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THE BILIPSCHITZ GEOMETRY OF THE Ak SURFACE SINGULARITIES

DONAL O’SHEA

Abstract. Although it has been known for over half a century that analytic varieties are

topologically conical in the neighborhood of a singular point, it has only become clear in the
last decade that they need not be metrically conical. This paper explores that phenomenon

in the case of the Ak singularities.

1. Introduction

It has been known for a long time that a complex analytic variety V ⊂ Cn is locally conical
in two essentially different ways. First, near any point, V lies within arbitrarily small conical
neighborhoods of its Zariski tangent cone, a complex analytic cone of the same dimension as V .
Secondly, near any point, V is homeomorphic to the real cone over its link, even as an embedded
variety. It is natural to ask whether either of these statements might be strengthened.

For example, the smooth part of V inherits a Riemannian metric from Cn which extends to a
metric on V (often called the inner metric), and similarly the real cone over the link of V carries
an induced metric. One sees quickly that it is too much to expect that locally V be isometric
to the real cone over its link, but one might ask if it is bilipschitz to the cone over its link (or,
for that matter, to any real cone.) Examples due to Brasselet (see [1]) show that this is not the
case for real surface singularities. However, complex curve singularities are always bilipschitz to
the cone over over their link [11], the tangent cone of a complex analytic variety has the same
dimension as the variety at any point, and it seemed possible that the same might be true for
complex surface singularities.

In the last decade, however, it has been become apparent that although topologically conical,
a variety of dimension greater than one is often not metrically conical in any reasonable way. A
lovely theory has emerged [9] that makes connections with some results in local complex analytic
geometry from over thirty years ago. This paper, which is wholly expository, explores these
phenomena through a simple (in fact, the simplest) example in which everything is explicitly
computable.

2. Notation and Definitions

We collect some definitions and notational conventions that we will use.
Since we are interested in local properties of a variety V ⊂ Cn near a point p ∈ V , we will

translate p to the origin 0 , so assume that 0 ∈ V and that this is the point in which we are
interested. We then typically suppress subscripts involving p (or 0 ).

If A is any subset of Cn and s ∈ C a number, we write sA for the set {sa : a ∈ A}. We define
the real (respectively, complex) cone over A (based at 0 ) to be the sets

ConeRA = {sa : s ∈ R, 0 ≤ s ≤ 1, a ∈ A}
ConeCA = {sa : s ∈ C, |s| ≤ 1, a ∈ A}.
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A subset of Cn is said to a real (or complex) cone if it is either a cone over a subset of Cn or
the extension RConeRA (resp., CConeCA) of such to be closed under multiplication by all reals
(or complexes). For any ε > 0 real, we write Sε and Bε for the sphere and ball, respectively, of
radius ε in Cn centered at the origin. In particular, εS1 = Sε and Bε is the complex (and real)
cone over Sε.

We let CV denote the Zariski tangent cone to V at 0. It has a natural complex analytic
structure. As a set,

CV = {v ∈ Cn : there exist xi ∈ V, si ∈ C, xi → 0 with sixi → v}.

If 0 < δ < π is a small positive real number, the δ-conical neighborhood of CV , denoted
Nδ(CV ) is the set {x ∈ Cn :x 6= 0 such that there exists v ∈ CV such that the angle between
real segments ConeR{x} and ConeR{v} is less than δ}. A variety is locally well-approximated by
its Zarisiki tangent cone in the sense that, near any of its points, V lies within arbitrarily small
conical neighborhoods of CV . That is, given δ > 0, there exists ε > 0 such that

Bε ∩ V ⊂ Bε ∩Nδ(CV ).

This is a very old result, and the proof follows from directly from fact, easily established from
the definition of CV , that for any ε,

CV ∩ Sε = lim
t→0

(
1

t
V ∩ Sε).

It has been known for over half a century (see[15]) that for each sufficiently small ε > 0, there
is a homeomorphism h : Bε → Bε with h(0 ) = 0 such that

h(V ∩Bε) = ConeR(V ∩ Sε).

In particular, for sufficiently small ε, the sets V ∩ Sε are homeomorphic and any one is called
the link of V at 0 .

A variety V ⊂ Cn inherits two notions of distance from Cn. The first, the so-called outer
metric, assigns the distance between two points x, y ∈ V ⊂ Cn to be their distance in Cn
(that is, ‖x − y‖). The second, the inner metric, assigns the distance between x and y to the
distance on V with respect to the metric on V induced by that on Cn. (This is the infimum
of the lengths of real-analytic paths in V connecting x and y, or equivalently the extension to
V of the induced Riemannian metric on the smooth points of V .) A map between two metric
spaces is said to be an isometry if it preserves distances between points. A map is said to be
bilipschitz if the distortion between the images of any two points is bounded above and below by
a non-zero constant. More precisely, a map h : V →W between two varieties V,W with metrics
dV and dW is a bilipschitz homeomorphism if there exists a nonzero constant K > 0 such that
1
K dV (x, y) ≤ dW (h(x), h(y)) ≤ KdV (x, y) for any x, y ∈ V . Unless explicitly stated otherwise,
the metric on a variety is taken to be the inner metric. Two varieties V and W are said to be
bilipschitz equivalent if there is a bilipschitz map taking one onto the other. A variety V is said
to be metrically conical if it is bilipschitz equivalent to a cone over its link.

We have seen that locally a variety V ⊂ Cn is wedged between a complex cone and a real
cone. The bilipschitz behavior of V depends on the behavior of V ∩ Sε as ε → 0. Rescaling
V ∩ Sε gives

1

ε
(V ∩ Sε) =

1

ε
V ∩ S1.

So, we want to study the behavior of the degeneration

1

ε
V ∩ S1 → CV ∩ S1
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as ε→ 0. On the other hand, work in the late 1970s and early 1980s by Henry, Lê, Teissier and
others (see [12], [13]. [14]) established that the complex-analytic behavior of this degeneration
is detected by the limits of tangent spaces to a variety V at the origin, the so-called Nash cone.
As a result, the Nash cone is linked to the bilipschitz behavior of a cone and the failure of metric
conicality.

3. The Ak-singularities

Consider the Ak family of surface singularities. Fix the local equations:

Vk = {(x, y, z) ∈ C3 : xy − zk+1 = 0}.
For all k > 2, the tangent cone

CVk = {(x, y, z) ∈ C3 : xy = 0}
is the union of the planes {x = 0} and {y = 0}. Thus, given any δ > 0, we can choose ε > 0
such that Vk ∩Bε lies entirely within a δ-conical neighborhood of {xy = 0}.

Since Vk has an isolated singularity at the origin, Vk ∩ Sε will be a smooth, necessarily three-
dimensional, manifold for ε > 0 sufficiently small. An easy computation shows this holds without
restriction on ε > 0, so we can take ε = 1. Fittingly, since the Ak are arguably the simplest
and best understood surface singularities, the manifolds Vk ∩S are among the simplest and best
understood three-dimensional manifolds: the lens spaces.

Definition. The lens space L(p, q) (where p and q are coprime integers) can be defined in one
of three equivalent ways.

1. L(p, q) is the quotient of the three-sphere S3 = {(u, v) ∈ C2 : |u|2 + |v|2 = 1} by the Z/p
action (u, v) 7→ (ζu, ζqv) where ζ = e2πi/p.

2. L(p, q) is the space obtained from a solid three-dimensional ball in R3 by identifying each
point on the upper hemisphere of the boundary 2-sphere to a point on the lower hemisphere as
follows: rotate the point on the upper hemisphere clockwise through angle 2πq/p and identify
with the point on the lower hemisphere immediately below.

3. L(p, q) is the space obtained by attaching two disjoint solid tori along their boundaries so
that so that the meridian (a (0, 1) curve) of one goes to a (p,−q) curve (that is a curve wrapping
p times along the longitude and q times in the opposite direction of the meridian) of the other.

The equivalence of the three definitions is sometimes established in elementary topology classes
(see [17] or [18]) and is a pleasant exercise (the biggest nuisance is keeping the orientations
straight). Details can be found, for example, in Rolfsen [17] or Thurston [18]. The following
result and proof are classical. We shall reprove it in a way that gives more metric information
shortly.

Proposition 3.1. The link Vk ∩ S1 is homeomorphic to the lens space L(k + 1, k).

Proof. (Due to du Val [10]). Vk is parameterized by

(s, t) 7→ (sk+1, tk+1, st).

This is a k+1 to 1 map with (s, t) and (ηrs, ηkrt) mapping to the same point where η = e2πi/(k+1)

and 0 < r ≤ k + 1. Hence Vk ∩ S1 is the quotient of

Σk ≡ {(s, t) ∈ C2 : |s|2(k+1) + |t|2(k+1) + |st|2 = 1}
by the Z/(k + 1) action (u, v) 7→ (ηu, ηkv). One checks easily that for all k > 1, the manifold
Σk is diffeomorphic to the three-sphere S3 (the map being radial projection: any real ray in
C2 from the origin to a point of Σk meets S1 in precisely one point and conversely). Hence
Vk ∩ S1 ≈ L(k + 1, k). �
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Note that if η = e2πi/(k+1) as above, then ηk = η−1. So, L(k + 1, k) = L(k + 1,−1).
Thus Vk ∩ B1 is homeomorphic to a cone over the lens space Vk ∩ S1 ≈ L(k + 1, k). As

discovered by Birbrair, Fernandes, and Neumann [5], it is not, however, bilipschitz to a cone
over L(k + 1, k).

To investigate this, we consider the rescaled deformation to the tangent cone. That is,

1

t
Vk ∩ S1 → CVk ∩ S1

as t ∈ C tends to 0. Here, everything is compact, and convergence is pointwise. For every t > 0,
the left hand side is homeomorphic to the lens space L(k+1, k). This is because scaling by t is a
homeomorphism and t( 1

tVk∩S1) = Vk∩St. Since CVk = {xy = 0}, the right-hand side CVk∩S1

is the union of S1 ∩ {x = 0} and S1 ∩ {y = 0}, which is the union of the unit three-dimensional
sphere S3

yz centered at origin of the yz-coordinate plane and the unit three-dimensional sphere

S3
xz centered at the origin of the xz-coordinate plane. These two three-spheres meet in the

unit-circle S1
z in the z-axis. So, topologically, we have

Lens space L(k + 1, k)→ Union of two 3–spheres S3
xz ∪ S3

yz.

We want to understand this degeneration metrically.
Let fk := xy − zk+1 denote the local equation for Vk. We have

(x, y, z) ∈ 1

t
Vk ⇐⇒ fk(t(x, y, z)) = 0 ⇐⇒ t2(xy − tk−1zk+1) = 0.

We package this as a hypersurface in the usual manner.

W = {(t, x, y, z) ∈ C4 : Fk = xy − tk−1zk+1 = 0} ⊂ C4.

For fixed t, we let

Wt = {(x, y, z) ∈ C3 : (t, x, y, z) ∈W}.

Clearly, 1
tVk = Wt and W0 = CVk. The intersection of W with the tube

{(t, x, y, z) ∈ C4 : |x|2 + |y|2 + |z|2 = 1}

tracks the rescaled (to radius 1) intersection of Vk with spheres of radius t as t → 0. We know
that Wt ∩ S1 is homeomorphic to L(k + 1, k), and W0 ∩ S1 is the union of the unit three-sphere
in the xz-plane and the unit three-sphere in the yz-plane.

The simplicity of the equations allows direct computation to offer insight. Write

Wt ∩ S1 = Xt ∪ Yt

where

Xt = {(x, y, z) ∈Wt ∩ S1, |x| ≤ |y|}

and

Yt = {(x, y, z) ∈Wt ∩ S1, |y| ≤ |x|}.

Since we cannot have both x and y be equal to 0 in Wt ∩S1, note that y 6= 0 in Xt and x 6= 0 in
Yt. This allows us to display both sets as graphs. In particular, Xt is the graph x = tk−1zk+1/y
with |x|2 + |y|2 + |z|2 = 1, |x| ≤ |y| (and similarly Yt is the graph y = tk−1zk+1/x, with
|x|2 + |y|2 + |z|2 = 1, |y| ≤ |x|).

Proposition 3.2. The sets Xt and Yt have common boundary a two-torus.
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Proof. The boundary of both Xt and Yt is the set

{(x, y, z) ∈Wt ∩ S1, |x| = |y|}.

Set y = reiθ, z = seiφ. Note that x is uniquely determined by the choice of y and z, and
that neither y nor z can equal zero in ∂Xt. The positive number r is determined uniquely by
the positive number s, since r2 = |t|k−1sk+1. Finally, the positive number s is also uniquely
determined, because the constraint |x|2 + |y|2 + |z|2 = 1 gives 2|t|k−1sk+1 + s2 = 1, and there
is a unique positive solution the latter (since the left side is strictly increasing for s > 0). Call

it s0, and let r0 be such that r20 = |t|k−1sk+1
0 . On the other hand, 0 ≤ θ < 2π and 0 ≤ φ < 2π

are arbitrary, so the subset {(x, y, z) : y = r0e
iθ, z = s0e

iφ} is manifestly a torus (that is, a set
homeomorphic to S1 × S1), and the latter is ∂Xt = ∂Yt. �

Proposition 3.3. The sets Xt and Yt are solid tori, disjoint except for their common boundary
which is a two-torus.

Proof. It is clear that Xt and Yt are disjoint except for their common boundary which is a
two-torus by proposition 3.2 above. Since y 6= 0 in Xt, we can write

Xt = {(x, y, z) = (tk−1zk+1/y, y, z),with

(|t|k−1|z|k+1/|y|) ≤ |y|, and(
|t|k−1|z|k+1/|y|

)2
+ |y|2 + |z|2 = 1}.

As in the proof of Proposition3.2, set y = reiθ, z = seiφ. Then

Xt = {(x, y, z) = ((tk−1sk+1/r)e(k+1)θ−φ, reiθ, seiφ),

|t|k−1sk+1 ≤ r2,
|t|2(k−1)s2(k+1)/r2 + r2 + s2 = 1}.

The last displayed equation can be rewritten as r4 − (1− s2)r2 + |t|2(k−1)s2(k+1) = 0 whence

r2 =
1

2

(
(1− s2)±

√
(1− s2)2 − 4|t|2(k−1)s2(k+1)

)
.

One checks that choosing a minus sign in the equation above rules out |t|k−1sk+1 ≤ r2 for small
|t|, whence r is the positive square root:

r =

√
1

2

(
(1− s2) +

√
(1− s2)2 − 4|t|2(k−1)s2(k+1)

)
.

In particular, r = r(s) is uniquely determined by s and as s increases from 0 to s0, r = r(s)
decreases from 1 to r0 > 0 where r0 and s0 are as in the proof of Proposition 3.2 (that is r0 is

the positive square root of |t|k−1sk+1
0 where s0 is the unique solution of 2|t|k−1sk+1 + s2 = 1).

So, for fixed t, we have

Xt = {
(

(tk−1sk+1

r(s)
e(k+1)θ−φ, r(s)eiθ, seiφ

)
, 0 ≤ s ≤ s0, 1 ≥ r(s) ≥ r0}

Since r(s) is monotone decreasing and strictly positive on the interval [0, s0], this displays Xt as
a solid torus. By symmetry, Yt is also a solid torus. �

We are now ready to describe metrically the degeneration of the rescaled links 1
tVk ∩ S1 to

the link CVk ∩ S1 of the tangent cone.
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Proposition 3.4. For each t 6= 0, the link 1
tVk ∩ S1 is the union of two congruent solid tori

Xt, Yt in S1 disjoint except for their common boundary ∂Xt = ∂Yt. With suitable framings, a
meridian on one corresponds to a (k+ 1,−k) curve on the other (so that their union is the lens
space L(k + 1, k)). As t tends to zero, the torus Xt ∩ Yt shrinks to the unit circle in z-axis, Xt

to {x = 0} ∩ S1, Yt to {y = 0} ∩ S1 and Xt ∪ Yt tends to the union of two three-spheres in the
unit 5-sphere S1intersecting in a circle of radius one in the z-axis.

Proof. Note that the proof of Proposition 3.3 quickly yields framings of the solid tori Xt and
Yt. In particular, we see immediately that a meridian on the torus ∂Xt is a (k + 1, 1) curve on
the same torus thought of as ∂Yt. Since L(k + 1,−1) = L(k + 1, k) (see the remark following
Proposition 3.1), this gives an alternative proof of Proposition 3.1. (Alternatively, it yields an
unusual proof of the equivalence of characterizations 1 and 3 in the definitions of the lens space
L(k + 1, k).)

The remaining assertions of the proposition follow from the equations for Xt, Yt and
∂Xt = ∂Yt in the proofs of Propositions 3.2 and 3.3. �

Note that as the torus {|x| = |y|} ∩ 1
tVk ∩ S1 shrinks to the circle {x = y = 0, |z| = 1} the

topology encoded in how Xt and Yt are identified along their common boundary is lost and the
lens space L(k + 1, k) simplifies to two three-spheres meeting only along a geodesic circle.

The collapse of the torus to a circle in the deformation 1
tVk∩S1 → CVk∩S1 is an obstruction

to metric conicality. For it corresponds to the separating set {|x| = |y|} ∩ Vk (that is, a set Z
that separates Vk, but has dimCZ < dimCVk). Alternatively, any choice of meridians in the
tori {|x| = |y|} ∩ 1

tVk that vary smoothly with t gives a choking horn (see [4]).

4. Limits of Tangent Spaces

The phenomenon detailed in the last section with the varieties Vk ⊂ C3 whereby a torus
collapses onto a circle as 1

tVk ∩ S1 → CVk ∩ S1, resulting in a loss of topology, is quite general,
and turns out to be linked to a phenomenon elucidated in the late 1970s and early 1980s by Lê,
Henry, Teissier and others, namely the structure of limiting tangent spaces to a variety V ⊂ Cn
at a singular point.

Just as considering the limits of secants to a variety at a singular point gives a geometrically
significant object (namely, the Zariski tangent cone), one can usefully consider limits of other
geometric obects associated to points of a variety as one tends to a singular point. In particular,
we can consider the set of limits of tangent spaces at smooth points of a variety V as one tends
to a singular point, the so-called Nash cone, denoted N(V ). Whitney had originally shown that
any limit of tangent spaces to the tangent cone of a variety is, in fact, a limiting tangent space
to the variety (that is, N(CV ) ⊂ N(V )), but not conversely. The limits of tangent spaces to V
which are not limits of tangent spaces to the tangent cone reveal features of the local geometry
of a variety which are not captured by the tangent cone and, hence, are the parts of the Nash
cone of particular interest. In the case of surfaces, the following result, due to Lê and Henry [11]
in the case of an isolated singularity and to Lê [12] in general, characterizes the “extra” limiting
tangent spaces to a surface in Cn. Lê, Teissier and others [13, 14] have generalized these results
to algebraic varieties of arbitrary dimension and codimension. The nicest formulation is in terms
of the conormal cone, which coincides with the Nash cone in the case of hypersurfaces.

Theorem 4.1. Suppose that V is an algebraic surface, 0 ∈ V ⊂ C3. There exists a finite
(possibly empty) set of lines `1, . . . , `r ⊂ CV , 0 ∈ `i for all 1 ≤ i ≤ r, (called exceptional
lines) such that

N(V ) = N(CV )
⋃ (

r⋃
i=1

N(`i)

)
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where N(`i) denotes the pencil of all planes in C3 containing `i.

The theorem is proved in [13] by considering the deformation of V to CV as we did with Vk.
The exceptional lines correspond to the lines along which the deformation is not equisingular
in a well-defined sense. (More precisely, take a local equation {f = 0} for V , and consider the
hypersurface W ⊂ C4 with equation F = 0 where F (t, x, y, z) = f(tx, ty, tz)/tr, with r being the
multiplicity of f at the origin. In the case when the singularity is isolated, one then examines
where Whitney condition a) does not hold along the stratum W ∩ {t = 0}.) The exceptional
lines are explicitly computable because there are a number of useful equivalent characterizations
of them. In the case Vk = {(x, y, z) ∈ C3 : xy − zk+1 = 0}, no machinery is needed, and direct
computation establishes the following.

Proposition 4.2. The Nash cone N(Vk) consists all complex planes containing the z-axis. (So
N(CVk) is the union of the coordinate planes {x = 0} and {y = 0}, and there is one exceptional
line, the z-axis.)

Proof. Direct computation establishes that the limit of tangent spaces to Vk along any path
u(t) = (x(t), y(t), z(t)) tending to the origin on Vk is well-defined (and either {x = 0} or
{y = 0}) as long as u(t) is not tangent to the z-axis. Conversely, one easily constructs paths
u(t) ⊂ Vk tangent to the z-axis along which the tangent planes to Vk tend to any prescribed
plane containing the z-axis. �

Now, let us return to the general situation where V ⊂ C3 is a surface, and consider the
deformation

1

t
V ∩ S1 → CV ∩ S1.

If `1, . . . , `r ⊂ CV are exceptional lines, then

`i ∩ S1

are real circles. It may be, as in the case of the Vk that one or more of these circles is the locus
along which a two-dimensional torus (or higher genus surface) in the rescaled link collapses. In
these instances, we have an obstruction to metric conicality. In other cases, (such as

V = {x2 + yk − zk = 0}, k > 2,

where `1, . . . `k are the k exceptional lines in {x = 0} corresponding the k factors of yk − zk),
the circles `i ∩ S1 do not represent loci along onto which a two-dimensional surface retracts and
do not obstruct metric conicality.

Several conclusions emerge from these observations. First, if V has an isolated singularity,
and there are no exceptional lines, then V is metrically conical. Second, some exceptional lines
obstruct metric conicality, whereas others do not. Since exceptional lines are easily computable,
it would be useful to have some effective criterion to tell the two cases apart. Third, it would be
useful to have a catalog of possible topological and metric degenerations along exceptional lines.
This would give another way to classify surface singularities.
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