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Abstract. The evolute of a regular curve in the Euclidean plane is given by not only the
caustics of the regular curve, envelope of normal lines of the regular curve, but also the locus

of singular points of parallel curves. In general, the evolute of a regular curve has singularities,

since such points correspond to vertices of the regular curve and there are at least four vertices
for simple closed curves. If we repeat an evolute, we cannot define the evolute at a singular

point. In this paper, we define an evolute of a front and give properties of such an evolute

by using a moving frame along a front and the curvature of the Legendre immersion. As
applications, repeated evolutes are useful to recognize the shape of curves.

1. Introduction

The evolute of a regular plane curve is a classical object (cf. [5, 8, 9]). It is useful for
recognizing the vertex of a regular plane curve as a singularity (generically, a 3/2 cusp singularity)
of the evolute. The caustics (evolutes) are related to general relativity theory, see for instance
[6, 10]. The properties of evolutes are discussed by using distance squared functions and the
theories of Lagrangian and Legendrian singularities (cf. [1, 2, 3, 13, 14, 17, 20]). Moreover,
the singular points of parallel curves of a regular curve sweep out the evolute. By using this
property, we define an evolute of a front in §2. In order to consider properties of an evolute of a
front, we introduce a moving frame along a front (a Legendre immersion) (cf. [7]). In [7], we give
existence and uniqueness for a Legendre curve in the unit tangent bundle like for regular plane
curves. It is quite useful to analyze a Legendre curve (or, a frontal) in the unit tangent bundle.
In §3, we give another representation for the evolute of a front by using the moving frame and the
curvature of the Legendre immersion (Theorem 3.3). By the representation, we give properties
of the evolutes of fronts, for example, the evolute of a front is also a front. It follows that we
can consider the repeated evolutes, namely, the evolute of an evolute of a front, see Theorem 4.1
in §4. Moreover, we extend the notion of the vertex for a front (or, a Legendre immersion) and
give a kind of four vertex theorem for a front, see Proposition 3.11. Furthermore, the evolute of
a front is also given by the envelope of normal lines of the front. A singular point of the evolute
of the evolute of a regular curve measure to the contact of an involute of a circle. We give the
n-th evolute of a front in §5. In §6, we give examples of the evolutes of fronts. In the appendix,
we give the condition of contact between regular curves.

All maps and manifolds considered here are differentiable of class C∞.
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2. Definitions and basic concepts

Let I be an interval or R. Suppose that γ : I → R2 is a regular plane curve, that is, γ̇(t) 6= 0
for any t ∈ I. If s is the arc-length parameter of γ, we denote t(s) by the unit tangent vector
t(s) = γ′(s) = (dγ/ds)(s) and n(s) by the unit normal vector n(s) = J(t(s)) of γ(s), where J
is the anticlockwise rotation by π/2. Then we have the Frenet formula as follows:(

t′(s)
n′(s)

)
=

(
0 κ(s)

−κ(s) 0

)(
t(s)
n(s)

)
,

where κ(s) = t′(s) · n(s) is the curvature of γ and · is the inner product on R2.
Even if t is not the arc-length parameter, we have the unit tangent vector t(t) = γ̇(t)/|γ̇(t)|,

the unit normal vector n(t) = J(t(t)) and the Frenet formula(
ṫ(t)
ṅ(t)

)
=

(
0 |γ̇(t)|κ(t)

−|γ̇(t)|κ(t) 0

)(
t(t)
n(t)

)
,

where γ̇(t) = (dγ/dt)(t), |γ̇(t)| =
√
γ̇(t) · γ̇(t) and κ(t) = det(γ̇(t), γ̈(t))/|γ̇(t)|3 = ṫ(t)·n(t)/|γ̇(t)|.

Note that κ(t) is independent of the choice of a parametrization.
In this paper, we consider evolutes of plane curves. The evolute Ev(γ) : I → R2 of a regular

plane curve γ is given by

Ev(γ)(t) = γ(t) +
1

κ(t)
n(t),

away from the points where κ(t) = 0 (cf. [5, 8, 9]).
If γ is not a regular curve, then we cannot define the evolute as above, since the curvature

may diverge at a singular point. However, we define an evolute of a front in the Euclidean plane,
see Definition 2.10 and Theorem 3.3. It is a generalization of the evolute of regular plane curves.

We say that γ : I → R2 is a front (or, a wave front) in the Euclidean plane, if there exists
a smooth map ν : I → S1 such that the pair (γ, ν) : I → R2 × S1 is a Legendre immersion,
namely, (γ̇(t), ν̇(t)) 6= (0, 0) and (γ(t), ν(t))∗θ = 0 for each t ∈ I. Here θ is the canonical contact
structure on T1R2 = R2 × S1, and S1 is the unit circle. We remark that the second condition is
equivalent to γ̇(t) · ν(t) = 0 for each t ∈ I (cf. [1, 2, 3]).

Throughout the paper, we assume that the pair (γ, ν) is co-orientable, the singular points of
γ are finite and γ has no inflection points. The first and second conditions can be removed, see
Remarks 3.4 and 3.5. However, we add these conditions for the sake of simplicity.

We give examples of fronts. See [1, 4, 11] for other examples.

Example 2.1. One of the typical examples of a front is a regular plane curve. Let γ : I → R2

be a regular plane curve. In this case, we may take ν : I → S1 by ν(t) = n(t). Then it is easy
to check that (γ, ν) is a Legendre immersion.

Example 2.2. Let γ : R → R2 be a 3/2 cusp (A2-singularity) given by γ(t) = (t2, t3). In this

case, 0 is a singular point of γ. If we take ν : R → S1 by ν(t) = (1/
√

9t2 + 4)(−3t, 2), then we
can show that (γ, ν) is a Legendre immersion. Hence the 3/2 cusp is an example of a front. The
3/2 cusp is the generic singularity of fronts and also evolutes in the Euclidean plane.

Example 2.3. Let γ : R → R2 be a 4/3 cusp (E6-singularity) given by γ(t) = (t3, t4). In this

case, 0 is also a singular point of γ. If we take ν : R→ S1 by ν(t) = (1/
√

16t2 + 9)(−4t, 3), then
we can show that (γ, ν) is a Legendre immersion. Hence the 4/3 cusp is also an example of a
front, see Example 6.3.

Example 2.4. Let γ : R → R2 be a 5/2 cusp (A4-singularity) given by γ(t) = (t2, t5). In this
case, 0 is also a singular point of γ. However, the 5/2 cusp is not a front. By the condition
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γ̇(t) · ν(t) = 0, we take ν : R → S1 by ν(t) = ±(1/
√

25t6 + 4)(−5t3, 2). Then (γ, ν) is not an
immersion at t = 0 and hence γ is not a front (but γ is a frontal, see [7]).

Remark 2.5. By the definition of the Legendre immersion, if (γ, ν) is a Legendre immersion,
then (γ,−ν) is also.

We have the following Lemma (cf. [4, 11, 12]).

Lemma 2.6. Let γ : I → R2 be a front and t0 ∈ I. If γ(i)(t0) = 0 for each 1 ≤ i ≤ k − 1 and
γ(k)(t0) 6= 0, then γ at t0 is diffeomorphic to the curve (tk, tk+1 + o(tk+1)) at t = 0. Moreover,
if k = 2 (respectively, k = 3), the curve at t0 is diffeomorphic to a 3/2 (respectively, 4/3) cusp.

Let (γ, ν) : I → R2 × S1 be a Legendre immersion. We define a parallel curve γλ : I → R2 of
γ by γλ(t) = γ(t) + λν(t) for each λ ∈ R. Then we have following results.

Proposition 2.7. For a Legendre immersion (γ, ν) : I → R2×S1, the parallel curve γλ : I → R2

is a front for each λ ∈ R.

Proof. We take νλ : I → S1 by νλ(t) = ν(t). Since γλ(t) = γ(t) + λν(t), it holds that
γ̇λ(t) = γ̇(t) + λν̇(t). If γ̇λ(t0) = 0 at a point t0 ∈ I, then we have γ̇(t0) + λν̇(t0) = 0. If
ν̇λ(t0) = ν̇(t0) = 0, then γ̇(t0) = 0. It contradicts the fact that (γ, ν) is an immersion. Hence
(γλ, νλ) is an immersion. By ν(t) · ν(t) = 1, we have ν̇(t) · ν(t) = 0. Then

γ̇λ(t) · νλ(t) = (γ̇(t) + λν̇(t)) · ν(t) = γ̇(t) · ν(t) + λν̇(t) · ν(t) = 0

holds. It follows that (γλ, νλ) is a Legendre immersion and hence γλ is a front. 2

We denote the curvature of the parallel curve γλ(t) by κλ(t), when γλ is a regular curve.

Proposition 2.8. Let (γ, ν) be a Legendre immersion. If γ is a regular curve and λ 6= 1/κ(t),
then a parallel curve γλ is also regular and Ev(γλ)(t) is consistent with Ev(γ)(t).

Proof. Since γλ(t) = γ(t)+λn(t), it holds that γ̇λ(t) = |γ̇(t)|(1−λκ(t))t(t). By the assumption
λ 6= 1/κ(t), γλ is a regular curve. By a direct calculation, we have

κλ(t) =
κ(t)

|1− λκ(t)|
, nλ(t) =

1− λκ(t)

|1− λκ(t)|
n(t).

Hence we have

Ev(γλ)(t) = γλ(t) +
1

κλ(t)
nλ(t) = γ(t) + λn(t) +

|1− λκ(t)|
κ(t)

1− λκ(t)

|1− λκ(t)|
n(t)

= γ(t) +
1

κ(t)
n(t) = Ev(γ)(t)

2

Remark 2.9. Let (γ, ν) be a Legendre immersion. If t0 is a singular point of the front γ, then
limt→t0 |κ(t)| =∞. By the equality κλ(t) = κ(t)/|1− λκ(t)|, we have limt→t0 κλ(t) 6= 0, see also
Remark 3.2.

We now define an evolute of a front in the Euclidean plane.

Definition 2.10. Let (γ, ν) : I → R2 × S1 be a Legendre immersion. We define an evolute
Ev(γ) : I → R2 of the front γ as follows:

Ev(γ)(t) =

{
γ(t) + 1

κ(t)n(t) if t is a regular point,

γλ(t) + 1
κλ(t)

nλ(t) if t ∈ (t0 − δ, t0 + δ), t0 is a singular point of γ,
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where δ is a sufficiently small positive real number, λ ∈ R is satisfied the condition λ 6= 1/κ(t)
and κ(t) 6= 0.

Remark 2.11. By the assumption of the finiteness of singularities of a front, there exists λ ∈ R
with the condition λ 6= 1/κ(t). Moreover, by Proposition 2.8, we can glue on the regular interval
of γ and γλ. Then the evolute of a front is well-defined. Furthermore, by definition, the evolute
of a front Ev(γ) is a C∞ map.

In order to consider properties of the evolute of a front, we need a moving frame along a front
(or, a Legendre immersion) (cf. [7]). Let (γ, ν) : I → R2×S1 be a Legendre immersion. If γ is a
regular curve around a point t0, then we have the Frenet formula of γ in §2. On the other hand,
if γ is singular at a point t0, then we don’t define such a frame. However, ν is always defined
even if t is a singular point of γ. Therefore, we have the Frenet formula of a front as follows.
We put µ(t) = J(ν(t)). We call the pair {ν(t),µ(t)} is a moving frame along a front γ(t) in R2

and we have the Frenet formula of a front which is given by(
ν̇(t)
µ̇(t)

)
=

(
0 `(t)
−`(t) 0

)(
ν(t)
µ(t)

)
,(1)

where `(t) = ν̇(t) · µ(t). Moreover, if γ̇(t) = α(t)ν(t) + β(t)µ(t) for some smooth functions
α(t), β(t), then α(t) = 0 follows from the condition γ̇(t) · ν(t) = 0. Hence, there exists a smooth
function β(t) such that

γ̇(t) = β(t)µ(t).(2)

Since (γ, ν) is an immersion, we have (`(t), β(t)) 6= (0, 0) for each t ∈ I. The pair (`, β) is
an important invariant of Legendre curves (or, frontals) in the unit tangent bundle like as the
curvature of a regular plane curve, for more detail, see [7]. We call the pair (`, β) the curvature
of the Legendre curve. Since we assume that (γ, ν) is a Legendre immersion, so that we call
(`, β) the curvature of the Legendre immersion. For the related properties, see [15, 16].

3. Properties of the evolutes of fronts

In this section, we consider properties of the evolutes of fronts. Let (γ, ν) : I → R2 × S1 be a
Legendre immersion with the curvature of the Legendre immersion (`, β).

First we give a relationship between the curvature of the Legendre immersion (`(t), β(t)) and
the curvature κ(t) if γ is a regular curve.

Lemma 3.1. (1) If γ is a regular curve, then `(t) = |β(t)|κ(t).
(2) If γλ is a regular curve, then `(t) = |β(t) + λ`(t)|κλ(t).

Proof. (1) By a direct calculation, γ̇(t) = β(t)µ(t), γ̈(t) = β̇(t)µ(t)− β(t)`(t)ν(t) and

κ(t) =
det (γ̇(t), γ̈(t))

|γ̇(t)|3
=

det
(
β(t)µ(t), β̇(t)µ(t)− β(t)`(t)ν(t)

)
|β(t)|3

=
β(t)2`(t)

|β(t)|3
=

`(t)

|β(t)|
.

Therefore we have `(t) = |β(t)|κ(t).
(2) We can also prove by the same calculations of (1). 2

Remark 3.2. Since (`(t), β(t)) 6= (0, 0), if t0 is a singular point of γ, then γλ is a regular curve.
By Lemma 3.1 (2), `(t0) = |λ`(t0)|κλ(t0). It follows from λ`(t0) 6= 0 that κλ(t0) 6= 0.

We give another representation of the evolute of a front by using the moving frame of a front
{ν(t),µ(t)} and the curvature of the Legendre immersion (`(t), β(t)).
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Theorem 3.3. Under the above notations, the evolute of a front Ev(γ)(t) is represented by

Ev(γ)(t) = γ(t)− β(t)

`(t)
ν(t),(3)

and Ev(γ) is a front. More precisely, (Ev(γ)(t), J(ν(t))) is a Legendre immersion with the
curvature (

`(t),
d

dt

(
β(t)

`(t)

))
.

Proof. First suppose that γ is a regular curve. Since γ̇(t) = β(t)µ(t), we have |β(t)| 6= 0 and

t(t) =
β(t)

|β(t)|
µ(t), n(t) = − β(t)

|β(t)|
ν(t).

By Lemma 3.1 (1), κ(t) = `(t)/|β(t)| and `(t) 6= 0. Then

Ev(γ)(t) = γ(t) +
1

κ(t)
n(t) = γ(t) +

|β(t)|
`(t)

(
− β(t)

|β(t)|

)
ν(t) = γ(t)− β(t)

`(t)
ν(t).

Second suppose that t0 is a singular point of γ and γλ is a regular curve with λ 6= 1/κ(t). Since
γ̇λ(t) = (β(t) + λ`(t))µ(t), we have |β(t) + λ`(t)| 6= 0 and

tλ =
β(t) + λ`(t)

|β(t) + λ`(t)|
µ(t), nλ = − β(t) + λ`(t)

|β(t) + λ`(t)|
ν(t).

By Lemma 3.1 (2), κλ(t) = `(t)/|β(t) + λ`(t)| and `(t) 6= 0. Then

Ev(γλ)(t) = γλ(t) +
1

κλ(t)
nλ(t) = γ(t) + λν(t) +

|β(t) + λ`(t)|
`(t)

(
− β(t) + λ`(t)

|β(t) + λ`(t)|

)
ν(t)

= γ(t)− β(t)

`(t)
ν(t).

If we take ν̃(t) = J(ν(t)) = µ(t), then (Ev(γ)(t), ν̃(t)) is a Legendre immersion. In fact,
˙̃ν(t) = `(t)J(µ(t)) 6= 0 and by the form of

Ėv(γ)(t) = − β̇(t)`(t)− β(t) ˙̀(t)

`(t)2
ν(t) =

d

dt

(
β(t)

`(t)

)
J(µ(t)),(4)

we have Ėv(γ)(t) · ν̃(t) = 0. It follows that (Ev(γ)(t), J(ν(t))) is a Legendre immersion with the
curvature (`(t), (d/dt)(β(t)/`(t))) and hence Ev(γ) is a front. This completes the proof of the
Theorem. 2

Remark 3.4. By the representation (3), we may define the evolute of a front even if γ have
non-isolated singularities, under the condition `(t) 6= 0.

By Lemma 3.1 and Remark 3.4, for a Legendre immersion (γ, ν) with the curvature of the
Legendre immersion (`, β), we say that t0 is an inflection point of the front γ (or, the Legendre
immersion (γ, ν)) if `(t0) = 0. Since β(t0) 6= 0 and Proposition 3.1, `(t0) = 0 is equivalent to
the condition κ(t0) = 0.

Remark 3.5. Let (γ, ν) be a Legendre immersion, then (γ,−ν) is also (Remark 2.5). However,
Ev(t) does not change. It follows that we can define an evolute of a non co-orientable front, by
taking double covering of γ.
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Remark 3.6. By Definition 2.10, the evolute of a front is independent on the parametrization
of (γ, ν). The curvature of the Legendre immersion (`, β) is depended on the parametrization
of (γ, ν), see [7]. If s = s(t) is a parameter changing on I to I, then `(t) = `(s(t))ṡ(t) and
β(t) = β(s(t))ṡ(t). It also follows from the representation (3) that the evolute of a front is
independent on the parametrization of (γ, ν).

If t0 is a singular point of γ, then β(t0) = 0. As a corollary of Theorem 3.3, we have the
following.

Corollary 3.7. If t0 is a singular point of γ, then Ev(γ)(t0) = γ(t0).

Proposition 3.8. Let (γ, ν) : I → R2 × S1 be a Legendre immersion without inflection points.
Suppose that t0 is a singular point of γ. Then t0 is a regular point of Ev(γ)(t) if and only if
γ̈(t0) 6= 0.

Proof. By the assumption, β(t0) = 0. Let t0 be a regular point of Ev(γ)(t). Since (4) and

`(t0) 6= 0, we have β̇(t0) 6= 0. By the differentiate of γ̇(t) = β(t)µ(t), we have

γ̈(t) = β̇(t)µ(t)− β(t)`(t)ν(t)

It follows that γ̇(t0) = 0 and γ̈(t0) = β̇(t0)µ(t0) 6= 0. The converse is also holded by reversing
the arguments. 2

Note that by Lemma 2.6 and Proposition 3.8, the conditions follows that γ is diffeomorphic
to the 3/2 cusp at t0. Hence, we can recognize the 3/2 cusp of original curve by the regularity
of the evolute of a front, see Examples 6.2 and 6.3.

The most degenerate case of the evolute of a front, we have classified as follows:

Proposition 3.9. If Ėv(γ)(t) ≡ 0, then γ is a part of a circle or a point.

Proof. By the condition Ėv(γ)(t) ≡ 0, there exists a constant c ∈ R such that β(t)/`(t) ≡ c, if
and only if β(t) = c`(t). If c = 0, then γ̇(t) = β(t)µ(t) = 0. It follows that γ is a point. Suppose
that c 6= 0. By the existence and the uniqueness of a front in [7], we take

ν(t) =

(
cos

(∫
`(t)dt

)
, sin

(∫
`(t)dt

))
, µ(t) =

(
− sin

(∫
`(t)dt

)
, cos

(∫
`(t)dt

))
.

By γ̇(t) = β(t)µ(t), we have

γ(t) =

(
−c
∫
`(t) sin

(∫
`(t)dt

)
dt+ a, c

∫
`(t) cos

(∫
`(t)dt

)
dt+ b

)
=

(
c cos

(∫
`(t)dt

)
+ a, c sin

(∫
`(t)dt

)
+ b

)
for some constants a, b ∈ R. Therefore, γ is a part of a circle. 2

As a well-known result, a singular point of Ev(γ) of a regular plane curve γ is corresponding
to a vertex of γ, namely, κ̇(t) = 0 (cf. [5, 8, 18, 19]).

We extend the notion of vertex. For a Legendre immersion (γ, ν) with the curvature of
the Legendre immersion (`, β), t0 is a vertex of the front γ (or a Legendre immersion (γ, ν))
if (d/dt)(β/`)(t0) = 0, namely, (d/dt)Ev(t0) = 0. Note that if t0 is a regular point of γ, the
definition of the vertex coincides with usual vertex for regular curves. Therefore, this is a
generalization of the notion of the vertex of regular plane curves.
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Remark 3.10. Let (γ, ν) be a Legendre immersion. If t0 is a singular point of γ which degenerate
more than 3/2 cusp, then t0 is a vertex of a front γ. In fact,

d

dt

(
β

`

)
(t0) =

β̇(t0)`(t0)− β(t0) ˙̀(t0)

`(t0)2
= 0,

since β(t0) = β̇(t0) = 0 by Proposition 3.8.

In this paper, a Legendre immersion (γ, ν) : [a, b]→ R2 × S1 is a closed Legendre immersion
if (γ(n)(a), ν(n)(a)) = (γ(n)(b), ν(n)(b)) for all n ∈ N ∪ {0} where γ(n)(a), ν(n)(a), γ(n)(b) and
ν(n)(b) means one-sided differential. If (γ, ν) : [a, b]→ R2 × S1 is a closed Legendre immersion,
then both a and b are regular points or both a and b are singular points of γ. When a and b are
singular points of γ, we treat these singular points as one singular point.

Proposition 3.11. Let (γ, ν) : [a, b]→ R2×S1 be a closed Legendre immersion without inflection
points.

(1) If γ has at least two singular points which degenerate more than 3/2 cusp, then γ has at
least four vertices.

(2) If γ has at least four singular points, then γ has at least four vertices.

Proof. (1) Suppose that γ has at least two singular points which degenerate more than 3/2 cusp.
By Remark 3.10, these singularities are vertices of γ, therefore it is sufficient to show that there
is at least one vertex between two adjacent singular points. Since γ has no inflection points, the
sign of the curvature of γ on regular points is constant. Therefore, either limt→t0 κ(t) = ∞ for
all t0 ∈ Σ(γ) or limt→t0 κ(t) = −∞ for all t0 ∈ Σ(γ), where Σ(γ) is the set of singular points of
γ. This concludes there exist t ∈ (t1, t2) such that κ̇(t) = 0 for singular points t1 and t2 of γ.

Suppose that a and b are singular points which degenerate more than 3/2 cusp. Since we
treat a and b as the one singular point, there exists at least one singular point t1 ∈ (a, b) which
degenerate more than 3/2 cusp by the assumption. In this case, there exist at least two vertices
v1 ∈ (a, t1) and v2 ∈ (t1, b). Moreover, a and t1 are also vertices. Therefore, there exist at least
four vertices.

Next, suppose that a and b are regular points or 3/2 cusps. Then there exist at least two
singular points t1 and t2 (we assume t1 < t2) in (a, b) which degenerate more than 3/2 cusp.
In this case, there exists at least one vertex v1 ∈ (t1, t2). Moreover, since (γ, ν) is closed, there
exists a point v2 ∈ [a, t1) ∪ (t2, b] such that κ̇(v2) = 0. Therefore, γ has at least four vertices.

(2) Suppose that γ has at least four singular points. Since γ has no inflection points, the sign
of the curvature of γ on regular points is constant. Therefore, either limt→t0 κ(t) = ∞ for all
t0 ∈ Σ(γ) or limt→t0 κ(t) = −∞ for all t0 ∈ Σ(γ). This concludes there exist t ∈ (t1, t2) such
that κ̇(t) = 0, that is, there is at least one vertex between two adjacent singular points.

Suppose that a and b are singular points of γ. Since we treat a and b as the one singular
point, there exist at least three singular points t1, t2 and t3 of γ in (a, b), which we assume
to be ordered so that a < t1 < t2 < t3 < b. Since there is at least one vertex between two
adjacent singular points, there exist at least four vertices v1 ∈ (a, t1), v2 ∈ (t1, t2), v3 ∈ (t2, t3)
and v4 ∈ (t3, b).

Next, suppose that a and b are regular points of γ. Let t1, t2, t3 and t4 be singular points
of γ (we assume a < t1 < t2 < t3 < t4 < b). Since there is at least one vertex between two
adjacent singular points, there exist at least three vertices v1 ∈ (t1, t2), v2 ∈ (t2, t3), v3 ∈ (t3, t4).
Moreover, since (γ, ν) is closed, there exists a point v4 ∈ [a, t1) ∪ (t4, b] such that κ̇(v4) = 0.
Therefore, γ has at least four vertices. 2

Finally, in this section, we consider the evolute of a front as a (wave) front of a Legendre
immersion by using a family of functions.
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We define a family of functions

F : I × R2 → R
by F (t, x, y) = (γ(t)− (x, y)) · µ(t).

Proposition 3.12. Let (γ, ν) : I → R2 × S1 be a Legendre immersion with the curvature of the
Legendre immersion (`, β).

(1) F (t, x, y) = 0 if and only if there exists a real number λ such that (x, y) = γ(t)− λν(t).
(2) F (t, x, y) = (∂F/∂t)(t, x, y) = 0 if and only if `(t) 6= 0 and (x, y) = γ(t)− (β(t)/`(t))ν(t).

Proof. (1) (γ(t)−(x, y))·µ(t) = 0 if and only if there exists λ ∈ R such that γ(t)−(x, y) = λν(t).
(2) (∂F/∂t)(t, x, y) = γ̇(t) ·µ(t)+(γ(t)−(x, y)) ·µ̇(t) = β(t)−λ`(t). If `(t) = 0, then β(t) = 0.

This is a contradiction for (`(t), β(t)) 6= (0, 0). It follows that λ = β(t)/`(t). The converse is
also holded. 2

One can show that F is a Morse family, in the sense of Legendrian singularity theory (cf.
[1, 14, 20]), namely, (F, ∂F/∂t) : I × R2 → R× R is a submersion at (t, x, y) ∈ D(F ), where

D(F ) = {(t, x, y) | F (t, x, y) = (∂F/∂t)(t, x, y) = 0}.

It follows that the evolute of a front Ev(γ) is a (wave) front of a Legendre immersion and is
given by the envelope of normal lines of the front.

4. Evolutes of the evolutes of fronts

By Theorem 3.3, the evolute of a front is also a front without inflection points. We consider
a repeated evolute of an evolute of a front and give properties of a singular point of it. Let
(γ, ν) be a Legendre immersion with the curvature of the Legendre immersion (`, β) and without
inflection points.

Theorem 4.1. The evolute of an evolute of a front is given by

Ev(Ev(γ))(t) = Ev(γ)(t)− β̇(t)`(t)− β(t) ˙̀(t)

`(t)3
µ(t).(5)

Proof. At this proof, we denote γ̃(t) = Ev(γ)(t). By the proof of Theorem 3.3,

(γ̃(t), ν̃(t)) = (Ev(γ)(t),µ(t))

is a Legendre immersion. Since µ̃(t) = J(ν̃(t)) = −ν(t) and the derivative of the evolute of the
front (4), we have

β̃(t) =
β̇(t)`(t)− β(t) ˙̀(t)

`(t)2
,

where ˙̃γ(t) = β̃(t)µ̃(t). Moreover ˜̀(t) = `(t) by the Frenet formula of a front (1). It follows that

Ev(Ev(γ))(t) = Ev(γ̃)(t) = γ̃(t)− β̃(t)˜̀(t) ν̃(t) = Ev(γ)(t)− β̇(t)`(t)− β(t) ˙̀(t)

`(t)3
µ(t).

2

We can also prove Theorem 4.1 by a direct calculation of the definition of the evolute of a
front (Definition 2.10). We need to divide into four cases, that is, γ is a regular or a singular,
and Ev(γ) is a regular or a singular. All cases coincide with (5). We also call Ev(Ev(γ)) the
second evolute of a front.

Now we consider a geometric meaning of a singular point of Ev(Ev(γ))(t).
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Lemma 4.2. Suppose that γ and Ev(γ) are both regular curves. If Ėv(Ev(γ))(t) ≡ 0, then γ is
an involute of a circle.

Proof. We may assume that t is the arc-length parameter of γ. It follows that |β(t)| = 1

and hence `(t) = κ(t) by Lemma 3.1. Moreover, we have β(t)2 = 1 and β̇(t) = 0. Since
t(t) = β(t)µ(t) and n(t) = −β(t)ν(t), we have µ(t) = β(t)t(t) and ν(t) = −β(t)n(t). Then

Ev(γ)(t) = γ(t)− β(t)

`(t)
ν(t) = γ(t)− β(t)

κ(t)
(−β(t)n(t)) = γ(t) +

1

κ(t)
n(t)

and

Ev(Ev(γ))(t) = Ev(γ)(t) +
β(t)κ̇(t)

κ(t)3
β(t)t(t) = Ev(γ)(t) +

κ̇(t)

κ(t)3
t(t)

hold. It follows that

Ėv(γ)(t) = − κ̇(t)

κ(t)2
n(t), Ėv(Ev(γ))(t) =

κ̈(t)κ(t)− 3κ̇(t)2

κ(t)4
t(t).

By the assumptions, κ(t) 6= 0, κ̇(t) 6= 0 and κ̈(t)κ(t)− 3κ̇(t)2 ≡ 0, it follows that

d

dt

(
κ̇(t)

κ(t)

)
= 2

(
κ̇(t)

κ(t)

)2

.

Solving this differential equation, there exist constants C1, C2 ∈ R with C2 6= 0 such that

κ(t) = C2
1√

2t+ C1

.

A curve having the curvature 1/
√

2ct for a constant c ∈ R \ {0} is an involute of a circle with
radius c. By the existence and the uniqueness theorems of regular plane curves, see for example
[8, 9], γ is an involute of a circle (cf. [9, P.138]). 2

Let γ : I → R2 be a regular curve and t0 ∈ I. The involute of a regular curve is defined by
Inv(γ, t0) : I → R2;

Inv(γ, t0)(t) = γ(t)−
(∫ t

t0

|γ̇(u)| du
)
t(t).

Note that Ev(Inv(γ, t0))(t) = γ(t), for more detail see [5, 8, 9].

Theorem 4.3. Suppose that γ and Ev(γ) are regular curves. If t0 is a singular point of
Ev(Ev(γ)), then γ is at least 4-th order contact to an involute of a circle at the point t = t0
up to congruent.

Proof. We may assume that t is the arc-length parameter of γ. By the same arguments in the
proof of Lemma 4.2, we have κ(t0) 6= 0, κ̇(t0) 6= 0 and κ̈(t0)κ(t0)−3κ̇(t0)2 = 0. We set κ(t0) = a
and κ̇(t0) = b. Then we define a curve γ̃(t) whose curvature is given by

κ̃(t) = a

√
a

b

1√
−2t+ 2t0 + a

b

,

(
respectively, κ̃(t) = a

√
−a
b

1√
2t− 2t0 − a

b

)
if ab > 0 (respectively, ab < 0). Then κ(t0) = κ̃(t0) = a and κ̇(t0) = ˙̃κ(t0) = b. Since

κ̈(t0)κ(t0)− 3κ̇(t0)2 = 0 and ¨̃κ(t)κ̃(t)− 3 ˙̃κ(t)2 ≡ 0, we have κ̈(t0) = ¨̃κ(t0). By the Theorem A.1
in the appendix, γ and γ̃ are at least 4-th order contact at the point t = t0 up to congruent. It
follows that γ and an involute of a circle are at least 4-th order contact at the point t = t0 up
to congruent. This completes the proof of Theorem. 2
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Remark 4.4. Suppose that γ is a regular curve. If t0 is a singular point of Ev(γ)(t) and
Ev(Ev(γ))(t), then κ̇(t0) = κ̈(t0) = 0 by the same calculations of the proof of Lemma 4.2. It
follows that γ and the osculating circle are at least 4-th order contact at the point t = t0.

Proposition 4.5. Let (γ, ν) : I → R2 × S1 be a Legendre immersion without inflection points.
Suppose that t0 is a singular point of both γ and Ev(γ). Then t0 is a regular point of Ev(Ev(γ))
if and only if

...
γ (t0) 6= 0.

Proof. Let t0 be a regular point of Ev(Ev(γ)). By Proposition 3.8, β(t0) = β̇(t0) = 0 and
`(t0) 6= 0. Since

d

dt
Ev(Ev(γ))(t) = − β̈(t)`(t)2 − β(t)`(t)῭(t)− 3β̇(t)`(t) ˙̀(t) + 3β(t) ˙̀(t)2

`(t)4
µ(t),

it holds that (d/dt)Ev(Ev(γ))(t0) = −β̈(t0)`(t0)−2µ(t0) 6= 0 if and only if β̈(t0) 6= 0. By the
differentiate of γ̇(t) = β(t)µ(t), we have

...
γ (t) = (β̈(t)− β(t)`(t)2)µ(t)− (2β̇(t)`(t) + β(t) ˙̀(t))ν(t)

It follows that
...
γ (t0) = β̈(t0)µ(t0) 6= 0. The converse is also shown by reversing the arguments.

2

Note that by Lemma 2.6 and Proposition 4.5, the conditions follows that γ is diffeomorphic
to the 4/3 cusp at t0.

5. The n-th evolutes of fronts

Let (γ, ν) : I → R2 × S1 be a Legendre immersion with the curvature (`, β) and without
inflection points. We give the form of the n-th evolute of a front, where n is a natural number.
We denote Ev0(γ)(t) = γ(t) and Ev1(γ)(t) = Ev(γ)(t) for convenience. We define

Evn(γ)(t) = Ev(Evn−1(γ))(t), β0(t) = β(t), and βn(t) =
d

dt

(
βn−1(t)

`(t)

)
inductively.

Theorem 5.1. (Evn(γ), Jn(ν)) : I → R2 × S1 is a Legendre immersion with the curvature
(`, βn), where the n-th evolute of the front is given by

Evn(γ)(t) = Evn−1(γ)(t)− βn−1(t)

`(t)
Jn−1(ν(t)),

where Jn is n-times operations of J .

Proof. Let n = 1 and n = 2, then

Ev1(γ)(t) = Ev0(γ)(t)− β0(t)

`(t)
J0(ν(t)) = γ(t)− β(t)

`(t)
ν(t)

and

Ev2(γ)(t) = Ev1(γ)(t)− β1(t)

`(t)
J1(ν(t)) = Ev(γ)(t)− d

dt

(
β(t)

`(t)

)
1

`(t)
J(ν(t))

= Ev(γ)(t)− β̇(t)`(t)− β(t) ˙̀(t)

`(t)3
µ(t).

These are nothing but the evolute of a front (3) and the second evolute of a front (5).
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Next suppose that 1 ≤ j ≤ k is holded, namely,

Evj(γ)(t) = Evj−1(γ)(t)− βj−1(t)

`(t)
Jj−1(ν(t))

for 1 ≤ j ≤ k. We consider Ev(Evk(γ))(t). Suppose that (Evk(γ)(t), Jk(ν(t))) is a Legendre
immersion with the curvature (`(t), βk(t)). By Theorem 3.3, we have (k + 1)-th evolute of the
front

Evk+1(γ)(t) = Evk(γ)(t)− βk(t)

`(t)
Jk(ν(t)).

Since

d

dt
Evk+1(γ)(t) =

d

dt
Evk(γ)(t)− d

dt

(
βk(t)

`(t)

)
Jk(ν(t))− βk(t)

`(t)
Jk(ν̇(t))

= βk(t)Jk+1(t) + βk+1(t)Jk+2(ν(t))− βk(t)Jk+1(ν(t))

= βk+1(t)Jk+2(ν(t)),

d

dt
Jk+1(ν(t)) = Jk+1(ν̇(t)) = Jk+1(`(t)µ(t)) = `(t)Jk+1(J(ν(t)))

= `(t)Jk+2(ν(t)),

it holds that (Evk+1(γ), Jk+1(ν)) is a Legendre immersion with the curvature (`(t), βk+1(t)). By
the induction, this completes the proof of Theorem. 2

As a generalization of Propositions 3.8 and 4.5, we have the following result:

Proposition 5.2. Let (γ, ν) : I → R2 × S1 be a Legendre immersion with the curvature of the
Legendre immersion (`, β) and without inflection points. Suppose that t0 is a singular point of
γ. Then the following are equivalent:

(1) t0 is a singular point of Evi(γ)(t) for i = 1, . . . , n.
(2) (diβ/dti)(t0) = 0 for i = 1, . . . , n.
(3) (diγ/dti)(t0) = 0 for i = 2, . . . , n+ 1.

Proof. First, we show that βi(t) is given by the form β(i)(t) and lower terms of β(i)(t), namely,

βi(t) =
β(i)(t)

`(t)i
+ L(β(t), . . . , β(i−1)(t))(6)

for some smooth function L which contain `(t) and derivatives of `(t).
Since

β1(t) =
d

dt

(
β(t)

`(t)

)
=
β̇(t)

`(t)
+ β(t)

d

dt

(
1

`(t)

)
,

the case of i = 1 is holded. Suppose that i = k is holded, namely, there exists a smooth function
L such that

βk(t) =
β(k)(t)

`(t)k
+ L(β(t), . . . , β(k−1)(t)).

Then

βk+1(t) =
d

dt

(
βk(t)

`(t)

)
=
β(k+1)(t)

`(t)k+1
+ L̃(β(t), . . . , β(k)(t)),

for some smooth function L̃. By the induction, we conclude the assertion.
Second, assume that t0 is a singular point of Evi(γ)(t) for i = 1, . . . , n. By Theorem 5.1,

(d/dt)Evi(γ)(t0) = 0 if and only if βi(t0) = 0. Since (6) and β(t0) = 0, it holds that βi(t0) = 0
for i = 1, . . . , n if and only if β(i)(t0) = 0 for i = 1, . . . , n. It follows that (1) implies (2). By the
reversing arguments, the converse (1) follows from (2).
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Finally, since γ̇(t) = β(t)µ(t), we can also show that (2) is equivalent to (3) by the induction.
2

6. Examples

We give examples to understand the phenomena for evolutes of fronts.

Example 6.1. Let γ(t) = (a cos t, b sin t) be an ellipse with a, b > 0 and a 6= b. Since

ν(t) =
1√

a2 sin2 t+ b2 cos2 t
(−b cos t, a sin t), µ(t) =

1√
a2 sin2 t+ b2 cos2 t

(−a sin t,−b cos t),

we have

`(t) =
ab

a2 sin2 t+ b2 cos2 t
, β(t) = −

√
a2 sin2 t+ b2 cos2 t.

The evolute, the second evolute and the third evolute of the ellipse γ are given by

Ev(γ)(t) =

(
a2 − b2

a
cos3 t,−a

2 − b2

b
sin3 t

)
,

Ev(Ev(γ))(t) =
(a2 − b2

ab2
cos t

(
b2 cos4 t+ 3a2 sin4 t+ b2 sin2 2t

)
,

− a2 − b2

a2b
sin t

(
a2 sin4 t+ 3b2 cos4 t+ a2 sin2 2t

))
,

and Ev3(γ)(t) =

(a2 − b2
8a3b2

cos3 t
(
45a4 − 10a2b2 − 3b4 + 12(−5a4 + 4a2b2 + b4) cos 2t+ 15(a2 − b2)2 cos 4t

)
,

a2 − b2

8a2b3
sin3 t

(
3a4 + 10a2b2 − 45b4 + 12(a4 + 4a2b2 − 5b4) cos 2t− 15(a2 − b2)2 cos 4t

))
.

The ellipse γ and its evolute (red curve) are showed in Figures 1 left and 2 center. Moreover,
the second evolute (yellow curve), see Figure 1 center, and the third evolute (green curve), see
Figures 1 right and 2 right.

The evolute is useful to recognize the difference of the sharp of curves. In Figure 2, the left
is a circle and the center is an ellipse and its evolute. We can observe the evolute of the ellipse,
however, it is very small (red curve). If we consider the repeated evolute, we can easy to observe
it. The right in Figure 2 is the second and the third evolute of the ellipse.
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Figure 1. The ellipse and evolutes.
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Example 6.2. Let γ(t) = (3 cos t − cos 3t, 3 sin t − sin 3t) = (6 cos t − 4 cos3 t, 4 sin3 t) be the
nephroid, see Figure 3 left. Since ν(t) = (− sin 2t, cos 2t) and µ(t) = (− cos 2t, sin 2t), we have
`(t) = 2, β(t) = −6 sin t. The evolute and the second evolute of the nephroid are as follows, see
Figure 3 center and right:

Ev(γ)(t) =
(
2 cos3 t, 3 sin t− 2 sin2 t

)
,

Ev(Ev(γ))(t) =

(
3

2
cos t− cos3 t, sin3 t

)
.

We can observe that γ(t)/4 = Ev(Ev(γ))(t).
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Figure 3. The nephroid and evolutes.

Example 6.3. Let γ(t) = (t3, t4) be the 4/3 cusp, Figure 4 left. Since ν(t) = (1/
√

16t2 + 9)(−4t, 3)

and µ(t) = (1/
√

16t2 + 9)(−3,−4t), we have `(t) = 12/(16t2 + 9), β(t) = −t2
√

16t2 + 9. The
evolute and the second evolute of the 4/3 cusp are as follows, see Figure 4 center and right:

Ev(γ)(t) =

(
−2t3 − 16

3
t5,

9

4
t2 + 5t4

)
,

Ev(Ev(γ))(t) =

(
−27

8
t− 23t3 − 32t5,−9

4
t2 − 23t4 − 320

9
t6
)
.
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Figure 4. The 4/3 cusp and evolutes.

Appendix A. Contact between regular curves

In this appendix, we discuss contact between regular curves. Let γ : I → R2; t 7→ γ(t) and

γ̃ : Ĩ → R2;u 7→ γ̃(u) be regular plane curves, respectively. We say that γ and γ̃ have k-th order
contact at t = t0, u = u0 if

γ(t0) = γ̃(u0),
dγ

dt
(t0) =

dγ̃

du
(u0), · · · , d

kγ

dtk
(t0) =

dkγ̃

duk
(u0),

dk+1γ

dtk+1
(t0) 6= dk+1γ̃

duk+1
(u0).

Moreover, we say that γ and γ̃ have at least k-th order contact at t = t0, u = u0 if

γ(t0) = γ̃(u0),
dγ

dt
(t0) =

dγ̃

du
(u0), · · · , d

kγ

dtk
(t0) =

dkγ̃

duk
(u0).

Let γ1, γ2 : I → R2 be regular plane curves. We say that γ1 and γ2 are congruent if there exists
a congruence C such that γ2(t) = C(γ1(t)) = A(γ1(t)) + b for all t ∈ I, where the congruence is
given by a rotation A and a translation b on R2.

Let γ : I → R2; t 7→ γ(t) and γ̃ : Ĩ → R2;u 7→ γ̃(u) be regular plane curves. We take the
arc-length parameter for γ(t) and γ̃(u), respectively. In general, we may assume that γ(t) and
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γ̃(u) have at least first order contact at any point t = t0, u = u0 up to congruent. We denote
the curvatures κ(t) of γ(t) and κ̃(u) of γ̃(u), respectively.

Theorem A.1. Let γ : I → R2 and γ̃ : Ĩ → R2 be regular plane curves. If γ(t) and γ̃(u) have
at least (k + 2)-th order contact at t = t0, u = u0 then

κ(t0) = κ̃(u0),
dκ

dt
(t0) =

dκ̃

du
(u0), · · · , d

kκ

dtk
(t0) =

dkκ̃

duk
(u0).(7)

Conversely, if t and u are the arc-length parameter of γ and γ̃ respectively, and the condition
(7) holds, then γ and γ̃ have at least (k + 2)-th order contact at t = t0, u = u0 up to congruent.

Proof. We may assume that t and u are the arc-length parameter of γ and γ̃ respectively.
Suppose that γ and γ̃ have at least third order contact. Since the Frenet formula, we have
(dγ/dt)(t) = t(t), (d2γ/dt2)(t) = κ(t)n(t) and (dγ̃/du)(u) = t̃(u), (d2γ̃/du2)(u) = κ̃(u)ñ(u). It

follows that t(t0) = t̃(u0),n(t0) = ñ(u0) and κ(t0) = κ̃(u0). Hence, the case of k = 1 holds.
Suppose that γ and γ̃ have at least (k + 2)-th order contact and

κ(t0) = κ̃(u0),
dκ

dt
(t0) =

dκ̃

du
(u0), · · · , d

k−1κ

dtk−1
(t0) =

dk−1κ̃

duk−1
(u0)

hold. Since (d3γ/dt3)(t) = (dκ/dt)(t)n(t)− κ(t)2t(t), the form of (dk+1γ/dtk+1)(t) is given by

dk−1κ

dtk−1
(t)n(t) + f

(
κ(t), · · · , d

k−2κ

dtk−2
(t)

)
t(t) + g

(
κ(t), · · · , d

k−2κ

dtk−2
(t)

)
n(t),

for some smooth functions f and g. Then

dk+2γ

dtk+2
(t) =

dkκ

dtk
(t)n(t) + F

(
κ(t), · · · , d

k−1κ

dtk−1
(t)

)
t(t) +G

(
κ(t), · · · , d

k−1κ

dtk−1
(t)

)
n(t)

for some smooth functions F and G. By the same calculations, we have

dk+2γ̃

duk+2
(u) =

dkκ̃

duk
(u)ñ(u) + F

(
κ̃(u), · · · , d

k−1κ̃

duk−1
(u)

)
t̃(u) +G

(
κ̃(u), · · · , d

k−1κ̃

duk−1
(u)

)
ñ(u).

It follows that (dkκ/dtk)(t0) = (dkκ̃/duk)(u0). By the induction, we have the first assertion.
By the reversing arguments, we can prove the converse assertion up to congruent. 2
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