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SIMPLE CURVE SINGULARITIES

JAN STEVENS

Abstract. In this paper we classify simple parametrisations of complex curve singularities
of arbitrary embedding dimension. Simple means that all neighbouring singularities fall in
finitely many equivalence classes. We take the neighbouring singularities to be the ones
occurring in the versal deformation of the parametrisation. This leads to a smaller list than
that obtained by looking at the neighbours in the space of multi-germs with a fixed number
of branches. Our simple parametrisations are the same as the complex version of the fully
simple singularities of Zhitomirskii, who classified real plane and space curve singularities.
The list of simple parametrisations of plane curves is the A-D-E list. Also for space curves
the list coincides with the lists of simple curves of Giusti and Frühbis-Krüger, in the sense of
deformations of the curve. For higher embedding dimension no classification of simple curves
is available, but we conjecture that even there the list is exactly that of curves with simple
parametrisations.

Introduction

Curve singularities can be described by parametrisations or by systems of equations. These
two view points lead to different list of simple objects, with simple meaning that all neighbouring
singularities fall in finitely many equivalence classes. This phenomenon was already observed by
Bruce and Gaffney, who classified simple parametrisations of irreducible plane curve singularities
[BrGa]. In this setting the neighbouring singularities are to be found among the maps (C, 0)→
(C2, 0), with image given by an irreducible function, whereas in Arnold’s A-D-E classification
[Ar1] all functions are considered. The classifications were extended to irreducible space curves
by Gibson and Hobbs [GiHo], irreducible curves of any embedding dimension by Arnold [Ar2] and
finally to reducible curves by Kolgushkin and Sadykov [KoSa] on the one hand and to complete
intersections by Giusti [Gi] and determinantal codimension 2 singularities by Frühbis-Krüger
[F-K, FrNe] on the other hand.

A more restricted definition of simpleness for parametrisations was given by Zhitomirskii,
who introduced fully simple singularities [Zh]. The idea is that the neighbouring singularities
of multi-germs of maps should be all curves in the neigbourhood of the image, even those with
more irreducible components. For plane curves he finds exactly the A-D-E singularities, and also
his list of space curves (when corrected) coincides with the lists of Giusti and Frühbis-Krüger
together. The definition is quite natural from the point of view of a somewhat different approach
to simpleness and modality, explicitly formulated by Wall [Wa1]. Given a singularity, the neigh-
bouring singularities are those occurring in its versal deformation. For contact equivalence this
yields the same concept of simpleness as the one obtained by using the space of all functions.
For a parametrisation ϕ : (C, 0)→ (Cn, 0), where (C, 0) is a smooth multi-germ, we can consider
deformations of the map ϕ (see [GLS, II.2.3], and [GrCo]). We call the parametrisation simple,
if there are only finitely many isomorphism classes in the versal deformation of ϕ. A curve is
fully simple in the sense of Zhitomirskii [Zh] if and only if its parametrisation is simple in our
sense.

http://dx.doi.org/10.5427/jsing.2015.12n
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Actually, we consider the complex version of Zhitomirskii’s notion. In contrast to most of the
cited classifications Zhitomirskii [Zh] treats the real case. For curves in 3-space we refer to his
paper. Starting from there it should not be difficult to extend our results to the reals. Only the
relation between equations and parametrisations becomes more complicated. A curve, defined
by real equations, is only the image of a real parametrisation, if it has no complex conjugate
branches.

In this paper we classify simple parametrisations of any embedding dimension, for complex
map germs. Rather than striking the non-simple ones from the long lists of [Ar2, KoSa] we start
from scratch; it is however a good check to compare our list with theirs. Proving simpleness is
more difficult in our context, whereas showing that a singularity is not simple is easier: in all
cases we succeed by giving a deformation to a confining singularity. The list of these is very
simple and contains only the Ln

n+2, the curves consisting of n+ 2 lines through the origin in Cn.
For n = 1 and n = 2 the definition has to be modified (Definition 2.3).

For a plane curve singularity every deformation of the parametrisation gives a deformation
of the image curve, but not every deformation of the curve comes from a deformation of the
parametrisation: a necessary and sufficient condition is that the δ-invariant is constant (see
[GLS, II.2.6]). Without comparing lists we prove that a plane curve with simple parametrisation
is itself simple by showing that a deformation to a confining singularity can always be realised by
a deformation of the parametrisation. We use the characterisation of simple plane curves, given
by Barth, Peters and Van de Ven, as curves without points of multiplicity four on the (reduced)
total transform in each step of the embedded resolution [BPV, II.8].

For space curves the δ-invariant can go down in a deformation of the parametrisation. Then
it is not a (flat) deformation of the image. The simplest example is that of two intersecting
lines which are moved from each other, forming two skew lines. In this case we have only a
partial explanation of the coincidence of the two classifications. The simple parametrisations
come in infinite series, which all are deformations of Ak∨Ln

n, Dk∨Ln
n or Ek∨Ln

n (the union of a
plane germ with n smooth branches in independent directions), and a finite number of sporadic
parametrisations. The sporadic curves have δ ≤ 5. As δ ≥ 5 for all confining singularities, all
curves with δ ≤ 4 are simple, and non-simple curves with δ = 5 have a δ-constant deformation
to a confining singularity.

Beyond embedding dimension three not much is known about simpleness of curves, in the
sense of deforming the image. The curves Lr

r, having δ = r−1 are simple [BuGr, 7.2.8], and also
the curves with δ = r [Gr]. This follows because the genus δ− r+ 1 of the Milnor fibre is upper
semi-continuous. Determining adjacencies by explicit computations with the versal deformation
seems prohibiting difficult, as may be seen from our computations for partition curves [St1]. Any
parametrisation of a curve of multiplicity m can be deformed to a parametrisation of Lm

m, but
this is not true for deformations of the image. As shown by Mumford, there exist non-smoothable
curves, who only deform to curves of the same type, cf. [Gr]. The argument is that the number
of moduli is too large compared to the dimension of a smoothing component; such curves are
therefore not simple. Our lack of knowledge is shown by the old unsolved question whether rigid
reduced curve singularities exist. Such a singularity, having no nontrivial deformations at all, is
certainly simple. But we expect them not to exist. In fact, we believe that our list is also the
list of simple curves (for the problem of deforming the image).

Conjecture. The simple reduced curve singularities are exactly those with simple parametrisa-
tion.

The contents of this paper is as follows. After defining the basic concepts and fixing our
notations we formulate our main results. We give the list of simple parametrisations in Section
4. The proof of the classification is in the next Section. In Section 6 we treat plane curves, while
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the final Section discusses our Conjecture about simple curves. There we give equations and
parametrisations for the simple space curves, together with the names from [Gi] and [F-K].

1. Basic concepts

1.1. Simple curves and parametrisations. We consider germs of irreducible complex curves
(C, 0), classified up to analytic isomorphism. Let n : (C, 0)→ (C, 0) be the normalisation. Here
(C, 0) denotes a smooth multi-germ. The δ-invariant of the curve is δ(C) = dimCOC/OC .
Given an embedding i : (C, 0) → (Cn, 0) the composed map ϕ = i ◦ n : (C, 0) → (Cn, 0) is a
parametrisation of the curve. Classifying curves is equivalent to classifying parametrisations.

We can now consider two deformation problems, that of deforming the curve, and that of
deforming the parametrisation. These are very different problems. By a result of Teissier a
deformation of the parametrisation gives a deformation of the curve and vice versa if and only
if the δ-invariant is constant (see [GLS, II.2.6]). In a deformation of the curve the number
of components can go down: a simple example is the deformation of A3 into A2, given by
y2 = x4 + sx3. In a deformation of the parametrisation the number of components cannot
decrease. The simplest example of deformation of the parametrisation which does not give a
deformation of the image curve, is the deformation of A1 ⊂ C3, which pulls apart the two lines.
The first branch is parametrised by (x, y, z) = (t1, 0, 0), while the second is (x, y, z) = (0, t2, s).
The ideal I of the image needs four generators:

I =
(
yx, zx, y(z − s), z(z − s)

)
.

For s = 0 the ideal defines the two intersecting lines together with an embedded component at
the origin.

Given a deformation problem, suppose that every object X has a versal deformation X → S.

Definition 1.1. An object X is simple if there occur only finitely many isomorphism classes in
the versal deformation X → S.

So an object is simple if it has no moduli and it also does not deform to objects with moduli.

Definition 1.2. A collection of objects forms a collection of confining objects, if no object of
the collection is simple, and every other non-simple object deforms into one of the objects of the
collection.

In particular, the two deformation problems for curve singularities give two notions of sim-
pleness. We will refer to the simple objects as simple parametrisations, and simple curves
respectively.

1.2. A-simple map germs. The first results on simple curve singularities were obtained by
Bruce–Gaffney [BrGa], for irreducible plane curve singularities, using a different concept of
simpleness obtained by considering parametrisations in a fixed space of germs. In fact for any
of Mather’s groups R, K and A (say G) one can define the notion of a G-simple map germ
(kn, 0) → (kp, 0), where k is R or C: a germ is G-simple, if all neighbouring singularities in the
space of map germs (kn, 0)→ (kp, 0) fall into finitely many G-equivalence classes.

A parametrisation of an irreducible complex plane curve singularity is a map germ

ϕ : (C, 0)→ (C2, 0).

Two such map germs ϕ1 and ϕ2 are A-equivalent if and only defining equations f1 and f2 for
their images are K-equivalent, but A-simpleness of ϕ is not equivalent to K-simpleness of a
defining equation f .
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Example 1.3. The germ ϕ(t) = (t4, t5) is A-simple [BrGa, Theorem 3.8] but its defining
equation f = y4 − x5 is unimodal; it is W12 in Arnold’s notation. The function f has a
deformation F (x, y, s) = y4−x5 + s(x2y2 +x4) to X9. This deformation can be parametrised as
Φ(t, s) = (t4 + s(t2 + 1), t5 + s(t3 + t)), but as germ at the origin ϕs(t) = Φ(t, s) is an immersion
for s 6= 0.

Bruce and Gaffney call an irreducible function germ f : (C2, 0)→ (C, 0) irreducible K-simple
if all neighbouring irreducible functions fall into finitely many K-equivalence classes. The
parametrisation of a curve, which is irreducible K-simple, is A-simple. The confining singu-
larities for irreducible plane curve singularities are those with Puiseux pairs (4, 9) and (5, 6). All
irreducible curves below these ones have only finitely many K-orbits, so are therefore irreducible
K-simple. The complete list consists A2k, E6k, E6k+2, W12, W18 and W#

1,2q−1. In particular, the
list of A-simple parametrisations coincides with that of irreducible K-simple functions.

The classification of A-simple curves was extended to space curves by Gibson–Hobbs [GiHo]
and by Arnol’d [Ar2] to irreducible curves of arbitrary embedding dimension and finally to
reducible curves by Kolgushkin–Sadykov [KoSa]. The lists become rather long.

The other possibility in the situation of Example 1.3 is to change the concept of simpleness
for parametrisatrions. This approach was taken by Zhitomirskii [Zh]. We recall his definition of
fully simple singularities, for real parametrised curves.

Definition 1.4. An arc F : [a, b]→ Rn is said to represent a multi-germ

γ :

r∐
i=1

(R(i), 0)→ (Rn, 0)

if the multi-germ (F, F−1(0)) is A-equivalent to γ. Here we assume that the image of F contains
the origin, and that the endpoints F (a) and F (b) are different from the origin.

Definition 1.5. A multi-germ γ of a parameterized curve in Rn is fully simple is there exists
an arc F : [a, b]→ Rn representing γ such that the singularities of all arcs in a neighbourhood of
F at all points of their images sufficiently close to the origin belong to finitely many equivalence
classes.

As Zhitomirskii remarks, this definition extends in a natural way to complex parametrisations.
It is convenient to represent a reducible curve by a finite number of arcs. A nearby fibre in a
good representative of the germ of the versal deformation of a parametrisation gives a finite
collection of complex arcs. The versal deformation contains representatives for the isomorphism
classes of all neighbouring arcs. Therefore the simple complex parametrisations, in the sense of
Definition 1.1 are exactly the complex fully simple parametrised curves of Zhitomirskii [Zh].

1.3. Stably equivalent parametrisations. In a deformation of the parametrisation the em-
bedding dimension can increase. Therefore the collection of confining singularities depends on
the chosen target dimension for the parametrisation we start with. Two parametrisations which
only differ in target dimension are called stably equivalent [Ar2]. A parametrisation is stably
simple if all stably equivalent parametrisations are simple.

Lemma 1.6. A simple parametrisation is stably simple.

Proof. Suppose a simple parametrisation ϕ : (C, 0)→ (Cn, 0) deforms with higher target dimen-
sion into a parametrisation with moduli, so there exist a family ψs : (C, 0) → (Cn+k, 0) with
moduli. For a generic projection π : (Cn+k, 0)→ (Cn, 0) the family π ◦ψs is a deformation of ϕ.
One expects a generic projection of a singularity to have more moduli than the singularity itself,
so π ◦ ψs has moduli, contradicting that ϕ is simple. It suffices to prove this for the confining
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singularities for stable simpleness. By Theorem 3.2 they are the curves Ln
n+2 of Definition 2.3,

and for them the expectation is indeed true. �

We classify stably simple parametrisations. The Lemma justifies that we speak only of simple
parametrisations and drop the word ‘stable’. We always consider a curve as embedded in (CN , 0)
for N large enough, except in the section on plane curves.

2. Notations

2.1. Curves with smooth branches.

Definition 2.1. A curve singularity C = C1 ∪ C2 is decomposable if the curves C1 and C2 lie
in smooth spaces intersecting each other transversally in one point, the singular point of C. We
write C = C1 ∨ C2.

We write C ∨ L for the wedge of C with a smooth branch.

Definition 2.2. The curve Ln
n = L ∨ · · · ∨ L ⊂ Cn is the curve isomorphic to the singularity

consisting of the coordinate axes in Cn. The curve Ln
n+1, n ≥ 2 is the curve consisting of n+ 1

lines in Cn through the origin in general position, meaning that each subset consisting of n lines
span Cn.

Note that L2
3 is the plane curve singularity D4.

Points in projective space are in generic position if each subset imposes independent conditions
on hypersurfaces of each degree [Gr]. The curve Ln

n+2, which is the cone over n + 2 points in
generic position in Pn−1, has µ = δ + 2, if n ≥ 3. But the singularity Ẽ7, four lines though
the origin, has µ = δ + 3. There exists a curve with the same tangent cone, having µ = δ + 2;
we lift one branch out of the plane. Let Ẽ7 be given by xy(x − y)(x − λy) = 0. We take the
same first three lines, but parametrise the last one as (x, y, z) = (λt, t, t2). The equations are
determinantal:

(1) Rank

(
z λ(x− y) y(x− y)
0 x− λy z − y2

)
≤ 1 .

We will call this curve L2
4. As it is not a complete intersection, there is no deformation from Ẽ7,

but there is a deformation of the parametrisation.
The curve L1

3 consists of three smooth branches with common tangent. The plane curve
Ẽ8 : x(x − y2)(x − λy2) has µ = δ + 3. We can again lift one branch out of the plane and
parametrise (x, y, z) = (λt2, t, t3). Equations are

(2) Rank

(
z λ(λ− 1)y λx
0 x− λy2 λz − xy

)
≤ 1 .

If we lift the line further out of the plane, as (x, y, z) = (λt2, t, t2), the coefficient of the first t2
in x can be transformed into 1, and we get the simple curve denoted J2,0(2) by Frühbis-Krüger
[F-K] and denoted St

3 in [St2]. The difference between the curves St
3 and L1

3 can be seen from
the 2-jet of the parametrisation. Following [Zh] we say that the 2-jet j2ϕ is planar if the image
of ϕ lies modulo terms of third order on a smooth surface.

Definition 2.3. The curve Ln
n+2 is for n ≥ 3 the curve consisting of n + 2 lines through the

origin in generic position in Cn, the curve L2
4 is the curve with equations (1) and L1

3 the curve
with equations (2).
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2.2. Notation for singular curves. We will denote monomial curves by their semigroup, so
the curve Z10 : z2+yx2 = y2+x3 = 0 of [Gi] is (4, 6, 7). Plane curves (2, 2k+1) are mostly referred
to by their name A2k. Also for the monomial curve of minimal multiplicity (k, k+ 1, . . . , 2k− 1)
with δ = k − 1 we use a special name Mk. We extend this notation to quasi-homogeneous
reducible curves by writing the exponents of the parameter. The union of curves is indicated by
a plus sign. If for some coordinate function zi = ϕi(t) = 0, we write a dash. For example, the
curve St

3 = J2,0(2) described above is notated (1, , ) + (1, 2, ) + (1, , 2).

2.3. Notation for adjacencies. The name or symbol denotes both a curve and its parametri-
sation. There are two types of adjacencies, for deformations of the parametrisation and for
deformations of the image curve. We refrain from the most logical notation for adjacency
of parametrisations, → for adjacency of image curves and → for an adjacency, which can be
obtained in both ways, as the latter is the most frequent. We will use only twice a symbol for
adjacency of image curves, and we choose 99K for it. Adjacencies of parametrisations occur more
frequently and we use for them. This leaves the usual arrow → for adjacency in both ways.

3. Main results on parametrisations

With the notations introduced above we can formulate our classification result.

Theorem 3.1. The infinite series of curves Ak, Ak∨Ln
n (n ≥ 1), Dk, Dk∨Ln

n and Ek, Ek∨Ln
n

and the sporadic curves (5, 6, 7, 8), (4, 6, 7), (2, 3, , ) + ( , 4, 5, 3), and (4, 5, 7) ∨ L have simple
parametrisations. Any other simple parametrisation occurs in the versal deformation of one of
these parametrisations.

A complete list of simple parametrisations is given in the next section. In the course of the
classification we also determine the confining singularities, thereby proving (in the complex case)
Conjecture A1 of Zhitomirskii [Zh].

Theorem 3.2. The confining singularities for deformations of parametrisations are the curves
Ln−2
n from Definition 2.3.

The list of simple parametrisations shows that also Conjecture B1 of Zhitomirskii [Zh] is true:

Corollary 3.3. The curve singularities with simple parametrisations are quasi-homogeneous.

4. List of simple parametrisations

We list the curves together with some adjacencies. These are by no means all adjacencies,
but we rather use them to organise the list. We start with the sporadic curves.

4.1. Sporadic curves. For all curves listed the δ-invariant satisfies δ ≤ 5. In each case the
most singular curve has δ = 5 and an adjacency of parametrisations and image curves (given by
an arrow ← or ↓) is δ-constant, while the other adjacencies lower δ by one.

4.1.1. Irreducible curves. There are eight unibranch sporadic curves.

(5, 6, 7, 8, 9) (5, 6, 7, 8)
↓

(4, 5, 6, 7) (4, 5, 6) ← (4, 5, 7) ← (4, 6, 7, 9) (4, 6, 7)
↓

(3, 7, 8)
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4.1.2. One branch of multiplicity four and a line.

(4, 5, 6, 7) + ( , , 1, ) ← (4, 5, 7) ∨ L
↓ ↓

(4, 5, 6, 7) ∨ L (4, 5, 6, 7) + ( , , , 1) ← (4, 5, 6) ∨ L

4.1.3. One branch of multiplicity three and a cusp.

A2 ∨M3 (2, 3, , ) + ( , 5, 4, 3) ← (2, 3, , ) + ( , 5, 4, 3)

4.1.4. Two cusps and a line.

(2, 3, , ) + ( , 3, 2, )

+ ( , , , 1)
←

(2, 3, , ) + (3, , 2, )

+ ( , , , 1)

↓ ↓

A2 ∨A2 ∨ L
(2, 3, , ) + ( , , 3, 2)

+ ( , 1, 1, )
←

(2, 3, , ) + ( , , 3, 2)

+ (1, , 1, )

4.1.5. The union of two Ak-singularities.

A2 ∨A4 (2, 3, ) + ( , 5, 2) (2, 3, ) + (2, , 3)
↓ ↓

A2 ∨A3 (2, 3, ) + ( , , 1) + ( , 2, 1) (2, 3, , ) + (2, , 3, 4)99K

99K ↙
A2 ∨A2 (2, 3, ) + ( , 3, 2) ← (2, 3, ) + ( , 2, 3)

4.1.6. Other sporadic curves.

(3, 4, 5, ) + (1, , , 2) (3, 4, 5) + (1, , )
↓

(1, , ) + (1, 2, ) + (1, , 2) ← (2, 5, ) + (1, , 2)

4.2. Infinite series, of the form C ∨ Lk
k. All singularities in this part of the list are related

to Ak, Dk or Ek. We have therefore series of series and individual series. A series is of the form
C ∨Lk

k with C indecomposable. Here we allow k = 0 and interpret L0
0 as point, so C ∨L0

0 is just
the curve C itself. We list below only the indecomposable curves C. The only curve not of this
form is the simplest of all, the totally decomposable curve Ln

n. This curve is singular if n ≥ 2,
with L2

2 = A1. We include Ln
n by including A1 in the list, even though it is decomposable.

4.2.1. Indecomposable curves of type E and deformations.

(3, 4, 5) E6 : (3, 4) ← (3, 5, 7) E8 : (3, 5)
↓ ↓

(2, 3, ) + (1, , 2) E7 : (2, 3) + (1, )

4.2.2. Deformations of Ek ∨ Ln−2
n−2. Here n is the embedding dimension, which has to satisfy

n ≥ 3. From E8 and E6 we get

(3, 5, 7) ∨ Ln−3
n−3 + ( , , 1, . . . , 1)

(3, 4, 5) ∨ Ln−3
n−3 + ( , 1, , 1 . . . , 1)

↓
(3, 4, 5) ∨ Ln−3

n−3 + ( , , 1, . . . , 1)
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and from E7

A2 ∨ Ln−2
n−2 + (1, , 1, . . . , 1) A2 ∨ Ln−2

n−2 + (1, , 2, . . . , 2)

4.2.3. Indecomposable curves of type A.

A1 : (1,−) + (−, 1)

A2k−1 : (1,−) + (1, k)← A2k : (2, 2k + 1)

4.2.4. Deformations of Dk ∨ Ln−2
n−2.

Ln
n + (1, . . . , 1)

A2k ∨ Ln−2
n−2 + ( , 1, 1 . . . , 1)← A2k−1 ∨ Ln−2

n−2 + ( , 1, 1 . . . , 1)

Here n ≥ 2 is again the embedding dimension. For n = 2 the curves are the plane curves D4,
D2k+3 and D2k+2.

5. Classification

The proof of Theorems 3.1 and 3.2 proceeds by classifying all parametrisations which do not
deform into a parametrisation of a curve Ln−2

n . The result is that these do not have moduli. Fur-
thermore we show that all other parametrisations do deform into Ln−2

n . Therefore singularities
of the list can only deform into other singularities of the list, implying simpleness.

We start by describing large classes of parametrisations, which are not simple. From them
we derive restrictions on the multiplicities of the irreducible components of curves with simple
parametrisation.

5.1. Some adjacencies.

5.1.1. Every parametrisation of a curve C = C1 ∪ C2 deforms into C1 ∨ C2. Parametrise C1

with ϕ(1) : C1 → Cn and C2 with ϕ(2) : C2 → Cn, and consider the curve as lying in C2n. The
parametrisation, given by (ϕ(1), 0) and (ϕ(2), sϕ(2)) has for s 6= 0 image C1 ∨ C2.

If a curve C with simple parametrisation is reducible, and can be written as union C ′ ∪ C ′′,
then both C ′ and C ′′ have a simple parametrisation.

5.1.2. A parametrisation of an irreducible curve of multiplicity m deforms into the monomial
curve Mm. We may assume that we have a parametrisation ϕ : C → Cm with first component
z1 = ϕ1(t) = tm. Now deform z1 = tm, zi = ϕi(t) + stm+i−1 for i ≥ 2.

5.1.3. Mm deforms into Mm1
∨ · · ·∨Mmk

for any partition (m1, . . . ,mk) of m. A description in
terms of equations is given in [St1, p. 199]. A simple argument in terms of the parametrisation is
the following. The curve Mm is a special hyperplane section of the cone over the rational curve
of multiplicity m and is resolved by one blow-up. Now deform the smooth strict transform such
that it intersects the exceptional divisor in k points with multiplicities given by the partition
(m1, . . . ,mk) and blow down again.

5.1.4. A2 ∨ L→ A3. This is a special case of the adjacency Ak ∨ L→ Dk+1 (in fact D3 = A3),
which can be inferred from the formulas of [F-K, p. 1040], but is missing in [FrNe, Diagram 4].
Consider the deformation

Rank

(
xk y z
y x s

)
≤ 1 .

One branch is (0, 0, t1) and for even k the second branch is (t22, t
k+1
2 , stk−12 ).
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5.2. First consequences. The curve A3 ∨A3 is not simple, as it deforms to L2
4 (with constant

δ = 5); just rotate some lines in the plane spanned by the tangent lines of both A3-singularities.
As A2 ∨ L → A3, the curve A2 ∨ A2 ∨ L2

2 is not simple. Using the adjacencies for monomial
curves (5.1.2) we obtain the following chain of adjacent, non-simple curves:

M6 →M5 ∨ L→M4 ∨ L2
2 → A2 ∨A2 ∨ L2

2.

We conclude that the parametrisation of an irreducible curve of multiplicity at least 6 is
not simple. A simple parametrisation with at least four branches has at most one singular
component, of multiplicity at most three. A (sporadic) simple curve has at most two singular
components (A2 ∨A2 ∨A2 is not simple), and the multiplicity is at most 5.

5.3. Irreducible curves. We may assume that the parametrisation has the form xi = ϕi(t),
i = 1, . . . , k, with v(ϕi) < v(ϕj) for i < j, v(ϕi) being the order in t of ϕi. We can also achieve
that v(ϕj) does not lie in the semigroup generated by the v(ϕi) with i < j.

A parametrisation of a curve of multiplicity at least 5 (that is, v(ϕ1) ≥ 5) is not simple if
v(ϕ4) ≥ 10: deform into L3

5 by perturbing ϕ1, ϕ2 and ϕ3 such that they are divisible by t5 − s
and making ϕj , j ≥ 4, divisible by (t5 − s)2. A parametrisation of a curve of multiplicity at
least 4 is not simple if v(ϕ3) ≥ 8: deform into L2

4 by perturbing ϕ1 and ϕ2 such that they
are divisible by t4 − s and making ϕj , j ≥ 3, divisible by (t4 − s)2. For example, the curve
(t5, t6u2(t), t8u3(t)) has the deformation (t(t4− s), t2(t4− s)u2(t), (t4− s)2u3(t)). A multiplicity
3 curve with v(ϕ2) > 6 deforms into L1

3, a curve with planar 2-jet, if v(ϕ3) > 9 (recall that by
assumption v(ϕ3) is not divisible by 3). Irreducible double points are simple.

This leaves only a few possibilities for simple parametrisations. Their normal forms can be
computed with standard methods; they can be found in the paper by Ebey [Eb].

Lemma 5.1. The curve (5, 6, 7, 9) is not simple, as (5, 6, 7, 9)→ L1
3.

Proof. Consider the deformation

ϕs(t) = ((t3 − s)t2, (t3 − s)2, (t3 − s)2t, (t3 − s)3) .

The parametrisation satisfies the equations w = sz − x2 ≡ 0 mod (t3 − s)3, so for s 6= 0 the
2-jet of ϕs(t) is planar. �

Proposition 5.2. The parametrisations of the curves (5, 6, 7, 8) and (4, 6, 7) are simple. They
deforms into the other unibranch sporadic curves of 4.1.1 and the irreducible triple points of
4.2.1.

Proof. As explained above, we now only show that there is no deformation to Ln−2
n . It suffices

to consider the ones with δ = 5. A deformation of the parametrisation of (5, 6, 7, 8) or (4, 6, 7)
to L2

4 or L1
3 is δ-constant, so also a deformation of the curve. The curves (5, 6, 7, 8) and (4, 6, 7)

are Gorenstein, but L2
4 and L1

3 not. Therefore such a deformation does not exist.
The adjacencies of 4.1.1 and 4.2.1 are easily established. �

5.4. Curves with one singular component of multiplicity three or four.

5.4.1. Multiplicity four. The curve (4, 6, 7, 9) deforms into the (simple) curve J2,0(2) = St
3 con-

sisting of three tangent lines with non-planar 2-jet and therefore (4, 6, 7, 9) ∨ L deforms into L2
4

and is not simple. If the line in the curve (4, 5, 6) ∪ L is not transverse to the Zariski tangent
space of (4, 5, 6), then the curve deforms into L3

5. This leaves (4, 5, 7)∨L, (4, 5, 6)∨L and curves
of the type (4, 5, 6, 7)∪L. The classification of the latter curves follows from the general results
of [St2, 2.2]: the isomorphism type depends on the osculating space of M4, to which the line is
tangent, and the line can be taken to be a coordinate axis, except in the most degenerate case,
that the line is tangent to the tangent line of the curve. The curve M4 deforms into D4, with
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tangent plane the (x1, x2)-plane, so if the line is tangent to this plane, there is a deformation to
L2
4.

Proposition 5.3. The parametrisation of the curve (4, 5, 7) ∨ L is simple. It deforms into the
other sporadic curves of 4.1.2.

Proof. If (4, 5, 7) ∨ L → L2
4, then (4, 5, 7) deforms into three smooth branches, tangent to the

plane containing the line L. Projection along L onto C3 gives a δ-constant deformation to the
space curve J2,0(2) consisting of three smooth branches with common tangent. According to the
tables in [F-K] such a deformation does not exist. To be self-contained we give a proof along the
lines of the proofs in [Zh].

So suppose (4, 5, 7)→ J2,0(2). The parametrisation has the form

ϕi(t, s) = (t− as)(t− bs)(t− cs)ψi(t, s)

for i = 1, 2, 3. The images of the germs (t, as), (t, bs) and (t, cs) are tangent to a line Ls, which
has a limiting position for s→ 0. By a coordinate transformation we may suppose that the line
Ls is constant. It is given by two linearly independent equations of the form Az1+Bz2+Cz3 = 0.
This implies that

Aϕ1(t, s) +Bϕ2(t, s) + Cϕ3(t, s) ≡ 0 mod (t− as)2(t− bs)2(t− cs)2

for all s. Specialising to s = 0 leads to the equation At4 + Bt5 + Ct7 ≡ 0 mod t6, from which
we conclude that A = B = 0. But then there is only one linear equation.

If (4, 5, 7) ∨ L → L1
3, then (4, 5, 7) deforms into two smooth branches with the line L as

common tangent. Projection onto C3 gives a deformation to the space curve consisting of
two cusps with common tangent, as L1

3 has planar 2-jet. But this curve is at least Z9 with
δ = 5 > 4 = δ(4, 5, 7). �

5.4.2. Multiplicity three. Let C3 be an irreducible curve of multiplicity 3. A parametrisation-
simple union of C3 and n smooth branches has embedding dimension at least n+2, for otherwise
it deforms into Ln+1

n+3. The n smooth branches form an Ln
n: for n = 1 this is trivial; if n = 2

and the branches are A2k−1 with k > 1, then the parametrisation deforms into the non-simple
A2k−1∨A4, asM3 deforms into A4; finally, if n > 2 and the branches deform into Ln−1

n , then the
parametrisation deforms into Ln−1

n+1, as the parametrisation of C3 deforms into a smooth branch
with arbitrary tangent.

The curve E12(2) = (3, 7, 8) deforms into J2,0(2) = St
3, so (3, 7, 8) ∨ L is not simple.

Proposition 5.4. The curves E6 ∨ Ln
n and E8 ∨ Ln

n have simple parametrisations.

Proof. As E8 → E6 + A1 it suffices to show simpleness for E8 ∨ Ln
n. We have to exclude

deformations of the parametrisation into an Lk
k+2. If nm of the n deformed lines do not pass

through the singular point of Lk
k+2, then there is also a deformation E8 ∨Ln−m

n−m Lk
k+2. So we

may assume that m = 0, and that the n lines are not deformed at all. The only possibilities for
k are therefore k = n and k = n+ 1.

If E8 ∨ Ln
n Ln

n+2, then E8 is deformed into two smooth branches tangent to the space
spanned by Ln

n. Projection onto the plane of the E8 gives a deformation of the parametrisation
into the union of two plane curves of multiplicity two, which is impossible.

If E8 ∨ Ln
n Ln+1

n+3, then projection onto the plane of the E8 gives a deformation of E8 into
three tangent smooth branches, which is also impossible, as this would increase δ. �

For the curves C3 of type E8(1) = (3, 5, 7) and E6(1) = M3 = (3, 4, 5) with (C3 · Ln
n) > 1

we look at the 1-dimensional intersection T of the Zariski tangent spaces of the singular curve
and Ln

n. If for (3, 5, 7) the line T lies in the (x1, x2)-plane, then the curve deforms into Ln+1
n+3,
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as (3, 5, 7)→ D4. Otherwise there is a transformation bringing T to the x3-axis. In Ln
n the line

T is in the direction (1, . . . , 1, 0, . . . , 0). The curve is indecomposable if and only if there are no
zeroes. We transform to a different normal form, where the line T is a coordinate axis. The
resulting curve is a deformation of E8 ∨ Ln

n.
The curve (3, 4, 5) deforms into A3 with the x1-axis as tangent line, so if T is this axis, then

the curve is not simple if n > 1: it deforms to Ln
n+2. For n = 1 the curve is simple: if the 2-jet of

the parametrisation of L has image T , then it is the curveW9, which is a δ-constant deformation
of Z10 = (4, 6, 7). There is also a curve with δ = 4, with L = (t, 0, 0, t2). For the other cases
the intersection multiplicity (M3 · Ln

n) is equal to 2, and [St2, 2.3] applies. If T does not lie in
the (x1, x2)-plane, then the curve is a deformation of E6 ∨ L, otherwise of E8 ∨ L, under the
deformation of the parametrisation (t3, st4, t5, 0, . . . , 0).

The classification of simple parametrisations with one singular branch of multiplicity three is
now complete.

5.5. Two singular components. As every parametrisation of an irreducible curve other than
A2 deforms into A3, one component has to be A2. The curve A2∨A5 is not simple, as it deforms
into L1

3. This implies that the other singular component is M3, A4 or A2.

5.5.1. A2 ∪ M3. The embedding dimension is at least 4. Unless the curve is A2 ∨M3 we let
T be the intersection line of the Zariski tangent spaces of the components. As A2 deforms into
A1 = L2

2 the curve is not simple, if T is the tangent line of M3, by what was said above for
M3∪L2

2. Otherwise (A2 ·M3) = 2 and T may be taken as coordinate axis. There are four curves
to consider.

Lemma 5.5. The curve (2, 3, , )+(4, , 5, 3) and (2, 3, , )+(5, , 4, 3) are not simple, as they
deform to L1

3.

Proof. The first curve deforms into the second. For that case we deform the cusp into a smooth
branch by (t2, t3, 0, 2st) and M3 into A3 by

((t2 − s2)2t, 0, (t2 − s2)2, (t2 − s2)(t+ 2s)) .

The A3 lies on the smooth surface

12xs6 − 3w2s4 − xw + z2 + 2zws2 + 12zs8 = 0 .

The parametrisation of the smooth branch satisfies this equation modulo terms of degree 3. The
intersection number of the branch with A3 is 3, so we have three smooth tangent branches with
δ = 5, which is L1

3. �

Proposition 5.6. The curves (2, 3, , ) + ( , 4, 5, 3) and (2, 3, , ) + ( , 5, 4, 3) are simple.

Proof. Suppose first that such a curve deforms to L2
4. The component M3 deforms only to three

smooth branches spanning 3-space, so both components have to deform to two smooth branches,
and the two smooth branches, into which M3 deforms, are tangent to the plane of the cusp.
Then the last component of the parametrisation has the form ϕ4(t, s) = (t−as)2(t− bs)2ψi(t, s),
but ϕ4(t, 0) = t3.

If the curve deforms to L1
3, then the cusp deforms into a smooth branch and M3 → A3 is a

δ-constant deformation. The equation z1 = 0 of M3 deforms into z1 + sf(z1, . . . , z4) = 0 and
the first component of the parametrisation of A2 is ϕ1(t, s) = t2 + sψi(t, s). The intersection
multiplicity of the smooth branch and A3 is at most the order in t of ϕ1 + sf(ϕ1, . . . , ϕ4), so at
most 2. Therefore the three smooth branches form the simple singularity J2,0(2), with δ = 4. �



202 JAN STEVENS

5.5.2. A2 ∪ A4. Such a curve is not simple if the tangent line of A4 lies in the plane of the cusp
A2, as it then deforms to L2

4. If the tangent line of the cusp lies in the plane of the A4, then there
is a deformation to L1

3. The curve T9 = (2, 3, ) + ( , 5, 2) is a deformation of Z10 = (4, 6, 7). It
deforms into A2 ∨A4. The parametrisation of A2 ∨A4 ∨ L is not simple.

5.5.3. A2 ∪ A2. All possibilities for the intersection line T yield simple curves. The curve Z10

deforms into Z9 = (2, 3, ) + (2, , 3). A deformation of the parametrisation gives the curve
Z9(1) = (2, 3, , ) + (2, , 3, 4) with δ = 4. It deforms δ-constant into T ∗7 = (2, 3, ) + (3, , 2)
and then into T7 = (3, 2, )+(3, , 2). By a deformation of the parametrisation we obtain A2∨A2.
The curves here and of the previous paragraph are listed in 4.1.5.

5.5.4. A2 ∪A2 ∪L. The curve Z9(1)∨L deforms into L1
3. The curve consisting of A2 ∪A2 and a

smooth branch is not simple if the smooth branch is tangent to the plane spanned by the tangent
lines of the cusps, for then there is again a deformation to L1

3. The branch is also not tangent
to the plane of one of the cusps, as A2 ∨D4 is not simple, deforming into L2

4.
The singularity T ∗7 ∨L is a deformation of W ∗8 ∨L = (4, 5, 7)∨L, as W ∗8 → T ∗7 [F-K]: use the

parametrisation (t2(t− s)2, t3(t− s)2, t4(t− s)3).
The curves A2 ∪A2 ∪L in to which the parametrisation of T ∗7 ∨L deforms are listed in 4.1.4.

5.6. At most one component of multiplicity two. If there are only smooth branches it
can happen that some branches have the same tangent line. As A3 ∨ A3 is not simple, this
can happen only for one direction. The curve J2,0(2) consisting of three smooth branches is a
deformation of J2,1(2) = (2, 5, ) + (1, , 2). The curve J2,0(2) ∨ L deforms into L2

4. So if the
curve has at least four branches, only two of them can be tangent.

5.6.1. Curves containing an Ak, k ≥ 3. As A3 ∨ Ln−1
n → Ln

n+2, the n smooth branches in a
curve, consisting of an Ak (k ≥ 3) and these n branches, form an Ln

n. The intersection of the
space spanned by this Ln

n with the tangent plane of the Ak is at most 1-dimensional. If it is a
line, this line is not tangent to the Ak, for otherwise there is a deformation of the curve into
Ln
n+2. So we can take the line to be a coordinate axis, and get the normal form listed above

(4.2.4), see also [St2, Example 2-14]. Note that for n = 1 we have Dk+3. Any curve of this type
is a deformation of Dk+3 ∨ Ln−1

n−1.

Proposition 5.7. The curves Dk+3 ∨ Ln
n have simple parametrisations.

Proof. It suffices to prove the statement for D2m+3∨Ln
n. Again we have to exclude a deformation

to Ln
n+2 or Ln+1

n+3. In the first case the deformed line of D2m+3 does not pass through the singular
point, and in the second case we can assume that this line and Ln

n are unchanged. In both cases
the A2k in D2k+3 deforms into two smooth branches, whose projection onto the plane is singular
or always tangent to the line in D2k+3, again impossible. �

5.6.2. Curves containing an A2. If two smooth branches have the same tangent, then there are
no more smooth branches (A3 ∨ A2 ∨ L is not simple). The curve A2 ∨ A5 is not simple, as
it deforms to L1

3. For A2 ∨ A3 the smooth curves cannot be tangent to the plane of the cusp:
there would be a deformation to L2

4. The tangent line of the cusp cannot lie in the plane of
A3, otherwise there is a deformation to L1

3. The curve T8 = (2, 3, ) + ( , , 1) + ( , 2, 1) is a
deformation of T9.

As A2 deforms by deforming the parametrisation into a smooth branch with arbitrary tangent,
the n smooth branches in a curve containing A2 form a Ln

n. Let T be the intersection of the
tangent plane of the A2 with the space spanned by the Ln

n. If the curve is indecomposable, then
T is a line. If T is transverse to the cusp, then we get the same type of normal form as for higher
Ak. But T can also be tangent to the cusp. For n = 1 we have E7 and, by bending the line
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out of the plane, also E7(1). If there are more lines, and the cusp is tangent to one of the lines
of Ln

n, then we have E7 ∨ Ln−1
n−1, E7(1) ∨ Ln−1

n−1 and also curves obtained by bending the line out
of the plane in the direction of Ln−1

n−1. If the cusp is not tangent to one of the lines, we take a
normal form where T is a coordinate axis.

All curves considered here are deformations of E7 ∨ Ln−1
n−1. This curve is simple, as it occurs

in the versal deformation of the parametrisation of the curve E8 ∨ Ln−1
n−1, which is simple by

Proposition 5.4.

6. Plane curve singularities

In this section we show that in the case of plane curves a parametrisation is simple if and only
if its image is a simple curve. This fact was already observed by Zhitomirsky [Zh] as result of
the classification. Here we give a direct argument. It is based on the characterisation of simple
plane curve singularities given by Barth, Peters and Van de Ven [BPV, Section II.8].

Theorem 6.1. A plane curve singularity is simple if and only if its multiplicity is at most three
and in each step of the embedded resolution the multiplicity of the (reduced) total transform is
at most three.

Proof. If there is a point on the total transform of multiplicity at least four, then by a deformation
of the parametrisation of the curve we can achieve that it is an ordinary multiple point. Then the
blown-down deformed curve has moduli, as a trivialising coordinate transformation downstairs
would lift to one of the ordinary multiple point on the blow-up.

For the converse we use a formula of Wall for the modality (for right equivalence) in terms of
the multiplicity sequence of plane curve singularities [Wa2, Theorem 8.1]:

Mod(C) =
∑
P

1
2 (mP − 1)(mP − 2)− r − s+ 2 ,

where the sum runs over all infinitely near points in a large enough embedded resolution, r
is the number of branches and s the total number of satellite points. If the multiplicity of the
singularity is two, then Mod(C) = 0: if r = 1 there is at least one satellite point. For multiplicity
three the strict transform has no point of multiplicity three. If r = 2 there is again at least one
satellite point. In the case of one branch, if the strict transform on the first blow-up is smooth,
there are two satellite points. The remaining possible multiplicity sequence is (3, 2, 1, 1, . . . ) with
two satellite points. So again Mod(C) = 0. �

Corollary 6.2. The parametrisation of a plane curve is simple if and only if the curve is simple.

Proof. For plane curves any deformation of the parametrisation gives a deformation of the image,
so simpleness of the image implies simpleness of the parametrisation. Conversely, if the curve is
not simple, then by the above proof the adjacency to a singularity with moduli can be realised
by a deformation of the parametrisation. �

We classify the possible multiplicity sequences. They are given in Table 1. As the singularities
in question have no moduli for right equivalence, it suffices to find one parametrisation for each
sequence. This can be done using an explicit description of the charts of the blow-up.

Using deformations on the blow up we can also easily establish that the confining singularities
are Ẽ7 : x4 +ax2y2 +y4 = 0 and Ẽ8 : x3 +axy4 +y6 = 0. For instance, if the strict transform has
a point of multiplicity three lying on an exceptional curve, then we deform it into an ordinary
triple point. Blowing down the exceptional curve gives a singularity of type Ẽ7, which we can
move off the exceptional curve, resulting in a deformation of the original singularity into Ẽ7.
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Table 1. Multiplicity sequences for simple plane curve

A2k−1 :
1
1

— · · · —
— · · · —

1
1

— 1 — · · ·
— 1 — · · ·

A2k : 2 — · · · — 2 — 1 — · · ·

D2k :

1
1
1

—
—
—

1 — · · ·

1
1

— · · · —
— · · · —

1
1

— 1 — · · ·
— 1 — · · ·

D2k+1 :
1
2

—
—

1 — · · ·
2 — · · · — 2 — 1 — · · ·

E6 : 3 — 1 — 1 — · · ·

E7 :
1
2

—
—

1
1

— 1 — · · ·
— 1 — · · ·

E8 : 3 — 2 — 1 — · · ·

7. Simple curves

For plane curves we showed without using the classification that the curves with simple
parametrisation are exactly the simple curves for contact equivalence and even right equivalence
of the defining equations.

Also for space curve singularities (in C3) both concepts of simpleness coincide, as a comparison
of the lists of Giusti [Gi] and Frühbis-Krüger [F-K] with the space curves in our list shows; in
fact, the comparison of the lists of simple curves with the list of Zhitomirskii [Zh] exposes some
inaccuracies there, like the inclusion of the confining singularity T ∗10 : xy = x3 + y6 + z2 = 0

[AGV, I §9.8], which deforms into Ẽ8; it is ((I, I)2, A2) in [Zh, Table 4]. In Table 2 we list
the indecomposable simple curves together with their names in the classifications by Giusti [Gi]
and Frühbis-Krüger [F-K]. The equations are computed to agree with the parametrisations.
The decomposable simple space curves are Ak ∨ L, Dk ∨ L and Ek ∨ L. The list of confining
singularities for flat deformations of the curve is longer than for parametrisations, for complete
intersections see [AGV, I §9.8] and for determinantal curves [F-K, Table 1].

The minimal δ-invariant for a confining singularity for parametrisations is δ = 5. Therefore
the list of all simple parametrisations contains all curves with δ ≤ 4. By the semi-continuity of
δ we find the following corollaries of the classification.

Corollary 7.1. Every curve singularity with δ ≤ 4 has a simple parametrisation and it is also
simple as curve.

Corollary 7.2. A parametrisation of a curve singularity with δ = 5 is simple if and only if the
curve is simple.

Proposition 7.3. The sporadic curves with simple parametrisations are also simple as curve.

Proof. A sporadic curve has δ ≤ 5. �
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Table 2. Indecomposable simple space curves

type parametrisation equations

Z10 (4, 6, 7) y2 − x3, z2 − yx2
Z9 (2, 3, ) + (2, , 3) y2 − x3, z2 − x3

W9 (3, 4, 5) + (1, , ) y2 − xz, z2 − yx2
W ∗8 (4, 5, 7)

(x y z
z x2 y2

)
W8 (4, 5, 6) y2 − xz, z2 − x3

U9 (3, 5, 7) + ( , , 1) y2 − xz, yz − x4
U8 (2, 3, ) + (1, , 2) + ( , , 1) zy, y2 − x3 + zx

U∗7 (3, 4, 5) + ( , 1, )
(x y z
z x2 xy

)
U7 (3, 4, 5) + ( , , 1) y2 − xz, yz − x3

T9 (2, 3, ) + ( , 5, 2) xz, y2 − z5 − x3
T8 (2, 3, ) + ( , , 1) + ( , 2, 1) xz, y2 − yz2 − x3
T ∗7 (2, 3, ) + ( , 2, 3)

(x y z
0 z y2 − x3

)
T7 (2, 3, ) + ( , 3, 2) xz, y2 − z3 − x3

E12(2) (3, 7, 8)
(
x2 y z
y z x3

)
J2,1(2) (2, 5, ) + (1, , 2)

(
z y x3

0 x2 − z y

)
J2,0(2) (1, , ) + (1, 2, ) + (1, , 2)

(
z y − x2 0
0 x2 − z y

)
E8(1) (3, 5, 7)

(x y z
y z x3

)
E7(1) (2, 3, ) + (1, , 2)

(z x y
0 y x2 − z

)
E6(1) (3, 4, 5)

(x y z
y z x2

)
S2k+3 (1, , ) + (1, k, ) + ( , , 1) + ( , 1, 1) xz, y2 − yxk − yz
S2k+4 (2, 2k + 1, ) + ( , , 1) + ( , 1, 1) xz, y2 − x2k+1 − yz
S∗6 (2, 3, ) + ( , , 1) + (1, , 1)

(z x y
0 y x2 − xz

)
This partly explains the coincidence of lists. The series of simple parametrisations are closely

related to Ak ∨ L, Dk ∨ L and Ek ∨ L. In fact, this holds in any embedding dimension. We
expect that our list gives the simple singularities.

Conjecture 7.4. The simple reduced curve singularities are exactly those with simple parametri-
sation.

This implies in particular a negative answer to the old unsolved problem whether rigid reduced
curve singularities exist. The deformation theory of curve singularities of large codimension is
complicated. There exist non-smoothable curves. They are not simple: the argument that they
are not smoothable, is that the number of moduli is larger than the (computable) dimension of
a smoothing component, cf. [Gr].

Proposition 7.5. The curves Ln
n, A2 ∨ Lk

k, A3 ∨ Lk
k and Ln

n+1 ∨ Lk
k are simple.

Proof. These are the curves with δ − r + 1 ≤ 1 [Gr], and δ − r + 1 is upper semi-continuous
[BuGr]. �

Also the curves with δ − r + 1 = 2 are classified, see [St2]. The ones with moduli are not
Gorenstein, so the Gorenstein curves A2 ∨ Ln−2

n−2 + ( , 1, 1 . . . , 1) and A3 ∨ Ln−2
n−2 + ( , 1, 1 . . . , 1)

are also simple.
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