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THE NASH PROBLEM AND ITS SOLUTION: A SURVEY

CAMILLE PLÉNAT AND MARK SPIVAKOVSKY

Abstract. The goal of this survey is to give a historical overview of the Nash Problem of arcs

in arbitrary dimension, as well as its solution. This problem was stated by J. Nash around
1963 and has been an important subject of research in singularity theory. In dimension two

the problem has been solved affirmatively by J. Fernández de Bobadilla and M. Pe Pereira in
2011. In 2002 S. Ishii and J. Kollár gave a counterexample in dimension four and higher, and

in May 2012 T. de Fernex settled (negatively) the last remaining case — that of dimension

three. After some history, we give an outline of the solution of the Nash problem for surfaces
by Fernández de Bobadilla and Pe Pereira. We end this survey with the latest series of

counterexamples, as well as the Revised Nash problem, both due to J. Johnson and J. Kollár.

1. Introduction

In this paper, k is an algebraically closed field of characteristic 0 (see Remark 1.7 below for
the case of positive characteristic).

1.1. The statement of the problem. Let X be a singular algebraic variety over k and
π : X̃ −→ X a divisorial resolution of singularities of X (this means that X̃ is a smooth
variety and the exceptional set E =: π−1(Sing X) is a divisor, that is, is of pure codimension
one). Let

(1) E =
⋃
i∈∆

Ei

be the decomposition of E into its irreducible components. The set E has two kinds of irreducible
components: essential and inessential. For each i let µi denote the divisorial valuation determined
by Ei.

Definition 1.1. We say that Ei is an essential divisor if for any other resolution
π′ : (X ′, E′) → (X,Sing X) the center of µi on X ′ is an irreducible component of E′. The
divisor Ei is inessential if it is not essential.

Remark 1.2. Intuitively, an irreducible divisor is essential if it appears, as an irreducible com-
ponent, on every resolution of X.

In general (that is, when dim X > 3) it is quite difficult to show that a given component
is essential (see [32] for a discussion of this question as well as some sufficient conditions for
essentiality and [3] and [17] for new criteria of essentiality). In dimension two there exists a

unique minimal resolution X̃ of X and each irreducible exceptional divisor of X̃ is essential.
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In order to study the resolution X̃ of X, J. Nash (around 1963, published in 1995 [26])
introduced the space Xsing

∞ of arcs meeting the singular locus Sing X.

Definition 1.3. An arc is a k-morphism from Spec k[[t]] to X.
Let Xsing

∞ be the set of arcs whose origin (that is, the image of the closed point) belongs to
the singular locus of X.

Intuitively, such an arc should be thought of as a parametrized formal curve, contained in X
and meeting the singular locus of X. The analogue of an arc in complex analysis is a test map
from a small disk around the origin on the complex plane to X. We will also need to consider
more general arcs, which are morphisms from Spec K[[t]] to X, where K is a field extension of
k; they are called K-arcs.

Let us denote the closed point (the origin) of Spec k[[t]] by 0 and the generic point by η.

An arc can be lifted to any resolution:

Lemma 1.4. Let f : X̃ → X be a resolution of the singularities. Every arc α : Spec K[[t]]→ X

such that α(η) 6∈ Sing(X) can be lifted to an arc α̃ : Spec k[[t]]→ X̃.

The proof comes from the fact the resolution map π is proper (it is a special case of the
valuative criterion of properness).

Nash showed that Xsing
∞ has finitely many irreducible components, Fi, called families of arcs,

and defined the following map:

Definition 1.5 (Nash [26]). Let

N : {irreducible components of Xsing
∞ } → {essential divisors of X̃}

be the map sending a family Fi to the exceptional divisor Ei such that the generic arc of Fi has
lifting to the resolution, passing through a general point of the component Ei.

(see §2.2 for more details).
He showed that this map, now called the Nash map, is injective. The celebrated Nash prob-
lem, posed in [26], is the question whether the Nash map is surjective.

Let us fix a divisorial resolution of singularities X̃ → X and let E = π−1(Sing X). Consider
the decomposition (1) of E into irreducible components, as above. Let ∆′ ⊂ ∆ denote the set
which indexes the essential divisors.

M. Lejeune-Jalabert [20], inspired by Nash’s original paper [26], proposed the following de-
composition of the space Xsing

∞ : for i ∈ ∆′, let Ci be the set of arcs whose strict transform in

X̃ intersects the essential divisor Ei transversally but does not intersect any other exceptional
divisor Ej . M. Lejeune-Jalabert shows that Xsing

∞ =
⋃
i∈∆′

Ci and the set Ci is an irreducible

algebraic subvariety of the space of arcs; therefore the families of arcs are among the Ci’s. More-
over there are as many Ci as essential divisors Ei. Then the Nash problem reduces to showing
that the Ci, i ∈ ∆′, are precisely the irreducible components of Xsing

∞ , that is, to proving
card(∆′)(card(∆′)− 1) non-inclusions:

Problem 1.6. Is it true that Ci 6⊂ Cj for all i 6= j?

Remark 1.7. All of the above definitions make sense also when char k > 0, with the following
modification. An arc family is said to be good if its general element is not entirely contained
in Sing X. When char k = 0 it can be shown that all the arc families are good ([16], Lemma
2.12). If the singularities of X are isolated (say, Sing(X) = {ξ1, . . . , ξl}) then the only arcs
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contained in Sing(X) are the trivial ones which map Spec K[[t]] identically to one of the ξi.
Every such arc is in the closure of every other arc passing through ξi. Hence the arcs contained
in ξi belong to the closure of every irreducible component of Xsing

∞ lying over ξi and cannot form
an irreducible component by themselves. This proves that for X with isolated singularities Xsing

∞
has no bad components, regardless of char k. If char k > 0 and dim Sing(X) > 1, there may
exist some bad families, and the Nash map is only defined on the set of good families. With
this in mind, the Nash problem remains the same: is the Nash map, defined on the set of good
families, surjective? See [37] for some recent work on the Nash problem in positive characteristic.

1.2. Some partial answers in dimension 2. Before the work of Fernández de Bobadilla — Pe
Pereira, the Nash problem for surfaces has been answered affirmatively in the following special
cases: for An singularities by Nash, for minimal surface singularities by A. Reguera [34] (with
other proofs by J. Fernandez-Sanchez [7] and C. Plénat [29]), for sandwiched singularities by M.
Lejeune-Jalabert and A. Reguera (cf. [21] and [35]), for toric vareties in all dimensions by S.
Ishii and J. Kollar [16] (using earlier work of C. Bouvier and G. Gonzalez-Sprinberg [1] and [2]),
for a family of non-rational surface singularities by P. Popescu-Pampu and C. Plénat ([31]), for
quotients of C2 by an action of finite group [27] by M. Pe Pereira in 2010 based on the work
[5] of J. Fernández de Bobadilla (other proofs for Dn in 2004 by Plénat [30], for E6 in 2010 by
C. Plénat and M. Spivakovsky [33], (with a method that works for some normal hypersurface
singularities), and by M. Leyton-Alvarez (2011) for E6 and E7, by applying the method for the
following classes of normal hypersurfaces in C3: hypersurfaces S(p, hq) given by the equation
zp + hq(x, y) = 0, where hq is a homogeneous polynomial of degree q without multiple factors,
and p > 2, q > 2 are two relatively prime integers [23]). A. Reguera [37] gave an affirmative
answer to the Nash problem for rational surface singularities simultaneously and independently
from the work [6].

See the bibliography for a (hopefully) complete list of references on the subject.

In 2011, J. Fernández de Bobadilla and M. Pe Pereira [6] showed that the answer is positive
for any surface singularity. The main aim of this paper is to give an outline of their proof. Before
going further into the details, we need to recall some earlier results that lead to the final proof.

The rest of the paper is organized as follows: §2 is dedicated to the work preceding the paper
[6]; in §3 an outline of the proof is given. §4 contains a brief discussion of the Nash problem in
dimension three and higher.

2. Previous results on the Nash problem

2.1. The Wedge problem [18]. In 1980, M.Lejeune-Jalabert proposed to look at the Nash
problem from a new point of view. She formulated in [18] what is now called “the wedge prob-
lem”, which is related to a “Curve Selection Lemma” in the space of arcs.

Let X be a singular algebraic variety over k.

Let us first define wedge:

Definition 2.1. Let K be a field extension of k. A K-wedge on X is a k-morphism

ω : Spec(K[[t, s]])→ X

which maps the set {t = 0} to Sing X.
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The wedge ω induces two arcs on X as follows: a K-arc obtained by restricting ω to the set
{s = 0} (this arc is called the special arc of ω), and a K((s))-arc, obtained by restricting ω to
the set Spec(K[[t, s]]) \ {s = 0} (this arc is called the general arc of ω). We regard ω as a de-
formation of its special arc to its general arc or, alternatively, as an arc in the space of arcs Xsing

∞ .

The wedge is said to be centered at an arc γ0 if its special arc is γ0.

Let (X, 0) be a germ of a normal surface singularity, and let π : (X̃, E)→ (X, 0) be its minimal
(and so divisorial) resolution, with E =

⋃
Ej = π−1(0). Let Ei, Ej be irreducible components

of E (they are essential as X is a surface). Let Ci and Cj be as above. Then if Cj ⊂ Ci, Ej
is not in the image of Nash map. If one had Curve Selection lemma in the space of arcs Xsing

∞ ,
the inclusion above would just mean that one has a k-wedge with special arc in Cj and generic

arc in Ci. Then the morphism ω would not lift to the resolution X̃ as it has an indeterminacy at 0.

M. Lejeune-Jalabert proposed the following problem:

Problem 2.2. For all irreducible essential divisors of the minimal resolution, any k-wedge
centered at γi ∈ Ci can be lifted to X̃.

It is not trivial to generalize the classical Curve Selection Lemma to the case of infinite-
dimensional varieties such as Xsing

∞ . A. Reguera proved a Curve Selection Lemma for Xsing
∞

thus establishing the equivalence between the the Nash and the wedge problems. The wedges
appearing in A. Reguera’s theorem are K-wedges rather than k-wedges, where K is an extension
of k of infinite transcendence degree. This work of A. Reguera and its corollaries are discussed
in §2.3. §2.2 is dedicated to an interpretation of the space of arcs in terms of representable
functors. This interpretation is due to S. Ishii and J. Kollár [16]. It has been a great step in the
resolution of the problem.

2.2. Arc spaces as representable functors [16]. Let X be a reduced scheme of finite type
over k.

Definition 2.3. Let k ⊂ K be a field extension. A morphism Spec(K[[t]]/(tn+1))→ X is called
an n-jet of X over K and a morphism Spec (K[[t]])→ X is called a K-arc of X. Let us denote
the closed point (the origin) of Spec K[[t]] by 0 and the generic point by η.

Let Sch/k be the category of k-schemes and Set the category of sets. Define a contravariant
functor

Fm : Sch/k→ Set

by

Fm(Y ) = Homk(Y ×Spec k Spec(k[[t]]/(tm)), X)

Then, Fm is representable by a scheme Xm of finite type over k. This means, by definition, that

Homk(Y,Xm) = Homk(Y ×Spec k Spec(k[[t]]/(tm)), X)

for a k-scheme Y .
This Xm is called the scheme of n-jets of X. The canonical surjection

k[[t]]/(tm)→ k[[t]]/(tm−1)

induces a morphism φm : Xm → Xm−1. Define ρm = φ1 ◦ · · · ◦ φm : Xm → X. A point x ∈ Xm

gives an m-jet αx : Spec K[[t]]/(tm)→ X and ρm(x) = αx(0), where K is the residue field at x.
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Let X∞ = lim
←−

Xm and call it the space of arcs of X. X∞ is not of finite type over k but it is

a k-scheme. Denote the canonical projection X∞ → Xm by ηm and the natural map X∞ → X
by ρ; it is the composition ρm ◦ ηm ∀m. A point x ∈ X∞ with residue field K gives an arc
αx : Spec K[[t]]→ X with ρ(x) = αx(0).

The scheme Xsing
∞ defined earlier is nothing but the subscheme of X∞ consisting of those arcs

α for which α(0) ∈ Sing(X).
Lemma 1.4 applies equally well to K-arcs: any K-arc not contained in Sing(X) has a unique

lifting to any resolution of singularities X̃.
Let Ci be the closure of the set of arcs α that lift to a general point of a component Ei and

such that α(η) 6∈ Sing(X) and α(0) ∈ Sing(X). Let γi denote the generic point of the closed
irreducible set Ci and ki the residue field of the local ring OXsing∞ ,γi

.

Theorem 2.4 (Nash [26]). The Nash map

N : {Ci} → {essential components of X̃}
given by Ci → Ei is injective.

In [16], after the reformulation of Nash problem (in any dimension), two beautiful results are
shown: a positive answer to Nash problem for toric varieties in any dimension and a counter-
exemple in dimension 4 and higher.

2.3. A Curve Selection Lemma in Xsing
∞ [36]. In the paper [36], A. Reguera has shown that

a positive answer to the wedge problem is equivalent to the surjectivity of the Nash map. She
has also extended the wedge problem to all dimensions. Note that she does not assume the
singular varieties to be normal. More precisely, she proves the following:

Theorem 2.5. Let X be a singular variety.
Let Ei be an essential divisor over X. Let γi be the generic point of Ci (the closure of the set of
arcs lifting transversally to Ei), ki its residue field. The following are equivalent:

(1) Ei belongs to the image of the Nash map.

(2) For any resolution of singularities p : X̃ → X and for any field extension K of ki, any

K-wedge whose special arc maps to γi, and whose generic arc maps to Xsing
∞ , lifts to X̃.

(3) There exists a resolution of singularities p : X̃ → X satisfying the conclusion of (2).

To prove this she needed a Curve Selection lemma for Xsing
∞ for curves defined over K. This

field is of infinite transcendence degree over k, so it is quite difficult to work with. J. Fernández
de Bobadilla [5] and M. Lejeune-Jalabert with A. Reguera [22] have shown, independently, that
one may replace K by k in A. Reguera’s theorem, provided that k is uncountable.

2.4. The Nash Problem is a topological problem [5]. In this paper, J. Fernández de
Bobadilla looks at normal surface singularities, and the hypotheses of normality and dimension
2 are essential. He first gives the definition of wedges that realize an adjacency between two
essential divisors.

Definition 2.6. Let Eu and Ev be two essential divisors, and Cu and Cv the families of arcs
associated to these divisors.
A K-wedge realizes an adjacency from Eu to Ev if its generic arc belongs to Cu and its special
arc belongs to Cov (i.e. it is transverse to Ev in a general point of Ev).
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Note that if such a wedge exists, then Cv is not in the image of Nash map. This statement
can be interpreted as the easy part of the Theorem of the previous section (2 =⇒ 1): a wedge
realizing the adjacency cannot be lifted to any resolution.

J. Fernández de Bobadilla proves the following theorem:

Theorem 2.7. Let (X, 0) be a normal surface singularity defined over an uncountable alge-
braically closed field k of characteristic 0. Let Ev be an essential irreducible component of the
exceptional divisor of a resolution. Then the following are equivalent:

(1) The set Cv is in the Zariski closure of Cu, where Eu is another component of the excep-
tional divisor.

(2) Given any proper closed subset Z ⊂ Cu, there exists an algebraic k-wedge realizing an
adjacency from Eu to Ev and avoiding Z.

(3) There exists a formal k-wedge realizing an adjacency from Eu to Ev.
(4) Given any proper closed subset Z ⊂ Cu, there exists a finite morphism realizing an ad-

jacency from Eu to Ev and avoiding Z.

If the base field is C the following further conditions are equivalent to those above:

(5) Given any convergent arc γ ∈ Cou there exists a convergent C-wedge realizing an adja-
cency from Eu to γ and avoiding the set ∆u of arcs lifting to singular points of Eu or
not transversal to Eu.

(6) Given any convergent arc γ ∈ Cou there exists a convergent C-wedge realizing an adja-
cency from Eu to γ.

(7) Given any convergent arc γ ∈ Cou there exists a finite morphism realizing an adjacency
from Eu to γ and avoiding ∆u.

See [5] for the definition of finite morphism realizing an adjacency from Eu to γ.

Sketch of the proof:
For 1)⇒ 2) J. Fernández de Bobadilla uses A. Reguera’s results to obtain a K-wedge realizing
an adjacency from Eu to Ev, with k ⊂ K an extension of k. Then he uses a specialization
process to obtain a k-wedge realizing an adjacency from Eu to Ev and avoiding Z. One can find
a similar specialization process in [22] in which the authors characterize essential components
that belong to the image of the Nash map and deduce that an irreducible exceptional divisor
which is not uniruled is in the image of the Nash map (for uncountable fields).
For 4) ⇒ 1), he needs to introduce some technical tools. First, he gets an algebraic k-wedge
using Popescu’s theorem and Artin type approximation to replace the first formal k-wedge. Then
by Stein Factorization he obtains a finite morphism realizing an adjacency from Eu to Ev and
avoiding Z. He finally reduces to the case of k = C, and shows 1) in that case. For this, he
proves a property that he calls “moving wedges”:

Lemma 2.8. Given two convergent arcs γ, γ′ ∈ Cov , there exists a finite morphism realizing an
adjacency from Eu to γ if and only if there exists a finite morphism realizing an adjacency from
Eu to γ′.

He uses the Lemma to prove the following theorem:

Theorem 2.9. The set of adjacencies between exceptional divisors of a normal surface singular-
ity is a combinatorial property of the singularity: it only depends on the dual weighted graph of
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the minimal good resolution. In the complex analytic case this means that the set of adjacencies
only depends on the topological type of the singularity and not on the complex structure.

The last important paper needed to understand the proof in dimension two is due to M. Pe
Pereira [27], which gives an affirmative solution to the Nash problem for quotient singularities
of surfaces. In that paper she has, in particular, introduced some useful tools needed in [6]. We
will discuss them in the following section.

3. Solution of the Nash problem for surfaces

Theorem 3.1. Let k be an algebraically closed field of characteristic 0 and (X, 0) a normal
singular surface over k.
The Nash map associated to (X, 0) is bijective.

In [5] (7.2 p. 163), J. Fernández de Bobadilla shows that the families of arcs are stable under
base change and so is the bijectivity of Nash map. Thus it remains to prove the theorem for
complex normal surface singularities.

Let (X, 0) be a normal surface singularity over C.

The proof proceeds by contradiction.

Let E =
n⋃
i=0

Ei be the decomposition of E into irreducible components. Suppose there are two

families C0 and Ci associated with two essential divisors E0 and Ei of the minimal resolution
such that C0 ⊂ Ci.

3.1. Definition of representatives of arcs and wedges. The first ingredient is the definition
of Milnor representative of arcs and wedges.

From now on, replace X by its underlying complex-analytic space. By abuse of notation, we
will continue to denote this space by X. Let π : X̃ → X be the minimal resolution of X.

Let us recall Milnor’s work on isolated singularities.
Let Bε denote the closed ball in CN centered at the origin of radius ε and let Sε be its boundary
sphere. There exists for X a Milnor radius ε0 such that all the spheres Sε are transverse to X
and X ∩ Sε is a closed subset of Sε for all 0 < ε 6 ε0. Let us call Xε0 = X ∩ Bε0 the Milnor

representative of X. Let X̃ε0 be the minimal resolution of singularities of Xε0 ; X̃ε0 is nothing

but the preimage of Xε0 under π. Under these conditions Xε0 has a conical structure and X̃ε0

admits E as a deformation retract.
Consider an arc γ : (C, 0) → Xε0 . It is proved in [27] and [6] that there exists ε 6 ε0 such

that, restricted to Xε, γ becomes a Milnor arc:

Definition 3.2. Milnor arc
A Milnor representative of γ is a map of the form

γ|U : U → Xε

such that γ|U is a proper morphism, U is diffeomorphic to a closed disk, γ−1(∂Xε) = ∂U and
the mapping γ|U is transverse to any sphere Sε′ for ε′ 6 ε. The radius ε is called a Milnor radius
for γ.
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Let α : (C2, 0) → Xε be an analytic wedge such that α(t, s) = αs(t) is the generic arc and
α0(t) = γ(t) is the special arc.
Let γ |U : U → Xε be a Milnor Representative of γ.

For the disk Dδ of radius δ around the origin in the complex plane we will use the notation
Do

δ = Dδ \ {0}.

Proposition 3.3. Milnor wedge
There exist δ > 0 small enough, an open set U ⊂ U ×Dδ and a map

β : U ×Dδ → Xε ×Dδ

(t, s) → (αs(t), s)

such that

• α0(t) = γ |U is a Milnor representative of α0.
• the restriction β |Uo : Uo → Xo

ε ×Do
δ is a proper and finite morphism of analytic spaces

and its image is a closed 2-dimensional closed analytic subset of Xo
ε ×Do

δ .
• the set Us = U ∩ C× {s} is diffeomorphic to a disk for all s.
• for any s ∈ Dδ, βU×{s} is transverse to Sε × Do

δ (this means that every x ∈ ∂Us is a
regular point of βU×{s} and the vector space dβU×{s} is transverse to the tangent space
of Sε ×Do

δ at βU×{s}(x).

• U is a smooth manifold with boundary β−1(∂Xε ×Do
δ)

Definition 3.4. The map β restricted to U is a Milnor representative of the wedge α, whose
special arc is γ |U .

Remark 3.5. One has to prove that such a representative does exist, in particular that the set
U can be taken to be differomorphic to a disk. See [27] or [6].

Aiming for contradiction, we now consider a Milnor representative α : U → Xε of an analytic
wedge, realizing the adjacency from Ei to E0, that is, a wedge such that the generic arc αs(t)
belongs to Ci and the special arc γ(t) belongs to C0.

Remark 3.6. These definitions of representatives are a key point in the proof of the theorem.
Let αs : Us → Xε be a generic arc of the wedge. By construction, Us is a disk and thus has
Euler characteristic equal to one. The aim of the rest of the proof is to show that the Euler
Characteristic of Us is bounded above by an expression less or equal to 0, and thus get the
contradiction.

We have the following lemma:

Lemma 3.7. The mapping αs : Us → Xε is injective.

Proof. The map αs is a smooth deformation of α0 : U0 → Xε. But the map α0 : U0 → Xε is
injective since by construction it is transversal to every Sµ for µ 6 ε, so α0 is an injective and
smooth mapping.
Moreover, for all s ∈ Do

δ we have β−1(∂Bε × {s}) ∼= S1. The degree of a map of S1 to itself is
upper semi-continuous under smooth deformation, thus the map

αs |∂Us : S1 → S1

is of degree one. By Definition 3.4 and Proposition 3.3, αs has no critical points on ∂Us; this
implies that αs |∂Us is one–to–one.
Hence αs is a local homeomorphism and so is generically one–to–one. �
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3.2. Eliminating the indeterminacy of α̃. Let β̃ be the meromorphic map defined as the
composition of σ−1 ◦ β with σ = (π, id |Dδ):

X̃ε ×Dδ

σ

��
U

β̃
;;

β // Xε ×Dδ

The indeterminacy locus of σ−1 ◦ β is of codimension 2. Thus we may assume that, shrinking
the radius δ, if necessary, (0, 0) is the only indeterminacy point of β̃.

0

0
s

s

UsUo

Eo
Eo

Ei

σ

β

s

β
~

Ei

Figure 1 . Wedge representative

Moreover there exists a unique meromorphic lifting α̃ of α such that:

Y

��

� � // X̃ε

π

��
U

α̃

??

α // Xε

Let H = β(U) the image of U by β; it is an analytic subvariety of dimension two (as β
is finite and proper). Let Y be the analytic Zariski closure of σ−1(H\({0} × Dδ)) and let

Ys = Y ∩ (X̃ε × {s}). The surface Y is reduced and is a Cartier divisor in the smooth threefold

X̃ ×Dδ. One can prove the following ([5], p. 7):

(1) for all s ∈ Do
δ one has β̃(t, s) = (α̃s(t), s)

(2) Y ∩ (X̃ε ×Do
δ) = β̃(U\U0).

Thus
Ys = α̃s(Us).
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Lemma 3.8. The mapping α̃s : Us → Ys is the morphism of normalization of Ys.

Proof. First, by the previous Lemma, αs is generically one–to–one and proper. Hence so is α̃s.
As Us is a smooth disk, the mapping α̃s : Us → Ys is thus the morphism of normalization of Ys.
�

Definition 3.9. Returns
Elements of the set α−1

s (0) \ {(0, s)} are called returns. Their images by αs are 0 and by α̃s
points of the exceptional set E.

The curve Y0 = Y ∩ (X̃ε × {0}) does not need to be reduced. It contains Z0 := α̃0(U0) and
a sum of the exceptional components Ei with suitable multiplicities, which can be explicitly
described as follows. For any point ξ ∈ X, let fξ denote the local defining equation of Y0 near ξ.

We have a unique factorization

fξ = gn+1

n∏
i=0

gaii

where gn+1 = 0 is the local defining equation of Z0 near ξ and gi = 0 the local defining equation
of Ei near ξ (if ξ∈/Ei, we take gi = 1, and similarly for gn+1). It is very easy to see that, given
two points ξ, ξ′ ∈ Ei, one obtains the same exponent ai from the local equations at ξ and ξ′;
in other words, ai is determined by Ei and not by the choice of the point ξ. We express this
situation by the equation Y0 = Z0 +

∑
aiEi; the analytic space Y0 is reduced along Z0\E.

Since Ys is a deformation of Y0, we have bi := Ys.Ei = Y0.Ei; that is

M.(a0, ...., an)t = (1 + b0, b1, ..., bn),

where M is the self-intersection matrix of E (the curve E0 plays a special role in this equality
because Z0.E0 = 1 and Z0.Ei = 0 for i 6= 0). Note that the bi’s correspond to the number of
returns that lift to Ei. By linear algebra, one obtains that a0 6= 0 (i.e. E0 belongs to Y0) and
b0 = 0, that is, Ys must not intersect E0.

3.3. End of the proof. As explained before, to obtain a contradiction we want to show that
Us has non-positive Euler characteristic. To do this, Fernández de Bobadilla and Pe Pereira give
an upper bound on χ(Us) in terms of χ(Ys), χ(Y0) and the possible returns.

Recall that Y0 = Z0+
∑
i aiEi. We construct a tubular neighborhood of E in the following way.

Define Eoi = Ei\Sing(Y red0 ). Let Sing(Y red0 ) = {p0, p1, ..., pm}, where p0 = Z0 ∩ E. Let Bk
be a small ball in X̃ centered at pk. For j ∈ {0, . . . , n}, let Tj be a tubular neighborhood of
Ej , small enough so that its intersection with each Bk is transverse. Let Tn+1 be a tubular
neighborhood of Z0, small enough so that its intersection with B0 is transverse. Let

Wj = Tj\

(
m⋃
k=0

Bk

)
.

All the neighborhoods are chosen so that

(2) χ(Us) =

n+1∑
j=0

χ(α̃s
−1(Ys ∩Wj)) +

m∑
k=0

χ(α̃s
−1(Ys ∩Bk)).
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We do not need to count χ(Ys ∩ Tj ∩ Bk) since by the assumed transversality each of these
intersections is a finite union of circles and thus

(3) χ(Ys ∩ Tj ∩Bk) = 0.

Z0

Ys

Eo

Ei

Type 1

Type 2

Type 4

Us

Type 3

Figure 2 . Normalization map

It remains to bound above each summand on the right hand side of (2). To do this, we first

consider the special case when X̃ε is a good resolution of Xε, that is, when the exceptional set
E has normal crossings. We divide the summands appearing in (2) into three types and deal
separately with each type.

• Type 1: Terms of the form χ(α̃s
−1(Ys ∩Wj)). If j 6 n, by Hurwitz formula, we have

(4) χ(α̃s
−1(Ys ∩Wj)) 6 aiχ(Eoj )

as the maps α̃s
−1(Ys ∩ Wj) → Ej\

(
m⋃
k=0

Bk

)
are branched covers of degree ai. For

j = n+ 1, Z0 \ p0 is homeomorphic to a punctured disk, so Hurwitz formula gives

(5) χ(α̃s
−1(Ys ∩Wn+1)) 6 χ(Z0 \ p0) = 0.

• Type 2: Terms of the form χ(α̃s
−1(Ys ∩ Bk)) such that k > 0, pk∈/Ys and Bk ∩ E has

only normal crossings. Let (x, y) be local coordinates at pk such that f(x, y) = xy is a
local defining equation of the set E ∩Bk. Let Y 1

s , . . . , Y
q
s be the connected components

of the set Ys \ Bk. Since the only connected orientable surfaces with boundary having
positive Euler characteristic are disks, and in view of (3), we only have to be careful
about those Y ls which are homeomorphic to disks.

As Ys is a deformation of Y0, the boundary of such a component Y ls either deforms to
V (x) ∩ Sε or to V (y) ∩ Sε. This implies that Y ls must intersect either V (x) or V (y). In
this case one has,

(6) χ(α̃s
−1(Ys ∩Bk)) 6

∑
p∈Ys∩Y0∩Bk

Ip(Ys, Y
red
0 ).
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• Type 3: Finally, we will show that χ(α̃s
−1(Ys ∩B0)) 6 a0 − 1. Indeed, as Y0 is reduced

locally at Z0 let us suppose that the local equation at Z0∪E0 is of the form f0 = xya0 = 0.
Let Y ls be an irreducible component of Ys∩B0 whose normalization is a disk. Then as Ys
is a deformation of Y0, the boundary of that component Y ls either deforms to V (x)∩ ∂B
or to V (y) ∩ ∂B0. This implies that Y ls must intersect either V (x) or V (y). Therefore,
as in the case of Type 2, we have

(7) χ(α̃s
−1(Ys ∩B0)) 6

∑
p∈Ys∩Y0∩B0

Ip(Ys, Y
red
0 ) 6 a0 + 1.

As Ys is a deformation of Y0, there exists a connected component F of Ys ∩ B0 whose
boundary contains a circle Ks deforming to V (x) ∩ ∂B0. If ∂F = Ks then, by the
connectedness of Ys, Ys ∩ ∂B0 does not contain a circle deforming to V (y)∩ ∂B0, which
is impossible. Thus Ks $ ∂F , so ∂F must be a union of at least two circles. In particular,
the normalization of F cannot be a disk. Since there are at least two circles in Ys ∩ ∂B0

which bound a connected component of Ys∩B0 having non-positive Euler characteristic,
the inequality (7) remains true after we subtract 2 from the right hand side:

(8) χ(α̃s
−1(Ys ∩B0)) 6 a0 − 1.

Combining (2), (4), (5), (6) and (8), we obtain

χ(Us) 6 a0 − 1 +

n∑
i=0

ai(χ(Ei)− Ei.(Y red0 − Ei)) +
∑

p∈Ys∩(Y0\B0)

Ip(Ys, Y
red
0 )

Rearranging the sum one has

χ(Us) 6
∑
i

ai(2− 2gi + Ei.Ei).

This last sum is less or equal to 0 as each member is less than or equal to 0. We have proved that
the disk Us has non-positive Euler characteristic, which gives the desired contradiction. This
completes the proof in the case when the minimal resolution X̃ is a good resolution.

We now briefly sketch the proof in the general case, that is, when E is not necessarily normal
crossings.

The main difference with the normal crossings case is that now we must take more care to
bound the terms in (2) of the form χ(α̃s

−1(Ys ∩ Bk)) such that Bk ∩ E does not have normal
crossings (in particular, k > 0). Assume that Ys ∩Bk 6= ∅. Suppose, too, that Ys does not pass
through pk (if not, one can reduce the problem to this case by suitably deforming Ys).

To study the inequality (2), we use the following numerical characters of the singularities of
the reduced exceptional set E. For each Ei consider the set of irreducible components of the
germ of Ei at each point of Sing(Y red0 ). We denote by νi the total number of local branches of
Ei at all the singular points of Sing(Y red0 ), by µi the sum of Milnor numbers of all these local
branches, and by ηi the sum of all the pairwise intersection number between the branches.

Fix a sequence of point blowings up of X̃ε under which the total preimage of E∩Bk is normal
crossings, and replace X̃ε by the resulting manifold. The Euler characteristic of the preimage of
Ys is equal to that of Ys.

Analyzing the blown up surface by techniques similar to the ones used in the case of good
resolution, we obtain the inequality

χ(Us) 6 a0 − 1 +
∑
i

ai(χ(Ei) + νi − µi − ηi − Ei.(Y red0 − Ei)) +
∑

p∈Ys∩(Y0\B0)

Ip(Ys, Y
red
0 ).
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Rearranging the sum one has

χ(Us) 6
∑
i

ai(2− 2gi − µi − ηi + Ei.Ei)

This last sum is less or equal to 0 as each member is less than 0. Contradiction.

3.4. The non-normal case. As before, thanks to Lefschetz Principle, Fernández de Bobadilla
and Pe Pereira reduce the problem to the complex case.

Let X be a complex algebraic surface, not necessarily normal, and let π : X̃ → X be its

minimal resolution of the singularities of X. Let E := π−1(Sing(X)). Let E =
n⋃
i=0

Ei be the

decomposition of E into irreducible components.

Definition 3.10. We say that Ei is of the first kind if dimπ(Ei) = 0 and of the second kind
if dimπ(Ei) = 1.

A priori, we have four types of possible adjacencies: an arc family of the first kind could be
adjacent to one of the first or second kind and an arc family of the second kind could be adjacent
to one of the first or second kind. The fact that a family of the second kind cannot be adjacent
to another one of either first or second kind follows easily from the continuity of the wedge which
realizes this hypothetical adjacency. The fact that an arc family Ci of the first kind cannot be
adjacent to another family Cj of the first kind follows from the normal case: such an adjacency
would induce an adjacency of the preimage of Ci to the preimage of Cj in the normalization
of X, which is impossible by the normal case. To settle the last remaining case, that of an arc
family Ci of the first kind adjacent to an arc family Cj of the second kind, J. Fernández de
Bobadilla and M. Pe Pereira use plumbing to construct an auxiliary normal surface singularity
(X ′, ξ′) and two distinct Nash families C ′i and C ′j on X ′ such that C ′i is adjacent to C ′j , again
contradicting the normal case.

4. Higher dimensions

For singularities of higher dimensions, the Nash Problem enunciated as above is false, though
a few positive results have been proved: in [16], S. Ishii and J. Kollar give an affirmative answer
for toric varieties in all dimensions. Affirmative answers for a family of singularities in dimension
higher than 2 by P. Popescu-Pampu and C. Plénat ( [32]) and another family by M. Leyton-
Alvarez [23] (2011).

In [16], S. Ishii and J. Kollár give a counterexample to the Nash problem in dimension greater
than or equal to 4: the hypersurface

x3 + y3 + z3 + u3 + w6 = 0

which has a resolution with two irreducible exceptional components. These are essential, as one
is the projectivization of the tangent cone at the singular point (hence it clearly corresponds to
a Nash family), and the other one is not uniruled. Then the authors construct geometrically a
wedge whose generic arc is in the Nash family, and whose special arc is in the second family.

In May 2012, T. de Fernex gave a counterexample in dimension 3 ([3], 2012). The equation is

(9) (x2 + y2 + z2)w + x3 + y3 + z3 + w5 + w6 = 0
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In the algebraic setting, he can prove that the two exceptional components obtained after two
blowing-ups are essential. But as an analytic variety, the hypersurface obtained from (9) by
blowing up the origin is locally isomorphic to the non-degenerate quadratic cone, hence it admits
a small resolution; this implies that the second exceptional component is not essential, so the
counterexample does not apply in the analytic category. Deforming the equation (9), de Fernex
obtains a counterexample to the Nash problem in dimension 3, valid in both the algebraic and
the analytic setting:

(x2 + y2)w + x3 + y3 + z3 + w5 + w6 = 0.

An even more recent paper on the Nash problem is due J. Johnson and J. Kollár [17]. In that
paper, J. Johnson and J. Kollár gives a new family of counterexamples to the Nash problem in
dimension 3, called cA1-type singularities:

x2 + y2 + z2 + tm = 0

with m odd, m > 3. These singularities are isolated and have only one Nash family, but two of
the exceptional components in the resolution are essential.
Moreover, J. Johnson and J.Kollár formulates the Revised Nash problem, which we now explain.

Definition 4.1. Let X be a variety over a field k, k ⊂ K a field extension of k and φ :
Spec K[[t]]→ X an arc such that Supp φ−1(Sing(X)) = {0}. A sideways deformation of φ
is an extension of φ to a morphism Φ : Spec K[[t, s]]→ X such that

Supp Φ−1(Sing(X)) = {(0, 0)}.

Definition 4.2. We say that X is arcwise Nash-trivial if every general arc in Xsing
∞ has a

sideways deformation.

Definition 4.3. Let X be a variety over k. A divisor over X is called very essential if the
following holds. Let p : Y → X be a proper birational morphism such that Y is Q-factorial
and has only arcwise Nash-trivial singularities. Then centerY E is an irreducible component of
p−1(Sing(X)).

In fact in the three counterexamples above, the components corresponding to Nash families
are given precisely by the very essential divisor. Imitating and conceptualizing the proofs of
non-essentiality appearing in the above counterexamples, one can show that divisors appearing
in the image of the Nash map are very essential. We are lead to the following problem:

Problem 4.4. Is the Nash map surjective onto the set of very essential divisors?

In April 2014, when the present paper was well into the refereeing process, Tommaso de Fernex
and Roi Docampo [4] made further significant progress on the Nash problem. They defined the
notion of terminal valuations over X (where X is a variety of any dimension) and showed
that any divisor associated to a terminal valuation is in the image of the Nash map. Restricting
this result to the case dim X = 2 provides a new and completely algebraic proof of the Theorem
of Fernández de Bobadilla – Pe Pereira. We acknowledge this very important paper even though
we did not have a chance to discuss it in detail.
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