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ALBANESE VARIETIES OF ABELIAN COVERS

ANATOLY LIBGOBER

To the memory of Shreeram Abhyankar.

Abstract. We show that the Albanese variety of an abelian cover of the projective plane is
isogenous to a product of isogeny components of abelian varieties associated with singularities

of the ramification locus provided certain conditions are met. In particular Albanese varieties
of abelian covers of P2 ramified over arrangements of lines and uniformized by the unit ball

in C2 are isogenous to a product of Jacobians of Fermat curves. Periodicity of the sequence

of (semi-abelian) Albanese varieties of unramified cyclic covers of complements to a plane
singular curve is shown.

1. Introduction

Albanese varieties of cyclic branched covers of P2 ramified over singular curves are rather
special. If singularities of the ramification locus are no worse than ordinary nodes and cusps
then (cf. [8]) the Albanese variety of a cyclic cover is isogenous to a product of elliptic curves E0

with j-invariant zero. More generally, in [26] it was shown that the Albanese variety of a cyclic
cover with ramification locus having arbitrary singularities is isogenous to a product of isogeny
components of local Albanese varieties i.e. the abelian varieties canonically associated with the
local singularities of the ramification locus. In particular, Albanese varieties of cyclic covers are
isogenous to a product of Jacobians of curves.

In this paper we shall describe Albanese varieties of abelian covers of P2. The main result
is that the class of abelian varieties which are Albanese varieties of ramified abelian covers
(with possible non reduced ramification locus) is also built from the isogeny components of
local Albanese varieties, provided some conditions on fundamental group of the complement to
ramification locus are met (cf. 2.2). Also, in abelian case one needs to allow local Albanese
varieties of non reduced singularities having the same reduced structure as the germs of the
singularities of ramification locus of the abelian cover.

One of the steps in our proof of this result involves a description of Jacobians of abelian
covers of projective line having an independent interest. In this case we show that all isogeny
components of Jacobians of abelian covers of P1 with arbitrary ramification are components of
Jacobians of explicitly described cyclic covers. If the abelian cover is ramified only at three
points and has the Galois group isomorphic to Z2

n then it is biholomorphic to Fermat curve
xn + yn = zn. In this case, such results are going back to works of Gross, Rohrlich and Coleman
(cf. [15],[9]) where isogeny components of Jacobians of Fermat curves were studied.

The proof of isogeny decomposition of abelian covers is constructive and, as an application,
we obtain the isogeny classes of Albanese varieties of the abelian covers of P2, discovered by
Hirzebruch (cf.[20]), having the unit ball as the universal cover. These Albanese varieties are
isogenous to products of Jacobians of Fermat curves described explicitly. Another interesting
abelian cover of P2 ramified over an arrangement of lines is the Fano surface of lines on the Fermat
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cubic threefold. The Albanese variety of this Fano surface (according to [7], this abelian variety
is also the intermediate Jacobian of the Fermat cubic threefold) is isogenous to the product of
five copies of E0. This result was recently independently obtained in [29] and [6] (in [29] the
isomorphism class of Albanese variety of Fano surfaces was found).

Another application considers the behavior of the Albanese varieties in the towers of cyclic
covers. It is known for some time that Betti and Hodge numbers of cyclic (resp. abelian) covers
are periodic (resp. polynomially periodic cf. [18]). It turns out that the sequence of isogeny
classes of Albanese varieties of cyclic covers with given ramification locus is periodic. Moreover,
we show similar periodicity for sequence of semi-abelian varieties which are Albanese varieties
of quasi-projective surfaces which are unramified covers of P2 \ C.

The content of the paper is the following. In section 2 we recall several key definitions and
results used later, in particular, the characteristic varieties, Albanese varieties in quasi-projective
and local cases. Section 3 considers Jacobians of abelian covers of P1, and the main result is
that isogeny components of such Jacobians are all the isogeny components of Jacobians of cyclic
covers of P1. This section also contains calculation of multiplicities of characters of representation
of the covering group on the space of holomorphic 1-forms. In the case of cyclic covers, such
multiplicities were calculated in [2]. The main result of the paper, showing that Albanese varieties
of abelian covers are isogenous to a product of isogeny components of local Albanese varieties
of singularities, is proven in section 4. The case of covers ramified over arrangements of lines is
considered in section 5. This includes, the already mentioned case of Fano surface (of lines) on
the Fermat cubic threefold. The last section contains applications to calculation of Mordell-Weil
ranks of isotrivial abelian varieties and periodicity properties of Albanese varieties in towers of
cyclic covers. Note that the prime field of all varieties, maps between them and function fields
considered in this paper is C.

I want to thank anonymous referee for careful reading of this paper and many useful sugges-
tions including usage of LaTex.

2. Preliminaries

2.1. Characteristic varieties. We recall the construction of invariants of the fundamental
group of the complement playing the key role in description of the Albanese varieties of abelian
covers. We follow [24] (cf. also [3]).

Let X be a quasi-projective smooth manifold such that H1(X,Z) 6= 0. The exact sequence

(1) 0→ π1(X)′/π1(X)′′ → π1(X)/π1(X)′′ → π1(X)/π1(X)′ → 0

(where G′ denotes the commutator subgroup of a group G) can be used to define the action of
H1(X,Z) = π1(X)/π1(X)′ on the left term in (1). This action allows to view

C(X) = π1(X)′/π1(X)′′ ⊗ C

as a C[H1(X,Z)]-module. Recall that the support of a module M over a commutative noetherian
ring R is the sub-variety Supp(M) ⊂ Spec(R) consisting of the prime ideals ℘ for which the
localization M℘ 6= 0.

Definition 2.1. The characteristic variety Vi(X) is (the reduced) sub-variety of SpecC[H1(X)]
which is the support Supp(Λi(C(X))) of the i-th exterior power of the module C(X). The depth
of χ ∈ SpecC[H1(X)] is an integer given by

(2) d(χ) = {max i|χ ∈ Vi(X)}



ALBANESE VARIETIES OF ABELIAN COVERS 107

Using the canonical identification of SpecC[H1(X,Z)] and the torus of characters Char(π1(X))
one can interpret points of characteristic varieties as rank one local systems on X. This inter-
pretation leads to the following alternative description of Vi(X) (cf. [19], [24]))

(3) Vi(X) \ 1 = {χ ∈ Char(π1(X))|, χ 6= 1,dimH1(X,χ) ≥ i}

It follows from [1] that if a smooth projective closure X̄ of X satisfies1 H1(X̄,Q) = 0 then
each Vi(X) is a finite union of translated subgroups of the affine torus Char(π1(X)) i.e., a finite
union of subset of the form ψ ·H where H is a subgroup of Char(π1(X)) and ψ is a character
of π1(X). Moreover, such a character ψ can be chosen to have a finite order (cf. [25]). It also
follows from [1] that each irreducible component V of characteristic variety having a dimension
greater than one determines a holomorphic map: ν : X → P where P is a hyperbolic curve (i.e.,
a curve with negative euler characteristic).

In the case when X = P2 \ C, where C is a plane curve with arbitrary singularities, P is
biholomorphic to P1 \D where D is a finite set.

Returning to the case when X is smooth quasi-projective, a component corresponding to a
map ν : X → P consists of the characters ν∗(χ) where χ ∈ Char(π1(P )); here, for a map
φ : X → Y between topological spaces X,Y , we denote by φ∗ the induced map

Char(H1(Y,Z)) = H1(Y,C∗)→ H1(X,C∗) = Char(H1(X,Z)).

The map ν also induces homomorphisms

hi(ν∗) : Hi(P, χ)→ Hi(X, ν∗(χ))

and

hi(ν
∗) : Hi(P, χ)→ Hi(X, ν

∗(χ)).

The maps h1(ν∗) and h1(ν∗) are isomorphisms for all but finitely many χ ∈ Char(π1(P )) (cf.[1,
Proof of Prop.1.7]).

At the intersection of components the depth of characters is bigger then the depth of generic
character in either of the components i.e., the depth is jumping. More precisely, if

χ ∈ Vk(X) ∩ Vl(X)

where both Vk(X) and Vl(X) have positive dimensions, then the depth of χ is at least k+ l (cf.
[4]). More precisely we shall use the following assumption on the characteristic variety at the
points belonging to several components. In particular it includes an inequality on depth in the
the opposite direction:

Condition 2.2. (1) Let χ ∈ V1 ∩ ... ∩ Vs and χ = ν∗i (χi) for χi ∈ Char(Pi) where νi : X → Pi
is the map corresponding to the component Vi. Then:

(4)
⊕
i

h1(νi) : H1(X,χ)→
⊕

H1(Pi, χi)

is injective. In particular, the depth of each character χ in the intersection of several positive
dimensional irreducible components V1, ...,Vs of the characteristic variety does not exceed the
sum of the depths of the generic character in each component Vi.

(2) If χ ∈ Vi but χ /∈ Vi ∩ Vj , j 6= i then h1(νi) : H1(X,χ)→ H1(Pi, χi) is an isomorphism.

This condition is satisfied in the examples considered in section 5.

1this condition is independent of a choice of smooth compactification X̄



108 ANATOLY LIBGOBER

2.2. Abelian covers. Given a surjection πΓ : π1(X) → Γ onto a finite group, there are a

unique quasi-projective manifold X̃Γ and a map π̃Γ : X̃Γ → X which is an unramified cover with

covering group Γ. The variety X̃Γ is characterized by the property that Γ acts freely on X̃Γ and

X̃Γ/Γ = X. Let X̄Γ denote a smooth model of a compactification of X̃Γ such that π̃Γ extends
to a regular map π̄Γ : X̄Γ → X̄ (X̄ as above). The fundamental group XΓ, being birational
invariant, depends only on X and πΓ.

Let C = X̄ \X be the “divisor at infinity” and let C̃ ⊂ C be a divisor on X̄ whose irreducible

components are components of C. If χ ∈ Char(π1(X)) is trivial on the components of C not in C̃

then χ is the pullback of a character of π1(X̄ \ C̃) via the inclusion X → X̄ \ C̃. We shall denote
the corresponding character of π1(X̄ \ C) as χ as well but (since the depth of χ depends on the

underlying space) corresponding depths will be denoted d(χ,C) and d(χ, C̃) respectively.
The homology groups of unramified and ramified covers can be found in terms of characteristic

varieties as follows (cf. [24]).

Theorem 2.3. 1.(cf. [24]) With above notations:

(5) rkH1(X̃Γ,Q) =
∑

χ∈CharΓ

d(π∗Γ(χ),C)

2.(cf. [30]) Let I(χ) be the collection of components of C such that χ(γCi
) 6= 1 (γCi

is a
meridian of the component Ci) and let Cχ =

⋃
i∈I(χ) Ci. Then

(6) rkH1(X̄Γ,Q) =
∑

χ∈CharΓ

d(π∗Γ(χ),Cπ∗Γ(χ))

The following special case of Theorem 2.3 will be used in section 3.

Corollary 2.4. Let

πΓ(ai1 ,....,ail )
: π1(P1 \ {ai1 , ..., ail})→ H1(P1 \ {ai1 , ..., ail},Z/nZ), 0 ≤ i1, ....il,≤ k

be the composition of Hurewicz map with the reduction modulo n and let Xn(ai1 , ....ail) be the cor-
responding ramified abelian cover2 of P1 with the covering group Γ = H1(P1\{ai1 , ..., ail},Z/nZ).
Then

(7) H1(Xn(a0, ..., ak),C)χ = ⊕H1(Xn(ai1 , ..., ail ,C)χr(ai1,...,il
) 3 ≤ l ≤ k, 0 ≤ ij ≤ k

where the summation is over the characters χr(ai1,...,il) which are restricted in the sense that they
do not take value 1 on a cycle which is the boundary of a small disk about any point ai1 , ..., ail .

2.3. Albanese varieties of quasi-projective manifolds. Let X be a smooth quasi-projective
manifold and let X̄ be a smooth compactification of X. Denote X̄ \X by C and assume in this
section that C is a divisor with normal crossings. One associates to X a semi-abelian variety i.e.,
an extension:

(8) 0→ T → Alb(X)→ A→ 0

where T is a torus and A is an abelian variety (the abelian part of Alb(X)) called the Albanese
variety of X. Such a semi-abelian variety can be obtained as

H0(X̄,Ω1(log(C))∗/H1(X,Z)

2note that this is the universal cover for the covers having an abelian n-group as the covering group
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where embedding H1(X,Z)→ H0(X̄,Ω1(log(C))∗ is given by γ ∈ H1(X,Z)→ (ω →
∫
γ
ω) (and

polarization of abelian part is coming from the Hodge form on H1(X̄,Z) given by

(γ1, γ2) =

∫
X̄

γ∗1 ∧ γ∗2 ∧ hdimX−1,

where h ∈ H2(X̄,Z) is the class of hyperplane section).
One can also view AlbX as the semi-abelian part of the 1-motif associated to the (level one)

mixed Hodge structure on H1(X,Z) (cf. [10], section 10.1). The abelian part of Alb(X) is the
Albanese variety of a smooth projective compactification of X. It clearly is independent of a
choice of the latter.

In this paper we shall consider Albanese varieties of abelian covers of quasi-projective surfaces
but note that the Albanese variety of an abelian covers of quasi-projective manifold of any
dimension can be obtained as the Albanese variety of the corresponding abelian cover of a
surface due to the following Lefschetz type result:

Proposition 2.5. Let X be a quasi-projective manifold and H∩X a generic 2-dimension section
by a linear space H. Then π1(X) = π1(X ∩H).

Let Γ be a finite quotient of these groups. Then the unramified Γ-covers X̃Γ and ˜(X ∩H)Γ,
corresponding to surjections of π1(X) and π1(X ∩H) onto Γ, have Albanese varieties which are
isomorphic as semi-abelian varieties.

2.4. Local Albanese varieties of plane curve singularities. For details of the material
of this section we refer to [26]. Let f(x, y) be an analytic germ of a reduced isolated curve
singularity in C2. One associates with it the Milnor fiber Mf = B ∩ f−1(t) where B is a small
ball in C2 centered at the singular point. The latter supports canonical level one limit Mixed
Hodge structure on H1(Mf ,Z) (cf. [31]). Again one can apply Deligne’s construction [10, 10.3.1]
which leads to the following.

Definition 2.6. The local Albanese variety of a germ f is the abelian part of the 1-motif of the
limit Mixed Hodge structure on H1(Mf ,Z). Equivalently, this is quotient of

F 0GrW−1H1(MfC)/ImH1(Mf ,Z),

where F and W are respectively the Hodge and weight filtrations. The canonical polarization is
coming from the form induced by the intersection form of H1(Mf ,Z) on GrW−1H1(Mf ,Z).

The local Albanese has a description in terms of the Mixed Hodge structure on the cohomology
of the link of the surface singularity associated to f .

Proposition 2.7. (cf. [26], Prop.3.1) Let f(x, y) be a germ of a plane curve with Milnor fiber
Mf and 3 for which the semi-simple part of monodromy has order N . Let Lf,N the the link of
the corresponding surface singularity

(9) zN = f(x, y)

Then there is the isomorphism of the mixed Hodge structures:

(10) GrW3 H2(Lf,N )(1) = GrW1 H1(Mf )

where the mixed Hodge structure on the left is the Tate twist of the mixed Hodge structure
constructed in [13] and the one on the right is the mixed Hodge structure on vanishing cohomology
constructed in [31].

3this assumption is a somewhat weaker than the one in [26] but the argument works in this case with no
change
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Below we shall use Albanese varieties for non reduced germs and those can be define using
the abelian part of the 1-motif of mixed Hodge structure GrW3 H2(Lf,N )(1).

Recall finally that the local Albanese can be described in terms of a resolution of the singularity
(9).

Theorem 2.8. (cf. [26] Theorem 3.11) Let f(x, y) = 0 be a singularity let N be the order of
the semi-simple part of its monodromy operator. The local Albanese variety of germ f(x, y) = 0
is isogenous to the product of the Jacobians of the exceptional curves of positive genus for a
resolution of the singularity (9).

Example 2.9. Consider the non-reduced singularity

(11) f(x, y) = xa1(x− y)a2ya3 a1 + a2 + a3 = n

having the ordinary triple point as the corresponding reduced germ. In this case, the local
Albanese variety is isogeneous to the Jacobian of plane curve whose affine portion is given by

(12) vn = ua1(u− 1)a2

Indeed, resolution of (11) can be achieved by a single blow up. The multiplicity of the exceptional
curve is equal to n. It follows from A’Campo’s formula that the characteristic polynomial of
the monodromy is (tn − 1)(t − 1) and that the order of the monodromy operator acting on
GrW1 H1(Mf ) is equal to n. A resolution of n-fold cyclic cover of the surface singularity

(13) zn = xa1(x− y)a2ya3

can be obtained by resolving cyclic quotient singularities of the normalization of the pullback of
this covering to the blow up of C2 resolving fred(x, y) = 0 (here fred is corresponding reduced
polynomial). This pull-back has as an open subset the surface given in C3 by the equation:

wn = unva1(v − 1)a2 .

Such resolution of surface (13) has only one exceptional curve of positive genus and this ex-
ceptional curve is the n-fold cyclic cover of P1 ramified at 3 points. The monodromies of this

n-cover around ramification points are multiplications by exp( 2π
√
−1ai
n ), i = 1, 2, 3. This allows

to identify the exceptional curve with curve (12). It follows from the Theorem 2.8 that the local
Albanese variety of singularity (11), as was claimed, is isogenous to the Jacobian of curve (12).

3. Jacobians of abelian covers of a line

The following will be used in the proof of the theorem 4.1.

Theorem 3.1. Let Xn be the abelian cover of P1 ramified at A = {a0, a1, ...ak} ⊂ P1 corre-
sponding to the surjection π1(P1 \A)→ H1(P1 \A,Zn). Let Ai ∈ N, i = 0, ...., k be a collection
of integers such that

(14)

i=k∑
i=0

Ai = 0 (mod n), 1 ≤ Ai < n gcd(n,A0, ..., Ak) = 1

Denote by Xn|A0,....,Ak
a smooth model of the cyclic cover of P1 which affine portion is given by

(15) yn = (x− a0)A0 · .... · (x− ak)Ak

(by (14) this model is irreducible). Then the Jacobian of Xn is isogenous to the product of the
isogeny components of the Jacobians of the curves Xn|A0,...Ak

.
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Remark 3.2. If k = 2 then the curve Xn is biholomorphic to Fermat curve xn + yn = zn in P2,
since as affine model of the abelian cover one can take the curve in C3 given by xn = u, yn = 1−u,
and the above theorem follows from the calculations in [15] containing explicit formulas for simple
isogeny components of the Fermat curves.

Corollary 3.3. Let XΓ be a covering of P1 with abelian Galois group Γ ramified at a0, ..., ak ∈ P1.
Then there exist a collection of curves, each being a cyclic covers (15) of P1, such that the
Jacobian of XΓ is isogenous to a product of isogeny components of Jacobians of the curves in
this collection.

Proof. Let πΓ : H1(P1 \
⋃i=k
i=0 ai,Z) → Γ be the surjection corresponding to the covering XΓ,

δi ∈ H1(P1 \
⋃i=k
i=0 ai,Z), i = 0, ..., k be the boundary of a small disk about ai, i = 0, ..., k and

let ni be the order of the element πΓ(δi) ∈ Γ. Then for n = lcm(n0, ..., nk) one has a surjection

H1(P1 \
⋃i=k
i=0 ai,Z/nZ) → Γ and hence a dominant map Xn → XΓ. In particular the Jacobian

of XΓ is a quotient of the Jacobian of Xn and the claim follows. �

Proof of the theorem 3.1. We shall assume below that one of ramification points, say a0, is the
point of P1 at infinity.

A projective model of Xn can be obtained as the projective closure in Pk+1 (which homoge-
neous coordinates we shall denote x, z1, ..., zk, w) of the complete intersection in Ck+1 given by
the equations:

(16) zn1 = x− a1, ....., z
n
k = x− ak

The Galois covering Xn → P1 is given by the restriction on this complete intersection of the
projection of Pk+1 from the subspace x = w = 0.

For any (A0, A1, ..., Ak) as above, consider the map

(17) Φn|,A0,....,Ak
: Xn → Xn|A0,A1,...Ak

which in the chart w 6= 0 is the restriction on Xn of the map Ck+1 → C2 given by:

(18) ΦA1,...,Ak
: (z1, ..., zk, x)→ (y, x) = (zA1

1 ....zAk

k , x)

The map Φn|,A0,....,Ak
is the map of the covering spaces of P1 corresponding to the surjection

of the Galois groups

H1(P1 \
i=k⋃
i=0

ai,Z/nZ)→ Z/nZ

which is given by

(19) (i0, i1, ..., ik)→
∑
j

ijAj mod n

The maps Φn|A0,....,Ak
induce the maps of Jacobians:

(20)
⊕

A0,...,Ak,0≤Ai<n−1

(Φn|A0,...,Ak
)∗ : Jac(Xn)→

⊕
Jac(Xn|A0,....,Ak

)

We claim that the kernel of a map (20) is finite. This clearly implies the Theorem 3.1.
Finiteness for the kernel of morphism (20) will follow from surjectivity of the map of cotangent
spaces at respective identities of Jacobians (20):

(21)
⊕

A0,...,Ak

H1,0(Xn|A0,....,Ak
,C)→ H1,0(Xn,C)
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For each χ ∈ CharZ/nZ let m1,0
χ (n|A0, ..., Ak) (resp. m0,1

χ (n|A0, ..., Ak)) denotes the dimen-

sion of isotypical summand of H1,0(Xn|A0,....,Ak
,C)

(resp. H0,1(Xn|A0,....,Ak
,C)) on which Z/nZ acts via the character χ. Similarlym1,0

Φ∗
n|A0,....,Ak

(χ)(n)

(resp. m0,1
Φ∗

n|A0,....,Ak
(χ)(n)) will denote the dimension of the eigenspace of the pull-back

Φ∗n|A0,....,Ak
(χ) ∈ Char

(
H1(P1 \A,Z/nZ)

)
for the action of the covering group of Xn → P1 on H1,0(Xn) (resp. H0,1(Xn)).

It follows from Theorem 2.3 (2), that the depth of χ considered as a character of H1(P1 \A,Z)
can be written as:

(22) d(χ) = m0,1
χ (n|A0, ..., Ak) +m1,0

χ (n|A0, ..., Ak) =

m0,1
Φ∗

n|A0,....,Ak
(χ)(n) +m1,0

Φ∗
n|A0,....,Ak

(χ)(n)

Moreover, one has inequalities:

(23) m0,1
χ (n|A0, ..., Ak) ≤ m0,1

Φ∗
n|A0,....,Ak

(χ)(n)

m1,0
χ (n|A0, ..., Ak) ≤ m1,0

Φ∗
n|A0,....,Ak

(χ)(n)

Hence, in fact,

(24) m0,1
χ (n|A0, ..., Ak) = m0,1

Φ∗
n|A0,....,Ak

(χ)(n)

m1,0
χ (n|A0, ..., Ak) = m1,0

Φ∗
n|A0,....,Ak

(χ)(n)

Now let us fix χ ∈ Char(H1(P1 \ A,Z/nZ)), i.e., a character of the Galois group of the
cover Xn → P1, such that its value on the cycle δi ∈ H1(P1 \ A,Z/nZ) corresponding to
ai ∈ P1, i = 0, ...,m satisfies:

(25) χ(δi) = exp

(
2π
√
−1ji
n

)
6= 1, (1 ≤ ji < n)

and let J = gcd(j0, ...., jk). The collection of integers Ai = ji
J satisfies condition (14). Denote

by Γ0 the cyclic group χ(H1(P1 \ A,Z)) ⊂ C∗. Then χ can be considered as a character
χ′ ∈ Char(Γ0) and then χ = π∗(χ′) where π is projection of the abelian cover with covering
group Γ onto the cyclic cover with the covering group Γ0. It follows from (24) that any isotypical
component in H1,0(Xn,C)χ is the image of the isotypical component of a cyclic covers and hence
the map (21) is surjective which concludes the proof. �

We shall finish this section with an explicit formula for dimH0(Xn,Ω
1
Xn

)χ i.e., the multiplic-
ity of the isotypical component of the covering group of abelian cover acting on the space of
holomorphic 1-forms.

Proposition 3.4. Let the values of a character χ ∈ CharH1(P1 \A,Z/nZ), χ 6= 1, be given as
in (25). Assume that J = gcd(j0, ...jk) = 1 and let M =

∑
i(n− ji). Then

(26) dimH1,0(Xn)χ =

[
M

n

]
Remark 3.5. If J 6= 1 then Prop. 3.4 yields an expression for the dimension of isotypical compo-
nent corresponding to χ ∈ CharH1(P1 \A,Z/nZ) as well. Indeed, this dimension coincides with
the dimension of isotypical component for χ considered as the character of H1(P1 \A,Z/(nJZ)).
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Proof of Prop. 3.4. The equations of the projective closure of the complete intersection (16) are

(27) zni = (x− aiw)wn−1, i = 1, ..., k

The only singularity of (27) occurs at w = 0, zi = 0, x = 1. Near it (27) is a complete intersection
locally given by zni = wn−1γi where γi is a unit. It has nk−1 branches (corresponding to the
orbits of the action (z1, ..., zk) → (ζz1, ..., ζzk), ζn = 1) each equivalent to zi = tn−1, w = tn.
Therefore (27) is a ramified cover of P1 with k + 1 branching points a1, ..., ak,∞ over which it
has nk−1 preimages with ramification index n at each ramification point.

The space H0(Ω1
Xn

) (for a smooth model of (27)) is generated by the residues of k + 1-forms

(28)
zj1−1

1 ....zjk−1
k P (x,w)Ω

Π(zni − (x− aiw)wn−1)
(1 ≤ ji) where

k∑
1

(ji − 1) + degP + k + 2 = nk

(cf. [14, Theorem 2.9]). Here

Ω =
∑
i

(−1)i−1zidz1∧ ...d̂zi..∧dzk∧dx∧dw+(−1)k+1(xdz1∧ ...∧dzk∧dw−wdz1∧ ...∧dzk∧dx)

In the chart x 6= 0 such residue (of (28)) is given by:

(29)
zj1−1

1 ....zjk−1
k P (w)dw

(z1....zk)n−1

Using (27), one can reduce powers of zi i.e., we can assume:

(30) 1 ≤ ji ≤ n− 1

and a basis of the eigenspace H0(Ω1
Xn

)χ, with χ as in (25), can be obtained by selecting
P (w) = ws where s must satisfy:

(31)

k∑
1

(ji − 1) + s+ k + 2 ≤ nk

The adjunction condition assuring that the residue of (28) will be regular on normalization of
(27) is

(32) −
k∑
1

(n− ji)(n− 1) + sn+ n− 1 ≥ 0

To count the number of solutions of (31) and (32) i.e., dimH0(Ω1
Xn

)χ with χ given by (25), let

j̄i = n − ji. Then 1 ≤ j̄i ≤ n − 1 and (31),(32) have form
∑k

1(n − 1 − j̄i) + s + k + 2 ≤ kn,

−(
∑k

1 j̄i)(n− 1) + sn+ n > 0. Hence:

(33) s+ 2 ≤
k∑
1

j̄i <
(s+ 1)n

n− 1
= s+ 1 +

s+ 1

n− 1

Notice that from (31) one has s ≤ nk − k − 2 i.e., s+1
n−1 ≤ k − 1

n−1 and hence
∑k

1 j̄i ≤ k + s. In

particular possible values of
∑k

1 j̄i are s+ 2, ....s+ k and therefore for given j̄i, parameter s can
take at most k− 1 values

∑
j̄i− 2, ....,

∑
j̄i−k. In particular, multiplicities of the χ-eigenspaces

do not exceed k − 1.
Let

∑
j̄i = M . Then from (33) one has M − 1 − M

n < s ≤ M − 2 and hence the number of
possible values of s is

M − 2−
[
M − 1− M

n

]
= −1−

[
−M
n

]
=

[
M

n

]
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as claimed in the Prop. 3.4. �

Remark 3.6. One can deduce the theorem 3.1 using Prop. 3.4 and the following:

Proposition 3.7. ([2], Prop. 6.5). For x ∈ R denote by 〈x〉 = x − [x] the fractional part of x.
Assume that gcd(i, n) = 1 and n does not divide either of A0, ..., Ak. Then for the curve (15) the

dimension of the eigenspace corresponding to the eigenvalue exp( 2π
√
−1i
n ) of the automorphism

of H1,0(Xn,A0,...,Ak
,C) induced by the map (x, y)→ (x, yexp(− 2π

√
−1
n )) equals to

(34) −

〈
i
∑k

0 As
n

〉
+

k∑
0

〈
iAs
n

〉
Indeed, the equality of multiplicities (24) follows by comparison (26) with (34) since for i = 1

(34) yields −
∑
As

n +
[∑

As

n

]
+
∑ As

n =
[∑

As

n

]
Remark 3.8. Special case of Prop. 3.7 appears also in [26] (cf. lemma 6.1). The multiplicity of
the latter corresponds to the case j = n− i in Prop. 3.7.

4. Decomposition theorem for abelian covers of plane

The main result of this section relates the Albanese variety of ramified covers to the local
Albanese varieties of ramification locus as follows.

Theorem 4.1. Let C be a plane algebraic curve such that all irreducible components of its
characteristic variety contain the identity of Char(π1(P2 \C)). Assume that the Condition 2.2 is
satisfied. Let πΓ : π1(P2 \ C)→ Γ be a surjection onto a finite abelian group. Then the Albanese
variety of the abelian cover X̄Γ ramified over C and associated with πΓ is isogenous to a product
of isogeny components of local Albanese varieties of possibly non-reduced germs having as reduced
singularity a singularity of C.

Proof. To each component of positive dimension of the characteristic variety corresponds an
isogeny component of Albanese variety of X̄Γ as follows.

Let Charj be an irreducible component of the characteristic variety V1(P2 \C) of C (cf. (2.1))
and let φj : P2 \ C → P1 \Dj be the corresponding holomorphic map where Dj is a finite subset
of P1. The cardinality of Dj is equal to dim(Charj) + 1 and Charj = φ∗j

(
Char(π1(P1 \ Dj))

)
.

Denote by Γj the push-out of πΓ. The map φj is dominant and yields the surjection

(φj)∗ : π1(P2 \ C)→ π1(P1 \Dj)

of the fundamental groups. With these notations we have the universal (for the groups filings
the right left corner of) commutative diagram:

(35)
π1(P2 \ C) → π1(P1 \Dj)
↓ ↓
Γ → Γj

A character of H1(P2 \ C,Z), which is the image of a character of Γ for the map

CharΓ→ CharH1(P2 \ C,Z),

can be obtained as a pullback of a character of H1(P1 \ Dj) if and only if it is a pullback of
a character of Γj via maps in diagram (35). Let Dj → P1 the ramified cover with branching
locus Dj , having Γj as its Galois group and let Φj : Alb(X̄Γ) → Jac(Dj) be the corresponding
Albanese map. The Jacobian Jac(Dj) is an isogeny component of Alb(X̄Γ). It depends only on
Charj and Γ.
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Next let χk, k = 1, .., N be the collection of characters of π1(P2 \ C) whose depth is greater
than the depth of generic point on the component of characteristic variety to which it belongs.
We shall call such characters the jumping characters of C. It follows form our Condition 2.2
that jumping characters are exactly the intersection points of the components of characteristic
variety.

We claim injectivity of the map of Albanese varieties induced by the holomorphic maps φj :

(36) 0→ Alb(X̄Γ)
⊕

Φj→
⊕
j

Jac(Dj)

To see that Ker
⊕

Φj = 0, consider the induced homomorphism

(37) H1(Alb(X̄Γ),C)→ H1(
⊕
j

Jac(Dj),C).

The group Γ acts on both vector spaces and the homomorphism (37) is Γ-equivariant. For a
character χ belonging to a single component of characteristic variety the depths is equal to the
depth of the generic character in its component (cf. Condition 2.2) which in turn coincides
with H1(Dj ,C)χ. Therefore one has isomorphism H1(X̄Γ,C)χ → H1(Dj ,C)χ. For a character
χ = χk, i.e., for a character in the intersection of several components, again from Condition 2.2,
one has injection: H1(X̄Γ,C)χ → ⊕j,χ∈CharjH1(Dj ,C). This implies (36).

To finish the proof of the Theorem 4.1 it suffices to show that each summand in the last term
in (36) is isogenous to a product of components of local Albanese varieties of C. Indeed Poincare
complete reducibility theorem (cf. [5]) implies that the image of the middle map is isogenous to
a direct sum of irreducible summands of the last term.

Denote by the same letter φj the extension of a regular map φj : P2 \ C → P1 \ Dj to the
map P2 \ Sj → P1 where Sj is the finite collection of indeterminacy points of the extension of

φj to P2. Let Cd = φ−1
j (d), d ∈ Dj . Then C contains the union of the closures C̄d of (which are

possibly reducible and non reduced curves). Each P ∈ Sj belongs to at least CardDj irreducible
components and, since CardDj > 1, P is a singular point of C. We claim the following:

Claim 4.2. Resolution P̃2
C,P → P2 of the singularity at P contains exactly exceptional curve EP

such that the regular extension φ̃j of φj to P̃2
C,P → P1 induces a finite map φ̃j : EP → P1.

To see this, consider a sequence of blow ups P̃2
C,P,h, h = 1, ..., N(C, P ) of the plane starting

with the blow up of P2 at P and in which the last blow up produces the resolution of singularity
of C at P . For each h, let φj,h : P̃2

C,P,h → Dj be the extension of φ from P2 \ C to P̃2
C,P,h. For

every base point Q of the map φj,h on P̃2
C,P,h consider the pencil of tangent cones to fibers of

the map φj,h The fixed (possibly reducible) component of the pencil of tangent cones Td, d ∈ P1

to curves φ̃−1
j (d) 4 either:

a) coincide with the tangent cone Td to each curve φ−1
j (d), or

b) there exist d such that the tangent cone Td to φ−1
j,h(d) at Q contains a line not belonging

to the fixed component of the pencil of tangent cones.
Since on P̃2

C,P (i.e., eventually after sufficiently many blow ups) no two fibers of φ intersect,
in a sequence of blow ups desingularizing C at P , there is a point Q infinitesimally close to P
at which the tangent cones satisfy b). At such point Q ∈ P̃2

C,j,h any two distinct fibers of φj,h
admit distinct tangents because otherwise, since we have one dimensional linear system, the
common tangent to two fibers will belong to the fixed component. Let EP ⊂ P̃2

C,j,h+1 be the

4i.e., union of lines which are tangent to a component of the curve φ−1
j,h(d) for any d
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exceptional curve of the blow up of P̃2
C,j,h. Exceptional curves preceding or following this one

on the resolution tree (which up to this point did not have vertices with valency greater than
2!) belong to one of the fibers of φj . Restriction of φj,h+1 onto EP is the map claimed in (4.2).

Finally, the ramified Γ-covering of P2 lifted to P2
C,P and restricted on the proper preimage

of the curve EP in P̃2
C,P induces the map onto Γj-covering of P1 ramified at Dj . Hence the

Jacobian of the latter covering is a component of the Jacobian of a covering of EP . It follows
from the Corollary 3.3 that Jacobian of this cover of EP isogenous to product of Jacobians of
cyclic covers. Each Jacobian of cyclic cover of exceptional curve, in turn, is a component of local
Albanese variety of singularity with appropriately chosen multiplicities of components of C given
the by data of the cyclic cover of EP (cf. Theorem 2.8). �

The following theorem 4.4 allows to describe the isogeny class of Albanese varieties of abelian
covers in explicit examples considered in the next section. The Albanese variety of abelian cover
with Galois group Γ will be obtained as a sum of isogeny components of Jacobians of abelian
covers of the line associated with Γ and corresponding to the positive dimensional components
of the characteristic variety of π1(P2 \C). To state the theorem we shall use the following partial
order on the set of mentioned isogeny components.

Definition 4.3. Let Ψi : B → Ai, i ∈ I, be a collection of equivariant morphisms of abelian
varieties endowed with the action of a finite abelian group Γ. An isotypical isogeny component of
the collection Ai is an abelian variety of the form Sm where S is Γ-simple 5. Define the partial
order of the set of isotypical components of Πi∈IAi as follows: A ≥ A′ if and only if each A and
A′ belongs to the image of one of Ψi (i ∈ I) and A = Sm,A′ = Sm

′
,m ≥ m′

Now we are ready to state the following description of the Albanese variety of abelian cover
X̄Γ.

Theorem 4.4. Let C be a plane curve as in Theorem 4.1 i.e., with fundamental group of the
complement satisfying the Condition 2.2 and all components of characteristic variety containing
the identity character. Let πΓ : π1(P2 \ C) → Γ be a surjection onto an abelian group and let
ΓΞi

be corresponding push-out group given by diagram (35). Let P̄ΓΞi
denotes the ramified cover

of P1 with covering group ΓΞi
which is the compactification of the cover of the target map of

P2 \ C→ P1 \Di corresponding to the component Ξi.
(1) For any i there are Γ-equivariant morphisms

(38) Alb(X̄Γ)→ Jac(P̄ΓΞi
)

(2) Let Am,m ∈ M be the set of maximal elements in the ordering of isotypical components
of collection of morphisms in (1).

Then there is an isogeny

(39) Alb(X̄Γ)→ ⊕m∈MAm

Remark 4.5. The maps in (38) corresponding to different characters may coincide (this is always
the case for example for conjugate characters). The theorem asserts that selection among jump-
ing characters and component of characteristic varieties can be made so that maximal isotypical
components in corresponding covers provide isotypical decomposition of Alb(X̄Γ).

5i.e., simple in the category of abelian varieties with Γ-action cf.[27]
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Proof. Morphisms X̄Γ → P̄1
ΓΞi

were constructed in the beginning of the proof of theorem 4.1.

Let Am,m ∈ M be collection of maximal isotypical components in the Albanese varieties
which are targets of the maps (38). Composition of a map (38) with projection on the isogeny
components Am,m ∈M gives the map Alb(X̄Γ)→ Am. Each isogeny component of Alb(X̄Γ) is
an isogeny component in one of varieties P̄1

ΓΞi
and the dimension of Γ-eigenspace corresponding

to any character coincides with the dimension of χ-eigenspace of the targets (38). Hence the
map (39) has finite kernel.

Let χ be a character having non zero eigenspace on H1(Am). Then by theorem 2.3 part (2),
dimH1(Am)χ = dimH1(A)χ = dimH1(X̄Γ)χ where A is one of the targets of the maps (38).
Since H1(X̄Γ) is a direct sum of Γ-eigenspaces and the image of H1(X̄Γ)χ is non-trivial in exactly
one summand in (39) one obtains the surjectivity in (39). �

Remark 4.6. Multiplicities of isotypical components Am are poorly understood in general as well
as jumping characters (cf. [8] where the problem of bounding the multiplicities of the roots of
Alexander polynomials of the complements to plane curves, which are in correspondence with
the jumping characters, is discussed). Nevertheless in all known examples, the above theorem is
sufficient to completely determine isogeny class of Albanese varieties of abelian covers.

5. Albanese varieties of abelian covers ramified over arrangements of lines.

In the case when ramification set is an arrangement of lines theorems 4.1 and 4.4 yield
considerably simpler than in general case results. We shall start with:

Corollary 5.1. Let A be an arrangement of lines in P2 with double and triple points only which
satisfies the assumptions6 of Theorem 4.1. Let Xn(A) be a compactification of the abelian cover
of P2 \A corresponding to the surjection H1(P2 \A,Z)→ H1(P2 \A,Z/nZ).

(1) Albanese variety of Xn(A) is isogenous to a product of isogeny components of Jacobians
of Fermat curves.

(2) Alb(Xn(A)) is isogenous to a product and of Jacobians of Fermat curves if
(a) none of the characters in CharH1(P2 \ A,Z/nZ) ⊂ CharH1(P2 \ A,Z) is a jumping

character in the characteristic variety of π1(P2 \A) and
(b) the pencils corresponding to positive dimensional components have no multiple fibers.

Proof. Each component of characteristic variety having a positive dimension corresponds to the
map P2 \A→ P1 \D where CardD = 3. Those induce maps of Alb(Xn(A)) onto the Jacobians
of abelian covers of P1 ramified along corresponding D. The Jacobian of such abelian cover of
P1 is a component of the Jacobian of Fermat curve. (cf. Corollary 3.3 with k = 2). Hence
the maximal isotypical isogeny components (cf. Theorem 4.4) are components of Jacobians of
Fermat curves and therefore part (1) follows from theorem 4.4 i.e. Alb(Xn(A)) is isogenous to
a product of components of Fermat curves. Note that the Theorem 4.1 for arrangements of
lines with double and triple points can be obtained follows from these arguments. Indeed, the
isogeny components of Jacobians of Fermat curves are Jacobians of cyclic covers of P1 ramified
at three points (cf. [15],[9]) and Jacobians of cyclic covers of P1 ramified at three points are local
Albanese varieties of non-reduced singularities of the form xa1(x− y)a2ya3 (cf. Example 2.9).

If characteristic variety does not have jumping characters in subgroup CharH1(P2 \A,Z/nZ)
of Charπ1(P1 \ A) then Alb(Xn(A)) is just a product of Jacobians corresponding to positive
dimensional components of characteristic variety (i.e., there are no “corrections” in Am coming

6i.e., we consider only the cases when all irreducible components of characteristic variety contain the identity
and also Condition 2.2 is satisfied.
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from Jacobians of covers corresponding to jumping characters). The assumption about absence of
multiple fibers implies that map of Xn(A) corresponding to each positive dimensional component
of characteristic variety of A has as target the cover as in Remark 3.2 i.e., a Fermat curve. Hence
Alb(Xn(A)) is a product of Jacobians of Fermat curve and we obtain part of (2). �

Example 5.2. Consider Ceva arrangement xyz(x − z)(y − z)(x − y) = 0 and the universal Z5

cover (with the covering group which is the quotient of Z6
5 by the cyclic subgroup generated by

(1, 1, 1, 1, 1, 1). Then the irregularity of the corresponding abelian cover is 30 (cf. [17], [24] section
3.3 ex.2). The characteristic variety consists of five 2-dimensional components Ξi, i = 1, ..., 5 (cf.
[24]), each being the pull-back of H1(P1 \D,C∗),CardD = 3 via either a linear projection from
one of 4 triple points or via a pencil of quadrics three degenerate fiber of which form the 6 lines
of the arrangement. Each of these 5 pencils induces a map on the abelian cover of P1 branched
at 3 points, which has as the Galois group the quotient of ⊕3

1µ5 by the diagonally embedded
group of roots of unity µ5 of degree 5. This cover, i.e., P̄Ξi

, i = 1, .., 5, is the Fermat curve of
degree 5. The Jacobian of degree-5 Fermat curve is isogenous to a product of Jacobians of three
curves Ci, i = 1, 2, 3 of genus 2 each one being a cyclic cover of P1 ramified at three points. (cf.
[9],[21]). Hence the Albanese variety of this abelian cover is isogenous to a product of 15 copies
of the Jacobian of ramified at three points cover of P1 of degree 5. In this example there are
no jumping characters (in particular in CharH1(P2 \ A,Z/5Z)) and the isogeny can be derived
from Corollary 5.1

Example 5.3. Consider again Ceva arrangement and calculate the abelian component of (semi-
abelian) Albanese variety (cf. section 2.3) of its Milnor fiber M given by w6 = Πli. Notice that
the characteristic polynomial of the monodromy is (t−1)5(t2+t+1) (cf. [24]). The ζ3-eigenspace
of H1(M,C) can be identified with the contribution in sum (6) of the pullback of the character
χ of P1 \D via the pencil of quadrics formed by lines of the arrangement. Here D is the triple
of points corresponding to the reducible quadrics in the pencil and χ is the character taking the
same value ω3 on standard generators if π1(P1 \ D). This pencil can be lifted to the elliptic
pencil on a compactification of M onto 3-fold cyclic cover of P1 ramified at D and corresponding
to Kerχ. Moreover, above expression for the characteristic polynomial of the monodromy shows
that the map induced by this pencil is isogeny i.e., the abelian (i.e., compact) component of the
Albanese of M is the elliptic curve E0. The semi-abelian variety with is the Albanese variety of
M is an extension:

(40) 0→ (C∗)5 → Alb(M)→ E0 → 0

Example 5.4. Consider abelian cover of P2 ramified along arrangement of lines dual to 9 inflection
points of a smooth cubic with Galois group Z9

n/Zn. This arrangement has 9 lines and 12 triple
points. An explicit equation is as follows:

(41) (x3 − y3)(y3 − z3)(z3 − x3) = 0

The characteristic variety consists of 12 components corresponding to 12 triple points and 4
additional two-dimensional components intersecting along cyclic subgroup of order 3. Characters
at the intersection are jumping and have depth 2 (cf. [12],[28]) while depth of generic character
in each positive dimensional component is 1. In coordinates of Charπ1(P2 \A) corresponding to
components of A described jumping characters have the form (ω, ...., ω), ω3 = 1.

In the case n = 5, in which according to Hirzebruch one obtains a quotient of the unit ball,
the Albanese variety is isogenous to the product of 16 copies of Fermat curve of degree 5, as
follows from Corollary 5.1 (2) or equivalently 48 copies of curves of Jacobians of curves of genus
2 with automorphism of order 10 or, what is the the same, the 2-dimensional variety of CM type
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corresponding to cyclotomic field Q(ζ5). For arbitrary n such that gcd(3, n) = 1 one get several
copies of Jacobians of Fermat curves of degree n corresponding to components of characteristic
variety.

If n is divisible by 3, i.e., the jumping characters are present, then the condition 2.2 should
be verified. To this end, we shall reinterpret the part of this condition dealing with the map
between the cohomology of local systems. The cohomology of the local systems appearing
in (2.2) can be identified with the eigenspaces of the (co)homology of abelian covers (cf.[24]).
More precisely, the χ-eigenspace can be identified with the cohomology of the local system
corresponding to the character χ. The eigenspace corresponding to the character belonging to
4 irreducible components of characteristic variety in turn can be interpreted as the dual space
of H1(P2, IZ(3)) where Z ⊂ P2 is the subscheme of triple points (cf. [24, (3.2.14),(3.2.15)] and
corresponding remark). On the other hand, each of the above 4 components corresponds to a
selection of a subset Zi ⊂ Z,CardZi = 9, cf. [24, Section 3.3,Example 3] for description of
these subsets, each of which is a complete intersection of two cubic curves. The cohomology of
generic local system in such component is identified with the dual space of H1(P2, IZi(3)). The
condition 2.2 is interpreted as injectivity of the map

(42) H1(P2, IZ(3))→
i=4⊕
i=1

H1(P2, IZi
(3))

induced by injections IZ → IZi
, i = 1, ...4. This injectivity is readily seen e.g. by interpreting

terms in (42) using standard sequence: 0→ IZ → ØP2 → ØZ → 0 and similar sequences for Zi.
Implication of verification of Condition 2.2 is that in this case the product of Jacobians of

Fermat curves which are the Jacobians corresponding to positive dimensional components of
characteristic variety must be factored by the product Eκ−δ0 where κ is the number of compo-

nents containing a jumping character (taking value exp( 2
√
−1π
3 ) or exp( 4

√
−1π
3 ) on all 9 lines of

arrangement) and δ is the depth of the jumping character 7.
In the case n = 3 the abelian cover with the covering group Z9

3/Z3 one obtains from theorem
4.4 or Corollary 4.4

(43) Alb(P̄2
Z8

3
) = E16

0 /E2
0 = E14

0

Indeed, in this case κ = 4, δ = 2.
In the case 3|n, n > 3, the product of Jacobians corresponding to positive dimensional compo-

nents has several copies of E0 as isogeny components and Alb(Xn) is the quotient of this product

by Eκ−δ0 = E2
0 .

Example 5.5. Consider Hesse arrangement H formed by 12 lines containing 9 inflection points of
a smooth cubic. It was shown in [24] (cf. section 3, example 5) that the characteristic variety of
the fundamental group of the complement to this arrangement consists of 10 three-dimensional
components and 54 two-dimensional components none of which belongs to a three-dimensional
component (intersection of components must be zero dimensional). As earlier, it is convenient
to describe components in terms of corresponding pencils i.e., maps P2 \H→ P1 \h where h is a
set of points of cardinality 4 or 3 so that the characters in each component formed by pullbacks
via these maps. The pencils corresponding to components of dimension 3 are linear projections
from each of 9 quadruple points and the additional pencil is the pencil of curves of degree 3
containing 4 cubic curves each being a union of a triple of lines in the arrangement H. The 54

7cf.[28], Prop. 4.8. This effect of characters in the intersection of several components of characteristic varieties
is erroneously omitted in the final formula in Example 3 in section 3.3 of [24].
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maps P2 \H→ P1 \ h (Card h = 3) are restrictions of the maps corresponding to the pencil of
quadrics union of which are 6-tuples of lines in H forming a Ceva arrangement.8

The pencil corresponding to 3-dimensional component of characteristic variety induces the
map of abelian cover of the plane ramified along H with Galois group (Z3)12/Z3 on the maximal
abelian cover Z3 cover of P1 ramified at 4 points. In particular the Albanese variety in question
maps onto the Jacobian J10 of curve of genus 10. Similarly each 2-dimensional component of
characteristic variety induces map of Albanese of abelian cover of P2 onto maximal abelian 3-
cover of P1 ramified at 3 points. The latter is Fermat curve of degree i.e., the elliptic curve with
j-invariant zero.

We obtain that the Albanese variety of the cover considered by Hirzebruch (cf.[20]) is isogenous
to

(44) J10
10 × E54

0

Example 5.6. Variety of lines on a Fermat hypersurface Previous results imply immediately the
following:

Theorem 5.7. Let F3 be variety if lines on Fermat cubic threefold:

(45) x3
0 + x3

1 + x3
2 + x3

3 + x3
4 = 0

Then there is an isogeny:

(46) Alb(F3) = E5
0

This isogeny was observed recently [6]. Also, Roulleau cf. [29] obtained the isomorphism class
of the Albanese variety of Fermat cubic threefold.

Proof. It follows from discussion in [32] that Fano surface F3 is abelian cover of degree 34 of P2

ramified over Ceva arrangement. Hence the isogeny (46) follows as in example 5.2. �

6. Applications

6.1. Mordell-Weil ranks of isotrivial families of abelian varieties. Recall the following
(cf. [26])

Proposition 6.1. Let A → P2 be a regular model of an isotrivial abelian variety over C(x, y)
with a smooth fiber A. Assume that there is a ramified abelian cover X → P2 such that the
pullback of A to X is trivial abelian variety over X. Let Γ be the Galois group of C(X)/C(x, y).
Then the trivialization of A over X yields the action of Γ on A and the Mordell-Weil rank of A
is equal to dimQHomΓ(Alb(X),A)⊗Q.

Let A be an abelian variety over C. Given an abelian cover X → P2 with covering group
Γ and a homomorphism Γ → AutA, an example of isotrivial abelian variety over C(x, y) as in
Prop.6.1 can be obtained as a resolution of singularities of

(47) AX = X ×A/Γ
where Γ acts on X × A diagonally: (x, a) → (γ · x, γ · a), γ ∈ Γ, x ∈ X, a ∈ A). The map
AX → X/Γ = P2 gives to AX a structure of isotrivial abelian variety over C(x, y).

8This was explained in [24]. Recall that in interpretation of inflection points of the cubic as points in affine

plane over field F3, the twelve lines correspond to the full set of lines in this plane and 6 tuples are in one to

one correspondence with quadruples of points in this finite plane no three of which are collinear. Counting first
ordered quadruples of this type one sees that there are 9 × 8 choices for the first two points, 6 choices for the

third point (it cannot be the third point on the line containing first two) and 3 choices for the forth). Therefore
one get 54 unordered quadruples of points and hence 54 6-tuples of lines.
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Calculations of Albanese varieties in examples of previous sections yield values of Mordell-Weil
ranks of isotrivial abelian varieties in many examples as in Prop. 6.1.

Example 6.2. Let J2,5 denote the Jacobian of a smooth projective model of genus 2 curve C
given by equation: y5 = x2(x− 1)2 (i.e., one of the curves Ci in Example 5.2). Assume that the
direct sum Γ = Z5

5 acts on C so that the generator of each summand acts as the multiplication
by ζ, ζ = exp( 2πi

5 ) : (x, y) → (x, ζy) (cf. 5.2). This induces the action of Z5
5 on J2,5 = Jac(C).

In example 5.2, we viewed Γ as the quotient of Z6
5 by (1, 1, 1, 1, 1, 1), so that each summand

corresponds to monodromy about one of 6 lines in Ceva arrangement. Then an identification of
Z5

5 and Z6
5/Z5 can be obtained by identifying the former group with the image in the latter of

the subgroup of Z6
5 of elements (a1, a2, a3, a4, a5,−

∑i=5
i=1)ai, ai ∈ Z5. In such presentation of Γ,

the action of first 5 components of elements in Z6
5 on C is given by multiplication by ζ while

action of the last component on C is trivial.
Consider isotrivial family AX of abelian varieties over P2 given by (47) with the zero set of

discriminant being the Ceva arrangement of lines which is the quotient of X × J2,5, where X is
the abelian cover with the covering group Z5

5 considered in example 5.2. The action of Γ is the
diagonal action of Γ = Z5

5 as in (47). The Albanese variety of the abelian cover X in example 5.2
is isogenous to (J2,5)15 (cf. (5.2)) and hence the rank of the Mordell-Weil group of the quotient
is equal to

(48) rkHomZ5
5
(J15

2,5, J2,5)⊗Q

The characters of representation of Γ = Z6
5/Z5 on H1(J15

2,3) are the characters of representation

of Γ on H1,0(X,C) i.e., the characters from the characteristic variety of Ceva arrangement.
Clearly neither of two characters for described above action of Γ on H1(C,C), having the form
(a, a, a, a, a, 1), a ∈ Z5 in the basis of CharΓ dual to the one coming from direct sum presentation
of Z6

5, belongs to the characteristic variety of Ceva arrangement. Hence the rank (48) is zero.

6.2. Periodicity of Albanese varieties.

Theorem 6.3. Let C be a curve in P2 such that there exist a surjection π : π1(P2 \ C) → Z 9.
Consider two sequences of cyclic covers composed of ramified and unramified covers corresponding
to surjections πn : π1(P2 \ C)→ Z→ Z/nZ

(1) The sequence of isogeny classes of Albanese varieties of a tower of cyclic branched covers
with given ramification locus C corresponding to surjections πn is periodic.10

(2) The sequence of isogeny classes of semi-abelian varieties which are Albanese varieties of
unbranched covers a complement to a curve C corresponding to surjections πn is periodic.

Proof. Let ∆π(t) be the Alexander polynomial of C corresponding to the surjection π (cf. [22]).
For each root ξ of ∆π(t) let nξ be its order (recall that any root of Alexander polynomial of an
algebraic curve is a root of unity). For each set Ξ of distinct roots of ∆π(t) let nΞ = lcm(nξ), ξ ∈ Ξ
and let N be the least common multiple of integers nΞ. To each congruence class modulo N
corresponds a subset Ξ (possibly empty) such that integers in this class are divisible by exactly
one (or none) among the integers nΞ.

The rank of Hn(Xn) depends only on the number of roots ξ such that ξn = 1 (cf. 2.3) i.e.,
on n mod N . More precisely, let Xn (resp. X̄n) denotes unramified (resp. ramified) cover
of P2 \ C (resp. P2). Then H1(Xn,C) → H1(XnN

,C) (resp. H1(X̄n,C) → H1(X̄nN
,C)) are

isomorphisms for all n belonging to one of the congruence class modulo N . For n not belonging

9For any curve in C (including irreducible in which case H1(P1 \C,Z) = Z/(degC)Z) adding to C a generic line

in P2 yields a curve admitting such surjection cf. [22].
10i.e., exist N ∈ N such that Albanese varieties of cyclic covers corresponding to πn, πn′ with n ≡ n′ mod N

are isogeneous.
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to any of these congruence classes, one has H1(Xn,C) = H1(X̄n,C) = 0. Moreover the map
H1(Xn,Z) → H1(XnN

,Z) (resp. H1(X̄n,Z) → H1(X̄nN
,Z)) is injective (resp. has finite kernel

and co-kernel). Hence the isogeny class of Albanese variety of Xn with n in one and only one
congruence class as above is constant. Hence the claims (1) and (2) follow. �
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