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L2-RIEMANN-ROCH FOR SINGULAR COMPLEX CURVES

JEAN RUPPENTHAL AND MARTIN SERA

Abstract. We present a comprehensive L2-theory for the ∂-operator on singular complex

curves, including L2-versions of the Riemann-Roch theorem and some applications.

1. Introduction

The L2-theory for the ∂-operator is one of the central tools in complex analysis on complex
manifolds, but still not very well developed on singular complex spaces. Just recently, considerable
progress has been made in understanding the L2-cohomology of singular complex spaces with
isolated singularities. Let X be a Hermitian complex space of pure dimension n and with
isolated singularities only. For simplicity, we assume that X is compact. Let Hp,q

w (X∗) be the
L2-Dolbeault cohomology on the level of (p, q)-forms with respect to the ∂-operator in the sense
of distributions, denoted by ∂w in the following, computed on X∗ = RegX. Let π : M → X
be a resolution of singularities with snc exceptional divisor, Z := π−1(SingX) the unreduced
exceptional divisor. Then it has been shown by Øvrelid, Vassiliadou [ØV13] and the first author
[Rup11, Rup14] by different approaches that there exists an effective divisor D ≥ Z − |Z| on M
such that there are natural isomorphisms

Hn,q
w (X∗) ∼= Hn,q(M) ,

H0,q
w (X∗) ∼=

Hq
(
M,O(D)

)
Hq
|Z|
(
M,O(D)

) (1.1)

for all 0 ≤ q ≤ n. Here, Hq
|Z| denotes the cohomology with support on |Z|. If dimX ≤ 2, then

(1.1) holds with the divisor D = Z − |Z| and Hq
|Z|
(
M,O(Z − |Z|)

)
= {0}, so that (1.1) gives

a nice smooth representation of the L2-cohomology groups H0,q
w (X∗). In case dimX > 2, it is

conjectured that (1.1) holds with D = Z − |Z| (see [Rup11]).

However, the L2-theory for the ∂-operator developed in [ØV13] and [Rup11, Rup14] applies
only to dimX ≥ 2 (for dimX = 1, (1.1) has been known before, see [Par89, PS91]). The purpose
of the present paper is to give a complete L2-theory for the ∂-operator on a singular complex
curve, including L2-versions of the Riemann-Roch theorem, and to understand the appearance of
the divisor Z − |Z| in the case dimX = 1.

Let us explain some of our results in detail. Let X be a Hermitian singular complex space1

of dimension 1, i. e., a Hermitian complex curve, and L → X a Hermitian holomorphic line
bundle. Let ∂w : Lp,q(X∗, L)→ Lp,q+1(X∗, L) denote the weak extension of the Cauchy-Riemann
operator ∂ : Dp,q(X∗, L) → Dp,q+1(X∗, L), i. e., the ∂-operator in the sense of distributions.
Here, Dp,q(X∗, L) := C∞cpt(X

∗,Λp,qT ∗X∗ ⊗ L) denotes the set of smooth differential forms with
compact support in X∗ and values in L, and Lp,q(X∗, L) is the set of square-integrable forms
with values in L and respect to the Hermitian metrics on X∗ and L.

2010 Mathematics Subject Classification. 32W05, 32C36, 14C40.
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1 A Hermitian complex space (X, g) is a reduced complex space X with a metric g on the regular part such

that the following holds: If x ∈ X is an arbitrary point there exist a neighborhood U = U(x), a holomorphic
embedding of U into a domain G in CN and an ordinary smooth Hermitian metric in G whose restriction to U is

g|U .
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Let Hp,q
w (X∗, L) denote the L2-Dolbeault cohomology on X∗ with respect to ∂w and

hp,qw (X∗, L) := dimHp,q
w (X∗, L).

Note that the genus g = g(X) of X and the degree deg(L) of L are well-defined, even in the
presence of singularities (see Section 2.2). For a singular point x ∈ SingX, we define its modified
multiplicity mult′xX as follows: Let Xj , j = 1, ...,m, be the irreducible components of X in the
singular point x. Then

mult′xX :=

m∑
j=1

(multxXj − 1) .

Note that regular irreducible components do not contribute to mult′xX. In Section 2.2, we recall
the definition of the multiplicity multxXj and present different ways to compute it.

Theorem 1.2 (∂w-Riemann-Roch). Let X be a compact Hermitian complex curve with m
irreducible components and L→ X a holomorphic line bundle. Then

h0,0
w (X∗, L)− h0,1

w (X∗, L) = m− g + deg(L) +
∑

x∈SingX

mult′xX, (1.3)

and

h1,1
w (X∗, L)− h1,0

w (X∗, L) = m− g − deg(L).

Theorem 1.2 is a corollary of Theorem 4.4 which we prove in Section 4. We also consider an
L2-dual version there, i. e., an L2-Riemann-Roch theorem for the minimal closed L2-extension of
the ∂-operator which we denote by ∂s (see Section 2.1).

On singular complex curves, the ∂s-operator is of particular importance because of its relation
to weakly holomorphic functions. Namely, the weakly holomorphic functions are precisely the
∂s-holomorphic L2

loc-functions (for a localized version of the ∂s-operator, see Section 5). Let

Hp,q
s,loc(X∗) denote the L2

loc-Dolbeault cohomology on X∗ with respect to ∂s, and ÔX the sheaf of
germs of weakly holomorphic functions on X. Then:

Theorem 1.4. Let X be a Hermitian complex curve. Then

H0(X, ÔX) = H0,0
s,loc(X∗),

H1(X, ÔX) ∼= H0,1
s,loc(X∗).

If X is irreducible and compact, then dimH0(X, ÔX) = 1, dimH1(X, ÔX) = g(X). We prove
Theorem 1.4 in Section 5.

To exemplify the use of L2-theory for the ∂-operator on a singular complex space, in particular
the L2-Riemann-Roch theorem, we give in Section 6 two applications. There, we use our L2-theory
to give alternative proofs of two well-known facts. First, we show that each compact complex
curve can be realized as a ramified covering of CP1. Second, we show that a positive holomorphic
line bundle over a compact complex curve is ample, yielding that any compact complex curve is
projective.

Let us clarify the relation to previous work of others. In the case of complex curves, (1.1)
was in essence discovered by Pardon [Par89], and one can deduce parts of Theorem 4.4 and the
second statement of Corollary 4.8 from Pardon’s work by some additional arguments on the
regularity of the ∂-operator. The first part of Corollary 4.8 was discovered by Haskell [Has89],
and from that one can deduce the second statement of Theorem 1.2 by use of L2-Serre duality.
Moreover, Theorem 1.2 was proved in essence by Brüning, Peyerimhoff and Schröder in [BPS90]
and [Sch89] by computing the indices of the ∂w- and the ∂s-operator.

The new point in the present work is that we can put all the partial results mentioned
above in the general framework of a comprehensive L2-theory. From that, we draw also a
new understanding of weakly holomorphic functions (Theorem 1.4) and of the divisor Z − |Z|.
Moreover, all the previous work has been done only for forms with values in the trivial bundle
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(except of [Sch89]), whereas we incorporate line bundles. This is essential for applications as we
illustrate by the examples mentioned above.

Acknowledgment. This research was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation), grant RU 1474/2 within DFG’s Emmy Noether Programme.
The authors thank Eduardo S. Zeron for interesting and fruitful discussions and are grateful to
the unknown referee for several suggestions which helped to improve the paper.

2. Preliminaries

2.1. Closed extensions of the Cauchy-Riemann operator. Let X be a complex curve and
X∗ := RegX the set of regular points. We assume that X is a Hermitian complex space in the
sense that X∗ carries a Hermitian metric γ which is locally given as the restriction of the metric
of the ambient space when X is embedded holomorphically into some complex number space.

We denote by Dp,q(X∗) the smooth differential forms of degree (p, q) with compact support in
X∗ (test forms) and by Lp,q(X∗) the set of square-integrable forms with respect to the metric γ
on X∗.

Let ∂s : Lp,q(X∗)→ Lp,q+1(X∗) be the minimal (strong) closed L2-extension of the Cauchy-
Riemann operator ∂ : Dp,q(X∗) → Dp,q+1(X∗), i. e., ∂s is defined by the closure of the graph
of ∂ in Lp,q(X∗) × Lp,q+1(X∗). ∂w : Lp,q(X∗) → Lp,q+1(X∗) is the maximal (weak) closed
L2-extension of ∂, i. e., ∂w is defined in sense of distributions. We denote by Hp,q

w/s(X
∗) the

Dolbeault cohomology with respect to ∂w or ∂s, respectively, and by hp,qw/s(X
∗) the dimension of

Hp,q
w/s(X

∗).

Let ϑ : Dp,q+1(X∗)→ Dp,q(X∗) be the formal adjoint of ∂ and ϑs/w := ∂
∗
w/s the Hilbert-space

adjoint of ∂w/s. This notation makes sense as ϑw/s is in fact the maximal (weak) or minimal

(strong), respectively, L2-extension of ϑ. Let ∗ : Lp,q(X∗) → L1−p,1−q(X∗) be the conjugated
Hodge-∗-operator with respect to the metric γ. Then we have ϑw/s = −∗ ∂w/s ∗.

Let L → X be a Hermitian holomorphic line bundle on X with an (arbitrary) metric on
L which is smooth on the whole of X. We define Dp,q(X∗, L) := C∞cpt(X

∗, Λp,qT ∗X∗ ⊗ L) as
the smooth (p, q)-forms with compact support and values in L, and Lp,q(X∗, L) as the Hilbert
space of square-integrable forms with values in L. We consider the Cauchy-Riemann operator
∂ : Dp,q(X∗, L)→ Dp,q+1(X∗, L) locally given by ∂ : Dp,q(X∗)→ Dp,q+1(X∗). Since ∂ commutes
with the trivializations of the holomorphic line bundle, ∂ is well defined. We get the weak and
strong extensions ∂w, ∂s : Lp,q(X∗, L) → Lp,q+1(X∗, L) and the cohomology Hp,q

w/s(X
∗, L) as

above.

In Section 3, we will study also the following other closed extensions of ∂ besides the minimal
∂s and the maximal ∂w. Let D b Cn be a domain, and X ⊂ D an analytic set of dimension one
with SingX = {0}. We can interpret ∂s as ∂w with certain boundary conditions. The boundary
of X∗ consists of two parts, the singular point {0} and the boundary at ∂D: ∂X = ∂X∗ \ {0}.
Therefore, there are two boundary conditions. Let ∂s,w denote the closed L2-extension which

satisfies the boundary condition at {0}, i. e., f ∈ dom ∂s,w iff f ∈ dom ∂w and there is a sequence

{fj} in dom ∂w such that supp fj ∩ {0} = ∅, fj → f , and ∂wfj → ∂wf in L2. ∂w,s denotes the

extension which satisfies the boundary condition at ∂X, i. e., f ∈ dom ∂w,s iff f ∈ dom ∂w and

there is a sequence {fj} in dom ∂w such that supp fj ∩ ∂X = ∅, fj → f , and ∂wfj → ∂wf in L2.
We define the adjoint operators

ϑs,w := −∗ ∂s,w ∗ and ϑw,s := −∗ ∂w,s ∗,

which we can realize as Hilbert-space adjoint operators (see [Rup14, Lem. 5.1]):
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Lemma 2.1. The Hilbert-space adjoints ∂
∗
s,w and ∂

∗
w,s satisfy the representations

∂
∗
s,w = ϑw,s = −∗ ∂w,s ∗ and ∂

∗
w,s = ϑs,w = −∗ ∂s,w ∗,

respectively.

2.2. Resolution of complex curves, divisors, line bundles. Every (reduced) complex space
X (which is countable at infinity) has a resolution of singularities π : M → X, i. e., there are a
complex manifold M , a proper complex subspace S of X which contains the singular locus of X
and a proper holomorphic map π : M → X such that the restriction M \ π−1(S)→ X \ S of π is
biholomorphic, and π−1(S) is the locally finite union of smooth hypersurfaces (see [Hir64] and
[Hir77, Thm. 7.1]).

If X is a compact complex curve, then such a resolution is given just by the normalization of
the curve, and it is unique up to biholomorphism: Let π1 : M1 → X and π2 : M2 → X be two
resolutions of X. Then ψ := π−1

2 ◦ π1 : M1 \ π−1
1 (SingX)→M2 \ π−1

2 (SingX) is biholomorphic
and bounded in the singular locus. Yet, π−1

i (SingX) consist of isolated points. Therefore, ψ has
a (bi-) holomorphic extension.

Let π : M → X be a resolution of a compact complex curve X. We define the genus of X by
the genus of the resolution

g(X) := h1(M) = dimH1(M,O).

If X has more than one irreducible component, then M is not connected and h1(M) is the sum
of the genera of the connected components. Since the resolution is unique up to biholomorphism,
this is well-defined.

Throughout the article (except of Section 6.1), we will work with divisors on compact Riemann
surfaces only. Therefore, there is no difference between Cartier and Weil divisors, and we can
associate to each line bundle a divisor.

Let L→ X be a holomorphic line bundle. Then the pull-back π∗L→M is well-defined by the
pull-back of the transition functions of the line bundle. There is a divisor D on M associated to
π∗L such that O(π∗L) ∼= O(D)2 and deg π∗L = degD. The uniqueness of the resolution (up to
biholomorphism) implies the independence of deg π∗L from π, so that

degL := deg π∗L

is also well-defined.

For any divisor D on M , there exists a holomorphic line bundle LD → M associated to D
such that O(LD) ∼= O(D). The constant function f = 1 induces a meromorphic section sD of
LD such that div(sD) = D. One can then identify sections in O(D) with sections in O(LD) by
g 7→ g ⊗ sD, and we denote the inverse mapping by s 7→ s · s−1

D . If Y is an effective divisor,
then sY is a holomorphic section of LY and O ⊂ O(Y ). Hence, there is the natural inclusion
O(D) ⊂ O(D+Y ) which induces the inclusion O(LD) ⊂ O(LD+Y ) given by s 7→ (s · s−1

D )⊗ sD+Y .
For U ⊂M , we obtain the inclusion

Lp,qloc(U,LD) ↪→ Lp,qloc(U,LD+Y ), s 7→ (s · s−1
D )⊗ sD+Y . (2.2)

Here, Lp,qloc(U,LD) denotes the locally square-integrable forms with values in LD. This definition
is independent of the chosen Hermitian metric on LD. If M is compact, all metrics are equivalent
and we get the inclusion

Lp,q(M,LD) ⊂ Lp,q(M,LD+Y ). (2.3)

Let Z := π−1(SingX) be the unreduced exceptional divisor and |Z| the underlying reduced
divisor. Then deg(Z − |Z|) is independent of the resolution as well. We will discuss some
alternative ways to compute degZ.

2 We denote by O(D) the sheaf of germs of holomorphic functions f such that div(f) + D ≥ 0.
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Locally, the resolution is given by the Puiseux parametrization: Let A be an analytic set
of dimension 1 in Ω b Cn with SingA = {0} which is irreducible at 0. Shrinking Ω, there
are coordinates z,w1, ..., wn−1 around 0 such that A is contained in the cone ‖w‖ ≤ C|z|,
w = (w1, .. , wn−1). The projection prz : A→ Cz on the z-coordinate is a finite ramified covering.
Let s be the number of the sheets of prz. Generic choice of the coordinates gives the same
number of sheets s, called the multiplicity mult0A of A in {0}. There exists a parametrization
π : ∆→ A, t 7→ (ts, w1(t), ..., wn−1(t)), where ∆ := {t ∈ C : |t| < 1}; cf. e. g. [Chi89, Sect. 6.1]. π is
called the Puiseux parametrization. The unreduced exceptional divisor is just Z = (π−1(z)) = (ts),
and so degZ = s.

The number of sheets of the covering prz is also equal to the Lelong number ν([A], 0) of the
positive closed current [A] given by the integration over A (see [Chi89, Prop. 2 in § 3.15], [Dem12,
Thm. 7.7] or [GH78, § 3.2]).

The tangent cone gives another way to compute mult0A. For a holomorphic function f on Ω,
let f =

∑∞
k=k0

fk be the decomposition in homogeneous polynomials fk of degree k with fk0 6= 0
(choosing a smaller Ω) and f∗ := fk0 6= 0 be the initial homogeneous polynomial of f . If A is
given by the ideal sheaf JA, then

C0(A) = {α ∈ Cn : f∗(α) = 0 ∀f ∈JA,0} ⊂ T0Cn

is called the tangent cone of A in 0 (cf. [Chi89, Sect. 8.4]). The natural projection Cn \0→ CPn−1

maps C0(A) on a projective variety C̃0(A). The degree deg Y of a projective variety Y in CPn−1

of dimension p is defined as the class of Y in H2p(CPn−1,Z) ∼= Z, and mult0A = deg C̃0(A) (see

Sect. 2 of [GH78, § 1.3]). In the case of an irreducible complex curve A, note that C̃0(A) is just a
point of multiplicity mult0A.

All in all, we have

degZ = mult0A = ν([A], 0) = deg C̃0(A).

2.3. Extension theorems. We need the following extension theorem. Let ∆ be the unit disc in
C and ∆∗ := ∆ \ {0}.

Theorem 2.4 (L2-extension). If u ∈ Lp,0loc(∆) and v ∈ Lp,1loc(∆) satisfy ∂u = v on ∆∗ in the sense

of distributions, then ∂u = v on ∆.

A more general statement is true for domains in Cn and proper analytic subsets of arbitrary
codimension, cf. e. g. [Rup09, Thm. 3.2].

If A ⊂ Ω b Cn is a pure dimensional analytic set, let Ô = ÔA be the normalization sheaf of
OA which is defined stalk-wise by the integral closure of OA,x in the sheaf MA,x of meromorphic

functions for all x ∈ A. A function in Ô(U), U ⊂ A open, is called weakly holomorphic. Weakly
holomorphic functions are holomorphic in regular points of A and bounded in singular points.
If A is locally irreducible, then weakly holomorphic functions are continuous in SingA (cf. e. g.
[GR84, § VI.4].)

The classical Riemann extension theorem generalizes to the following result (see e. g. [GR84,
Sect. VII.4.1]).

Theorem 2.5 (Riemann extension). Let A ⊂ Ω b Cn be a pure dimensional analytic set. Every
holomorphic function on A∗ := RegA which is bounded at SingA is weakly holomorphic on A.
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3. Local L2-theory of complex curves

In this section, we study the local L2-theory of (locally) irreducible analytic curves in Cn.
By the remarks on the local structure of singular complex curves in Section 2.2 and Section 4,
it follows that the studied situation is general enough. We will compute the L2-Dolbeault
cohomology by use of the Puiseux parametrization and will see why the term

∑
x∈SingX mult′xX

occurs in (1.3).

Let A be an irreducible analytic curve in ∆n ⊂ Cnzw1...wn−1
given by the Puiseux parametri-

zation

π : ∆→ Cn , π(t) := (ts, w(t)),

where w = (w1, ..., wn−1) : ∆ → ∆n−1 is a holomorphic map such that each component wi
vanishes at least of the order s+ 1 in the origin. Here, ∆ is the unit disk {t ∈ C : |t| < 1}. We can
assume that π is bijective, in particular, a resolution/normalization of A such that mult0A = s.
Further, we can assume that 0 is the only singular point of A.

For a regular point (z0, w0) ∈ A∗ := RegA, let t0 ∈ ∆∗ be the preimage under π. Since π

is biholomorphic on ∆∗ := ∆ \ {0}, dπt0( ∂∂t ) = sts−1
0

∂
∂z +

∑n−1
k=1 w

′
k(t0) ∂

∂wk
is a non-vanishing

tangent vector of A∗ in (z0, w0), i. e.,

(1 + ‖ 1
s t

1−s
0 w′(t0)‖2)−

1/2

(
∂

∂z
+

n−1∑
k=1

1

s
t1−s0 w′k(t0)

∂

∂wk

)
is a normalized generator of T(z0,w0)A

∗ and (1 + ‖ 1
s t

1−s
0 w′(t0)‖2)

1/2dz is a normalized generator

of T ∗(z0,w0)A
∗. Since w′k vanishes at least of order s in the origin, we obtain 1 + ‖ 1

s t
1−sw′(t)‖2 ∼ 1

on ∆ and dVA∗ ∼ idz ∧ dz, where dVA∗ denotes the volume form on A∗ induced by the standard
Euclidean metric of Cn. Using π∗dz = d(π∗z) = dts = sts−1dt and π∗(dz∧dz) = s2|t|2(s−1)dt∧dt,
we get

π∗dVA∗ ∼ |t|2(s−1)dV∆.

Let ι : A∗ → ∆∗ be the inverse of π. Then, ι(z,w) is the root t = s
√
z with w = w(t). We get

ι∗(dt) = 1
sz

1/s−1dz and ι∗(dt ∧ dt) = 1
s2 |z|

2(1/s−1)dz ∧ dz, i. e.,

ι∗dV∆∗ ∼ |z|2(1/s−1)dVA∗ .

If g is a measurable function on A∗, we obtain∫
A∗
|g|2dVA∗ =

∫
∆

|π∗g|2π∗dVA∗ ∼
∫

∆

|π∗g|2 · |t|2(s−1)dV∆.

Hence,

g ∈ L0,0(A∗)⇔ ts−1π∗g ∈ L0,0(∆).

For (0, 1)-forms and (1, 1)-forms, we have

π∗(gdz) = π∗g · π∗(dz) = t
s−1

π∗(g)dt,

π∗(gdz ∧ dz) = |t|2(s−1)π∗(g)dt ∧ dt.
Thus

f ∈ L0,0(A∗)⇔ ts−1 · π∗f ∈ L0,0(∆),

f ∈ L1,0(A∗)⇔ π∗f ∈ L1,0(∆),

f ∈ L0,1(A∗)⇔ π∗f ∈ L0,1(∆), and

f ∈ L1,1(A∗)⇔ t1−s · π∗f ∈ L1,1(∆).

(3.1)

On the other hand, if v ∈ L0,0(∆), we get

∞ >

∫
∆

|v|2dV∆ =

∫
A∗
|ι∗v|2ι∗dV∆ ∼

∫
A∗
|ι∗v|2 · |z|2(1/s−1)dVA∗ .
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Thus, |z|1/s−1ι∗v is square-integrable on A∗. For each (0, 1)-form vdt ∈ L0,1(∆), we get

sι∗(vdt) = z
1/s−1ι∗(v)dz ∈ L0,1(A∗),

and for each (1, 1)-form vdt ∧ dt ∈ L1,1(∆), we get |z|1− 1
s ι∗(vdt ∧ dt) ∈ L1,1(A∗).

So, if f ∈ L0,1(A∗), then u := π∗f is in L2, too. Since dim ∆ = 1, there exists v ∈ L0,0(∆)

with ∂wv = u. We set g := ι∗v. Since |z|1/s−1g is in L2 and |z|2(1−1/s) is bounded,

‖g‖2L2 =

∫
A∗
|z

1/s−1g|2 · |z|2(1−1/s)dVA∗ ≤ ‖z
1/s−1g‖L2 · ‖z2(1−1/s)‖L∞ <∞.

Hence, we get an L2-solution for ∂wg = f and

H0,1
w (A∗) = L0,1(A∗)/R(∂w) = 0.

In the same way, it is easy to compute

H1,1
w (A∗) = 0.

We will now determine Hp,0
w (A∗) = ker(∂w : Lp,0 → Lp,1) by use of the L2-extension theorem

(Theorem 2.4). For this, let OL2(∆) be the square-integrable holomorphic functions on ∆, and
let Ω1

L2(∆) be the holomorphic 1-forms with square-integrable coefficient. If g ∈ L0,0(A∗) and

∂wg = 0, then v := π∗g ∈ |t|1−sL0,0(∆) and ∂wv = 0 on ∆∗. Therefore, ∂(ts−1v) = 0 on ∆∗ and
ts−1v ∈ L0,0(∆). The extension theorem implies ∂(ts−1v) = 0 on ∆, i. e., v is a meromorphic
function with a pole of order s− 1 or less at the origin. We say v ∈ t1−sOL2(∆). Since, on the
other hand, ι∗(t1−sOL2(∆)) ⊂ ker ∂w, we conclude

H0,0
w (A∗) ∼= t1−sOL2(∆). (3.2)

If f ∈ L1,0(A∗) and ∂wf = 0, then u := π∗f ∈ L1,0(∆) and ∂wu = 0 on ∆ (using the extension
theorem again). Hence, u is holomorphic on ∆ and

H1,0
w (A∗) ∼= Ω1

L2(∆).

To compute the cohomology groups H∗,∗s (A∗), we use L2-duality:

Lemma 3.3. Let ∂e denote either the weak or the strong closed extension of ∂, and ∂ec the other
one. For p ∈ {0, 1}, let the range R(∂e) of ∂e : Lp,0 → Lp,1 be closed. Then

Hp,1
e (A∗) ∼= H1−p,0

ec (A∗).

For the proof see e. g. [Rup14, Thm. 2.3].

Lemma 3.4. For p ∈ {0, 1},

Hp,0
s (A∗) ∼= H1−p,1

w (A∗) = 0 and

Hp,1
s (A∗) ∼= H1−p,0

w (A∗).

Proof. Recall that H1−p,1
w (A∗) = 0. This implies L1−p,1(A∗) = R(∂w) and, particularly, that the

range of ∂w : L1−p,0 → L1−p,1 is closed. As ϑw = −∗ ∂w ∗ and ∗ is an isometric isomorphism,
we conclude that the range of ϑw : Lp,1 → Lp,0 is closed as well. This is equivalent to the range
of ∂s = ϑ∗w : Lp,0 → Lp,1 being closed (standard functional analysis). Lemma 3.3 implies both
isomorphisms. �

To get the complete picture, we also need to understand the Dolbeault cohomology groups of
the closed extensions ∂s,w and ∂w,s, respectively.

Lemma 3.5. For p ∈ {0, 1},
Hp,0
w,s(A

∗) = 0.
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Proof. Let f ∈ ker ∂w,s = Hp,0
w,s(A

∗). We have showed ω · u := ω · π∗f ∈ Lp,0(∆) with ω(t) = ts−1

if p = 0 and ω(t) ≡ 1 if p = 1. By the extension theorem, we conclude ∂s(ω · u) = 0 on ∆,
where ∂s denotes the (strong) closure of ∂cpt : C∞cpt;p,0(∆)→ C∞cpt;p,1(∆). The generalized Cauchy
condition implies that the trivial extension of ωu to the complex plane is a holomorphic p-form
with compact support (cf. [LM02, §V.3]). We deduce that ωu = 0 and, hence, f = 0. �

Lemma 3.6.

H0,0
s,w(A∗) ∼= OL2(∆) and

H1,0
s,w(A∗) ∼= ts−1Ω1

L2(∆).

As OL2(∆) ∼= ÔL2(A), the first isomorphism implies that the ∂s,w-holomorphic functions on a
singular complex curve are precisely the square-integrable weakly holomorphic functions.

Proof. First, we prove that OL2(∆) = π∗(ker ∂s,w : L0,0(A∗)→ L0,1(A∗)).

i) For v ∈ OL2(∆), we claim that g := ι∗v ∈ ker ∂s,w. To see that, choose smooth functions
χ̃k : R→ [0, 1] with χ̃k|(−∞,k] = 0, χ̃k|[k+1,∞) = 1 and |χ̃′k| ≤ 2. We get

(χ̃k ◦ log ◦| log |)′(ρ) =
χ̃′k(log |log ρ|)

ρ log ρ
.

We define χk : A∗ → [0, 1], (z,w) 7→ χ̃k(log | log |z||) (which is inspired by [PS91, p. 617]) and
get supp ∂χk ⊂ A∗ ∩∆n

εk
, where εk := exp(− exp(k))→ 0 if k →∞. As v ∈ L0,0(∆), we have

g ∈ z1− 1
sL0,0(A∗) ⊂ L0,0(A∗). Then g · χk → g in L2. As a holomorphic function, v is bounded

in a neighborhood of 0. Therefore,

‖g∂χk‖2A∗ =

∥∥∥∥g · χ̃′k(log | log |z||)
|z| log |z|

∂|z|
∥∥∥∥2

A∗∩∆n
εk

.

∥∥∥∥g · 1

|z| log |z|

∥∥∥∥2

A∗∩∆n
εk

∼

∥∥∥∥∥v · |t|s−1

|t|s log |t|s

∥∥∥∥∥
2

∆εk

.

∥∥∥∥ 1

|t| log |t|

∥∥∥∥2

∆εk

=

∫
∆εk

1

|t|2 log2 |t|
dV

= 2π

∫ εk

0

ρ

ρ2 log2 ρ
dρ ∼

[
− 1

log ρ

]εk
0

→ 0, if k →∞.

Hence, ∂(gχk) = g∂χk → 0 = ∂wg in L2. So, g ∈ dom ∂s,w.

ii) π∗(ker ∂s,w) ⊂ OL2(∆) (cf. the proof of Lem. 6.2 in [Rup14]): Let g be in ker ∂s,w, i. e.,

there are gj in L2(A∗) with gj → g, ∂gj → 0 in L2(A∗) and 0 /∈ supp gj . Let χ ∈ C∞cpt(∆, [0, 1])

be identically 1 on ∆1/2 . We define u := χπ∗g and uj := χπ∗gj . It follows that ts−1uj → ts−1u

and ∂uj → ∂u in L2(∆). Let P : L2(∆)→ L2(∆) be the Cauchy-operator on the punctured disc,
i. e.,

[P (h)](t) :=
1

2πi

∫
∆∗

h(ζ)

ζ − t
dζ ∧ dζ.

Since the support of uj is away from 0 and ∂∆, we get uj = P
(
∂uj
∂ζ

)
. The L2-continuity of P

and ∂uj → ∂u in L2 imply that

uj = P

(
∂uj

∂ζ

)
→ P

(
∂u

∂ζ

)
in L2. Since ts−1 is bounded, we obtain ts−1uj → ts−1P

(
∂u
∂ζ

)
and, hence, u = P

(
∂u
∂ζ

)
in L2.

That yields π∗g ∈ L2(∆). With π∗g ∈ t1−sOL2(∆) and the extension theorem, we conclude
π∗g ∈ OL2(∆).
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Second, we claim that ker(∂s,w : L1,0(A∗)→ L1,1(A∗)) ∼= ts−1Ω1
L2(∆). f = gdz is in ker ∂s,w

iff g ∈ ker ∂s,w. This is equivalent to π∗g ∈ OL2(∆). Since π∗(dz) = ts−1dt, we infer that
π∗ : H1,0

s,w(A∗)→ ts−1Ω1
L2(∆), π∗f = ts−1π∗gdt is an isomorphism.

The Riemann extension theorem (Theorem 2.5) implies OL2(∆) ∼= ÔL2(A) and the last
statement. �

Lemma 3.7. For p ∈ {0, 1}, R(∂w,s : Lp,0(A∗)→ Lp,1(A∗)) and R(∂s,w : Lp,0(A∗)→ Lp,1(A∗))
both are closed, and

Hp,1−q
w,s (A∗) ∼= H1−p,q

s,w (A∗) for q ∈ {0, 1}.

Proof. Since ∂
∗
w,s = ϑs,w, ∂

∗
s,w = ϑw,s, ϑs,w = −∗ ∂s,w ∗ and ϑw,s = −∗ ∂w,s ∗ (see Lemma 2.1),

it is easy to see that Lemma 3.3 holds for ∂w,s and ∂s,w. We remark (cf. the proof of Lemma 3.4)
that

R(∂s,w) is closed ⇔ R(ϑw,s) is closed

⇔ R(∂w,s) is closed.

Therefore, it is enough to show that R(∂w,s) is closed.
Let ϕ : ∆∗ → R be the smooth function defined by ϕ(t) := (1− s) log |t|2. Then

Lp,q(∆, ϕ) = t1−sLp,q(∆)

for the L2-space Lp,q(∆, ϕ) with weight e−ϕ.
We set T1 := π∗∂w,sι

∗ : L0,0(∆, ϕ)→ L0,1(∆). The extension theorem implies that T1 is the

(strong) closure of ∂cpt : L0,0(∆, ϕ) → L0,1(∆). Therefore, T ∗1 is the weak closed extension of
ϑϕcpt : L0,1(∆)→ L0,0(∆, ϕ) which is defined by

(∂cptα, β) = (α, ϑϕcptβ)ϕ =

∫
〈α, ϑϕcptβ〉e−ϕdV.

We set ∗ϕ := e−ϕ ∗. Then T2 := −∗ϕ T ∗1 ∗ is the weak closed extension of

∂cpt : L1,0(∆)→ L1,1(∆,−ϕ)

because integration by parts implies ϑϕcpt = −∗ϕ ∂cpt ∗:

(α, ∗−ϕ ∂cpt ∗β)ϕ =

∫
α ∧ ∗ϕ ∗−ϕ ∂cpt ∗β = (−1)1−p

∫
α ∧ ∂cpt ∗β

= −
∫
∂cptα ∧ ∗β = −(∂cptα, β).

Hence, T2 is ∂w : L1,0(∆)→ L1,1(∆,−ϕ) in sense of distributions. Since for all

u ∈ L1,1(∆,−ϕ) = ts−1L1,1(∆) ⊂ L1,1(∆)

there is a v ∈ L1,0(∆) with T2v = ∂wv = u, the range of T2 is closed. Thus, the range of T ∗1 and
the range of ∂w,s = ι∗T1π

∗ : L0,0(A∗)→ L0,1(A∗) are closed as well.

We set S1 := π∗∂w,sι
∗ : L1,0(∆) → L1,1(∆,−ϕ) and S2 := −∗S∗1 ∗ϕ. Then S2 is the weak

closure of ∂cpt : L0,0(∆, ϕ)→ L0,1(∆).

R(S2) = {u ∈ L0,1(∆) : ∃v ∈ L0,0(∆, ϕ) = t1−sL0,0(∆) with S2v = u}
⊃ {u ∈ L0,1(∆) : ∃v ∈ L0,0(∆) with ∂wv = u} = L0,1(∆).

Therefore, R(S2) = L0,1(∆) is closed. This implies the claim. �



76 J. RUPPENTHAL AND M. SERA

Summarizing, we computed (with s = mult0A):

H0,0
w (A∗) ∼= H1,1

s (A∗) ∼= t1−sOL2(∆),

H1,0
w (A∗) ∼= H0,1

s (A∗) ∼= Ω1
L2(∆),

Hp,1
w (A∗) = H1−p,0

s (A∗) = 0,

H0,0
s,w(A∗) ∼= H1,1

w,s(A
∗) ∼= OL2(∆),

H1,0
s,w(A∗) ∼= H0,1

w,s(A
∗) ∼= ts−1Ω1

L2(∆), and

Hp,1
s,w(A∗) = H1−p,0

w,s (A∗) = 0.

(3.8)

4. L2-cohomology of complex curves

We will prove Theorem 1.2 in this section. As a preparation, we consider the following local
situation: Let A be a locally irreducible analytic set of dimension one in a domain Ω b Cnzw1...wn−1

with SingA = {0}, let dV denote the volume form on A∗ := RegA which is induced by the
Euclidean metric and let z : A→ Cz be the projection on the first coordinate. Let us mention
(cf. e. g. Prop. in [Chi89, Sect. 8.1]):

Theorem 4.1. The set of all tangent vectors at a point of a one-dimensional irreducible analytic
set in Cn is a complex line.

Thus, we can assume that C0(A) = Cz × {0} ⊂ Cz × Cn−1
w1...wn−1

, and, therefore, dV ∼ dz ∧ dz
(by shrinking Ω if necessary).

Let π : M → A be a resolution of A, x0 := π−1(0). Then Z = (π∗(z)) is the unreduced
exceptional divisor of the resolution. After shrinking A and M again, we can assume that M is
covered by a single chart ψ : M → C with x0 ∈ M and ψ(x0) = 0. We set ζ := π∗(z) and get

Z = (ζ). |Z| = (ψ) implies Z − |Z| = ( ζψ ). We obtain

π∗(dz) = d(π∗z) =
∂ζ

∂ψ
dψ ∼ ζ

ψ
dψ.

Therefore, π∗(dV ) ∼
∣∣∣ ζψ ∣∣∣2 dψ ∧ dψ, and we conclude (recall the definition of line bundles LD from

Section 2.2):

f ∈ Lp,q(A∗)⇔
∣∣∣∣ ζψ
∣∣∣∣1−p−q· π∗f ∈ Lp,q(M)

⇔ π∗f ∈ Lp,q(M,L(1−p−q)(Z−|Z|)),

(4.2)

Nagase stated this equivalence already in Lem. 5.1 of [Nag90]. By use of the extension Theorem 2.4,
we get:

f ∈ dom
(
∂w : Lp,0(A∗)→ Lp,1(A∗)

)
⇔ π∗f ∈ dom

(
∂w : Lp,0(M,L(1−p)(Z−|Z|))→ Lp,1(M,Lp(|Z|−Z))

)
.

(4.3)

The essential observation for the proof of Theorem 1.2 is the following:

Theorem 4.4. Let X be a compact complex curve and L→ X a holomorphic line bundle. Let
π : M → X be a resolution of X with exceptional divisor Z, and D a divisor on M such that
π∗L ∼= LD, i. e., O(π∗L) ∼= O(D). Then

H0,0
w (X∗, L) ∼= H0(M,O(Z − |Z|+D)),

H0,1
w (X∗, L) ∼= H1(M,O(Z − |Z|+D)),

H1,0
w (X∗, L) ∼= H0(M,Ω1(D)) ∼= H1(M,O(−D)), and

H1,1
w (X∗, L) ∼= H1(M,Ω1(D)) ∼= H0(M,O(−D)).
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In [Par89, §5], Pardon proved that H0,q
(2),sm(X∗) ∼= Hq(M,O(Z − |Z|), where Hp,q

(2),sm(X∗)

denotes the ∂-cohomology with respect to smooth L2-forms. We will use similar arguments here.

Proof. Let x0 be in SingX, and let A be an open neighborhood of x0 = 0 in X embedded locally
in Cn. We assume that A = A1 ∪ ... ∪Am with at x0 irreducible analytic sets Ai. We obtain
resolutions πi := π|π−1(Ai) : Mi → Ai of Ai. The sets Mi are pairwise disjoint in M and, also,

the support of the exceptional divisors Zi of the resolution πi. We get Z|π−1(A) =
∑m
i=1 Zi and

|Z||π−1(A) =
∑m
i=1 |Zi|. Therefore, the consideration in the local case (see (4.3)) implies that

∂w : Lp,0(X∗, L)→ Lp,1(X∗, L) can be identified with

∂w : Lp,0(M,L(1−p)(Z−|Z|)+D)→ Lp,1(M,Lp(|Z|−Z)+D).

Hence,

H0,0
w (X∗, L) ∼= ker(∂w : L0,0(M,LZ−|Z|+D)→ L0,1(M,LD)) ∼= H0(M,O(Z − |Z|+D))

and

H1,0
w (X∗, L) ∼= ker(∂w : L1,0(M,LD)→ L1,1(M,L|Z|−Z+D)) ∼= H0(M,Ω1(D)).

Serre duality (see Theorem 2 in [Ser55, § 3.10]) implies

H1,0
w (X∗, L) ∼= H0(M,Ω1(D)) ∼= H1(M,O(−D)).

To prove the other two isomorphisms, consider the following general situation: Let E be a
divisor on M , LE the associated bundle, and let Lp,qE denote the sheaf on M which is defined by
Lp,qE (U) := Lp,qloc(U,LE) for each open set U ⊂M . Let E′ ≤ E be another divisor. Consider the

∂-operator in the sense of distributions ∂w : Lp,0E → L
p,1
E′ . Let Cp,0E,E′ denote the sheaf defined by

Cp,0E,E′(U) := dom
(
∂w : Lp,0loc(U,LE)→ Lp,1loc(U,LE′)

)
.

Then Cp,0E,E′ is fine and, in particular, H1(M, Cp,0E,E′) = 0. We get the sequence

0→ Ωp(E)→ Cp,0E,E′
∂w−→ Lp,1E′ → 0 (4.5)

which is exact by the usual Grothendieck-Dolbeault lemma because there is an embedding
Lp,qE′ ⊂ L

p,q
E (induced by the natural inclusion O(E′) ⊂ O(E), see (2.2)).

This induces the long exact sequence of cohomology groups

0→ Γ(M,Ωp(E))→ Cp,0E,E′(M)
∂w−→ Lp,1E′ (M)→ H1(M,Ωp(E))→ H1(M, Cp,0E,E′) = 0.

Hence, Lp,1E′ (M)/∂wCp,0E,E′(M) ∼= H1(M,Ωp(E)). We conclude

H0,1
w (X∗, L) ∼= L0,1

D (M)/∂wC0,0
Z−|Z|+D,D(M) ∼= H1(M,O(Z − |Z|+D))

and, using the Serre duality again,

H1,1
w (X∗, L) ∼= L1,1

|Z|−Z+D(M)/∂wC1,0
D,|Z|−Z+D(M) ∼= H1(M,Ω1(D)) ∼= H0(M,O(−D)).

�

Theorem 1.2 follows now as a simple corollary by use of the classical Riemann-Roch theorem
for each connected component of the Riemann surface M , keeping in mind that by definition
g(M) = g(X), degL = deg π∗L = degD and mult′xX =

∑
p∈π−1(x) degp(Z − |Z|).

To deduce also a Riemann-Roch theorem for the ∂s-cohomology, we can use the following
L2-version of Serre duality:

Theorem 4.6. For each p ∈ {0, 1}, the range of ∂w : Lp,0(X∗, L)→ Lp,1(X∗, L) is closed. In
particular, we get

Hp,q
w (X∗, L) ∼= H1−p,1−q

s (X∗, L−1).
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Proof. Recall the following well-known fact. If P : H1 → H2 is a densely defined closed operator
between Hilbert spaces with range R(P ) of finite codimension, then the range R(P ) is closed in
H2 (see e. g. [HL84], Appendix 2.4).

As M is compact, Theorem 4.4 implies particularly that the range of ∂w is finite codimensional
and, therefore, closed. Since ∂s is the adjoint of −∗ ∂w ∗, the range of

∂s : L1−p,0(X∗, L−1)→ L1−p,1(X∗, L−1)

is closed as well. That both ranges are closed implies the L2-duality (cf. Lemma 3.3)

Hp,q
w (X∗, L) ∼= H p,q

w (X∗, L) ∼= H 1−p,1−q
s (X∗, L−1) ∼= H1−p,1−q

s (X∗, L−1),

where H p,q
w/s(X

∗, L) := ker ∂w/s ∩ ker ∂
∗
w/s denotes the space of ∂-harmonic forms with values in

L. �

Therefore, Theorem 4.4 yields:

H0,0
s (X∗, L) ∼= H1,1

w (X∗, L−1) ∼= H0(M,O(D)),

H0,1
s (X∗, L) ∼= H1,0

w (X∗, L−1) ∼= H1(M,O(D)),

H1,0
s (X∗, L) ∼= H0,1

w (X∗, L−1) ∼= H1(M,O(Z − |Z| −D)), and

H1,1
s (X∗, L) ∼= H0,0

w (X∗, L−1) ∼= H0(M,O(Z − |Z| −D)).

(4.7)

Haskell computed H0,q
cpt(X

∗) ∼= Hq(M,OM ), where Hp,q
cpt(X

∗) denotes the ∂-cohomology with
respect to smooth forms with compact support (see Thm. 3.1 in [Has89]). From (4.7), we obtain
the dual version of Theorem 1.2, i. e., the Riemann-Roch theorem for the ∂s-cohomology:

Corollary 4.8 (∂s-Riemann-Roch). Let X be a compact complex curve with m irreducible
components, L→ X be a holomorphic line bundle, and π : M → X be a resolution of X. Then,

h0,0
s (X∗, L)− h0,1

s (X∗, L) = m− g + degL, and

h1,1
s (X∗, L)− h1,0

s (X∗, L) = m− g + deg(Z − |Z|)− degL,

where Z is the exceptional divisor of the resolution.

In [BPS90], Brüning, Peyerimhoff and Schröder proved that h0,0
s (X∗)− h0,1

s (X∗) = m− g and
h0,0
w (X∗)− h0,1

w (X∗) = m− g + degZ − |Z| by computing the indices of the differential operators
∂s and ∂w. Schröder generalized this result for vector bundles in [Sch89].

5. Weakly holomorphic functions

In this section, we will prove Theorem 1.4 by studying weakly holomorphic functions and a
localized version of the ∂s-operator.

Recalling the arguments at the beginning of Section 4, it is easy to see that the results of
Section 3 generalize to arbitrary complex curves. In particular, the ∂s,w-holomorphic functions
on a singular complex curve are precisely the square-integrable weakly holomorphic functions (cf.
Lemma 3.6), and the ∂s,w-equation is locally solvable in the L2-sense (combine Lemma 3.5 and
Lemma 3.7).

Let X be a singular complex curve, Lp,qX the sheaf of locally square-integrable forms, and let

∂w : Lp,0X → L
p,1
X

be the ∂-operator in the sense of distributions. For each open set U ⊂ X, we define ∂s,loc

on Lp,0loc(U) by f ∈ dom ∂s,loc iff f ∈ dom ∂w and f ∈ dom
(
∂s,w : Lp,0(V )→ Lp,1(V )

)
for all

V b U (for more details, see [Rup14, Sect. 6]). Let Fp,0X be the sheaf of germs defined by
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Fp,0X (U) := dom
(
∂s,loc : Lp,0loc(U)→ Lp,1loc(U)

)
, and let ÔX denote the sheaf of germs of weakly

holomorphic functions on X. Then our considerations above yield an exact sequence

0→ ÔX = ker ∂s,loc ↪→ F0,0
X

∂s,loc−→ L0,1
X → 0. (5.1)

The sheaves F0,0
X and L0,1

X are fine and so (5.1) is a fine resolution of ÔX . Let Hp,q
s,loc(X∗) denote

the L2
loc-Dolbeault cohomology on X∗ with respect to the ∂s,loc-operator. Using ÔX = π∗OM ,

we deduce from (5.1):

H0(M,OM ) ∼= H0(X, ÔX) = H0,0
s,loc(X∗),

H1(M,OM ) ∼= H1(X, ÔX) ∼= H0,1
s,loc(X∗),

where π : M → X is a resolution of X. That proves Theorem 1.4.

6. Applications

There are many applications of the classical Riemann-Roch theorem; we will transfer two
of them to our situation to exemplify how the L2-Riemann-Roch theorem can substitute the
classical one on singular spaces.

6.1. Compact complex curves as covering spaces of CP1. Let X be a compact irreducible

complex curve with SingX = {x1, ..., xk}, let (hi)xi ∈ Oxi be chosen such that (hi)xiÔxi ⊂ Oxi
and let Ui ⊂ X be a (Stein) neighborhood of xi with hi · Ô(Ui) ⊂ O(Ui) (for the existence
of the hi, see e. g. Thm. 6 and its Cor. in [Nar66, § III.2]). Choose an x0 ∈ X∗ and a (Stein)
neighborhood U0 of x0. We can assume that U0, ..., Uk are pairwise disjoint.

We define a line bundle L → X as follows. Let Uk+1 = X∗ \ {x0} and choose f0 ∈ O(U0)
such that f0 is vanishing to the order r := ordx0

f0 ≥ 1 in x0, which we will determine later,
but has no other zeros. We also set fi := 1/hi for i = 1, ..., k and fk+1 = 1, and consider the
Cartier divisor {(Ui, fi)}i=0,...,k+1 on X. Let L→ X be the line bundle associated to this divisor.
As the fi have no zeros for i > 0, there exists a non-negative integer δ such that degL = r − δ.
Now choose r := g(X) + δ + 1. It follows that degL = g(X) + 1. Give L an arbitrary smooth
Hermitian metric.

There is a canonical way to identify holomorphic sections of L with meromorphic functions
on X. A holomorphic section s ∈ O(L) is represented by a tuple {si}i where sj/fj = sl/fl on
Uj ∩ Ul. This gives a meromorphic function Ψ(s) by setting Ψ(s) := sj/fj on Uj . Note that Ψ(s)
has zeros in the singular points x1, ..., xk and may have a pole of order r at x0 /∈ SingX.

We can now apply our L2-Riemann-Roch theorem. The ∂s-Riemann-Roch theorem, Corollary
4.8, implies dimH0,0

s (X∗, L) ≥ 1−g(X)+degL = 2. Therefore, there is a section τ ∈ L0,0(X∗, L)
with ∂sτ = 0 and τk+1 is non-constant, where τ = {τi}i=0,..,k+1 is written in the trivialization

as above. This means that τi ∈ L0,0(X∗ ∩ Ui), ∂sτi = 0, and τj/fj = τk+1 is non-constant on

Uj ∩ Uk+1. Theorem 1.4 implies that τi ∈ Ô(Ui), i = 1, ..., k + 1. Now consider Ψ(τ) as defined

above, i. e., Ψ(τ) = τi/fi on Ui. We conclude that Ψ(τ)/hi ∈ Ô(Ui), thus Ψ(τ) ∈ O(Ui) for
i = 1, ..., k. Moreover, Ψ(τ) is non-constant, so it cannot be holomorphic on the whole compact
space X, thus must have a pole of some order ≤ r in x0. Thus:

Ψ(τ) : X \ {x0} → C, and

Ψ̃(τ) : X → CP1, x 7→

{
[Ψ(τ)(x) : 1], x 6= x0

[1 : 1
Ψ(τ)(x) ], x ∈ U0

are finite, open and, hence, analytic ramified coverings (Covering Lemma, see [GR84, Sect. VII.2.2]).
In particular, X \ {x0} is Stein (use e. g. Thm. 1 in [GR79, §V.1]).
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6.2. Projectivity of compact complex curves. A line bundle L→ X on a compact complex
space is called very ample if its global holomorphic sections induce a holomorphic embedding
into the projective space CPN , i. e., if s0, ..., sN is a basis of the space of holomorphic sections
Γ(X,O(L)), then the map

Φ : X → CPN , x 7→ [s0(x) : ... : sN (x)], (6.1)

given in local trivializations of the si, defines a holomorphic embedding of X in CPN . If some
positive power of the line bundle has this property, then we say that it is ample. A compact
complex space is called projective if there is an ample (and, hence, a very ample) line bundle on
it.

A classical application of the Riemann-Roch theorem is that any compact Riemann surface
is projective, and a line bundle on a Riemann surface is ample if its degree is positive (cf. e. g.
[Nar92, Sect. 10]). This generalizes to singular complex curves:

Theorem 6.2. Let X be a compact locally irreducible complex curve. If L→ X is a holomorphic
line bundle with degL � 0, then L is very ample. In particular, X is projective and each
holomorphic line bundle on X is ample if its degree is positive.

Clearly, this result is well-known and follows from more general sheaf-theoretical methods
(vanishing theorems) once one knows that L is positive iff degL > 0 (cf. e. g. Thm. 4.4 in [Pet94,
Sect. V.4.3] or Satz 2 in [Gra62, § 3]). Nevertheless, it seems interesting to us to present another
proof of Theorem 6.2 which is based on the L2-Riemann-Roch of singular complex curves. The
assumption that X must be locally irreducible in Theorem 6.2 is not necessary. One can prove
the result without this assumption easily by the same technique. Yet, to keep the notation simple,
we present here only the locally irreducible case.

Let us make some preparations for the proof of Theorem 6.2. Let X be a connected complex
curve and π : M → X a resolution of X. We choose a point x0 ∈ SingX and a small
neighborhood U ⊂ X of x0 with U∗ := U \ {x0} ⊂ RegX. Assume X is irreducible at x0. We
define p0 := π−1(x0), V := π−1(U), and V ∗ := V \ {p0}. We can assume that there is a chart
t : V → C such that the image of t is bounded.

The Riemann extension theorem implies that π−1 : U → V is weakly holomorphic or, briefly,

τ := t ◦ π−1 ∈ Ô(U) (see Theorem 2.5). We show that τ generates the weakly holomorphic

functions at x0 in the following sense: Let f ∈ Ô(U). Then f ◦ π is holomorphic on V ∗

and bounded in p0. This implies that f ◦ π is holomorphic on V , f ◦ π(t) =
∑∞
ι=0 aιt

ι, and
f(x) =

∑
aιτ(x)ι (by shrinking U and V if necessary). This allows to define the order ordx0

f of
vanishing of f in x0 by r ∈ N0 if ar 6= 0 and aι = 0 for ι < r. In particular,

ordx0 f = ordp0(f ◦ π).

Note that this definition does not depend on the resolution as different resolutions are biholomor-
phically equivalent.

The L2-extension theorem (see Theorem 2.4) and (4.3) imply

f ∈ H0,0
w (U)⇔ tr0 · π∗f ∈ OL2(V )⇔ (τ r0 · f ∈ Ô(U) and f ∈ L2(U)), (6.3)

where Z denotes the exceptional divisor of the resolution and r0 := degp0(Z − |Z|). In particular,
we get the representation f(x) =

∑
ι≥−r0 aιτ(x)ι and ordx0

f := ordp0 π
∗f ≥ −r0 is again

well-defined. f is weakly holomorphic iff ordx0
f ≥ 0.

We denote by Lx0 the holomorphic line bundle on X which is trivial on X \ {x0} and is given
by τ on U , i. e., the line bundle on X given by the open covering U1 := X \ {x0}, U0 := U and
the transition function g01 := τ : U0 ∩U1 → C. Then π∗Lx0

∼= Lp0 , where Lp0 is the holomorphic
line bundle Lp0 →M associated to the divisor {p0}.

Let L → X be any holomorphic line bundle, L′ := L ⊗ L−1
x0

, and let s′ be a section in

H0,0
w (X∗, L′). We can assume that L and L′ are given by divisors {(Uj , fj)} and {(Uj , f ′j)},

respectively, where {Uj} is an open covering of X with U0 = U and x0 /∈ Uj for j 6= 0 and where
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fj , f
′
j ∈ M(Uj) with gjk := fj/fk and g′jk := f ′j/f

′
k in O(Uj ∩Uk) (gj,k and g′jk are the transition

functions of L and L′, respectively).
We get f0 = f ′0 · τ and fj = f ′j for j 6= 0. There is a meromorphic function s̃ := Ψ(s′) ∈ M(X)

representing s′. This meromorphic function is defined by s̃ = s′j/f
′
j on Uj , where s′j is the

trivialization of s′ on Uj . We can define a section s = {sj} ∈ H0,0
w (X∗, L) by sj = s̃ · fj . Thus

s0 = s′0 · τ and sj = s′j for j 6= 0. Hence, ordx0
s0 = ordx0

s′0 + 1. Summarizing, we get an
injective linear map

T : H0,0
w (X∗, L⊗ L−1

x0
)→ H0,0

w (X∗, L), s′ 7→ s,

which we call the natural inclusion. It follows from the construction above and by use of (6.3)
that each section s ∈ H0,0

w (X∗, L) with ordx0
s0 > −r0 is in the image of T .

As H1(M,O(D′)) = 0 for a divisor D′ with degD′ > 2g − 2 by the classical Riemann-Roch
theorem (cf. e. g. [Nar92, Sect. 10]), Theorem 4.4 – more precisely,

H0,1
w (X∗, L) ∼= H1(M,O(Z − |Z|+D))

– implies the following vanishing theorem.

Theorem 6.4. If L→ Xis a holomorphic line bundle on an irreducible compact complex curve
X with degL > 2g − 2−

∑
x∈SingX mult′xX, then H0,1

w (X∗, L) = 0.

As a preparation for the proof of Theorem 6.2, we get our main ingredient:

Lemma 6.5. Let L→ X be a holomorphic line bundle on a connected compact locally irreducible
complex curve X with degL > 2g − 1−

∑
x∈SingX mult′xX. Then the natural inclusion

T : H0,0
w (X∗, L⊗ L−1

x0
)→ H0,0

w (X∗, L)

is not surjective. If degL > 2g+r0−1−
∑
x∈SingX mult′xX, then there is a section s ∈ H0,0

w (X∗, L)

which is weakly holomorphic on U(x0) and does not vanish in x0.

Recall that r0 = multx0
X − 1 = degp0(Z − |Z|).

Proof. i) As π∗(L⊗ L−1
x0

) ∼= π∗L⊗ L−1
p0 , we get degL⊗ L−1

x0
= degL− 1 > 2g − 2− deg(Z−|Z|).

The ∂w-Riemann-Roch theorem and h0,1
w (X∗, L) = 0 = h0,1

w (X∗, L⊗ L−1
x0

) (using Theorem 6.4)
yield

h0,0
w (X∗, L⊗ L−1

x0
) = 1−g + deg(Z−|Z|) + degL⊗ L−1

x0

< 1−g + deg(Z−|Z|) + degL = h0,0
w (X∗, L).

Therefore, the natural inclusion T cannot be surjective.

ii) The image of T r0 : H0,0
w (X∗, L⊗ L−r0x0

)→ H0,0
w (X∗, L) are the sections s with ordx0

s0 ≥ 0,
where s0 is the trivialization of s over U(x0), i. e., the sections where s0 is weakly holomorphic
on U(x0). As H0,0

w (X∗, L⊗ L−r0−1
x0

)→ H0,0
w (X∗, L⊗ L−r0x0

) is not surjective (use

degL⊗ L−r0x0
= degL− r0 > 2g − 1− deg(Z−|Z|)

and part (i)), there is a section

s′ ∈ H0,0
w (X∗, L⊗ L−r0x0

)

with ordx0 s
′
0 = −r0 and ordx0(T r0(s′))0 = 0. So, s := T r0(s′) is the section of H0,0

w (X∗, L) we
were looking for. �

Proof of Theorem 6.2. Let X be a connected compact locally irreducible complex curve with
SingX = {x1, ..., xk}, and L→ X a line bundle with degL� 0. Following the classical arguments
to show that the map Φ in (6.1) is a well-defined holomorphic embedding (see e. g. [Pet94, V.4,
Thm. 4.4]), we have to prove:

(i) Φ is well-defined: For x ∈ X, there exists s ∈ Γ(X,O(L)) such that s(x) 6= 0.
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(ii) Φ is injective: For x, y ∈ X, x 6= y, there exists s ∈ Γ(X,O(L)) such that s(x) 6= 0 and
s(y) = 0.

(iii) Φ is an immersion: For x ∈ X, the differential TxΦ is injective.

Since (obviously) Φ is closed, (ii) and (iii) imply that Φ is an embedding (see e. g. Sect. 1.2.7 in
[GR84]).

We will prove the statements (i) and (iii) for singular points x ∈ SingX. The case of regular
points is simpler and follows easily with the natural inclusion and Lemma 6.5. The statement (ii)
can be seen just as (i) by imposing the additional condition that s(y) = 0 in what we do to prove
the statement (i).

Let π : M → X be a resolution of singularities. Set X∗ = RegX, M∗ = π−1(X∗),
pj := π−1(xj), and rj := degpj (Z − |Z|), where Z is the unreduced exceptional divisor of

the resolution. Fix a µ ∈ {1, ..., k} and choose a neighborhood Uµ of xµ such that there exist a
resolution of the singularities π : Vµ → Uµ and a chart t : Vµ → C with t ◦ π−1(xµ) = 0, and set
τ := t ◦ π−1.

For each singularity xj , we can choose a function hj ∈ O(Uj) such that hj · Ô(Uj) ⊂ O(Uj)
for a neighborhood Uj of xj small enough (see [Nar66, § III.2]). The number

ηj := ordxj hj

is important for our considerations because of the following fact. If f is a function on Uj with

ordxj f ≥ ηj , then f/hj is bounded at xj (ordxj f/hj ≥ 0); this implies f/hj ∈ Ô(Uj) and,
hence, f ∈ O(Uj). For the maximal ideal in OX,xj , we get mxj = {f ∈ OX,xj : ordxj f > 0} and

{f ∈ OX,xj : ordxj f ≥ 2ηj} ⊂ m2
xj .

We can choose a weakly holomorphic section σ ∈ H0,0
w (X∗, L) such that σ does not vanish in

xµ and ordxj σ ≥ ηj for j 6= µ. This section σ exists as we have the natural inclusion (see the
construction above)

H0,0
w

X∗, L⊗ L−rµxµ ⊗
⊗
j 6=µ

L−ηj−rjxj

→ H0,0
w (X∗, L),

and degL� 0 implies by Lemma 6.5 that the natural inclusion

H0,0
w

X∗, L⊗ L−rµ−1
xµ ⊗

⊗
j 6=µ

L−ηj−rjxj

→ H0,0
w

X∗, L⊗ L−rµxµ ⊗
⊗
j 6=µ

L−ηj−rjxj


is not surjective.

Note that σ is holomorphic on X−{xµ} but just weakly holomorphic in xµ. We will now modify
σ so that it becomes holomorphic and non-vanishing in xµ. Shrink Uµ such that σ =

∑
ι≥0 aιτ

ι on

Uµ with a0 6= 0. Let σ′ := σ/a0 so that ordxµ(σ′− 1) ≥ 1, i. e., σ′− 1 =
∑
ι≥1 a

′
ιτ
ι on Uµ. Choose

as above a σ̃ ∈ H0,0
w (X∗, L) with ordxµ σ̃ = 1 and ordxj σ̃ ≥ ηj for j 6= µ. Let σ̃ =

∑
ι≥1 ãιτ

ι

close to xµ with ã1 6= 0. We define σ′′ := σ′ − a′1
ã1
σ̃. Then, ordxµ(σ′′ − 1) ≥ 2 and ordxj σ

′′ ≥ ηj
for j 6= µ. We repeat this procedure recursively to get a section ξ = {ξj} ∈ H0,0

w (X∗, L) with
ordxµ(ξµ − 1) ≥ ηµ and ordxj ξj ≥ ηj for j 6= µ. Thus, ξ is a holomorphic section on X,
non-vanishing in xµ. That shows (i) for x = xµ.

We will prove (iii) for xµ. Let v ∈ TxµX = (mxµ/m
2
xµ)∗ satisfy v 6= 0, i. e., there exists an

f ∈ mxµ with v(f + m2
xµ) 6= 0. We claim there exists a g ∈ mΦ(xµ) with g ◦ Φ− f ∈ m2

xµ . Then

v(g ◦ Φ + m2
xµ) = v(f + m2

xµ) 6= 0, i. e., TxΦ(v) 6= 0.

Proof of the claim: Replacing 1 with f =
∑
ι≥1 fιτ

ι, we can repeat the procedure in (i) to

construct a section ξ = {ξj} ∈ H0,0
w (X∗, L) with ordxµ(ξµ − f) ≥ 2ηµ and ordxj ξj ≥ ηj for j 6= µ.

We get ξ is holomorphic, ξµ ∈ mxµ and ξµ−f ∈ m2
xµ . Let Φ be defined by Φ(x) = [s0(x):...:sN (x)]

with holomorphic sections si = {sij} (see (6.1)). Hence, we can choose a vector (g0, ..., gN ) ∈ CN+1
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such that ξ =
∑
i gisi. Because of (i), there exits an i0 such that c := si0(xµ) 6= 0 – we can

assume i0 = 0. We set U := {x ∈ Uµ : s0µ(x) 6= 0} and identify {[t0:...:tN ] : t0 = 1} ⊂ CPN with

CN such that Φ|U : U → CN is defined by Φ(x) =
(
s1µ(x)
s0µ(x) , ...,

sNµ(x)
s0µ(x)

)
. Let g : CN → C denote

the holomorphic function g(t1, ..., tN ) := c · (g0 +
∑N
i=1 giti), i. e.,

s0µ · (g ◦ Φ|U ) = c

N∑
i=0

gisiµ = c · ξµ

on U . Since c= s0µ(xµ) 6= 0 and since f and c
s0µ
−1 are in mxµ , we get g ∈ mΦ(xµ) and

g ◦ Φ− f =
c

s0µ
(ξµ − f) + f ·

( c

s0µ
− 1
)
∈ m2

xµ . �

For this proof, L has to satisfy

degL > 2g + max{ηj}+

k∑
j=1

(ηj+rj)− deg(Z−|Z|) = 2g + k + max{ηj}+

k∑
j=1

ηj .
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[Hir77] Heisuke Hironaka, Bimeromorphic smoothing of a complex-analytic space, Acta Math. Vietnam. 2 (1977),
no. 2, 103–168.

[Hir64] , Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, Ann.
of Math. (2) 79 (1964), 109–203, 205–326. DOI: 10.2307/1970486

[LM02] Ingo Lieb and Joachim Michel, The Cauchy-Riemann Complex, Aspects of Mathematics, no. E 34,

Vieweg, Braunschweig , 2002. DOI: 10.1007/978-3-322-91608-2
[Nag90] Masayoshi Nagase, Remarks on the L2-Dolbeault cohomology groups of singular algebraic surfaces and

curves, Publ. Res. Inst. Math. Sci. 26 (1990), no. 5, 867–883.

[Nar92] Raghavan Narasimhan, Compact Riemann Surfaces, Lectures in Mathematics ETH Zürich, Birkhäuser
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