of two deformations it is necessary and sufficient
that the two ideals of Es+p generated by the components of these deformations may be mapped
one to the other by an isomorphism of Es+p induced by a fiber-preserving diffeomorphism-germ
of the source space (Rs × Rp, (y0, z0)).

Definition 3.7. The germ f : (Rs, 0)→ (Rt, 0) is said to be K-simple if its k-jet, for any k, has
a neighborhood in the jet space Jk0,0(Rs,Rt) that intersects only a finite number of K-equivalence
classes (bounded by a constant independent of k).

Definition 3.8. The p-parameter suspension of the map-germ f : (Rs, 0)→ (Rt, 0) is the map
germ

F : (Rs × Rp, 0) 3 (y, z) 7→ (f(y), z) ∈ (Rt × Rp, 0).

Theorem 3.9 ([10]). K-simple map-germs (Rs, 0) → (Rt, 0) with s ≥ t belong, up to K-
equivalence and suspension, to one of the following three lists in Tables 1-3:
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Notation Normal form Restrictions

Aµ yµ+1
1 +Qs−1 µ ≥ 1

Dµ y21y2 ± yµ−1
2 +Qs−2 µ ≥ 4

E6 y31 + y42 +Qs−2 -

E7 y31 + y1y
3
2 +Qs−2 -

E8 y31 + y52 +Qs−2 -

Table 1. K-simple germs Rs → R. Qs−i = ±y2i+1 ± · · · ± y2s .

Notation Normal form Restrictions

C±k,l (y1y2, y
k
1 ± yl2) l ≥ k ≥ 2

C̃2k (y21 + y22 , y
k
2 ) k ≥ 3

F2m+1 (y21 + y32 , y
m
2 ) m ≥ 3

F2m+4 (y21 + y32 , y1y
m
2 ) m ≥ 2

G∗10 (y21 , y
4
2) -

H±m+5 (y21 ± ym2 , y1y22) m ≥ 4

Table 2. K-simple germs R2 → R2.

Notation Normal form Restrictions

Sµ (±y21 ± y22 + yµ−3
3 , y2y3) µ ≥ 5

T7 (y21 + y32 + y33 , y2y3) -

T̃7 (y21 + y22 , y
2
2 + y23) -

T8 (y21 + y32 ± y43 , y2y3) -

T9 (y21 + y32 + y53 , y2y3) -

U7 (y21 + y2y3, y1y2 + y33) -

U8 (y21 + y2y3 + y33 , y1y2) -

U9 (y21 + y2y3, y1y2 + y43) -

W8 (y21 + y32 , y
2
2 + y1y3) -

W9 (y21 + y2y
2
3 , y

2
2 + y1y3) -

Z9 (y21 + y33 , y
2
2 + y33) -

Z10 (y21 + y2y
2
3 , y

2
2 + y33) -

Table 3. K-simple germs R3 → R2.

Definition 3.10. A deformation

F : (Rs × Rp, (0, 0))→ (Rt, 0)

of a map-germ f : (Rs, 0)→ (Rt, 0) is K-versal if any other deformation

F̃ : (Rs × Rq, (0, 0))→ (Rt, 0)

of f is of the form

F̃ (y, z) = A(y, z) · F (g(y, z), h(z)),

where A : Rs×Rq → GL(Rt), g : (Rs×Rq, (0, 0))→ (Rs, 0), h : (Rq, 0)→ (Rp, 0) are map-germs
such that A(0, 0) is nondegerate matrix and g(y, 0) = y.

Theorem 3.11 ([1]). K-versal deformations of K-equivalent germs with the same number of
parameters are fiber K-equivalent.
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4. Singularities of projection and of contact

4.1. Singularities of projection. In view of Theorem 2.7, let M and M̃ be smooth closed
n-dimensional submanifolds of Rq, q ≤ 2n, and

Mλ = Γλ(M ×M) , M̃λ = Γλ(M̃ × M̃) ,

where Γλ is the λ-chord transformation.
For local classification of singularities, we introduce the definition:

Definition 4.1. Eλ(M) and Eλ(M̃) are λ-chord equivalent if there exists a fiber-preserving

diffeomorphism-germ of TRq that maps the germ ofMλ to the germ of M̃λ i.e. if the following
diagram commutes (vertical arrows indicate diffeomorphism-germs):

Γλ|M×M π
M ×M −→ TRq −→ Rq

↓ ↓ ↓
Γλ|M̃×M̃ π

M̃ × M̃ −→ TRq −→ Rq

The λ-chord equivalence of Eλ is a special case of equivalence of projections studied by V.
Goryunov ([9], [10]), as outlined below.

Definition 4.2. A projection of a (smooth) submanifold S from a total space E to the base
B of the bundle p : E → B is a triple

ι p
S ↪→ E → B

where ι is an embedding. A projection is called a projection “onto” if the dimension of S is
not less than the dimension of the base B.

Definition 4.3. Two projections Si ↪→ Ei → Bi for i = 1, 2 are equivalent if the following
diagram commutes

ι1 p1

S1 ↪→ E1 → B1

↓ ι2 ↓ p2 ↓
S2 ↪→ E2 → B2

where vertical arrows indicate diffeomorphisms.

A projection of S onto B defines a family of subvarieties in the fibers of the bundle p : E → B
parameterized by B: Sb = S ∩ p−1(b) for any b ∈ B. A germ of the projection

(S, q0) ↪→ (E, e0)→ (B, b0)

can be considered in a natural way as a deformation of the subvariety Sb0 .
The germ of a bundle E → B can be identified with the germ of the trivial bundle

Rs × Rp → Rp.

A germ of an embedded smooth submanifold S can be described by the germ of the variety of
zeros of some mapping-germ F : (Rs × Rp, (y0, z0)) → Rt. Then Sz0 can be identified with the
germ of the variety of zeros of F |Rs×{z0}.
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If deformations F, F̃ : (Rs × Rp, (y0, z0)) → (Rt, 0) of map-germs f, f̃ : (Rs, y0) → (Rt, 0)
(respectively) are fiber K-equivalent then the following diagram commutes (Φ, Z indicate diffeo-
morphism-germs and pr indicate the projection):

pr
F−1(0) ↪→ Rs × Rp −→ Rp

↓ ↓ Φ ↓ Z
pr

F̃−1(0) ↪→ Rs × Rp −→ Rp

If the ideal of function-germs vanishing on F−1(0) is generated by the components of F , then
by Corollary 3.6 the inverse result is also true.

We remind that the group A = Diff(Rm, 0)×Diff(Rp, 0) acts on map-germs (Rm, 0)→ (Rp, 0)
by composition on source and target, with corresponding definitions for A-equivalent and A-
simple (refer to Definitions 3.1 and 3.7 for the group K). Then, from the above we have the
following results:

Proposition 4.4 ([9, 10]). F and F̃ are fiber K-equivalent if and only if the projections of

F−1(0) and F̃−1(0) onto Rp are A-equivalent.

Theorem 4.5 ([9]). If the germ of a projection (F−1(0), (0, 0)) ↪→ (Rs×Rp, (0, 0))→ (Rp, 0) is
A-simple then f = F |Rs×{0} is K-simple.

Theorem 4.6 ([11, 12]). The map-germ F : Rs×Rp → Rt is a K-versal deformation of a rank-0
map-germ f : Rs → Rt of finite K-codimension if and only if the projection-germ of F−1(0) onto
Rp is A-stable (infinitesimally stable).

By Theorems 4.5 and 4.6, in order to classify stable singularities of projections one considers
deformations of three classes of singularities: simple singularities of hypersurfaces (Table 1),
simple singularities of curves in a 3-dimensional space (Table 3), simple singularities of a mul-
tiple point on a plane (Table 2). We are interested in projections ”onto” when the projected
submanifold S = F−1(0) is smooth and the dimension of the base B of the bundle is greater
than 1.

In order to see in a more clear way how these three tables are applied to the classification of
singularities of affine equidistants, we now turn to the contact viewpoint.

4.2. Singularities of contact. Let N1, N2 be germs at x of smooth n-dimensional submanifolds
of the space Rq, with 2n ≥ q. We describe N1, N2 in the following way:

• N1 = f−1(0), where f : (Rq, x)→ (Rq−n, 0) is a submersion-germ,
• N2 = g(Rn), where g : (Rn, 0)→ (Rq, x) is an embedding-germ.

Let Ñ1, Ñ2 be another pair of germs at x̃ of smooth n-dimensional submanifolds of the space
Rq, described in the same way.

Definition 4.7. The contact of N1 and N2 at x is of the same contact-type as the contact of Ñ1

and Ñ2 at x̃ if there exists a diffeomorphism-germ Φ : (Rq, x) → (Rq, x̃) such that Φ(N1) = Ñ1

and Φ(N2) = Ñ2. We denote the contact-type of N1 and N2 at x by K(N1, N2, x).

Definition 4.8. A contact map between submanifold-germs N1, N2 is the following map-germ
f ◦ g : (Rn, 0)→ (Rq−n, 0).

Theorem 4.9 ([13]). K(N1, N2, x) = K(Ñ1, Ñ2, x̃) if and only if the contact maps f ◦ g and

f̃ ◦ g̃ are K-equivalent.
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Remark 4.10. If N1 and N2 are transversal at x then it is obvious that the contact map
f ◦ g : (Rn, 0)→ (Rq−n, 0) is a submersion-germ or a diffeomorphism-germ (when q = 2n).

The interesting cases are when N1 and N2 are not transversal at x0

Tx0N1 + Tx0N2 6= Tx0Rq.

Definition 4.11. We say that N1 and N2 are k-tangent at x0 if

dim(Tx0
N1 ∩ Tx0

N2) = k .

If k is maximal, that is

k = n = dim(Tx0
N1) = dim(Tx0

N2) ,

we say that N1 and N2 are tangent at x0.

Remark 4.12. In order to bring this definition into the context of affine equidistants, Eλ(M),
note that N1 = M+ and N2 = Rλ0 (M−) are k-tangent at 0 if and only if TaM

+ and TbM
− are

k-parallel, where λa+ (1− λ)b = 0 ∈ Eλ(M).

If N1 and N2 are k-tangent then we can describe germs of N1 and N2 at 0 in the following
way:

(4.1) N1 = {(y, z, u, v) ∈ Rq : u = φ(y, z), v = ψ(y, z)},

(4.2) N2 = {(y, z, u, v) ∈ Rq : z = η(y, v), u = ζ(y, v)},
where y = (y1, · · · , yk), z = (z1, · · · , zn−k), u = (u1, · · · , uq+k−2n), v = (v1, · · · , vn−k) and
(y, z, u, v) is a coordinate system on the affine space Rq,

φ = (φ1, · · · , φq+k−2n), ψ = (ψ1, · · · , ψn−k),

η = (η1, · · · , ηn−k), ζ = (ζ1, · · · , ζq+k−2n), and φi, ψj , ηj , ζi ∈M2
q,

for i = 1, · · · , q + k − 2n and j = 1, · · · , n− k.
Then, the contact map κN1,N2

: (Rn, 0)→ (Rq−n, 0) is given by:

(4.3) κN1,N2
(y, z) = (z − η(y, ψ(y, z)), φ(y, z)− ζ(y, ψ(y, z)))

From the form of κN1,N2 we easily obtain the following fact

Proposition 4.13. If N1 and N2 are k-tangent at 0 then the corank of the contact map κN1,N2

is k.

We can interpret the contact between two k-tangent n-dimensional submanifolds N1, N2 of
Rq as the contact between tangent k-dimensional submanifolds PN1 and PN2 of N1 and N2,
respectively, in a smooth q− 2n+ 2k-dimensional submanifold S of Rq. These submanifolds are
constructed in the following way:

Let H be a smooth q + k − n-dimensional submanifold-germ on Rq which contains N1 and is
transversal to N2 at 0. Then PN2

= H ∩N2 is a smooth k-dimensional submanifold on N2.
Let G be a smooth q + k − n-dimensional submanifold-germ on Rq which contains N2 and is

transversal to N1 at 0. Then PN1 = G ∩N1 is a smooth k-dimensional submanifold on N1.
PN1

and PN2
are tangent at 0 and they are contained in the smooth q− 2n+ 2k-dimensional

submanifold-germ S = H ∩G.

The contact between N1 and N2 at 0 can now be described as the contact between PN1 and
PN2 at 0, which defines a rank-0 map

(4.4) κPN1
,PN2

: (Rk, 0)→ (Rk−(2n−q), 0) .
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Although in general PN1
and PN2

depend on the choices of H and G, the contact type of PN1

and PN2
does not depend on these choices. This means that if Ñ1, Ñ2 is another pair of germs

at 0 of smooth n-dimensional submanifold of Rq then we have the following result.

Proposition 4.14. K(N1, N2, 0) = K(Ñ1, Ñ2, 0) if and only if

K(PN1 , PN2 , 0) = K(PÑ1
, PÑ2

, 0).

Proof. It is easy to see that in general H can be described in the following way:

(4.5) v = ψ(y, z) +A(y, z, u, v)(u− φ(y, z)),

and G can be described in the following way:

(4.6) z = η(y, v) +B(y, z, u, v)(u− ζ(y, v)),

where A = (aij)
j=1,··· ,n−k
i=1,··· ,q+k−2n, B = (bij)

j=1,··· ,n−k
i=1,··· ,q+k−2n and aij , bij are smooth function-germs on

Rq.
Thus S = H ∩G is given by (4.5) and (4.6).
PN1

is given by (4.5), (4.6), and u = φ(y, z) and PN2
is given by (4.5), (4.6) and u = ζ(y, v).

On the other hand we can also describe N1 by (4.5) and u = φ(y, z) and N2 by (4.6) and
u = ζ(y, v). Then it is easy to see that contact maps are the same after a suitable suspension. �

In view of Proposition 4.14, it is enough to classify the rank-0 map-germs of the form (4.4)
with respect to the group K.

5. Stable singularities of affine equidistants

Since our goal is to classify singularities of affine equidistants of n-dimensional submanifold
M of Rq, we substitute submanifold-germs N1 and N2 of the previous section by N1 = M+ and
N2 = Rλ0 (M−), or equivalently by N1 = M− and N2 = R1−λ

0 (M+), where M+ and M− are
germs of M ⊂ Rq at points a+ 6= a− ∈M ⊂ Rq, such that λa+ + (1− λ)a− = 0.

First, we state the following definition and theorem:

Definition 5.1. A mapping ψ : Nm → Rq is locally stable at p ∈ Nm if there exists a neighbour-
hood Wp of ψ in the space C∞(Nm,Rq) of C∞-mappings from Nm into Rq with the Whitney
C∞-topology, and neighbourhoods Up around p and Vp around ψ(p) such that for all φ ∈ Wp,
it follows that φ : Up → Vp is A- equivalent to ψ : Up → Vp, where A = Diff(Up)×Diff(Vp) (see
[8]).

Theorem 5.2. For a residual set of embeddings ι : Mn → Rq the map

πλ ◦ (ι× ι) : M ×M \∆→ Rq

is locally stable whenever the pair (2n, q) is a pair of nice dimensions, where ∆ is the diagonal
in M ×M .

Proof. From the diagram of maps

ι× ι πλ
M ×M −→ Rq × Rq → Rq ,

we obtain the diagram of r-jet maps

jr(ι× ι) (πλ)∗
M ×M −→ Jr(M ×M,Rq × Rq) → Jr(M ×M,Rq) .

A typical fiber of Jr(M × M,Rq) is Jr0 (M × M,Rq), the space of (degree ≤ r)-polynomial
map-germs Rn × Rn → Rq, vanishing at 0.
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Let {W1, . . . ,Ws} be the finite set of all K simple orbits in Jr(M×M,Rq); let {Ws+1, . . . ,Wt}
be a finite stratification of the complement of the union of simple orbits W1 ∪ . . . ∪Ws. This
stratification exists because these are semialgebraic sets. We denote by S = {Wj}1≤j≤t the
resulting stratification of Jr(M ×M,Rq). Because (πλ)∗ is a submersion, (πλ)−1

∗ Wj = W ∗j is a
submanifold of Jr(M×M,Rq×Rq), for all j = 1, . . . , t, so that S∗ = {W ∗j }1≤j≤t is a stratification
of this space.

Furthermore,

(5.1) jr(ι× ι) t S∗ ⇐⇒ jr(πλ ◦ (ι× ι)) t S ,
where transversality to S (respectively to S∗) means transversality of jr(ι × ι) (respectively
jr(πλ ◦ (ι× ι)) ) to each stratum of the corresponding stratification.

On the other hand, under the natural identification

jr(ι× ι)|M×M\∆ ' 2j
rι ⊂ 2J

r(M,Rq) ,
where 2J

r(M,Rq) is the space of double r-jets, we can apply the Multijet Transversality Theorem
[8] to get that, for each W ∗j in 2J

r(M,Rq), the set of immersions

RWj
= {ι : M → Rq |2jrι tW ∗j }

is residual. Then, the set
R = ∩tj=1RWj

is also residual.
Now, it follows from equation (5.1) that jr(πλ ◦ (ι× ι)) tWj , for all ι ∈ R, for all j = 1, . . . , t.

When (2n, q) is a pair of nice dimensions, this implies that jr(πλ ◦ (ι × ι)) is transversal to all
K orbits in Jr(M ×M,Rq), which says that this mapping is locally stable (see [8, 12]). �

Theorem 5.3 ([12]). The nice dimensions for pairs (2n, q) are:
(i) n < q = 2n, n ≤ 4
(ii) n < q = 2n− 1, n ≤ 4
(iii) n < q = 2n− 2, n ≤ 3
(iv) n < q ≤ 2n− 3, q ≤ 6

Thinking locally, denote two distinct germs of embedding ι : Mn → Rq by

ι+ : (Rn, 0)→ (Rq, a+) and ι− : (Rn, 0)→ (Rq, a−),

and by

(5.2) π̃λ = πλ ◦ (ι+ × ι−) : (R2n, 0)→ (Rq, 0) ,

the restriction of πλ to M+ ×M−. Then, recalling the notation of (4.1)-(4.2), π̃λ is given by

(5.3) π̃λ : (y, z, ỹ, v) 7→ (π̃1
λ(y, ỹ), π̃2

λ(z, ỹ, v), π̃3
λ(y, z, ỹ, v), π̃4

λ(y, z, v))

where y, ỹ ∈ Rk, z, v ∈ Rn−k, and

(5.4) π̃1
λ(y, ỹ) = λy + (1− λ)ỹ,

(5.5) π̃2
λ(z, ỹ, v) = λz + (1− λ)η(ỹ, v),

(5.6) π̃3
λ(y, z, ỹ, v) = λφ(y, z) + (1− λ)ζ(ỹ, v),

(5.7) π̃4
λ(y, z, v) = λψ(y, z) + (1− λ)v.

Let
κλ : (Rn, 0)→ (Rq−n, 0)

denote the the contact-map between M+ and Rλ0 (M−). We have:
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Proposition 5.4. Local rings
E2n

π̃∗λ(mq)
and

En
κ∗λ(mq−n)

are isomorphic.

Proof. From (5.3), we have that

E2n
π̃∗λ(mq)

'
E(y,z,ỹ,v)

〈π̃1
λ(y, ỹ), π̃2

λ(z, ỹ, v), π̃3
λ(y, z, ỹ, v), π̃4

λ(y, z, v)〉
so that, using (5.4)-(5.7), this is isomorphic to

E(y,z)
〈z + (1−λ)

λ η(− λ
(1−λ)y,−

λ
(1−λ)ψ(y, z)), φ(y, z) + (1−λ)

λ ζ(− λ
(1−λ)y,−

λ
(1−λ)ψ(y, z))〉

and, using (4.3) for N1 = M+ and N2 = Rλ0 (M−), we see that the above local ring is isomorphic

to
En

κ∗λ(mq−n)
. �

On the other hand, we remind from Remark 4.12 that k is the degree of tangency of M+ and
Rλ0 (M−) and therefore k is the degree of parallelism of Ta+M

+ and Ta−M
−, where

λa+ + (1− λ)a− = 0 ∈ Eλ(M),

so that, denoting by

θλ : (Rk, 0)→ (Rk−(2n−q), 0)

the reduced (rank-0) contact map θλ = κPN1
,PN2

, for N1 = M+ and N2 = Rλ0 (M−), from
Proposition 4.14 we have the following

Corollary 5.5. The local rings
En

κ∗λ(mq−n)
and

Ek
θ∗λ(mk−(2n−q))

are isomorphic.

Thus, by Theorems 4.6 and 5.2, Proposition 5.4 and Corollary 5.5, for the local classification of
stable singularities of affine equidistants, we need to determine every rank-0 K-simple map-germ

(5.8) θλ : (Rk, 0)→ (Rl, 0) ,

that admits a K-versal deformation Fλ : Rk × Rq → Rl, so that

(5.9) π̃λ : (Fλ)−1(0) = (R2n, 0)→ (Rq, 0)

is an A-stable map. Here, θλ = κPN1
,PN2

, for N1 = M+ and N2 = Rλ0 (M−), and π̃λ is the

restriction of πλ to M+ ×M−, so that

(5.10) l = k − (2n− q) , 1 ≤ k ≤ n , 2n ≥ q > n ,

for any pair (2n, q) in the nice dimensions (Theorem 5.3).
In other words, we unfold the map-germ θλ with m parameters,

(5.11) π̃λ : (Rm × Rk, 0)→ (Rm × Rl, 0) , (w, y) 7→ (w, u(w, y)) ,

where m = 2n− k, so that π̃λ is A-stable. Thus, in each case, we look for the rank-0 K-simple
map-germs θλ that can be unfolded with m = 2n − k parameters so that its Ke-codimension µ
is such that

(5.12) µ ≤ l +m = q .

The list of K-simple map-germs θλ is presented in Tables 1, 2 and 3, in section 2 above. Thus,
for classifying the stable singularities of affine equidistants of smooth submanifolds Mn ⊂ Rq, all
we have to do is read those Tables with respect to the numbers k, l and µ, subject to conditions
(5.10) and (5.12) for each pair (2n, q) in the nice dimensions.

In this way, we arrive at our main result, as follows.
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5.1. All possible stable singularities in the nice dimensions. First, remind the definition
of k-parallelism, cf. (2.1). Then, we have:

Theorem 5.6. Let Mn ⊂ Rq be a smooth closed submanifold of the affine space, such that
2n ≥ q and (2n, q) is a pair of nice dimensions, as listed in Theorem 5.3. Then, the possible
stable singularities of the λ-affine equidistant Eλ(M) ⊂ Rq are listed case by case, as below.

Curves:

In this case, we have curves in R2 and the rank-0 contact map is θλ : R→ R, µ ≤ 2. From Table
1, the stable singularities of affine equidistants can be of type A1 and A2.

Surfaces:

(1) M2 ⊂ R3.
2-parallelism. θλ : R2 → R, µ ≤ 3.
Eλ(M) with stable singularities of types A1, A2 and A3.

(2) M2 ⊂ R4.
(i) 1-parallelism. θλ : R→ R, µ ≤ 4.
Eλ(M) with stable singularities of types A1, A2, A3 and A4.

(ii) 2-parallelism. θλ : R2 → R2, µ ≤ 4.
Eλ(M) with stable singularities of types C±2,2.

3-manifolds:

(1) M3 ⊂ R4.
3-parallelism. θλ : R3 → R, µ ≤ 4.
Eλ(M) with stable singularities of types A1, ..., A4 and D±4 .

(2) M3 ⊂ R5.
(i) 2-parallelism. θλ : R2 → R, µ ≤ 5.
Eλ(M) with stable singularities of types A1, ..., A5, D±4 , D±5 .

(ii) 3-parallelism. θλ : R3 → R2, µ ≤ 5.
Eλ(M) with stable singularites of types S5.

(3) M3 ⊂ R6.
(i) 1-parallelism. θλ : R→ R, µ ≤ 6.
Eλ(M) with stable singularities of types A1, ..., A6.

(ii) 2-parallelism. θλ : R2 → R2, µ ≤ 6.
Eλ(M) with stable singularities of types C±2,2, C±2,3, C±2,4, C±3,3, C6.

(iii) 3-parallelism. No stable singularities for Eλ(M).

4-manifolds:

(1) M4 ⊂ R5.
4-parallelism. θλ : R4 → R, µ ≤ 5.
Eλ(M) with stable singularities of types A1, ..., A5, D±4 , D±5 .
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(2) M4 ⊂ R6: The map π̃λ : R8 → R6 is not in nice dimensions.

(3) M4 ⊂ R7.
(i) 2-parallelism. θλ : R2 → R, µ ≤ 7.
Eλ(M) with stable singularities A1, ..., A7, D±4 , ..., D±7 , E6, E7.

(ii) 3-parallelism. θλ : R3 → R2, µ ≤ 7.

Eλ(M) with stable singularities of types S5, S6, S7, T7, T̃7.
(iii) 4-parallelism. No stable singularities for Eλ(M).

(4) M4 ⊂ R8.
(i) 1-parallelism. θλ : R→ R, µ ≤ 8.
Eλ(M) with stable singularities of types A1, ..., A8.

(ii) 2-parallelism. θλ : R2 → R2, µ ≤ 8.
Eλ(M) with stable singularities of types
C±2,2, C±2,3, C±2,4, C±2,5, C±2,6, C±3,3, C±3,4, C±3,5, C±4,4, C6, C8, F7, F8.

(iii) 3-parallelism, 4-parallelism. No stable singularities for Eλ(M).

5-manifolds:

(1) M5 ⊂ R6.
5-parallelism. θλ : R5 → R, µ ≤ 6.
Eλ(M) with stable singularities A1, ..., A6, D±4 , D±5 , D±6 , E6.

(2) For all other embeddings M5 ⊂ Rq, no map π̃λ in nice dimensions.

n-manifolds, n ≥ 6: No map π̃λ in nice dimensions.
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