
Journal of Singularities
Volume 11 (2015), 164-189

received: 20 June 2014
in revised form: 10 August 2014

DOI: 10.5427/jsing.2015.11g

FAMILIES OF DISTRIBUTIONS AND PFAFF SYSTEMS

UNDER DUALITY

FEDERICO QUALLBRUNN

Abstract. A singular distribution on a non-singular variety X can be defined either by a
subsheaf D ⊆ TX of the tangent sheaf, or by the zeros of a subsheaf D0 ⊆ Ω1

X of 1-forms,

that is, a Pfaff system. Although both definitions are equivalent under mild conditions on D,

they give rise, in general, to non-equivalent notions of flat families of distributions. In this
work we investigate conditions under which both notions of flat families are equivalent. In the

last sections we focus on the case where the distribution is integrable, and we use our results
to generalize a theorem of Cukierman and Pereira.

1. Introduction

Among the several motivations for studying moduli problems in geometry, there is the study of
the topological and geometrical properties of differential equations on manifolds. Such problems
are studied in the works of R. Thom, V. Arnold, and Kodaira-Spencer in the 1950’s and were an
influence in the work of Zariski about deformation of singularities; we refer to the introduction
and Section 3.10 of [7] for a historical account on the subject. Algebraic geometric techniques
were used in the study of (integrable) differential equations on non-singular algebraic varieties at
least since Jouanolou [13], moduli and deformation problems of integrable differential equations
were studied by Gomez-Mont in [9]. Since then, much has been done in the study of the geometry
of integrable 1-forms on algebraic varieties, especially describing singularities of the differential
equations they define (see, for instance [15]). Also, much has been done in the determination of
irreducible components of the moduli space of integrable 1-forms (e.g.: [5, 6, 14] and references
therein).

Many of these works were carried out in a ‘näıve’ way, without concern for representability
of functors or formalization of deformation problems. When trying to formalize the moduli
problem for integrable differential equations in non-singular algebraic varieties, an issue appears
at the very beginning: although its equivalent to describe a distribution by its tangent sheaf
or by the sheaf of 1-forms that vanishes on it, these two descriptions give rise to inequivalent
notions of a flat family of distributions. Thus we are led to two different moduli problems, one
for (involutive) sub-sheaves of the tangent sheaf, and the other for (integrable) sub-sheaves of the
sheaf of 1-forms. In the present work, we prove in Proposition 6.3 and Proposition 6.5 that, under
suitable assumptions, these two moduli problems are representable and, in Corollary 7.15, that
their irreducible components are moreover birationally equivalent. Using this we can generalize
previous theorems in the literature such as Theorem 1 of [5] and the theorems of [16,17].

In order to better explain our results, we now introduce some notation and definitions. Let X
be a non-singular projective algebraic variety. A non-singular k-dimensional distribution D on a
non-singular variety X consists of a k-dimensional subspace Dx ⊆ TxX of the tangent space of X
at x varying continuously with x. This notion can be formalized by saying that a k-dimensional
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distribution is a rank k sub-bundle of the tangent bundle D ↪→ TX, and taking Dx ⊆ TxX
to be D ⊗ k(x). Equivalently, we can say that a k-dimensional distribution is determined by a
sub-bundle ID ↪→ Ω1

X , and take Dx to be {v ∈ TxX | ω(v) = 0,∀ω ∈ ID ⊗ k(x)}.
When X is an algebraic variety, it is often the case that there are no algebraic sub-bundles

of TX or Ω1
X of a given rank, i.e., there are no non-singular distributions. Nevertheless, the

definition can be readily generalized to allow D ⊆ TX and ID ⊆ Ω1
X to be subsheaves. In

this way, we describe distributions D which are k-dimensional on a dense open subset, but may
present singularities along proper subvarieties. Again, a singular distribution is equivalently
defined either by a subsheaf D ⊆ TX or by its annihilator ID ⊆ Ω1

X . However, as was already
observed by Pourcin in [16], when studying families of distributions parametrized by a base
scheme S, it may happen that while a family of distributions D ⊆ TS(X×S) is flat (in the sense
that the quotient TS(X × S)/D is a flat sheaf over S), its annihilator ID ⊆ Ω1

X|S may not be

flat. This gives us two different notions of flat family of (singular) distributions, and therefore
two different moduli problems for them.

In this work, we prove that the above two notions of flatness coincide as long as the singular
set of the distribution (endowed with a convenient scheme structure) is also flat over S (Proposi-
tion 7.6 and Theorem 7.14). We focus on the case of integrable distributions; in Proposition 6.3,

we give constructions for the moduli space InvX of involutive (in the sense of the Frobenius

theorem) subsheaves of TX and, in Proposition 6.5, for the moduli space iPfX of integrable
subsheaf of Ω1

X and conclude in Corollary 7.15 that taking annihilators defines a rational map

between InvX and iPfX that is a birational equivalence in each irreducible component of InvX .
Moreover we give in Theorem 8.13 a sufficient criterion in terms of the singularity of the folia-
tion to know when an involutive subsheaf TF ⊆ TX represents a point in the dense open set
U ⊆ InvX where taking duals gives an isomorphism with an open set V ⊆ iPfX . Using this
criterion, we can generalize the main theorem of [5] by specializing our results to the case where
X = Pn and TF ∼=

⊕
iOPn(di).

In Section 2, we show a particular example of a flat family of Pfaff systems being dual to a
non-flat family of distributions.

In Section 3, we treat some preliminary general notions on sheaves and criterion for flatness
that will be useful later.

In Section 4, we study the effect of applying the functorHom(−,OX) to a short exact sequence
of sheaves. We also include in this section some observations on exterior powers, which are
relevant for the study of distributions of codimension higher than 1.

Section 5 consists mainly of definitions of families of distributions and Pfaff systems, and
related notions.

In Section 6, the construction of the moduli spaces of involutive distributions and integrable
Pfaff systems is given as subschemes of certain Quot schemes.

In Section 7, the main results of the paper are proved. First the singular scheme of a family
of distributions is defined, as well as the analogous notion for family of Pfaff systems and it is
proved that the singular scheme of a family of distributions is the same as the singular scheme of
its dual family (which is a family of Pfaff systems). In Section 7.1, the codimension 1 version of
the main result is proved: if the singular scheme of a flat family of codimension 1 Pfaff systems
is itself flat, then the dual family is flat as well. In Section 7.2, an analogous statement is proved
for arbitrary codimension. In this case, however, flatness of the singular scheme is not enough
to assure flatness of the dual family. To obtain a valid criterion, we define a stratification of the
singular scheme, if each stratum is flat over the base, we can assure the dual family will be flat
as well.
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In Section 8, we give a sufficient condition to know when the singular scheme of a family of
codimension 1 foliations is flat over the base. This condition is related to two of the better-
studied types of singularities of foliations, the Kupka singularities and the Reeb singularities.
We prove that, if the singularities of a foliation given by a distribution TF ↪→ TX are only of
these two types, then every flat family

0→ TFS → TS(X × S)→ NF → 0,

such that there is an s ∈ S with TFs = TF , is such that sing(F) is flat in a neighborhood of s.
In Section 9, we apply the theorem of Section 8 to recover the main result of [5] as a special

case of Theorem 7.8, where X = Pn and TF splits as direct sum of line bundles.

The content of this work is part of the author’s doctoral thesis, for the degree of Doctor de
la Universidad de Buenos Aires, under the advice of Fernando Cukierman. The author was
supported by a doctoral grant of CONICET. The author is grateful to Fernando Cukierman and
Fernando Sancho de Salas for useful ideas and to Aroldo Kaplan, Alicia Dickenstein and the
anonymous referee for a thorough reading of this paper and useful suggestions. The author is
also grateful to Universidad de Buenos Aires, where the work was made.

2. An example

Set X = C4, S = C2 and consider the family of 1-forms on X

ω(t,s) = xdx+ ydy + t · zdz + s · wdw,
parametrized by (t, s) ∈ S = C2, and the related family

I = I(t,s) = OX×S · (ω(t,s)) ⊆ Ω1
X×S|S

of Pfaff systems on X = C4.
It is easy to see that the sheaf I is flat over S = C2. On the other hand, if we look at the

family of distributions this Pfaff systems define, we will find that it is not flat. Indeed, let D
denote the annihilator of I:

D = Ann(I) ⊆ T (X × S).

To see that D is not flat over S, we can use Artin’s criterion for flatness [2, Corollary to
Proposition 3.9].

Proposition 2.1 (Artin’s criterion for flatness.). Let (A,M ) and (B,N ) be local rings, B → A
a flat morphism of local rings, and M a finitely generated A-module. Suppose we have generators
of M , M = (f1, . . . , fr). Let fi be the class of fi on M ⊗B B/N . Then M is flat over B if and
only if every relation among (f1, . . . , fr) lifts to a relation among (f1, . . . , fr).

Note that, while this is not exactly the same context in which Artin states the proposition,
his proof extends mutatis mutandi to this setting.

Now observe that D = Ann(I) has 6 generators:

f1 = y
∂

∂x
− x ∂

∂y
, f2 = tz ∂

∂x − x
∂
∂z , f3 = sw

∂

∂x
− x ∂

∂w
,

f4 = tz
∂

∂y
− y ∂

∂z
, f5 = sw ∂

∂y − y
∂
∂w , f6 = sw

∂

∂z
− tz ∂

∂w
.

These generators have, in turn, numerous relations between them, too many to list completely
here. We note, however, that all relations are generated by relations of the form

afi + bfj + cfk = 0,
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where a, b and c are in the ideal (x, y, tz, sw) ⊆ OX×S .
We apply Artin’s criterion with A = OX×S,(0,0), B = OS,0 and M = D(0,0). In this case, the

fi’s consist of evaluating the fi on (x, y, z, w, 0, 0) ∈ C4 × (0, 0). We get in this way a particular
relation on M ⊗B B/N , namely f6 = 0. It is then easy to see that this relation does not lift to
a relation on (f1, . . . , f6).

This example shows that there is, in general, no morphism between the moduli spaces
Quot(X,TX) and Quot(X,Ω1

X) induced by taking annihilators. We will show later that taking
annihilators does define a birational equivalence between irreducible components of QuotX(TX)
and those of QuotX(Ω1

X).
The example also hints that a key aspect to understand whether flatness is preserved or not

under duality is to look at how the singular set varies. Indeed, we can see that D is flat over
S \ {(0, 0)}. For each point (t, s) ∈ S \ {(0, 0)}, the singular set of I|(t,s) (i.e., the set of points

in p ∈ X such that ωp = 0) is just the origin of C4 = X. On the other hand, the singular set of
I|(0,0) is the plane {(0, 0, z, w) : z, w ∈ C} ⊂ C4. So D ceases to be flat exactly when the singular
set of I ceases to be flat as well. This illustrates the typical behavior of singular codimension
1 Pfaff systems and the distributions they determine. In the arbitrary codimension case, the
situation is a bit more subtle, but the singular set still plays a decisive role. Of course, to make
sense out of this, we have to define a scheme structure on the singular set of a Pfaff system. This
will be done in the course of the present work.

3. Preliminaries

Here we gather known facts of algebraic geometry that will be used later. We include proofs
of some of these facts for lack (to the author’s best knowledge) of a better reference.

3.1. Reflexive sheaves and Serre’s property S2. Property S2 can be viewed as an alge-
braic analog of Hartog’s theorem on complex holomorphic functions. For this reason, it will be
extremely useful to us, for it will allow us to conclude global statements on sheaves that hold,
a priori, for the restriction of these sheaves to (suitably large) open sets. Here we recall some
known facts about sheaves with the S2 property, and sheaves with the relative S2 property as
defined in [3].

Definition 3.1. Let p : X → T be a morphism of schemes and, for each point x ∈ X, let dT (x)
equal the codimension of x in its fiber over T . We say that a sheaf F on X satisfies the relative
Serre condition Sk with respect to p if and only if

depthFx ≥ min(k, dT (x)),

for all x ∈ X.

The proof of the next proposition works exactly as in the non-relative version.

Proposition 3.2. Let p : X → T be a morphism of noetherian schemes and F a torsion-free
coherent sheaf with relative property S2 with respect to p. Let Y ⊂ X be a closed subset such
that dT (Y ) ≥ 2. Then the restriction map ρ : Γ(X,F )→ Γ(X \ Y,F ) is an isomorphism.

Corollary 3.3. Let p : X → T be a morphism of noetherian schemes and F a torsion-free
coherent sheaf with property S2 with respect to p. Let Y ⊂ X be a closed subset such that
dT (Y ) ≥ 2. Let U = X \ Y and let j : U → X be the inclusion. Then F = j∗(F |U ).

This corollary motivates the following definition, which is the relative analogue of a notion
due to Grothendieck [10, 5.10].
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Definition 3.4. Let p : X → T be a morphism of noetherian schemes and F a coherent sheaf.
If, for each closed subset Y ⊂ X such that dT (Y ) ≥ 2, with U = X \ Y and j : U → X the
inclusion, the natural map

ρU : F → j∗(F |U )

is an epimorphism, then we say F is Z(2)-closed relative to p; if ρU is an isomorphism, we say
that it is Z(2)-pure relative to p.

Proposition 3.5 ([12, Proposition 1.7]). Let X be a quasi-projective integral scheme. A coherent
sheaf F is reflexive if and only if it can be included in an exact sequence

0→ F → E → G → 0,

where E is locally free and G is torsion-free.

Corollary 3.6. Under the above circumstances, the dual of a coherent sheaf is always reflexive.

Proposition 3.7 (c.f.:[12, Theorem 1.9]). Let p : X → T be a morphism of noetherian schemes
with normal integral fibers, and F a coherent sheaf on X. Then, if F is reflexive, it has relative
property S2 with respect to p.

Proof. The statement being local, we can assume X is quasi-projective. Given a reflexive sheaf
F , we take an exact sequence

0→ F → L → G → 0,

with L locally free and G torsion-free. Since p have normal fibers, OX satisfies relative S2 with
respect to p, and so does L , being locally free. Let x ∈ X be a point of relative dimension ≥ 2
with respect to its fiber Xp(x). Then depthLx ≥ 2 by S2 and, as G is torsion-free, depthGx ≥ 1.
This in turn implies depthFx ≥ 2. �

3.2. Support of a sheaf, zeros of a section. Recall that, given a quasi-coherent sheaf F on
a scheme X, we define the support of F , supp(F ) as the closed sub-scheme defined by the ideal
sheaf given locally by

I(F )x := Ann(Fx) ⊂ OX,x.
We have the following useful characterization of the support of a sheaf in terms of a universal

property:

Proposition 3.8. The support of a sheaf F represents the functor

SF : Sch −→ Sets

T 7→ {f ∈ hom(T,X) : Ann(f∗F ) = 0 ⊂ OT }.

Proof. A morphism f : T → X factors through supp(F ) if and only if the map

f ] : f−1OX → OT
factors through f−1(OX/Ann(F )). But this happens if and only if f−1(Ann(F )) = 0.

On the other hand, we have the equality

Ann(f∗F ) = OT · f−1(Ann(F ));

indeed we may check this in every localization at any point p ∈ T , so if t ∈ Ann(f∗F )p
in particular t annihilates every element of the form m ⊗ 1 ∈ Fx, so t = f−1(x)t′ where
x ∈ Ann(F )f(p).

So Ann(f∗F ) = 0 if and only if f−1(Ann(F )) = 0 and we are done. �
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In other words, we just proved that supp(F ) is the universal scheme with the property that
f∗F is not a torsion module. This simple observation will be very useful when discussing the
scheme structure on the singular set of a foliation.

A special case of support of a sheaf is the scheme-theoretic image of a morphism. Remember
that the scheme-theoretic image of a morphism f : X → Y is the sub-scheme supp(f∗OX) ⊆ Y .

Now we turn our attention to sections and their zeros. So let X be a scheme and E a locally
free sheaf. Having a global section s ∈ Γ(X,E ) is the same as having a morphism (that, by
abuse of notation, we also call s)

s : OX −→ E .

Now, s : OX → E defines a dual morphism

s∨ : E ∨ −→ O∨X = OX .

Definition 3.9. We define the zero scheme Z(s) of the section s as the closed sub-scheme of X
defined by the ideal sheaf Im(s∨) ⊆ OX .

We’ll apply this definition in the well-behaved situation where OX (and therefore E ) is torsion-
free.

Proposition 3.10. Let E be a locally free sheaf on X and s ∈ Γ(X,E ) a global section. The
scheme Z(s) represents the functor

Zs : Sch −→ Sets

T 7→ {f ∈ hom(T,X) : s⊗ 1 = 0 ∈ Γ(T, f∗E )}.

Proof. A morphism f : T → X factors through Z(s) if and only if the map

(E ∨)⊗OT
s∨⊗1−−−→ OT

is identically 0. Beign locally free, we have

E ∨ ⊗OT = H om(E ,OX)⊗OT ∼= H om(E ⊗OT ,OT ).

So then we have

(f∗E )∨
s∨⊗1−−−→ OT

is identically 0, as f∗E is locally free over T ; this means s⊗ 1 = 0 ∈ Γ(T, f∗E ). �

3.3. A criterion for flatness. For lack of a better reference, we provide here a criterion that
will become handy when dealing with both reduced and non-reduced base schemes over an
algebraically closed field.

Lemma 3.11. Let A be a ring of finite type over an algebraically closed field k, M a maximal
ideal in A, and f ∈ Mn \ Mn+1. Then there is a morphism ψ : A → k[T ]/(Tn+1) such that
ψ−1((T )) =M and ψ(f) 6= 0.

Proof. Fix a presentation A ∼= k[y1, . . . , yr]/I. By the Nullstelensatz, we can assume that
M = (x1, . . . , xr), where xi is the class of yimodI. Write the class of f in Mn/Mn+1 as

f =
∑
|α|=n

aαx
α ∈Mn/Mn+1,

where α = (α1, . . . , αr) and xα = (x1
α1 , . . . , xr

αr ).
As f /∈ Mn+1, the polynomial q(y1, . . . , yr) :=

∑
|α|=n aαy

α is not in I. Now, k being

algebraically closed, there is an r-tuple (λ1, . . . , λr) ∈ kr such that p(λ1, ..., λr) = 0 for every
p ∈ I and q(λ1, ..., λr) 6= 0.
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Finally we can define ψ : A→ k[T ]/(Tn+1) as follows:

ψ(xi) = λiT.

The morphism is well-defined because p(λ1, ..., λr) = 0 for every p ∈ I, moreover ψ−1(T ) =M,
and ψ(f) = q(λ1, ..., λr)T

n 6= 0. �

Proposition 3.12. Let f : X → Y a projective morphism between schemes of finite type over
an algebraically closed field, F a coherent sheaf over X, x ∈ X a point, and y = f(x). Then
Fx is f -flat if and only if the following conditions hold:

(1) For every discrete valuation ring A′ and every morphism OY,y → A′, the following holds:
Taking the pull-back diagram

X ′ //

f ′

��

X

f

��
Y ′ = Spec(A′) // Y

the OX′-module F ′ = F ⊗OY ′ is f ′-flat at every point x′ ∈ X ′ lying over x.
(2) For every n ∈ N and every morphism OY,y → k[T ]/(Tn+1), if we take the diagram

analogous to the one above (with k[T ]/(Tn+1) instead of A′), then the OX′-module
F ′ = F ⊗OY ′ is f ′-flat at every point x′ ∈ X ′ lying over x.

Proof. Clearly Conditions 1 and 2 are necessary. Suppose then that 1 and 2 are satisfied.
Take the flattening stratification (see [8, Section 5.4.2]) of Y with respect to F , Y =

∐
P YP .

As Condition 1 is satisfied for F over Y , so it is satisfied for ι∗F over Yred, where ι : Yred → Y
is the closed immersion of the reduced structure. Then, by the valuative criterion for flatness
of [10, 11.8], ι∗F is flat over Yred, so by the universal property of the flattening stratification,
there is a factorization

Yred
ι //

��

Y

∐
P YP

<< .

As Yred and Y share the same underlying topological set, the above factorization is telling us
that the flattening factorization consist on a single stratum YP and that Yred → YP is a closed
immersion.

Assume, by way of contradiction, YP ( Y ; then there is an affine open sub-scheme U ⊆ Y
such that V = YP ∩ U 6= U . Now take the coordinate rings k[U ] and k[V ] and the morphism
between them induced by the inclusion φ : k[U ] � k[V ]. Let’s take f ∈ k[U ] such that φ(f) = 0.
By Lemma 3.11, there exists, for some n ∈ N, a morphism ψ : k[U ] → k[T ]/(Tn+1) such that
ψ(f) 6= 0; so ψ doesn’t factorize through φ.

On the other hand, let Z = Spec(k[T ]/(Tn+1)) and g : Z → Y be the morphism induced by
ψ. As Condition 2 is satisfied, the pull-back g∗F is flat over Z = Spec(k[T ]/(Tn+1)). So, by
the universal property of the flattening stratification, g factors as

Z
g //

��

Y

YP

>> ,

contradicting the statement of the above paragraph, thus proving the proposition. �
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Note that the hypotheses of this property on X and Y (aside from reducedness) are quite
stronger than the ones of the original theorem of Grothendieck (the valuative criterion for flat-
ness in [10]); such is the price we have paid to allow a criterion for possibly non-reduced schemes.
The price paid is okay with us anyway, considering that we will work mostly with schemes of
finite type over C.

Next we provide a criterion for a k[T ]/(Tn+1)-module to be flat.

Proposition 3.13. Let A = k[T ]/(Tn+1) and M an A-module. Then M is flat if and only if,
for every m ∈M such that Tn ·m = 0, there exists m′ ∈M such that m = T ·m′.
Proof. Flatness of M is equivalent to the injectivity of the map M ⊗ I → M for every ideal
I ⊂ A (see e.g.:[11, IV.1]). In this case, there are finitely many ideals:

M = (T ), M2, . . . , Mn.

If M is flat, it is easy to see that the second condition in our statement hold.
Suppose that, for every m ∈M such that Tn ·m = 0, there exists m′ ∈M such that m = T ·m′.

Let a ∈M ⊗Mn−i be in the kernel of M ⊗Mn−i →M . When i = 0, we have a = m⊗Tn, and
m is such that Tn ·m = 0; so, by hypothesis, m = T ·m′ and then m⊗ Tn = m′ ⊗ Tn+1 = 0.

When i > 0, we have a =
∑i
j=n−imj⊗T j , so T i ·a = mn−i⊗Tn ∈M ⊗Mn. By hypothesis,

mn−i = T ·m′. So a ∈M ⊗Mn−i+1 and we are done by induction. �

The following will be useful in the study of foliations of codimension greater than 1.

Proposition 3.14. Let p : X → S a projective morphism between schemes of finite type over
an algebraically closed field k, f : S → Y another morphism, with Y of finite type over k, and
F a coherent sheaf over X. Take a stratification

∐
i Si ⊆ S of S such that F |Si

:= F ⊗S OSi

is flat for all i. If the composition
∐
i Si ↪→ S

f−→ Y is a flat morphism, then F is flat over Y .

Proof. Invoking Proposition 3.12 we can, after applying base change, reduce to the case where
Y is either the spectrum of a DVR or Y = Spec(k[T ]/(Tn+1)).

(i) Case Y = Spec(A) with A a DVR. Suppose there is, for some point x ∈ X, a section
s ∈ Fx that is of torsion over A. Consider Z = suppS(s) ⊆ S, the support of s over S, that is
the support of s as an element of Fx considered as an OS,p(x)-module. Now take any stratum
Si and suppose Z ∩ Si 6= ∅. Then there is a section of the pullback FSi

that is of torsion over
A. But FSi

is flat over Si which is in turn flat over A, so FSi
is flat and Z ∩ Si must be empty

for every stratum Si, i.e., s = 0.
(ii) Case Y = Spec(k[T ]/(Tn+1)). One can essentially repeat the argument above, now

taking the section s to be such that Tns = 0 but s /∈ T ·Fx. �

Corollary 3.15. Take the flattening stratification
∐
P SP ⊆ S, of S with respect to F . If the

composition
∐
P SP ↪→ S

f−→ Y is a flat morphism, then F is flat over Y .

4. Families of sub-sheaves and their dual families

Definition 4.1. Given a short exact sequence of sheaves

0→ G
ι−→ F →H → 0,

we apply to it the left-exact contravariant functor F 7→ F∨ := HomX(F ,OX) to obtain exact
sequences:

0→H ∨ →F∨ → Im(ι∨)→ 0,(1)

0→ Im(ι∨)→ G ∨ →Ext1X(H ,OX)→ Ext1X(F ,OX).
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We say that the exact sequence (1), is the dual exact sequence of 0→ G
ι−→ F →H → 0.

Lemma 4.2. Let 0→ N
ι−→ T

π−→M → 0 be a short exact sequence of R-modules such that T is
reflexive and M is torsion free. Then Im(ι∨)∨ = N and M = Im(π∨∨).

Proof. First we take the duals in the short exact sequence to get a sequence

0→ homR(M,R)
π∨−−→ homR(T,R)

ι∨−→ Im(ι∨)→ 0.

Then we take duals one more time and, given that T is reflexive and that M is torsion-free, we
get the diagram

0 // Im(ι∨)∨ // T∨∨
π∨∨ // M∨∨ // ext1

R(Im(ι∨), R)

0 // N

OO

// T // M
?�

OO

// 0,

whose rows are exact.
Chasing arrows, we readily see that the leftmost vertical arrow must be an isomorphism.

Indeed, since the monomorphism N → T∨∨ factors as

N → Im(ι∨)∨ → T∨∨,

the second arrow being a monomorphism, so must N → Im(ι∨)∨ be. On the other hand, given
a ∈ Im(ι∨)∨, we can regard it, via the inclusion, as an element in T∨∨ = T , so we can compute
π(a). As the canonical map θ : M →M∨∨ is an inclusion we have that, θ ◦ π(a) = π∨∨(a) = 0,
then π(a) = 0, so a ∈ N . From this, we have N ∼= Im(ι∨)∨, wich implies M = Im(π∨∨). �

4.1. Exterior Powers. When dealing with foliations of codimension/dimension greater than 1
is usually convenient to work with p-forms. We’ll need then to compare sub-sheaves I ⊂ Ω1

X

with their exterior powers ∧pI ⊂ ΩpX . In order to do that we include the following statements,
valid in a wider context.

We’ll concentrate on flat modules and their exterior powers. This will be important when
dealing with flat families of Pfaff systems of codimension higher than 1 (see Remark 5.5).

Lemma 4.3. Let A be a ring containing the field Q of rational numbers, and let M be a flat
A-module. Then, for every p, ∧pM is also flat.

Proof. If tensoring with M is an exact functor, so is its iterate − ⊗M ⊗ · · · ⊗M . So M⊗p is
flat. As A contains Q, there is an anti-symmetrization operator

M⊗p → ∧pM,

which is a retraction of the canonical inclusion ∧pM ⊂M⊗p. This makes ∧pM a direct summand
of M⊗p; set M⊗p = ∧pM ⊕ R for some module R. As the tensor power distributes over direct
sums (i.e., (∧pM ⊕R)⊗N ∼=(∧pM ⊗N)⊕ (R⊗N)), so does its derived functors. In particular
we have, for every module N ,

0 = Tor1(M⊗p, N) = Tor1(∧pM,N)⊕ Tor1(R,N).

So ∧pM is flat. �

Finally, we draw some conclusions regarding flat quotients. When dealing with Pfaff systems,
we’ll be interested in short exact sequences of the form

0→ ∧pI → ΩpX → G → 0,
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arising from short exact sequences of flat modules

0→ I → Ω1
X → Ω→ 0.

Note that, in general G 6= ∧pΩ. Nevertheless, we can state:

Proposition 4.4. Let A be a ring containing Q. Given an exact sequence

0→M → P → N → 0

of flat A-modules, we have an associated exact sequence

0→ ∧pM → ∧pP → Q→ 0.

Then Q is also flat.

Proof. Q inherits a filtration from ∧pP :

Q = ∧pP/ ∧pM = F
0 ⊇ F 1 ⊇ · · · ⊇ F p = 0,

with quotients

F i/F i+1 ∼= ∧iM ⊗ ∧p−iN.
Then Q has a filtration all of whose quotients are flat, so Q itself is flat. �

5. Families of distributions and Pfaff systems

We will consider subsheaves of the relative tangent sheaf TSX and the relative differentials
Ω1
X|S .

Definition 5.1. A family of distributions is a short exact sequence

0→ TF → TSX → NF → 0.

The family is called flat if NF is flat over the base S. A family of distributions is called involu-
tive if it’s closed under the Lie bracket operation, that is, if for every pair of local sections X,
Y ∈ TF(V ), we have [X,Y ] ∈ TF(V ), where [−,−] is the Lie bracket in TSX(V ).

Likewise, a family of Pfaff systems is just a short exact sequence

0→ I(F)→ Ω1
X|S → Ω1

F → 0.

It’s called flat if Ω1
F is flat.

We will say that a family of Pfaff systems is integrable if

d(I(F)) ∧
r∧
I(F) = 0 ⊂ Ωr+2

X|S ;

where d : ΩjX|S → Ωj+1
X|S is the relative de Rham differential, and r is the generic rank of the

sheaf Ω1
F .

Remark 5.2. Observe that the relative differential d : ΩjX|S → Ωj+1
X|S is not an OX -linear

morphism. It is, however, f−1OS-linear, so the sheaf d(I(F)) ∧
∧r

I(F), whose annihilation
encodes the integrability of the Pfaff system, is actually a sheaf of f−1OS-modules.

In particular, the dual to a family of distributions is a family of Pfaff systems and vice-versa.
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Remark 5.3. The dual of an involutive family of distributions is an integrable family of Pfaff
systems. Reciprocally, the dual of an integrable family of Pfaff systems is a family of involutive
distributions. This is just a consequence of the Cartan-Eilenberg formula for the de Rham
differential of a 1-form applied to vector fields

dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ]).

Indeed, as involutiveness and integrability can be checked locally over sections, we can proceed
as in [19, Prop. 2.30].

Definition 5.4. The dimension of a family of distributions is the generic rank of TF . Likewise,
the dimension of a family of Pfaff systems is the generic rank of Ω1

F .

If p : X → S is moreover projective, S is connected, and the family is flat, so TF is a flat
sheaf over S. Then for every s ∈ S the Hilbert polynomial of TFs is the same, and so is its
generic rank (being encoded in the principal coeficient of the polynomial). The same occurs with
families of Pfaff systems.

Remark 5.5. Frequently, in the study of foliations of codimension higher than 1, it is more
convenient and better adapted to calculations to work with an alternative description of folia-
tions. Namely, one can define a codimension q foliation on a variety X as in [15], with a global
section ω of ΩqX ⊗ L such that:

• ω is locally decomposable, i.e., there is, for all x ∈ X, an open set such that

ω = η1 ∧ · · · ∧ ηq,
with ηi ∈ Ω1

X .
• ω is integrable, i.e., ω ∧ dηi = 0, 1 ≤ i ≤ q.

With this setting, studying flat families of codimension q foliations (meaning here families of
integrable Pfaff systems) as in [5] and [6], parametrized by a scheme S, amounts to studying
short exact sequences of flat sheaves

0→ L−1 → ΩqX|S → G → 0

that are locally decomposable and integrable. By the results of Section 4.1, a flat family of
codimension q Pfaff systems given as a sub-sheaf of Ω1

X|S gives rise to a flat family in the above
sense.

6. Universal families

Now let’s take a non-singular projective scheme X, a polynomial P ∈ Q[t], and consider the
following functor

InvP (X) : Sch −→ Sets

S 7→

flat families 0→ TF → TS(X × S)→ NF → 0 of in-
volutive distributions such that NF have Hilbert
polynomial P (t).

 .

Say p : X × S → X is the projection, so TS(X × S) = p∗TX. Clearly one has InvP (X)

is a sub-functor of QuotP (X,TX). We are going to show that InvP (X) is actually a closed

sub-functor of QuotP (X,TX) and therefore also representable.
So take the smooth morphism given by the projection

p1 : QuotP (X,TX)×X → QuotP (X,TX).
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Here we are taking as base scheme S = QuotP (X,TX), then on the total space,

S ×X = QuotP (X,TX)×X,

we have the natural short exact sequence

0→ F → p∗2TX = TS(S ×X)→ Q → 0.

Now we consider the push-forward of these sheaves by p1; as X is proper, these push-forwards
are coherent sheaves over S. In particular, we have maps of coherent sheaves over QuotP (X,TX)

p1∗F ⊗S p1∗F
[−,−]−−−→ p1∗TS(S ×X)→ p1∗Q

induced by the maps over S ×X. Note that while the Lie bracket on TS(S ×X) is only p−1
1 OS-

linear, the map induced on the push-forwards is OS-linear, and so is a morphism of coherent
sheaves. We then also have for all m,n ∈ Z the twisted morphisms

p1∗F (m)⊗S p1∗F (n)
[−,−]−−−→ p1∗TS(S ×X)(m+ n)→ p1∗Q(m+ n).

Note also that, as p1 is a projective morphism, then there exists an n ∈ Z such that, for every
m ≥ n, the natural sheaves morphism over S ×X, p∗1p1∗(F )(m) → F (m) is an epimorphism.
So, if for some f : Z → S and some m ≥ n, one has that the composition

f∗p1∗F (m)⊗Z f∗p1∗F (m)
[−,−]−−−→ f∗p1∗TS(S ×X)(2m)→ f∗p1∗Q(2m)

is zero, then the map

(f × id)∗F (m)⊗π−1
1 OZ

(f × id)∗F (m)
[−,−]−−−→ TZ(Z ×X)(2m)→ (f × id)∗Q(2m)

is zero as well. Here π1 : Z ×X → Z is the projection, which is by the way the pull-back of p1.
Now to conclude the representability of InvP (X) we need one important lemma.

Lemma 6.1. Let S be a noetherian scheme, p : X → S a projective morphism, and F a coherent
sheaf on X. Then F is flat over S if and only if there exists some integer N such that, for all
m ≥ N , the push-forwards p∗F (m) are locally free.

Proof. This is [8, Lemma 5.5]. �

We can then take m ∈ Z big enough so p1∗F (m) and p1∗Q(2m) are locally free and the
morphism p∗1p1∗(F )(m)→ F (m) is epimorphism. Then we can regard the composition

p1∗F (m)⊗S p1∗F (m)
[−,−]−−−→ p1∗TS(S ×X)(2m)→ p1∗Q(2m)

as a global section σ of the locally free sheaf HomS(p1∗F (m) ⊗S p1∗F (m),Q(2m)). We can
then make the following definition.

Definition 6.2. We define the scheme InvP (X) to be the zero scheme Z(σ) (cf.: Definition 3.9)
of the section σ defined above.

A direct application of Proposition 3.10 to this definition together with the discussion so far
immediately gives us the following.

Proposition 6.3. The subscheme InvP (X) ⊆ QuotP (X,TX) represents the functor InvP (X).

Similarly we can consider the sub-functor iPfP (X) of QuotP (X,Ω1
X).
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iPfP (X) : Sch −→ Sets

S 7→

flat families 0→ I(F)→ Ω1X|S → Ω1
F → 0 of inte-

grable Pfaff systems such that Ω1
F have Hilbert poly-

nomial P (t).

 .

Then as before we take S = QuotP (X,Ω1
X) and consider the map

p1∗
(
d(I ) ∧

r∧
I
)
(m) −→ p1∗Ω

r+2
S×X|S(m),

which is, for large enough m, a morphism between locally free sheaves on S.

Definition 6.4. We define the scheme iPfP (X) to be the zero scheme of the above morphism,
viewed as a global section of the locally free sheaf Hom(p1∗(d(I )∧

∧r I )(m), p1∗Ω
r+2
S×X|S(m)).

And then, by Proposition 3.10, we have representability.

Proposition 6.5. The subscheme iPfP (X) ⊂ QuotP (X,Ω1
X) represents the functor iPfP (X).

7. Duality

Definition 7.1. The singular locus of a family of distributions 0 → TF → TSX → NF → 0
is the (scheme-theoretic) support of Ext1X(NF ,OX). Intuitively, its points are the points where
NF fails to be a fiber bundle.

Similarly, for a family of Pfaff systems 0 → I(F) → Ω1
X|S → Ω1

F → 0, its singular locus is

supp(Ext1X(Ω1
F ,OX)).

Remark 7.2. Call i : TF → TSX the inclusion. We have an open non-empty set U where,
for every x ∈ U , dim(Im(i ⊗ k(x))) is maximal. More precisely, U is the open set where
TorX1 (NF , k(x)) = 0, which is the maximal open set such that NF |U is locally free, and therefore
so is TF . Then, when restricted to U , TF can be given locally as the subsheaf of TSX generated
by k linearly independent relative vector fields, i.e., TF defines a family of non-singular foliations.
In U , one has that Ext1X(NF ,OX) = 0. Then, the underlying topological space of the singular
locus of the family given by TF is the singular set of the foliation in a classical (topologial space)
sense.

The above discussion translates verbatim to families of Pfaff systems.

Proposition 7.3. Let
0→ I(F)→ Ω1

X|S → Ω1
F → 0

be a family of Pfaff systems such that Ω1
F is torsion-free. Its singular locus and the singular

locus of the dual family
0→ TF → TSX → NF → 0

are the same sub-scheme of X. We denote this sub-scheme by sing(F)

Proof. We are going to show that the immersions

Y1 := supp(Ext1X(Ω1
F ,OX)) ⊆ X and Y2 := supp(Ext1X(NF ,OX)) ⊆ X

represent the same sub-functor of Hom(−, X), thus proving the proposition.

First note that, if Ext1X(NF ,OX) = 0, then Ext1X(Ω1
F ,OX) = 0. Indeed, if Ext1X(NF ,OX) = 0,

NF is locally free and then so is TF . Moreover, since Ω1
F is torsion free, we can dualize the

short exact sequence 0 → TF → TSX → NF → 0 and, by Lemma 4.2, obtain the equality
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Ω1
F = TF∨. So Ω1

F is locally free and Ext1X(Ω1
F ,OX) = 0.

Now, given a quasi-coherent sheaf G of X, its support supp(G ) ⊆ X represents the following
sub-functor of Hom(−, X):

T 7−→ {f : T → X s.t.: f∗G is not a torsion sheaf} ⊆ Hom(T,X).

So, let’s take a morphism f : T → Y1 ⊆ X.

(i) f : T → Y1 is an immersion: Suppose f∗Ext1X(NF ,OX) is a torsion sheaf.
Then there’s a point t ∈ T such that

Ext1X(NF ,OX)⊗ k(t) = 0.

By Nakayama’s lemma this implies that there’s an open subset U ⊆ X containing t such
that Ext1X(NF ,OX)|U = 0. This in turn implies Ext1X(Ω1

F ,OX)|U = 0, contradicting the
fact that t ∈ T ⊆ Y1. Then T ⊆ Y2.
Similarly one proves that if T ⊆ Y2 then T ⊆ Y1.

(ii) General case: Taking the scheme-theoretic image of f , we can reduce to the above case
where T is a sub-scheme of X.

�

7.1. The codimension 1 case. We now treat the case of families of codimension 1 foliations.
From now on, we’ll suppose that X → S is a smooth morphism.

Definition 7.4. A family of involutive distributions

0→ TF → TSX → NF → 0,

is of codimension 1 iff NF is a sheaf of generic rank 1.
Likewise a family of Pfaff systems

0→ I(F)→ Ω1
X|S → Ω1

F → 0,

is of codimension 1 if the sheaf I(F) have generic rank 1.

Lemma 7.5. Consider a family of codimension 1 Pfaff systems

0→ I(F)→ Ω1
X|S → Ω1

F → 0,

over an integral scheme X, such that Ω1
F is torsion-free. Then I(F) is a line-bundle over X.

Proof. If Ω1
F is torsion-free, by Lemma 4.2 we have I(F) ∼= N∨F . In particular I(F) is the dual

of a sheaf, and thus is reflexive and observes property S2. Write I = I(F) and consider now the
sheaf I∨ ⊗ I together with the canonical morphism

I∨ ⊗ I → OX .

The generic rank of I∨⊗ I is 1. As I is reflexive, I∨⊗ I is self-dual. So the canonical morphism
above induces the dual morphism OX → I∨ ⊗ I. The composition

OX → I∨ ⊗ I → OX
must be invertible, otherwise the image of I∨ ⊗ I in OX would be a torsion sub-sheaf. Then I
is an invertible sheaf. �

Proposition 7.6. In the case of codimension 1 Pfaff systems, if Ω1
F is torsion-free over X and

the inclusion I(F) → Ω1
X|S is nowhere trivial on S (meaning that I(F) ⊗OT → Ω1

X|S ⊗OT is

never the zero morphism for any T → S), then the family is automatically flat.
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Proof. Indeed, Ω1
F being torsion free implies that the rank 1 sheaf I(F) must be a line bundle.

Then, if we take any morphism f : T → S and take pull-backs, we’ll have an exact sequence

0→ TorS1 (Ω1
F , T )→ f∗I(F)→ f∗Ω1

X|S → f∗Ω1 → 0.

Now, as I(F) is a line bundle, the cokernel f∗I(F)/TorS1 (Ω1
F , T ) must be a torsion sheaf over

XT . But, X being smooth over S, the annihilator f∗Ω1
X|S is of the form p∗(J), with J ⊂ OT ,

so f∗I(F) → f∗Ω1
X|S must be the zero morphism when restricted to OT /J , contradicting the

nowhere triviality assumption. �

Remark 7.7. In the codimension 1 case, we can calculate sing(F) by noting that Ext1X(Ω1
F ,OX)

is the cokernel in the exact sequence

TSX → I(F)∨ → Ext1X(Ω1
F ,OX)→ 0.

We can then tensor the sequence by I(F) and obtain

TSX ⊗ I(F)→ OX → Ext1X(Ω1
F ,OX)⊗ I(F)→ 0.

Now, I(F) being a line bundle, the support of Ext1X(Ω1
F ,OX) and that of Ext1X(Ω1

F ,OX)⊗I(F)
are exactly the same. Note then that, in the second exact sequence, the cokernel is the scheme-
theoretic zero locus of the twisted 1-form given by

OX
ω−→ Ω1

X|S ⊗ I(F)∨,

as defined in Section 3.2. So, if we have a family of codimension 1 Pfaff systems given locally by
a twisted form

ω =

n∑
i=1

fi(x)dxi,

then sing(F) is the scheme defined by the ideal (f1, . . . , fn).

The above proposition and remark tell us that our definition of flat family for Pfaff systems
of codimension 1 is essentially the same as the one used in the now classical works of Lins-Neto,
Cerveau, et.al.

Theorem 7.8. Assume we have two families

0→ I(F)→Ω1
X|S → Ω1

F → 0(2)

0→ TF →TSX → NF → 0,(3)

satisfying the following conditions:

• The families 2 and 3 are dual to each other.
• NF is torsion free (or, equivalently, Ω1

F is torsion free).
• They are codimension 1 families.
• sing(F) is flat over S.

Then 2 is flat if and only if 3 is flat.

Proof. Let Σ = sing(F).
Let’s suppose first that the family

0→ I(F)→ Ω1
X|S → Ω1

F → 0
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is flat. We have to prove that NF is also flat. To do this we note that applying the functor
HomX(−,OX) to the family of distributions not only gives us the family of Pfaff systems but
also the exact sequence

0→ NF → I(F)∨ → Ext1X(Ω1
F ,OX)→ 0.

Being Ω1
F torsion-free, I(F) must be a line bundle, and so must I(F)∨; let’s call I(F)∨ = L to

ease the notation. Now L has NF as a sub-sheaf generically of rank 1, so NF = I · L for some
ideal sheaf I. Then Ext1X(Ω1

F ,OX) ∼= L⊗OX/I. As Σ = supp(Ext1X(Ω1
F ,OX)), one necessarily

has Ext1X(Ω1
F ,OX) ∼= LΣ. Then LΣ, being a locally free sheaf over Σ which is flat over S, is

itself flat over S. Therefore, as L is also flat over S, flatness for NF follows.
Let’s suppose now that the family

0→ TF → TSX → NF → 0

is flat. We have to prove that Ω1
F is also flat. By the above proposition, it’s enough to show

that the morphism I(F)
ι−→ Ω1

X|S is nowhere zero. Suppose there is T → S such that ιT = 0.

Take an open set U ⊂ X where Ω1
F is locally free. In that open set, we can apply base change

with respect to the functor HomX(−,OX) ([1] or [4]); so, restricting everything to U we have
(ιT )∨ ∼= (ι∨)T . But, in U , ι∨ is the morphism TSX → NF and so it cannot become the zero
morphism under any base change. �

7.2. The arbitrary codimension case. To give an analogous theorem to 7.8 in arbitrary
codimension, we’ll have to deal with finer invariants than the singular locus of the foliation.
In the scheme X, we’ll consider a stratification naturally associated with F . This stratification
have been already studied and described by Suwa in [18]. To deal with flatness issues, we have to
provide a scheme structure to Suwa’s stratification; this will be a particular case of a flattening
stratification. Before going into that, we begin with some generalities. Remember that we are
working over a smooth morphism X → S.

Lemma 7.9. Let X → S be a smooth morphism and F a coherent sheaf on X that is relatively
Z(2)-closed over S. Then, for all s ∈ S, the sheaf Fs = F ⊗ k(s) is Z(2)-closed over Xs.

Proof. We have to show that, for every U ⊂ Xs such that codim(X \ U) ≥ 2, the restriction

Fs
ρU−−→ Fs|U

is surjective. As the formal completion ÔXs,x of OXs
with respect to any closed point x is

faithfully flat over OXs
[11, IV.3.2], we can check surjectivity of ρU by looking at every formal

completion. As X → S is smooth formally around a point x, we have OX ∼= OS ⊗k k[z1, . . . , zd]
and so we can take an open subset V ⊆ X to be V = U × S. Then, with this choice of V , we
have an epimorphism

F̂ |V → F̂s|U → 0.

Then we have a diagram with exact rows and columns

F̂ //

ρV
��

F̂s

ρU
��

// 0

F̂ |V //

��

F̂s|U // 0

0

.
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So ρU must be an epimorphism as well.
�

Lemma 7.10. Let p : X → S be a smooth morphism. Consider a family of distributions

0→ TF → TSX → NF → 0.

If the codimension of sing(F) with respect to Xp(sing(F)) is greater than 2, then, for every map
T → S, one has

HomX(TF ,OX)⊗OT ∼= HomXT
(TFT ,OT ).

The analogous statement is true for I(F)∨ in a flat family of Pfaff systems.

Proof. By [1, Theorem 1.9], we only have to prove that, for every closed point s ∈ S, the natural
map

HomX(TF ,OX)⊗ k(s)→ HomXs(TF ⊗ k(s),OX ⊗ k(s))

is surjective. Being the dual of some sheaves, both HomX(TF ,OX) and

HomXs
(TF ⊗ k(s),OX ⊗ k(s))

possess the relative property S2 with respect to p ( Proposition 3.7), and so are relatively Z(2)-
closed with respect to p, and so is HomX(TF ,OX)⊗ k(s) by the above lemma.

Let U = X \ singF and j : U ↪→ X be the inclusion. As TF|U is locally free over U , so is
TF∨|U . Then, in U , we have

Ext1(TF|U ,OX |U ⊗S G) = 0,

for every G ∈ Coh(S). Then, from the exchange property for local Ext’s [1, Theorem 1.9], we
get surjectivity on

HomX(TF|U ,OX |U )⊗ k(s)→ HomXs
(TF|U ⊗ k(s),OX |U ⊗ k(s)).

But, as codim(sing(F)) > 1 and both sheaves are S2, then surjectivity holds in all of Xs. �

Lemma 7.11. Suppose that a flat family

0→ TF → TSX → NF → 0

is such that the relative codimension dS(sing(F)) of sing(F) over S verifies dS(sing(F)) ≥ 2.
Suppose further that the flattening stratification of X over TF is flat over S (c.f., Proposi-
tion 3.14). Then TF∨ is also a flat OS-module.

The analogous statement is true for I(F)∨ in a flat family of Pfaff systems.

Proof. The proof works exactly the same for distributions of Pfaff systems mutatis mutandi.
Take

∐
P XP to be the flattening stratification of X with respect to TF . The restriction

TFXP
(being coherent and flat over XP ) is locally free over XP , and hence so is its dual

HomXP
(TFXP

,OXP
). By Lemma 7.10, in each stratum XP , we have the isomorphism

HomXP
(TFXP

,OXP
) ∼= HomX(TF ,OX)⊗OXP

= TF∨ ⊗OXP
.

So TF∨ is flat when restricted to the filtration
∐
P XP , which is in turn flat over S. Then, by

[8, Section 5.4.2], TF∨ is flat over S. �

Definition 7.12. For a family of distributions consider the flattening stratification∐
P (F)

XP (F) ⊆ X

of X with respect to TF ⊕NF . We call this the rank stratification of X with respect to TF .
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Remark 7.13. Note that the flattening stratification of TF ⊕ NF is the (scheme-theoretic)
intersection of the flattening stratification of TF with that of NF . This is because

(TF ⊕NF )⊗OY

is flat if and only if both TF ⊗OY and NF ⊗OY are.
This tells us, in particular, that each stratum is indexed by two natural numbers r and k such

that

x ∈ Xr,k ⇐⇒ dim(TF ⊗ k(x)) = r and dim(NF ⊗ k(x)) = k.

In [18], Suwa studied a related stratification associated to a foliation. Given a distribution
D ⊂ TM on a complex manifold M , he defines the strata M (l) as

M (l) = {x ∈M such that Dx ⊂ TxM is a sub-space of dimension l }.

Here D is spanned point-wise by vector fields v1, . . . , vr, and Dx =< vi(x) >. Clearly if D is of
generic rank r, the open stratum is M (r).

Note that, in the setting of distribution as sub-sheafs i : TF ↪→ TX of the tangent sheaf of a
variety, the vector space TxF is actually the image of the map

TF ⊗ k(x)
i⊗k(x)−−−−→ TX ⊗ k(x),

whose kernel is TorX1 (NF , k(x)). Moreover we have the exact sequence

0→ TxF = Im(i⊗ k(x))→ TX ⊗ k(x)→ NF ⊗ k(x)→ 0.

In particular, in a variety X of dimension n, if dim(TxF) = l, then dim(NF ⊗ k(x)) = n− l. So
what we call the rank stratification of X is actually a refinement of the stratification studied in
[18].

Our main motivation for defining this refinement of the stratification of [18] is the following
result.

Theorem 7.14. Assume we have dual families

0→ TF → TSX → NF → 0,(4)

0→ I(F)→ Ω1
X|S → Ω1

F → 0,(5)

parametrized by a scheme S of finite type over an algebraically closed field, such that

• NF is torsion free
• The relative codimension of sing(F) over S (that is dS(sing(F))) verifies dS(sing(F) ≥ 2.
• Each stratum Xr,k of the rank stratification is flat over S.

Then 4 is flat over S if and only if 5 is. Moreover, for each point s ∈ S, we have

I(F)s = (NFs)
∨,

in other terms “the dual family is the family of the duals”.

Proof. We prove one of the implications; the proof of the other is identical.
Consider the exact sequence

0→ Ω1
F → TF∨ → Ext1X(NF ,OX)→ 0.

It is clear that, to prove flatness of the dual family, it’s enough to show Ext1X(NF ,OX) is flat
over S.
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Also, by Lemma 7.10, we have, for every s ∈ S, the diagram with exact rows and columns,

Hom(I(F),OX)⊗ k(s) //

��

Hom(I(F)s,OXs
) //

��

0

Ext1X(Ω1
F ,OX)⊗ k(s) //

��

Ext1X(Ω1
F ⊗ k(s),OXs

)

��
0 0

.

So Ext1X(Ω1
F ,OX) ⊗ k(s) → Ext1X(Ω1

F ⊗ k(s),OXs) is surjective for every s ∈ S and so, by
[1, Theorem 1.9], the exchange property is valid for Ext1X(Ω1

F ,OX). If moreover Ext1X(NF ,OX)
is flat over S, then, again by [1, Theorem 1.9],

I(F)s = HomX(NF ,OX)⊗ k(s) ∼= HomX(NFs,OXs
) = (NFs)

∨.

By Proposition 3.14, it is enough to show the restriction of Ext1X(NF ,OX) to every rank stratum
is flat over S. So let Y ⊆ X be a rank stratum. If we can show that Ext1X(NF ,OX) ⊗ OY is
locally free, then we’re set.

By hypothesis, one has the isomorphism HomX(TF ,OX)⊗OY ∼= HomY (TFY ,OY ). So we
can express Ext1X(NF ,OX)⊗OY as the cokernel in the OY -modules exact sequence

HomY (TXY ,OY )→ HomY (TFY ,OY )→ Ext1X(NF ,OX)Y → 0.

So, localizing at a point y ∈ Y , we can realize the local OY,y-module Ext1X(NF ,OX)Y,y as the
set of maps TFY,y → OY,y modulo the ones that factors as

TFY,y //

��

OY,y

TXY,y

;;
.

To study Ext1X(NF ,OX)Y,y this way, note that we have the following exact sequence.

0→ TorX1 (NF ,OY,y)→ TFY,y → TXY,y → (NF )Y,y → 0.

which we split into two short exact sequences,

0→ K → TXY,y → (NF )Y,y → 0 and(6)

0→ TorX1 (NF ,OY,y)→ TFY,y → K → 0.(7)

Now, as Y is a rank stratum, QY and TFY are flat over Y , and coherent, and so they are locally
free. As a consequence, short exact sequence (6) splits, so TXY,y

∼= (NF )Y,y ⊕K. So

HomY (TXY ,OY )y ∼= HomY (K,OY,y)⊕HomY ((NF )Y ,OY )y

and we get Ext1X(NF ,OX)Y,y as the cokernel in

(8) HomY (K,OY,y)→ HomY (TFY ,OY )y → Ext1X(NF ,OX)Y,y → 0.

Since (NF )Y and TXY are locally free over Y , so is K. Then short exact sequence (7) splits, so

TFY,y ∼= TorX1 (NF ,OY,y)⊕K. Also, as TFY and K are locally free over Y , so is TorX1 (NF ,OY ).
Sequence (8) now reads

HomY (K,OY,y)→ HomY (TorX1 (NF ,OY,y),OY )y ⊕HomY (K,OY,y)→ Ext1X(NF ,OX)Y,y → 0.
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So we have

HomY (TorX1 (NF ,OY,y),OY )y ∼= Ext1X(NF ,OX)Y,y.

Now, as TorX1 (NF ,OY,y) is locally free over Y , so is its dual. In other words, we just proved
Ext1X(NF ,OX)Y is locally free over Y , which settles the theorem. �

Now, by generic flatness, we can conclude the following:

Corollary 7.15. Every irreducible component of the scheme InvP is birationally equivalent to
an irreducible component of iPfP .

Remark 7.16. During the proof of Theorem 7.14, we have actually obtained this result:

Proposition 7.17. Ext1X(NF ,OX) is flat over the rank stratification.

In particular, if
∐
XQ denotes the flattening stratification of Ext1X(NF ,OX), there is a mor-

phism ∐
P (F)

XP (F) →
∐
Q

XQ.

Now, by the construction of the flattening stratification,
∐
XQ consist of an open stratum U

such that Ext1X(NF ,OX)|U = 0, and closed strata whose closure is sing(F). So the morphism∐
P (F)XP (F) →

∐
QXQ actually defines a stratification of sing(F).

8. Singularities

Theorem 7.8 gives a condition for a flat family of integrable Pfaff systems to give rise to a flat
family of involutive distributions in terms of the flatness of the singular locus. We have then to
be able to decide when can we apply the theorem. More precisely, say

0→ I(F)→ Ω1
X|S → Ω1

F → 0

is a flat family of codimension 1 integrable Pfaff systems, and let s ∈ S. How do we know when
sing(F) is flat around s? In this section, we address this question and give a sufficient condition
for sing(F) to be flat at s in terms of the classification of singular points of the Pfaff system
0→ I(F)s → Ω1

Xs
→ Ω1

Fs
→ 0.

From now on, we will consider only Pfaff systems such that Ω1
F is torsion-free.

Remember that, if we have a Pfaff system of codimension 1, 0→ I(F)s → Ω1
Xs
→ Ω1

Fs
→ 0,

such that Ω1
Fs

is torsion-free, we can consider, locally on X, that it is given by a single 1-form
ω and that it is integrable iff ω ∧ dω = 0.

Definition 8.1. Let 0→ I(F)s → Ω1
Xs
→ Ω1

Fs
→ 0 be a codimension 1 integrable Pfaff system,

and let x ∈ X. We say that x is a Kupka singularity of the Pfaff system if, for some 1-form ω
locally defining I(F) around x, we have ωx = 0 and dωx 6= 0.

We also say that x is a Kupka singularity of the foliation defined by I(F).

Proposition 8.2. The set of Kupka singularities of a codimension 1 foliation, if non-void, has
a natural structure of a codimension 2 sub-scheme of X.

Proof. See [14] �

Definition 8.3. Let 0 → I(F)s → Ω1
Xs
→ Ω1

Fs
→ 0 be as before. Say X has dimension n

over C. Then we call x ∈ X a Reeb singularity if there exists an analytic neighborhood U of x
such that I(F) may be generated by a form ω with the property that ω can be written, locally
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in U , in the form ω =
∑n
i=1 fidzi with fi(x) = 0 for all i, and (df1)x, . . . , (dfn)x are linearly

independent in T ∗xX.

Remark 8.4. Note that Kupka singularities and Reeb singularities are singularities in the sense
of 7.1, i.e., they are points in sing(F).

We now give a version for families of the fundamental result of Kupka.

Proposition 8.5. Let
0→ I(F)→ Ω1

X|S → Ω1
F → 0

be a flat family of integrable Pfaff systems of codimension 1, and let Σ = sing(F) ⊂ X. Let
s ∈ S, and x ∈ Σs be such that x is a Kupka singularity of 0 → I(F)s → Ω1

Xs
→ Ω1

Fs
→ 0.

Then, locally around x, I(F) can be given by a relative 1-form ω(z, s) ∈ Ω1
X|S such that

ω = f1(z, s)dz1 + f2(z, s)dz2,

that is, ω is locally the pull-back of a relative form η ∈ Ω1
Y |S, where Y → S is of relative

dimension 2.

The proof is essentially the same as the proof of the classical Kupka theorem, as in [15]. One
only needs to note that every ingredient there can be generalized to a relative setup.

For this we note that, as p : X → S is a smooth morphism, the relative tangent sheaf TSX is
locally free and is the dual sheaf of the locally free sheaf Ω1

X|S . We note also that, if v ∈ TSX(U),

and ω ∈ Ω1
X|S(U), the relative Lie derivative Lv(ω) is well-defined by Cartan’s formula

LSv = dSιv(ω) + ιv(dSω),

where ιv(ω) =< v, ω > is the pairing of dual spaces (and by extension also the map ΩqX|S → Ωq−1
X|S

determined by v), and dS is the relative de Rham differential. Also ΩqX|S = ∧qΩ1
X|S .

Finally we observe that, if p : X → S is of relative dimension d and X is a regular variety over
C of total dimension n, a family of integrable Pfaff systems gives rise to a foliation on X whose
leaves are tangent to the fibers of p. Indeed, we can pull back the subsheaf I(F) ⊂ Ω1X|S by
the natural epimorphism

f∗Ω1
S → Ω1

X → Ω1
X|S → 0,

and get J = I(F)+f∗Ω1
S ⊂ Ω1

X , which is an integrable Pfaff system in X, determining a foliation

F̂ . As f∗Ω1
S ⊂ J , the leaves of the foliation F̂ are contained in the fibers Xs of p.

In the general case, where p is smooth but S and X need not to be regular over C, the
Frobenius theorem still gives foliations Fs in each fiber Xs. Indeed, as p : X → S is smooth,
each fiber Xs is regular over C and, Ω1

F being flat, I(F)s ⊂ Ω1
Xs

is an integrable Pfaff system
on Xs.

Proposition 8.6. Let p : X → S a smooth morphism over C and

0→ I(F)→ Ω1X|S → Ω1
F → 0

a codimension 1 flat family of Pfaff systems. Let ω ∈ Ω1
X|S(U) be an integrable 1-form such that

I(F)(U) = (ω) in a neighborhood U of a point x ∈ X. Then dω is locally decomposable.

Proof. As TSX = (Ω1X|S)∨ and ΩqX|S = ∧qΩ1
X|S , we can apply Plücker relations to determine

if dω is locally decomposable and proceed as in [15, Lemma 2.5]. �

Lemma 8.7. Suppose that dωx 6= 0. Consider Gs the codimension 2 foliations defined by dω
in Xs. In the neighborhood V of x ∈ X where Gs is non-singular for every s, we have that the
leaves of Gs are integral manifolds of ω|Xs .
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Proof. We have only to prove, for every v ∈ TSX such that ιv(dω) = 0, that ιv(ω) = 0. We can
do this exactly as in [15, Lemma 2.6]. �

Lemma 8.8. Assume the same hypothesis as Lemma 8.7. Let v be a vector field tangent to G.
Then the relative Lie derivative of ω with respect to v is zero.

Proof. Like the proof of [15, Lemma 2.7]. �

Lemma 8.9. Under the same hypothesis as Lemma 8.7 and 8.8, sing(ω) is saturated by leaves
of (Gs)s∈S (i.e., take y ∈ V a zero of ω such that p(y) = s, and L the leaf of Gs going through
y. Then the inclusion L→ V factors through sing(ω)).

Proof. We can do this entirely on Xs. Then this reduces to [15, Lemma 2.7]. �

Proof of Proposition 8.5. We take an analytic neighborhood V of x ∈ X such that V ∼= U ×Dd

with U ⊆ S an open set, Dd a complex polydisk, and

p|V : V ∼= U ×Dd −→ U.

(s, z1, . . . , zd) 7→ s

By the Frobenius theorem, we can choose the coordinates zi in such a way that

vi =
∂

∂zi
∈ TSX(V ), 3 ≤ i ≤ d,

are tangent to dω. Then, as LSviω = 0 and ιviω = 0, we can write ω as

ω = f1(z, s)dz1 + f2(z, s)dz2.

�

Proposition 8.10. Let
0→ I(F)→ Ω1

X|S → Ω1
F → 0

be a flat family of integrable Pfaff systems of codimension 1, and let Σ = sing(F) ⊂ X. Let
s ∈ S, and x ∈ Σs be such that x is a Kupka singularity of 0 → I(F)s → Ω1

Xs
→ Ω1

Fs
→ 0.

Then Σ→ S is smooth around x.

Proof. By 8.5 above, we can determine Σ around x as the common zeroes of f1(z, s) and f2(z, s).
The condition dω 6= 0 implies Σ is smooth over S (remember that we are using the relative de
Rham differential and that means the variable s counts as a constant). �

Proposition 8.11. Let
0→ I(F)→ Ω1

X|S → Ω1
F → 0

be a flat family of integrable Pfaff systems of codimension 1, Σ = sing(F) ⊂ X, and s ∈ S.
Suppose x ∈ Σs is such that x is a Reeb singularity of 0 → I(F)s → Ω1

Xs
→ Ω1

Fs
→ 0. Then

Σ→ S is étalé around x.

Proof. The condition on x means we can actually give I(F) locally by a relative 1-form ω ∈ Ω1
X|S ,

ω =
∑n
i=1 fi(z, s)dzi, with n the relative dimension of X over S and the dfi’s linearly independent

on x. Then Σ is given by the equations f1 = · · · = fn = 0 and is therefore étalé over S. �

With these two propositions, we are almost in a position to state our condition for flatness of
the dual family, we just need a general:

Lemma 8.12. Let X
p−→ S be a morphism between schemes of finite type over an algebraically

closed field k. Let U ⊆ X be the maximal open sub-scheme such that U
p−→ S is flat, and s ∈ S

a point such that Xs is without embedded components. If Us ⊆ Xs is dense, then Us = Xs.
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Proof. By Proposition 3.12, we must check that, for A either a discrete valuation domain or
an Artin ring of the form k[T ]/(Tn+1), and every arrow Spec(A) → S, the pull-back scheme
XSpec(A) is flat over Spec(A). In this way, the problem reduces to the case where S = Spec(A).

(i) Case A is a DVD. In this case, A being a principal domain, flatness of X over Spec(A)
is equivalent to the local rings OX,x being torsion-free Ap(x)-modules for every point x ∈ X
([11, IV.1.3] , so it suffices to consider the case Ap(x) = A.

Now, let f ∈ OX,x and J = AnnA(f) ⊆ A. Suppose J 6= (0) and consider V (J) ⊆ Spec(A);
clearly supp(f) ⊆ p−1(V (J)) ⊆ X. So U ∩ supp(f) = ∅. But then the restriction f |s of f to Xs

has support disjoint with Us. On the other hand

supp(f |s) = {P1} ∪ · · · ∪ {Pm} ⊆ Xs,

where {P1, . . . ,Pm} = Ass(OXs,x/(f |s)) ⊆ Ass(OXs,x).

As Xs is without immersed components, the Pi’s are all minimal, so Xk ∩Pi is an irreducible
component of Xk. But

Us ∩Pi = ∅,
contradicting the hypothesis that Us is dense in Xs.

(ii) Case A = k[T ]/(Tn+1). Using Proposition 3.13, this works just as the first case taking
f ∈ OX,x as a section such that Tnf = 0 but f /∈ TOX,x.

�

We have already said that, in a Pfaff system, Kupka singularities, if they exist, form a codi-
mension 2 sub-scheme of X. We will call K(F) this sub-scheme, and K(F) its closure.

Theorem 8.13. Let

0→ I(F)→ Ω1
X|S → Ω1

F → 0

be a flat family of integrable Pfaff systems, for s ∈ S. Consider the Pfaff system

0→ I(F)s → Ω1
Xs
→ Ω1

Fs
→ 0.

If sing(Fs) is without embedded components and sing(Fs) = K(Fs)∪{p1, . . . , pm}, where the pi’s
are Reeb-type singularities, then sing(F)→ S is flat in a neighborhood of s ∈ S.

Proof. Indeed, by Proposition 8.10, sing(F) is flat in a neighborhood of K(Fs), and, as sing(Fs)
is without embedded components, we can apply Lemma 8.12 to conclude that sing(F) is flat in

a neighborhood of K(Fs).
Lastly, from Proposition 8.11, it follows that sing(F) is flat in a neighborhood of {p1, . . . , pm}.

�

9. Applications

Let X = Pn(C). It’s well-known that the class of sheaves F that split as a direct sum of line
bundles F ∼=

⊕
iO(ki) has no non-trivial deformations. Indeed, as deformation theory teaches

us, first-order deformations of F are parametrized by Ext1(F ,F ), in this case we have

Ext1(F ,F ) ∼=
⊕
i,j

Ext1(O(ki),O(kj)) ∼=⊕
i,j

Ext1(O,O(kj − ki)) ∼=
⊕
i,j

H1(Pn,O(kj − ki)) = 0

In particular, given a flat family of distributions

0→ TF → TS(Pn × S)→ NF → 0,
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such that, for some s ∈ S, TFs ∼=
⊕

iO(ki), the same decomposition holds true for the rest of
the members of the family.

When we deal with codimension 1 foliations, it’s more common, however, to work with Pfaff
systems or, more concretely, with integrable twisted 1-forms ω ∈ Ω1

Pn(d), ω ∧ dω = 0 (see [14]).
It’s then than the following question emerged: Given a form ω ∈ Ω1

Pn(d) such that the vector
fields that annihilate ω generate a split sheaf (i.e., a sheaf that decomposes as direct sum of
line bundles), will the same feature hold for every deformation of ω? Such a question was
addressed by Cukierman and Pereira in [5]. Here, we use our results to recover the theorem of
Cukierman-Pereira as a special case.

As was observed before, every time we have a codimension 1 Pfaff system

0→ I(F)→ Ω1
X → Ω1

F → 0

such that Ω1
F is torsion-free, it follows that I(F) must be a line bundle. In the case X = Pn(C),

we thus have I(F) ∼= OPn(−d) for some d ∈ Z. It is then equivalent to give a Pfaff system and
to give a morphism 0 → OPn(−d) → Ω1

Pn which is in turn equivalent to 0 → OPn → Ω1
Pn(d),

that is, to give a global section ω of the sheaf Ω1
Pn(d).

We can explicitly write such a global section as

ω =

n∑
i=0

fi(x0, . . . , xn)dxi,

with fi a homogeneous polynomial of degree d− 1 and such that
∑
i xifi = 0.

Such an expression gives rise to a foliation with split tangent sheaf if and only if there are
n− 1 polynomial vector fields

X1 = g0
1

∂

∂x0
+ · · ·+ gn1

∂

∂xn
,

...

Xn−1 = g0
n−1

∂

∂x0
+ · · ·+ gnn−1

∂

∂xn

such that ω(Xi) = 0, for all 1 ≤ i ≤ n− 1; moreover, on a generic point, the vector fields must
be linearly independent.

The singular set of this foliation is given by the ideal I = (f0, . . . , fn). The condition ω(Xi) = 0
means that the ring C[x0, . . . , xn]/I admits a syzygy of the form

0→ C[x0, ..., xn]n


x0 · · · xn
g0

1 · · · gn1
...

. . .
...

g0
n−1 · · · gnn−1


−−−−−−−−−−−−−−−−−−→ C[x0, . . . , xn]n+1

(f0,...,fn)−−−−−−→ C[x0, . . . , xn]→ C[x0, . . . , xn]/I → 0.

For such rings a theorem of Hilbert and Schaps tells us the following:

Theorem 9.1 (Hilbert, Schaps). Let A = k[x0, ...xn]/I be such that there is a 3-step resolu-
tion of A as above by free modules. Then the ring A is Cohen-Macaulay; in particular, it is
equidimensional.

Proof. This is theorem 5.1 in [2] �
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We thus recover the theorem of Cukierman and Pereira ([5, Theorem 1]).

Theorem 9.2 ([5]). Let

0→ I(F)→ Ω1
Pn×S|S → Ω1

F → 0

be a flat family of codimension 1 integrable Pfaff systems, and suppose

0→ I(F)s → Ω1
Pn → Ω1

F → 0

defines a foliation with split tangent sheaf. If sing(Fs) \ K(Fs) has codimension greater than 2,
then every member of the family defines a split tangent sheaf foliation.

Proof. By the above theorem, sing(Fs) is equidimensional. The singular locus of a foliation
on Pn always has an irreducible component of codimension 2 (see [14, Teorema 1.13]). If

sing(Fs) \ K(Fs) has codimension greater than 2, then it must be empty. So sing(Fs) = K(Fs)
and we can then apply Theorem 8.13. So the flat family

0→ I(F)→ Ω1
Pn×S|S → Ω1

F → 0

gives rise to a flat family

0→ TF → TSX → NF → 0,

and so TF must be flat over S, and then TFs splits for every s ∈ S. �

Remark 9.3. In [5], Theorem 2, a similar statement is proved for an arbitrary codimensional
distribution (not necessarily involutive). More concretely, they prove:

Let D be a singular holomorphic distribution on Pn. If codim sing(D) ≥ 3 and

TD ∼=
d⊕
i=1

O(ei), ei ∈ Z,

then there exists a Zariski-open neighborhood U of the space of Pfaff systems such that, for every

Pfaff system I ′ ⊂ Ω1
Pn in U , its annihilator TD′ splits as TD′ ∼=

⊕d
i=1O(ei).

When we try to arrive at the above statement as a particular case of the the theory hereby
exposed, we run into some difficulties, which we will explain now.

Note that generic (non-involutive) singular distributions have isolated singularities. So, in
order to apply an analogue of Theorem 8.13 to non-involutive distributions of arbitrary codi-
mension, we should be able to conclude, from the hypothesis codim sing(D) ≥ 3, that D has
isolated singularities. The author was unable to do so. It seems that a keener knowledge of the
singular set of arbitrary codimensional distributions is necessary to correctly understand and
generalize Theorem 2 in [5].
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