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EQUIVARIANT HIRZEBRUCH CLASS FOR QUADRATIC CONES VIA

DEGENERATIONS

MA LGORZATA MIKOSZ AND ANDRZEJ WEBER

Let X be a smooth algebraic variety and Y a subvariety. The cohomology class of Y in
H∗(X), i.e., the Poincaré dual of the fundamental class of Y , does not change when we deform
Y in a flat manner. A more subtle cohomological invariant of Y is the Hirzebruch class

tdy(Y → X) ∈ H∗(X)⊗Q[y]

defined in [BSY]. A flat family member Yt can be thought of as a fiber of a function

X × C ⊃W π−→ C .

The difference between the Hirzebruch class of the generic fiber and the Hirzebruch class of
the special fiber is measured by the appropriate version of Milnor class, studied in [CMSS] for
hypersurfaces and in [MSS] the general case. The same phenomenon happens for the equivariant
Hirzebruch class developed in [We3], compare also with [Oh, Sec.4] for the equivariant Hirzebruch
class in the context of quotient stacks. We fix our attention on the varieties with torus action. If
we are interested in local invariants of singularities, we study the localization of the equivariant
Hirzebruch class tdTy(Y → X) at a fixed point. The bottom degree of the Hirzebruch class is the
equivariant fundamental class, also called the multi-degree of the variety. It does not change in

the deformation class. For example, let Q̂n ⊂ Cn be the cone over a quadric in Pn−1, in other

words, Q̂n in some coordinates is described by the Morse function
∑n
i=1 x

2
i . Let T = C∗ act on

Cn diagonally. Then [Q̂n] is equal to 2t, with

t = c1(C) ∈ H∗T(pt) ' H∗T(Cn) ' Q[t] ,

the first Chern class of the standard weight one representation. Indeed Q̂n can be equivariantly
degenerated to the sum of two transverse hyperplanes. The difference of the Hirzebruch classes
is supported by the singular locus of the special member of the family. In the case of quadratic

cones (Q̂n and intersection of planes) both varieties have only rational singularities, therefore
([BSY, Example 3.2]) their Hirzebruch classes for y = 0 are equal to the Todd classes constructed
by Baum-Fulton-MacPherson. The Todd class of a hypersurface H of an ambient manifold M
are expressed by the class [H] and the Todd class of M , precisely i∗td(H) = td(M)(1− e−[H]),
where i is the inclusion i : H ↪→M , see eg. [Fu, Th. 18.3(4)]. One easily generalizes this formula

in the equivariant setting. Hence the Todd classes of Q̂n and X̂n are equal. (Alternatively one
can apply Verdier specialization argument, which implies that the Todd class of singular spaces
is constant in flat families, [Ve].) It follows that full Milnor class is divisible by y.

We would like to present how the equivariant Hirzebruch class degenerates for the cone sin-
gularities. Our work started when we tried to analyze the equivariant Hirzebruch class of the
cone. For the fixed dimension n it is easy to compute the corresponding polynomial. From
initial sequence of coefficients it was hard to guess a closed formula and, for example, to prove a
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kind of positivity studied in [We3, §13]. Applying the degeneration method we find an answer.
An interesting reciprocity happens. The difference between the Hirzebruch classes of the pro-
jective quadric Qn and two intersecting projective hyperplanes Xn is the Hirzebruch class of the
complement of another projective quadric multiplied by y:

(1) tdTy(Qn)− tdTy(Xn) = y · tdTy(Pn−3 \Qn−2)

(Formula 3). In the non-equivariant context this result should follow for example from [CMSS,
Thm.1.4, Rem.1.5] and the methods of [PaPr, Sec.5]. (as explained later in Remark 2). In this
paper we even prove more directly a corresponding result for the equivariant Hirzebruch classes.

Using induction we find the equivariant Hirzebruch classes of Qn and Q̂n.
Having in mind the expression for Chern-Schwartz-MacPherson class of smooth open varieties

via logarithmic forms [Al], it is more natural to compute the Hirzebruch class of the complement

Q∗n = Cn \ Q̂n. For n = 2m we obtain the expression

(1 + y)2T 2
m∑
i=1

(−y)m−i
(1 + yT )2i−2

(1− T )2i

and for n = 2m+ 1

(−y)m
(y + 1)T

1− T
+ (1 + y)2T 2

m∑
i=1

(−y)m−i
(1 + yT )2i−1

(1− T )2i+1
.

Here T = e−t and the given expression is equal to the Hirzebruch class divided by the Euler
class of 0 ∈ Cn, that is eu(0) = tn. The formulas are understood as elements of the completed
H∗T(Cn)[y] and localized in t. This ring is isomorphic to the ring of Lautent series in t and
polynomials in y, i.e., Q[[t]][t−1, y]. (We will omit the completion in our notation for cohomology.)
The formulas follow from Corollary 10 by the specialization Ti to one. Taking the limit y → −1
with T = e−(y+1)t we obtain the expression for the Chern-Schwartz-MacPherson class of X∗n in
equivariant cohomology of Cn: for n = 2m

m−1∑
i=0

t2i(1 + t)2(m−i−1)

and for n = 2m+ 1

t2m +

m−1∑
i=0

t2i(1 + t)2(m−i−1)

which, as one can check, agrees with the invariant of a conical set introduced in [AlMa], compare
[We1, §8]. We note that the quadratic cone appears as a singularity of Schubert varieties: the
quadric Qn can be considered as a homogenous space with respect to SO(n) and the codimension
one Schubert variety is isomorphic to the projective cone over Qn−2. It would be interesting to
examine singularities of Schubert varieties from the point of view of degenerations, having in
mind the work on smoothability [Co1, Co2] and intersection theory [CoVa].

The presented computation in fact is a baby example of what can happen. The aim of
the paper is to show a bunch of computation of the Hirzebruch class based on Localization
Theorem 4. The Formulas 3, 8 and 12 are the outcome. They show how Milnor class may be
realized geometrically. We hope that these formulas will find generalizations for some class of
degenerations of Schubert varieties.
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1. Hirzebruch classes of projective quadrics

To understand systematically the situation we consider a bigger torus preserving the quadric.
One has to distinguish between the cases of even and odd n. Let us index the coordinates in
C2m by integer numbers from −m to m omitting 0 and consider the quadratic form in C2m given
by the formula

m∑
i=1

x−ixi .

For C2m+1 allow the index 0 and fix the quadratic form

x2
0 +

m∑
i=1

x−ixi .

Let Qn ⊂ Pn−1 be the quadric defined by vanishing of the quadratic form. It is an invariant
variety with respect to the torus Tm = (C∗)m action coming from the representation with weights
(i.e., characters)

(−tm,−t−m+1, . . . , tm−1, tm)

if n = 2m and
(−tm,−t−m+1, . . . , 0, . . . , tm−1, tm)

for n = 2m+ 1. Consider the equivariant Hirzebruch class

tdTm
y (Qn → Pn−1) ∈ H∗Tm

(Pn−1)[y]

and compare it with the Hirzebruch class of degeneration Xn of Qn given by the equation
x−mxm = 0. The variety Xn is the sum of the two coordinate planes. We think of Xn as the
special fiber for λ = 0 of the equivariant family given by the equation

λ

m−1∑
i=1

x−ixi + x−mxm or λ

(
x2

0 +

m−1∑
i=1

x−ixi

)
+ x−mxm .

We will show that the difference of the Hirzebruch classes is the Hirzebruch class of Cn−2 \Qn−2

multiplied by y, i.e., Formula (3), which generalizes Formula (1).

Remark 2. Let us explain why Formula (1) holds in non-equivariant cohomology1. In H∗(Pn−1)

tdy(Qn)− tdy(Xn) = y · tdy(Pn−3 \Qn−2)

should follow from results and techniques a la [CMSS, Thm.1.4, Rem.1.5] and [PaPr, Sec.5]:

g =

m−1∑
i=1

x−ixi and f = x−mxm

are both sections of the line bundle O(2) on Pn−1, with Z ′ := {g = 0} and Z := Xn = {f = 0}
transversal in a stratified sense. Let

p : Z := {λg + f = 0} ⊂ Pn−1 × C→ C
be the projection onto the last variable λ. Then the vanishing cycles φp(QZ) are supported by
the critical locus Pn−3 = {x−m = 0 = xm} ⊂ Xn = {p = 0} of p. Moreover, the restriction
of these vanishing cycles to Z ∩ Z ′ = Qn−3 ⊂ Pn−3 should be zero by the argument of [PaPr,
Sec.5] (or [MSS, part a) of the proof of Prop. 4.1]). Moreover, the corresponding nearby cycles
can be calculated in terms of the generic fiber Qn = {p = 1}, since p is quasi-homogeneous
(i.e., equivariant for a suitable C∗-action). Then the stated formula above follows from [CMSS,

1This remark is due to the Referee
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Thm.1.4, Rem.1.5], with the factor y equal to the (reduced) χy-genus of the transversal Milnor
fiber of an A1-singularity z2+w2 = 0 = x−mxm in C2. This remark would be an alternative proof
of our formula provided that one developed the general theory of Milnor class in the equivariant
case.

It is more convenient to work with complements of the closed varieties from the beginning.
We will give formulas for complements of the quadrics, since then the components have better
geometric interpretation. To make the notation easier we identify the equivariant cohomology
with respect to Tm with the subspace of H∗Tm+1

(Pn−1) ' H∗Tm
(Pn−1)⊗Q[tm+1] given by tm+1 = 0

and omit the indexm in Tm. Also we will omit the ambient space in the notation. This should not
lead to a confusion; enlarging the ambient space results in introducing of the factor, which is the
Euler class of the normal bundle. We will use this for example for the inclusions ι : Pn−3 → Pn−1

into the first coordinates and the corresponding inclusions of the affine spaces. For an isolated

fixed point p ∈ Qn−2 ⊂ Pn−3 ⊂ Pn−1 the quotient
tdTy(Qn−2)|p

eu(p) (where eu(p) ∈ H∗T(pt) is the

Euler class of the ambient tangent representation) does not depend on the ambient space. After
these remarks about notation we state our first formula:

Formula 3. Consider the complements of the quadrics X ′n = Pn−1 \Xn and Q′n = Pn−1 \Qn.
We have the equation

tdTy(X ′n)− tdTy(Q′n) = y tdTy(Q′n−2)

in the equivariant cohomology H∗T(Pn−1)[y] for n > 2. For the closed varieties we have

tdTy(Qn)− tdTy(Xn) = y tdTy(Q′n−2) .

2. Topological and analytic localization theorems

First let us note that equivariant cohomology is a homotopy invariant, for example for any
T-representation V the restriction map H∗T(V )→ H∗T({0}) is an isomorphism. Therefore we get

for free H∗T(V )
'→ H∗T(V T). We need much stronger property of equivariant cohomology. The

main tool for computations is the Localization Theorem, see [Bo, Ch.XII §6] or [Qu]:

Theorem 4 (Topological Localization Theorem). [Qu, Theorem 4.4]
Assume either X is a compact topological space or that X is paracompact, cdQ(X) < ∞.

Suppose a compact torus T acts on X and the set of identity components of the isotropy groups
of points of X is finite. Then the restriction map H∗T(X) → H∗T(XT) is an isomorphism after
localization in the multiplicative system generated by nontrivial characters.

We apply Topological Localization Theorem to algebraic varieties with algebraic torus action.
The fixed points of the compact torus are the same as the fixed points of the full torus. The
theorem may be applied to any algebraic variety, but it may very well happen (exactly when
XT = ∅) that the localized equivariant cohomology is trivial.

For differential manifolds the isomorphism was made explicit by Atiyah-Bott and Berline-
Vergne, see also [EdGr].

Theorem 5 (Topological Localization Theorem). [AtBo, page 9], [BeVe] Let T be a compact
torus and let M be a compact T-manifold. Let

MT =
⊔
α∈I

Fα

be the decomposition of the fixed point set into connected components. Denote by ια : Fα → M
the inclusion. Let

eu(Fα) ∈ H∗T(Fα) ' H∗(Fα)⊗H∗T(pt)
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be the equivariant Euler class of the normal bundle to Fα. Let S be the multiplicative system
generated by nontrivial characters. Then

(1) The class eu(Fα) is invertible in S−1H∗T(Fα).
(2) For any equivariant cohomology class ω ∈ H∗T(M), the following equality in S−1H∗T(M)

holds:

(6) ω =
∑
α∈I

ια∗

(
ι∗α(ω)

eu(Fα)

)
.

The resulting integration formula follows, [AtBo, Formula 3.8].

The case of compact algebraic smooth varieties is special. The equivariant cohomology with
respect to an algebraic torus action is always a free module over H∗T(pt) (see [GKM] and the
references therein). Therefore the restriction map H∗T(M)→ H∗T(MT ) is a monomorphism. The
equality of the classes restricted to the fixed point set implies their equality. We will use just this
principle. Nevertheless, having in mind the formula (6), it is natural and convenient to consider
the localized Hirzebruch class

ι∗α(tdTy(−))

eu(Fα)

in the localized cohomology of fixed point set components. The spaces we consider here have
only isolated fixed point sets, thus the localized Hirzebruch classes are polynomials in y with
coefficients in the ring of Laurent polynomials in ti’s. In fact the coefficients are rational functions
in Ti = e−ti .

3. Properties of equivariant Hirzebruch class

Now we would like to recall basic properties of the equivariant Hirzebruch class, which in fact
formally do not differ from the properties of the non-equivariant class. For an equivariant line
bundle L the class tdTy(L) is given in equivariant cohomology by the power series

t
1 + y e−t

1− e−t
,

with t the first equivariant Chern class of L. Then the corresponding class of a vector bundle
is given in terms of Chern roots, and the class for a smooth manifold M is the corresponding
class of the tangent bundle TM . In the localized classes of a smooth manifold appears then the
(corrected) factor

Φ(T ) =
1 + yT

1− T
with T = e−t at the normal directions to the fixed point set.

The important properties of the equivariant Hirzebruch classes of singular varieties used in
this paper are:

(1) the normalization for smooth spaces (the Hirzebruch class is a series in equivariant Chern
classes of tangent bundle),

(2) covariant functoriality under proper maps,
(3) additivity.

For example: Let π : M̃ →M be an equivariant proper morphism, with π|M̃\E an isomorphism

on the image for some E ⊂ M̃ , a closed invariant subspace (for example the blowup of the origin
in M = Cn with E = Pn−1 the exceptional divisor, as used later on). Then

π∗(td
T
y(M̃)− tdTy(E)) = tdTy(M)− tdTy(π(E)) .
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As an example for additivity (or the inclusion-exclusion principle) one can calculate:

tdTy(Xn) = tdTy({xm = 0}) + tdTy({x−m = 0})− tdTy({x−m = xm = 0}) ;

since Xn = {xm = 0} ∪ {x−m = 0} but the intersection is counted twice. In particular one
can calculate in this simple way the class of the singular space Xn in terms of classes of smooth
spaces.

The next property follows from (1)-(3):

(4) multiplicativity and, more generally, contravariant functoriality with respect to fibrations.

For example if p : ν → X is an equivariant vector bundle, then the Hirzebruch class of the total
space of ν is equal to

(7) tdTy(Tot(ν)) = p∗
(
tdTy(ν) · tdTy(X)

)
.

Here tdTy(ν) is understood as a characteristic class of a vector bundle.

4. Proof of Formula 3.

By Localization Theorem 4 it is enough to check equality at each fixed point of T-action. The
fixed points pi corresponds to the coordinate lines in Cn. Let us show the calculation for even
n = 2m. At the point pi the quadric is given by the equation

u−i +
∑
j 6=i

u−juj = 0

in coordinates uj = xj/xi. For a fixed point pi the Hirzebruch class tdTy(Qn) divided by Euler
class of at pi (i.e., the localized Hirzebruch class) is equal to the product

1

eu(pi)
tdTy(Qn) =

∏
weights of Tpi

Qn

Φ(e−w) .

Here the product is taken with respect to the weights appearing in the tangent representation
TpiQn (see [We3, §1]).

Let us set t−i = −ti and Ti = e−ti . The weights of the tangent representation TpiPn−1 are
equal to tj − ti for j 6= i. The normal direction has weight t−i − ti = −2ti. Since Q′2m is the
complement of Q2m in Pn−1, one gets by additivity that

1

eu(pi)
tdTy(Q′2m)pi =

1

eu(pi)
tdTy(Pn−1)pi −

1

eu(pi)
tdTy(Q2m)pi .

• At each point pi, |i| ≤ m the localized Hirzebruch class is equal to

(Φ(T−2
i )− 1) ·

m∏
j=1,j 6=i

Φ(TjT
−1
i )Φ(T−1

j T−1
i ) .

The class tdTy(X ′2m) is equal to

tdTy(Pn−1)− tdTy({xm = 0})− tdTy({x−m = 0}) + tdTy({xm = x−m = 0}) .

Therefore the localized class 1
eu(pi)

tdTy(X ′2m)|pi is the following

• at the points pi, |i| < m

Φ(T−2
i ) · (Φ(TmT

−1
i )− 1)(Φ(T−1

m T−1
i )− 1) ·

m−1∏
j=1,j 6=i

Φ(TjT
−1
i )Φ(T−1

j T−1
i )
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since

Φ(TmT
−1
i )Φ(T−1

m T−1
i )− Φ(TmT

−1
i )− Φ(T−1

m T−1
i ) + 1 =

= (Φ(TmT
−1
i )− 1)(Φ(T−1

m T−1
i )− 1)

• at the point pi, |i| = m

(Φ(T−2
i )− 1) ·

m−1∏
j=1

Φ(TjT
−1
i )Φ(T−1

j T−1
i ) .

For the points p−m and pm which do not belong to ι(Qn−2) the considered classes are equal.
At the point pi for |i| < m the classes tdTy(Q′2m), y tdTy(Q′2m−2) and tdTy(X ′2m) have the common
factor

m−1∏
j=1,j 6=i

Φ(TjT
−1
i )Φ(T−1

j T−1
i )

and it is enough to check the equality

Φ(T−2
i ) · (Φ(TmT

−1
i )− 1) · (Φ(T−1

m T−1
i )− 1)−

−(Φ(T−2
i )−1) · Φ(TmT

−1
i ) · Φ(T−1

m T−1
i ) = y(Φ(T−2

i )− 1) .

After multiplying by

(1− T−2
i ) · (1− T−1

i Tm) · (1− T−1
i T−1

m )

the equality reduces to

(1 + yT−2
i ) · (y + 1)(TmT

−1
i ) · (y + 1)(T−1

m T−1
i )−

−(y + 1)(T−2
i ) · (1 + yTmT

−1
i ) · (1 + yT−1

m T−1
i ) =

= y(y + 1)(T−2
i ) · (1− TmT−1

i ) · (1− T−1
m T−1

i ) ,

which one verifies easily. The proof for n odd is identical except that all the expressions are
multiplied by Φ(T±1

i ). 2

Also for n = 2 if we admit that Q0 = P−1 = ∅ and tdy(∅) = 0 the Formula 3 holds.

5. Affine cones

Let us extend the torus action by adding one factor to T. Now we consider T = (C∗)m+1 the
character of the additional coordinate of T is denoted by t and T = e−t. The weights of the
action on Cn are

(t+ t−m, t− t−m+1, . . . , t+ tm−1, t− tm)

in the even case and

(t+ t−m, t− t−m+1, . . . , t, . . . , t+ tm−1, t− tm)

in the odd case. It does not change the action on Pn−1 on which the additional coordinate of T
acts trivially.

Formula 8. Consider the complements of the affine cones Q∗n = Cn \ Q̂n and X∗n = Cn \ X̂n.
In the equivariant cohomology H∗T(Cn)[y], for n ≥ 2, we have the equation

tdTy(X∗n)− tdTy(Q∗n) = y tdTy(Q∗n−2).
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Proof. Let Y denote Xn, Qn or Qn−2. Let π : C̃n → Cn be the blowup at the origin with

i : Pn−1 ↪→ C̃n the inclusion of the exceptional divisor. The Hirzebruch class of Y ∗ ⊂ Cn can

be computed by push-forward of the class tdTy(π−1(Y ∗)), since π : C̃n \ Pn−1 → Cn \ {0} is
an isomorphism. Here we are using functoriality of the equivariant Hirzebruch classes. The

projection p : C̃n → Pn−1 has a structure of a vector bundle ν = O(−1). We apply the formula
(7) and additivity for π−1(Y ∗) = p−1(Y ′) \ i(Y ′):

tdTy(Y ∗) = π∗td
T
y(π−1(Y ∗)) = π∗p

∗ ((tdTy(ν)− c1(ν)) · tdTy(Y ′)
)
.

The expression is linear with respect to tdTy(Y ′). It follows that the linear relation (Formula 3)

among Hirzebruch classes tdTy(X ′n), tdTy(Q′n) and tdTy(Q′n−2) in H∗T(Pn−1)[y] implies the corre-
sponding relation in H∗T(Cn)[y]. 2

Remark 9. More generally for the degeneration

λ

k∑
i=1

x−ixi +

m∑
i=k+1

x−ixi

(and similarly for n odd) we have

tdTy(Q∗n)− tdTy(Y ∗) = (−y)m−k tdTy(Q∗2k)

where Y is the hypersurface corresponding to λ = 0. The general case follows from the case
k = m− 1, which was studied here.

We obtain the explicit formula

Corollary 10. The equivariant Hirzebruch class of the complement of the quadratic cone

Q∗n = Cn \ Q̂n is equal to:

for n = 2m

tdTy(Q∗n) =

m−1∑
k=0

(−y)ktdTy(X∗n−2k)

for n = 2m+ 1

tdTy(Q∗n) =

m−1∑
k=0

(−y)ktdTy(X∗n−2k) + (−y)mtdTy(C \ 0) ,

where

tdTy(X∗2m)

eu(0)
= (Φ(TTm)− 1) · (Φ(TT−1

m )− 1) ·
m−1∏
j=1

Φ(TTj)Φ(TT−1
j )

and

tdTy(X∗2m+1)

eu(0)
= Φ(T ) · (Φ(TTm)− 1) · (Φ(TT−1

m )− 1) ·
m−1∏
j=1

Φ(TTj)Φ(TT−1
j ) ,

tdTy(C \ 0)

eu(0)
= Φ(T )− 1 .
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6. Positivity

Now we will show that the Hirzebruch classes of Q̂n and Q∗n satisfy certain positivity condition.
For a weight w ∈ Hom(T,C∗) let us set a new variable Sw = e−w−1. Also let us set δ = −1−y.

Corollary 11. The Hirzebruch class of the complement of the affine cone Q∗n = Cn \Q̂n is equal
to a polynomial in δ and Sw with nonnegative coefficients divided by the product of the variables
Sw, where w are the weights of the representation Cn.

Proof. It suffices to note that for the standard action of one dimensional torus on C we have
(with T = e−t as before)

tdTy(C)

eu(0)
= Φ(T ) =

1− T + (1 + y)(T − 1 + 1)

1− T
=
St + δ(St + 1)

St

and
tdTy(C \ {0})

eu(0)
=
tdTy(C)

eu(0)
−
tdTy({0})
eu(0)

= Φ(T )− 1 =
δ(St + 1)

St
.

Moreover, since X̂ ′n−2k = Cn−2−2k × (C∗)2 for k = 0, . . . ,m − 1, by multiplicativity, the Hirze-

bruch class tdTy(X̂ ′n) is a nonnegative expression. The claim for Q∗n follows from Corollary 10.
2

For the original closed varieties we have:

Formula 12.

tdTy(Q̂n)− tdTy(X̂n) = y
(
tdTy(Cn−2)− tdTy(Q̂n−2)

)
.

Proof. We rewrite the Formula 8 passing to the complement(
tdTy(Cn)− tdTy(X̂n)

)
−
(
tdTy(Cn)− tdTy(Q̂n)

)
= y

(
tdTy(Cn−2)− tdTy(Q̂n−2)

)
.

Hence we obtain what is claimed. 2

Corollary 13. The Hirzebruch class of the affine cone of Q̂n is equal to a polynomial in δ and
Sw with nonnegative coefficients divided by the product of the variables Sw, where w are the
weights of the representation Cn.

Proof. Transforming the Formula 12 we obtain that

tdTy(Q̂n) = −y tdTy(Q̂n−2) +
(
tdTy(X̂n) + y tdTy(Cn−2)

)
(14) = −y tdTy(Q̂n−2) + tdTy(Cn−2) · −(1 + y)(T 2 − 1)

(1− TT−1
m )(1− TTm)

.

Here we use additivity and multiplicativity of the Hirzebruch class applied to the decomposition

X̂n = Cn−2 × (C+ ∪ C− \ {0}) with

tdTy(C±)

eu(0)
=

1 + yTT±1
m

1− TT±1
m

.

The formula (14) follows from the identity

1 + yTTm
1− TTm

+
1 + yTT−1

m

1− TT−1
m

− 1 + y =
−(1 + y)(T 2 − 1)

(1− TT−1
m )(1− TTm)

.
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We note that
−(1 + y)(T 2 − 1)

(1− TTm)(1− TT−1
m )

=
δ(S2

t + 2St)

St+tmSt−tm
is a positive expression. We proceed inductively having in mind that the coefficient before

tdTy(Q̂n−2) is −y = 1 + δ. 2

The Corollaries 11 and 13 confirm the general rule (not proved so far) that the local Hirzebruch
classes of Schubert cells are positive expressions in the variables associated with tangent weights.
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