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Associate Editors:
Lev Birbrair
Jean-Paul Brasselet
Felipe Cano Torres
Alexandru Dimca
Terence Gaffney
Sabir Gusein-Zade
Helmut Hamm
Kevin Houston
Ilia Itenberg
Françoise Michel
András Némethi
Mutsuo Oka
Anne Pichon
Maria Ruas
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ERRATUM: FREE DIVISORS IN A PENCIL OF CURVES

JEAN VALLÈS

In the paper “Free divisors in a pencil of curves”, I wrongly said that the Jacobian ideal
J∇Dk ⊂ S generated by the partial derivatives of Dk is locally a complete intersection. This is
not always true, as can be seen for instance in [2] or in [1, section 1.3].

Because of this error, remark 2.4, Theorem 2.7 and Theorem 2.8 are not true as they were
formulated. In remark 2.4, the phrase “the local ideals (∇f ∧∇g)p and (∇f)p coincide” is true
when the Jacobian ideal of f is locally a complete intersection at p (for instance when f = 0 is
a union of lines), but not in general.

Actually, the condition that the Jacobian ideal of a reduced plane curve C is a local complete
intersection is equivalent to the claim that any singularity of C is weighted homogeneous (see
again [1, section 1.3]).

This hypothesis concerning the nature of the singularities of the curves in the pencil must be
added in order to correct theorems 2.7 and 2.8.

The set of all the singularities of all the singular members of the pencil C(f, g) is denoted by
Sing(C).

A correct statement for Theorem 2.7 is the following one:

Theorem 2.7 Assume that the base locus of the pencil C(f, g) is smooth, n ≥ 1 and k > 1.
Then, Dk is free with exponents (2n − 2, n(k − 2) + 1) if and only if Dk ⊇ Dsg and J∇Dk is
locally a complete intersection at every p ∈ Sing(C).

Proof. Let us remark first thatDk is free with exponents (2n−2, n(k−2)+1) if and only if the zero
set Zk of the “canonical section” sδ,k is empty. Indeed, if Zk = ∅, then H1(TDk(m)) = 0 for all
m ∈ Z and, by Horrocks’ criterion, this implies thatDk is free with exponents (2n−2, n(k−2)+1).
The other direction is straightforward.

According to lemma 2.6, Zk = ∅ if and only if c2(J∇Dk) = n2(k − 1)2 + 3(n− 1)2. Moreover
it is well-known (see [1, section 1.3] for instance) that the length of the Jacobian scheme of Dk

is c2(J∇Dk) =
∑
p∈Sing(Dk) τp(Dk), where τp(Dk) is the Tjurina number of Dk at p ∈ Dk (this

number τp(Dk) is the length of the subscheme of the Jacobian scheme supported by p). Then,
to prove the theorem, we show below that

∑
p∈Sing(Dk) τp(Dk) = n2(k − 1)2 + 3(n − 1)2 if and

only if Dk ⊇ Dsg and J∇Dk is locally a complete intersection at every p ∈ Sing(C).
The Jacobian scheme of Dk is supported by the base locus B of the pencil and by the singular

points of the k curves forming Dk. The syzygy ∇f ∧ ∇g of J∇Dk does not vanish at p ∈ B;
this implies that J∇Dk is locally a complete intersection at p ∈ B; according to [1, section
1.3], this gives τp(Dk) = µp(Dk), where this last number is the Milnor number of Dk at p.
Since p is an ordinary singular point of multiplicity k, we obtain µp(Dk) = (k − 1)2. Then∑
p∈B τp(Dk) = n2(k − 1)2.

Let us compute now
∑
p∈Sing(Dk)\B τp(Dk).

Let Cp ⊂ Dk be the unique curve in the pencil singular at p ∈ Sing(Dk) \ B. We can verify
without difficulties that their Jacobian ideals coincide locally at p ∈ Sing(Dk) \B; in particular
τp(Dk) = τp(Cp) and

∑
p∈Sing(Dk)\B τp(Dk) =

∑
p∈Sing(Dk)\B τp(Cp).

http://dx.doi.org/10.5427/jsing.2016.14a


2 JEAN VALLÈS

Let I = (∇f ∧ ∇g) be the ideal generated by the two by two minors of the 3 × 2 matrix
(∇f,∇g) defining the scheme sg(F). Let sg(F)p be the subscheme of sg(F) supported by the
point p. We have seen in lemma 2.2 that sg(F) is supported by the whole set of singular points
of the pencil and that l(sg(F)) =

∑
p∈Sing(C) l(sg(F)p) = 3(n− 1)2.

Let us consider the situation in a fixed point p ∈ Sing(Dk) \ B. To simplify the notation,
assume that f = 0 is an equation for Cp. Then the other curves of the pencil do not pass through
p; in particular, g(p) 6= 0. Since < ∇f ∧∇g,∇g >= 0, ∇g is a syzygy of I that does not vanish
at p ∈ Sing(Dk) \B. This implies that I is locally a complete intersection at p. Since the ideal
Ip is obtained by taking the two by two minors of the matrix (∇f,∇g) in the local ring Sp,
the inclusion Ip ⊂ J∇f,p is straightforward; this inclusion implies τp(Cp) ≤ l(sg(F)p) because
l(sg(F)p) = l(Sp/Ip).

Then Zk = ∅ if and only if
∑
p∈Sing(Dk)\B τp(Cp) =

∑
p∈Sing(C) l(sg(F)p). And this equality is

verified if and only if Sing(Dk) \ B = Sing(C) and l(sg(F)p) = τp(Cp) for all p ∈ Sing(C). The
second equality is equivalent to the equality Ip = J∇f,p, which implies that the Jacobian ideal
of Cp is locally a complete intersection at p.

Since the Jacobian ideals of Dk and Cp coincide locally at p ∈ Sing(Dk) \B, this proves that
Zk = ∅ if and only if Dk contains all the singular members of the pencil (Sing(Dk)\B = Sing(C))
and the Jacobian ideal of Dk is locally a complete intersection in every singular point of the
pencil (µp(Cp) = τp(Cp) for all p ∈ Sing(C)). �

Remark. If the Jacobian ideal of Dk is not locally a complete intersection at p, then Zk is not
empty because p ∈ supp(Zk), even if Dk contains all the singular curves.

This new hypothesis on the singularities must be added also in theorem 2.8 and in proposition
2.10. The proofs remain the same.

Theorem 2.8 Assume that the base locus of the pencil C(f, g) is smooth and that the Jacobian
ideal of Dsg is locally a complete intersection. Assume also that Dk contains all the singular
members of the pencil except the singular curves Cαi,βi for i = 1, . . . , r. Then,

JZk = J∇Cα1,β1
⊗ · · · ⊗ J∇Cαr,βr .

Proposition 2.10 We assume that the base locus of the pencil C(f, g) is smooth, that the Jaco-
bian ideal of Dsg is locally a complete intersection and that Dk contains Dsg. Let C be a singular
member in C(f, g) and Z its scheme of singular points. Then there is an exact sequence

0 −−−−→ TDk −−−−→ TDk\C −−−−→ JZ/C(n(3− k)− 1) −−−−→ 0,

where JZ/C ⊂ OC defines Z into C.
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[2] Simis, A. and Tohăneanu, Ş. O. Homology of homogeneous divisors. Israel J. Math. 200 (2014), no.

1, 449–487

E-mail address: jean.valles@univ-pau.fr
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France

URL: http://jvalles.perso.univ-pau.fr/

http://jvalles.perso.univ-pau.fr/


Journal of Singularities
Volume 14 (2016), 3-33

received: 29 April 2014
in revised form: 29 September 2015

DOI: 10.5427/jsing.2016.14b

MODULI SPACES FOR TOPOLOGICALLY QUASI-HOMOGENEOUS

FUNCTIONS

YOHANN GENZMER AND EMMANUEL PAUL

Abstract. We consider the topological class of a germ of 2-variables quasi-homogeneous
complex analytic function. Each element f in this class induces a germ of foliation (df = 0)
and a germ of curve (f = 0). We first describe the moduli space of the foliations in this class
and we give analytic normal forms. The classification of curves induces a distribution on this
moduli space. By studying the infinitesimal generators of this distribution, we can compute
the generic dimension of the moduli space for the curves, and we obtain the corresponding
generic normal forms.

Introduction

From any convergent series f in C{x, y}, we can consider three different associated mathematical
objects: a germ of holomorphic function defined by the sum of this series, a germ of foliation
whose leaves are the connected components of the level curves f = constants, and an embedded
curve f = 0. Composing f on the left side by a diffeomorphism of (C, 0) may change the function
but nor the foliation or the curve. Multiplying f by an invertible function u may change the
function and the foliation but not the related curve. Therefore, there are three different analytic
equivalence relations:

• The classification of functions (or right equivalence):

f0 ∼r f1 ⇔ ∃φ ∈ Diff (C2, 0), f1 = f0 ◦ φ.

• The classification of foliations (or left-right equivalence):

f0 ∼ f1 ⇔ ∃φ ∈ Diff (C2, 0), ψ ∈ Diff (C, 0), ψ ◦ f1 = f0 ◦ φ.

• The classification of curves:

f0 ∼c f1 ⇔ ∃φ ∈ Diff (C2, 0), ∃u ∈ O2, u(0) 6= 0, uf1 = f0 ◦ φ.

In the same way, one can define topological classifications requiring only topological changes of
coordinates. In what follows, we are going to consider mostly the two last equivalence relations
for foliations and curves, since the comparison between the two first analytic classifications has
been studied in [1].

Finally, we emphasize that in our work, we will always require that the conjugacies that appear
above will respect a fixed numbering of the branches of f = 0.

A germ of holomorphic function fqh : (C2, 0) → (C, 0) is quasi-homogeneous if and only if fqh

belongs to its jacobian ideal J(fqh) = (
∂fqh
∂x ,

∂fqh
∂y ). If fqh is quasi-homogeneous, there exist

2010 Mathematics Subject Classification. 34M35, 32S65, 32G13.
Key words and phrases. holomorphic foliation, moduli of curve, singularities.
The first author is supported by the ANR under the project ANR-13-JS01-0002-01.
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coordinates (x, y) and positive coprime integers k and l such that the quasi-radial vector field
R = kx ∂

∂x + ly ∂
∂y satisfies

R(fqh) = d · fqh,

where the integer d is the quasi-homogeneous (k, l)-degree of fqh [15]. In these coordinates, fqh
has some cuspidal branches and maybe axial branches, that is to say, fqh is written

fqh = cxn∞yn0

p∏

b=1

(yk + abx
l)nb(1)

where c is a non vanishing complex number and the multiplicities satisfy n0 ≥ 0, n∞ ≥ 0 and
nb > 0. The complex numbers ab are non vanishing numbers such that ab 6= ab′ . Using a
convenient analytic change of coordinates, we may suppose that a1 = 1.
A germ of holomorphic function f is topologically quasi-homogeneous if the function f is topo-
logically conjugated to a quasi-homogeneous function fqh, that is to say there is a continuous
right-equivalence between f and fqh.

For any couple of coprime positive integers (k, l) with k < l and (p + 2)-uple (n) of integers
in N2 × (N∗)p, (n) = (n∞, n0, n1, n2, · · · , np) we consider the topological class T(k,l),(n) of fqh
defined in (1), that is the set of all functions topologically conjugated to fqh. The first aim of
this paper is to describe the moduli space defined by the quotient

M(k,l),(n) = T(k,l),(n)/∼

where ∼ refers to the left-right analytical equivalence. We give the infinitesimal description of
this moduli space by making use of the cohomological tools considered by J.F. Mattei in [13]:
the tangent space to the moduli space is given by the first Cěch cohomology group H1(D,ΘF),
where D is the exceptional divisor of the desingularization of fqh, and ΘF is the sheaf of germs

of vector fields tangent to the desingularized foliation F̃ induced by dfqh = 0. Using a particular
covering of D, we give a triangular presentation of the C-space H1(D,ΘF) in Theorem (1.3).
This description leads us to consider triangular analytic normal forms

Na = xn∞yn0

p∏

b=1

(yk +
∑

{(b,d),Φ(b,d)∈T}∪{(1,kl)}

ab,dm
d)nb(2)

by perturbing the topological normal form (1) with some monomials md following an algorithm
described in the subsection (1.2), in which the precise meaning of the indexation Φ(b, d) is
defined. This family of analytic normal forms turns out to be semi-universal as established in
Theorem (1.10). In this way, we obtain a local description of M(k,l),(n). We finally give a global
description of this moduli space in Theorem (1.15) and Theorem (1.16) by proving that any
function in T(k,l),(n) is actually conjugated to some normal form Na , and that the parameter a
is unique up to some weighted projective action of C∗. All the results of this first part can be
extended to the generic Darboux function:

f (λ) = fλ1

1 · · · fλp
p

with complex multiplicities λi. Nevertheless, we do not insert this extension here, since we have
previously explain in [8] how to perform it in the topologically homogeneous case.

The second part of our work is dedicated to the study of the moduli space of curves in the quasi-
homogeneous topological class. This problem is a particular case of an open problem known as
the Zariski problem. It has only a very few answers: Zariski [17] for the very first treatment of
some particular cases, Hefez and Hernandes [5, 6] for the irreducible curves, Granger [9] in the
homogeneous topological class and [2] for some results which are particular cases of our present
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result. Our strategy that we already introduced in a previous work [8], differs from all this works:
we consider the integrable distribution C on the moduli space of foliations M(k,l),(n) induced by
the equivalence relation ∼c: two foliations represented by two points in M(k,l),(n) are in a same
orbit of this distribution if and only if they induce the same curve up to analytic conjugacy.
Studying the family of vector fields that induce the distribution C on M(k,l),(n), we compute the

dimension of the generic strata of the moduli space of curves M(k,l),(n)/C in Theorem (2.7). We
also give an algorithm in order to construct the corresponding generic normal forms in Theorem
(2.8).
Since the cohomological description of the moduli space of foliations is known for a general one-
form, we may expect that this strategy can be develop in a general topological class.

In order to keep a sufficiently readable text, we have postponed a lot of technical computations
in appendix A.

We thank Jean-François Mattei for helpful discussions, and for suggesting improvements on a
first version of this work.

1. The moduli space of foliations

In this section, we will consider a function f in the class T(k,l),(n). The (k, l)-degree of a monomial
xmyn is km+ ln. It induces a valuation on C{x, y} denoted by νk,l.

Let f be a function in the topological class T(k,l),(n). We know, from a theorem of Lejeune-
Jalabert [10] that the desingularization process of f is identical to that of fqh, that is to say:
after a sequence of blowing-ups E, the exceptional divisor D is a chain of components isomorphic
to P 1(C), the strict transform of the cuspidal branches intersect the same component Dc, the
principal component, and the strict transform of the axes, if they appear, intersect the end
components of this chain : see Appendix A, and figure (2).

Lemma 1.1 (Prenormalization). There exists some coordinates (x, y) such that f is written

f(x, y) = cxn∞yn0
(
yk + xl + · · ·

)n1
(
yk + a2x

l + · · ·
)n2

· · ·
(
yk + apx

l + · · ·
)
np

where c is a non-vanishing complex number, ab, b = 2, . . . , p are non-vanishing complex numbers
with ab 6= ab′ 6= 1, and the dots are terms of (k, l)-degree greater than kl.

Proof. Let f be a function topologically conjugated to fqh. The number of branches, and
their multiplicities are topological invariants. Therefore, we consider the following irreducible
decomposition of f :

f = fn∞

∞ fn0

0 fn1

1 · · · fnp
p .

Since f has the same desingularization process as fqh, if n0 > 0 or n∞ > 0, the strict transform
of the corresponding branches appear on the end components. Therefore, their blowing-down
are smooth transverse branches at 0, and we can choose coordinates (x, y) such that

f = xn∞yn0fn1

1 · · · fnp
p .

Now, the strict transform of the other branches meet the principal component Dc. Using the
blown-down formulas of proposition (3.2) in Appendix A, we obtain that:

fi = αiy
k + βix

l + · · ·

with αi 6= 0 and βi 6= 0. By factorizing αi in each component fi we obtain the existence of a
non-vanishing constant c and a family of p non-vanishing complex number ab, b = 1, . . . , p such
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that

f = cxn∞yn0
(
yk + a1x

l + · · ·
)n1

· · ·
(
yk + apx

l + · · ·
)
np

where the dots are terms of (k, l)−degree greater than kl. Finally, by applying a final change of
coordinates of the form (x, y) → (αx, y), we can suppose that a1 = 1. �

Unless any precision is given, from now on, we will only consider system of coordinates (x, y)
such that the function f ∈ T(k,l),(n) has an expression as in the above lemma.

1.1. The infinitesimal description. Since the transverse structure of a foliation defined by a
function is rigid, i.e. completely given by the discrete data of the multiplicities, any topologically
trivial deformation is an unfolding as defined in [13]. We know from the same reference that the
tangent space to the moduli space of unfoldings of a germ of analytic foliation F is the vector
space: H1(D,ΘF ), where ΘF is the sheaf on D of germs of holomorphic vector fields tangent to

the desingularized foliation F̃ . Furthermore, this vector space is a finite dimensional one, whose
dimension δ is obtained by a formula involving the multiplicities of the foliation at the singular
points appearing at each step of the blowing up process. In the present topological class, we
will give an alternative description of this tangent space which will allow us to construct normal
forms.

Let f be in T(k,l),(n). We consider the saturated foliations F and F̃ induced by df and E∗df ,
where E is the desingularization morphism of f .

Notation 1.2.

(1) We define two integers ε0 and ε∞ in {0, 1} as follows: if n0 > 0 then we set ε0 = 1, else
we set ε0 = 0. We define ε∞ the same way but relative to n∞.

(2) Let (u, v) be the unique couple of integers defined by the Bézout identity

uk − vl = 1 with 0 ≤ u < l, 0 ≤ v < k.

(3) We denote by νc the multiplicity of the desingularized foliation on the principal compo-
nent Dc of the exceptional divisor. According to Proposition (3.4) in Appendix A, we
have

νc = klp− k − l + kε∞ + lε0.

(4) Let T be the triangle in the real half plane (X,Y ), Y ≥ 0, delimited by

kX − (k − v)(Y − νc) > 0

lX − (l − u)(Y − νc) < 0

The summit of this triangle is (0, νc). The directions of the non horizontal edges are
given by the vectors

~x = (k − v, k) and ~y = (l − u, l).

Theorem 1.3. There is an explicit linear isomorphism Ψ between H1(D,ΘF) and the C-vector
space freely generated by the set of integer points ei,j = (i, j) in the triangle T.

The expression of Ψ is given in the proof below. We give a presentation of the tangent space
to the moduli space of a function in the topological class: (k, l) = (3, 5), p = 4, n0 = n∞ = 0,
n1, . . . , n4 arbitrary, obtained by this theorem in Appendix B, Figure (3).
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Proof. Let us consider θf the vector field with an isolated singularity defined by

θf =
1

g.c.d.
(

∂f
∂x ,

∂f
∂y

) ·

(
−∂f

∂x

∂

∂y
+
∂f

∂y

∂

∂x

)
.(3)

Let {U0, U∞} be the covering of the exceptional divisor introduced in the Appendix A. From
proposition 3.6, we know that this covering is acyclic with respect to the sheaf ΘF . Therefore
we have

H1(D,ΘF ) =
ΘF(U0 ∩ U∞)

ΘF(U0)⊕ΘF(U∞)
.

In order to compute each term of this quotient, we consider the principal chart (xc, yc) defined
near the central componentDc defined in Appendix A. The domain of this chart contains U0∩U∞.
The vector field

θis =
E∗θf
yνcc

has isolated singularities and defines F on U0 ∩ U∞. Therefore we have

ΘF(U0 ∩ U∞) = O (U0 ∩ U∞) · θis,

and each θ in ΘF (U0 ∩ U∞) can be written

θ =


 ∑

i∈Z,j∈N

λi,j x
i
cy

j
c


 · θis.

By the local monomial expression of E given by proposition 3.2 in Appendix A, these vector
fields θ blow down on meromorphic vector fields with poles on the axes:

E∗θ =
∑

i∈Z, j∈N

λi,j x
li−(l−u)(j−νc)y−ki+(k−v)(j−νc) · θf .

Let us prove that θ has an holomorphic extension on U0 if and only if

−ki+ (k − v)(j − νc) < 0 =⇒ λi,j = 0. (⋆)

If such an extension is possible, then θ has no pole along the curve y = 0 whose strict transform
belongs to U0, thus the property (⋆) holds. On the converse, if the property (⋆) is satisfied, then
the multiplicity νD1

(θ) of θ along the component D1 which meets the strict transform of the
x-axis is positive. Indeed, after a standard blow-up, we find

νD1
(θ) ≥ min

λi,j 6=0
{(l − k)i+ (j − νc)(k − v − l + u)} ≥ 0

Now, the intermediate multiplicities νDi(θ), 1 < i < c are also positive. This is a consequence
of the relations

νD2
(θ) = e1νD1

(θ), νDi+1
(θ) = eiνDi(θ) − νDi−1

(θ), i = 2, . . . , c− 1

which can be obtained by a similar argument as in proposition 3.4. Here, −ei is the self-
intersection of the component Di. Since ei ≥ 2 for i = 1, . . . , c− 1, we have

νD2
(θ) ≥ νD1

(θ), νDi+1
(θ)− νDi(θ) ≥ νDi(θ)− νDi−1

(θ), i = 2, . . . , c− 1

which proves that νDi(θ) is positive for any i = 1, . . . , c. In the same way, an element θ in
ΘF (U0 ∩ U∞) belongs to ΘF (U∞) if and only if

li− (l − u)(j − νc) < 0 =⇒ λi,j = 0.

Therefore, there is a linear isomorphism Ψ between the C-space freely generated by the integer
points ei,j in T and H1 (D,ΘF) defined by:
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(4) Ψ :
∑

(i,j)∈T

λi,jei,j 7−→




 ∑

(i,j)∈T

λi,jx
i
cy

j
c


 · θis


 .

�

This representation gives us a direct formula for the dimension δ of H1(D,ΘF), by counting the
integers points in the above triangle. In order to give an explicit formula, we need the following
fact:

Lemma 1.4 (and notations). The number of integer points in an open interval ]a, b[ is given
by ]b] − [a[, where [a[ stands for the usual integer part n of a: n ≤ a < n + 1, and ]b] is the
”strict” integer part m of b defined by m < b ≤ m+ 1.

Since the intersections of the horizontal levels j with the boundary of T are respectively given
by k−v

k (j − νc) and
l−u
l (j − νc), we obtain

Proposition 1.5. The dimension of H1(D,ΘF) is

δ =

νc∑

j=0

(]
l − u

l
(j − νc)

]
−

[
k − v

k
(j − νc)

[)
.

Example. For the topological class given by (k, l) = (3, 5), p = 4, without axis, by counting the
integers points in figure (3) in Appendix B, or applying the previous formula, we obtain that
δ = 78.

1.2. Construction of the local normal forms. We will construct here analytic models for
topologically quasi-homogeneous functions starting from the topological normal form (1). Since
it already appears (p − 1) analytic invariants that are the values ab (the cross ratios between
branches on the principal component), we have to add δ − (p − 1) monomial terms of higher
degrees. The construction to come is a priori based upon some algorithmic but arbitrary choices.
It will be justified by Theorem (1.10) in the next section.

In our previous work in [8], for the homogeneous topological class, in which the topological
representative was p transverse lines, we straightened the fourth first lines on xy(y+x)(y+a4,1x),
we added the monomials a5,2x

2 to the fifth line, a6,2x
2 + a6,3x

3 to the sixth, and so on. We
generalize this triangular construction here by making use of the quasi-homogeneous (k, l)-degree.
Nevertheless, the choice of the monomials and their distribution between the branches is not so
obvious here.

The following algorithm will associate an analytic normal form starting from the previous tri-
angular presentation of the infinitesimal moduli space.
The figure (3) in Appendix B shows the procedure in order to construct the normal forms
associated to the topological class of

(
y3 + x5

)n1
(
y3 + a2x

5
)n2
(
y3 + a3x

5
)n3
(
y3 + a4x

5
)n4

.

The meaning of all the datas that appear on the figure will be detailed below.
The construction consists in two successive steps.

Step 1. Choice of the monomials.

Notation 1.6. For any d ≥ kl, there exists a unique monomial xiyj with quasi-homogeneous
(k, l)-degree d, such that j < k. We denote it the following way

md := xiyj ik + jl = d, j < k.
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For (k, l) = (3, 5), we find m15 = x5, m16 = x2y2, m17 = x4y, m18 = x6,...

Therefore, to each horizontal line of index j in the triangle T, one can associate the monomial
md, d = kl+ j. We put them on a column on the right side in Figure (3).

Step 2. Distribution of the monomials between the cuspidal branches. The link
between the monomial terms md and md+1 is the multiplication by the meromorphic monomial
term md+1/md. We encode this multiplication by a translation in T. We associate to the
multiplication by x (resp. y) the translation by ~x = (k − v, k) (resp. ~y = (l− u, l)). This choice
is suggested by the formulas of Proposition (3.2) in Appendix A. Thus to a degree d we associate

the translation in Z2 by the vector ~td defined by

~td = i~x+ j~y

where xiyj = md+1/md.

Lemma 1.7. For any d, ~td is either (1, 1) or (0, 1).

Proof. Let md = xiyj and thus ik + jl = d with 0 ≤ j < k. Suppose first that j − v ≥ 0. Then
md+1 = xi+uyj−v. Hence, in the the canonical basis, the components of ~td are

(i+ u− i) (k − v, k) + (j − v − j) (l− u, l) = (1, 1) .

If j − v < 0 then md+1 = xi+u−lyj+k−v . Indeed, we have 0 ≤ j + k − v < k and i + u − l ≥ 0
since from

(i+ u)k = kl+ 1− (j − v) l > kl.

In this case, the components of ~td are

(u− l) (k − v, k) + (k − v) (l− u, l) = (0, 1) .

�

For (k, l) = (3, 5), the meromorphic monomials form a periodic sequence of lenght 3 generated

by: y2/x3, x2/y, x2/y. The successive translations are ~t15, ~t16, ~t17, ~t18 = ~t15 etc..., whose
components are (0, 1), (1, 1), (1, 1). We put the translations on a column on the right side of
Figure (3).

Now we consider all the parallel paths issued from the integer points (i, 0) on the horizontal axe,
under the action of the successive translations ~td. The point

(
−νc

k−v
k , 0

)
is the intersection of

the left edge of the triangle with this horizontal axe. We consider the p integer points:

M1 :=

(
[−νc

k − v

k
[+p, 0

)
, M2 :=

(
[−νc

k − v

k
[+p− 1, 0

)
, . . . , Mp :=

(
[−νc

k − v

k
[+1, 0

)
.

Notice that the (p− 1) last ones are inside the triangle, while the first one is outside.

Proposition 1.8. The p paths issued from the initial points Mi, i = 1, . . . , p, obtained by the
action of the successive translations ~td pass through all the integer points inside the triangle T.

Proof. Let in and jn such that mkl+n = xinyjn . Following the arguments in the proof of Lemma
(1.7), the sequence (in, jn) is explicitely defined by the following system





in = l + uan − (l− u) bn

jn = −van + (k − v) bn

ink + jnl = d0 + n

jn < k
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where d0 = kl and (an, bn) is defined by (a0, b0) = (0, 0) and
(
an+1

bn+1

)
=

(
an
bn

)
+

(
1
0

)
if jn − v ≥ 0

=

(
an
bn

)
+

(
0
1

)
if jn − v < 0.

Notice that an is the number of translations of type (1, 1) occuring in a path of lenght n, and
corresponds to the horizontal component of the sum of the n first translations. We consider the
left side of the triangle given by the equation

ki− (k − v)j + νc(k − v) = 0

and its intersections (xn, n) with the horizontal levels j = n. We have

xn =
k − v

k
(n− νc).

We consider the path starting from the last integer point ([x0[+1, 0). The successive integer
points of this path are given by the sequence (pn, n) = ([x0[+1 + an, n). We claim that the
moving point along this path does not go too far away from the left side of the triangle. More
precisely, we have:

(pn − xn) ∈]− 1, 1].

Indeed, by solving the above system, we obtain an = −jn
k + nk−v

k . Therefore we have:

pn − xn = ([−νc
k − v

k
[+νc

k − v

k
+ 1) + (an − n

k − v

k
).

Clearly, the first part of the sum belongs to ]0, 1], and the second one, which equals to −jn
k

belongs to ] − 1, 0]. Therefore this path will catch all the first integer points of the triangle
on each level starting from the left side. If we consider the p parallel paths starting from Mi,
i = 1, . . . , p, they will catch all the integers points of the triangle, since on each level there is at
most p points. �

These p paths give us a unique way to distribute the monomials ab,dm
d on each branch, putting

the monomials encountered on the first path (starting from the right hand side) on the first
branch, and so on. With this path game, we do not miss any point of the triangle according
to the previous proposition. Each integer point of the triangle can be represented by the new
coordinates (b, d) where b is the index of a path or branch and d the index of a level, or degree.
From our construction, they are related to (i, j) by the change of indexation

(i, j) = Φ(b, d) =

([
−νc

k − v

k

[
+ p+ 1− b+

d−1∑

i=kl−1

αi , d− kl

)
,(5)

where αkl−1 = 0, and for i ≥ kl, αi is the horizontal component of ~ti.

To conclude, the general writing of the analytic normal forms for foliations defined by a function
in T(k,l),(n) obtained by our construction is the following definition

Definition 1.9. Let A be the following open set of Cδ

A = {(ab,d), Φ(b, d) ∈ T, ab,kl 6= 0, ab,kl 6= 1, ab,kl 6= ab′,kl for b 6= b′} .
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Furthermore, we set a1,kl = 1. For a = (ab,d) ∈ A we define the analytic normal form Na by

Na = xn∞yn0

p∏

b=1


yk +

∑

{(b, d),Φ(b, d) ∈ T} ∪ {(1, kl)}

ab,dm
d




nb

(6)

Example. From the figure (3) in the Appendix B, the analytic normal form Na of the foliation
defined by a function f in the topological class (k, l) = (3, 5), p = 4, n = (n1, n2, n3, n4) are
given in the same Appendix: we add 2 monomials on the first branch, 16 on the second, 31 on
the third and 29 on the last one.

1.3. Local universality. The construction described in the previous section is justified, a pos-
teriori, by the following result. For any a ∈ A, we consider the saturated foliation Fa defined
by the one-form dNa.

Theorem 1.10. For any a0 in A, the germ of deformation {Fa, a ∈ (A, a0)} is an equireducible
semi-universal unfolding among the equireducible unfoldings of Fa0 .

This means that for any equireducible unfolding {Ft, t ∈ (T, t0)} where (T, t0) is a germ of
some space of parameters t = (t1, . . . , ts), such that Ft0 = Fa0 , there exists a map λ : T → A
with λ(t0) = a0 such that the family Ft is analytically equivalent to dNλ(t). Furthermore, the
universality means that the map λ is unique and the semi-universality only requires that the
first derivative of λ at t0 is unique.

Proof. Let E be the common desingularization map for each foliation Fa and F̃a the pull-back

of Fa by E. F̃a is also the saturated foliation defined by the one-form dÑa where Ña = Na ◦E.
Let Θ0 be the sheaf on D = E−1(0) of germs of holomorphic vector fields tangent to the foliation

F̃a0 .

Lemma 1.11. Let U = {U0, U∞} be the covering of the exceptional divisor of E introduced in

the Appendix A (notations 3.1). Any unfolding of F̃a0 is locally analytically trivial on each open
set U0, U∞.

Proof. Suppose that the unfolding is given by a one-form

dF =
∂Ft

∂x
+
∂Ft

∂y
+

s∑

r=1

∂Ft

∂tr
,

such that dFt0 defines F̃a0 . Let m be a point of D, in some local chart (xi, yi) of D. For each
parameter tr, we can find a local vector field in some neighborhood Um of m

Xr = θr −
∂

∂tr
= (αr(xi, yi, t)

∂

∂xi
+ βr(xi, yi, t)

∂

∂yi
)−

∂

∂tr

such that d(F ◦ E)(Xr) = 0, which can also be written

θr(F ◦ E) =
∂

∂tr
(F ◦ E).

The existence of Xr is clear around a regular point of the foliation, and still true around a
reduced singular point: see [13]. The difference between two such local vector fields is a tangent

vector field to the foliation F̃a0 . Now, from Proposition (3.6) in Appendix A, we have

H1(U0,Θ0) = H1(U∞,Θ0) = 0.
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Therefore we can glue together these vector fields on U0 or on U∞. The trivialization of the
unfolding on U0 or U∞ in the direction ∂

∂tr
is obtained by integration of these vector fields

Xr. �

For each parameter ab,d of the unfolding defined by dNa, a in (A, a0), the previous lemma proves
that there exist two vector fields θ0b,d in Θ0(U0) and θ

∞
b,d in Θ0(U∞) such that

θ0b,d(Ña0) =
∂Ña

∂ab,d

∣∣∣∣∣
a=a0

and θ∞b,d(Ña0) =
∂Ña

∂ab,d

∣∣∣∣∣
a=a0

.(7)

We call them ”trivializing vector fields in the direction ab,d”. We denote by ∂Fa

∂ab,d
the difference

θ0b,d − θ∞b,d in Θ0(U0 ∩ U∞) and by
[

∂Fa

∂ab,d

]
a0

its image in H1(D,Θ0), which does not depend on

the choice of the trivializing vector fields. We define a map from the tangent space to A at a0

into H1(D,Θ0) by

(8)

{
Ta0A −→ H1(D,Θ0)∑

(b,d) λb,d(a)
∂

∂ab,d
7−→

∑
(b,d) λb,d(a)

[
∂Fa

∂ab,d

]
a0

According to a theorem of J.F. Mattei ([13], Theorem (3.2.1)), the unfolding {Fa, a ∈ (A, a0)} is
semi-universal among the equireducible unfoldings if and only if this map is a bijective one. By
our construction, the dimension of Ta0A is equal to the one of H1(D,Θ0). Therefore it suffices

to prove that the cocycles
[

∂Fa

∂ab,d

]
a0

are independent. We denote by

〈[
∂Fa

∂ab,d

]

a0

, ei,j

〉

the component of
[

∂Fa

∂ab,d

]
a0

on the element of the basis {ei,j} given by Theorem (1.3). These

numbers define a square matrix M of size δ = dimH1(D,Θ0), and we have to prove that it is
an invertible one, that will be done in two steps.

Step 1. Components of the cocycles on the first level d = kl.
According to our construction of the normal forms, the coefficient a1,kl is constant equal to 1.
Nevertheless, in order to perform calculus in a more symmetric way, we first consider here the
parameter a1,kl as a free parameter.

Proposition 1.12. The square matrix of size p defined by
(〈[

∂Fa

∂ab,kl

]

a0

, eΦ(b′ ,kl)

〉)

b,b′=1,...,p

is an invertible Vandermonde matrix.

Proof. We first compute the p components of degree kl of the trivializing vector fields θ0b,kl and

θ∞b,kl in the two charts (xc−1, yc−1) and (xc, yc) around (Dc, 0) and (Dc,∞), covering the principal

component Dc (see notations (3.1) in Appendix A). Notice that, from Proposition (3.2), we have

E∗R = xc−1
∂

∂xc−1
= yc

∂

∂yc
.
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Therefore the R-degree is also the xc−1-degree or the yc-degree. In what follows, the dots stand
for terms of higher R-degree. We set nc :=

∑p
b=1 nb where the nb’s are the multiplicities of Na

on the cuspidal branches. We have

Ña(xc−1, yc−1) = xkn∞+ln0+klnc

c−1 yvn∞+un0+vlnc

c−1

p∏

b=1

(ab,kl + yc−1 + · · · )nb(9)

:= xmc−1P (yc−1) + · · ·(10)

where m = kn∞ + ln0 + klnc, and P is a one variable polynomial. Now we have

∂Ña

∂xc−1
= mxm−1

c−1 P (yc−1) + · · · ,
∂Ña

∂yc−1
= xmc−1P

′(yc−1) + · · · ,(11)

∂Ña

∂ab,kl
=

nbx
m
c−1P (yc−1)

ab,kl + yc−1
+ · · ·(12)

Let us write

θ0b,kl =
xc−1

m
α0
b,kl(yc−1)

∂

∂xc−1
+ β0

b,kl(yc−1)
∂

∂yc−1
+ · · · .

Identifying the terms of lower xc−1-degree in equation (7) on U0, we obtain

α0
b,klP + β0

b,klP
′ =

nbP

ab,kl + yc−1
.(13)

From the solution (A0, B0) of the following Bézout identity in C[yc−1]:

A0P +B0P
′ = P ∧ P ′, deg(A0) < deg(P ′/P ∧ P ′), deg(B0) < deg(P/P ∧ P ′),

where P ∧P ′ stands for gcd(P, P ′), we obtain an holomorphic solution of equation (13) by setting
(

nbA0P

(P ∧ P ′)(ab,kl + yc−1)
,

nbB0P

(P ∧ P ′)(ab,kl + yc−1)

)
.

We may suppose that the solution (α0
b,kl, β

0
b,kl) coincides with this one. Indeed, one can check

that another choice for the solution of the Bézout identity differs from this one by a vector field
tangent (at the first order kl) to the foliation, holomorphic on U0. We can perform a similar
computation in the other chart (xc, yc) on (Dc,∞). We have:

Ña(xc, yc) = ykn∞+ln0+klnc
c x(k−v)n∞+(l−u)n0+(kl−ku)nc

c

p∏

b=1

(1 + ab,klxc + · · · )nb

:= ymc Q(xc) + · · ·

Setting θ∞b,kl = α∞
b,kl(xc)

∂
∂xc

+ yc

mβ
∞
b,kl(xc)

∂
∂yc

+ · · · , we have

α∞
b,klQ

′ + β∞
b,klQ =

nbxcQ

1 + ab,klxc
.(14)

By considering the solution (A∞, B∞) of the following Bézout identity:

A∞Q+ B∞Q
′ = Q ∧Q′, deg(A∞) < deg(

Q′

Q ∧Q′
), deg(B∞) < deg(

Q

Q ∧Q′
)

we obtain an holomorphic solution of (14) on U∞ by setting:

α∞
b,kl =

nbxcQB∞

(1 + ab,klxc)(Q ∧Q′)
, β∞

b,kl =
nbxcQA∞

(1 + ab,klxc)(Q ∧Q′)
.
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In order to compute the cocycles, we give the expression of θ0b,kl in the chart (xc, yc). Since we

have xc−1 = xcyc, yc−1 = x−1
c , we obtain

∂

∂xc−1
= x−1

c

∂

∂yc
,

∂

∂yc−1
= −x2c

∂

∂xc
+ xcyc

∂

∂yc
.

Furthermore, by considering the reduced polynomials related to P and Q, we also have

P

P ∧ P ′
(yc−1) =

1

xp+2
c

Q

Q ∧Q′
(xc).

We obtain:

θ0b,kl =
nbx

−(p+2)
c Q/Q ∧Q′(xc)

(ab,kl + x−1
c )

[
m−1A0(x

−1
c )yc

∂

∂yc
+B0(x

−1
c )(−x2c

∂

∂xc
+ xcyc

∂

∂yc
)

]
+ · · ·

We consider now a vector field θis on U0∩U∞ tangent to the saturated foliation defined by dÑa,
with isolated singularities. Since

−
∂Ña

∂yc

∂

∂xc
+
∂Ña

∂xc

∂

∂yc
=
(
−mym−1

c Q(xc) + · · ·
) ∂

∂xc
+ (ymc Q

′(xc) + · · · )
∂

∂yc

we can choose

θis :=

(
−

Q

Q ∧Q′
+ · · ·

)
∂

∂xc
+

(
yc

Q′

mQ ∧Q′
+ · · ·

)
∂

∂yc
.

Let Φ0,∞
b,kl be the function such that θ0b,kl − θ∞b,kl = Φ0,∞

b,kl · θis. By computing the coefficient of

θ0b,kl − θ∞b,kl on ∂/∂xc, we have:

Φ0,∞
b,kl =

nbxc
1 + ab,klxc

[x−p
c B0(x

−1
c )−B∞(xc)].

The value of
〈[

∂Fa

∂ab,kl

]
a0
, eΦ(b′,kl)

〉
is by construction the coefficients on xic of the Laurent series

of Φ0,∞
b,kl where i is defined by Φ(b′, kl) = (i, 0) (i.e., from (5), i = [−νc

k−v
k [+p+1− b′). Thus we

only have to consider the meromorphic part of Φ0,∞
b,kl , i.e.:

nbxc
1 + ab,klxc

×
B0(xc)

x2pc
,

where B0(x) =
∑p

n=0 vnx
n is the polynomial function xpB0(x

−1). We have

xc
1 + ab,klxc

=
+∞∑

m=0

(−ab,kl)
mxm+1

c ,

B0(xc)

x2pc
=

p∑

n=0

vnx
n−2p
c .

Therefore, the coefficient of the Laurent series of Φ0,∞
b,kl in xic is

∑

(m + 1) + (n − 2p) = i

0 ≤ n ≤ p

nbvn(−ab,kl)
m = nb

p∑

n=0

vn(−ab,kl)
2p−1−n+i

= nbB0(−a
−1
b,kl)× (−ab,kl)

2p−1+i
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Finally we obtain
〈[

∂Fa

∂ab,kl

]

a0

, eΦ(b′,kl)

〉
= Cb(−a

−1
b,kl)

b′(15)

where Cb = nbB0(−a
−1
b,kl) × (−ab,kl)

(3p+[−νc
k−v
k [). This defines a Vandermonde matrix. Fur-

thermore, Cb = 0 if and only if B0(−ab,kl) = 0, which cannot happen: evaluating the Bézout
identity

A0
P

P ∧ P ′
+B0

P ′

P ∧ P ′
= 1

at y0 = −ab,kl, we would obtain a contradiction, since −ab,kl is a root of P .
Moreover, ab,kl 6= ab′,kl for b 6= b′, thus the Vandermonde matrix is invertible. �

Step 2. Relationship between the components of the cocycles on different levels.

Lemma 1.13. If θ0b,kl, θ
∞
b,kl are trivializing vector fields on U0 (resp. on U∞) for the direction

∂
∂ab,kl

, then for any d > kl, the vector fields

m̃d

m̃kl
θ0b,kl,

m̃d

m̃kl
θ∞b,kl

are trivializing vector fields on U0 and U∞ for the direction ∂
∂ab,d

where m̃ = m ◦ E.

Proof. Let Bb := yk +
∑

(b,d),Φ(b,d)∈T
ab,dm

d be the branch of index b, and B̃b := Bb ◦ E. Since

we have:

∂Ña

∂ab,d
= m̃dnb

Ña

B̃b

if θ0b,kl satisfies equation (7) for d = kl, then, given d > kl, m̃d

m̃kl θ
0
b,kl satisfies the trivializing

equation for the level d. Furthermore, this vector field is still holomorphic on U0. Indeed, from
the trivializing equation (7), we deduce that the multiplicity of the trivializing vector field θ0b,kl
on a component Di of D ∩ U0 is given by

νi(θ
0
b,kl) = νi(m̃

kl)− νi(B̃b) + 1.

The multiplicity of m̃d

m̃kl θ
0
b,kl on Di is thus equal to

νi

(
m̃d

m̃kl
θ0b,kl

)
= νi(m̃

d)− νi(m̃
kl) + νi(m̃

kl)− νi(B̃b) + 1

and therefore is still a positive number. The argument is similar for θ∞b,kl. �

We consider the linear operator

Td :=
m̃d

m̃kl
× : Θ0(U0 ∩ U∞) −→ Θ0(U0 ∩ U∞).

induced by the previous Lemma. We can remark that when d runs over {kl, kl + 1, · · · } the
points Td · eΦ(b,kl) are exactly the paths introduced in the previous section, and the indexation
(i, j) = Φ(b, d) has been introduced such that

Td · eΦ(b,kl) = eΦ(b,d).

Proposition 1.14. Let d > kl be the index of an horizontal level in the half plane representing
Θ0(U0 ∩ U∞). For each b, b′ in 1, . . . , p, we have that
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(1) for any d′ such that kl ≤ d′ < d, one has
〈[

∂Fa

∂ab,d

]

a0

, eΦ(b′,d′)

〉
= 0.

(2) the coefficient
〈[

∂Fa

∂ab,d

]
a0
, eΦ(b′,d)

〉
is constant with respect to d (i.e. constant along the

paths introduced in the previous section).

(3) the coefficient
〈[

∂Fa

∂ab,d

]
a0
, eΦ(b′,d′)

〉
only depends on the variables ab′′ ,d′′ with

kl ≤ d
′′

≤ kl + d
′

− d.

Proof. For b = 1, . . . , p, we have:
[
∂Fa

∂ab,kl

]

a0

=
∑

b′

〈[
∂Fa

∂ab,kl

]

a0

, eΦ(b′,kl)

〉
eΦ(b′,kl) + · · ·

where the dots correspond to components of higher level. Applying the linear operator Td, we
obtain: [

∂Fa

∂ab,d

]

a0

=
∑

b′

〈[
∂Fa

∂ab,kl

]

a0

, eΦ(b′,kl)

〉
eΦ(b′,d) + · · ·

which proves the statements (1) and (2). For the third point, we consider the meromorphic

function Φ0,∞
b,d defined by

(16) θ0b,d − θ∞b,d = Φ0,∞
b,d θis

where θis is the vector field with isolated singularities which generates the foliation on U0 ∩U∞,
introduced in step 1. Recall that the coefficient

〈[
∂Fa

∂ab,d

]

a0

, ei,j

〉

is nothing but the coefficient of xicy
j
c in the Laurent development of Φ0,∞

b,d (see the proof of

proposition (1.12)). On the first level (d = kl), setting

θ∞b,kl =
(
θ∞b,kl

)
xc

∂

∂xc
+
(
θ∞b,kl

)
yc
yc

∂

∂yc
,

the second relation in (7) can be written

(17)
(
θ∞b,kl

)
xc

∂Ña

∂xc
+
(
θ∞b,kl

)
yc
yc
∂Ña

∂yc
=

∂Ña

∂ab,kl
.

Now, extending the expression of the partial derivatives of Ña filtered by yc variable as in (11)
leads to expressions of the following form

yc
∂Ña

∂yc
= ymc A0(xc) + ym+1

c A1(xc) + ym+2
c A2(xc) · · ·

∂Ña

∂xc
= ymc B0(xc) + ym+1

c B1(xc) + ym+2
c B2(xc) · · ·

∂Ña

∂ab,kl
= ymc C0(xc) + ym+1

c C1(xc) + ym+2
c C2(xc) · · ·

where m is defined in (9). From the construction of the normal form Na, it can be seen that for
any i, Ai, Bi and Ci depend only on the variable ab′,d with kl ≤ d ≤ kl + i. Thus, if one filters
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the equation (17) with respect to the yc variable, one can see that the solution θ∞b,kl shares the
same property of filtration, namely, if one writes

θ∞b,kl = (D0(xc) +D1(xc)yc + · · · )
∂

∂xc
+ (E0(xc) + E1(xc)yc + · · · )yc

∂

∂yc
,

then Di and Ei depend only on the variables ab′,d with kl ≤ d ≤ kl + i. The same remark can
be done for θ0b,kl using a filtration with respect to the xc−1 variable. Finally, since θis has also

the same property of filtration, the relation (16) implies that the jet of order i with respect to

the yc variable of Φ0,∞
b,kl depends only on the variables ab′ ,d with kl ≤ d ≤ kl+ i. Now, since the

vertical component of Td is just a translation induced by ×yd−kl
c , this property propagates as in

the statement of (3). �

End of the proof of Theorem (1.10).
Notice first that the operator Td is ”quite well defined” in the cohomology group H1(D,Θ0): let
M2 = eΦ(2,kl), . . . ,Mp = eΦ(p,kl) be the roots of the paths indexed by the branches b = 2, . . . , p
and M1 the point under the root of the first branch (recall that this root is on the second
level since we set a1,kl = 1). If we pick a point on the first level outside M1,M2, . . . ,Mp,
the action of Td preserves the half planes corresponding to Θ0(U0) and Θ0(U∞). This is clear
on figure (3) and it is a consequence of Proposition (1.8): these paths cannot go back inside
the triangle. Therefore the operator Td is well defined on H1(D,Θ0) excepted on the line
generated by M1 = eΦ(1,kl). We add this point to the triangle and now we can write the

(δ + 1) × (δ + 1)-matrix of the cocycles ∂Fa

∂a1,kl
,... ∂Fa

∂ap,kl
, ∂Fa

∂a1,kl+1
,..., ∂Fa

∂ap,kl+1
,... on {eΦ(b,d)}b,d,

ordered by the lexicographic order. According to the previous Proposition (1.12) and Proposition
(1.14) this matrix is a block triangular matrix:

V :=




(V1) 0 0 · · ·
× (V2) 0 · · ·
× × (V3) · · ·

× × ×
. . .




where V1 is the invertible Vandermonde matrix obtained in step 1, V2, V3... are sub-matrices
of consecutive lines and columns of V1 defined by the paths from the first level to the following
levels. Clearly since det(V ) =

∏
det(Vi) this matrix is an invertible one. Finally, since a1,kl = 1,

e1,kl /∈ T, the matrix M is obtained by deleting the first line and first column of V , and is still
an invertible one. �

1.4. The global moduli space of foliations.

Proposition 1.15 (Existence of normal forms). For any f in T(k,l),(n), there exists a in A such
that f ∼ Na, where ∼ denotes the classification of foliations.

Proof. We can suppose that f is given under its prenormalization form (1.1). Therefore the
deformation defined by

fλ :=
1

λr
f
(
λkx, λly

)

where r = kn∞ + ln0 + klnc, (nc =
∑

b nb) is an equireducible unfolding of f0 = Na0
,

a0 = (1, a2, . . . , ap, 0, . . . , 0) ∈ A.

Using Theorem (1.10), we can ensure that for λ small enough, there exists a ∈ A such that
fλ ∼ Na. Furthermore, this deformation is analytically trivial for λ 6= 0, since we construct it
by a conjugacy. Therefore, f = f1 ∼ fλ, for λ small, and the proposition is proved. �
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Let us consider the diffeomorphism: hλ(x, y) = (λkx, λly). We have:

Na ◦ hλ = λncNλ·a, with λ · a = λ · (ab,d) := (λd−klab,d).

As above, we have thus Na ∼ Nλ·a. Actually, this action of C∗ the only obstruction to the
unicity of normal forms:

Theorem 1.16 (Unicity of normal forms). Na ∼ Na′ if and only if there exists a complex

number λ 6= 0 such that a
′

= λ · a.

Proof - Suppose that there exists a conjugacy relation

(18) ψ ◦Na′ = Na ◦ φ.

Following [1], we can suppose that ψ is an homothetie γId. We are going to reduce the proof
to the case where φ is tangent to the identity. Since the conjugacy preserves the numbering of
the branches, looking at the relation induced by (18) on the jet of smaller (k, l)-order, we can
ensure that the linear part of φ is written hλ = (λkx, λly) for some λ 6= 0. Then

Na ◦ φ ◦ h−1
λ = γNa′ ◦ h−1

λ = cNλ−1·a′

where c stands for some non vanishing number. Since φ◦h−1
λ is tangent to the identity, it appears

that c = 1. Thus, setting for the sake of simplicity a
′

= λ−1 · a
′

and φ = φ ◦ h−1
λ we are led to a

relation

(19) Na′ = Na ◦ φ

where φ is tangent to the identity. The proof reduces to show that in the situation (19), we have
a = a′. Let X be a germ of formal vector field such that φ = eX . The vector field X can be
decomposed in the sum of its quasi-homogeneous components

X = Xν +Xν+1 + · · ·

Lemma 1.17. If Na ◦e
Xν+··· = Na′ then for all b from 1 to p and all d ≤ kl+ν−1, ab,d = a′b,d.

Proof. We set:
Na = N (N)

a + · · ·+N (N+p−1)
a + N (N+p)

a + · · ·

where N = kn∞ + ln0 + klnc is the degree of the first quasi-homogeneous component of Na.
Since we have

eXν+···Na = Na +Xν ·Na + · · ·

we obtain N
(N+i)
a = N

(N+i)
a′ for i from 0 to ν−1. The expression of N

(N+i)
a only depends on the

variables ab,d for d ≤ kl+ i. Finally we claim that N
(N+i)
a = N

(N+i)
a′ if and only if ab,d = a′b,d for

d ≤ kl+ i. This fact can be proved by induction on d ≤ kl+ i. It is obvious for d = kl. Suppose
that ab,d = a′b,d is true for d ≤ kl+ j − 1 with j − 1 < i. Then we have:

∑

b

N
(N)
a

yk + ab,klxl
ab,kl+jm

kl+j =
∑

b

N
(N)
a

yk + ab,klxl
a

′

b,kl+jm
kl+j .

which implies that ab,kl+j = a′b,kl+j . �

Now if ν ≥ pkl+ lǫ0 + kǫ∞ and Na ◦ e
Xν+··· = Na′ then according to the previous lemma, for all

b and d ≤ kl + pkl+ lǫ0 + kǫ∞ − 1, ab,d = a
′

b,d. Since νc = pkl+ kǫ∞ + lǫ0 − k − l then

νc + kl − 1︸ ︷︷ ︸
bigger value of d

(b, d) ∈ T

< pkl + kl+ lǫ0 + kǫ∞ − 1.

Therefore we have a = a
′

. Thus, it remains to prove the following lemma:
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Lemma 1.18. If Na ◦ e
Xν+··· = Na′ then ν ≥ pkl + lǫ0 + kǫ∞.

Proof. It suffices to prove that ν < pkl+ lǫ0+kǫ∞ leads to a contradiction. Since the conjugacy
φ does not modify the parameter ab,d for d ≤ kl + ν − 1 the first non trivial relation of the
smallest (k, l)-degree induced by (19) is written

Xν ·N (N)
a = −N (N+ν)

a +N
(N+ν)

a′ .

Dividing by N
(N)
a leads to

p∑

b=1

nb
Xν · (yk + ab,klx

l)

yk + ab,klxl
+ n∞

Xν · x

x
+ n0

Xν · y

y
= mkl+ν

p∑

b=1

−ab,kl+ν + a
′

b,kl+ν

yk + ab,klxl
.

We take the pull-back of the previous equality with respect to the map E and write it in the
coordinates (xc, yc). Since we are going to look at residus at xc = −a−1

b,kl, we only make appear
the terms having poles at these points:

· · ·+

p∑

b=1

nb
ab,klX̃ν · xc
1 + ab,klxc

= xν−iv−ju+ku
c

p∑

b=1

δb,kl+ν

1 + ab,klxc

where X̃ν stands for the vector field E∗Xν

yν
c

, δb,kl+ν for the difference −ab,kl+ν + a
′

b,kl+ν and i, j

for the couple of integers such that mkl+ν = xiyj.
Since the integer ν − iv − ju + ku is non negative, evaluating the residue at −a−1

b,kl yields the
relation

nbab,klX̃ν · xc

(
−a−1

b,kl

)
=
(
−a−1

b,kl

)ν−iv−ju+ku

δb,kl+ν .(20)

A straightforward computation shows that X̃ν · xc is a polynomial function in xc that is written
the following way

(1) if ǫ0 = 1 –that is if the curve y = 0 is invariant– or if ν+l
k is not an integer

X̃ν · xc =
∑

ν(1−u
l )≤w≤ν(1− v

k ), w∈N

pwx
w
c = x

[ν(1−u
l )]+1

c



[ν(1− v

k )]−[ν(1−u
l )]−1∑

w=0

qwx
w
c




(2) else

X̃ν · xc =
∑

ν(1−u
l )≤w≤ν(1− v

k )+ 1
k , w∈N

pwx
w
c = x

[ν(1−u
l )]+1

c



[ν(1− v

k )+ 1
k ]−[ν(1−

u
l )]−1∑

w=0

qwx
w
c




Now, in view of the construction of the normal form, the coefficient δb,kl+ν has to be zero for

p− ♯Z ∩

]
k − v

k
(ν − νc),

l− u

l
(ν − νc)

[

values of the parameter b. Thus, according to (20), the polynomial function X̃ν ·xc has the same
number of non-vanishing roots among the values −a−1

b,kl, b = 1, . . . , p. This number is strictly

greater than the degree of the polynomial functions factorized in the above expressions of X̃ν ·xc.
Thus, the latter has to be the zero polynomial function. Therefore, looking again at the relation
(20) yields

∀b, δb,kl+ν = 0.
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Hence, the vector field Xν has to be tangent to N
(N)
a which is a contradiction with the hypothesis

ν < pkl + lǫ0 + kǫ∞. �

Finally, we can summarize the previous results by

Theorem 1.19. The moduli space M(k,l),(n) is isomorphic to A/C∗ where the action of C∗ is
defined by

λ · a = λ · (ab,d) = (λd−kl · ab,d)

2. The moduli space of curves

Let C be the partition of M = M(k,l),(n) induced by the classification of curves ∼c.

2.1. The infinitesimal generators of C. We first recall general facts proved in [8], which are
valid in every topological class. Let F be a foliation defined by an holomorphic function f (or
more generally by any generic non dicritical differential form ω), and let S be the curve defined
by f = 0 (or by the separatrix set of ω). Let E : M → (C2, 0) be the desingularization map

of the foliation, and D its exceptional divisor. We denote by f̃ , F̃ , S̃ the pull back by E on M
of f , F or S. The tangent space to the point [S] in the moduli space of curves (for ∼c) is the
cohomological group H1(D,ΘS) where ΘS is the sheaf on D of germs of vector fields tangent to

S̃. The inclusion of ΘF into ΘS induces a map i:

H1(D,ΘF )
i

−→ H1(D,ΘS)

whose kernel represents the directions of unfolding of foliations with trivial associate unfolding
of curves.

Definition 2.1. An open set U of M is a quasi-homogeneous open set (relatively to f) if there

exists an holomorphic vector field RU on U such that RU (f̃) = f̃ .
We can always cover D by two quasi-homogeneous open sets U and V . The cocycle of quasi-
homogeneity [RU,V ] of F is the element of H1(D,ΘF) induced by RU −RV .

Recall that H1(D,ΘF ) has a natural structure of O2-module. We have:

Theorem 2.2. [8] The kernel of the map i is generated by the cocycle of quasi-homogeneity,
i.e.:

ker(i) = {h · [RU,V ], h ∈ O2}.

Notice that the distribution induced by these directions is integrable and defines a singular
foliation C on A. The point corresponding to the topological model is a singular one: indeed,
this model is quasihomogeneous. Therefore the whole open set U = M is quasi-homogeneous,
and the cocycle [RU,V ] is trivial for this foliation.

Let Xm,n be the vector fields on A generated by xmyn · [RU,V ]. Below, we describe some
properties of the distribution induced by the vector fields Xm,n.

Proposition 2.3.

(1) The O2-generator of C is given by:

X0,0 = −
1

r

∑

Φ(b,d)∈T∪{(1,kl)}

(d− kl)ab,d

[
∂Fa

∂ab,d

]

a0

where r = kn0 + ln∞ + kl
∑p

b=1 nb



MODULI SPACES FOR TOPOLOGICALLY QUASI-HOMOGENEOUS FUNCTIONS 21

(2) For any level d we denote by Xd
m,n the components of the vector field Xm,n on the

subspace Vect{eφ(b,d), b = 1, . . . , p}. For any m, n, Xm,n is quasihomogeneous with
respect to the degree induced by rX0,0. Indeed, we have

[rX0,0, Xm,n] = (km+ ln)Xm,n.

The coefficients of Xν
m,n are quasi-homogeneous with respect to the weight rX0,0 of degree

ν−km−ln−kl. In particular, they only depend on the variables ab,d with d ≤ ν−km−ln.
(3) If we decompose the vector field X0,0

X0,0 = −
1

r

∑

d

∑

b

(d− kl) ab,d

[
∂Fa

∂ab,d

]

a0

= −
1

r

∑

i∈Z,j≥1


 ∑

0≤d−kl≤j

∑

b

(d− kl)ab,d

〈[
∂Fa

∂ab,d

]

a0

, ei,j

〉


︸ ︷︷ ︸
Γi,j(a)

ei,j.

then the functions Γi,j (a) are algebraically independent.
(4) The vector fields defined by

X̃m,n = akm+ln
2,kl+1Xm,n,

commute with X0,0. Therefore, they induce the distribution C on M.

Proof. 1. The proof is the same as the one of proposition (5.5) of [8] with a very slight change
where we replace (λx, λy) with (λkx, λly) .
2. The proof is also a slight generalization of the proof of Proposition (5.9) in [8].
3. Let us decompose the coefficient Γi,j (a)

Γi,j (a) =
∑

b

jab,kl+j

〈[
∂Fa

∂ab,kl+j

]

a0

, ei,j

〉

︸ ︷︷ ︸
Li,j

+
∑

0≤d−kl<j

∑

b

(d− kl)ab,d

〈[
∂Fa

∂ab,d

]

a0

, ei,j

〉

︸ ︷︷ ︸
Ri,j

.

Following, the proposition (1.14) the function
〈[

∂Fa

∂ab,kl+j

]
a0

, ei,j

〉
depends only on the variables

ab′,kl with Φ(b′, d) = (i, j). The expression
〈[

∂Fa

∂ab,d

]
a0

, ei,j

〉
in Ri,j depends only on the

variables ab,d′ where d′ satisfies

0 ≤ d
′

− kl ≤ j − (d− kl) =⇒ d
′

≤ j + kl − (d− kl) < j + kl.

In view of the proposition (1.12), for a fixed value of j = J , the functions Li,J considered
as linear functions of the variables ab,kl+j are linearly independent because their matrix is an
extraction of consecutive rows and columns in the Vandermonde matrix of 1.12. Thus, they are
also algebraically independent as a whole. Now, let us consider an algebraic relation between
the functions Γi,j (a) given by a polynomial function P

(
{Xi,j}(i,j)∈T

)
where the Xi,j ’s are some

independent variables

P (Γi,j (a)) = 0.

Let J be the greatest integer such that there exists a point (i, J) in T and denote by

{(i0, J), (i1, J), . . . , (iq, J)}

the family of points in T at the level J . The relation P is written

P
(
{Γi,j (a)}j<J , Li0,J (a) +Ri0,J (a) , . . . , Liq,J (a) +Riq,J (a)

)
= 0.
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We fix all the variables ab,d with d−kl < J at a generic value. Then, the above relation becomes
an algebraic relation between the affine forms Li,J (a) +Ri,J (a). Let us decompose the relation
P as follows

P =
∑

I⊂{(ik,J)}k=0..q

QI (Xi,j)XI

where XI =
∏

(i,J)∈I Xi,J . Here, QI depends only on the variables Xi,j with j < J . Since, the

affine form Li,J (a) +Ri,J (a) are algebraically independent, for any I, we have

QI (Γi,j (a)) = 0,

which are algebraic relations between the functions Γi,j (a) with j < J . Therefore, an inductive
argument ensures that P has to be the trivial relation, which proves the property.
4. We recall that the global moduli space of foliations is obtained from the local one by consid-
ering the weighted action of C∗ on A which is also the flow of X0,0. Since the X0,0-degree of the
variable a1,kl+1 is equal to 1, we have

[
rX0,0, a

km+ln
2,kl+1Xm,n

]
= rX0,0(a

km+ln
2,kl+1 )Xm,n + akm+ln

2,kl+1 [rX0,0, Xm,n]

= −(km+ ln)akm+ln
2,kl+1Xm,n + akm+ln

2,kl+1 [rX0,0, Xm,n] = 0.

�

2.2. The dimension of the generic strata. The dimension τ of the generic strata of the local
moduli space of curves corresponds to the codimension of the distribution C at a generic point
of M. According to proposition 2.3, the family of coefficients {Γij}i,j of X0,0 is functionally
independent: thus, any family of r vector fields in dimension r whose coefficients are chosen
among the Γij ’s is generically free: indeed, their determinant cannot identically vanish since it
would produce a functional relation between the Γij ’s. Thus, to compute the dimension of the
generic strata, we just have to browse the triangle of moduli and to compute at each level d how
many moduli can actually be reached by the vector fields Xm,n. For the following computations,
we recommend to refer at each step to the example presented in Appendix B, figure 3.

Let us denote by ν(Xm,n) = km+ ln+ kl+1 the order of Xm,n. By construction, ν(Xm,n)− kl
is the first level of the triangle of moduli on which Xm,n may have an action: indeed, since
Xm,n = xmynX0,0, its projections on the previous levels vanish. In most cases, Xm,n can be
used to kill a modulus which is exactly at its first level ν(Xm,n) − kl. However, in some cases,
Xm,n cannot be used this way because, for instance, the triangle of moduli has no modulus on
this particular level: therefore, we use Xm,n to kill a modulus on some level above. To take care
of all this possibilities, we introduce a decomposition by blocks of the triangle of moduli and we
prove some related arithmetical properties:

A block Bi in the triangle of moduli is a union of kl consecutive horizontal lines from the line of
index di = ikl+ 1, see Figure 3. We denote by

• nd the ”dimension” of the line of index d which means the number of integer points on
this line.

• Ni =
∑(i+1)kl

d=ikl+1 nd the dimension of the block Bi which is also the number of integer
points in the whole block.

• nmax
i = max{nd, d = ikl+ 1, . . . , (i + 1)kl} which is the greatest dimension of a line in

the block Bi.

One can easily prove, by using the equations of the edges of the triangle, the following lemma
–see also figure 3– :
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Lemma 2.4.

(1) We have: Ni+1 = Ni − kl, nmax
i = p− i.

(2) For each line of level d of the block Bi, nd = nmax
i or nmax

i − 1.
(3) On the first line di of the block Bi, the number ndi reaches the maximum nmax

i .

We denote by:

• qd the number of vector fields Xm,n such that ν(Xm,n) = d

• Qi =
∑(i+1)kl

d=ikl+1 qd
• qmax

i = max{qd, d = ikl+ 1, . . . , (i+ 1)kl}.

One can check a similar result to (2.4):

Lemma 2.5.

(1) We have: Qi+1 = Qi + kl, qmax
i = i.

(2) For each line of level d of the block Bi, qd = qmax
i or qmax

i − 1.
(3) On the first line di of the block Bi, the number qdi reaches the maximum qmax

i .

We consider the maximal sequence of blocks Bi such that qmax
i = i < nmax

i = p − i, i.e. the
sequence B1, . . . , B]p/2], where ]p/2] is the strict integer part of p/2. We call critical block, the
block B p

2
when p is even or the unique block B1 that appears when p = 1. This block is going

to be analyzed independently. In figure 3, this block is the second one, and in figure 1, since
p = 1, this block is the sole block B1.
Consider a blockBi such that qmax

i > nmax
i . For each line of index d of this block, since qd = qmax

i

or qmax
i − 1, we have: qd ≥ nmax

i ≥ nd. According to the previous functional independence of
the vector fields Xm,n, we can conclude that in this case, their action is transitive on such a
block and the block above.
In the critical block B p

2
or B1, the integers nd − qd for d = di, . . . , di + kl − 1 can only take

the values +1, 0 or -1, starting from the value 0 on the first level of the block. On the latter
level, the action of the Xm,n is thus transitive. We consider the first line of this block on which
nd − qd 6= 0:

• If we have nd − qd = +1, there remains one dimension which cannot be reached by the
action of the Xm,n. We have to count it in the codimension of the generic leaves of C.

• If nd − qd = −1, the action of the vector fields Xm,n is transitive on this level. Fur-
thermore we have an extra vector field Xm,n such that ν(Xm,n) = d whose higher
components will act on the higher levels. Suppose that there exists a level d′ > d such
that nd′ − qd′ = +1.

Therefore, in order to compute the generic dimension of the distribution C on the critical block,
we have to introduce the following non commutative sum :

Definition 2.6. Let rd be a sequence taking its values in {−1, 0,+1}. The notation
∑̃

drd
denotes the value obtained by the following operations:

(1) delete the values 0;
(2) delete recursively the consecutive values (−1,+1) (but not the consecutive values (+1,−1));
(3) after the two first steps, remains a sequence of n consecutive terms with value +1, fol-

lowed by m consecutive terms with value -1. We set:
∑̃

drd = n.

Example. In the critical block of Figure 3, the sequence of values nd − qd is:

{0,+1,+1, 0,+1, 0,−1,+1, 0,−1, 0,−1,−1, 0,−1}.

The extra vector field appearing on the 7th position acts on the next level. The next extra vector
fields are unuseful. Therefore, the number of free dimensions under the action of these vector
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fields is ∑̃
{0,+1,+1, 0,+1, 0,−1,+1, 0,−1, 0,−1,−1, 0,−1}= 3.

From all the considerations above, we deduce the following:

Theorem 2.7. The dimension of the generic strata of the moduli space for curves is

τ =

d0+]p/2]+kl−1∑

d=d0

(nd − qd) +
∑̃dp/2+kl−1

d=dp/2

(nd − qd),

where nd =] v−k
k (νc − d+ kl)]− [u−l

l (νc − d+ kl)[, qd is the number of positive integer solutions

(m,n) of the equation km + ln+ kl + 1 = d, and the second sum
∑̃

is defined above and only
appears if p is even or if p = 1 (in this case, we set d1/2 = kl).

Example. In the topological class (k, l) = (3, 5) and p = 4 of figure 3, we obtain τ = 35.

2.3. Normal forms for curves.

Theorem 2.8. We consider the reduced normal form

Na = xǫ∞yǫ0
p∏

b=1


yk +

∑

{(b, d),Φ(b, d) ∈ T} ∪ {(1, kl)}

ab,dm
d




obtained for the classification of foliations defined by topologically quasi-homogeneous functions.
We obtain a generic unique normal form Nb, b ∈ Cτ for the classification of curves by performing
the following operations on Na:

(1) we set: a1,kl+1 = 1;
(2) for each level d in a block Bi, i ≤]p/2], we set ab,d = 0 for the first qd coefficients starting

from the rightside of the line d;
(3) for each level in the critical block Bp/2 (which appears if p is even), we consider the

sequence of number nd − qd (recall that in this block we have nd − qd ∈ {−1, 0,+1}).
• if nd − qd = 0, we vanish all the coefficients of the line;
• if nd − qd = +1, we set ab,d = 0 for the first coefficient starting from the right side
of the line d;

• for the first lines such that nd − qd = −1 and encountered in the sequence on some
line d, we set ab,d = 0 for the unique coefficient on this line. Furthermore, we set
ab,d′ = 0 for the second coefficient on the next line d′ > d such that nd′ − qd′ = +1,
if such line exists.

• for the last line such that nd−qd = −1 without upper line d′ such that nd′−qd′ = +1
we set ab,d = 0 for the unique coefficient on this line.

(4) for each level d in a block Bi, i >]p/2], and every index b, we set ab,d = 0.

Proof. Since the projection X
(d1)
0,0 of X0,0 on the first line of the block B1 is the radial vector

field in the variables ab,d1
, its flow acts by homothety on this level and we can make use of its

action to normalize one coefficient to the value 1. We choose the first one starting from the right
side.
On all the higher levels of index d > d1 and for the qd vector fields Xm,n such that ν(Xm,n) = d,
we have

X(d)
m,n =

∑

b

Γm,n(ad0
, ad1

)
∂

∂ab,d

in which Γm,n(ad0
, ad1

) only depends on the variables ab,d0
and ab,d1

. This is a consequence
of the relation Xm,n = xmyn · X0,0 and of the proposition 1.14. Therefore this vector field is
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constant with respect to the variables of the level d > d1. Its flow acts by translation and we
make use of this flow (and the independence property) to vanish qd coefficients.
In the critical block, if there is an extra vector field Xm,n on a line d such that nd− qd = −1, we

make use of the component X
(d′)
m,n to act on the next level d′ such that nd′ − qd′ = +1. Suppose

that this level is the next one (d′ = d + 1). This means that we have to consider the action of
the second non vanishing component of Xm,n. According to the proposition 1.14, this one will
depend on the variables ab,d0

, ab,d1
and ab,d1+1. If we have to skip two lines it will depend on the

variables ab,d0
, ab,d1

, ab,d1+1 and ab,d1+2, and so on. Therefore, it turns out that the components

of X
(d′)
m,n will only depend on variables ab,d with d < d′. Its flow still acts by translation and we

make use of it to vanish the second coefficient of this line. �

We give in Appendix B the generic normal form obtained in the topological class (k, l) = (3, 5)
and p = 4.

2.4. An example: the case yn + xn+1. In [17], O. Zariski computes the dimension of the
generic stratum of the moduli space of the curve

yn + xn+1 = 0

for n ≥ 2. We are going to apply our strategy to recover this dimension.
Let us consider k = n and l = n+1. In this situation, the fundamental Bezout relation is written

n · n− (n− 1) · (n+ 1) = 1.

Thus, u = n, v = n− 1, νc = n2 − n− 1, and the triangle T is delimited by the two lines

j − ni = n2 − n− 1

j − (n+ 1)i = n2 − n− 1.

On a level j, this triangle bounds an interval

]l(j), r(j)[=]−
n2 − n− 1− j

n
,−

n2 − n− 1− j

n+ 1
[.

For j ≥ 0, all these intervals have length less than 1, and we have:

l(j) ∈ Z ⇔ ∃α ∈ N, j = −1 + (α+ 1)n

r(j) ∈ Z ⇔ ∃α ∈ N, j = 1 + α(n+ 1).

Therefore, the interval ]l(j), r(j)[ contains an integer if and only if there exists α in N such that

1 + α(n+ 1) < j < −1 + (α+ 1)n.

Thus we have nj = 1 for the above values of the index j, and nj = 0 else. Now we have for each
k ≥ 0

ν(Xk,0)− d0 = kn+ 1, ν(Xk−1,1)− d0 = kn+ 2, · · · , ν(X0,k)− d0 = kn+ k + 1

where d0 = n(n + 1). This gives qj = 1 for the above values of the index j and 0 else. We
summarize these results in figure 1.

From the previous remarks the sequence nj − qj , j ≥ 0 takes the following values:

0,−1, 1, 1, . . . , 1︸ ︷︷ ︸
j=2,...,n−2

, 0, 0,−1,−1, 1, 1, . . . , 1︸ ︷︷ ︸
j=n+3,...,2n−2

, 0, 0,−1,−1,−1, 1, 1, . . . , 1︸ ︷︷ ︸
j=2n+4,...,3n−2

· · ·



26 YOHANN GENZMER AND EMMANUEL PAUL

X0,2

X1,1

X2,0

X0,1

X1,0

j = n − 2

j = n − 1

j = n + 2

j = n

j = n + 1

j = 2n + 3

j = 2n + 2

j = 2n + 1

j = 2n

j = 2n − 1

j = 2n − 2

j = 1 X0,0

Figure 1. The case yn + xn+1

Since there is only one branch, there is only one block and it is a critical block. Therefore we
have

τ = Σ̃j≥0(nj − qj) = (n− 4) + (n− 6) + (n− 8) + · · ·+ (0 or 1)

=
∑

α≥0

sup(n− 4− 2α, 0)

=
(n− 4)(n− 2)

4
if n is even

=
(n− 3)2

4
if n is odd

which are the formulas given in [17].

3. Appendix A: reduction of singularities of a topologically

quasi-homogeneous function

Let f be a topologically quasihomogeneous function of weight (k, l) with p cuspidal branches, and
multiplicities (n∞, n0, n1, . . . , np). From Lemma (1.1), we can consider a system of coordinates
(x, y) such that f is written

f(x, y) = cxn∞yn0
(
yk + xl + · · ·

)n1
(
yk + a2,klx

l + · · ·
)n2

· · ·
(
yk + ap,klx

l + · · ·
)
np

where the dots contains terms of (k, l)-degree bigger than kl.
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Let θf be the vector field with an isolated singularity defined by

θf =
1

g.c.d.
(

∂f
∂x ,

∂f
∂y

) ·

(
−∂f

∂x

∂

∂y
+
∂f

∂y

∂

∂x

)
(21)

The vector field θf can be also defined as a dual of the 1-form f red df
f for the standard volume

form dx ∧ dy

(22) dx ∧ dy (θf , ·) = f red df

f

where

f red(x, y) = cxy
(
yk + xl + · · ·

) (
yk + a2,klx

l + · · ·
)
· · ·
(
yk + ap,klx

l + · · ·
)
.

3.1. The desingularization. The desingularization of f is exactly the same as its topological
quasihomogeneous model fqh

fqh(x, y) = cxn∞yn0
(
yk + xl

)n1
(
yk + a2,klx

l
)n2

· · ·
(
yk + ap,klx

l
)
np .

The process of desingularization E : M → (C2, 0) can be inductively described as follows: the

map E is written E1 ◦ Ẽ where

• E1 is the standard blow-up of (0, 0) in C2.

• Ẽ is the process of reduction of E∗
1fqh which is a quasi-homogeneous function of degree

(k, l − k).

Therefore, the process of desingularization will follow the Euclide algorithm for the couple (k, l).
In particular, the exceptional divisor is a chain of compact components CP

1 such that each of
them is linked exactly with two others except the extremal components. There is exactly one
component called the central component along which is attached the strict transform of the
cuspidal branches of fqh.

0 0 0∞ ∞ ∞

x0y0
xc−1yc−1xc

ycxNyN

U
∞

U0

Dc

Figure 2. Desingularization of a topologically quasi-homogeneous function.

In what follows we will keep the following notations:

Notation 3.1.

• The integers u and v are defined by:

uk − vl = 1, 0 ≤ u < l, 0 ≤ v < k.

• The numbering D1, . . . , DN of the components of D is a geometric order of the chain,
from the one which contains the strict transform of y = 0, to the one which contains the
strict transform of x = 0. It is not the ”historical” order of the process.
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• On each Di, we denote by 0 the intersection point with Di−1, or with the strict transform
of y = 0 for D1, and by ∞ the intersection with Di+1 or with the strict transform of
x = 0 for DN .

• Each component Di is covered by two charts (xi−1, yi−1) and (xi, yi) whose domains
Vi−1 and Vi contains (Di, 0) and (Di,∞). The change of coordinates are given by

xi−1 = xeii yi, yi−1 = x−1
i

where −ei is the self intersection of the component Di.
• On the principal component Dc, we choose the two charts such that each domain Vc−1,
Vc, contains all the strict transforms of the cuspidal branches.

• We define the covering of D by the two open sets:

U0 = ∪c−1
i=0Vi, U∞ = ∪N

i=cVi.

Proposition 3.2. The desingularization map E is given in the chart (xc, yc) by

(x, y) = (xk−v
c ykc , x

l−u
c ylc).

The blowing down is given in this chart by:

xc =
xl

yk
, yc =

xu−l

yv−k
.

Proof. We prove this result by an induction on the number of blowing up’s of the minimal
desingularization of f . For one blow-up, we have: k = l = 1, u = 1, v = 0 therefore, the
formula is valid in this case. After one blow-up E1, the germ of E∗

1f at its singular point along
the exceptional divisor is a quasi-homogeneous function in the class (k, l − k). Notice that if
uk − vl = 1 is the Bézout identity of (k, l), the corresponding Bézout identity for the new pair
is (u− v)k − v(l − k) = 1. Let us suppose that the formula of Proposition (3.2) is valid for the
pair (k, l − k). Therefore, after one blowing-up we have in the first chart

x1 = xk−v
c ykc , y1 = xl−k−u+v

c yl−k
c .(23)

Thus, we obtain:

x = x1 = xk−v
c ykc , y = x1y1 = xl−u

c ylc.

From this, we easily obtain the inverse formulas defining the blowing-down. �

3.2. Computing multiplicities. We first recall the classical result which allows us to compute
the multiplicities of a function along the components Di of the exceptional divisor D of its
desingularization [4]: we consider the matrix of intersections J defined for i 6= j by Ji,j = 1 if
the two components Di and Dj meet together, Ji,j = 0 otherwise, and Ji,i = −ei, where −ei is
the self intersection of each component. For any component Di, let ni be the number of strict
branches of f ◦E meeting Di, counted with their multiplicities, and let B be the column matrix
induced by these numbers.

Proposition 3.3. The multiplicities mi of (f ◦ E) along each Di define a column matrix M
which satisfy

JM +B = 0.

In the quasi-homogeneous case, sinceD = D1∪· · ·∪Dc−1∪Dc∪Dc+1∪· · ·∪DN , the column matrix
B is here: (n0, 0, . . . , 0, nc, 0, . . . , 0, n∞)t, where nc =

∑p
b=1 nb is on index c. The intersection
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matrix is given by:

J =




−e1 1 0 · · · 0
1 −e2 1 0 · · · 0
0 1 −e3 1 0 · · · 0
...
0 · · · 0 1 −eN−1 1
0 · · · 0 1 −eN




Therefore we obtain the multiplicities of f by M = −J−1B (see example below).

We compute now the multiplicities of the desingularized foliation, i.e. of the vector field E∗θf ,
where θf is the vector field (21) with isolated singularity, defining the foliation F .

Proposition 3.4.

(1) The multiplicities νi of E
∗θf along each component Di define a column matrix N which

satisfy
JN + C = 0,

where C = (ε0 − 1, 0, . . . , 0, p, 0, . . . , 0, ε∞ − 1)t, with p on index c.
(2) The multiplicity of E∗θf on the principal component Dc of D is

νc = klp− k − l + kε∞ + lε0.

(3) The multiplicities of E∗θf on the (y0 = 0) (strict transform of the x-axis) and on (xN =
0) (strict transform of the y-axis) are ε0 − 1 and ε∞ − 1.

Proof. Let V = (vi) be the multiplicities of E∗dx ∧ dy along each Di. From

E∗(dx ∧ dy)(E∗θf , ·) = (f red ◦ E)d(f ◦ E)/(f ◦ E)

we obtain:
vi + νi = ri + (mi − 1)−mi = ri − 1

where ri = ν(f red ◦ E,Di). We consider the ”axis function”: a = xy. Let A = (ai) be the
column matrix of multiplicities of a ◦ E along each Di. We claim that vi = ai − 1. Indeed, let
(xi, yi) be the chart induced by (x, y) and E around the origin of Di. Since E is here monomial
in these coordinates, there exist positive integers p, q, r, s, such that:

E∗dx ∧ dy = a ◦ E ·E∗
(dx
x

∧
dy

y

)
= a ◦ E · (ps− qr)

dxi
xi

∧
dyi
yi

from which we deduce vi = ai−1. Therefore we obtain A+N = R, where R, A are the matrices
of multiplities of (f red ◦E) and a◦E along each Di. Now, from the previous proposition applied
to the functions f red and a we have: JR + Bred = 0, with Bred = (ε0, 0, . . . , 0, p, 0, . . . , 0, ε∞)t

and JA+B′ = 0 where B′ is the column matrix such that b′i = 1 for i = 1 or i = N and b′i = 0
otherwise. We obtain:

JN = J(R −A) = −Bred +B′ = −C.

For the principal component, by making use of the formulas of proposition (3.2), we obtain:

νc = νyc(E
∗θf ) = rc − 1− vc = (klp+ kε∞ + lε0 − 1)− (k + l − 1)

= klp+ kε∞ + lε0 − k − l.

On the branch (y0 = 0), we have νy0
(E∗f red) = ε0 and νy0

(a ◦ E) = 1. Therefore,

νy0
(E∗θf ) = νy0

(
E∗f red df

f

)
− νy0

(E∗dx ∧ dy) = ε0 − 1.

We obtain the multiplicity on (xN = 0) by a similar computation. �
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Example. For (k, l) = (3, 5), the matrix of intersections is:

J =




−3 1 0 0
1 −1 1 0
0 1 −2 1
0 0 1 −3




and we have B = (n0, nc, 0, n∞)t, where nc =
∑p

b=1 nb, and C = (ε0− 1, p, 0, ε∞− 1). Therefore
we obtain:

M =




2n0 + n∞ + 5nc

5n0 + 3n∞ + 15nc

3n0 + 2n∞ + 9nc

n0 + n∞ + 3nc


 ; N =




2ε0 + ε∞ + 5p− 3
5ε0 + 3ε∞ + 15p− 8
3ε0 + 2ε∞ + 9p− 5
ε0 + ε∞ + 3p− 2


 .

The multiplicity of the foliation on the principal component D2 is

νc = 5ε0 + 3ε∞ + 15p− 8.

3.3. Acyclic covering of D for the sheaf ΘF . We consider the covering {U0, U∞} defined in
(3.1).

Lemma 3.5. There exists a global section T0 (resp. T∞) of the sheaf ΘF of germs of vector
fields tangent to E∗F on U0 (resp. U∞) which admits only isolated singularities.

Proof. From Proposition (3.4), the following holomorphic vector fields

θ0 =
E∗θf

xν10 y
ε0−1
0

, θi =
E∗θf

x
νi+1

i yνii
, i = 1, . . . , c− 1,

have isolated singularities. We claim that they glue together on their common domains, defining
a global section T0 of ΘF on U0. Indeed, from the previous relation JN + C = 0, we have :

−e1ν1 + ν2 + ε0 − 1 = 0

νi−1 − eiνi + νi+1 = 0, i = 2, . . . , c− 1

Therefore, using the change of coordinates between two consecutive charts, we have

xν21 y
ν1
1 = y−ν2

0 xν10 y
e1ν1
0 = xν10 y

ε0−1
0

x
νi+1

i yνii = y
−νi+1

i−1 xνii−1y
eiνi
i−1 = xνii−1y

νi−1

i−1 , i = 1, . . . , c− 1.

The proof is similar for constructing T∞ on U∞. �

Proposition 3.6. We have H1(U0,ΘF) = H1(U∞,ΘF) = 0.

Proof. The previous section T0 with isolated singularities allows us to identify the sheaf ΘF |U0
to

OM |U0
. Since the Chern class of each branch is negative, a direct computation with the change

of charts shows that H1(U0,OM ) = 0. The proof is similar for U∞. �

4. Appendix B: normal forms for (k, l) = (3, 5) and p = 4

According to the figure draw below, the analytical normal form for the topological class of
(
y3 + x5

)n1
(
y3 + a2x

5
)n2
(
y3 + a3x

5
)n3
(
y3 + a4x

5
)n4

is given by the following family of functions with 78 parameters
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Na =
(
y3 + x5 + a1,16x

2y2 + a1,19x
3y2
)n1

×
(
y3 + a2,15x

5 + a2,16x
2y2 + a2,17x

4y + a2,18x
6 + a2,19x

3y2 + a2,20x
5y

+a2,21x
7 + a2,22x

4y2 + a2,23x
6y + a2,24x

8 + a2,25x
5y2 + a2,26x

7y

+a2,28x
6y2 + a2,29x

8y + a2,31x
7y2 + a2,34x

8y2
)n2

×
(
y3 + a3,15x

5 + a3,16x
2y2 + a3,17x

4y + a3,18x
6 + a3,19x

3y2 + a3,20x
5y

+a3,21x
7 + a3,22x

4y2 + a3,23x
6y + a3,24x

8 + a3,25x
5y2 + a3,26x

7y

+a3,27x
9 + a3,28x

6y2 + a3,29x
8y + a3,30x

10 + a3,31x
7y2 + a3,32x

9y

+a3,33x
11 + a3,34x

8y2 + a3,35x
10y + a3,36x

12 + a3,37x
8y2 + a3,38x

11y

+a3,39x
13 + a3,40x

9y2 + a3,41x
12y + a3,43x

10y2 + a3,44x
13y + a3,46x

12y2

+a3,49x
13y2

)n3
×

(
y3 + a4,15x

5 + a4,17x
4y + a4,18x

6 + a4,20x
5y + a4,21x

7 + a4,23x
6y

+a4,24x
8 + a4,26x

7y + a4,27x
9 + a4,29x

8y + a4,30x
10 + a4,32x

9y

+a4,33x
11 + a4,35x

10y + a4,36x
12 + a4,38x

11y + a4,39x
13 + a4,41x

12y

+a4,42x
14 + a4,44x

13y + a4,45x
15 + a4,47x

14y + a4,48x
16 + a4,50x

15y

+a4,51x
17 + a4,53x

16y + a4,54x
18 + a4,56x

17y + a4,59x
18y
)n4

.

Moreover, the normal forms for the generic curve are given by the 35-parameters family

Na =
(
y3 + x5 + x2y2

)
×

(
y3 + a2,15x

5 + a2,16x
2y2 + a2,17x

4y + a2,18x
6 + a2,19x

3y2 + a2,20x
5y

+a2,23x
6y
)
×

(
y3 + a3,15x

5 + a3,16x
2y2 + a3,17x

4y + a3,18x
6 + a3,19x

3y2 + a3,20x
5y

+a3,21x
7 + a3,22x

4y2 + a3,23x
6y + a3,24x

8 + a3,25x
5y2 + a3,26x

7y

+a3,28x
6y2 + a3,29x

8y
)
×

(
y3 + a4,15x

5 + a4,17x
4y + a4,18x

6 + a4,20x
5y + a4,21x

7 + a4,23x
6y

+a4,24x
8 + a4,26x

7y + a4,27x
9 + a4,29x

8y + a4,30x
10 + a4,32x

9y

+a4,33x
11 + a4,35x

10y
)
.



32 YOHANN GENZMER AND EMMANUEL PAUL

��

��

��
��
��
��

����

��

��
��
��
��

��

����
����

��
��
��
������
��
��
�
�
�
���
�
�
�
�������
��
��
��
���
�
�
�����
��
�
�
�
�
�
�
�
��
�
�
�������
��
��
��
��
�
�
�
��
�
�
��
�
�
�
�
�
�
���
��
��
��
����
��
��
��
��
��
��
������

�
�
�
�

����

��
��

��
��
��
��

��
��
��
��

����
�
�
�
�

�
�
�
�

��
2

2

2
2

2

2

1
2
1

2
1

1

B3
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p = 4 branches
ǫ0 = ǫ∞ = 0 (no axes)
δ = 3 + 40 + 25 + 10 = 78

d = 30

i
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STRANGELY DUAL ORBIFOLD EQUIVALENCE I

ANA ROS CAMACHO AND RACHEL NEWTON

Abstract. In this brief note we prove orbifold equivalence between two potentials described

by strangely dual exceptional unimodular singularities of type E14 and Q10 in two different
ways. The matrix factorizations proving the orbifold equivalence give rise to equations whose

solutions are permuted by Galois groups which differ for different expressions of the same

singularity.

1. Introduction

In this paper, we present two ways of proving an orbifold equivalence between two potentials
describing two strangely dual unimodular exceptional singularities, namely Q10 and E14. In
addition, we observe that each matrix factorization proving this orbifold equivalence depends
on a different Galois orbit. First, we will recall the notion of orbifold equivalence and motivate
this research direction, leaving computations for Sections 3 and 4. We also include an appendix,
written by the second author with Federico Zerbini, which discusses the Kreuzer–Skarke theorem
and gives a way to count invertible potentials for any number of variables.

1.1. Orbifold equivalence. We will work in the graded ring of polynomials over the complex
numbers, C [x1, . . . , xn], with degrees |xi| ∈ Q≥0 associated to each variable xi.

Definition 1.1. A potential is a polynomial W ∈ C [x1, . . . , xn] satisfying

dimC

(
C [x1, . . . , xn]

〈∂1W, . . . , ∂nW 〉

)
<∞.

We say that a potential is homogeneous of degree d ∈ Q≥0 if in addition it satisfies

W
(
λ|x1|x1, . . . , λ

|xn|xn

)
= λdW (x1, . . . , xn)

for all λ ∈ C×.

From now on, the word potential will be used to mean ‘homogeneous potential of degree 2’.
We will denote the set of all possible potentials with complex coefficients, and any number of

variables, by PC. To a potential W ∈ PC with n variables, we can associate a number called the
central charge, which is defined as:

cW =

n∑
i=1

(1− |xi|) .

Definition 1.2.

◦ A matrix factorization of W consists of a pair
(
M,dM

)
where

– M is a Z2-graded free module over C [x1, . . . , xn];
– dM : M →M is a degree 1 C [x1, . . . , xn]–linear endomorphism (the twisted differ-

ential) such that:

(1) dM ◦ dM = W.idM .

http://dx.doi.org/10.5427/jsing.2016.14c
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We may display the Z2-grading explicitly as M = M0 ⊕M1 and

dM =

(
0 dM1
dM0 0

)
.

If there is no risk of confusion, we will denote
(
M,dM

)
simply by M .

◦ We call M a graded matrix factorization if, in addition, M0 and M1 are Q-graded, acting
with xi is an endomorphism of degree |xi| with respect to the Q-grading on M , and the
twisted differential has degree 1 with respect to the Q–grading on M . Note that these
conditions imply that W has degree 2 (as desired).

We will denote by hmfgr (W ) the idempotent complete full subcategory of graded finite–
rank matrix factorizations: its objects are homotopy equivalent to direct summands of finite–
rank matrix factorizations. The morphisms are homogeneous even linear maps up to homotopy
with respect to the twisted differential. This category is indeed monoidal and has duals and
adjunctions which can be described in a very explicit way. This leads to the following result
which gives precise formulas for the left and right quantum dimensions of a matrix factorization.

Proposition 1.3. [CM, CR1] Let V (x1, . . . , xm) and W (y1, . . . , yn) ∈ PC be two potentials
and M a matrix factorization of W − V . Then the left quantum dimension of M is:

qdiml (M) = (−1)(
m+1

2 ) Res

[
str
(
∂x1

dM . . . ∂xm
dM∂y1

dM . . . ∂yn
dM
)
dy1 . . . dyn

∂y1
W, . . . , ∂yn

W

]
and the right quantum dimension is:

qdimr (M) = (−1)(
n+1
2 ) Res

[
str
(
∂x1d

M . . . ∂xmd
M∂y1d

M . . . ∂ynd
M
)
dx1 . . . dxm

∂x1V, . . . , ∂xmV

]
,

where by str we mean the supertrace of the corresponding supermatrix.

Quantum dimensions allow us to define the following equivalence relation:

Definition and Theorem 1.4. [CR2, CRCR] Let V , W and M be as in the previous propo-
sition. We say that V and W are orbifold equivalent (V ∼orb W ) if there exists a finite–rank
matrix factorization of V −W for which the left and the right quantum dimensions are non-zero.
Orbifold equivalence is an equivalence relation in PC.

Remark 1.5. [CR2, Proposition 6.4] (or [CRCR, Proposition 1.3]) If two potentials V and W
are orbifold equivalent, then their associated central charges are equal: cV = cW .

Let us give some comments on quantum dimensions and orbifold equivalences [CRCR, CR2]:

◦ [CRCR, Lemma 2.5] The quantum dimensions of graded matrix factorizations take values
in C. One can see this by counting degrees in the formulas given in Proposition 1.3.

◦ The definitions of the quantum dimensions are also valid for ungraded matrix factoriza-
tions (in which case they will take values in C [x1, . . . , xn] instead of in C). Furthermore,
the quantum dimensions are independent of the Q-grading on a graded matrix factor-
ization.
◦ So far, the difficulty of establishing an orbifold equivalence lies in constructing the explicit

matrix factorization which proves it.

1.2. Motivation: an interlude on Arnold’s strange duality. From now on, we fix the
number of variables of our polynomial ring to be n = 3.
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The aim of this work was to discover more orbifold equivalent potentials as in [CRCR].
In that paper, orbifold equivalence between simple singularities was proven. These singularities
have modality zero and fall into an ADE classification. A natural next step for finding new
orbifold equivalences is to focus on potentials described by singularities of modality one. Thanks
to the classification performed by Arnold in the late 60’s, we know that such singularities fall
into 3 families of parabolic singularities, a three-suffix series of hyperbolic singularities, and 14
families of exceptional singularities. For more details on this classification, we refer to [Ar, AGV].

A singularity can be described with a regular weight system [Sai], that is, a quadruple of
positive integers (a1, a2, a3;h) with:

– a1, a2, a3 < h,
– gcd (a1, a2, a3) = 1, and
– There exists a polynomial W ∈ C [x1, x2, x3] that has an isolated singularity at the origin

(with the degrees of the variables xi being |xi| = 2ai

h , i ∈ {1, 2, 3}) which is invariant
under the Euler field E, that is,

E.W =

(
a1
h
x1

∂

∂x1
+
a2
h
x2

∂

∂x2
+
a3
h
x3

∂

∂x3

)
W = W.

In other words, the polynomial associated to a regular weight system must be a
potential invariant under the Euler field.

With the assignment of degrees made, this is the same as requesting homogeneity of degree 2
for the potentials 1. The integer h is called the Coxeter number.

From now on, we write x1 = x, x2 = y and x3 = z. Some examples of regular weight
systems, those corresponding to each of the 14 unimodular exceptional singularities are shown in
Table 1. The associated potentials are also described. For most of the exceptional unimodular
singularities, there is only one way to write the associated potential, whereas there are two
expressions for each of Q12, Z13, W12, W13 and E14. Exceptionally, there are 4 potentials which
can describe the singularity U12. In order to find these potentials, combine invariance under the
Euler field (or homogeneity of order 2) with the Kreuzer–Skarke theorem [KS] to see that any
variable xi shows up in a potential only as a power of itself, xai (for some a > 2) or as xai xj (with
i 6= j). 2.

Let us illustrate this with an example: take E14. The degrees assigned to the variables are:
|x| = 6

24 = 1
4 , |y| = 16

24 = 2
3 and |z| = 24

24 = 1. Imposing homogeneity of degree 2, we need to find

monomials of the shape xk1yk2zk3 where ki ∈ Z+, i ∈ {1, 2, 3} must satisfy 2
3k1 + 1

4k2 + k3 = 2.

The only solutions are four tuples: (8, 0, 0), (4, 0, 1), (0, 3, 0), (0, 0, 2), i.e., the monomials x4z,
x8, y3 and z2. Combining them and taking into account the Kreuzer–Skarke theorem, we get
the two potentials appearing in Table 1.

1This argument goes as follows: a potential in three variables can only have seven possible shapes, which
are specified in a graphical way in Table 4 in the Appendix A, or in [AGV, Chapter 13]. Imposing invariance
under the Euler field boils down to some conditions on the powers of the monomials in the potential. With the

assignment of degrees made, one can easily see that these conditions are exactly the same as those we should
impose if we want homogeneity of degree 2.

2A complete statement of this theorem, as well as a discussion of it, is presented in the Appendix A.
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Type Potential (1) Potential (2) (a1, a2, a3;h)
Q10 x4 + y3 + xz2 – (9, 8, 6; 24)
Q11 x3y + y3 + xz2 – (7, 6, 4; 18)
Q12 x3z + y3 + xz2 x5 + y3 + xz2 (6, 5, 3; 15)
S11 x4 + y2z + xz2 – (5, 4, 6; 16)
S12 x3y + y2z + xz2 – (4, 3, 5; 13)
U12 x4 + y3 + z3 x4 + y3 + z2y (4, 4, 3; 12)
Z11 x5 + xy3 + z2 – (8, 6, 15; 30)
Z12 yx4 + xy3 + z2 – (6, 4, 11; 22)
Z13 x3z + xy3 + z2 x6 + y3x+ z2 (5, 3, 9; 18)
W12 x5 + y2z + z2 x5 + y4 + z2 (5, 4, 10; 20)
W13 yx4 + y2z + z2 x4y + y4 + z2 (4, 3, 8; 16)
E12 x7 + y3 + z2 – (14, 6, 21; 42)
E13 y3 + yx5 + z2 – (10, 4, 15; 30)
E14 x4z + y3 + z2 x8 + y3 + z2 (8, 3, 12; 24)

Table 1. Unimodular singularities of exceptional type (note that U12 can also
be described in two additional different ways: x4 +y2z+z3 and x4 +y2z+z2y).

As discovered by Kobayashi [Kob], there is some duality between these weight systems –
which corresponds to what is known as Arnold’s strange duality3. Four pairs of these exceptional
singularities share the same Coxeter number: Q10 and E14 (h = 24), Q11 and Z13 (h = 18), S11

and W13 (h = 16) and Z11 and E13 (h = 30).
In addition, one notices the following phenomenon. For potentials described by strange

dual pairs, the associated central charges have a close relationship with the Coxeter number h
[Ma2],

cW =
h+ 2

h

which implies that the potentials related to strange dual singularities have the same central
charge. As mentioned in Remark 1.5, equality of central charges is one consequence of orbifold
equivalence between two potentials. Hence, it makes sense to conjecture from the mathematics
point of view that strangely dual exceptional unimodular singularities are orbifold equivalent.

Another consequence of orbifold equivalence between strangely dual exceptional unimodu-
lar singularities would be that the Ginzburg algebras [Gin] for these singularities with Dynkin
diagrams [Gab] sharing the same Coxeter number are orbifold equivalent in the bicategory whose
objects are smooth dg algebras with finite dimensional cohomology and whose morphism cat-
egories are the respective perfect derived categories. We refer to the recent paper [CQ] for a
complete exposition and details of this statement.

Furthermore, from the physics point of view, we have known for some time that for each
of these exceptional singularities there is a uniform construction of a K3 surface obtained by
compactifying the singularity [Sai, Pin]. Landau-Ginzburg models with potentials described by
strangely dual singularities correspond to the same K3 surface [Ma1, Ma2].

3This duality roughly states that, given two singularities, the Dolgachev numbers associated to the first

singularity are the same as the Gabrielov numbers of the second one (and vice versa). We refer to the bibliography

for further details, e.g. [Ar, Dol, Eb].
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This can also be regarded as well as a prediction of orbifold equivalence between these sin-
gularities. In addition, it would be interesting to see the implications of orbifold equivalence for
N = 2 superconformal four–dimensional gauge theories [CDZ].

A further motivation for this work (if not the primary for the second author) is given by
the so-called Landau-Ginzburg/conformal field theory correspondence [HW, LVW, VW, RC],
which predicts a certain relation between categories of matrix factorizations of the potential of
the Landau-Ginzburg model and categories of representations of the vertex operator algebra
associated to some conformal field theory. An immediate consequence of orbifold equivalence
between two potentials is the following result:

Proposition 1.6. [CR2] Let V , W ∈ PC be two potentials which are orbifold equivalent and
let M ∈ hmfgr (W − V ) have non-zero quantum dimensions. Then,

hmfgr (W ) ' mod
(
X† ⊗X

)
where by X† we mean the right adjoint of X and mod

(
X† ⊗X

)
is the category of modules over

X† ⊗X.

X† ⊗ X is a separable symmetric Frobenius algebra [CR2] (see e.g. [BCP] for a review on
Frobenius algebras). These algebras are related to full CFTs [FRS1]. Hence, proving orbifold
equivalences is a way to match together both sides of the Landau-Ginzburg/conformal field
theory correspondence, providing a better understanding of a mathematical conjecture for it.
Due to the need for computational software improvements, we postpone the analysis of the
results of this paper from the point of view of the Landau-Ginzburg/conformal field theory
correspondence to later works [RCN].

Proving more orbifold equivalences requires at this point some strong computational tool
which for the moment we lack 4. For this reason we focus on a first example – that of E14−Q10

– and analyze it in detail.
This paper is organized as follows. In Section 2, we explain orbifold equivalence as well as

some basics on matrix factorizations. In Section 3, we describe the method followed to find the
matrix factorizations of E14−Q10 which prove orbifold equivalence in two different fashions. In
Section 4, we describe the Galois orbits on which the matrix factorizations obtained in Section 3
depend. We wrap up with some conclusions and an appendix by the second author and Federico
Zerbini on the Kreuzer–Skarke theorem.

Acknowledgments. The authors are grateful to the Max-Planck-Institut für Mathematik in
Bonn for providing the best possible working conditions for starting and developing this collab-
oration, and also to an anonymous referee for a very careful reading of this paper. In addition,
ARC wishes to thank Ingo Runkel, Nils Carqueville, Atsushi Takahashi and Lev Borisov for very
useful discussions and feedback on this paper. Especial thanks are for all of the subsets of the set
{Sonny John Moore, Thomas Wesley Pentz} and the pair (Dylan Mamid, Zach Rapp-Rovan),
which provided an awesome soundtrack to this work.

2. Q10 ∼orb E14 in two fashions

Our method to find matrix factorizations of finite rank consists of a variation of the per-
turbation method used in [CRCR]. The starting point is the paper [KST], where we find the

4Upon the writing of this manuscript, the second author became aware of a project by Andreas Recknagel et
al. to create a computer algorithm to prove orbifold equivalences. We do not know any further details about this

project, but it seems that this algorithm was able to reproduce the orbifold equivalences of [CRCR] and the one

in this paper as well - apparently via a different method but nonetheless pretty simultaneously.
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full strongly exceptional collection of objects of the category of matrix factorizations of each
potential described by unimodular singularities. Our recipe proceeds as follows:

(1) Consider the difference between two potentials. Set to zero one of the variables (typically
the one with the smallest degree associated). Factorize the resulting potential.

(2) Pick one of the exceptional objects from the [KST] collection for the potential which
doesn’t contain the variable set to zero in the previous step. The entries of these matrices
are factorizations of each of the monomials of the corresponding potential. We change
these factorizations in order to obtain entries in the matrix similar to the factors in
the factorization of Step 1, being careful to ensure that the result is still a matrix
factorization.

(3) Perturb à la [CRCR] all possible entries of the matrix factorization (not necessarily only
with respect to the variable set to zero), except for the zero entries.

(4) Impose Equation 1 and reduce the system of equations obtained from the perturbation
constants as much as possible. We obtain a matrix factorization depending on a small
number of parameters satisfying some equations.

In an attempt to elucidate this recipe, we will explain in detail how to prove Q10 ∼orb E14 in
two ways.

2.1. Q10 ∼orb E14, version 1.

(1) Consider the potentials:

Q10 = x4 + y3 + xz2

E14 = u4w + v3 + w2

whose variables have the following associated degrees:

|x| = 6

12
|y| = 8

12
|z| = 9

12
|u| = 3

12
|v| = 8

12
|w| = 12

12
.

It is easy to check that both potentials have a central charge of cQ10
= 13

12 = cE14
. The

variable with the smallest degree is u and we will perturb with respect to it. Set u equal
to zero; the resulting potential is then:

Q10 − E14 = x4 + y3 + xz2 − v3 − w2

We can factorize this potential as:

(2) Q10 − E14 =
(
x2 + w

) (
x2 − w

)
+ (y − v)

(
y2 + yv + v2

)
+ (xz) (z) .

(2) First, we will start from the indecomposables of Q10. The matrix factorization associated
to the vertex V0 of the Auslander-Reiten quiver associated to this singularity is given by
([KST]):

[!h]d0 =


xz y2 x3 0
y −z 0 x3

x 0 −z −y2
0 x −y xz

 d1 =


z y2 x3 0
y −xz 0 x3

x 0 −xz −y2
0 x −y z


Note that the determinant of d1 is precisely Q2

10. Then, similarly to the procedure
followed to prove the orbifold equivalence A29 ∼orb E8 in [CRCR], we make the ansatz
that it is possible to recover d0 as Q10d

−1
1 . Hence we will only need to work with d1.
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Modify d1 as follows:

d̃1 =


z y2 x2 0
y −xz 0 x2

x2 0 −xz −y2
0 x2 −y z


The determinant of this matrix is still equal to Q2

10. Then, using the factorization in

Eq. 2, we can construct a similar d1 whose determinant is precisely
(
Q10 − E14

)2
:

[!h]
˜̃
d1 =


z v2 + vy + y2 x2 + w 0

y − v −xz 0 x2 + w
x2 − w 0 −xz −

(
v2 + yv + y2

)
0 x2 − w −y + v z


which has a degree distribution (in units of 1/12) specified in Table 2.

9 16 12 0
8 15 0 12
12 0 15 16
0 12 8 9

Table 2. Degree distribution of the entries of
˜̃
d1

From this matrix, construct
˜̃
d0:

[!h]
˜̃
d0 =


−xz −

(
v2 + vy + y2

)
−
(
x2 + w

)
0

v − y z 0 −
(
x2 + w

)
−
(
x2 − w

)
0 z v2 + yv + y2

0 −
(
x2 − w

)
−v + y −xz


which has a degree distribution (in units of 1/12) specified in Table 3.

15 16 12 0
8 9 0 12
12 0 9 16
0 12 8 15

Table 3. Degree distribution of the entries of
˜̃
d0

Now form the whole matrix factorization (which we will denote by dX). Indeed, we
see that dX ◦ dX = Q10 − E14.



STRANGELY DUAL ORBIFOLD EQUIVALENCE I 41

(3) Perturb all possible entries with terms (at least) linear in u. Note that, in contrast to
[CRCR], the zero entries are not perturbed. Those which can be perturbed in this way
are those of degree:
◦ 9: u3, ux.
◦ 12: uz, u4, xu2.
◦ 15: ux2, u2z, uw, u5.

Implement the perturbation in dX =
˜̃
d0 ⊕

˜̃
d1 = (xij) (i, j = 1, . . . , 8); the entries of this matrix

will be

[!h]

x15 = z + p111u
3 + p112ux

x16 = v2 + vy + y2

x17 = x2 + w + p131uz + p132u
4 + p133xu

2

x25 = y − v
x26 = −xz + p221ux

2 + p222u
2z + p223uw + p224u

5

x28 = w + x2 + p241uz + p242u
4 + p243xu

2

x35 = −w + x2 + p311uz + p312u
4 + p313xu

2

x37 = −xz + p331ux
2 + p332u

2z + p333uw + p334u
5

x38 = −v2 − vy − y2

x46 = −w + x2 + p421uz + p422u
4 + p423xu

2

x47 = v − y
x48 = z + p441u

3 + p442ux

for d1, and similarly for d0, with the rest of entries of the matrix zeros and where plmn ∈ C
(l = 1, . . . , 8; m,n = 1, . . . , 4). Imposing Equation 1 and linear conditions on the pijk’s, we
finally recover a diagonal matrix where in order to recover the original potential Q10 − E14 we
need to solve a system of 11 equations with 12 variables, which can indeed be further reduced.
Changing p112  a, p131  b and p221  c, we are left with only two equations and three
variables:

− 1

64

(
−4 + 3a4 + 8a3b+ 8a2b2 − 4a3c− 8a2bc

)
·
(
4 + 3a4 + 8a3b+ 8a2b2 − 4a3c− 8a2bc

)
= 0

and

− 1

8
a2
(
a4 − 8a2b2 − 16ab3 − 8b4 + 8a2bc+ 24ab2c+ 16b3c− 2a2c2 − 8abc2 − 8b2c2

)
= 0.

(3)

For the sake of simplification, introduce the following notation:

κ1 :=

(
a3

2
+ a2b+ ab2 − a2c

2
− abc

)
,

κ2 := 1 +
3a4

4
+ 3a3b+ 4a2b2 + 2ab3 − a3c− 3a2bc− 2ab2c.
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The entries of dX finally look like:

x15 = κ1u
3 + aux+ z,

x16 = v2 + vy + y2,

x17 =
1

2
κ2u

4 + w − 1

2
a (−a− 2b)u2x+ x2 + buz,

x25 = y − v,

x26 =

(
−b− b2κ1 +

1

2
(c− a)κ2

)
u5 + (−a− 2b+ c)uw

+ cux2 + b (−a− b+ c)u2z − xz,

x35 =
(
−1 + (−a− 2b+ c)κ1 +

κ2
2

)
u4

− w +
1

2
a (−a− 2b+ 2c)u2x+ x2 + (−a− b+ c)uz,

with

x15 = x48 = x62 = x73

x16 = −x38 = −x52 = x74

x17 = x28 = −x53 = −x64
x25 = −x47 = −x61 = x83

x26 = x37 = x84 = x51

x35 = x46 = −x71 = −x82

and with all other entries of the matrix zero.
The quantum dimensions of our matrix factorization are

qdiml (dX) =
1

2
a2 (a+ 2b− c)

qdimr (dX) = −2 (a− c)

which are not zero for any values of a, b, c satisfying Eqs. 3.

2.2. Q10 ∼orb E14, version 2.

(1) This time we consider the potentials:

Q10 = x4 + y3 + xz2

E14 = u3 + v8 + w2

that is, the same Q10 but a different E14. The variables of the potential Q10 have the
same associated degree, while u and v of E14 switch theirs. This time, we will perturb
with respect to w (the variable with the biggest degree). Set it equal to zero, and the
resulting potential is:

Q10 − E14 = x4 + y3 + xz2 − u3 − v8

which has again a factorization similar to that of Eq. 2:

Q10 − E14 =
(
x2 + v4

) (
x2 − v4

)
+ (y − u)

(
y2 + yu+ u2

)
+ (xz) (z)
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(2) Proceeding analogously to 2.1, we get:

˜̃
d1 =


z u2 + uy + y2 v4 + x2 0

−u+ y −xz 0 v4 + x2

−v4 + x2 0 −xz −u2 − uy − y2
0 −v4 + x2 u− y z


whose determinant is precisely Q10 − E14

2
. The degrees are distributed in the matrix in

the same way as in Table 2. Again,
˜̃
d0 is given by Q10 − E14

˜̃
d−11 .

(3) In this case, we will allow all possible perturbations – not only those linear in w. The
perturbations associated to each degree are then:
◦ 9: v3, vx.
◦ 12: vz, v2x, w.
◦ 15: vw, v5, v2z, v3x, vx2.

We proceed as in the previous example. We obtain a matrix factorization with entries:

x15 = bv3 + cvx+ z,

x16 = u2 + uy + y2,

x17 = v4 + aw +
1

2

(
c2 + 2cd

)
v2x+ x2 + dvz,

x25 = −u+ y,

x26 = −2avw

b
+

(
b+

2c

b2
− 2cd

b
+ c2d+ 2cd2 − c2 + 2cd

b

)
v3x

+

(
−2

b
+ c+ 2d

)
vx2 − 2v2z

b2
− xz,

x35 = −v4 − aw +

(
c

(
−2

b
+ c+ 2d

)
+

1

2

(
−c2 − 2cd

))
v2x

+ x2 +

(
−2

b
+ d

)
vz,

and

x15 = x48 = x62 = x73

x16 = −x38 = −x52 = x74

x17 = x28 = x53 = −x64 = x82

x25 = −x47 = −x61 = x83

x26 = x37 = x26 = x51 = x84

x35 = x46 = −x71
with the rest of the entries of the matrix factorization being zero.
a, b, c and d must satisfy:

a2 = 1

b2 +
4c

b
− c2 − 4cd+ bc2d+ 2bcd2 = 0

−2 + 2bc+
2c2

b2
− c4

4
+ 2bd− 2c2d

b
+ c2d2 = 0

−2

b2
+

2d

b
− d2 = 0

(4)
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The quantum dimensions of this matrix factorization are:

qdiml (dX) =
24a (−1 + bc+ bd)

b

qdimr (dX) =
6a

b2
(
−3b3 − 12c+ 7bc2 + 3b4d+ 24bcd− 6b2c2d− 18b2cd2 + 3b3c2d2 + 6b3cd3

)
which are not zero for any values of a, b, c, d which satisfy Eqs. 4.

3. Galois theory

In this section, we analyze in detail the solutions of Eqs. 3 and 4. These solutions lie in Galois
orbits, which are described in the following two propositions.

Proposition 3.1. The solutions of Eqs. 3 are permuted by a Galois group isomorphic to
D8 × C2. Moreover, the solutions comprise three distinct orbits for the Galois action.

Proof. Define

f1 = 4 + 3a4 + 8a3b+ 8a2b2 − 4a3c− 8a2bc

f2 = f1 − 8 = −4 + 3a4 + 8a3b+ 8a2b2 − 4a3c− 8a2bc

g = a4 − 8a2b2 − 16ab3 − 8b4 + 8a2bc+ 24ab2c+ 16b3c− 2a2c2 − 8abc2 − 8b2c2.

Eqns. 3 reduce to f1f2 = g = 0. Thus, the solutions to Eqns. 3 come in two disjoint families.
Family 1 consists of solutions to f1 = g = 0, and Family 2 consists of solutions to f2 = g = 0.

Solving the equations shows that the solutions in Family 1 have a = ik
4
√
−12± 8

√
2 for some

k ∈ Z/4Z, and all eight possibilities for a occur. In other words, a is a root of x8 + 24x4 + 16,
which is irreducible over Q.

Solutions in Family 2 have a = ik
4
√

12± 8
√

2 = ik
√

2± 2
√

2, for some k ∈ Z/4Z, and all
eight possibilities for a occur. in other words a is a root of

x8 − 24x4 + 16 = (x4 − 4x2 − 4)(x4 + 4x2 − 4) = 0.

The family of solutions with a a root of the irreducible polynomial x4 − 4x2 − 4 will be called
Family 2A. The solutions with a a root of the irreducible polynomial x4 + 4x2 − 4 will be called
Family 2B.

Every solution (a, b, c) to Eqs. 3 has a defined over L = Q(
4
√
−3 + 2

√
2,
√

1 +
√

2) and,
moreover, the values of a for all solutions of Eqs. 3 generate L/Q. The field L is a degree 16
Galois extension of Q whose Galois group is isomorphic to D8 × C2 and has generators ρ, σ, τ

with the following actions on m =
4
√
−3 + 2

√
2 and n =

√
1 +
√

2:

ρ : m 7→ im−1, n 7→ in−1

σ : m 7→ m−1, n 7→ in−1

τ : m 7→ m, n 7→ −n.

Note that i = (m2 +m−2)/2, so ρ has order 4, whereas σ and τ have order 2.
The a-values of solutions in Family 1 generate Q(m)/Q, the fixed field of τ . The a-values of

solutions in Family 2 generate Q(i, n)/Q, the fixed field of τρ2. Both Q(m)/Q and Q(i, n)/Q
are Galois extensions with Galois groups isomorphic to D8.

The solutions (a, b, c) in Family 1 satisfy the equations a8 + 24a4 + 16 = 0 and

16(a+ 2b)c = 32ab+ 32b2 − 12a2 − a6.
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They make up one Galois orbit.
The solutions (a, b, c) in Family 2A satisfy a4 − 4a2 − 4 = 0 and 2(a + 2b)c = (a + 2b)2 + 2.

They make up one Galois orbit. The solutions (a, b, c) in Family 2B satisfy a4 + 4a2− 4 = 0 and
2(a+ 2b)c = (a+ 2b)2 − 2. They make up one Galois orbit. �

Proposition 3.2. The solutions of Eqs. 4 are permuted by a Galois group isomorphic to
V4 = C2 ×C2. The solutions comprise eight orbits for the Galois action, with each orbit having
4 elements.

Proof. The solutions of Eqs. 4 consist of two families: solutions in Family(+1) have a = 1,
whereas solutions in Family(-1) have a = −1. We define a new variable t by t = bd. The last
equation in Eqs. 4 becomes

(5) t2 − 2t+ 2 = 0

and hence t = 1 ± i. Substituting (5) into the second and third equations in Eqs. 4 and
simplifying gives the following equivalent system of equations.

a2 = 1(
b

c

)2

= 1− t

c4 − 8

(
b

c

)
c2 + 8

(
b

c

)2

= 0

t2 − 2t+ 2 = 0.

(6)

Hence, the solutions only depend on a, b and c, and b/c is a primitive 8th root of unity. The
solutions for c are the roots of f(x) = x16 + 27.17x8 + 212, which decomposes into four quartic
polynomials over Q, and splits completely into linear factors over Q(ζ8). Therefore, all values
of c are defined over Q(ζ8), which has Galois group V4. For each value of c, there is a unique
primitive 8th root of unity β such that c4 − 8βc2 + 8β2 = 0. In other words, each value of c
determines a value of b/c, and hence also a value of t.

Each family of solutions, Family(+1) and Family(-1), breaks down into four Galois orbits,
one for each quartic factor in the decomposition of f over Q. So, in total we have eight Galois
orbits, each with four elements corresponding to the four roots of a quartic factor of f . �

Remark 3.3. Note the marked differences between the solutions of Eqs. 3 and those of Eqs. 4.
In particular, there are infinitely many solutions to Eqs. 3, whereas Eqs. 4 admit precisely 32
solutions.

The elements in the Galois group interfere with our matrix factorizations in the following
way. Let W ∈ Q [x, y, z] be a potential and let M be a finite–rank matrix factorization of W

given by
(
C [x, y, z]

⊕2r
, dM

)
(r ∈ N). Let σ be an element of the Galois group and denote by

σ (dM ) the twisted differential obtained by applying σ to each entry. Since σ leaves the potential

invariant, i.e., σ (W ) = W , σ (dM ) is still a factorization of W , σ (M) =
(
C [x, y, z]

⊕2r
, σ (dM )

)
.

Therefore, we obtain not only one matrix factorization proving orbifold equivalence between Q10

and E14, but infinitely many for Eqs. 3 and 32 for Eqs. 4 – one for each solution.

Remark 3.4. Note that the two Galois groups we obtain are quite different. V4 is abelian and
order 4, whereas D8×C2 is non-abelian and order 16. In fact, V4 is a subgroup of D8×C2 – and
actually also of D8 alone. Both matrix factorizations prove the same orbifold equivalence, but
the second version has the advantage that the resulting equations are much easier to handle.
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It would certainly be interesting to further explore the connection between Galois groups
and matrix factorizations proving orbifold equivalence between potentials described by singu-
larities. That is the aim of the second part of this paper, [RCN]. Some ideas we would like to
explore are the following.

We intend to investigate whether it is possible to predict from the outset whether a given
expression of a singularity will lead to a Galois group which is easy to handle (e.g. abelian). In
the particular example we have dealt with in this paper, in Version 1 the potential for E14 had
a cross term, whereas in Version 2 (the easier one), the potential for E14 had only pure power
monomials. But as we have seen in Table 1, not all the candidates for orbifold equivalence which
at the same time are strangely dual have an associated potential which only has pure power
monomials. In our case indeed a simpler shape of the potentials led to a simpler Galois group,
but further analysis of other cases may give us some hints about how the Galois groups vary for
each expression of the potentials.

While proving orbifold equivalence, in both [CRCR] and this paper we observe the repeated
appearance of C2 in the resulting Galois groups. We would like to investigate whether this is a
coincidence or there is some intrinsic relationship with the structure of matrix factorizations.

Altogether, we look for(ward to) a better understanding of the orbifold equivalence, and
we hope to provide further insights very soon.

Appendix A. Counting invertible potentials –
by Ana Ros Camacho and Federico Zerbini

Besides the Arnold classification, one may ask the following question: given a polynomial ring
with n variables over the complex numbers, how many kinds of potentials can we have and what
do they look like?

A partial answer is provided by the Kreuzer–Skarke theorem [KS, HK]. In these papers they
provide a graphical algorithm to generate potentials that we recall here.

Fix a regular set of weights. We call a configuration the set of polynomials in C [x1, . . . , xn]
with this regular set of weights. A classification of potentials is encoded in certain graphs
representing configurations. Every variable is represented by a dot, and a term of the form xai xj
is represented by an arrow from xi to xj (“xi points at xj”).

Definition A.1. We call a variable xi a root if the polynomial W contains a term xai . A
monomial xajxk is called a pointer at xk. The number a is called the exponent of xi or xj ,
respectively. We recursively define a link between two expressions, which may themselves be
variables or links, as a monomial depending only on the variables occurring in these expressions.
A link may further be linear in additional variables, which don’t count as variables of the link.
In this case we say that the link points at xk, extending the definition of a pointer. It is possible
that a specific monomial could have more than one interpretation as a link or a pointer. Given
a potential W , any graph whose lines allow the above interpretation in terms of monomials in
W is a graphic representation of W .

The following result is taken verbatim from [KS].

Theorem A.2. 5 For a configuration a necessary and sufficient condition for a polynomial to
be a potential is that it has a member which can be represented by a graph where:

(1) Each variable is either a root or points at another variable.

5This theorem has been reformulated in a slightly more general setting in [HK], but we keep here the original

formulation from [KS] as the graphical language proves intuitive and useful for explanations.
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Table 4. Types of potentials for n = 3.

(2) For any pair of variables and/or links pointing at the same variable xi there is a link
joining the two pointers and not pointing at xi or any of the targets of the sublinks which
are joined6.

Let us explain how this theorem works presenting a couple of examples for a small number of
variables:

◦ [Ar, AGV] For n = 2, we find three graphs:

• • • // • • (( •hh
Type I Type II Type III

◦ [Ar, AGV] For n = 3, we find seven graphs as specified in Table 4.

Remark A.3. Notice that for n = 3 the second condition of Theorem A.2 is only relevant for
Types VI and VII. Actually, one can reformulate this second condition for Types VI and VII
as follows [AGV]. Every potential of Type VI contains a monomial in {xa, ybx, zcx}, and those
of Type VII contain a monomial in {xay, ybx, zcx} (up to suitable changes of variables). The
exponents of these potentials must satisfy the following conditions:

◦ Type VI: the least common multiple of b and c must be divisible by a− 1.
◦ Type VII: (b− 1) c must be divisible by the product of a− 1 and the greatest common

divisor of b and c.

The potentials generated via this theorem can be divided into two classes:

Definition A.4.

◦ Let W be a potential. We say W is invertible when the following conditions are satisfied:
– The number of variables n coincides with the number of monomials in W ,

W (x1, . . . , xn) =
n∑

i=1

ai

n∏
j=1

x
Eij

j

for some coefficients ai ∈ C∗ and Eij ∈ Z≥0.
– The matrix E := (Eij) is invertible over Q.
– [BH] The Berglund-Hübsch transpose of W , written WT and defined by

WT (x1, . . . , xn) =
n∑

i=1

ai

n∏
j=1

x
Eji

j ,

6We will draw these links as dotted arrows to distinguish them from those coming from the first condition of

the theorem.
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is also a potential.
◦ If a potential is not invertible, we call it a beserker.

As an example, notice that a potential in two variables is always invertible. In three variables,
it is invertible if it is of type I–V, and it is a beserker if it is of type VI or VII.

Remark A.5.

◦ The Berglund-Hübsch transposition is closely related to mirror symmetry and the Landau-
Ginzburg/Calabi-Yau correspondence, see for example [Chi] or [ET].
◦ For the potentials associated to the singularities Q10 and E14, notice that in Version 2.1

they are Berglund-Hübsch transposes of each other, while this is not the case in Version
2.2. Actually, whenever we take the Berglund-Hübsch transpose of a potential (from the
first column of Table 1) described by an exceptional unimodular singularity, we either
obtain the same potential or the corresponding strange dual.
◦ In addition, notice that the Berglund-Hübsch transposition preserves the central charge

for invertible potentials [RC], which suggests that Berglund-Hübsch may be a source of
orbifold equivalences (see Remark 1.5).
◦ For invertible potentials, the Berglund-Hübsch transposition corresponds graphically to

reversing the directions of the arrows.

Remark A.6. Invertible potentials can only be of three types (or combinations of them) [KS]:

◦ Fermat : xa1
1 + xa2

2 + . . .+ xan
n

◦ Chain: xa1
1 x2 + xa2

2 x3 + . . .+ x
an−1

n−1 + xan
n

◦ Loop: xa1
1 x2 + xa2

2 x3 + . . .+ x
an−1

n−1 + xan
n x1

Translating this in terms of dots and arrows, the Fermat part of the potentials is represented
by isolated dots (see Type I in Table 4), the chain part by the union of all chains, i.e., the
sequences of arrows leading from one dot to another distinct dot (see Type IV), and the loop
part by the union of all loops, i.e., the sequences of arrows leading from one dot to itself (see Type
V). This means that the invertible potentials are in one-to-one correspondence with mappings
of n points to themselves that never involve two points mapping to a third distinct point.

A question that may arise at this point is, using this description in terms of mappings of
points, how many invertible potentials do we get for a given number of variables?

We denote by P (n) the number of partitions of n, and we denote by P1(n) the number of
partitions of n where we exclude parts with cardinality 1. For example P (3) = 3, because we
have the partitions {3}, {2, 1} and {1, 1, 1}, but P1(3) = 1, since only {3} is allowed.
It is easy to see that the two sequences are related by P1(n) = P (n)− P (n− 1).

Proposition A.7. The number of invertible potentials (or, for brevity, invertibles) is given by

(7) Inv(n) = 1 + 2
n∑

k=2

P1(k) +

n∑
k=4

k−2∑
i=2

P1(i)P1(k − i).
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Proof. First, notice that the number of invertibles given by Equation 7 matches our computation
by hand:

Inv (2) = 3

Inv (3) = 5

Inv (4) = 10

Inv (5) = 16

Inv (6) = 29

Inv (7) = 45

Inv (8) = 75

Inv (9) = 115

The proof relies on the fact that one can easily compute Inv(n) if Inv(n − 1) is given. This
is because every invertible with n dots that has at least one isolated dot can be thought as
an invertible with n − 1 dots plus the mentioned isolated one. This means that counting the
invertibles without isolated dots is the same as computing Inv(n)− Inv(n− 1).
One can think of an invertible without isolated dots as divided into 2 blocks: one constituted
by chains and one constituted by loops. Note that the number of dots in any chain or loop is at
least 2, so one gets the following intuitive formula:

Inv(n)− Inv(n− 1) = 2P1(n) +
n−2∑
i=2

P1(i)P1(n− i),

where 2P1(n) counts the invertibles constituted either only by chains or only by loops (this is
why there is a factor 2!), and the sum counts the invertibles with a mix of chains and loops.
Now the proof of Equation 7 is trivial, because we already now that it works for the first values
of n, so we just need to check that Equation 7 also gives the difference predicted above, which
is straightforward. �

Remark A.8. (Courtesy of G. Sanna) This formula can be rewritten as

(8) Inv(n) =

n∑
k=0

P (n− k)[P (k)− P (k − 1)],

with P (0) := 1, P (−1) := 0. One can easily prove that the two formulas give the same result
by induction, rewriting P (n− k) as P1(n− k) + P (n− 1− k) in Equation 8 and using the fact
that P1(1) = 0 and that P1(k) = P (k)− P (k − 1).

Thanks to Remark A.87, one can immediately see what is the generating function for the
numbers Inv(n):

Corollary A.9. Setting Inv(0) := 1, we have

(9)
∑
n≥0

Inv(n)qn = (1− q)
∏
m≥1

(1− qm)−2

Proof. Expanding every term in the product on the right as a power series in q shows that∑
n≥0

P (n)qn =
∏
m≥1

(1− qm)−1.

7Actually, the generating function was found originally using Equation 7 and without Equation 8, but the

proof was less elegant.
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So the left hand side of Equation 9 can be rewritten as

(1− q)
(∑

n≥0

P (n)qn
)2
.

The result now follows from the observation that(∑
n≥0

P (n)qn
)2

=
∑
n≥0

( n∑
k=0

P (n− k)P (k)
)
qn

and

q
(∑

n≥0

P (n)qn
)2

=
∑
n≥0

( n∑
k=0

P (n− k)P (k − 1)
)
qn.

�

Note that this is the same generating function as the one generating the sequence A000990
in the Encyclopedia of Integer Sequences ([Slo]), which counts the number of plane partitions of
n with at most two rows.
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CLASSIFICATION OF FOLIATIONS ON CP2 OF DEGREE 3 WITH
DEGENERATE SINGULARITIES

CLAUDIA R. ALCÁNTARA AND RAMÓN RONZÓN-LAVIE

Abstract. The aim of this work is to classify foliations on CP2 of degree 3 with degenerate
singular points. For that we construct a stratification of the space of holomorphic foliations
by locally closed, irreducible, non-singular algebraic subvarieties which parametrize foliations
with a special degenerate singularity. We also prove that there are only two foliations with
isolated singularities with automorphism group of dimension two, the maximum possible di-
mension. Finally we obtain the unstable foliations with only one singular point, that is, a
singular point with Milnor number 13.

1. Introduction

The aim of this work is to classify holomorphic foliations on CP2 of degree 3 with certain
degenerate singular point using Geometric Invariant Theory (GIT). This theory was developed
principally by David Hilbert and David Mumford (see [6]). We obtain locally closed, irreducible,
non-singular algebraic subvarieties which parametrize foliations of degree 3 with a special degen-
erate singularity. We also get the dimension and explicit generators for each stratum. Similar
results for degree 2 are given in [2] and in [3], we have some general results for degree d.

Geometric Invariant Theory gives a method for constructing quotients for group actions on
algebraic varieties. More specifically, we have a linear action by a reductive group on a pro-
jective variety and we can construct a good quotient if we remove the closed set of unstable
points. When the projective variety parametrizes geometric objects, the unstable points are in
some sense degenerate objects. For example, the unstable plane algebraic curves with respect to
the action by projective transformations are curves with non-ordinary singularities with order
greater than 2.

In this article the projective variety F3 is the space of holomorphic foliations on CP2 of degree
3 and the action is given by change of coordinates. For this action we obtain the closed set of
unstable foliations. We will prove that a foliation is unstable if and only if it has a special
degenerate singular point (see Theorem 8). In this closed set we construct the stratification
studied by Kirwan (in [12]), Hesselink (in [9]) and Kempf (in [11]). The strata are locally closed,
non-singular, irreducible algebraic subvarieties of F3. We characterize the generic foliation on
every stratum according to the Milnor number and multiplicity of their singularities. We also
obtain the dimension of the strata (see Theorem 7).
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As a corollary we describe the irreducible components of the closed set of unstable foliations.
We find, up to change of coordinates, the only two foliations with isolated singularities with
automorphism group of dimension 2 (see Theorem 10). Finally we classify unstable foliations on
CP2 of degree 3 with only one singular point, that is with Milnor number 13 (see Theorem 11).
This result is important because the classification of foliations on CP2 with only one singular
point is known only for degree 2 (see [5] and [2]).

In sections 2 and 3 we recall the basic results about Geometric Invariant Theory and foliations
that we need in the sequel. We compute in section 4 the unstable foliations of degree 3 using
the numerical criterion of one parameter subgroups. The construction of the stratification of the
space of foliations and the characterization of the generic foliation on every stratum is included
in section 5. The last section is devoted to give some important corollaries of the construction.

2. Geometric Invariant Theory

In this section we recall basic facts about Geometric Invariant Theory. All the definitions and
results can be found in [14] and [11].

Let V be a projective variety in CPn, and consider a reductive group G acting linearly on V .

Definition 1. Let x ∈ V ⊂ CPn, and consider x ∈ Cn+1 such that x ∈ x. Denote by O(x) the
orbit of x in the affine cone of V and by O(x) the orbit of x. Then
(i) x is unstable if 0 ∈ O(x).
(ii) x is semi-stable if 0 /∈ O(x). The set of semi-stable points will be denoted by V ss.
(iii) x is stable if it is semi-stable, O(x) is closed in V ss and dimO(x) = dimG. The set of
stable points will be denoted by V s.

The main result in GIT is the following:

Theorem 1. (see page 74 in [14])
(i) There exists a projective variety Y and a morphism φ : V ss → Y , which is a good quotient.

(ii) There exists an open set Y s ⊂ Y such that φ−1(Y s) = V s and the morphism φ| : V s → Y s

is a good quotient and an orbit space.

It is very often difficult to find the unstable points for a given action, but there exists a very
useful criterion due to Hilbert and Mumford. Let us describe it.

A 1-parameter subgroup (1-PS) of the group G is an algebraic morphism λ : C∗ → G. Since
the action on V is linear, this induces a diagonal representation of C∗:

C∗ → GL(n+ 1,C)

t 7→ λ(t) : Cn+1 → Cn+1

v 7→ λ(t)v.

Therefore there exists a basis {v0, ..., vn} of Cn+1 such that λ(t)vi = trivi, where ri ∈ Z.

Definition 2. Let x ∈ X and let λ : C∗ → G be a 1-PS of G. If x̄ ∈ x and x̄ =
∑n
i=0 aivi, then

λ(t)x̄ =
∑n
i=0 t

riaivi. We define the following function

µ(x, λ) := min{ri : ai 6= 0}.

The numerical criterion can now be stated.
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Theorem 2. (see Theorem 4.9 of [14])
(i) x is stable if and only if µ(x, λ) < 0 for every 1-PS, λ, of G.
(ii) x is unstable if and only if there exists a 1-PS, λ, of G such that µ(x, λ) > 0.

Definition 3. If µ(x, λ) > 0 we will say that x is λ-unstable.

The following is a useful tool for applying the criterion of 1-PS when G = SL(n,C). We
formulate the result for the case n = 3.

Lemma 1. (see [14]) Every 1-parameter subgroup of SL(3,C) has the form

λ(t) = g

 tk1 0 0
0 tk2 0
0 0 tk3

g−1,
for some g ∈ SL(3,C) and some integers k1, k2, k3 such that k1 ≥ k2 ≥ k3 and k1 +k2 +k3 = 0.

3. Foliations on CP2 of degree d

This section provides the definitions and results that we need to know about holomorphic
foliations on CP2 for the development of the paper.

Definition 4. A holomorphic foliation X of CP2 of degree d is a non-trivial morphism of vector
bundles:

X : O(1− d)→ T CP2,

modulo multiplication by a nonzero scalar. The space of foliations of degree d is

Fd := PH0(CP2, T CP2(d− 1)),

where d ≥ 0.

Take homogeneous coordinates (x : y : z) on CP2. Up to multiplication by a nonzero scalar
there are two equivalent ways to describe a foliation of degree d (see [8]):

(1) By a homogeneous vector field:

X = P (x, y, z)
∂

∂x
+Q(x, y, z)

∂

∂y
+R(x, y, z)

∂

∂z
=

 P (x, y, z)
Q(x, y, z)
R(x, y, z)


where P,Q,R ∈ C[x, y, z] are homogeneous of degree d. And if we consider the radial
foliation

E = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
,

then X and X + F (x, y, z)E represent the same foliation for all F ∈ C[x, y, z] homoge-
neous of degree d− 1.

(2) By a homogeneous 1-form: Ω = L(x, y, z)dx + M(x, y, z)dy + N(x, y, z)dz, such that
L,M,N ∈ C[x, y, z] are homogeneous of degree d + 1 and these satisfy the Euler’s
condition xL+ yM + zN = 0.

With this we can see that the space of foliations on CP2 of degree d is a projective space of
dimension d2 + 4d+ 2. We will use the description 1 for the rest of the paper.

We now define the notion of singular point for a foliation and two important invariants for
this.
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Definition 5. A point p = (a : b : c) ∈ CP2 is singular for the above foliation X if

(P (a, b, c), Q(a, b, c), R(a, b, c)) = (ka, kb, kc)

for some k ∈ C. The set of singular points of X will be denoted by Sing(X).

Definition 6. Let (
f(y, z)
g(y, z)

)
be a local generator of X in p = (1 : b : c). Then

the Milnor number of p is µp(X) := dimC
OC2,p
<f,g> ,

the multiplicity of p is mp(X) := min{ordp(f), ordp(g)}.

Proposition 1. (see [4]) Let X be a foliation of degree d with isolated singularities then

d2 + d+ 1 =
∑
p∈CP2

µp(X).

From Lemma 1.2 in [7] we can deduce that

{X ∈ Fd : there exists p ∈ CP2 such that µp(X) ≥ 2}
is a divisor in Fd, therefore we have the following:

Theorem 3. The set {X ∈ Fd : every singular point for X has Milnor number 1} is open and
non-empty in Fd.

Finally we give the definition of algebraic leaf for a foliation.

Definition 7. A plane curve defined by a polynomial F (x, y, z) is an algebraic leaf for X or
invariant by X if and only if there exists a polynomial H(x, y, z) such that:

P (x, y, z)
∂F (x, y, z)

∂x
+Q(x, y, z)

∂F (x, y, z)

∂y
+R(x, y, z)

∂F (x, y, z)

∂z
= FH.

Theorem 4. (see Theorem 1.1, p.158 in [10] and [13]) The set

{X ∈ Fd : X has no algebraic leaves}

is open and non-empty in Fd.

Generically a foliation on CP2 of degree d does not have degenerate singularities and does not
have algebraic leaves. So it is important to classify foliations in the complement of these sets.
In this article we say something about that for degree 3.

The group PGL(3,C) of automorphisms of CP2 is a reductive group that acts linearly on Fd
by change of coordinates:

PGL(3,C)×Fd → Fd
(g,X) 7→ gX = DgX ◦ (g−1).

In the computations we will use SL(3,C) instead of PGL(3,C), we will get the same results.
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4. Unstable Foliations on CP2 of degree 3

As we saw before the space of foliations F3 is a projective space of dimension 23. In this
section we apply the numerical criterion of one parameter subgroups to obtain the closed set of
unstable foliations of degree 3. Remember that X ∈ Fd is unstable with respect to the action by
change of coordinates if and only if there exists λ a 1-PS of SL(3,C) such that µ(X,λ) > 0 (see
Theorem 2). For all λ a 1-PS of SL(3,C) there exists g ∈ SL(3,C) such that D(t) := gλ(t)g−1

is a diagonal 1-PS, with the form:

D : C∗ → SL(3,C), t 7→

 tk1 0 0
0 tk2 0
0 0 tk3

 ,

for some intergers k1, k2, k3 such that k1 ≥ k2 ≥ k3 and k1 + k2 + k3 = 0.
Since µ(gX,D) = µ(X, g−1Dg) = µ(X,λ) (see remark 4.10 of [14]), every unstable foliation

is in the orbit of an unstable point with respect to a diagonal 1-PS. Therefore, we will find the
unstable foliations with respect to a diagonal one parameter subgroup and then we will take the
set of orbits of these points.

Let us consider the basis for the vector space H0(CP2, T CP2(2)) given by

{M ∂

∂x
,M

∂

∂y
, x3

∂

∂z
, x2y

∂

∂z
, xy2

∂

∂z
, y3

∂

∂z
: M ∈ C[x, y, z] is a monic monomial of degree 3}.

This basis diagonalizes the action of SL(3,C). Let X = P ∂
∂x +Q ∂

∂y +R ∂
∂z be a foliation on CP2

of degree 3 where

P (x, y, z) =
∑

aα,βx
αyβz3−α−β

Q(x, y, z) =
∑

bα,βx
αyβz3−α−β

R(x, y, z) =
∑

cα,βx
αyβz3−α−β .

Then we are looking for the points X ∈ F3 such that there exist k1, k2, k3 ∈ Z with k1 ≥ k2 ≥ k3
and k1 + k2 + k3 = 0 and such that max{−EP ,−EQ,−ER} < 0, where

EP = min{−k1(α− 1)− k2β − k3γ : aα,β 6= 0}
EQ = min{−k1α− k2(β − 1)− k3γ : bα,β 6= 0}
ER = min{−k1α− k2β − k3(γ − 1) : cα,β 6= 0}.

From definition 2, µ(X,D) = −max{−EP ,−EQ,−ER}, where D is the diagonal 1-PS defined
above.

Since k1 > 0 and k3 < 0, then we can define qi := ki
k1
. Therefore q1 + q2 + q3 = 0, 1 ≥ q2 ≥ q3

and q2 ∈ [− 1
2 , 1] ∩ Q. We must find the conditions in the rational numbers qi to have non-zero

coefficients for the monomials of P,Q and R. It is easy to obtain the following conclusion.
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Coefficients aα,β
(α− 1)k1 + βk2 + γk3 < 0

α = 2, β = 0, γ = 1, q2 ∈ (0, 1]
α = 1, β = 2, γ = 0, q2 ∈ [− 1

2 , 0)
α = 1, β = 1, γ = 1, q2 ∈ [− 1

2 , 1]
α = 1, β = 0, γ = 2, q2 ∈ [− 1

2 , 1]
α = 0, β = 3, γ = 0, q2 ∈ [− 1

2 ,
1
3 )

α = 0, β = 2, γ = 1, q2 ∈ [− 1
2 , 1]

α = 0, β = 1, γ = 2, q2 ∈ [− 1
2 , 1]

α = 0, β = 0, γ = 3, q2 ∈ [− 1
2 , 1]

Coefficients bα,β
αk1 + (β − 1)k2 + γk3 < 0

α = 2, β = 0, γ = 1, q2 ∈ ( 1
2 , 1]

α = 1, β = 1, γ = 1, q2 ∈ (0, 1]
α = 1, β = 0, γ = 2, q2 ∈ (− 1

3 , 1]
α = 0, β = 3, γ = 0, q2 ∈ [− 1

2 , 0)
α = 0, β = 2, γ = 1, q2 ∈ [− 1

2 , 1]
α = 0, β = 1, γ = 2, q2 ∈ [− 1

2 , 1]
α = 0, β = 0, γ = 3, q2 ∈ [− 1

2 , 1]

Coefficients cα,β
αk1 + βk2 + (γ − 1)k3 < 0

α = 0, β = 3, γ = 0, q2 ∈ [− 1
2 ,−

1
4 )

From this, we see that a3,0, a2,1, b3,0, b2,1, b1,2, c3,0, c2,1, c1,2 = 0 and we can have a1,1, a1,0,
a0,2, a0,1, a0,0, b0,2, b0,1, b0,0 6= 0. Now we do a partition of

[
− 1

2 , 1
]
to have the subspaces of

unstable foliations with respect to a diagonal 1-PS.

q2 ∈
[
−1

2
,−1

3

]
⇒ a2,0, b2,0, b1,1, b1,0 = 0

q2 ∈
(
−1

3
,−1

4

)
⇒ a2,0, b2,0, b1,1 = 0

q2 ∈
[
−1

4
, 0

)
⇒ a2,0, b2,0, b1,1, c0,3 = 0

q2 = 0⇒ a2,0, a1,2, b2,0, b1,1, b0,3, c0,3 = 0

q2 ∈
(

0,
1

3

)
⇒ a1,2, b2,0, b0,3, c0,3 = 0

q2 ∈
[

1

3
,

1

2

]
⇒ a1,2, a0,3, b2,0, b0,3, c0,3 = 0

q2 ∈
(

1

2
, 1

]
⇒ a1,2, a0,3, b0,3, c0,3 = 0.

Consider the seven subspaces with the corresponding coefficients equal to zero. In these sets
we have 3 maximal subspaces of H0(CP2, T CP2(2)). That we describe below:

V1 :=
〈
xy2

∂

∂x
, xyz

∂

∂x
, xz2

∂

∂x
, y3

∂

∂x
, y2z

∂

∂x
, yz2

∂

∂x
, z3

∂

∂x
,

xz2
∂

∂y
, y3

∂

∂y
, y2z

∂

∂y
, yz2

∂

∂y
, z3

∂

∂y
, y3

∂

∂z

〉
C

V2 :=
〈
x2z

∂

∂x
, xyz

∂

∂x
, xz2

∂

∂x
, y2z

∂

∂x
, yz2

∂

∂x
, z3

∂

∂x
, x2z

∂

∂y
, xyz

∂

∂y
, xz2

∂

∂y
,

y2z
∂

∂y
, yz2

∂

∂y
, z3

∂

∂y

〉
C
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V3 :=
〈
x2z

∂

∂x
, xyz

∂

∂x
, xz2

∂

∂x
, y3

∂

∂x
, y2z

∂

∂x
, yz2

∂

∂x
, z3

∂

∂x
, xyz

∂

∂y
, xz2

∂

∂y
,

y2z
∂

∂y
, yz2

∂

∂y
, z3

∂

∂y

〉
C
,

Then,

{X ∈ H0(CP2, T CP2(2)) : there exists D a 1-PS diagonal such that µ(X,D) > 0} = V1∪V2∪V3.
Therefore we can state:

Theorem 5. The closed set of unstable foliations on CP2 of degree 3 is

Fun3 = SL(3,C)PV1 ∪ SL(3,C)PV2 ∪ SL(3,C)PV3.

5. The Stratification of F3

In the previous section we exhibit the closed set of unstable foliations on CP2 of degree 3.
In this section we will use properties of the singularities of the foliations to construct locally
closed, non-singular subvarieties of Fun3 . Firstly we will explain the stratification described in
the following Theorem by F. Kirwan and then apply it to F3.

Theorem 6. (see Theorem 13.5 in [12]) Let V be a non-singular projective variety with a linear
action by a reductive group G. Then there exists a stratification

{Sβ : β ∈ B}
of V such that the unique open stratum is V ss and every stratum Sβ in the set of unstable
points is non-singular, locally closed and isomorphic to G×Pβ Y ssβ , where Y ssβ is a non-singular
locally-closed subvariety of V and Pβ is a parabolic subgroup of G.

Throughout the text we will use the same notation as in §12 of [12].

Definition 8. Let Y (G) be the set of one parameter subgroups λ : C∗ → G. Define in Y (G)×N
the equivalence relation: (λ1, n1) is related with (λ2, n2) if and only if λ1(tn2) = λ2(tn1) for all
t ∈ C∗. A virtual one parameter subgroups of G is an equivalence class of this relation,
the set of these classes will be denoted by M(G).

The indexing set B of the stratification is a finite subset of M(G) and this may be described
in terms of the weights of the representation of G which defines the action. For the construction
we must consider onM(G) a norm q which is the square of an inner product 〈 , 〉. This norm
gives the partial order > on B.

On the other hand, the representation of D on Cn+1, where D is a maximal torus of G, splits
as a sum of scalar representations given by characters α0, ..., αn. These characters are elements
of the dual of M(D) but we can identify them with elements of M(D) using 〈 , 〉.

Definition 9. Once we have the indexing set B we can describe the objects that appear in
Theorem 6. Let β ∈ B, we define:

Zβ = {(x0 : ... : xn) ∈ V : xj = 0 if 〈αj , β〉 6= q(β)},
Yβ = {(x0 : ... : xn) ∈ V : xj = 0 if 〈αj , β〉 < q(β)

and xj 6= 0 for some j with 〈αj , β〉 = q(β)},
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the map pβ : Yβ → Zβ , (x0, ..., xn) 7→ (x′0, ..., x
′
n) as x′j = xj if 〈αj , β〉 = q(β) and x′j = 0

otherwise.

Consider Stab(β), the stabilizer of β under the adjoint action of G. There exists a unique
connected reductive subgroup Gβ of Stabβ such that M(Gβ) = {λ ∈ M(Stabβ) : 〈λ, β〉 = 0}
(see 12.21 in [12]). With this group we can define

Zssβ = {x ∈ Zβ : x is semistable under the action of Gβ on Zβ}

and Y ssβ = p−1β (Zssβ ).

Finally the parabolic group of β is: if x ∈ Y ssβ then Pβ = {g ∈ G : gx ∈ Y ssβ }.

Remark 1. Since Sβ is isomorphic to G×Pβ Y ssβ , it has dimension dimY ssβ + dimG− dimPβ.

5.1. The representation of F3. Norbert A’Campo and Vladimir Popov give in [15] a com-
puter program such that given a reductive group and one of its representation, the output is
the finite subset B of virtual 1-parameter subgroups for the above stratification. For a more
detailed construction of the virtual 1-parameter subgroups in the case of the action by change
of coordinates of SL(3,C) in Fd we refer to section 3 of [3]. For F3 the virtual 1-parameter
subgroups for the stratification are:

β1 :=

(
5

3
,

2

3
,−7

3

)
, β2 :=

(
5

3
,−1

3
,−4

3

)
, β3 :=

(
3

2
, 0,−3

2

)
, β4 :=

(
5

3
,−5

6
,−5

6

)
,

β5 :=

(
55

42
,−11

42
,−22

21

)
, β6 :=

(
7

6
,−1

3
,−5

6

)
, β7 :=

(
2

3
,

2

3
,−4

3

)
, β8 := (1, 0,−1) ,

β9 :=

(
20

21
,− 4

21
,−16

21

)
, β10 :=

(
2

3
,

1

6
,−5

6

)
, β11 :=

(
1

2
, 0,−1

2

)
,

β12 :=

(
2

3
,−1

3
,−1

3

)
, β13 :=

(
1

6
,

1

6
,−1

3

)
, β14 :=

(
5

21
,− 1

21
,− 4

21

)
,

β15 :=

(
2

21
,

1

42
,− 5

42

)
, β16 :=

(
7

78
,− 1

39
,− 5

78

)
.

Now we consider the induced representation H0(CP2, TCP2(2)) of the Lie algebra sl3(C). The
weight diagrama for this irreducible representation is the following (the number i denoted the
virtual 1-PS βi):
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From this information we can easily obtain the sets Zi and Yi described in definition 9. In Yi
with i ∈ {1, 2, 3, 4, 5, 7, 8, 10, 13} every foliation has a curve of singularities, we can study these
foliations as foliations of degree 2, so we are going to discard these strata.

To obtain the strata with foliations with isolated singularities we must find

Zssi := {x ∈ Zi : µ(x, λ) ≤ 〈λ, βi〉 for all λ ∈M(Stab(βi))}.

See definition 12.10 of [12]. For this we will use the following results.

Lemma 2. (see [2, p. 430]) Let X ∈ Zi such that the virtual one parameter subgroup (n0, n1, n2)
corresponding to βi satisfies n0 > n1 > n2. Then X ∈ Zssi if and only if βi is the closest point
to zero in CX with respect to D, where CX is the convex hull formed with the weights of X.

The only virtual 1-PS where n1 = n2 in β12, for finding Zss12 we need further analysis. We must
recall that Stab(β12) is the stabilizer of β12 under the adjoint action of SL(3,C) onM(SL(3,C))
(see 12.21 in [12]), i.e.,

Stab(β12) =

g ∈ SL(3,C) : g

 2
3
− 1

3
− 1

3

 g−1 =

 2
3
− 1

3
− 1

3


=


a11 0 0

0 a22 a23
0 a32 a33

 ∈ SL(3,C)

 .

We know that if λ ∈ M(Stab(β12)) then there exists g ∈ Stab(β12) such that gλg−1 has the
form Diag(tk1 , tk2 , tk3), where k1 ≥ k2 ≥ k3; therefore:
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Zss12 = {x ∈ Z12 : µ(gx, λ) ≤ 〈λ, β12〉, for all λ = Diag(tk1 , tk2 , tk3), where k1 ≥ k2 ≥ k3 and
g ∈ Stab(β12)}.

Where, from the weight diagram:

Z12 = P
〈
xy2

∂

∂x
, xyz

∂

∂x
, xz2

∂

∂x
, y3

∂

∂y
, y2z

∂

∂y
, yz2

∂

∂y
, z3

∂

∂y
, y3

∂

∂z

〉
C
,

and we have 〈λ(t) = Diag(tk1 , tk2 , tk3), β12〉 = 2
3k1 −

1
3k2 −

1
3k3. For X ∈ Z12 we obtain

λ(t) ·X =

 a1,2t
−2k2xy2 + a1,1t

−k2−k3xyz + a1,0t
−2k3xz2

b0,3t
−2k2y3 + b0,2t

−k2−k3y2z + b0,1t
−2k3yz2 + b0,0t

k2−3k3z3

c0,3t
k3−3k2y3

 ,

therefore µ(X,λ) = min{−2k2,−k2 − k3,−2k3, k2 − 3k3, k3 − 3k2}. With the conditions

−2k2 ≤ 2
3k1 −

1
3k2 −

1
3k3 ⇔ k2 ≥ k3

−k2 − k3 ≤ 2
3k1 −

1
3k2 −

1
3k3 ⇔ 0 ≥ 0

−2k3 ≤ 2
3k1 −

1
3k2 −

1
3k3 ⇔ k2 ≤ k3

k2 − 3k3 ≤ 2
3k1 −

1
3k2 −

1
3k3 ⇔ k2 ≤ k3

k3 − 3k2 ≤ 2
3k1 −

1
3k2 −

1
3k3 ⇔ k2 ≥ k3.

we conclude that Zss12 = {X ∈ Z12 : (a1,2, a1,1, b0,3, b0,2, c0,3) 6= 0, (a1,1, a1,0, b0,2, b0,1, b0,0) 6= 0}.
Now we can give the full list of linear subspaces of F3 for the construction of the strata.

Zss6 = P


a0,3y3b0,0z

3

0

 ∈ Z6 : a0,3 6= 0, b0,0 6= 0


Zss9 = P


a1,0xz2 + a0,3y

3

b0,1yz
2

0

 : a0,3 6= 0, (a1,0, b0,1) 6= 0


Zss11 = P


a1,1xyz + a0,3y

3

b1,0xz
2 + b0,2y

2z
0

 : b1,0 6= 0, (a1,1, a0,3, b0,2) 6= 0



Zss12 = P


 a1,2xy

2 + a1,1xyz + a1,0xz
2

b0,3y
3 + b0,2y

2z + b0,1yz
2 + b0,0z

3

c0,3y
3

 :

(a1,2, a1,1, b0,3, b0,2, c0,3) 6= 0, (a1,1, a1,0, b0,2, b0,1, b0,0) 6= 0
}

Zss14 = P


 a1,2xy

2

b1,0xz
2 + b0,3y

3

0

 : b1,0 6= 0, (a1,2, b0,3) 6= 0


Zss15 = P


a2,0x2z + a0,3y

3

b1,1xyz
0

 : a0,3 6= 0, (a2,0, b1,1) 6= 0
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Zss16 = P


 0
b1,0xz

2

c0,3y
3

 : b1,0 6= 0, c0,3 6= 0

 ,

and

Y ss6 = P


a0,3y3 + a0,2y

2z + a0,1yz
2 + a0,0z

3

b0,0z
3

0

 : a0,3 6= 0, b0,0 6= 0



Y ss9 = P


a1,0xz2 + a0,3y

3 + a0,2y
2z + a0,1yz

2 + a0,0z
3

b0,1yz
2 + b0,0z

3

0

 : a0,3 6= 0, (a1,0, b0,1) 6= 0



Y ss11 = P


a1,1xyz + a1,0xz

2 + a0,3y
3 + a0,2y

2z + a0,1yz
2 + a0,0z

3

b1,0xz
2 + b0,2y

2z + b0,1yz
2 + b0,0z

3

0

 :

b1,0 6= 0, (a1,1, a0,3, b0,2) 6= 0
}

Y ss12 = P


 ∑2

j=0 a1,jxy
jz2−j +

∑3
j=0 a0,jy

jz3−j∑3
j=0 b0,jy

jz3−j

c0,3y
3

 :

(a1,2, a1,1, b0,3, b0,2, c0,3) 6= 0, (a1,1, a1,0, b0,2, b0,1, b0,0) 6= 0
}

Y ss14 = P


a1,2xy2 + a1,1xyz + a1,0xz

2 + a0,3y
3 + a0,2y

2z + a0,1yz
2 + a0,0z

3

b1,0xz
2 + b0,3y

3 + b0,2y
2z + b0,1yz

2 + b0,0z
3

0

 :

b1,0 6= 0, (a1,2, b0,3) 6= 0
}

Y ss15 = P


a2,0x2z + a1,1xyz + a1,0xz

2 + a0,3y
3 + a0,2y

2z + a0,1yz
2 + a0,0z

3

b1,1xyz + b1,0xz
2 + b0,2y

2z + b0,1yz
2 + b0,0z

3

0

 :

a0,3 6= 0, (a2,0, b1,1) 6= 0
}

Y ss16 = P


a1,2xy2 + a1,1xyz + a1,0xz

2 + a0,3y
3 + a0,2y

2z + a0,1yz
2 + a0,0z

3

b1,0xz
2 + b0,3y

3 + b0,2y
2z + b0,1yz

2 + b0,0z
3

c0,3y
3

 :

b1,0 6= 0, c0,3 6= 0
}
.
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6. Strata of the space of foliations of degree 3 and its singularities

In this section we calculate the Milnor number and the multiplicity of a common singularity
in the generic foliation in every stratum. We also obtain the dimension of the strata.

Note that the point p = (1 : 0 : 0) is a singularity for every foliation in Y ssi for all i = 6, 9,
11, 12, 14, 15, 16. Along this section we use the following notation: given a foliation,

X =

 P (x, y, z)
Q(x, y, z)
R(x, y, z)

 ∈ Y ssi ,

we consider the corresponding local polynomial vector field around (0, 0):

X0 = (Q(1, y, z)− yP (1, y, z))
∂

∂y
+ (R(1, y, z)− zP (1, y, z))

∂

∂z
.

We define fi(y, z) := Q(1, y, z) − yP (1, y, z), gi(y, z) := R(1, y, z) − zP (1, y, z) and I0(f, g)
will be the intersection index of f and g at (0, 0).

6.1. Stratum 6. As we saw before if X ∈ Y ss6 then a0,3 and b0,0 are different from zero and

f6(y, z) = Q(1, y, z)− yP (1, y, z) = b0,0z
3 − a0,3y4 − a0,2y3z − a0,1y2z2 − a0,0yz3

g6(y, z) = −zP (1, y, z) = −a0,3y3z − a0,2y2z2 − a0,1yz3 − a0,0z4.

Note that b0,0z3 and P (1, y, z) does not have common tangent lines, therefore

µp(X) = I0(f6(y, z), g6(y, z)) = I0(f6(y, z), z) + I0(f6(y, z), P (1, y, z))

= I0(−a0,3y4, z) + 9 = 13

mp(X) = 3.

Finally, the 2-jet of
(
f6
g6

)
is trivial and the 3-jet is

(
z3

0

)
, if we suppose b0,0 = 1. On the other

hand, if X is a foliation of degree 3 with m(1:0:0)(X) = 3, µ(1:0:0)(X) = 13 and with 3-jet
(
z3

0

)
,

it is easy to see that X ∈ Y ss6 . In this case the corresponding parabolic subgroup P6 is the
subgroup of upper triangular matrices, therefore dimS6 = dimY ss6 + dimSL(3,C)− dimP6 = 7
(see Remark 1).

6.2. Stratum 9. If X ∈ Y ss9 then a0,3 6= 0 and (a1,0, b0,1) 6= (0, 0); therefore

f9(y, z) = Q(1, y, z)− yP (1, y, z) = (b0,1 − a1,0)yz2 + b0,0z
3

− a0,3y4 − a0,2y3z − a0,1y2z2 − a0,0yz3

g9(y, z) = −zP (1, y, z) = −a1,0z3 − a0,3y3z − a0,2y2z2 − a0,1yz3 − a0,0z4,

and

µp(X) = I0(f9(y, z), g9(y, z)) = I0(f9(y, z), z) + I0(f9(y, z), P (1, y, z))

= I0(a0,3y
4, z) + 2I0(z, a0,3y

3) + I0(b0,1y + b0,0z, P (1, y, z))

= 10 + I0(b0,1y + b0,0z, P (1, y, z)).

Note that I0(b0,1y + b0,0z, P (1, y, z)) is
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2 a1,0 6= 0, b0,1 6= 0

3 (b0,1 = 0, b0,0 6= 0) or (a1,0 = 0 and b0,1y + b0,0z is not tangent for P (1, y, z))

∞ (b1,0, b0,0) = 0 or (a1,0 = 0 and b0,1y + b0,0z is tangent for P (1, y, z))

If a1,0 6= 0 it is clear that the multiplicity of the singular point is 3. If a1,0 = 0 then b0,1 6= 0

and also the multiplicity is 3. Finally, the 3-jet is
(

(b0,1 − a1,0)yz2 + b0,0z
3

−a1,0z3
)
. Then in the

open set where a1,0 6= 0, b0,1 6= 0 every foliation has a singular point with multiplicity 3 and
Milnor number 12. In this case the corresponding parabolic subgroup is the subgroup of upper
triangular matrices, therefore dimS9 = 9.

6.3. Stratum 11. Remember that if X ∈ Y ss11 then b1,0 and (a1,1, a0,3, b0,2) are different from
zero, and

f11(y, z) = Q(1, y, z)− yP (1, y, z)

= b1,0z
2 + (b0,2 − a1,1)y2z + (b0,1 − a1,0)yz2 + b0,0z

3

− a0,3y4 − a0,2y3z − a0,1y2z2 − a0,0yz3,
g11(y, z) = −zP (1, y, z) = −a1,1yz2 − a1,0z3 − a0,3y3z − a0,2y2z2 − a0,1yz3 − a0,0z4.

If a0,3 = 0, then z = 0 is a curve of singularities. Suppose a0,3 6= 0. Note that

I0(f11, g11) = I0(−a0,3y4, z) + I0(z,−a0,3y3)+

I0(b1,0z + b0,2y
2 + b0,1yz + b0,0z

2, P (1, y, z))

= 7 + I0(b1,0z + b0,2y
2 + b0,1yz + b0,0z

2, P (1, y, z)).

And

I0(b1,0z + b0,2y
2 + b0,1yz + b0,0z

2, a1,1yz + a1,0z
2 + a0,3y

3 + a0,2y
2z + a0,1yz

2 + a0,0z
3)

= I0

(
b1,0z + b0,2y

2 + b0,1yz + b0,0z
2,

(
a0,3 −

a1,1
b1,0

b0,2

)
y3

+

(
a0,2 −

a1,0
b1,0

b0,2 −
a1,1
b1,0

b0,1

)
y2z +

(
a0,1 −

a1,0
b1,0

b0,1 −
a1,1
b1,0

b0,0

)
yz2

+

(
a0,0 −

a1,0
b1,0

b0,0

)
z3
)

=



3 if a0,3b1,0 6= a1,1b0,2

4 if a0,3b1,0 = a1,1b0,2 and a0,2b1,0 6= a1,1b0,1 + a1,0b0,2

5 if [. . .] and a0,1b1,0 6= a1,1b0,0 + a1,0b0,1

6 if [. . .], a0,1b1,0 = a1,1b0,0 + a1,0b0,1 and a0,0b1,0 6= a1,0b0,0

∞ if [. . .], a0,1b1,0 = a1,1b0,0 + a1,0b0,1 and a0,0b1,0 = a1,0b0,0

where [. . .] is a0,3b1,0 = a1,1b0,2, a0,2b1,0 = a1,1b0,1 + a1,0b0,2.
We conclude that in the open set of Y11 where a0,3b1,0 6= a1,1b0,2 every foliation has a singular-

ity with Milnor number 10. Since b1,0 6= 0 then the multiplicity for the singular point (1 : 0 : 0)

is equal to 2 and the 2-jet is
(
z2

0

)
. The corresponding parabolic subgroup is the subgroup of

upper triangular matrices, therefore dimS11 = 12.
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6.4. Stratum 12. If X ∈ Y ss12 then we have that

(a1,2, a1,1, b0,2, b0,3, c0,3) and (a1,1, a1,0, b0,0, b0,1, b0,2)

are different from zero and

f12(y, z) = Q(1, y, z)− yP (1, y, z)

= (b0,3 − a1,2)y3 + (b0,2 − a1,1)y2z + (b0,1 − a1,0)yz2 + b0,0z
3

− a0,3y4 − a0,2y3z − a0,1y2z2 − a0,0yz3

g12(y, z) = c0,3y
3 − zP (1, y, z)

= c0,3y
3 − a1,2y2z − a1,1yz2 − a1,0z3

− a0,3y3z − a0,2y2z2 − a0,1yz3 − a0,0z4.

These polynomials are homogenous in two variables, then generically we have

Ip(f12, g12) = 9.

If (a1,2, a1,1, c0,3) 6= 0 then g12 6= 0 and mp(X) = 3. If (a1,2, a1,1, c0,3) = 0 then (b0,3, b0,2) 6= 0
and we have also mp(X) = 3. In this case the parabolic subgroup is

P12 =


 α11 α12 α13

0 α22 α23

0 α32 α33

 ∈ SL(3,C)

 ,

therefore dimS12 = 13.
Moreover, the set

{X ∈ F3 : there exists p such that mp(X) = 3, µp(X) = 9},

is an open set in S12 because a foliation with these properties for the point (1 : 0 : 0) is unstable
and it does not be in another stratum.

6.5. Stratum 14. If X ∈ Y ss14 then b1,0 and (a1,2, b0,3) are different from zero, and

f14(y, z) = Q(1, y, z)− yP (1, y, z)

= b1,0z
2 + (b0,3 − a1,2)y3 + (b0,2 − a1,1)y2z + (b0,1 − a1,0)yz2 + b0,0z

3

− a0,3y4 − a0,2y3z − a0,1y2z2 − a0,0yz3

g14(y, z) = −zP (1, y, z) = −a1,2y2z − a1,1yz2 − a1,0z3

− a0,3y3z − a0,2y2z2 − a0,1yz3 − a0,0z4.

Note that

I0(f14, g14) = I0((b0,3 − a1,2)y3 − a0,3y4, z)
+ I0(f14,−a1,2y2 − a1,1yz − a1,0z2 − a0,3y3 − a0,2y2z − a0,1yz2 − a0,0z3).

If we suppose that a1,2 6= 0 and b0,3 6= a1,2 then the Milnor number of (1 : 0 : 0) is 7. If
a1,2 6= 0, b0,3 = a1,2 and a0,3 6= 0 we have µ(1:0:0)(X) = 8. On the other hand, a1,2 6= 0, b0,3 = a1,2
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and a0,3 = 0 implies that we have a curve of singularities. Supposing a1,2 = 0, we obtain
b0,3 6= a1,2, 0, and with this we have

I0(f14, a1,1yz + a1,0z
2 + a0,3y

3 + a0,2y
2z + a0,1yz

2 + a0,0z
3)

= I0

(
b1,0z

2 + b0,3y
3 + b0,2y

2z + b0,1yz
2 + b0,0z

3, a1,1yz +

(
a1,0 −

a0,3
b0,3

b1,0

)
z2

+

(
a0,2 −

a0,3
b0,3

b0,2

)
y2z +

(
a0,1 −

a0,3
b0,3

b0,1

)
yz2 +

(
a0,0 −

a0,3
b0,3

b0,0

)
z3
)

= 3 + I0

(
b1,0z

2 + b0,3y
3 + b0,2y

2z + b0,1yz
2 + b0,0z

3, a1,1y +

(
a1,0 −

a0,3
b0,3

b1,0

)
z

+

(
a0,2 −

a0,3
b0,3

b0,2

)
y2 +

(
a0,1 −

a0,3
b0,3

b0,1

)
yz +

(
a0,0 −

a0,3
b0,3

b0,0

)
z2
)
.

We can verify that if a1,1 6= 0 then the last expression is equal to 5. When a1,1 = 0 we can
see that

I0(f14, a1,1yz + a1,0z
2 + a0,3y

3 + a0,2y
2z + a0,1yz

2 + a0,0z
3)

= I0

(
b1,0z

2 + b0,3y
3 + b0,2y

2z + b0,1yz
2 + b0,0z

3, a′0,3y
3 + a′0,2y

2z + a′0,1yz
2 + a′0,0z

3

)
,

where a′i,j denotes ai,j −
a1,0
b1,0

bi,j .

In conclusion,

I0(b1,0z
2 + b0,3y

3 + b0,2y
2z + b0,1yz

2 + b0,0z
3, a′0,3y

3 + a′0,2y
2 + a′0,1yz + a′0,0z

2)

=



6 if a′0,3 6= 0

7 if a′0,3 = 0 and a′0,2 6= 0

8 if (a′0,3, a
′
0,2) = 0 and a′0,1 6= 0

9 if (a′0,3, a
′
0,2, a

′
0,1) = 0 and a′0,0 6= 0

∞ if (a′0,3, a
′
0,2, a

′
0,1, a

′
0,0) = 0.

Therefore,

µ(1:0:0)(X) =



7 if b0,3 6= a1,2 6= 0

8 if (b0,3 = a1,2 6= 0 and a0,3 6= 0) or if (a1,2 = 0 and a1,1 6= 0)
9 if (a1,2, a1,1) = 0 and a′0,3 6= 0

10 if (a1,2, a1,1, a
′
0,3) = 0 and a′0,2 6= 0

11 if (a1,2, a1,1, a
′
0,3, a

′
0,2) = 0 and a′0,1 6= 0

12 if (a1,2, a1,1, a
′
0,3, a

′
0,2, a

′
0,1) = 0 and a′0,0 6= 0

∞ if (a1,2, a1,1, a
′
0,3, a

′
0,2, a

′
0,1, a

′
0,0) = 0

Since b1,0 6= 0 we get m(1:0:0)(X) = 2 with 2-jet
(
z2

0

)
. Since the parabolic subgroup is the

subgroup of upper triangular matrices we obtain dimS14 = 14. Moreover, the set

{X ∈ F3 : there exists p such that mp(X) = 2, µp(X) = 7 and 2-jet linearly equivalent to
(
z2

0

)
},
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is an open set in S14, because a foliation with these properties for the point (1 : 0 : 0) is unstable
and it does not be in another stratum.

6.6. Stratum 15. If X ∈ Y ss15 we have that a0,3 and (a2,0, b1,1) are different from zero, and

f15(y, z) = Q(1, y, z)− yP (1, y, z)

= (b1,1 − a2,0)yz + b1,0z
2 + (b0,2 − a1,1)y2z + (b0,1 − a1,0)yz2 + b0,0z

3

− a0,3y4 − a0,2y3z − a0,1y2z2 − a0,0yz3

g15(y, z) = −zP (1, y, z)

= −a2,0z2 − a1,1yz2 − a1,0z3 − a0,3y3z − a0,2y2z2 − a0,1yz3 − a0,0z4.

Note that

I0(f15, g15) = I0(−a0,3y4, z)
+ I0(f15,−a1,2y − a1,1z − a1,0z2 − a0,3y3 − a0,2y2z − a0,1yz2 − a0,0z3)

= 4 + I0(b1,1yz + b1,0z
2 + b0,2y

2z + b0,1yz
2 + b0,0z

3,

a2,0z + a1,1yz + a1,0z
2 + a0,3y

3 + a0,2y
2z + a0,1yz

2 + a0,0z
3)

= 4 + I0(z, a0,3y
3) + I0(b1,1y + b1,0z + b0,2y

2 + b0,1yz + b0,0z
2,

a2,0z + a1,1yz + a1,0z
2 + a0,3y

3 + a0,2y
2z + a0,1yz

2 + a0,0z
3).

It is clear that if b1,1 and a2,0 are different from zero then the intersection index of f15 and
g15 is 8. Suppose that a2,0 6= 0 and b1,1 = 0, then

I0(b1,0z + b0,2y
2 + b0,1yz + b0,0z

2, a2,0z + a1,1yz + a1,0z
2+

a0,3y
3 + a0,2y

2z + a0,1yz
2 + a0,0z

3)

=



2 if b0,2 6= 0

3 if b0,2 = 0 and b1,0 6= 0

4 if (b0,2, b1,0) = 0 and b0,1 6= 0

6 if (b0,2, b1,0, b0,1) = 0 and b0,0 6= 0

∞ if (b0,2, b1,0, b0,1, b0,0) = 0

Now suppose a2,0 = 0 and b1,1 6= 0. We define

L(y, z) = b1,1y + b1,0z M(y, z) = a1,1yz + a1,0z
2

N(y, z) = b0,2y
2 + b0,1yz + b0,0z

2 F (y, z) = a0,3y
3 + a0,2y

2z + a0,1yz
2 + a0,0z

3.

We have

I0(L+N,M + F ) = 2 if L -M.
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Now suppose L |M , we have two cases: if L - N ,

I0(L+N,M + F ) = I0

(
L+N,F − M

L
N

)

=


3 if L2 - (LF −MN)

4 if L2 | (LF −MN) and L3 - (LF −MN)

5 if L3 | (LF −MN) and L4 - (LF −MN)

6 if L4 | (LF −MN)

.

On the other hand, if L | N :

I0

(
L+N,F − M

L
N

)
= I0

(
L,F − M

L
N

)
+ I0

(
1 +

N

L
,F − M

L
N

)
= I0

(
L,F − M

L
N

)
=

{
3 if L - (LF −MN)

∞ if L | (LF −MN)

We conclude that in S15 we have a nonempty open set which consists of foliations with a singu-
larity with multiplicity 2 and Milnor number 8. But we can have in this stratum foliations with
a singularity with multiplicity 2 and Milnor number 9, 10, 11, 12 and 13 or with a curve of singu-

larities. The 2-jet around the singular point (1 : 0 : 0) of X is
(

(b1,1 − a2,0)yz + b1,0z
2

−a2,0z2
)
. Since

the parabolic subgroup is the subgroup of upper triangular matrices we obtain dimS15 = 14.

6.7. Stratum 16. If X ∈ Y ss16 then b1,0 6= 0 and c0,3 6= 0. We have

f15(y, z) = Q(1, y, z)− yP (1, y, z)

= b1,0z
2 + (b0,3 − a1,2)y3 + (b0,2 − a1,1)y2z + (b0,1 − a1,0)yz2 + b0,0z

3

− a0,3y4 − a0,2y3z − a0,1y2z2 − a0,0yz3

g15(y, z) = c0,3y
3 − zP (1, y, z)

= c0,3y
3 − a1,2y2z − a1,1yz2 − a1,0z3 − a0,3y3z − a0,2y2z2 − a0,1yz3 − a0,0z4,

and the polynomials c0,3y3 − a1,2y2z − a1,1yz2 − a1,0z3 and b1,0z2 do not have common factors.
As a result the Milnor number of (1 : 0 : 0) is 6. And the multiplicity of this point is 2 with

2-jet
(
z2

0

)
. The corresponding parabolic subgroup is the subgroup of upper triangular matrices,

therefore dimS16 = 15.
In the following theorem we summarize the above.

Theorem 7. The spaces Si = SL(3,C)Y ssi for i ∈ {1, . . . , 16}, are locally closed, irreducible
non-singular algebraic subvarieties of F3. They form a stratification of the closed set of unstable
foliations Fun3 , and Si ⊂

⋃
j≤i Sj. Moreover, these varieties satisfy the following:
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Stratum Characterization of the generic foliation
S1, S2, S3,
S4, S5, S7,
S8, S10, S13

Every foliation has a curve of singularities

S6

dimS6 = 7

{
X ∈ F3 : ∃p with mp(X) = 3, µp(X) = 13 and 3-jet linearly equivalent

to
(
z3

0

)}
= S6

S9

dimS9 = 9
{X ∈ F3 : ∃p with mp(X) = 3, µp(X) = 12} ∩ S9 is open in S9

S11

dimS11 = 12

{X ∈ F3 : ∃p with mp(X) = 2, µp(X) = 10 and 2-jet linearly equivalent to(
z2

0

)
} ∩ S11 is open in S11

S12

dimS12 = 13
Contains {X ∈ F3 : ∃p with mp(X) = 3, µp(X) = 9} as an open set

S14

dimS14 = 14

Contains
{
X ∈ F3 : ∃p with mp(X) = 2, µp(X) = 7 and 2-jet linearly

equivalent to
(
z2

0

)}
as an open set

S15

dimS15 = 14
{X ∈ F3 : ∃p with mp(X) = 2, µp(X) = 8} ∩ S15 is open in S15

S16

dimS16 = 15

{X ∈ F3 : ∃p with mp(X) = 2, µp(X) = 6 and 2-jet linearly equivalent to(
z2

0

)
} = S16

In [3] we also have studied the strata S6, S9 and S16. As a consequence of the above we can
mention the following general result.

Theorem 8. Let X ∈ F3 with isolated singularities. Then X is unstable if and only if:
(1) X has a singular point with multiplicity 3 or
(2) X has a singular point with multiplicity 2 and 2-jet linearly equivalent to z2 ∂

∂y or
(3) X ∈ S15.

Moreover, the irreducible components of Fun3 are the closure of the locally closed subvarieties S15

and S16. The first one has dimension 14 and the second one has dimension 15.

Proof. The first affirmation is consequence of the results in the table. For the second one we
use proposition 4.2 of [9], it says that Sj is irreducible and Sj = SL(3,C)Yj for all j. Since
Y16 ⊂

⋃
j 6=15 Yj and S15 6⊂ S16, we have that Fun3 = S15∪S16 is the decomposition in irreducible

components.
�

Remark 2. Note that V3 = Y15 and V1 = Y16 in theorem 5.

6.8. Semistable non-stable foliations on CP2 of degree 3. In this subsection we describe
the semistable non-stable foliations on CP2 of degree 3.

Theorem 9. The set of semistable non-stable foliations on CP2 of degree 3 with isolated singu-
larities is

SL(3,C)P


 P (y, z)

b1,1xyz + b1,0xz
2 +

∑3
j=0 b0,jy

jz3−j

c1,0xz
2 + c0,2y

2z + c0,1yz
2 + b0,0z

3

 :

P (y, z) ∈ C3[y, z], (b0,3, c0,2) 6= 0, (b1,1, c1,0) 6= 0
}
.



70 CLAUDIA R. ALCÁNTARA AND RAMÓN RONZÓN-LAVIE

Proof. Let X ∈ Fss3 − Fs3 then X is not in any strata and it satisfies one of the following
properties:

(1) dimO(X) < 8: in this case, by Theorem 1.2 of [1], the foliation is λ-invariant for some
1-PS λ and it is not in any Zj . Then the foliation is, up to change of coordinates, such
that the line with its weights pass through zero, if we see the representation we conclude
that X is:  0

b1,1xyz + b0,3y
3

c1,0xz
2 + c0,2y

2z

 ,

where (b0,3, c0,2) 6= 0, (b1,1, c1,0) 6= 0, since X has isolated singularities we can suppose
c1,0 = 1.

(2) O(X) is not closed in Fss3 : then there exists Y ∈ Fss3 ∩ (O(X) − O(X)). Since
dimO(Y ) < 8, we conclude that Y is the above foliation, therefore X has its weights in
one hyperplane given by the weights of Y , therefore X is, up to change of coordinates,
in

P


 P (y, z)

b1,1xyz + b1,0xz
2 +

∑3
j=0 b0,jy

jz3−j

c1,0xz
2 + c0,2y

2z + c0,1yz
2 + b0,0z

3

 : P (y, z) ∈ C3[y, z], (b0,3, c0,2) 6= 0, (b1,1, c1,0) 6= 0

 .

�

7. Corollaries

7.1. The dimension of the orbits. Generically the orbit of a foliation on CP2 has dimension
8, for example, a stable foliation satisfies this property. It theorem 1.2 of [1] we classify foliations
with isolated singular points such that the dimension of the orbit is less than or equal to 7.
We can see in proposition 2.3 of [5] that the dimension of an orbit of a foliation with isolated
singularities of degree d is greater than or equal to 6. In the same paper the authors describe the
two unique foliations of degree 2, up to change of coordinates, such that the orbit has dimension
6. For the case of foliations of degree 3 we have the same situation.

Theorem 10. There are, up to change of coordinates, two foliations on CP2 of degree 3 with
isolated singularities with automorphism group of dimension 2: y3 ∂

∂x + z3 ∂
∂y and y3 ∂

∂x + z3 ∂
∂z .

Proof. In proposition 2.5 of [5] we can see that if Aut(X) has dimension 2 then it is isomorphic to
the group of affine transformations of the line. Therefore by theorem 1.2 of [1], X is λ-invariant
for some 1-PS λ, and X is also invariant by (C,+). This last affirmation implies, by the same
theorem, that X is unstable with a singular point with Milnor number ≥ 12. An unstable
foliation invariant by a 1-PS is, up to change of coordinates, in Z15 ∪Z14 ∪Z12 ∪Z11 ∪Z9 ∪Z6.
It is easy to see that the unique foliations with a singular point with Milnor number ≥ 12 are in
Z9 and Z6, they are y3 ∂

∂x + z3 ∂
∂y and y3 ∂

∂x + z3 ∂
∂z .

�

7.2. Foliations on CP2 of degree 3 with one singular point. The classification of foliations
on CP2 with one singular point is known only for degree 2 (see [5] and [2]). In this section we
describe all the unstable foliations on CP2 of degree 3 with one singular point, that means with
a singular point with Milnor number 13. To obtain the result we need the following lemma.

Lemma 3. Let X be a foliation on CP2 of degree d. If X has a singular point p with multiplicity
d and Milnor number greater than d2, then X has an invariant line that passes through p.
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Proof. We can suppose that X is a foliation on CP2 of degree d such that m(1:0:0)(X) = d and
µ(1:0:0)(X) > d2. Then

X =

xPd−1 + Pd
Qd
Rd


where Pk, Qk, Rk ∈ C[y, z] are homogeneous of degree k. In the chart U0, the foliation is

(Qd − yPd−1)
∂

∂y
+ (Rd − zPd−1)

∂

∂z
,

since µ(1:0:0)(X) > d2 then there exists a line L = αy − βz such that Qd − yPd−1 = LF and
Rd − zPd−1 = LG for some F,G ∈ C[y, z]. Therefore αQd − βRd = L(Pd−1 + αF − βG), and
this means that L is invariant for X and it passes through (1 : 0 : 0). �

Theorem 11. The unstable foliations on CP2 of degree 3 with one singular point are:
(1) The stratum S6, which has dimension 7.
(2) The subspace of S9:

SL(3,C)

{a1,0xz2 + y3 + a0,2y
2z + a0,1yz

2 + a0,0z
3

b0,1yz
2 + b0,0z

3

0

 : b0,1 = 0, a1,0b0,0 6= 0 or

a1,0 = 0, b01 6= 0 and b0,1y + b0,0z - y3 + a0,2y
2z + a0,1yz

2 + a0,0z
3

}
,

of dimension 8.
(3) The subspace of S11:

SL(3,C)

{a1,1xyz + a1,0xz
2 + a0,3y

3 + a0,2y
2z + a0,1yz

2 + a0,0z
3

xz2 + b0,2y
2z + b0,1yz

2 + b0,0z
3

0

 : (a1,1, a0,3, b0,2) 6= 0,

a0,0 6= a1,0b0,0; a1,0 = a1,1b0,0 + a1,0b0,1; a0,2 = a1,1b0,1 + a1,0b0,2; a0,3 = a1,1b0,2

}
,

of dimension 9.
(4) The subspace of S12:

SL(3,C)

{x(α1y − β1z)(α2y − β2z) + y3 + a0,2y
2z + a0,1yz

2 + a0,0z
3

α(α1y − β1z)2(α2y − β2z)
0

 :

It has isolated singularities, (α1, α2) 6= 0 and α1α2 = 0; or αα1 = 1 and β1, β2 ∈ C∗
}
,

of dimension 10.
(5) The subspace of S15:

SL(3,C)

{x2z + a1,1xyz + a1,0xz
2 + a0,3y

3 + a0,2y
2z + a0,1yz

2 + a0,0z
3

b0,0z
3

0

 : a0,3 6= 0

}
,

of dimension 10.
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In S6, S9 and S12 the singular point has multiplicity 3 and in S11, S15 has multiplicity 2.

Proof. It remains only to find the foliations with one singular point in S12, the other cases were
studied in the construction of the strata.

To obtain the dimension of these spaces, we must observe that if X is a foliation in any of
the described linear subspaces of Y ss9 , Y ss11 , or Y ss15 then for g ∈ SL(3,C) we have that gX is in
the same linear subspace if and only if g is in the corresponding parabolic subgroup. Therefore
the dimension of the space is the dimension of the linear subspace plus 3.

Now let X ∈ Y ss12 such that (1 : 0 : 0) is the unique singularity. By the above lemma, X has an
invariant line αy − βz. There exists g ∈ P12 such that z is invariant for gX ∈ Y ss12 . For that we
can suppose:

X =

xL1(y, z)L2(y, z) + a0,3y
3 + a0,2y

2z + a0,1yz
2 + a0,0z

3

L3(y, z)L4(y, z)L5(y, z)
0


where Lk(y, z) = αky − βkz and αk, βk, a0,j ,∈ C for k = 1, ..., 5 and j = 0, 1, 2, 3. The Milnor
number of (1 : 0 : 0) is

I
(
L3L4L5 − y(L1L2 + a0,3y

3 + a0,2y
2z + a0,1yz

2 + a0,0z
3),

z(L1L2 + a0,3y
3 + a0,2y

2z + a0,1yz
2 + a0,0z

3)
)

= I(z, L3L4L5 − y(L1L2 + a0,3y
3)) + I(L3L4L5, L1L2 + a0,3y

3 + a0,2y
2z + a0,1yz

2 + a0,0z
3),

and this is 13 if and only if

I(z, L3L4L5 − y(L1L2 + a0,3y
3)) = 4,

I(L3L4L5, L1L2 + a0,3y
3 + a0,2y

2z + a0,1yz
2 + a0,0z

3) = 9,

and this happens if and only if a0,3 6= 0, z|(L3L4L5− yL1L2), L3L4L5 = αL2
1L2 for some α 6= 0,

and L2
1L2 - (a0,3y

3+a0,2y
2z+a0,1yz

2+a0,0z
3). Since z|L1L2(αL1−y) then we have the following

cases: α1 = 0, α2 = 0 or αα1 = 1. The condition for X to be in Y ss12 says that if α1 = 0 then
α2 6= 0 and if α2 = 0 then α1 6= 0. If αα1 = 1 then β1, β2 ∈ C∗. We get

X =

x(α1y − β1z)(α2y − β2z) + y3 + a0,2y
2z + a0,1yz

2 + a0,0z
3

α(α1y − β1z)2(α2y − β2z)
0

 .

Then the dimension of the projectivization of the linear space where X lives is 7. When we move
the invariant line through (1 : 0 : 0) we obtain a family of foliations of dimension 8 and when we
take the action by SL(3,C) module the parabolic subgroup P12 we obtain a space of dimension
10. �

To finish the classification of foliations on CP2 of degree 3 with one singularity with Milnor
number 13 remains to find the semistable foliations with this property. For foliations on CP2 of
degree 2 we know that there exists only one semistable foliation, up to change of coordinates (see
Theorem 5.9 of [2]), with only one singular point. In this case the singularity is a saddle-node,
that means multiplicity 1 non-nilpotent. For degree 3 the situation is different, for example, we
have the following foliations:
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X1 = z3
∂

∂x
+ (x2z + xy2)

∂

∂y
− (xyz + y3)

∂

∂z

X2 = y2z
∂

∂x
+ (xyz + z3)

∂

∂y
− y3 ∂

∂z
.

Both are semistable foliations of degree 3 with only one singularity, the first one has a nilpotent
singularity and in second one the singularity has multiplicity 2. In general is very difficult to find
foliations on CP2 of degree d with one singular point. It is clear that using this stratification we
can get all the unstable foliations. We think that using recursively this construction it is possible
to find also the semi-stable foliations of degree d with a singularity with Milnor number d2+d+1.
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VANISHING RESULTS FOR THE AOMOTO COMPLEX OF REAL

HYPERPLANE ARRANGEMENTS VIA MINIMALITY

PAULINE BAILET AND MASAHIKO YOSHINAGA

Abstract. We prove vanishing results for the cohomology groups of the Aomoto complex over
an arbitrary coefficient ring for real hyperplane arrangements. The proof uses the minimality

of arrangements and descriptions of the Aomoto complex in terms of chambers.

Our methods are used to present a new proof for the vanishing theorem of local system
cohomology groups, a result first proved by Cohen, Dimca, and Orlik.

1. Introduction

The theory of hypergeometric integrals originated with Gauss, and has been generalized to
higher dimensions for applications in various areas of mathematics and physics ([1, 9, 17]). In this
generalization, the notion of local system cohomology groups of the complement of a hyperplane
arrangement plays a crucial role.

Let A = {H1, . . . ,Hn} be an arrangement of affine hyperplanes in C` and let

M(A) = C` r
⋃
H∈A

H

be its complement. Let us fix a defining equation αi of Hi. An arrangement A is called essential
if the normal vectors of hyperplanes generate C`. The first homology group H1(M(A),Z) is a
free abelian group generated by the meridians γ1, . . . , γn of hyperplanes. We denote their dual
basis by e1, . . . , en ∈ H1(M(A),Z). The element ei can be identified with 1

2π
√
−1d logαi via the

de Rham isomorphism.
The isomorphism class of a rank one complex local system L is determined by a homomor-

phism ρ : H1(M(A),Z) −→ C×, which is also determined by an n-tuple q = (q1, . . . , qn) ∈ (C×)n,
where qi = ρ(γi).

For a generic parameter (q1, . . . , qn), it is known that the following vanishing result holds.

(1) dimHk(M(A),L) =

 0, if k 6= `,

|χ(M(A))|, if k = `.

Several sufficient conditions for the vanishing of (1) are known ([1, 8]). Cohen, Dimca and Orlik
([4]) proved the following.

Theorem 1.1. (CDO-type vanishing theorem) Suppose that qX 6= 1 for each dense edge X
contained in the hyperplane at infinity. Then, the vanishing (1) holds. (See §2.1 for description
of the notation.)

The above result is stronger than many other vanishing results. Indeed, for the case ` = 2,
it has been proved ([19]) that the vanishing (1) with an additional property holds if and only if
the assumption of Theorem 1.1 holds.

The local system cohomology group Hk(M(A),L) is computed using the twisted de Rham
complex (Ω•M(A), d + ω∧) with ω =

∑
λid logαi, where λ is a complex number such that

http://dx.doi.org/10.5427/jsing.2016.14e
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exp(−2π
√
−1λi) = qi (we denote L = exp(ω)). The algebra of rational differential forms Ω•M(A)

has a natural C-subalgebra A•C(A) generated by ei = 1
2π
√
−1d logαi. This subalgebra is known to

be isomorphic to the cohomology ring H•(M(A),C) of M(A) ([3]) and to have a combinatorial
description, the so-called Orlik-Solomon algebra [11] (see §2.1 for details). The Orlik-Solomon
algebra provides a subcomplex (A•C(A), ω∧) of the twisted de Rham complex, which is called
the Aomoto complex. There exists a natural morphism

(2) (A•C(A), ω∧) ↪→ (Ω•M(A), d+ ω∧)

of complexes. The Aomoto complex (A•C(A), ω∧) has a purely combinatorial description. Fur-
thermore, it can be considered as a linearization of the twisted de Rham complex (Ω•M(A), d+ω∧).

Indeed, there exists a Zariski open subset U ⊂ (C×)n that contains (1, 1, . . . , 1) ∈ (C×)n such
that (2) is a quasi-isomorphism for q ∈ U ([7, 16, 10]). However, this is not an isomorphism in
general.

The following vanishing result for the cohomology of the Aomoto complex has been obtained
by Yuzvinsky.

Theorem 1.2. ([21, 22]) Let ω =
∑n
i=1 2π

√
−1λiei ∈ A1

C(A). Suppose λX 6= 0 for all dense
edges X in L(A). Then, we have

(3) dimHk(A•C(A), ω∧) =

 0, if k 6= `,

|χ(M(A))|, if k = `.

Note that the assumptions in Theorem 1.1 and Theorem 1.2 are somewhat complementary:
the first one requires nonresonant conditions along the hyperplane at infinity, whereas the second
imposes nonresonant conditions on all dense edges in the affine space.

Recently, Papadima and Suciu proved that the dimension of the local system cohomology
group for a torsion local system is bounded by that of the Aomoto complex with finite field
coefficients.

Theorem 1.3. ([14]) Let p ∈ Z be a prime. Suppose ω =
∑n
i=1 λiei ∈ A1

Fp(A) and L is the local

system determined by qi = exp( 2π
√
−1
p λi). Then,

(4) dimCH
k(M(A),L) ≤ dimFp H

k(A•Fp(A), ω∧),

for all k ≥ 0.

In view of the Papadima-Suciu inequality (4), it is natural to expect that a CDO-type van-
ishing theorem for a p-torsion local system may be deduced from that of the Aomoto complex
with finite field coefficients. Furthermore, Papadima and Suciu ([15]) clarified the relationship
between multinet structures and H1(A•Fp(A), ω∧). These results motivate the study of the Ao-

moto complex with coefficients in an arbitrary commutative ring R. The main result of this
paper is the following CDO-type vanishing theorem.

Theorem 1.4. (Theorem 3.1) Let A = {H1, . . . ,Hn} be an essential affine hyperplane arrange-
ment in R`. Let R be a commutative ring with multiplicative unit 1. Let ω =

∑n
i=1 λiei ∈ A1

R(A).
Suppose that λX ∈ R× for any dense edge X contained in the hyperplane at infinity. Then, the
following holds.

(5) Hk(A•R(A), ω∧) '


0, if k 6= `,

R|χ(M(A))|, if k = `.
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Our proof relies on several results ([18, 19, 20]) concerning the minimality of arrangements.
We also provide an alternative proof of Theorem 1.1 for real arrangements.

Remark 1.5. If R = C, one can deduce Theorem 1.4 from Theorem 1.1. We present a sketch of
the argument. If ω =

∑n
i=1 λiei ∈ A1

R(A) satisfies the assumption of Theorem 1.4, then so does
tω for t ∈ C×. Clearly, we have Hk(A•C(A), ω∧) ' Hk(A•C(A), tω∧). However, the tangent-cone
theorem ([6, 7]) gives, for 0 < |t| � 1, an isomorphism Hk(A•C(A), tω∧) ' Hk(M(A),Lt), where
Lt = exp(tω). Then, Theorem 1.1 gives Hk(M(A),Lt) = 0.

The remainder of this paper is organized as follows.
In §2, we give some basic terminology and a description of the Aomoto complex in terms

of chambers developed in [18, 19, 20]. We also recall the description of a twisted minimal
complex in terms of chambers. Two cochain complexes (R[ch•(A)],∇ωλ) and (C[ch•(A)],∇L)
are constructed using the real structures of A (adjacency relations of chambers). These cochain
complexes provide a parallel description of the cohomology of the Aomoto complex and the
local system cohomology group. Indeed, using these complexes, we can simultaneously prove
CDO-type vanishing results for both cases.

In §3, we state the main result and describe the strategy for the proof. The proof consists
of an easy part and a hard part. The easy part of the proof mainly uses elementary arguments
relating to cochain complexes, which are also stated in this section. The hard part is tackled in
§4.
§4 is devoted to an analysis of the polyhedral structures of chambers that are required for

matrix presentations of the coboundary map of (R[ch•(A)],∇ωλ).

2. Notation and Preliminaries

2.1. Orlik-Solomon algebra and Aomoto complex. Let A = {H1, . . . ,Hn} be an affine
hyperplane arrangement in V = R`. Denote the complement of the complexified hyperplanes
by M(A) = C` r ∪ni=1Hi ⊗ C. By identifying R` with P`R r H∞, define the projective closure

by A = {H1, . . . ,Hn, H∞}, where Hi ⊂ P`R is the closure of Hi in the projective space. We

denote the intersection posets of A and A as L(A) and L(A), respectively; these are the posets
of subspaces obtained as intersections of some hyperplanes with reverse inclusion order. An
element of L(A) (and L(A)) is also called an edge. We denote the set of all k-dimensional edges
by Lk(A). For example, L`(A) = {V } and L`−1(A) = A. Then, A is essential if and only if
L0(A) 6= ∅.

Let R be a commutative ring. Orlik and Solomon gave a simple combinatorial description of
the algebra H∗(M(A), R), which is the quotient of the exterior algebra on classes dual to the
meridians, modulo a certain ideal determined by L(A) (see [11]). More precisely, by associating
a generator ei ' 1

2π
√
−1d logαi to any hyperplane Hi, the Orlik-Solomon algebra A•R(A) of A is

the quotient of the exterior algebra generated by the elements ei, 1 ≤ i ≤ n, modulo the ideal
I(A) generated by:

• elements of the form {ei1 ∧ · · · ∧ eis |Hi1 ∩ · · · ∩His = ∅},
• elements of the form {∂(ei1∧· · ·∧eis) |Hi1∩· · ·∩His 6= ∅ and codim(Hi1∩· · ·∩His) < s},

where ∂(ei1 ∧ · · · ∧ eis) =
∑s
α=1(−1)α−1ei1 ∧ · · · ∧ êiα ∧ · · · ∧ eis .

Let λ = (λ1, . . . , λn) ∈ Rn and ωλ =
∑n
i=1 λiei ∈ A1

R(A). The cochain complex

(A•R(A), ωλ∧) = {A•R(A)
ωλ∧−→ A•+1

R (A)}
is called the Aomoto complex.

We say that an edge X ∈ L(A) is dense if the localization AX = {H ∈ A |X ⊆ H} is
indecomposable (see [13] for more details). Each hyperplane H ∈ A is considered to be a dense
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edge. In this paper, the set of dense edges of A contained in H∞ plays an important role. We
denote this set by D∞(A). We will characterize X ∈ D∞(A) in terms of chambers in Proposition
2.6.

Set λ∞ := −
∑n
i=1 λi. For any X ∈ L(A), λX :=

∑
Hi⊃X λi, where the index i-runs through

the set {1, 2, . . . , n,∞}.
The isomorphism class of a rank one local system L on the complexified complement M(A)

is determined by the monodromy qi ∈ C× around each hyperplane Hi. As in the case of the
Aomoto complex, we denote q∞ = (q1q2 · · · qn)−1 and qX =

∏
Hi⊃X qi for an edge X ∈ L(A).

2.2. Chambers and minimal complexes. In this section, we recall the description of the
minimal complex in terms of real structures from [18, 19, 20]. Let A = {H1, . . . ,Hn} be an
essential hyperplane arrangement in R`. A connected component of R` r

⋃n
i=1Hi is called a

chamber. The set of all chambers of A is denoted by ch(A). A chamber C ∈ ch(A) is called a
bounded chamber if C is bounded. The set of all bounded chambers of A is denoted by bch(A).
For a chamber C ∈ ch(A), denote the closure of C in P`R by C. It is easily seen that a chamber

C is bounded if and only if C ∩H∞ = ∅.
Given two chambers C,C ′ ∈ ch(A), we denote the set of separating hyperplanes of C and C ′

by
Sep(C,C ′) := {Hi ∈ A | Hi separates C and C ′}.

To describe the minimal complex, we must fix a generic flag. Let

F : ∅ = F−1 ⊂ F 0 ⊂ F 1 ⊂ · · · ⊂ F ` = R`

be a generic flag (i.e., F k is a generic k-dimensional affine subspace, that is,

dim(X ∩ F k) = dimX + k − `
for any X ∈ L(A)). The genericity of F is equivalent to

F k ∩ Li(A) = Lk+i−`(A ∩ F k)

for k + i ≥ `.

Definition 2.1. We say that the hyperplane F `−1 is near to H∞ when F `−1 does not separate
0-dimensional edges L0(A) ⊂ R`. Similarly, we say the flag F is near to H∞ when F k−1 does
not separate L0(A ∩ F k) for all k = 1, . . . , `.

From this point, we assume that the flag F is near to H∞. For a generic flag F near to H∞,
we define

chk(A) = {C ∈ ch(A) | C ∩ F k 6= ∅, C ∩ F k−1 = ∅}

bchk(A) = {C ∈ chk(A) | C ∩ F k is bounded}

uchk(A) = {C ∈ chk(A) | C ∩ F k is unbounded}.
It is then clear that

chk(A) = bchk(A) t uchk(A)

ch(A) =
⊔̀
k=0

chk(A).

Note that bch`(A) = bch(A). However, for k < `, C ∈ bchk(A) is an unbounded chamber.

Definition 2.2. ([19, Definition 2.1]) Let C ∈ bch(A). There exists a unique chamber, denoted
by C∨ ∈ uch(A), which is the opposite with respect to C ∩H∞, where C is the closure of C in
the projective space P`R.
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H∞

H1

H2

H3 H4 H5

C1 C2 C3 C4

C∨4 C∨2 C∨3 C∨1

C∨1 C∨3 C∨2 C∨4

C1 ∩H∞

Figure 1. Opposite chambers

Let us denote the projective subspace generated by C ∩H∞ as X(C) = 〈C ∩H∞〉.

Proposition 2.3. Let C ∈ bch(A). Then

(6) Sep(C,C∨) = {H ∈ A | H 6⊃ X(C)} = ArAX(C).

Proof. Let p ∈ C and p′ be a point in the relative interior of C ∩H∞. Take the line

L = 〈p, p′〉 ⊂ P`R,
and choose a point p′′ ∈ C∨ ∩ L. Then, consider the segment [p, p′′] ⊂ R` = P`R r H∞ (see
Figure 2). On the projective space P`R, the line L = 〈p, p′〉 must intersect every hyperplane

H ∈ A exactly once. Furthermore, L intersects H ∈ AX(C) at p′. Additionally, the segment
[p, p′′] intersects H ∈ Sep(C,C∨). Hence, we have (6). �

H∞

H1

H2

H3 H4 H5

p′′

p′′

p

p′

Figure 2. The segment [p, p′′] (thick segment).

Corollary 2.4. If dimX(C) = `− 1, then Sep(C,C∨) = A.

Proof. In this case, AX(C) = {H∞}. Proposition 2.3 implies that Sep(C,C∨) = A. �

Proposition 2.5. ([18, 19])

(i) # chk(A) = bk, where bk = bk(M(A)).
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(ii) # bchk(A) = # uchk+1(A).

(iii) # bchk(A) = bk − bk−1 + · · ·+ (−1)kb0.

Concerning Proposition 2.5 (ii), an explicit bijection is given by the map to the opposite
chamber,

ι : bchk(A)
'−→ uchk+1(A), C 7−→ C∨.

The next result characterizes the dense edges contained in H∞.

Proposition 2.6. ([19, Proposition 2.4]) Let A be an affine arrangement in R`. An edge
X ∈ L(A) with X ⊆ H∞ is dense if and only if X = X(C) for some chamber C ∈ uch(A). In
particular, we have

(7) D∞(A) = {X(C) | C ∈ uch(A)}.

Next, we define the degree map

deg : chk(A)× chk+1(A) −→ Z.

Let B = Bk ⊂ F k be a k-dimensional ball of sufficiently large radius so that every 0-dimensional
edge X ∈ L0(A ∩ F k) ' L`−k(A) is contained in the interior of Bk. Let C ∈ chk(A) and

C ′ ∈ chk+1(A). Then, there exists a vector field UC
′

on F k ([18]) that satisfies the following
conditions.

• UC′
(x) 6= 0 for x ∈ ∂C ∩Bk.

• Let x ∈ ∂(Bk) ∩ C. Then, Tx(∂Bk) can be considered as a hyperplane of TxF
k. We

impose the condition that UC
′
(x) ∈ TxF k is contained in the half-space corresponding

to the inside of Bk.
• If x ∈ H ∩ F k for a hyperplane H ∈ A, then UC

′
(x) 6∈ Tx(H ∩ F k) and is directed to

the side in which C ′ is lying with respect to H.

When the vector field UC
′

satisfies the above conditions, we say that the vector field UC
′

is
directed to the chamber C ′. The above conditions imply that if either x ∈ H ∩ F k or x ∈ ∂Bk,
then UC

′
(x) 6= 0. Thus, for C ∈ chk(A), U is not vanishing on ∂(C ∩ Bk). Hence, we can

consider the following Gauss map.

UC
′

|UC′ |
: ∂(C ∩Bk) −→ Sk−1.

Fixing an orientation on F k induces an orientation on ∂(C ∩Bk).

Definition 2.7. Define the degree deg(C,C ′) between C ∈ chk(A) and C ′ ∈ chk+1(A) by

deg(C,C ′) := deg

 UC
′

|UC′ |

∣∣∣∣∣
∂(C∩Bk)

: ∂(C ∩Bk) −→ Sk−1

 ∈ Z.

This is independent of the choice of UC
′

([18]).

If the vector field UC
′

does not have zeros on C ∩ Bk, then the Gauss map can be extended

to the map C ∩ Bk −→ Sk−1. Hence, UC
′

|UC′ | : ∂(C ∩ Bk) −→ Sk−1 is homotopic to a constant

map, and we have the following result.

Proposition 2.8. If the vector field UC
′

is nowhere zero on C ∩Bk, then deg(C,C ′) = 0.



80 PAULINE BAILET AND MASAHIKO YOSHINAGA

Example 2.9. Let p0 ∈ F k be such that p0 /∈
⋃
H∈AH ∪ ∂Bk. Define the pointing vector field

Up0 by

(8) Up0(x) = −−→x; p0 ∈ TxF k,

where −−→x; p0 is a tangent vector at x pointing toward p0 (see Figure 3). The vector field Up0 is
directed to the chamber containing p0. Note that Up0(x) = 0 if and only if x = p0. Hence, if

p0 /∈ C ∩Bk, the Gauss map Up0

|Up0 | : ∂(C ∩Bk) −→ Sk−1 satisfies deg
(
Up0

|Up0 |

)
= 0. Otherwise, if

p0 ∈ C ∩Bk, then deg
(
Up0

|Up0 |

)
= (−1)k.

p0

Figure 3. Pointing vector field 1
4U

p0

Consider the Orlik-Solomon algebra A•R(A) over the commutative ring R. Let

ωλ =
n∑
i=1

λiei ∈ A1
R(A) (λi ∈ R).

We will describe the Aomoto complex (A•R(A), ωλ∧) in terms of chambers. For two chambers
C,C ′ ∈ ch(A), define λSep(C,C′) by

λSep(C,C′) :=
∑

Hi∈Sep(C,C′)

λi.

Proposition 2.10. Let C be an unbounded chamber. Then,

λSep(C,C∨) = −λX(C).

Proof. By Proposition 2.3, we have A = AX(C) t Sep(C,C∨). Hence, from the definition of

λ∞ = −
∑n
i=1 λi, we obtain λSep(C,C∨) + λX(C) = 0. �

Let R[chk(A)] =
⊕

C∈chk(A)R · [C] be the free R-module generated by chk(A). Let

∇ωλ : R[chk(A)] −→ R[chk+1(A)]

be the R-homomorphism defined by

(9) ∇ωλ([C]) =
∑

C′∈chk+1

deg(C,C ′) · λSep(C,C′) · [C ′].
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Proposition 2.11. ([20]) (R[ch•(A)],∇ωλ) is a cochain complex. Furthermore, there is a nat-
ural isomorphism of cochain complexes,

(R[ch•(A)],∇ωλ) ' (A•R(A), ωλ∧).

In particular,

Hk(R[ch•(A)],∇ωλ) ' Hk(A•R(A), ωλ∧).

Let L be a rank one local system on M(A) with monodromy qi ∈ C× around Hi (i = 1, . . . , n).

Fix q
1/2
i =

√
qi and define q

1/2
∞ and ∆(C,C ′) by q

1/2
∞ :=

(
q
1/2
1 · · · q1/2n

)−1
and

∆(C,C ′) :=
∏

Hi∈Sep(C,C′)

q
1/2
i −

∏
Hi∈Sep(C,C′)

q
−1/2
i .

The local system cohomology groups can then be computed in a similar way to the cohomology
groups of the Aomoto complex. Indeed, let us define the linear map

∇L : C[chk(A)] −→ C[chk+1(A)]

by

∇L([C]) =
∑

C′∈chk+1

deg(C,C ′) ·∆(C,C ′) · [C ′].

Then, we have the following.

Proposition 2.12. ([18]) (C[ch•(A)],∇L) is a cochain complex. Furthermore, there is a natural
isomorphism of cohomology groups:

Hk(C[ch•(A)],∇L) ' Hk(M(A),L).

3. Main results and strategy

3.1. Main theorems. In this section, let A = {H1, . . . ,Hn} be a hyperplane arrangement in
R` and R be a commutative ring with 1.

Theorem 3.1. If λX ∈ R× for all X ∈ D∞(A), then

Hk(C[ch•(A)],∇ωλ) '

 0, if k < `,

R[bch(A)], if k = `.

More generally, we can prove the following.

Corollary 3.2. Let 0 ≤ p < `. If λX ∈ R× for all X ∈ D∞(A) with dim(X) ≥ p, then

Hk(C[ch•(A)],∇ωλ) = 0, for all 0 ≤ k < `− p.

Proof. We prove Corollary 3.2 based on Theorem 3.1 with A∩F `−p. The Orlik-Solomon algebra

A•R(A ∩ F `−p) is isomorphic to A≤`−pR (A). Hence, we have an isomorphism

(10) Hk(A•R(A ∩ F `−p), ωλ∧) ' Hk(A•R(A), ωλ∧),

for k < ` − p. Note that L(A ∩ F `−p) ' L≥p(A). By assumption, we have that λX ∈ R× for
any X ∈ D∞(A ∩ F `−q). Hence, by Theorem 3.1, the left-hand side of (10) vanishes. �

The following vanishing result for the Aomoto complex follows from Proposition 2.11.

Corollary 3.3. Let 0 ≤ p < `. If λX ∈ R× for all X ∈ D∞(A) with dim(X) ≥ p, then

Hk(A•R(A), ωλ∧) = 0, for all 0 ≤ k < `− p.
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Remark 3.4. A very similar proof can be used for the case of local systems. Namely, if the
local system L satisfies qX 6= 1 for all X ∈ D∞(A) with dim(X) ≥ p, then

Hk(C[ch•(A)],∇L) = 0, for all k < `− p.

Using Proposition 2.12, this implies

Hk(M(A),L) = 0, for all k < `− p,

which gives an alternative proof of Theorem 1.1 given by Cohen, Dimca, and Orlik.

3.2. Strategy for the proof of Theorem 3.1. To analyze the cohomology group

Hk(R[ch•(A)],∇ω) =
ker
(
∇ω : R[chk(A)] −→ R[chk+1(A)]

)
im
(
∇ω : R[chk−1(A)] −→ R[chk(A)]

) ,
we will use the direct decomposition R[chk(A)] = R[bchk(A)] ⊕ R[uchk(A)], and then consider
the map

(11) ∇ωλ : R[bchk(A)] ↪→ R[chk(A)]
∇ω−→ R[chk+1(A)] � R[uchk+1(A)].

We will study the map ∇ωλ : R[bchk(A)] −→ R[uchk+1(A)] in detail below. Recall that there

is a natural bijection ι : bchk(A)
'−→ uchk+1(A) (see Proposition 2.5 and subsequent remarks).

Once we fix an ordering C1, . . . , Cb of bchk(A), we obtain a matrix expression of the map ∇ωλ .
We will prove the following.

(i) Let C ∈ bchk(A). Then, deg(C,C∨) = (−1)`−1−dimX(C).

(ii) For an appropriate ordering of bchk(A) = {C1, . . . , Cb}, the matrix expression of

∇ωλ : R[bchk(A)] −→ R[uchk+1(A)]

is upper-triangular.
(iii) det∇ω ∈ R×
(iv) These imply Theorem 3.1.

(i) and (ii) will be proved in §4.
Here, we prove (iii) and (iv) based on (i) and (ii). First, note that Proposition 2.10, along

with the definition (9) of the coboundary map of the complex (R[ch•(A)],∇ω) and the upper-
triangularity in (ii) above implies that

det∇ω = ±
∏

C∈bchk(A)

deg(C,C∨)λX(C).

Then, from the assumption that λX ∈ R× for X ∈ D∞(A) (see also Proposition 2.6), we have

(iii) directly. Because ∇ω : R[bchk(A)]
'−→ R[uchk+1(A)], which are diagonals of the following

diagram, are isomorphisms of free R-modules, we have Hk(R[ch•(A)],∇ω) = 0 for k < ` and

H`(R[ch•(A)],∇ω) ' R[bch`(A)].

R[ch0]
∇ω−→ R[ch1]

∇ω−→ · · · ∇ω−→ R[chk]
∇ω−→ R[chk+1]

∇ω−→ · · ·
|| || || ||

R[bch0] R[bch1] · · · R[bchk] R[bchk+1]
↘ ⊕ ↘ ↘ ⊕ ↘ ⊕

R[uch1] · · · R[uchk] R[uchk+1]
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4. Proofs

In this section, we prove (i) and (ii) stated in §3.2 for k = `− 1. Namely:

(i’) For a chamber C ∈ bch`−1(A), deg(C,C∨) = (−1)`−1−dimX(C).

(ii’) For an appropriate ordering of {C1, . . . , Cb} = bch`−1(A), the matrix expression of

∇ωλ : R[bch`−1(A)] −→ R[uch`(A)] is upper-triangular.

For other k < `, note that the assertions can be proved in a similar way to that for k = l− 1 by
using the generic section F k+1 (see the arguments in the proof of Corollary 3.2).

4.1. Structure of Walls. For simplicity, we will set F = F `−1. Recall that

bch`−1(A) = {C ∈ ch(A) | C ∩ F is a bounded chamber of F ∩ A}.

Let C ∈ bch`−1(A). A hyperplane H ∈ A is said to be a wall of C if H ∩ F is a supporting

hyperplane of a facet of C ∩ F . For any C ∈ bch`−1(A), we denote the set of all walls of C by
Wall(C).

F 1

H1 H2

H3

C ∩ F 1

C

F 1

H ′1 H ′2
H ′3

C ′ ∩ F 1

C ′

Figure 4. Wall(C) = Wall2(C) = {H1, H2}, Wall(C′) = Wall1(C
′) = {H ′

1, H
′
2}

We divide the set of walls into two types.

Definition 4.1. A wall H ∈ Wall(C) is said to be of the first kind if H ⊃ X(C). Otherwise,
we say that H is a wall of the second kind. The sets of the first and the second kind of walls are
denoted by Wall1(C) and Wall2(C), respectively. We have Wall(C) = Wall1(C)tWall2(C) (see
Figure 4 and 5).

Let C ∈ bch`−1(A) and Wall1(C) = {Hi1 , . . . ,Hik} be walls of the first kind. We choose
defining equations αi1 , . . . , αik for the walls in Wall1(C) so that

C ⊂ {αi1 > 0} ∩ · · · ∩ {αik > 0}.

Note that C̃ := {αi1 > 0} ∩ · · · ∩ {αik > 0} is a chamber of Wall1(A). Let D ∈ uch(A) be
another unbounded chamber of A. Then, D is said to be inside Wall1(C) if

D ⊂ C̃ = {αi1 > 0} ∩ · · · ∩ {αik > 0}.
This condition is equivalent to Sep(C,D) ∩Wall1(C) = ∅.

Recall that the opposite chamber of C ∈ bch`−1(A) is defined as the opposite chamber with
respect to X(C) ⊂ H∞. Using (6), we have the following.
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H∞

X(C)

F 2 H3
H4

H1

H2

C

Figure 5. Wall1(C) = {H1, H2},Wall2(C) = {H3, H4}.

Proposition 4.2. Let C ∈ bch`−1(A). Then, Sep(C,C∨) ∩Wall(C) = Wall2(C).

Remark 4.3. Let C ∈ bch`−1(A). If D is inside Wall1(C), then

X(D) ⊂ X(C) and dimX(D) ≤ dimX(C).

4.2. Fibered structure of chambers. Let C ∈ bch`−1(A) and d = dimX(C). As above, we

let C̃ ∈ ch(Wall1(C)) be the unique chamber such that C ⊂ C̃.

For each point p ∈ C̃, denote G1(p) := 〈X(C), p〉 ∩ F (see Figure 6). Then, G1(p) is a d-

dimensional affine subspace that is parallel to each H ∈Wall1(C). Fix a base point p0 ∈ C̃. We
also fix an (`−1−d)-dimensional subspace G2(p0) ⊂ F that passes through p0 and is transversal

to G1(p0) (see Figure 6). Let us call Q0 := G2(p0) ∩ C̃ the base polytope.
Consider the map πC : C ∩ F −→ Q0, p 7−→ G1(p) ∩ Q0. For each q ∈ Q0, the fiber

π−1C (q) = G1(q) ∩C is a d-dimensional polytope. This is a conclusion of the assumption that F

is generic and near to H∞ and the following elementary proposition.

F

H1

H2

C ∩ F
G1(p0)

G2(p0)

Q0

p0

G1(p)
p πC(p)

Figure 6. Base polytope Q0 (Wall1(C) = {H1, H2})

Proposition 4.4. Let P ⊂ R` be an `-dimensional polytope. Let X ⊂ P be a d-dimensional
face (0 ≤ d ≤ `). We denote by 〈X〉 the d-dimensional affine subspace spanned by X. Then, for
ε ∈ R` with sufficiently small 0 ≤ |ε| � 1, (〈X〉+ε)∩P is either an empty set or a d-dimensional
polytope.
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Remark 4.5. As πC : C ∩ F −→ Q0 is a fibration with contractible fibers, there exists a
continuous section σC : Q0 −→ C ∩ F such that πC ◦ σC = idQ0

.

4.3. Upper-triangularity. Let us fix an ordering of the chambers of bch`−1(A) = {C1, . . . , Cb}
in such a way that

dimX(C1) ≥ dimX(C2) ≥ · · · ≥ dimX(Cb).

The main result of this section is the following.

Theorem 4.6. The matrix (deg(Ci, C
∨
j ))i,j=1,...,b is upper-triangular. In other words, if i > j,

deg(Ci, C
∨
j ) = 0.

Proof. Let C,D ∈ bch`−1(A). Suppose dimX(D) ≥ dimX(C) and C 6= D. Then, we will show

that deg(C,D∨) = 0. The idea of the proof is to construct a vector field UD
∨

directed to D∨ on
F that is nowhere vanishing on a neighbourhood of C ∩ F ⊂ F . Then, by Proposition 2.8, we
have deg(C,D∨) = 0.

Let us study the following three cases separately.

(a) dimX(C) = `− 1.
(b) dimX(C) < `− 1 and D is not inside Wall1(C).
(c) dimX(C) < `− 1 and D is inside Wall1(C).

First, we consider case (a). In this situation, because dimX(D) ≥ dimX(C), we have
dimX(D) = `− 1. Choose a point p ∈ D ∩ F , and define the vector field U on F by

U(x) = −→x; p ∈ TxF.
Then, the vector field is directed to p and nowhere vanishing on C ∩ F (because p /∈ C). By
Corollary 2.4, −U is a vector field directed to D∨ that is also nowhere vanishing on C ∩ F .
Hence, deg(C,D∨) = 0.

From this point, we assume dimX(C) < `−1. If D is inside Wall1(C), then X(D) ⊂ X(C) by
Remark 4.3, and we have AX(D) ⊃ AX(C). Proposition 4.2 indicates Sep(D,D∨) ∩ AX(C) = ∅.
We can conclude that D∨ is also inside Wall1(C). Conversely, if D is not inside Wall1(C), then
D∨ is also not inside Wall1(C).

Second, we consider case (b). In this situation, Sep(C,D∨) ∩ Wall1(C) 6= ∅. Choose a
hyperplane Hi0 ∈ Sep(C,D∨) ∩Wall1(C) and let αi0 be the defining equation of Hi0 . Without
loss of generality, we may assume that

H+
i0

= {αi0 > 0} ⊃ D∨

H−i0 = {αi0 < 0} ⊃ C.

We will construct a vector field UD
∨

on F that is directed to D∨ and satisfies

(12) UD
∨

(x)αi0 > 0

for x ∈ C ∩F , where the left hand side of (12) is the derivative of αi0 with respect to the vector
field. In particular, we obtain a vector field directed to D∨ that is nowhere vanishing on C ∩F .
It is sufficient to show that, at any point x0 ∈ C, there exists a local vector field around x0 that
satisfies (12). Then, we will obtain a global vector field that satisfies (12) using a partition of
unity.

It is sufficient to show the existence of such a vector field around each vertex x0 of C ∩F . By
the genericity of F , Z :=

⋂
Ax0 =

⋂
x0∈H∈AH is a 1-dimensional flat of A, which is transversal

to F . By the assumption that F does not separate 0-dimensional flats of A, we have

(13) Z ∩H∞ ⊂ C ∩H∞.
(See Figure 7.)
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H∞

Hs0
i0

F

X(C)

Hi0

C ∩ F
x0

Z

Figure 7. Z and Hs0
i0

.

Set s0 := αi0(x0) and let Hs0
i0

= {αi0 = s0} be the hyperplane passing through x0 that is
parallel to Hi0 . Then, we have Z ⊂ Hs0

i0
, as otherwise we have a contradiction with (13). The

hyperplanes Ax0
= AZ determine chambers (cones), one of which (denoted by Γ) contains D∨

(see Figure 8). Hence, the tangent vector UD
∨

(x0) must be contained in Γ. Furthermore,

(14) D ⊂ Γ ∩H+
i0
⊂ Γ ∩H>s0

i0
.

In particular, we have Γ ∩H>s0
i0
6= ∅. Thus, we can construct a vector field UD

∨
around x0 so

that UD
∨

(x0) ∈ Γ ∩ H>s0
i0

and (12) is satisfied around x0. Hence, we have deg(C,D∨) = 0 in
case (b).

Γ

F

Hi0

C ∩ F

Hs0
i0

H≥s0i0 UD
∨

(x0)

x0

Figure 8. Construction of the vector field UD
∨

Third, suppose D is inside Wall1(C) (equivalently, D ⊂ C̃), and let us handle case (c). As
X(D) ⊂ X(C) and dimX(D) ≥ dimX(C), we have X(D) = X(C). In this case,

Wall1(C) = Wall1(D) and C̃ = D̃.

We consider the fibration πD : D ∩ F 7−→ Q0 that also has d-dimensional polytopes as fibers.
Because the fibers are contractible, there exists a continuous section σD : Q0 7−→ D ∩ F such
that πD ◦ σD = idQ0 .

We now move to the construction of a vector field. For each p ∈ C ∩ F , we denote the
(`− 1− d)-dimensional subspace that passes through p and is parallel to G2(p0) (see Figure 9).
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Let {p′} = G2(p) ∩G1(p0). The tangent space decomposes into the direct sum

TpF = TpG1(p)⊕ TpG2(p).

Let us first construct a vector field on the second component. For this, define the tangent vector
V2(p) ∈ TpG2(p) ⊂ TpF by

(15) V2(p) =
−−→
p; p′.

The vector field V2 is obviously inward with respect to Wall1(C), and vanishes on the reference
fiber G1(p0) ∩ C.

F

C
Q0

p0
G1(p0)

G2(p)

p

p′

Figure 9. V2.

Let us now construct a vector field V1 along the fibers G1(p). Using the section

σD : Q0 −→ C ∩ F (Remark 4.5),

define V1 by

(16) V1(p) =
−−−−−−−−−→
p;σD(πC(p)).

(See Figure 10.)

F

C D

σD(Q0)

Q0

p p′′

Figure 10. V1, p
′′ = σD(πC(p)).
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Proposition 4.7. For sufficiently large t� 0, the vector field tV1+V2 is directed to D. Similarly,
−tV1 + V2 is a vector field directed to D∨.

Proof. Let p ∈ H ∈ Wall1(C). Recall that D is inside Wall1(C). As V2 is inward and V1 is
tangent to H, the vector field ±tV1 +V2 is also inward. Let H ∈Wall2(C) and p ∈ H ∩F . Then,
V1 (resp. −V1) is directed to D (resp. D∨) with respect to H. Hence, for sufficiently large t,
tV1 + V2 (resp. −tV1 + V2) is directed to D (resp. D∨). �

Because V1 is a nowhere vanishing vector field on C ∩ F , −tV1 + V2 is a nowhere vanishing
vector field around C ∩ F that is directed to D∨. Hence, deg(C,D∨) = 0. This completes the
proof of Theorem 4.6. �

4.4. The degree formula. This section is devoted to a prove the following theorem.

Theorem 4.8. Let C ∈ bch`−1(A) and d = dimX(C). Then,

(17) deg(C,C∨) = (−1)`−1−d.

We will construct a vector field around C ∩ F that is directed to C∨. The vector field V2 is
the same as in the previous section (§4.3). Define the vector field V1 along the fibers of πC by

(18) V1(p) =
−−−−−−−−−→
p;σC(πC(p)).

(See Figure 11.)

F

C

σC(Q0) Q0

p p′′

Figure 11. V1, p
′′ = σC(πC(p)).

Then, tV1 + V2 is a vector field directed to C (for t � 0). Since C and C∨ are separated by
H ∈ A r Wall1(C), the vector field −tV1 + V2 is directed to C∨. We can compute the degree
deg(C,C∨) using the vector field −tV1 + V2. Note that −tV1(p) is an outward vector field along
a d-dimensional space G1(p), and V2(p) is an inward vector field that is tangent to an (`−1−d)-
dimensional space G2(p). Hence, deg(C,C∨) is equal to the index of the following vector field
in R`−1 at the origin:

(19) V =
d∑
i=1

xi
∂

∂xi
−

`−1∑
i=d+1

xi
∂

∂xi
.
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Finally, recall that the de Rham cohomology group H`−1(S`−2) is generated by the differential
form ([2])

`−1∑
i=1

(−1)i−1xidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dx`−1.

It is easily seen that the self-map of H`−1(S`−2) induced by the Gauss map of the vector field
(19) is equal to multiplication by (−1)`−1−d. This completes the proof of Theorem 4.8.
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FINE POLAR INVARIANTS OF MINIMAL SINGULARITIES OF

SURFACES

ROMAIN BONDIL

Abstract. We consider the polar curves PS,0 arising from generic projections of a germ (S, 0)

of a complex surface singularity onto C2. Taking (S, 0) to be a minimal singularity of normal

surface (i.e., a rational singularity with reduced tangent cone), we give the δ-invariant of these

polar curves, as well as the equisingularity-type of their generic plane projections, which are
also the discriminants of generic projections of (S, 0).

These two pieces of equisingularity data for PS,0 are described on the one hand by the

geometry of the tangent cone of (S, 0), and on the other hand by the limit-trees introduced
by T. de Jong and D. van Straten for the deformation theory of these minimal singularities.

These trees give a combinatorial device for the description of the polar curve which makes it

much clearer than in our previous note on the subject. This previous work mainly relied on a
result of M. Spivakovsky. Here, we give a geometrical proof via deformations (on the tangent

cone, and what we call Scott deformations) and blow-ups, although we need Spivakovsky’s
result at some point, extracting some other consequences of it along the way.

Introduction

The local polar varieties of any germ (X, 0) of a reduced complex analytic space were intro-
duced by Lê D.T. and B. Teissier in [17]. In particular, the multiplicities of the general polar
varieties are important analytic invariants of the germ (X, 0).

However, as also emphasised by these authors (see also [23] p. 430–431 and [24]), there is more
information to be gained on the geometry of (X, 0) by considering not only the multiplicity but
the (e.g., Whitney-) equisingularity class of these general polar varieties, which can also be shown
to be an analytic invariant.

In this work, we will focus on the polar curves of a two-dimensional germ (S, 0).
Our reference on equisingularity theory for space curves will be the mémoire [8]. Of course,

as opposed to the case of plane curves, there is no complete set of invariants attached to a germ
of a space curve describing its equisingularity class. As a general rule, results on equisingularity
beyond the case of plane curves only make sense by considering the constancy of invariants
in given families. Here we look at the family of polar curves and will consider the following
invariants:

Definition 0.1. Our equisingularity data for a germ of space curve consists of both:
(i) the value of the delta invariant of the curve, and
(ii) the equisingularity class of its generic plane projection.

We recall the definitions of these notions in the text (see Def. 6.1 and Def. 1.2). The constancy
of these two invariants in a family of space curves ensures Whitney conditions and actually the
stronger equisaturation condition (cf. [8]).

2000 Mathematics Subject Classification. Primary: 32S15, 32S25, Secondary: 14H20, 14B07.
Key words and phrases. rational surface singularity, minimal singularity, polar curve, discriminant, limit tree,

deformation, tangent cone, Scott deformation.
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In general, this is still partial information; for example, another interesting invariant for space
curves, namely the semi-group of each branch, is completely independent of this equisaturation
condition.

The purpose of this paper is to describe the equisingularity data in 0.1 for the the general
polar curve of a class of normal surface singularities called minimal.

These minimal singularities were studied in any dimension by J. Kollár in [19]. In the case
of normal surfaces, these are also the rational singularities with reduced fundamental cycle and
were studied by M. Spivakovsky in [21] and T. de Jong and D. van Straten in [15].

For these surfaces, we prove the following:

Proposition (∗) ( cf. 5.5 for a more precise statement): the general polar curve is a union
of Ani-plane curves singularities1, where the ni’s and the contacts between these curves can be
deduced from the resolution graph of the surface.

This information gives in particular a complete description of part (ii) of the data in 0.1, i.e.,
of the general plane projection of the polar curve, which is also the discriminant of the general
projection (the coincidence of these two concepts is a theorem, cf. section 1).

The information on the discriminant was already given in the note [5] as a consequence of a
result of Spivakovsky, but the statement there was clumsy.

Here we give a much nicer device that allows us to read directly the information about of the
discriminant (or the polar curve as well) from both the information contained in the tangent
cone of these singularities and the information given by a graph deduced from the resolution
graph, which is precisely the limit tree introduced by T. de Jong and D. van Straten in their
study of the deformation theory for these minimal singularities (see [15]).

We also provide an inductive proof relying much more on the geometrical properties of these
minimal singularities. This proof makes up the core of the paper. It still uses Spivakovsky’s
theorem, however, mainly through a characterisation of generic polar curves on the resolution
which we deduce along the way.

The several plane branches of the polar curve lie in distinct planes in a bigger linear space,
and the value of the delta invariant (part (i) in 0.1) gives some (partial) information on the
configuration of these planes in the space. We explain how this delta invariant is easily computed
from what we call the Scott deformation of the surface, which turns out to give a delta-constant
deformation of the polar curve onto bunches of generic configurations of lines.

Organisation of the paper:

In Section 1, we recall the definition of the general polar curve PS,0 of a germ of surface (S, 0),
of the discriminant ∆S,0 of a generic projection of (S, 0) onto C2 and the important result that
∆S,0 is a generic projection of the curve PS,0.

Section 2 gives the definition of minimal singularities in general, the particular case of normal
surfaces, and their characterisation by their dual resolution graph. We then define, in Section 3,
a notion of height on the vertices of this resolution graph, which was used in other places such as
[21] and [15], and corresponds to the number of point blow-ups necessary to let the corresponding
exceptional component appear. We also give there our convention in representing dual graphs
with • and ∗ and define reduced dual graphs to be the ones in which the self-intersections for
components of the tangent cone have the minimum absolute value.

In Section 4, we give the description of generic polar curves on a resolution of a minimal
singularity as proved by M. Spivakovsky (Thm. 4.2). This result will play the following somehow
different roles in the sections following it:

1Hence the information about the semi-group of the branches is obvious.
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(i) Section 5 explains how, using the full strength of this result, one may derive quite quickly
a description of the generic discriminant ∆S,0 (more precisely, of Proposition 5.5 for the polar
curve). This sums-up the note [5] in an improved way, and a mistake in an example there is
corrected.
(ii) In Section 6, we mention how, using a result of J. Giraud, Theorem 4.2 also permits one,
at least theoretically, to deduce the δ-invariant for the general polar curve from the shape of its
transform on the minimal resolution. This result is however not useful for concrete computations,
for which we use another approach in Section 11.
(iii) In Section 7, we get, as a purely qualitative consequence of (i) and (ii), a characterisation
of generic polar curves on the minimal resolution of the singularity (S, 0). This will be the
application of Spivakovsky’s result we will use in the proof of our main result.

Sections 8 to 11 form the core of the text:

• in Section 8, the polar curve for the tangent cone of a minimal singularity is made geometrically
explicit and through the process of deformation onto the tangent cone is also seen as “part” of
the polar curve of the singularity.
• in Section 9, we recall what we need from the limit tree construction of de Jong and van
Straten. With this,
• in Section 10, we give, and prove, our main theorem giving more details about the information
in Proposition (∗) page 92 using the limit tree construction and the contribution of the tangent
cone.
• in Section 11, we show how a special deformation of minimal singularities has a nice interpre-
tation in our description of polar curves and also gives a nice method for computing the delta
invariant of these, completing the information in Def. 0.1 (i).

This leads us to ask: can (part of) the deformation theory of these minimal singularities of
surfaces be recovered from their discriminants?
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M. Merle and M. Spivakovsky for their remarks on [5], T. de Jong for pointing out to us his
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1. Polar invariants of a surface singularity

1.1. The general polar curve as an analytic invariant. We recall here the definition of the
local polar variety of a germ of surface following [17]:

Let (S, 0) be a complex surface singularity (S, 0), embedded in (CN , 0): for any (N − 2)-
dimensional vector subspace D of CN , we consider a linear projection CN → C2 with kernel D
and denote by pD : (S, 0)→ (C2, 0) the restriction of this projection to (S, 0).

Restricting ourselves to the D such that pD is finite, and considering a small representative
S of the germ (S, 0), we define, as in [17] (2.2.2), the polar curve C(D) of the germ (S, 0) for the
direction D, as the closure in S of the critical locus of the restriction of pD to S \ Sing(S). It is
a reduced analytic curve.

As explained in loc. cit., it makes sense to say that for an open dense subset of the Grassmann
manifold G(N − 2, N) of (N − 2)-planes in CN , the space curves C(D) are equisingular, e.g.,
in terms of Whitney-equisingularity (or strong simultaneous resolution, but this is the same for
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families of space curves, cf. [8]). We call this equisingularity class the general polar curve for
(S, 0) embedded in CN .

One may then compare the general polar curves obtained by two distinct embeddings of the
surface into a (CN , 0) and it turns out that they are still Whitney-equisingular; this is essentially
proved in [23] (see p. 430) in a much more general setting (arbitrary dimension and “relative”
polar varieties). Summing up, we have:

Theorem 1.1. The Whitney equisingularity-type of the general polar curve C(D) depends only
on the analytic type of the germ (S, 0).

In this paper, following, in a sense, the program in [24], we want to study this invariant C(D)
for a special class of surface singularities.

1.2. The generic discriminant as a derived invariant. With the same notation as before,
we define the discriminant ∆pD

as (the germ at 0 of) the reduced analytic curve of (C2, 0) which
is the image of the polar curve C(D) by the finite morphism pD.

Again, one may show that, for a generic choice of D, the discriminants obtained are equisin-
gular germs of plane curves, and that this in turn defines an analytic invariant of (S, 0).

We will denote ∆S,0 the equisingularity class of the discriminant of a generic projection of
(S, 0).

A first advantage of ∆S,0, as a germ of a plane curve, is that its equisingularity class is
well-defined in terms of classical invariants such as the Puiseux pairs of the branches and the
intersection numbers between branches (cf. e.g., the introduction of [8] for references on this
subject).

As it turns out, there is a very nice relationship between the general polar curve and ∆S,0.
For this we recall the following:

Definition 1.2. Let (X, 0) ⊂ (CN , 0) be a germ of reduced curve. Then a linear projection
p : CN → C2 is said to be generic with respect to (X, 0) if the kernel of p does not contain any
limit of bisecants to X (cf. [8] for an explicit description of the cone C5(X, 0) formed by the
limits of bisecants to (X, 0)). For future reference, we will write BS(X, 0) for this cone denoted
C5(X, 0) in [8]).

Then the equisingularity type of the germ of plane curve (p(X), 0) image of (X, 0) by such a
generic projection is uniquely defined by the saturation of the ring OX,0 (cf. [8]).

We now state the following transversality result (proved for curves on surfaces of C3 in [9]
Theorem 3.12 and in general as the “lemme-clé” in [23] V (1.2.2)) relating polar curves and
discriminants:

Theorem 1.3. Let pD : (S, 0) → (C2, 0) be as above, and C(D) ⊂ (S, 0) ⊂ (CN , 0) be the
corresponding polar curve. Then there is an open dense subset U of G(N − 2, N) such that for
D ∈ U the restriction of p to C(D) is generic in the sense of Definition 1.2.

Definition 1.4. Let us define PS,0 to be not the Whitney-equisingularity class of the general
polar curve as in Thm. 1.1, but the equisaturation class of the general polar curve (which may be
a smaller class). As we recalled after Definition 0.1, this class is precisely given by the constancy
of the invariants there. Then, the foregoing Theorem 1.3 states that ∆S,0 is the generic plane
projection of PS,0.

As stated in the introduction, the goal of this work is to determine PS,0 completely.
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2. Definition of minimal singularities

We begin with a definition valid in any dimension (following [19] § 3.4):

Definition 2.1. We call a singularity (X, 0) minimal if it is reduced, Cohen-Macaulay, and the
multiplicity and embedding dimension of (X, 0) fulfill:

i) mult0X = emdim0X − dim0X + 1, and
ii) the tangent cone CX,0 of X at 0 is reduced.

Considering normal surfaces, one has the following characterisation:

Theorem 2.2. Minimal singularities of normal surfaces are precisely the rational surface sin-
gularities with reduced fundamental cycles (with the terminology of [2]).

Condition (i) follows for any rational surface singularity from Artin’s formulas for multiplicities
and embedding dimension (cf. [2]). Condition (ii) follows from the fact that the fundamental
cycle of rational singularities is also the cycle defined by the maximal ideal. Conversely, the fact
that minimal normal singularities are rational is proved in [19] 3.4.9. The proof that “reduced
tangent cone” implies “reduced fundamental cycle” is easy (after our Thm. 3.2 or see, e.g., [26]
p. 245).

Taking (S, 0) to be a normal surface singularity and π : (X,E) → (S, 0) to be the mini-
mal resolution of the singularity, one associates as usual to the exceptional curve configuration
E = π−1(0) a dual graph Γ where each irreducible component Li in E is represented by a ver-
tex and two vertices are connected by an edge if, and only if, the corresponding components
intersect.

Each vertex x of Γ (we will frequently abuse notation and write x ∈ Γ) is given a weight
w(x) defined as:

w(x) := −L2
x,

where L2
x is the self-intersection of the corresponding component Lx on X.

For any rational surface singularity, it is well-known that all the Li are smooth rational curves
and that Γ is a tree. But in general, it takes some computation to check whether a given tree is
the dual tree of a rational singularity (cf. [2]).

On the other hand, one reads at first sight from the dual graph that a surface singularity is
minimal (cf. [21] II 2.3):

Remark 2.3. Let Γ be any weighted graph. Then, it is the dual graph of resolution of a minimal
singularity if, and only if, Γ is a tree and, for each vertex x ∈ Γ, one has the following inequality:

w(x) ≥ v(x),

where v(x) denotes the valence of x, i.e., the number of edges attached to x.

3. More about the dual graphs

In the representation of the dual graph Γ of a minimal singularities, we will distinguish between
the vertices with w(x) = v(x) and the others.

Notation 3.1. In representing the dual graphs of minimal singularities, we chose to represent
with a • the vertices with w(x) = v(x), so that there is no need to mention the weight above
them.

On the other hand, we enumerate as x1, . . . , xk the vertices with w(xi) > v(xi), and let them
be denoted by ∗ on the graph. One should then mention the weights of the (xi) to define the
graph.
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In this work, we will pay much attention to the minimal singularities with the property that,
for all vertices xi with w(xi) > v(xi), one has, in fact, the equality w(xi) = v(xi) + 1.

Let us call reduced the graphs with this property; it is then clear that in representing these
dual graphs, there is no longer any need to mention the weights.

For example, saying that the graph in Figure 1 is reduced amounts to saying that

w(x1) = w(xn) = 2 and w(xi) = 3 for 1 < i < n

(and the vertices with •’s all have weight two here).

Figure 1.

The geometrical meaning of this distinction between vertices comes from:

Theorem 3.2 (Tyurina, cf. [25]). Let (S, 0) be a rational surface singularity and let
π : (X,E)→ (S, 0) be its minimal resolution. Let b : S1 → S be the blow-up of 0 in S.

Then there is a morphism r : X → S1 such that π = b◦r and a component Li of E = π−1(0) is
contracted to a point by r if, and only if, the intersection (Li ·Z) = 0, where Z is the fundamental
cycle.

Of course, the components of E which are not contracted by r are the strict transform by r
of the components of the P(CS,0) appearing on S1.

When (S, 0) is a minimal singularity, the fundamental cycle is Z =
∑

x∈Γ Lx and hence, for a
given vertex y ∈ Γ, the intersection (Ly · Z) is just v(y)− w(y).

This should justify:

Definition 3.3. Let (S, 0) be a minimal normal surface singularity and Γ be the dual graph of
its minimal resolution.

We will say that a vertex x in Γ has height one if w(x) > v(x), which from the foregoing
remarks means that the corresponding component Lx corresponds to a component of (the proj
of) the tangent cone CS,0. Hence we will denote by ΓTC = {x1, . . . , , xn} the set of these vertices.

Then, we define the height of any vertex x in Γ as the number sx defined by:

sx := dist(x,ΓTC) + 1,

where dist is the distance on the graph (number of edges on the geodesic between two vertices).

The reader should check that this height corresponds to the number of blow-ups necessary
to make the corresponding component “appear”.2 The notation sx here comes from [21] II 5.1
and was the one used in the previous work [5].

Example 3.4. As an example, we indicate the heights on the graph in Figure 2, where the (xi)
are, as before, the vertices of height one (with ∗’s):

We will also need the following:

2This latter notion is studied more systematically for any rational singularity as “desingularisation depth” in

[18]; of course in this general case, it is not given directly from a distance!
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Figure 2. Minimal graph with the heights for the vertices.
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Definition 3.5. Let Γ be a minimal graph. The connected components Γi (for i = 1, . . . , r) of
Γ \ ΓTC are called the Tyurina components of Γ.

Hence, Theorem 3.2 states that the blow-up S1 of (S, 0) has exactly r singularities (S1, Oi)
which are minimal singularities with dual resolution graph Γi.

4. A result of Spivakovsky

To state this result, we introduce further terminology:

Let π : (X,E)→ (S, 0) be the minimal resolution of the singularity (S, 0), where E = π−1(0)
is the exceptional divisor, with components Li. A cycle will be by definition a divisor with
support on E, i.e., a linear combination

∑
aiLi with ai ∈ Z (or ai ∈ Q for a Q-cycle).

Let Γ be the dual graph of the minimal resolution π and, for each vertex x, let sx denote the
height defined in Def. 3.3.

Definition 4.1. Let then x, y be two adjacent vertices on Γ; the edge (x, y) in Γ is called a
central arc if sx = sy. A vertex x is called a central vertex if there are at least two vertices y
adjacent to x such that sy = sx − 1 (cf. [21]).

We then define a Q-cycle ZΩ on the minimal resolution X of (S, 0) by:

(1) ZΩ =
∑
x∈Γ

sxLx − ZK ,

where Γ is the dual graph, and ZK is the numerically canonical Q-cycle 3.
The theorem from [21] (Theorem 5.4) is now:

Theorem 4.2. Let (S, 0) be a minimal normal surface singularity. There is a open dense subset
U ′ of the open set U of Theorem 1.3, such that, for all D ∈ U ′, the strict transform C ′(D) of
C(D) on X:
a) is a multi-germ of smooth curves intersecting each component Lx of E transversally in exactly
−ZΩ.Lx points,

3Uniquely defined by the condition that, for all x ∈ Γ, ZK .Lx = −2−L2
x, since the intersection product on E

is negative-definite.
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b) goes through the point of intersection of Lx and Ly if and only if sx = sy (point corresponding
to a central arc of the graph). Furthermore, the curves C ′(D), with D ∈ U ′ do not share
other common points (base points) and these base points are simple, i.e., the curves C ′(D) are
separated when one blows up these points once.

Referring to loc. cit. for unexplained terminology, let us make the following observation:

Remark 4.3. Blowing-up once the base points referred to in b) above, one gets a resolution
XN of the Nash blow-up of the germ (S, 0). The map from XN to the normalized Nash blow-up
N(S) is simply the contraction of the exceptional components which are not intersected by a
branch of the generic polar curve.

5. First description of the polar curve and the discriminant

This section essentially describes the results obtained in [5] in an improved form. We refer to
this note (Section 3) for the proofs of the following lemmas:

Lemma 5.1. Let (S, 0) be a minimal normal surface singularity and π : X → (S, 0) its minimal
resolution. It is known that π is (the restriction to S of) a composition π1 ◦ · · · ◦ πr of point
blow-ups. Then, this composition of blow-ups is also the minimal resolution of the generic polar
curve C(D) for D ∈ U ′ as in Theorem 4.2.

The following is a slightly more precise version of loc. cit. Lem. 3.2:

Lemma 5.2. For D ∈ U ′ as in Theorem 4.2, the polar curve (C(D), 0) on (S, 0) is a union
of germs of curves of multiplicity two. In particular, it has only smooth branches and branches
of multiplicity two, the latter being exactly those for which the strict transform goes through a
central arc as in b) of Theorem 4.2.

Let us now make a perhaps not so standard definition:

Definition 5.3. Let (C1, 0) and (C2, 0) be two analytically irreducible curve germs in (CN , 0).
We will hereafter call contact between the Ci simply the number of point blow-ups necessary to
separate these two branches.

For the description of the polar curve, just recall that an An-curve is a curve analytically
isomorphic to the plane curve defined by x2 + yn+1 = 0:

Proposition 5.4. Let (S, 0) be a minimal surface singularity and C = C(D) be a generic polar
curve corresponding to D in the open set U ′ of thm. 4.2.

Then, if C = ∪iCi is the decomposition of C into analytic branches, denote by LCi
the

irreducible exceptional component on the minimal resolution of S which intersects the strict
transform of Ci. It is unique except in the case of central arcs. In this case, just choose one
between the two intersecting components. Then:
(i) The contact between Ci and Cj in the sense of Def. 5.3 above is the minimum height in the
chain between LCi

and LCj
(cf. Def. 3.3).

(ii) We may write rather C as a union of C =
⋃
Ci of curves of multiplicity two by taking by

pairs branches intersecting the same exceptional component on X that we will now denote LCi
.

Then, each Ci is a Ani
-curve, where the number ni equals 2.s(LCi

) if Ci goes through a central
arc, and 2.s(LCi)− 1 otherwise (which comprises the case of central vertices and components of
height s equal to one).

We may obviously define the contact between these Ani
-curves just by taking one branch in

each, so that it is still given by (i).
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Proof. The statement about the contact in (i) follows from Lemma 5.1. The first statement in
(ii) is Lemma 5.2.

Any curve of multiplicity two is a An-curve, see, e.g., [4] p. 62. The statement about the ni
follows from (i) just like the statement about the contacts. �

The result in Prop. 5.4 gives a complete description of the equisingularity class of the dis-
criminant plane curve in (C2, 0) using Theorem 1.3 4:

Proposition 5.5. The discriminant ∆pD
= pD(C(D)) has exactly the same properties as the

polar curve C(D) in Prop. 5.4. This describes the generic discriminant ∆S,0 as a union of
Ani

-curves with the ni and the contacts described in 5.4.

Proof. The curves Ci in Prop. 5.4, being plane curves, are their own generic plane projections.
Hence by Thm. 1.3, the image ∆pD

of C(D) by the generic projection pD decomposes as the
same union of Ani

-curves.
We give here a direct argument to prove that the contact (in sense of Def. 5.3) between the

branches in ∆pD
is the same as the one in C(D) (in [5], we invoked a bilipschitz invariance which

is perhaps not obvious with our definition of contact).
Let us write down equations for a special case: considering a pair C1, C2 of branches in C(D),

we embed C1 ∪ C2 into a (C3, 0) and suppose there are coordinates so that C1 is parameterised
by (x = tε1 , y = tn, z = 0) and C2 is parameterised by (x = tε2 , y = 0, z = tm), with εi = 1 or 2.

We then leave it to the reader to verify that the projection defined by (x, y+ z) is transverse
to the cone of bisecants BS(C, 0) of Def. 1.2 and that the contact in our sense is preserved.

In the general case, the contact between C1 and C2 may be smaller, but the results remain
valid with another parameterisation of C2.

�

The foregoing description of the discriminant still involves the computation of the number of
branches on each central vertex by Spivakovsky’s formula. We will describe a much better and
condensed one in Section 10, which does not involve any computation and is geometrically more
significant. Before, the author would like to make amends to the readers of [5] for a mistake in
the following:

Example 5.6 (Correct version of Example 1 in [5]). Consider (S, 0) with dual graph Γ as in
Figure 3, where, following the convention of Section 3, the • denote vertices with w(x) = v(x),
and the others form ΓTC = {x1, . . . , x4} with the weights indicated on the graph.

Figure 3.

4This is an equivalent, but more simply expressed, version of the statement in [5], Cor. 4.3.
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The branches of the polar curve going through the components of ΓTC are just four branches
going through Lx1

, which gives in the equisingularity class ∆S,0 four distinct lines through the
origin with contact one with any other branch of ∆S,0.

Then, we have two central vertices (of heights 3 and 2) and a central arc (with boundaries of
height 2), which give, respectively, an A5, an A3, and an A4-curve from Prop. 5.4 and 5.5 above.

The contact between the A5 and the A4 is two (and not 3 as claimed in loc. cit.) and their
contact with the other A3 is one.

Hence, using coordinates, a representative of the equisingularity class of ∆S,0 can be chosen
to be:

(x4 + y4)︸ ︷︷ ︸
The two A1’s

(x2 + y5) (x+ y2 + iy3)(x+ y2 − iy3)︸ ︷︷ ︸
The A5

(y2 + x4) = 0.

6. The delta invariant of the polar curve

Definition 6.1. Let (C, 0) be a germ of a reduced complex curve. Let n : C → (C, 0) be its
normalisation map, which provides a finite inclusion of the local ring OC,0 into the semi-local
ring OC .

The δ-invariant of (C, 0) is by definition δ(C, 0) := dimCOC/OC,0.

In the paper [14], J. Giraud gives a way to compute δ(C, 0) for any curve on a rational surface
singularity (S, 0) if one knows a resolution of the surface singularity where the strict transform
C ′ of C is a multi-germ of smooth curves.

To quote this result, we need the following lemma, proved in loc. cit. 3.6.2:

Lemma 6.2. Let p : (X,E)→ (S, 0) be a resolution of a normal surface singularity (S, 0), with
E = π−1(0) = ∪iEi. Let D =

∑
i aiEi be a Q-cycle on X.

There exists a unique Z-cycle V =
∑

i αiEi with the property that the intersection (V ·Ei) is
less than or equal to (D · Ei) for all i, and is a minimum among cycles with this property.

This Z-cycle will be denoted as bDc.

(In the previous lemma, “minimum” means that any other Z-cycle with this property has the
form bDc+W with W a cycle with non-negative coefficients.)

In the situation of Lemma 6.2, let us associate to any curve (C, 0) ⊂ (S, 0) a Q-cycle ZC

uniquely defined by the condition that, for all irreducible component Ei of E, the intersection
number (Ei · ZC) equals (Ei · C ′), where C ′ denotes the strict transform of C on X. We may
then quote loc. cit. Cor. (3.7.2):

Theorem 6.3. Let p : (X,E) → (S, 0) be a resolution of a rational surface singularity. Let
(C, 0) be a germ of a reduced curve on (S, 0), such that, denoting by C ′ the strict transform of
C on X, C ′ is a multi-germ of smooth curves on X.

Then, using the Q-cycle ZC associated C in the way defined above, and letting

DC := ZC + b−ZCc,

one has the following formula5:

δ(C, 0) = −1

2
(ZC · (ZC + ZK)) +

1

2
(DC · (DC + ZK)).

5Beware that, in loc. cit., the + before the second term in the right hand-side of the corresponding

formula (5) is not properly printed, yet it is a plus. One should also read formula (3) there as

D := e(Ds)− de(Ds)e = e(Ds) + b−e(Ds)c, which agrees with my definition for DC .
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Thanks to Spivakovsky’s theorem 4.2, we may apply the foregoing to a general polar curve of
a minimal singularity (C, 0) ⊂ (S, 0), X the minimal resolution of (S, 0), and ZC = −ZΩ. As a
corollary to these two theorems, we have:

Corollary 6.4. Let (S, 0) be a minimal singularity of a normal surface (hence, rational by
Thm. 2.2). The δ-invariant of the generic polar curve is a topological invariant of (S, 0), i.e.,
depends only on the data of the weighted resolution graph.

Applying the formula in 6.3 to get δ for the polar curve in concrete cases leads to huge
computations, except in some simple examples:

Example 6.5. Let (S, 0) be the singularity at the vertex of the cone over a rational normal curve
of degree n. It is the minimal singularity whose (dual) resolution graph has only one vertex of
weight n. Assume that n ≥ 3. Check that, using E to denote the irreducible exceptional divisor,
one has ZΩ = (2n− 2)/nE, ZK = −(n− 2)/nE, bZΩc = 2E and hence δ(C, 0) = 3n− 6.

In Section 8, we will obtain the result of the foregoing example (and more) from a geometric
argument, with no use of the theorems above. The problem of computing δ for the general polar
curve of any minimal singularity is solved in 11.4.

7. A characterisation of the generic polar curve in a resolution

As a consequence of the results of Sections 5 and 6, we get the following characterisation for
generic polar curves on the minimal resolution of the surface:

Theorem 7.1. Let (S, 0) be a minimal normal surface singularity, and X the minimal resolution
of (S, 0). Let C(D) be any polar curve of (S, 0) with the property that its strict transform C ′(D)
on X is exactly as depicted in Thm. 4.2.

Then C(D) is a generic polar curve PS,0 as defined in Def. 1.4, i.e., has the generic invariants
defined in 0.1 of the introduction.

Proof. The description of Prop. 5.4 rests only on the the shape of the polar curve in the resolution
X, and gives in particular the datum (ii) in 0.1 (cf. Def 1.4 and Prop. 5.5). Giraud’s theorem 6.3
gives the value of the delta invariant also from the data of the resolution. Considering the linear
system of polar curves, our special polar curve is now equisingular in the sense of Def. 0.1 to the
generic polar curve. �

Remark 7.2. We explained in [6] how such characterisations of “general” curves on a resolution
may be useful; here, it will be used in Rem. 10.6.

We also need the following inductive property for which we will use6 the explicit form of the
cycle ZΩ in (1) before Spivakovsky’s Thm. 4.2:

Proposition 7.3. Let (S, 0) be a minimal singularity of a normal surface, with dual resolution
graph Γ. Let S1 be the blow-up of (S, 0) at 0 and Oi a singular point of S1. Let Γi ⊂ Γ be the
Tyurina component corresponding to Oi as in Def. 3.5. Let ZΩi

be the cycle associated to Γi as
ZΩ is associated to Γ in Thm. 4.2.

Then, for every vertex x ∈ Γi, the corresponding component Lx on X satisfies the following
intersection property:

(2) (ZΩ · Lx) = (ZΩi
· Lx).

This means that the corresponding component Lx is intersected by exactly the same number of
branches of the generic polar curve for (S, 0) or for (S1, Oi), and the central arcs in Γi are
obviously also central arcs in Γ.

6Ideally, we would have liked not to do so; see precisely (a) of the proof of this proposition.
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Proof. Although the assertion in (2) follows easily from the explicit form of the cycles ZΩ and
ZΩi

(cf. (1) p. 97), we distinguish between:

(a) the components Lx with w(x) − vΓi(x) ≥ 2. Since x ∈ Γi, w(x) = vΓ(x); hence the
property in Γi implies that x is a central vertex in Γ. Hence Lx bears components of the
strict transform of the general polar curve of (S, 0), and here we know no method other
than computing to prove (2).

(b) the central components Lx in Γi (central vertex or boundary of a central arc). Then,
it is also central in Γ, and we believe (2) should be understood without any reference
to the cited formula, using the following remark in [21], p. 459 (first lines): “in the

neighbourhood of Lx, Ω̃ is generated by sections whose zero set is contained in the
exceptional divisor near Lx”. �

8. The contribution of the tangent cone in the polar curve

In Section 5, we said that PS,0 was formed by An-curves. Here we explain how the bunches
of A1-curves arise, and will be more precise about their geometry.

8.1. Discriminant and polar curve for cones over Veronese curves.

Remark 8.1. Let (S, 0) be the singularity of the cone over the rational normal curve of degree
m in Pm

C , whose dual graph has just one vertex, with weight m.
Denoting by Pm the polar curve for a generic projection of (S, 0) onto (C2, 0), it is just the

cone over the critical set of the projection of the rational normal curve onto P1
C, which is a set

of 2m− 2 distinct points by the Hurwitz formula.
Hence we know that here Pm is given by (2m− 2) lines in (Cm+1, 0) with:

i) δ-invariant 3m− 6 as computed in Example 6.5, from Giraud’s formula.
ii) obviously a set of 2m− 2 distinct lines in (C2, 0) as generic plane projection, denoted δm.

We can say more on the geometry of Pm in this case, and re-find the value of δ:

Lemma 8.2. The general polar curve Pm of the singularity of a cone over a Veronese curve of
degree m ≥ 3 is a set of (2m−2) lines in (Cm+1, 0), which has the generic (i.e, minimum) value
of the δ-invariant for any set of 2m− 2 lines in (Cm+1, 0), and this value is 3m− 6.

Proof. (a) We will denote by V = vm(P1) the rational normal curve of degree m in Pm
C and by

Gp(m−2,m) the Grassmann manifold of subspaces of codimension two in this Pm
C , and consider

the map

Gp(m− 2,m)→ Hilb2m−2
V

onto the Hilbert scheme parameterising the set of 2m − 2-points in V , which assign to each Λ
the critical subscheme of the projection along Λ.

Using a result of H. Flenner and M. Manaresi (in [11] 3.3-3.5), this map is generically finite,
and since both spaces have dimension 2m − 2 and the target space is irreducible, the image of
this map is dense.

(b) Now, from a result of G.M. Greuel in [13] (3.3), a set of r-lines through the origin in
Cm+1, corresponding to a set p1, . . . , pr of points in Pm

C , has the generic δ invariant, if for all d
in some bounded set of integers, their images vd(p1), . . . , vd(pr) by the corresponding Veronese

embedding vd : Pm
C → PNd

C span a projective space of maximal dimension.
If we take V ⊂ Pm

C to be a Veronese curve, one may always find such generic sets of points
on V since by composing the Veronese embeddings in Greuel’s condition with the Veronese
embedding defining V , this amounts to a genericity condition for points in P1

C.
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Hence, there is a non-trivial open subset U ⊂ Hilb2m−2
V with the property that the cone over

this set of points has the minimum delta invariant. Applying (a) gives that these points actually
occur as critical locus.

(c) A formula for the delta invariant for such a generic configuration of r lines in Cn is given
by Greuel in loc. cit. We leave it to the reader to check that it gives 3m−6 in our situation. �

8.2. Geometry of the tangent cone of a minimal singularity.

Remark 8.3. Let (S, 0) be a minimal normal surface singularity with embedding dimension N ,
and CS,0 be its tangent cone in (CN , 0).

Then, if P : CN \{0} → PN−1
C denotes the standard projection, the projective curve P(CS,0) is

a connected, non-degenerate7 curve of minimal degree in PN−1
C . Indeed, condition (i) in Def. 2.1

immediately passes to P(CS,0).
It then follows by a standard argument (cf., e.g., [3], p. 67–68) that each of its irreducible

components is a rational normal curve of a linear subspace of PN−1
C .

Let Γ be the dual graph of the minimal resolution of (S, 0). From Tyurina’s Thm. 3.2 and the
remarks following it, an irreducible component Lxi

of P(CS,0) corresponds to a vertex xi with
w(xi) > v(xi) in Γ and it is easy to compute that the degree m(xi) of the rational normal curve
Lxi

is precisely w(xi)− v(xi).

Conclusion 8.4. Hence the tangent cone CS,0 is embedded in (CN , 0) as a union of cones over
rational normal curves of degree mi intersecting along singular lines.

8.3. Scheme-theoretic critical spaces and discriminants. To study deformations of polar
curves and discriminants, we need a scheme-theoretic definition for these objects, introduced by
B. Teissier in [22] through the use of Fitting ideals.

Further, when non-isolated singularities occur, the right objects for deformations are not polar
curves but critical spaces, which also contain the singular locus of the surface.

Definition 8.5. We call CF (S, 0) the critical space of a generic projection p of a surface (S, 0)
onto (C2, 0) as defined by the Fitting ideal F0(Ωp) in OS,O and ∆F

S,0 its image as defined by

F0(p∗(OCF (S,0))) in OC2,0.

Beware, CF (S, 0) always contains Sing(S), which, if Sing(S) is not reduced to {0}, makes
CF (S, 0) even set-theoretically bigger than the polar curve PS,0 defined in Section 1. But by a
Bertini type theorem, one gets that:

Remark 8.6. (i) For a generic projection p of any reduced surface (S, 0), the intersection of the
CF (S, 0) with S \Sing(S) is reduced, and hence the divisorial part divCF (S, 0) is formed of the
generic polar curve PS,0 and of (possibly non reduced) components of Sing(S). The same is true
for div ∆F

S,0.

(ii) In particular, if (S, 0) is an isolated singularity divCF (S, 0) and div ∆F
S,0 coincide with

the PS,0 and ∆S,0 defined in Section 1.8

Lemma 8.7. Let (S, 0) be a minimal normal surface singularity, with tangent cone CS,0, and Γ
the dual graph of the minimal resolution of S. Recall that we then denote ΓTC the set of vertices
xi in Γ with w(xi) > v(xi).

7This means not contained in a hyperplane of PN−1
C .

8But as explicitly proved in [7] 3.5.2, the Fitting critical curves and discriminants for minimal singularities do

have embedded components as soon as the multiplicity is bigger than 3.
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Here, we denote by m(xi) the difference w(xi)−v(xi), and we have just seen that CS,0 is made
of cones over rational normal curves of degree m(xi) intersecting along singular lines. Hence,
considering a projection of CN onto C2 restricted to CS,0 we get that:

divCF
CS,0

=
⋃

xi∈ΓTC

Pm(xi) ∪ the singular lines in CS,0 with some multiplicity,

and

div ∆F
CS,0

=
⋃

xi∈ΓTC

δm(xi) ∪ non reduced lines,

where the Pm and δm were defined in Rem. 8.1 and Lem. 8.2.

8.4. Deformations of polar curves and discriminants. We first recall what we need from
the construction of the deformation of (S, 0) onto its tangent cone CS,0, as described in [12],
Chap. 5: let M be the blow-up of (0, 0) in S × C, and ρ : M → C the flat map induced by
composing the blow-up map with the second projection. One then shows that: for all t 6= 0,
the fiber Mt := ρ−1(t) is isomorphic to S and M0 is the sum of the two divisors on M , namely
P(CS,0 ⊕ 1) + S1, where S1 stands for the blow-up of S in 0. To this deformation, we will apply
the following:

Proposition 8.8. Let ρ : X → D be a flat map, with a section σ so that the germs (Xt, σ(t))
are isolated singularities for t 6= 0, X0 is a reduced possibly non-isolated singularity, and dim Xt

is two for all t.
Then, reducing the disk D, one may find a projection p : X → C2 × D compatible with ρ so

that, for all t ∈ D, the polar curve of pt : Xt → C2 × {t} is generic, and its image is also the
generic discriminant ∆Xt,0 as defined in Section 1.

The proposition above is well-known to specialists and may be deduced from more general
results (see also [1], Th. 3.1 ).

Applying the proposition to the foregoing deformation ρ : M → D gives that PF
S,0 deforms onto

PF
CS,0

and the same statement for the Fitting discriminants. The description of the generically

reduced branches of PF
CS,0

in Lem. 8.7 now implies:

Corollary 8.9. Let (S, 0) be a minimal singularity, with notation as in Lem. 8.7, and let us
denote by Lxi

the component of P(CS,O) corresponding to xi ∈ ΓTC . Then:
(i) The generic polar curve PS,0 of (S, 0) contains a union:

PTC =
⋃

xi∈ΓTC

Pm(xi)

of generic configuration of lines Pm(i) as described in Lem. 8.2. The bunch Pm(xi) in PTC ⊂ PS,0

is by definition the set of branches of PS,0 which are deformed onto the (scheme-theoretically)
smooth branches Pm(xi) ⊂ PF

CS,O
of Lem. 8.7.

(ii) The same statement is true for the generic discriminant ∆S,0 of (S, 0):

writing ∆TC = ∪xi∈ΓTC
δm(xi), with δm(xi) standing for 2m(xi) − 2 lines in (C2, 0), we may

just as well say that these smooth branches with pairwise distinct tangents just form a ∆TC part
in ∆S,0.
(iii) Denote by S1 the blow-up of (S, 0). The strict transforms on S1 of the smooth curves in
Pm(xi) ⊂ PS,0 intersect the exceptional divisor only in Lxi

and this intersection is transverse.

Proof. (i) A curve deforming onto a smooth curve is certainly smooth, hence locally a line. In
Lem. 8.2, we said the Pm-curves are characterised by the minimality of δ. By semi-continuity
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of this δ applied to the family deforming onto Pm(xi) ⊂ PCS,O
, we get the full conclusion for the

curves in PS,0. (ii) is follows directly from (i).
(iii) Let us denote by ρ the deformation onto the tangent cone as recalled at the beginning

of Section 8.4. The fiber ρ−1(0) contains the blow-up S1 of (S, 0) intersecting P(CS,O ⊕ 1) in
P(CS,O). Since the lines Pm(xi) in CS,O are transverse to the Veronese curve Lxi

in the P(CS,O)
at infinity, it also follows that the strict transforms of the curves in Pm(xi) ⊂ PS,0 are transverse
to the corresponding exceptional component Lxi ⊂ P(CS,O) on the blow-up S1. �

9. Limit trees

We proceed to identify the remaining part in PS,0 besides the PTC-part just exhibited. The
following limit tree construction introduced by T. de Jong and D. van Straten in [15] will turn
out to be very relevant to this description. Precisely, using the height function we defined in 3.3,
one finds in loc. cit. (1.13):

Definition 9.1. Let Γ be the dual graph of a minimal resolution of a minimal singularity of
a normal surface. A limit equivalence relation ∼ is an equivalence relation on the vertices of Γ
satisfying the following two conditions:

(a) Vertices x with height sx = 1, i.e., with w(x) > v(x), belong to different equivalence
classes,

(b) for every vertex x in Γ with height sx = k + 1, k ≥ 1, there is exactly one vertex y
connected to x with height sy = k and y ∼ x.

Then, the tree T = Γ/ ∼ is a called a limit tree associated to Γ.
It is clear that any equivalence class contains exactly one vertex xi of height one, so that we

denote these equivalences classes as vertices x̃i in T .

In fact, we only make this construction in the particular case of minimal singularities with
reduced graphs in the sense of notation 3.1, so that the definition above really correspond to the
definition in loc. cit.9

Starting with Γ as in Example 3.4 , one may associate non-isomorphic limit trees to the same
reduced graph Γ, depending on the equivalence classes chosen, namely:

Figure 4. Two distinct limit trees for the dual graph in Figure 2.

T1 : ∗
x̃1

∗
x̃4

∗
x̃2

∗
x̃3

T2 : ∗
x̃1

∗
x̃2

∗
x̃4

∗ x̃3

Notation 9.2. For any pair x, y of vertices on the dual graph Γ, we denote by C(x, y) the
(minimal) chain on Γ joigning them (including the end points). This is unique since Γ is a tree.

9For the non-reduced case, one has to use the extended resolution graph of loc. cit. to build the limit tree, to

really get a bijection between vertices of T and element of the set H considered in loc. cit. But, again, we will

not use this.
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We define the length l(x, y) to be the number of vertices on C(x, y) and the overlap ρ(x, y; z)
as the number of vertices on C(x, z) ∩ C(y, z).

As in [15], we attach to a limit tree T the following data:

• for any edge (x̃, ỹ) of T , the length l(x, y), where x, y are the corresponding vertices of
height one in the resolution graph Γ,
• for any pair of adjacent edges (x̃, z̃) and (z̃, ỹ) in T , the overlap ρ(x, y; z).

We use the notation (T, l, ρ) for the data above. In loc. cit. Lemma (1.16), it is shown that
these data determine uniquely the resolution graph Γ.

10. Description of the polar curve using the limit tree

The following is our main result; we formulate it for the polar curve PS,0, reminding the
reader that this implies the analogous statements for the discriminant ∆S,0:

Theorem 10.1. Let (S, 0) be a minimal singularity of a normal surface. Let Γ be the dual graph
of the minimal resolution of S.

Let Γr be the reduced graph associated to Γ in the sense of notation 3.1, i.e., the same graph
with the weights of the xi of height one reduced to v(xi) + 1, and let (Sr, 0) be a minimal
singularity with dual resolution graph Γr.

Then the generic polar curve PS,0 decomposes into:

PS,0 = PTC ∪ PSr

where the contact between any line in PTC and any branch in PSr,0 is one and PTC was described
in Cor. 8.9 as the “contribution of the tangent cone”.

Let T be the limit tree for Γr, as defined in Section 9 and (T, l, ρ) the set of data (length and
overlap) associated to it at the end of that section.

These data give the following easy description of PSr (as a union of An-curves):

• each edge (x̃i, x̃j) in the limit tree T defines exactly one Ali,j -curve in PSr , where li,j stands
for l(x̃i, x̃j).
• For each pair of adjacent edges (x̃i, x̃j) and (x̃j , x̃k), the contact (Def. 5.3) between the corre-
sponding Ali,j and Alj,k -curves in PSr is exactly the overlap ρ(i, k; j).
• For non adjacent edges (x̃i, x̃j) and (x̃k, x̃l), the contact between the corresponding Ali,j and
Alk,l

-curves in PSr is the minimum of the contacts between adjacent edges on the chain joining
them.

Let us first illustrate this on the following:

Example 10.2. (i) For a minimal singularity (S, 0) with dual graph as in Figure 2, p. 97, using
any of the limit trees in Figure 4, we get: PS,0 = A5 ∪A′5 ∪A3, with contact three between the
two A5 and contact one between the A5’s and the A3.
(ii) For Example 5.6, the description of the discriminant was already given there. It is now more
directly seen from the limit tree in Figure 5 given below together with the data (l, ρ), where
the lengths l are put above the edges and the ρ as smaller numbers in-between a pair of edges
(following the same convention as in [15] (1.19)).

The rest of this section is devoted to the proof of Thm. 10.1 above.

First we recall the following well-known:

Lemma 10.3. Let (S, 0) be a minimal singularity of a normal surface and m be the multiplicity
of (S, 0). Then the multiplicity of the generic polar curve (resp. discriminant) is 2m− 2.
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Figure 5. Limit tree for the reduced graph associated to the graph in Exam-
ple 5.6

∗
4x̃1
∗

2

x̃2

1

3
∗
x̃3

5
∗ x̃4

Proof. This is easily deduced from the following two facts (we refer, e.g., to [7] (3.9) and § 5):
(a) for any normal surface (S, 0) and any projection p : S → C2 whose degree equals the
multiplicity m of the surface, the multiplicity of the discriminant ∆p is m + µ − 1, where µ is
the Milnor number of a generic hyperplane section of (S, 0).
(b) When (S, 0) is minimal, µ = m− 1. �

The proof of Thm. 10.1 is by induction on the maximal height of the vertices in Γ:

A) Initial step – The maximal height in Γ is one. We prove the result by a direct argument
(independent from Spivakovsky’s theorem). Now, all the vertices xi in Γ are in ΓTC , and the
minimal resolution X of (S, 0) is the first blow-up.
(a )We know from the deformation onto the tangent cone that each exceptional component
Exi

bears the strict transform of (2ni − 2) smooth branches of the polar curve, cutting Exi

transversely at general points, with ni = wi − vi (cf. 8.9 (iii)).
(b) A general theorem of J. Snoussi ([20], Thm. 6.6), valid for any normal surface singularity,
describes the base points of the linear system of polar curves on the first normalized blow-up of
(S, 0). In our situation, the blow-up is already normal and even smooth, and hence Snoussi’s
theorem implies that here the bases points are exactly the singular points of the exceptional
divisor, i.e., the intersection points of two components Exi

and Exj
.

Let N be the number of vertices in Γ; then Γ has N − 1 edges (it is a tree), which represent
the intersections points of exceptional components.

By Bertini’s Theorem, the part of the generic polar curve PS,0 whose strict transform goes
through a base point is singular, i.e., has multiplicity at least two.

Hence, adding the contributions of the smooth branches in (a) and the singular curves in (b),
the multiplicity m(PS,0, 0) of the polar curve satisfies the inequality:

(3) m(PS,0, 0) ≥
N∑
i=1

(2ni − 2) + 2(N − 1).

Comparing this to the equality m(PS,0, 0) = 2m−2 of Lemma 10.3 above, where the multiplicity

m of (S, 0) equals the
∑N

i=1 ni, proves that (3) is in fact an equality.
Hence, each point of intersection of two exceptional components bears the strict transform

of a curve of multiplicity exactly two on (S, 0). We now claim that the curve in question is a
A2-curve singularity on (S, 0). Let C be such a curve.

Then, the multiplicity m(C, 0) = 2 is the intersection number of C with a generic hyperplane
section of (S, 0). This intersection number may be computed on X as the intersection number
of the strict transform C ′ with the reduced exceptional divisor (which is the cycle defined by
the maximal ideal of (S, 0)). Since we know C ′ intersects two exceptional components, the
intersection of C ′ with each one should be transverse.

Hence C is a branch of multiplicity two resolved in one blow-up, i.e., an A2-curve. This
completes the proof of the initial step A.
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B) The induction step – We use first the following general lemma in [7], 6.1:

Lemma 10.4. Let (S, 0) be any normal surface singularity and p : (S, 0)→ (C2, 0) any projection
with degree equal to the multiplicity ν = m(S, 0).

Then, denoting by b0 : C̃2 → (C2, 0) the blow-up of the origin, and by Σ1 the analytic fiber
product of b0 and p above (C2, 0), one proves that the normalisation of Σ1 coincides with the
normalised blow-up S1 of (S, 0), which yields the following commutative diagram:

S1

ϕ1

��

n

��@
@@

@@
@@

@
b1

$$
Σ1

p1

��

// (S, 0)

p

��
C̃2

b0 // (C2, 0)

where ϕ1 : S1 → C̃2 is the composition of the pulled-back projection p1 with the normalisation n.
The following formula can then be obtained for the discriminant ∆ϕ1 :

(4) ∆ϕ1
= (∆p)′ + (ν − r)E,

where (∆p)′ is the strict transform of the discriminant of p, E denotes the reduced exceptional
divisor, ν is the multiplicity of the germ (S, 0) and r the number of branches of a general hyper-
plane section of (S, 0).

We refer to loc. cit. for the proof, we just make precise that the discriminants in the equality
of the lemma are the divisorial parts of Fitting discriminants as defined in Section 8.3, which
are hence allowed to have non-reduced components.

Here, (S, 0) being a minimal singularity, the blow-up S1 is already normal (cf. e.g., [7], Thm.
5.9), so that S1 is just S1. The generic projection that we consider certainly fulfills the property
deg p = m(S, 0) as a necessary condition. Since the general hyperplane section of a minimal
singularity of multiplicity ν is just ν lines (cf., e.g., loc. cit., lem. 5.4), formula (4) in the above
lemma simply reads:

∆ϕ1
= (∆p)′,

and similarly, denoting by C(D) the polar curve of the projection p, C ′(D) its strict transform
on S1 and Cϕ1

the polar curve for the projection ϕ1, we get:

(5) C ′(D) = Cϕ1
.

From Thm. 3.2 (see also Def. 3.5), we know that the singularities Oi of S1 are minimal
singularities whose resolution graphs are the Tyurina components Γi.

Localising the result of (5) in Oi yields the following:

Conclusion 10.5. Let C(D) be a generic polar curve for (S, 0) and C ′(D) its strict transform
on the blow-up S1 of S at 0. Let Oi be a singular point of S1. We proved that the part of C(D)′

going through Oi is the polar curve for the projection ϕ1 obtained of the germ (S1, Oi) onto a
plane, as in the lemma above.

Remark 10.6. To apply induction, we need to know that the projection

ϕ1 : (S1, Oi)→ (C2, 0),

in question is generic, i.e., has the generic polar curve.
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Counting multiplicity as in A) gives that this projection has degree equal to the multiplicity
of (S1, Oi), but this is not enough to prove that the polar curve is generic. This will be proved
thanks to the results of Section 7.

Indeed, once we know from Conclusion 10.5 that C ′(D) is a polar curve for (S1, Oi), we may
use Prop. 7.3 to see that the strict transform of C ′(D) on X, which is also part of the strict
transform of C(D), actually fulfills the conditions of the characterisation in Thm. 7.1. Then:

Conclusion 10.7. With the same notation as in Conclusion 10.5, the part of C ′(D) going
through Oi is the generic polar curve PS1,Oi

for the germ (S1, Oi).

Now, the induction hypothesis applied to each (S1, Oi) yields that PS1,Oi is a union of An-
curves described by a limit tree Ti for Γi as stated in Theorem 10.1.

C) Reconstructing PS,0 from its strict transform

Let (S, 0) be a minimal surface singularity and let S1 be its blow-up, and E the exceptional
divisor with components E1, . . . , Er. We will denote by O1, . . . , Os the singular points of S1 and
by Q1, . . . , Qt the points of intersection of components of E which are not singular points of S1.

We already know that the generic polar curve PS,0 of (S, 0) is precisely made of:

(1) A1-curves in number
∑r

i=1(mi−1), whose strict transforms intersect each Ei as (2mi−2)
lines going through generic points of Ei, for i = 1, . . . , r,

(2) A2-curves singularities in number t, each one having its strict transform on S1 intersect-
ing a different point Qi defined above,

(3) curves whose strict transforms go through the singular points Oi of S1.

The first two points are proved by the same reasoning as in step A). Step B) applied to curves
in (3) for each Oi gives the description of the strict transforms of these curves as An-curves
described by the limit tree Ti associated to (S1, Oi).

The corresponding description, for all the curves in (3) whose strict transforms go through
the same Oi, on (S, 0) itself, is then obtained by adding 2 to all the n’s and one to the ρ by
elementary properties of these An-curves and our Def. 5.3 of the contact.

But now from [15] (1.18), we know that the data associated to limit trees Ti of Γi are related
to T exactly the same way (length:= length−2, overlap := overlap −1).

This completes the proof by induction for the first two points of Theorem 10.1, the last point
follows by definition of the contact.

11. Scott deformations and polar invariants

The following was first proved by de Jong and van Straten in [15] Thm. 2.13:

Theorem 11.1. Let (S, 0) be a minimal singularity of a normal surface with multiplicity m. Let
S1 be the blow-up of 0 in S, with singular points O1, . . . , Or. Then there exists a one-parameter
deformation ρ : X → D of (S, 0) on the Artin component such that Xs for s 6= 0 has r + 1
singular points isomorphic respectively to the (S1, Oi) for i = 1, . . . , r and to the cone over the
rational normal curve of degree m.

This has to be compared to a standard result for plane curves, attributed to C. A. Scott
in [16], where a proof is also given (see p. 460):

Lemma 11.2. Let (C, 0) ∈ (C2, 0) be a plane curve singularity of multiplicity m. Let Oi for
i = 1, . . . , r be the singularities of the first blow-up C1 of (C, 0). Then there exists a one-
parameter δ-constant deformation Γ of (C, 0) such that Γs for s 6= 0 is a plane curve which has
r + 1 singular points isomorphic respectively to the (C1, Oi) for i = 1, . . . , r and to an ordinary
m-tuple point.
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Beyond the formal analogy between Thm. 11.1 and Lem. 11.2, de Jong and van Straten prove
the result in Thm. 11.1 for the more general class of sandwiched singularities as a consequence
of their theory of decorated curves: all the deformations of these surface singularities can be
obtained from deformations of decorated curves associated to the singularity. In particular, the
Scott deformation of a decorated curve (conveniently adjusted) gives rise to the deformation in
Thm. 11.1.

As an application of our description for generic discriminants in Thm. 10.1, however, we get
first a new relation between these two deformations:

Corollary 11.3. Let the notation be the same as in Thm. 11.1. We will also call the deformation
X the Scott deformation of the surface (S, 0).

Considering a projection p of X in D× C2 as in Prop. 8.8, i.e., compatible with ρ and such
that the discriminant ∆(pt : Xt → C2) is the generic discriminant ∆t for all the singularities
in Xt, for all t, one gets a deformation ρ′ : ∆ → D of the generic discriminant ∆S,0 of (S, 0),
which is exactly the Scott deformation of this curve as defined in Lem. 11.2.

Proof. In our proof in Section 10, it is proved that the discriminant of (S1, Oi) is the part of the
strict transform of the discriminant of (S, 0) going through the image of Oi in the plane (it is of
course also obvious from the result there).

The discriminant of the cone over the m-th Veronese curve is a 2m−2-tuple ordinary point in
the plane (cf. Rem. 8.1). This is indeed the last singularity occurring in the Scott deformation
of ∆S,0, since, by Lem. 10.3, the multiplicity of the ∆S,0 is 2m− 2. �

Considering polar curves in this Scott deformation, we get the more interesting:

Theorem 11.4. Let the notation be as in Cor. 11.3. Then, the polar curve for pt : Xt → (C2, 0)
is also the generic polar curve PXt (which is a multi-germ of space curves for t 6= 0). Further, PXt

is a δ-constant deformation of the generic polar curve PS,0. Hence iterating Scott deformations,
one may compute the δ-invariant of PS,0 as sum of δ-invariants for sets of generic lines Pm as
in Lem. 8.2.

Proof. In Theorem 11.1, the deformation Xt is said to belong to the Artin-component of (S, 0).
This means that it has a simultaneous resolution, in which (cf. Lem 5.1) the PXt

are also
resolved. One then has a normalisation in family for the family PXt , which is equivalent to
“δ-constant” (cf. [22], p. 609). �

We illustrate the second statement in Thm 11.4 by giving:

Example 11.5. Taking a singularity with graph as in Figure 6, and applying twice the Scott
deformation of the surface, one gets two cones over a cubic and two cones over a conic. Hence
the polar curve deforms onto two P3’s and two P2’s (in the notation of Lem. 8.2), which gives 8
for the δ-invariant.10

Let us end this with the following:

Remark 11.6. The information on (the resolution graph of) (S, 0) given by the generic discrim-
inant ∆S,0 is of course partial: e.g., one may permute the Tyurina components in the resolution
graph of (S, 0) or the weights on the tangent cone without changing ∆S,0. However, when one
looks at deformations on (S, 0), we believe the information on the discriminant is most valuable:

(a) As a very basic occurence of this: a family of normal surfaces St with constant generic dis-
criminant ∆St,0 is Whitney-equisingular and in particular has constant topological type (encoded
by the minimal resolution graph). As a consequence of our result, these three equisingularity

10Beware that δ(P2) = 1 is not given by the formula δ(Pn) = 3n− 6, valid for n ≥ 3.
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Figure 6. Graph with weights on the vertices for example 11.5
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conditions are in fact equivalent for minimal singularities of surfaces (see also [1], Th. 3.6. and
Cor. 4.3 ).

(b) Much more generally, one can deform the discriminant ∆S,0 and ask which deformation
of (S, 0) “lies above” the curve-deformation: for example, can one deduce the existence of the
Scott deformation of the surface (S, 0) in the sense of Thm. 11.1 as deformation “lying above”
the Scott deformation of ∆S,0?

This would give a description of some deformation theory of the surface through an invari-
ant which, as opposed to the birational join construction of Spivakovsky or the decorated tree
construction of De Jong and Van Straten, is uniquely defined from (S, 0).
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Geometry (La Rábida 1981), 314–491, Lectures Notes in Math. 961, Springer Verlag, (1982).

[24] B. Teissier, On B. Segre and the theory of polar varieties, in Geometry and complex variables (Bologna,
1988/1990), 357–367, Lecture Notes in Pure and Appl. Math. 132, Dekker, New York, (1991).

[25] G.N. Tyurina, Absolute isolatedness of rational singularities and triple rational points, Func. Anal. Appl. 2,

324–332, (1968). DOI: 10.1007/BF01075685
[26] J. Wahl, Equations defining rational singularities, Ann. scient. Ec. Norm. Sup. 10, 231–264, (1977).

Lycée Joffre, 150 Allée de la citadelle, 34060 Montpellier Cedex 02 and Université Montpellier
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ON CHARACTERISTIC CLASSES OF SINGULAR HYPERSURFACES AND

INVOLUTIVE SYMMETRIES OF THE CHOW GROUP

JAMES FULLWOOD

Abstract. For every choice of an integer and a line bundle on an algebraic scheme we con-
struct an associated involution on its Chow group, and show that various notions of character-

istic class for singular hypersurfaces are interchanged via such involutions. As an application,

we apply our formulas to effectively compute some non-trivial characteristic classes associated
with a graph hypersurface. In the case of projective space we show that such involutions are

induced by involutive correspondences.

1. Introduction

Fix an algebraically closed field K of characteristic zero, let M be a smooth K-variety and let
X ⊂M be a hypersurface. For singular X there exists a generalization of the notion of ‘Milnor
number’ to arbitrary singularities which is a characteristic class supported on the singular locus
of X referred to in the literature as the Milnor class of X, which we denote by M(X). Milnor
classes have received significant interest in the recent literature [17][8][21][18][11][10], and –for a
general closed subscheme Y ↪→M– are defined (up to sign) as the difference between the Fulton
class cF(Y ) and its Chern-Schwartz-MacPherson class cSM(Y ). Both the Fulton class and CSM
class are elements of the Chow group which are generalizations of Chern classes to the realm of
singular varieties in the sense that the classes both agree with the total homology Chern class in
the smooth case1. Another characteristic class supported on the singular locus of a hypersurface
X is the Lê-class of X, denoted Λ(X) ∈ A∗X, which was first defined in [10] and named as such
as the Lê-class is closely related to the so-called Lê-cycles of X, which were initially defined
and studied independently of Milnor classes [16]. The main result announced in [10] was that if
O(X) is very ample then bothM(X) and Λ(X) determine each other in a completely symmetric
way, i.e.,

Mk(X) =

d−k∑
j=0

(−1)j+k
(
j + k
k

)
c1(O(X))j ∩ Λj+k, (1.1)

and

Λk(X) =
d−k∑
j=0

(−1)j+k
(
j + k
k

)
c1(O(X))j ∩M(X)j+k, (1.2)

where d is the dimension of the singular locus of X and an ith subscript on a class denotes its
component of dimension i.

However, it was soon discovered that formulas (1.1) and (1.2) did not in fact hold, as an
erratum appeared stating that there had been a subtle error which lead to a misidentification of
the global Lê-class Λ(X) with the Segre class s(Xs,M) of the singular scheme Xs of X in M
[9]. In any case, a direct corollary of Theorem 4.3 which we prove in §4 is that formulas (1.1)

1We give a more in-depth discussion of all classes mentioned here in §2.

http://dx.doi.org/10.5427/jsing.2016.14g
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and (1.2) do in fact hold once the components of Λ(X) in formulas (1.1) and (1.2) are replaced

by components of a class Λ̃(X) closely related to the Segre class s(Xs,M), namely

Λ̃(X) = c(O(X))c(T ∗M ⊗ O(X)) ∩ s(Xs,M) ∈ A∗Xs, (1.3)

where again Xs denotes the singular scheme of X, i.e., the subscheme of X whose ideal sheaf
is locally generated by all partial derivatives of a defining equation for X. Moreover, we require
no assumption that O(X) be very ample.

In [3], the class c(T ∗M ⊗O(X)) ∩ s(Xs,M) was taken as the definition of a class referred to
as the µ-class of the singular scheme Xs of X (as it generalized Parusiǹski’s ‘µ-number’ [19]),

denoted µ(Xs), thus the class Λ̃(X) properly realizing formulas (1.1) and (1.2) is precisely given
by

Λ̃(X) = c(O(X)) ∩ µ(Xs) ∈ A∗Xs.

Moreover, if we define Λ̃(k)(X) for k ∈ Z as

Λ̃(k)(X) = c(O(X))k ∩ µ(Xs) ∈ A∗Xs,

we show that symmetric formulas analogous to (1.1) and (1.2) hold between the Milnor class

M(X) and Λ̃(k)(X) for all k ∈ Z. As such, it is essentially the µ-class which is at the heart
of this duality with the Milnor class. Applications of µ-classes to the study of dual varieties
varieties and contact schemes of hypersurfaces were also considered in [3].

The symmetry of formulas (1.1) and (1.2) seem to suggest the existence of some non-trivial

involutive symmetry of A∗X which exchanges M(X) and Λ̃(X), which we show in §4 is in fact
the case. Furthermore, we show in §3 that for every integer n ∈ Z and line bundle L → X there
exists an associated involution

in,L : A∗X → A∗X,

and that other notions of characteristic class for singular varieties are interchanged via such
involutions as well.

In what follows we give a brief review of the characteristic classes under consideration in §2.
In §3 we define the maps in,L and show they are in fact involutions. In §4 we prove involutive
formulas which relate different characteristic classes, and we give an application of our formulas
by computing the Segre class and µ-class of a highly non-reduced scheme which is the singular
scheme of a graph hypersurface. Such classes would be extremely difficult to compute solely
from their definitions. We then close in §5 with an interpretation of the involutions in,L for X
projective in terms of involutive correspondences on projective spaces.

Acknowledgements. We are grateful to Paolo Aluffi for our discussions on the topic at hand and
for sharing with us his unpublished note [1], which inspired us to write this paper. We also
thank José Seade for sharing with us the paper [10], and our discussions on Milnor classes.

2. Characteristic classes of singular hypersurfaces

The total Chern class c(X) of a smooth K-variety X is the most basic characteristic class
for K-varieties in the sense that all other reasonable notions of characteristic class are linear
combinations of Chern classes over a suitable ring. For those interested in singularities, it is
then only natural that one would want to generalize the notion of Chern class to the realm of
singular varieties (and schemes) in such a way that that they agree with the usual Chern class
for smooth varieties. The CSM class cSM(X) of a possibly singular variety X is in some sense the
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most direct generalization, since for K = C it generalizes the Poincaré-Hopf (or Gauß-Bonnet)
theorem to the realm of singular varieties, i.e.,∫

X

cSM(X) = χ(X),

where χ(X) denotes the topological Euler characteristic with compact support, and the integral
sign is notation for taking the dimension zero component of a class2. For arbitrary K (alge-
braically closed of characteristic zero) we simply define the Euler characteristic of a K-variety
as the ‘integral’ of its CSM class. Moreover, CSM classes are a generalization of counting in the
sense that they obey inclusion-exclusion (which of course is very useful for computations). In [4],
Aluffi obtained a very nice formula for the CSM class of a hypersurface in terms of the Segre class
(see Definition 2.1) of its singular scheme, and since we are only concerned with hypersurfaces in
this note we may use his formula as a working definition (we recall Aluffi’s formula in §4, after
introducing some useful notations).

Another class generalizing the Chern class to the realm of singular varieties and schemes is
the Fulton class, which is defined for any subscheme of a smooth K-variety M . From here on
we will refer to such schemes as embeddable schemes. For X a (possibly singular) local complete
intersection, its Fulton class cF(X) agrees (after pushforward to M) with the total Chern class
of a smooth variety in the same rational equivalence class as X, and so cSM(X) differs from
cF(X) only in terms of dimension less than or equal to the dimension of its singular locus. The
difference cSM(X)− cF(X) then measures the discrepancy of cSM(X) from the Chern class of a
smooth deformation of X (parametrized by P1), and is an invariant precisely of the singularities
of X. For X with only isolated singularities (over C) the integral of cSM(X) − cF(X) agrees
(up to sign) precisely with the sum of the Milnor numbers of each singular point of X, thus it
seemed natural to refer to this class generalization of global Milnor number as the ‘Milnor class’
of X, which we denote by M(X) := cSM(X)− cF(X)3.

To define the Fulton class of an arbitrary embeddable scheme, we first need the following

Definition 2.1. Let M be a smooth K-variety and Y ↪→ M a subscheme. For Y regularly
embedded (so that its normal cone is in fact a vector bundle, which we denote by NYM), the
Segre class of Y relative to M is denoted s(Y,M), and is defined as

s(Y,M) := c(NYM)−1 ∩ [Y ] ∈ A∗Y.

For Y ‘irregularly’ embedded, let f : M̃ → M be the blowup of M along Y and denote the
exceptional divisor of f by E. The Segre class of Y relative to M is then defined as

s(Y,M) := f |E∗s(E, M̃) ∈ A∗Y,
where f |E∗ denotes the proper pushforward of f restricted to E. As E is always regularly
embedded, this is enough to define the Segre class of Y (relative to M) in any case.

The Fulton class is then given by the following

Definition 2.2. Let Y be a subscheme of some smooth variety M . It’s Fulton class is denoted
cF(Y ), and is defined as

cF(Y ) := c(TM) ∩ s(Y,M) ∈ A∗Y.
Remark 2.1. As shown in [12] (Example 4.2.6), cF(Y ) is intrinsic to Y , i.e., it is independent of
an embedding into some smooth variety (thus justifying the absence of an ambient M anywhere
in its notation).

2We note that while CSM classes were first defined over C [15], their definition was later generalized to an

arbitrary algebraically closed field of characteristic zero in [13].
3We blindly ignore any sign conventions some may associate with this class in the literature.
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Remark 2.2. While the Fulton class is sensitive to scheme structure, the CSM class of a scheme
by definition coincides with that of its support with natural reduced structure, and thus is not
sensitive to any non-trivial scheme structure. As for Milnor classes, since they are defined as
the difference between the CSM and Fulton classes, they are scheme-theoretic invariants as
well. More precisely, in the case of a possibly singular/non-reduced hypersurface X, M(X) is
an invariant of the singular scheme of X, i.e., the subscheme of X whose ideal sheaf is locally
generated by the partial derivatives of a local defining equation for X. We note that at present it
is not clear what scheme structure on the singular locus of an arbitrary local complete intersection
determines its Milnor class, though for a large class of global complete intersections it was shown
in [11] that the Milnor class is determined by a direct generalization of the notion of singular
scheme of a hypersurface to complete intersections.

As noted in Remark 2.2, while Fulton classes are sensitive to scheme structure, in some sense
they are not sensitive to the singularities of a hypersurface (or more generally a local complete
intersection), since (as mentioned earlier) the Fulton class of a local complete intersection co-
incides with that of a smooth representative of its rational equivalence class (e.g, the Fulton
class of two distinct lines in the plane is the same as the Fulton class of a smooth conic). A
scheme-theoretic characteristic class which is also sensitive to the singularities of an embeddable
scheme Y is the Aluffi class of Y , denoted by cA(Y ), which may be integrated to yield the
Donaldson-Thomas type invariant of Y . Aluffi classes were first defined by Aluffi in [5], where
he referred to them as weighted Chern-Mather classes. Behrend then later coined the term
‘Aluffi class’ in [7], where he makes the first connection between Aluffi’s weighted Chern-Mather
classes (albeit with a different sign convention) and Donaldson-Thomas invariants of Calabi-Yau
threefolds. For Y the singular scheme of a hypersurface X it was shown in [5] that (up to sign)
cA(Y ) = c(O(X))∩M(X), and since this is the only context in which we consider Aluffi classes
we refer the reader to both [7][5] for precise definitions and further discussion.

3. The involutions in,L

Let X be an algebraic K-scheme. For every (n,L ) ∈ Z × Pic(X) we now define a map
in,L : A∗X → A∗X, and show that it is an involutive automorphism of A∗X (these will be
precisely the involutions which relate various characteristic classes alluded to above). But before
doing so, we first introduce two intersection theoretic operations, which will not only provide an
efficient way for defining the involutions in,L , but will also be of computational utility.

So let α ∈ A∗X be written as α = α0+· · ·+αn, where αi is the component of α of codimension
i (in X). We denote by α∨ the class

α∨ :=
∑

(−1)iαi,

and refer to it as the ‘dual’ of α.
We now define an action of Pic(X) on A∗X. Given a line bundle L → X we denote its action

on α =
∑
αi ∈ A∗X by α⊗X L 4, which we define as

α⊗X L :=
∑ αi

c(L )i
.

It is straightforward to show that this defines an honest action (i.e.,

(α⊗X L )⊗X M = α⊗X (L ⊗M )

4The notation ‘⊗X ’ is not to be confused with a similar notation used in a different context in [14] §8.1
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for any line bundles L and M ), and we refer to this action as ‘tensoring by a line bundle’.
For E a rank r class in the Grothendieck group of vector bundles on X (note that r may be
non-positive), the formulas

(c(E ) ∩ α)
∨

= c(E ∨) ∩ α∨ (3.1)

(c(E ) ∩ α)⊗X L =
c(E ⊗L )

c(L )r
∩ (α⊗X L ) (3.2)

were proven in [2] (along with the first appearance of the ‘tensor’ and ‘dual’ operations), and
will be indispensable throughout the remainder of this note5. We now arrive at the following

Proposition 3.1. Let X be an algebraic K-scheme, n ∈ Z and L → X be a line bundle. Then
the map in,L : A∗X → A∗X given by

α 7→ c(L )n ∩ (α∨ ⊗X L )

is an involutive automorphism of A∗X (i.e., in,L ◦ in,L = idA∗X).

Proof. Let α ∈ A∗X and denote in,L (α) by β, i.e.,

β = c(L )n ∩ (α∨ ⊗X L ) . (3.3)

We will show that in,L (β) = α, which implies the conclusion of the proposition. Capping both
sides of the equation 3.3 by c(L )−n we get

c(L )−n ∩ β = α∨ ⊗X L . (3.4)

By formula 3.2, for any line bundle M → X we have(
c(L )−n ∩ β

)
⊗X M =

c(M )n

c(L ⊗M )n
∩ (β ⊗X M ),

thus tensoring both sides of equation 3.4 by L ∨ yields

c(L ∨)n ∩ (β ⊗X L ∨) = α∨. (3.5)

Finally, taking the ‘dual’ (i.e. applying formula 3.1) to both sides of equation 3.5 we have

α = c(L )n ∩ (β∨ ⊗X L ) = in,L (β),

as desired.
The fact that in,L is a homomorphism (i.e. Z-linear) follows from the fact that dualizing,

tensoring by a line bundle and capping with Chern classes are all linear operations. �

Remark 3.1. The map α 7→ α∨ sending a class to its dual coincides with in,O for every n ∈ Z.

4. Symmetric formulas abound

We now assume M is a smooth proper K-variety and X ⊂ M is an arbitrary hypersurface
(i.e., the zero-scheme associated with a non-trivial section of line bundle on M). We denote the
singular scheme of X by Xs, which is the subscheme of X whose ideal sheaf is the restriction to
X of the ideal sheaf on M which is locally generated by a defining equation for X and each of its
partial derivatives. In what follows, as we prefer to work mostly in M , we will not distinguish
between classes in A∗X and their pushforwards (via the natural inclusion) to A∗M . We will call
two classes k -L dual if one is the image of the other (and so vice-versa) under the map ik,L .

In this section, we show formulas (1.1) and (1.2) both hold when Λ(X) is replaced by Λ̃(X)
as defined via 1.3, and that these symmetric relations are consequences of the fact that M(X)

5The tensor and dual operations, along with formulas 3.1 and 3.2 are what we refer to as Aluffi’s ‘intersection-

theoretic calculus’ in §1.
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and Λ̃(X) are simply dim(M)-O(X) dual. Similar relations are then derived for other notions
of characteristic class for singular varieties.

We now recall Aluffi’s formula for the CSM class of X, which as mentioned earlier we will
take as a working definition.

Theorem 4.1 (Aluffi, [4]).

cSM(X) =
c(TM)

c(O(X))
∩ ([X] + s(Xs,M)∨ ⊗M O(X)) .

We then immediately arrive at the following

Corollary 4.2.

M(X) =
c(TM)

c(O(X))
∩ (s(Xs,M)∨ ⊗M O(X)) .

Proof. This follows directly from definitions of Fulton class and Milnor class, as

M(X) = cSM(X)− cF(X) and cF(X) = c(TM) ∩ s(X,M) =
c(TM)

c(O(X))
∩ [X].

�

The fact that formulas (1.1) and (1.2) hold after replacing Λ by Λ̃ are a special case of the
following

Theorem 4.3. Let n be an integer. Then

M(X) = in,O(X)(αX(n)) and αX(n) = in,O(X)(M(X)),

where
αX(n) := c(T ∗M ⊗ O(X))c(O(X))n+1−dim(M) ∩ s(Xs,M).

Proof. By Corollary 4.2 we have

M(X) =
c(TM)

c(O(X))
∩ (s(Xs,M)∨ ⊗M O(X))

= c(O(X))n ∩
(
c(TM)c(O)n+1−dim(M)

c(O(X))n+1
∩ (s(Xs,M)∨ ⊗M O(X))

)
3.2
= c(O(X))n ∩

((
c(TM ⊗ O(−X))c(O(−X))n+1−dim(M) ∩ s(Xs,M)∨

)
⊗M O(X)

)
3.1
= c(O(X))n ∩

((
c(TM∗ ⊗ O(X))c(O(X))n+1−dim(M) ∩ s(Xs,M)

)∨
⊗M O(X)

)
= in,O(X)(αX(n)).

The formula αX(n) = in,O(X)(M(X)) then follows as in,O(X) is an involution by Proposition
3.1. �

Remark 4.1. The most natural case of Theorem 4.3 is when n = dim(X), in which case we
have the formulas

M(X) = idim(X),O(X)(µ(Xs)) and µ(Xs) = idim(X),O(X)(M(X)),

where we recall µ(Xs) denotes the µ-class of the singular scheme Xs of X, which is defined via
the formula

µ(Xs) = c(T ∗M ⊗ O(X)) ∩ s(Xs,M) ∈ A∗Xs. (4.1)

The µ-class was first defined by Aluffi [3], and is an intrinsic invariant of the singularities of
X. Such classes arise often in the study of projective duality [20] (though they are actually
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referred to as ‘Milnor classses’ in that text!), have applications to the study of contact schemes
of hypersurfaces [3], and are closely related to the Donaldson-Thomas type invariant of Xs [7].

Remark 4.2. As n varies over Z, writing out the formula for the kth dimensional pieceMk(X)
of the Milnor class of X via Theorem 4.3 yields infinitely many symmetric formulas similar to

(1.1) and (1.2). In particular, for n = dim(M) we have αX(dim(M)) = Λ̃(X) as defined in (1.3),

a fact which implies formulas (1.1) and (1.2) indeed hold after Λ(X) is replaced by Λ̃(X), which
we now state and prove via

Corollary 4.4. Formulas (1.1) and (1.2) hold after Λ is replaced by Λ̃.

Proof. Denote the dimension of M by d. By Theorem 4.3,

M(X) = id,O(X)(αX(d))

= id,O(X)(Λ̃(X))

= c(O(X))d ∩
(

Λ̃(X)∨ ⊗M O(X)
)

= c(O(X))d ∩

(
d∑
i=0

(−1)iΛ̃d−i(X)

c(O(X))i

)

=

d∑
i=0

(−1)ic(O(X))d−i ∩ Λ̃d−i(X)

=
d∑
i=0

(−1)i(1 + c1(O(X)))d−i ∩ Λ̃d−i(X)

=

d∑
i=0

∑
j≥0

(−1)i
(
d− i
j

)
c1(O(X))j ∩ Λ̃d−i(X).

In the last equality the term c1(O(X))j ∩ Λ̃d−i(X) is of dimension d − i − j, and so Mk(X)
corresponds to setting i = d− k − j, which yields

Mk(X) =
∑
j≥0

(−1)d−k−j
(
j + k
j

)
c1(O(X))j ∩ Λ̃j+k(X),

which is equivalent (up to sign) to formula (1.1) with Λ replaced by Λ̃ via the identity(
a+ b
a

)
=

(
a+ b
b

)
.

The (possible) disparity in sign comes from the fact that in [10] their definition of Milnor class
differs from ours by a factor of (−1)d. The analogue of formula (1.2) then immediately follows

as M(X) and Λ̃(X) are d-O(X) dual. �

Remark 4.3. We note that it was much more work to write out formulas for the individual
components Mk(X) than that of the total Milnor class M(X) (as in Theorem 4.3). And this
is a general principle when computing characteristic classes, i.e., it is often simpler to compute
a total class rather than its individual components.

Remark 4.4. As mentioned in §2, in [5] Aluffi defined a scheme-theoretic characteristic class
for arbitrary embeddable K-schemes which Behrend refers to as the ‘Aluffi class’ in his theory
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of Donaldson-Thomas type invariants [7]. The analogue of the Gauß-Bonnet theorem in this
theory is the formula ∫

Y

cA(Y ) = χDT(Y ),

where Y is an embeddable scheme with Aluffi class cA(Y ), and χDT(Y ) denotes the Donaldson-
Thomas type invariant of Y . If Y is the singular scheme of a hypersurface X it was shown in
[5] that

cA(Y ) = c(O(X)) ∩M(X).

Thus capping both sides of the formulas constituting Theorem 4.3 with c(O(X)) then yields

Corollary 4.5. Let n be an integer, Y be the singular scheme of a hypersurface X and let αX(n)
be defined as in Theorem 4.3. Then

cA(Y ) = in+1,O(X)(αX(n)) and αX(n) = in+1,O(X)(cA(Y )).

We now give an application of such formulas by computing classes that would be considerably
difficult using only their definitions.

Example 4.6. Let X be the hypersurface in P4 given by

X : (t1t2t3t4 + t1t2t3t5 + t1t2t4t5 + t1t3t4t5 + t2t3t4t5 = 0) ⊂ P4.

Such a hypersurface is the graph hypersurface associated with the ‘banana graph’ with 5 edges
[6]. The homogeneous ideal associated with its singular scheme Xs is then

(t2t3t4 + t2t3t5 + t2t4t5 + t3t4t5, . . . , t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4).

In [6], the Milnor class of X was computed as

M(X) = 60H4 − 10H3,

where H denotes the class of a hyperplane in P4. By Theorem 4.3 we have

µ(Xs) = c(O(X))3 ∩ (M(X)∨ ⊗P4 O(X))

= (1 + 4H)3 ·
(

60H4

(1 + 4H)4
+

10H3

(1 + 4H)3

)
=

60H4

(1 + 4H)
+ 10H3

= 60H4(1− 4H) + 10H3

= 60H4 + 10H3,

so that the µ-class of the singular scheme of X is in fact the dual of the Milnor class. The Aluffi
class of Xs is then given by

cA(Xs) = c(O(X)) ∩M(X) = (1 + 4H)(60H4 − 10H3) = 20H4 − 10H3,

so that the Donaldson-Thomas type invariant of Xs is 20. By definition of the µ-class (4.1) we
may compute the Segre class of Xs in P4 via the formula

s(Xs,P4) = c(T ∗P4 ⊗ O(X))−1 ∩ µ(Xs),

thus

s(Xs,P4) =
(1 + 4H)

(1 + 3H)5
· (60H4 + 10H3) = −50H4 + 10H3.

We conclude this section by identifying the ‘n-O(X) dual partners’ of the CSM class of X,
which we state via the following
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Theorem 4.7. Let n be an integer. Then

cSM(X) = in,O(X)(νX(n) + αX(n)) and νX(n) + αX(n) = in,O(X)(cSM(X)),

where

νX(n) = c(T ∗M ⊗ O(X))c(O(X))n−dim(M) ∩ −[X]

and αX(n) is as defined in Theorem 4.3.

Proof. By Proposition 3.1 and Theorem 4.3, the proof amounts to showing

cF(X) = in,O(X)(νX(n)),

as cSM(X) = cF(X) +M(X). Thus

cF(X) = c(TM) ∩ s(X,M)

= c(TM) ∩
(
c(NXM)−1 ∩ [X]

)
= c(TM) ∩ ([X]⊗M O(X))

= c(O(X))n ∩
(
c(TM)c(O)n−dim(M)

c(O(X))n
∩ ([X]⊗M O(X))

)
3.2
= c(O(X))n ∩

((
c(TM ⊗ O(−X))c(O(−X))n−dim(M) ∩ [X]

)
⊗M O(X)

)
3.1
= c(O(X))n ∩

((
c(T ∗M ⊗ O(X))c(O(X))n−dim(M) ∩ −[X]

)∨
⊗M O(X)

)
= in,O(X)(νX(n)),

as desired. �

5. in,L via involutive correspondences

Let M and N be smooth proper K-varieties. A correspondence from M to N is a class
α ∈ A∗(M ×N), and such an α induces homomorphisms

α∗ ∈ Hom(A∗M,A∗N) and α∗ ∈ Hom(A∗N,A∗M)

given by

β
α∗7−→ q∗(α · p∗β), γ

α∗

7−→ p∗(α · q∗γ),

where p is the projection M × N → M , q is the projection M × N → N and ‘·’ denotes the
intersection product in A∗(M × N) (which is well defined via the smoothness assumption on
Mand N). Correspondences are at the heart of Grothendieck’s theory of motives, and generalize
algebraic morphisms in the sense that we think of an arbitrary class α ∈ A∗(M × N) as a
generalization of the graph Γf of a (proper) morphism f ∈ Hom(M,N). Just as a morphism f ∈
Hom(M,N) induces morphisms on the corresponding Chow groups via proper pushforward (f∗)
and flat pullback (f∗), the morphisms α∗ and α∗ are direct generalizations of proper pushforward
and flat pullback as f∗ = (Γf )∗ and f∗ = (Γf )∗. Moreover, correspondences may be composed
in such a way that the functorial properties of proper pushforward and flat pullback still hold,
i.e., (α ◦ ϑ)∗ = α∗ ◦ ϑ∗ and (α ◦ ϑ)∗ = ϑ∗ ◦ α∗ for composable correspondences α and ϑ. From
this perspective we were naturally led to the question of whether or not for an algebraic scheme
X the involutions in,L defined in §3 are induced by involutive correspondences in A∗(X ×X).
We answer this question for X = PN via the following
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Theorem 5.1. Let N be a positive integer and (n,m) ∈ Z × Z. Then there exists a unique
α =

∑
i+j≤N ai,jx

iyj ∈ Z[x, y]/(xN+1, yN+1) ∼= A∗(PN × PN ) such that in,O(m) = α∗
6, and the

coefficients of α are given by

aN−j,i = (−1)j
(
n− j
i− j

)
mi−j .

Proof. Consider PN × PN with the natural projections onto its first and second factors, which
we denote by p and q respectively. Denote by x the hyperplane class in the first factor and by
y the hyperplane class in the second factor (we use the same notations for their pullbacks via

the natural projections). Let β =
∑N
i=0 βix

i ∈ A∗PN . It follows directly from the definition of
in,O(m) and induction that

in,O(m)(β) =
N∑
i=0

 N∑
j=0

(−1)j
(
n− j
i− j

)
mi−jβj

 yi.

We now let α =
∑
i+j≤N ai,jx

iyj ∈ A∗(PN × PN ) be arbitrary, compute α∗(β) = q∗(α · p∗β),

set its coefficients equal to those of in,O(m)(β), and then observe that this determines the ai,j
uniquely. Since we are not using a notational distinction for x and its pullback p∗x, p∗β retains
exactly the same form as β in its expansion with respect to x. Now α · p∗β is just usual
multiplication in the ring Z[x, y]/(xN+1, yN+1), and q∗(α · p∗β) is just the coefficient of xN in
the expansion of α · p∗β with respect to x, which yields

α∗(β) =
N∑
i=0

 N∑
j=0

aN−j,iβj

 yi.

By setting α∗(β) = in,O(m)(β) the ai,j are then uniquely determined to be as stated in the
conclusion of the theorem.

To see that q∗(γ) for arbitrary γ ∈ A∗(PN×PN ) is indeed the coefficient of xN in the expansion
of γ with respect to x, one may first view q as the natural projection of the projective bundle
P(E ) with E the trivial rank N + 1 bundle over PN and OP(E )(1) = x. Then by the projection

formula, to compute q∗(γ) we need only to compute q∗(x
i) in the expansion of γ with respect

to x, which we do using the notion of Segre class of a vector bundle7. By definition of the Segre
class of E , denoted s(E ), we have

s(E ) := q∗(1 + x+ x2 + · · · ).

And since s(E ) = c(E )−1 = 1, matching terms of like dimension we see that all powers of x map
to 0 except for xN which maps to 1. �

It would be interesting to determine objects of the bounded derived category of PN × PN
whose Chern characters coincide with α as given in Theorem 5.1. And certainly there must be
a larger class of varieties (other than projective spaces) for which an analogue of Theorem 5.1
holds.

6Note that α∗ = α∗ in this case.
7We note that the notion of Segre class of a vector bundle is different than the relative Segre class we define

in §2 (see [12], Chapter 3 for a precise definition).
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ON SAITO’S NORMAL CROSSING CONDITION

MATHIAS SCHULZE

Abstract. Kyoji Saito defined a residue map from the logarithmic differential 1-forms along

a reduced complex analytic hypersurface to the meromorphic functions on the hypersurface.
He studied the condition that the image of this map coincides with the weakly holomorphic

functions, that is, with the functions on the normalization. With Michel Granger, the author
proved that this condition is equivalent to the hypersurface being normal crossing in codimen-

sion one. In this article, the condition is given a natural interpretation in terms of regular

differential forms beyond the hypersurface case. For reduced equidimensional complex ana-
lytic spaces which are free in codimension one, the geometric interpretation of being normal

crossing in codimension one is shown to persist.

Introduction

Saito [29] introduced the complex of logarithmic differential forms along a reduced hypersur-
face D in a smooth complex manifold S. It is defined as

Ω•(logD) = {ω ∈ Ω•S(D) | dID ∧ ω ⊆ Ω•+1
S }

where ID is the ideal sheaf of D. Locally, if ID = 〈h〉, such forms are characterized by having
a presentation as

gω =
dh

h
∧ ξ + η

where ξ ∈ Ω•−1
S and η ∈ Ω•S have no pole and g ∈ OS maps to a non-zero divisor in OD. He

defined a logarithmic residue map

(0.1) ρD : Ω•(logD)→MD ⊗OD
Ω•−1
D , ω 7→ ξ

g
|D

where MD = Q(OD) denotes the meromorphic functions on D. This residue map gives rise to
an exact sequence

(0.2) 0 // Ω•S
// Ω•(logD)

ρD // σ•−1
D

// 0

where σ•−1
D denotes the image of ρD. Let νD : D̃ → D be a normalization and note that

MD = MD̃. Saito [29, (2.8),(2.11)] showed that

(0.3) (νD)∗OD̃ ⊆ σ
0
D

and that, if D is a plane curve, equality holds if and only D is normal crossing. Generalizing this
result to reduced hypersurfaces D, Granger and the author [13] showed that equality in (0.3)
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is equivalent to D being normal crossing in codimension one. The purpose of this article is to
further generalize this preceding result.

In §2, we suggest a more general point of view for the equality in (0.3). It is based on
Aleksandrov’s result [2, §4, Cor. 2] that σ•D = ω•D where the latter denotes the regular differential
forms on D. With Tsikh [4, Thm. 2.4] (or [5, Thm. 3.1]) and later in [3, Thm. 2] he generalized
this result to complete intersections using (different versions of) multilogarithmic differential
forms and their residues. We relate it to Aleksandrov’s multilogarithmic residue map and we
comment on some claims made in [3]. Regular differential forms are defined under more general
hypotheses. More specifically let X be a reduced equidimensional complex analytic singularity
with normalization νX : X̃ → X. Due to normality of X̃, we have OX̃ = ω0

X̃
(see Corollary 2.3).

We shall therefore refer to the equality

(νX)∗ω
0
X̃

= ω0
X

resulting from (0.3) as Saito’s normal crossing condition. Our approach is independent of an
embedding and does not require a generalization of logarithmic differential forms such as mul-
tilogarithmic differential forms in the complete intersection case. While Aleksandrov and Tsikh
use Barlet’s description of regular differential forms in the complex analytic context (see [7]) we
prefer to rely on a general algebraic approach due to Kersken that is reviewed in §1. In §4 and §5,
we study Saito’s normal crossing condition for reduced curve and Gorenstein singularities. In §6
we give it the following geometric interpretation analogous to [13, Thm. 1.2] in the hypersurface
case.

Theorem 0.1. Let X be a reduced equidimensional complex analytic singularity which is free
in codimension one. Then X satisfies Saito’s normal crossing condition if and only if X is a
normal crossing divisor in codimension one. �

The additional freeness hypothesis replaces the fact that any reduced hypersurface is a free
divisor in codimension one. Our generalization of freeness is motivated by Aleksandrov–Terao
theorem (see [1, §2 Thm.] and [38, Prop. 2.4]) stating that freeness of a reduced hypersurface
is equivalent to Cohen–Macaulayness of the Jacobian ideal. We call a reduced Gorenstein sin-
gularity free if the ω-Jacobian ideal is a Cohen–Macaulay ideal (see Definition 6.1). In case of
complete intersections of codimension k Pol [28, Thm. 4.5] showed that freeness is equivalent to
the projective dimension of multilogarithmic differential k forms being equal to (or equivalently
bounded by) k − 1. Her approach is a direct generalization of the one taken in [13].

Acknowledgments. The author is grateful to Michel Granger, to Delphine Pol, and to the
anonymous referee for helpful comments.

1. Regular and logarithmic differential forms

Fix a complete valued field k of characteristic 0 and let A be a local analytic k-algebra of
dimension r ≥ 1. In particular A is Noetherian, Henselian and catenary (see [14, II.§0.1,§6.2]).
Informally we refer to A as a singularity.

If A admits a positive grading in the sense of Scheja and Wiebe (see [34, §3]) then we call it
a quasihomogeneous singularity. This means that mA is generated by eigenvectors of an Euler
derivation χ ∈ Derk(A,mA) with positive rational eigenvalues w1, . . . , wn. In this case one can
write χ =

∑n
i=1 wixi∂xi

. If w1 = · · · = wn then we call the grading a standard grading and A a
homogeneous singularity.

We denote by Q(−) the total ring of fractions and abbreviate L := Q(A). Let

R = k〈〈x1, . . . , xn〉〉



126 MATHIAS SCHULZE

denote the regular ring of convergent power series over k in n variables x1, . . . , xn. It is a
formal power series ring in case the valuation is trivial. For a suitable n, pick a finite k-algebra
homomorphism

(1.1) R→ A

of codimension m = n− r.

1.1. Kersken’s regular differential forms. We begin by reviewing Kersken’s description of
regular differential forms (see [19, 18, 20]). Denote by ΩA := ΩA/k the universally finite differen-
tial algebra of A over k (see [21, §11]). In particular, ΩA =

⊕
p∈N ΩpA is graded with differential

d : ΩA → ΩA[1] of degree 1. Let C(A) be the (unaugmented) Cousin complex of A

C(A) : 0→ C0(A)→ C1(A)→ · · ·
with respect to A-active sequences (see [19, §2]). It is a resolution of A if and only if A is Cohen–
Macaulay and a (minimal) injective resolution if and only if A is Gorenstein (see [37]). Setting
CΩ(A) := C(A)⊗A ΩA, the residue complex of A is the complex of graded (ΩA, d)-modules

DΩ(A) := HomΩR
(ΩA, CΩ(R))[m;m]

where HomΩR
denotes graded HomΩR

and [m;m] signifies a shift by m of both the ΩR-module
and Cousin complex grading. Notably this definition is independent of the choice of (1.1) (see
[18, (3.3)]). We write δ both for the Cousin differential of C(R) and induced differentials. The
0th cohomology of DΩ(A) with respect to δ is a graded (ΩA, d)-module

ωA := H0(DΩ(A), δ),

the complex of regular differential forms over A (see [18, p. 442]). For any graded ΩR-module
M one can identify (see [18, (3.6)])

(1.2) HomΩR
(M,CΩ(R)) = HomR(M [n],ΩnR ⊗R C(R)).

Since C(R) is an injective resolution of R, this implies that CΩ(R) is an injective resolution of
ΩR. It follows that (see [18, §6])

ωA = ExtmΩR
(ΩA,ΩR)[m]

which has graded components

(1.3) ωpA = ExtmR (Ωr−pA ,ΩnR) = HomA(Ωr−pA , ωrA)

due to (1.2), adjunction of −⊗AA and HomR(A,−), and since HomR(A,C(R)q) = 0 for q < m.
Kersken [18, §5] constructs a trace form1 cA ∈ ω0

A. In case (1.1) is a Noether normalization
(see [14, II.§2.2]), cA ∈ ω0

A = HomΩR
(ΩA,ΩR) restricts to (see [18, (5.1.4)])

(1.4) cA|A⊗RΩR
= TrA/R⊗RΩR : A⊗R ΩR → ΩR

where TrA/R ∈ HomR(A,R) is the trace of A over R (see [30, (10.3)]). It induces a unique trace
map of complexes of (ΩA, d)-modules (see [18, (5.6)])

γA : CΩ(A)→ DΩ(A), 1 7→ cA

which is an isomorphism at regular primes of A (see [18, (5.7.2)]).
If A is reduced and equidimensional then

(1.5) ΩA ⊗A L = C0
Ω(A)

γ0
A

∼=
// D0

Ω(A)

1Its construction uses that k has characteristic 0.
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is an isomorphism. It serves to identify ωA with its preimage

(1.6) σA := (γ0
A)−1(ωA),

the complex of regular (meromorphic) differential forms over A. Under the identification (1.3)
becomes

(1.7) σpA = HomA(Ωr−pA , σrA).

Composing ΩA → ΩA/T (ΩA) with H0(γA) yields a map

(1.8) cA : ΩA → ωA

which is an isomorphism at regular primes of A (see [18, (5.7.3)]). We denote its cokernel by

(1.9) NA := coker cA.

The preceding objects then fit into a commutative diagram

(1.10) ΩA ⊗A L
γ0
A

∼=
// D0

Ω(A)

σA
∼= //?�

OO

ωA
?�

OO

ΩA

CC���������������� cA

44iiiiiiiiiiiiiiiiiiiiii

::ttttttttt

where the leftmost map is the canonical one. In particular, its degree-0 part A ↪→ L factors
through an inclusion

(1.11) c0A : A ↪→ σ0
A
∼= ω0

A.

If (1.1) is a presentation R� A with kernel a then (see [21, Props. 3.8, 11.9])

(1.12) ΩpA = ΩpR/(aΩpR + da ∧ Ωp−1
R ) =

p∧
Ω1
A.

In other words, ΩA is an exterior differential algebra. It follows that

(1.13) DΩ(A) = AnnCΩ(R)(aΩR + da ∧ ΩR)[m;m].

Elements of CΩ(R) can be represented by residue symbols (see [19, §2]), which lie by definition
in the image of some map

(1.14) Φf1,...,fq : (ΩpR/〈f1, . . . , fq〉ΩpR)g ↪→ CqΩ(R), ξ/g 7→
[

ξ/g
f1, . . . , fq

]
,

where f1, . . . , fq, g is an R-sequence. Injectivity of this map follows from [19, (2.6)] and Wiebe’s
Theorem (see [21, E.21]) using that the ΩpR are free R-modules. The (induced) Cousin differential
δ operates as (see [19, (2.5)])

δ

[
ξ/g

f1, . . . , fq

]
=

[
ξ

f1, . . . , fq, g

]
.

Thus, elements of ker δ are of the form

[
ξ

f1, . . . , fq

]
where ξ ∈ ΩpR/〈f1, . . . , fq〉ΩpR. One may

assume that f1, . . . , fm ∈ a after multiplying ξ by a suitable transition determinant (see [19,
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(2.5.3)]). Combined with (1.13) this yields the explicit description (see [20, (1.2)])

ωpA =
{[

ξ
f1, . . . , fm

] ∣∣∣ ξ ∈ Ωp+mR , f1, . . . , fm ∈ a R-sequence,(1.15)

aξ ≡ 0 ≡ da ∧ ξ mod 〈f1, . . . , fm〉ΩR
}
.

1.2. Aleksandrov’s multilogarithmic residue. In the following we describe Aleksandrov’s
generalization (see [3]) to complete intersections of (0.2) in relation with Kersken’s description of
regular differential forms in §1.1. To this end, consider A = R/a with a = 〈h1, . . . , hm〉 generated
by an R-sequence h1, . . . , hm. Then (see [18, p. 445])

(1.16) γqA :

[
ξ/s

f1, . . . , fq

]
7→
[
dh ∧ ξ/s

h, f1, . . . , fq

]
where dh := dh1 ∧ · · · ∧ dhm. In particular,

(1.17) cA = γ0
A(1) =

[
dh
h

]
.

The following types of differential forms with simple poles where introduced by Saito (see
[29]) and implicitly by Aleksandrov (see [3]). Notably the multilogarithmic differential forms of
Aleksandrov and Tsikh (see [4, 5]) not considered here have arbitrary poles (see [28, Appendix B]
for details).

Definition 1.1. Let h = h1, . . . , hm be an R-sequence and set h := h1 · · ·hm. Then the
logarithmic differential forms along 〈h〉 and the multilogarithmic differential forms along h are
defined respectively by

ΩR(log 〈h〉) :=
{
ω ∈ 1

h
ΩR

∣∣∣ dh ∧ ω ∈ ΩR

}
,

ΩR(log h) :=
{
ω ∈ 1

h
ΩR

∣∣∣ ∀j = 1, . . . ,m : dhj ∧ ω ∈
m∑
i=1

hi
h

ΩR

}
.

Lemma 1.2. Let h = h1, . . . , hm be an R-sequence.

(a) An alternative definition of logarithmic differential forms reads

(1.18) ΩR(log 〈h〉) =
{
ω ∈ 1

h
ΩR

∣∣∣ ∀j = 1, . . . ,m : dhj ∧ ω ∈
hj
h

ΩR

}
.

In particular, ΩR(log 〈h〉) ⊆ ΩR(log h) with equality for m = 1.
(b) There is an inclusion

dhi ∧ ΩR(log 〈h〉) ⊆ ΩR(log 〈h/hi〉).

(c) If m ≤ 2 then

ΩR(log 〈h〉) ∩
m∑
i=1

hi
h

ΩR =
m∑
i=1

ΩR(log 〈h/hi〉).

Proof.
(a) For ω ∈ ΩR(log 〈h〉), we have

m∑
i=1

h

hi
dhi ∧ (hω) = hdh ∧ ω ∈ hΩR
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with dhi ∧ (hω) ∈ ΩR. Note that the factors h1, . . . , hm of h are pairwise coprime because they
form an R-sequence. It follows that dhi ∧ (hω) ∈ hiΩR for i = 1, . . . ,m. Conversely, this latter
condition implies that dh ∧ ω =

∑m
i=1

dhi

hi
∧ (hω) ∈ ΩR.

(b) For ω ∈ ΩR(log 〈h〉), (a) yields

dhj ∧ dhi ∧ ω ∈
hi
h

ΩR ∩
hj
h

ΩR =
hihj
h

ΩR

for i 6= j and hence dhi ∧ ω ∈ ΩR(log 〈h/hi〉).
(c) Let

∑m
i=1 ωi ∈ ΩR(log 〈h〉) with ωi ∈ hi

h ΩR and set ηi := h
hi
ωi ∈ ΩR. By (a) and (b), we

have dhj∧
∑
i6=j ωi ∈

hj

h ΩR and hence
∑
i6=j hidhj∧ηi ∈ hjΩR for j = 1, . . . ,m. Since m ≤ 2 this

implies that dhj ∧ ηi ∈ hjΩR and hence dhj ∧ ωi ∈ hihj

h ΩR for i 6= j. Thus, ωi ∈ Ω(log 〈h/hi〉)
for i = 1, . . . ,m. �

The following sequences appear in [3, §4, Lem. 1, §6, Thm. 2].

Proposition 1.3. Let h = h1, . . . , hm be an R-sequence. Then there is a commutative diagram
with exact top row (and exact bottom row if m ≤ 2)

(1.19) 0 //
∑m
i=1

hi

h ΩR // ΩR(log h)
ρh
// ωA // 0

0 //
∑m
i=1 ΩR(log 〈h/hi〉)

?�

OO

// ΩR(log 〈h〉)
?�

OO

ρ′h
// ωA

where ρh denotes the composition

(1.20) ΩR(log h) �
� h· // ΩR // ΩR/〈h〉ΩR �

� Φh
// ωA,

ω = η
h

� //

[
η
h

]
= z,

with Φh from (1.14).

Proof. By (1.15) and Definition 1.1 the map ρh is well-defined. Using [19, (2.5.3)] and Wiebe’s
Theorem (see [21, E.21]), any element of ωA can be rewritten as in (1.15) with f1, . . . , fm = h.
The vanishing conditions in (1.15) reduce to

dhj ∧ ξ ≡ 0 mod 〈h〉ΩR.

Thus, the map ρh is surjective with kernel arising from the middle map in (1.20). If m ≤ 2, then
the left square in (1.19) is cartesian due to Lemma 1.2.(c). �

We deduce the following characterization of multilogarithmic differential forms appearing in
[3, Thm. 1] (see also [4, Prop. 2.1] or [5, Prop. 1.1]).

Corollary 1.4. Let h = h1, . . . , hm be an R-sequence such that A = R/〈h〉 is reduced. For any
ω ∈ ΩR(log h) there is a g ∈ R with g ∈ Areg, a ξ ∈ ΩR, and ηi ∈ hi

h ΩR for i = 1, . . . ,m, such
that

(1.21) gω =
dh

h
∧ ξ +

m∑
i=1

ηi.

Conversely, any ω ∈ ΩR,h admitting a representation (1.21) lies in ΩR(log h).
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Proof. Let ω and z be as in (1.20). By the isomorphism (1.5) and by (1.16), there is a g ∈ R
and a ξ ∈ ΩR as in the claim such that

(1.22) ρh(gω) =

[
gη
h

]
= gz = γ0

A(ξ) =

[
dh ∧ ξ
h

]
= ρh

(
dh

h
∧ ξ
)
.

Then (1.21) follows from the exact sequence (1.19). Conversely let ω = η
h ∈ ΩR,h satisfy (1.21).

Then η ∈ ΩR with

gdhj ∧ η =
m∑
i=1

dhj ∧ (hηi) ∈
m∑
i=1

hiΩR

and hence dhj ∧ η ∈
∑m
i=1 hiΩR for j = 1, . . . ,m since h1, . . . , hm, g is an R-sequence. It follows

that ω ∈ ΩR(log h). �

Remark 1.5.
(a) For m = 1 the upper and lower sequences in (1.19) coincide by Definition 1.1.
(b) It follows from (1.21) and (1.22) that (γ0

A)−1 ◦ ρh coincides with Aleksandrov’s multiple
residue defined as in (0.1) (see [3, §4]).

(c) Aleksandrov claims exactness of the bottom row for any m and surjectivity of ρ′h in (1.19)

(see [3, Thm. 2]). However Pol showed that in general ρ′h is not surjective (see [28, Prop. 4.14]).

2. Saito’s normal crossing condition

In addition to the hypotheses of §1 we shall assume from now on that k is algebraically closed
and that A is r-equidimensional. The integral closure of A in L = Q(A),

(2.1) νA : A ↪→ Ã,

is a finite k-algebra homomorphism (see [14, II.§7.2]), the normalization of A. Denote by
p1, . . . , ps the minimal primes of A and set

Ai := A/pi, Li := Q(Ai).

Then dimAi = r by r-equidimensionality of A. Since A is reduced,

(2.2) piApi
= 0, Li = Api

.

For the same reason (see [14, II.§7.2]),

(2.3) A ↪→
s∏
i=1

Ai ↪→
s∏
i=1

Ãi = Ã ↪→
s∏
i=1

Li = L

where each Ãi = Ãi is a local analytic k-algebra. Note that L = Q(Ã) and Li = Q(Ãi). The

objects of §1.1 can be defined verbatim for Ã compatible with the product decomposition (2.3).
In particular, γÃ =

⊕s
i=1 γÃi

and

ωÃ =
s⊕
i=1

ωÃi
, σÃ =

s⊕
i=1

σÃi
.

For any q ∈ Spec Ã lying over p = A ∩ q ∈ SpecA,

(2.4) dimAp = r − dimA/p = r − dim Ã/q = dim Ãq

using that A and Ã are r-equidimensional and catenary (see [25, Prop. 2.5.10])
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Proposition 2.1. There is a commutative diagram

(2.5) ΩÃ
cÃ // ωÃ� _

��

σÃ∼=

γ0
Ã
|

oo � � //
� _

��

ΩÃ ⊗Ã L

ΩA
cA //

∧
dνA

OO

ωA σA∼=

γ0
A|oo � � // ΩA ⊗A L

∼=

OO

where the horizontal compositions are the canonical maps.

Proof. Let (1.1) be a Noether normalization of A; composed with (2.1) it gives a Noether nor-

malization of Ã. Setting m = 0 in (1.3) it serves to compute both ωA and ωÃ. Note that

A⊗R Q(R) = L = Ã⊗R Q(R) and hence (see [30, §10])

(2.6) TrÃ/R |A = TrA/R .

There is a natural map of complexes of graded (ΩA, d)-modules DΩ(Ã)→ DΩ(A). By (1.4) and
(2.6) it maps cÃ|Ã⊗RΩR

7→ cA|A⊗RΩR
. Together with the left claimed injectivity in diagram (2.5)

this implies that cÃ 7→ cA (see [19, (5.1)]). The commutativity of diagram (2.5) follows using
diagram (1.10).

The inclusion (2.1) has torsion cokernel, so applying HomR(−,ΩnR) first gives

(2.7) ωr
Ã
↪→ ωrA

due to (1.3). Consider the short exact sequence (see [21, Cor. 11.8, Prop. 11.17])

(2.8) 0 // T 1(Ã/A) // Ã⊗A Ω1
A

Ã⊗dνA// Ω1
Ã

// Ω1
Ã/A

// 0.

Applying
∧p

to (2.8), which is right-exact and commutes with base change, (1.12) gives a short
exact sequence

(2.9) 0 // T p(Ã/A) // Ã⊗A ΩpA
Ã⊗

∧p dνA
// Ωp
Ã

// Ωp
Ã/A

// 0

where T p(Ã/A) is the image of T 1(Ã/A) ⊗A Ωp−1
A (see [11, Prop. A.2.2]). Both Ω1

A and Ω1
Ã

have rank r (see [32, (4.4)]). By finiteness of Ã over A, Ω1
Ã/A

is the universal differential module

which is compatible with localization and hence Ω1
Ã/A
⊗Ã L = 0. It follows that T p(Ã/A) and

Ωp
Ã/A

are torsion. In particular, this gives the right vertical isomorphism in diagram (2.5) and,

since ωr
Ã

is torsion-free, we have

(2.10) HomÃ(T p(Ã/A), ωr
Ã

) = 0 = HomÃ(Ωp
Ã/A

, ωr
Ã

).

Now (2.7) yields the upper inclusion and (2.9) and (2.10) the lower inclusion in the following
diagram

(2.11) ωp
Ã

HomA(Ωr−pA , ωr
Ã

) �
�

// HomA(Ωr−pA , ωrA)

HomÃ(Ωr−p
Ã

, ωr
Ã

) �
�

// HomÃ(Ã⊗A Ωr−pA , ωr
Ã

) ωpA

which proves injectivity of the vertical maps in diagram (2.5). �

The following fact stated by Kersken (see [20, p.6]) goes back to a result of Serre (see [24,
p. 5]).
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Proposition 2.2. If A is normal then ωA is a reflexive A-module.

Proof. By Serre’s criterion, normality of A is equivalent to conditions (R1) and (S2). Let (1.1)
be a presentation R� A with kernel a and let q ∈ SpecA.

First assume that depthAq ≤ 1. Then dimAq ≤ 1 by (S2) and Aq is regular by (R1). It
follows that (1.8) induces an isomorphism ωA,q ∼= ΩA,q and that ΩA,q =

∧
Ω1
A,q is free (see [18,

(5.7.3)] and [32, (8.7)]). In particular, ωA,q is reflexive in this case.
Then assume that depthAq ≥ 2 and let p ∈ SpecR be the preimage of q. Since R is Cohen–

Macaulay, grade(a, R) = m (see [8, Thm. 2.1.2.(b)]) and there is an R-sequence
f = f1, . . . , fm ∈ a. Then Rp/

〈
f
〉
� Ap = Aq and since Rp and hence Rp/

〈
f
〉

is Cohen–
Macaulay (see [8, Thm. 2.1.3.(a)])

grade(p, Rp/
〈
f
〉
) = dim(Rp/

〈
f
〉
) ≥ dimAq ≥ depthAq ≥ 2.

Using Ω0
A = A and ΩnR

∼= R in (1.3), ωrA
∼= HomR(A,R/

〈
f
〉
) (see [8, Lem. 1.2.4]). It follows that

(see [8, Ex. 1.4.19])

depthωrA,q = grade(q, ωrA,q) = grade(p,HomRp
(Aq, Rp/

〈
f
〉
)) ≥ 2.

Thus, reflexivity of ωrA and then of ωpA for all p follows (see [8, Prop. 1.4.1.(b)]). �

Corollary 2.3. If A is normal then σ0
A = Ω0

A = A.

Proof. Using (1.9) and (1.11) it suffices to show that N0
A = 0. By hypothesis, A satisfies Serre’s

conditions (R1) and (S2). By (R1), N0
A has support of codimension at least 2 (see [18, (5.7.3)]).

Let q ∈ SpecA with dimAq ≥ 2. By (S2) and Proposition 2.2, both Aq and ω0
A,q have depth

at least 2 (see [8, Prop. 1.4.1.(b).(ii)]). Then depthN0
A,q ≥ 1 by the Depth Lemma (see [8,

Prop. 1.2.9]) and hence q 6∈ AssN0
A. Thus, AssN0

A = ∅ and N0
A = 0 as claimed. �

In the hypersurface case, the inclusion ω0
Ã
↪→ ω0

A in diagram (2.5) corresponds to the inclu-

sion (0.3) using Corollary 2.3. This motivates the following

Definition 2.4. We say that A satisfies Saito’s normal crossing condition (SNCC) if ω0
Ã

= ω0
A.

By SNCC at p ∈ SpecA we mean that ω0
Ã,p

= ω0
A,p.

We first note that SNCC is a codimension-one condition.

Proposition 2.5. The equality ωp
Ã

= ωpA holds true if and only if it holds true in codimension

one. In particular, SNCC is a codimension-one condition.

Proof. Assume that the inclusion ωp
Ã
↪→ ωpA in diagram (2.5) is an equality at primes of codi-

mension 1; denote by W p
A its cokernel. Since W p

A is torsion, W p
A has support of codimension

at least 2. Let p ∈ SpecA with dimAp ≥ 2 and pick any q ∈ V (pÃ) ⊆ Spec Ã. In particular,

q∩A ⊇ p and hence dim Ãq = dimAq∩A ≥ dimAp ≥ 2 using (2.4). By Serre’s condition (S2) for

Ã then also depth Ãq ≥ 2. Thus, depthωp
Ã,q
≥ 2 by Proposition 2.2 (see [8, Prop. 1.4.1.(b).(ii)]).

It follows that (see [36, IV.B.1.Prop. 12] and [8, Prop. 1.2.10.(a)])

depthωp
Ã,p

= grade(p, ωp
Ã,p

) = grade(pÃ, ωp
Ã,p

) = min{depthωp
Ã,q
| q ∈ V (pÃ)} ≥ 2.

Since depthωpA,p ≥ 1 by diagram (1.10), the claim follows as in the proof of Corollary 2.3. �

Now we show that SNCC descends to any union of irreducible components. For any subset
I ⊆ {1, . . . , s}, set

(2.12) AI := A/aI , aI :=
⋂
i∈I

pi.
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Note that AI is reduced with minimal primes pi/aI , i ∈ I.

Proposition 2.6. If ωp
Ã

= ωpA then ωp
ÃI

= ωpAI
. In particular, SNCC descends from A to AI

for any subset I ⊆ {1, . . . , s}.

Remark 2.7. Proposition 2.6 plays the role of the inclusion

Ω1(log(D1 +D2)) ⊆ Ω1(logD)

for irreducible components D1 and D2 of a hypersurface D used in [13, Ex. 3.3].

The proof of Proposition 2.6 relies on the following two lemmas.

Lemma 2.8. For any subset I ⊆ {1, . . . , s}, we have ωpAI
= HomA(Ωr−pAI

, ωrA).

Proof. Let (1.1) be a Noether normalization of A; composed with A � AI it gives a Noether
normalization of AI . Using (1.3) and Hom-tensor-adjunction, we compute that

ωrAI
= HomR(AI , ω

r
R) = HomA(AI ,HomR(A,ωrR)) = HomA(AI , ω

r
A)

and hence that

ωpAI
= HomAI

(Ωr−pAI
, ωrAI

) = HomAI
(Ωr−pAI

,HomA(AI , ω
r
A)) = HomA(Ωr−pAI

, ωrA). �

Replacing A in (2.12) by Ã, p̃j =
∏
i6=j Ãi, j = 1, . . . , s, are the minimal primes, ãI =

∏
i6∈I Ãi

and

ÃI = Ã/ãI =
∏
i∈I

Ãi = ÃI .

Lemma 2.9. The natural surjections AI ⊗A ΩpA � ΩpAI
and AI ⊗A Ωp

Ã
� Ωp

ÃI
have torsion

kernels T p(AI/A) and T̃ p(AI/A), respectively.

Proof. By definition, T 0(AI/A) = 0 and T̃ 0(AI/A) is torsion by (2.2). In particular,

(2.13) AI ⊗A Ωp
Ã
� ÃI ⊗Ã Ωp

Ã

has torsion a kernel. By (2.2), aI/a
2
I is torsion and surjects onto T 1(AI/A) (see [21, Cor. 11.10]).

Therefore T p(AI/A) is torsion for all p ≥ 1 (see the proof of Proposition 2.1). Replacing A by

Ã also T p(ÃI/Ã) is torsion for all p ≥ 1. By the Snake Lemma applied to

0 // T̃ p(AI/A) //

��

AI ⊗A Ωp
Ã

//

����

Ωp
ÃI

// 0

0 // T p(ÃI/Ã) // ÃI ⊗Ã Ωp
Ã

// Ωp
ÃI

// 0,

T̃ p(AI/A) is an extension of the torsion kernel of (2.13) and T p(ÃI/Ã). �

Proof of Proposition 2.6. Using (1.3), Hom-tensor-adjunction, torsion-freeness of ωrA, Lemmas 2.9
and 2.8, we compute

HomA(AI , ω
p
A) = HomA(AI ,HomA(Ωr−pA , ωrA))(2.14)

= HomA(AI ⊗A Ωr−pA , ωrA)

= HomA(Ωr−pAI
, ωrA) = ωpAI

and similarly HomA(AI , ω
p

Ã
) = ωp

ÃI
. Thus, HomA(AI ,−) applied to the inclusion ωp

Ã
↪→ ωpA in

diagram (2.5) yields the corresponding with A replaced by AI . The claim follows. �
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Finally, we show that SNCC is compatible with analytic triviality.

Proposition 2.10. Assume that

A = A′⊗̂R′′,
where A′ satisfies the hypotheses on A, dimA′ = r − 1 and R′′ = k〈〈x〉〉 is regular. Then
ω0
A = ω0

A′⊗̂R′′. In particular, A satisfies SNCC if and only if A′ does.

Proof. Let (1.1) for A′ be a Noether normalization

(2.15) R′ = k〈〈x1, . . . , xr−1〉〉 ↪→ A′.

A Noether normalization and a normalization of A can be obtained by applying −⊗̂R′′ to (2.15)
and to (2.1) for A′ (see [14, III.§5]), that is,

R = R′⊗̂R′′ ↪→ A = A′⊗̂R′′ ↪→ Ã = Ã′⊗̂R′′.
This leads to decompositions (see [14, III.§5.10])

ΩrR = Ωr−1
R′ ⊗̂Ω1

R′′ , ΩrA = ΩrA′⊗̂R′′ ⊕ Ωr−1
A′ ⊗̂Ω1

R′′ ,

where Ω1
R′′ and ΩrR are free of rank 1 and ΩrA′ =

∧r
Ω1
A′ and hence ΩrA′⊗̂R′′ is torsion since

rk Ω1
A′ = dimA′ = r−1 (see [32, (8.8)]). Note that the analytic tensor products over R′, R′′ and

over A′, R′′ coincide due to finiteness of A′ over R′ (see [14, III.§5.10]). Using (1.3) and flatness
of R′ → R, we deduce

ω0
A = HomR(ΩrA,Ω

r
R)

= HomR′⊗̂R′′(Ω
r−1
A′ ⊗̂Ω1

R′′ ,Ωr−1
R′ ⊗̂Ω1

R′′)

= HomR′⊗R′R⊗R′′R′′(Ωr−1
A′ ⊗R′ R⊗R′′ Ω1

R′′ ,Ωr−1
R′ ⊗R′ R⊗R′′ Ω1

R′′)

= HomR′⊗R′R(Ωr−1
A′ ⊗R′ R,Ωr−1

R′ ⊗R′ R)

= HomR′(Ωr−1
A′ ,Ω

r−1
R′ ⊗R′ R)

= HomR′(Ωr−1
A′ ,Ω

r−1
R′ )⊗R′ R⊗R′′ R′′

= ω0
A′⊗̂R′′

and similarly ω0
Ã

= ω0
Ã′⊗̂R′′. It follows that the inclusions ω0

Ã′ ↪→ ω0
A′ and ω0

Ã
↪→ ω0

A correspond

via −⊗̂R′′ and −⊗R′′ k. �

3. Fractional ideals and ramification

Our approach to SNCC in case of curve and Gorenstein singularities uses that the inclusion
ωr
Ã
↪→ ωrA is given by the conductor ideal (see (4.2) and Lemma 5.1 below). With the latter we

recall the basics on fractional ideals.

Definition 3.1. A (regular) fractional ideal of A is an A-submodule M of L = Q(A) such that
there exist a, b ∈ Areg with aM ⊆ A and b ∈M .

Since A is Noetherian the first condition is equivalent to M being finitely generated. For any
two fractional ideals M,N ⊂ L of A one can identify

HomA(M,N) = N :L M ⊆ L, ϕ 7→ ϕ(m)

m
, m ∈M ∩Areg,

with a fractional ideal ofA. The functor HomA(−,−) is inclusion-reversing (inclusion-preserving)
in the first (second) argument on fractional ideals of A. In particular, the dualizing operation

−−1 := Hom(−, A)
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is inclusion-reversing on fractional ideals of A. By (2.3), Q(A)p = Q(Ap) and localization at
p ∈ SpecA turns fractional ideals of A into fractional ideals of Ap. The localization of (2.1) at
p ∈ SpecA is the normalization

νA,p : Ap ↪→ Ãp = Ãp

of Ap (see [16, Prop. 2.1.6]). If M is a fractional ideal of A then

EndA(M) ⊆ Ã
by the determinantal trick (see [16, Lem. 2.1.8]). The conductor (ideal)

(3.1) CÃ/A := AnnA(Ã/A) = Ã−1

is the largest ideal of A which is also an ideal of Ã. Multiplying the denominators of a (finite) set

of A-module generators of Ã yields an element b ∈ Areg∩CÃ/A showing that CÃ/A is a fractional

ideal of A.
Both in case of curve and Gorenstein singularities the normalization will be unramified as a

consequence of SNCC (see Propositions 4.5 and 5.9 below). Denote by F iA(M) the ith Fitting
ideal of an A-module M . Then the ramification ideal of the normalization (2.1) is defined by

IÃ/A := F 0
Ã

(Ω1
Ã/A

).

Lemma 3.2. For any p ∈ SpecA,

(CÃ/A)p = CÃp/Ap
, (Ω1

Ã/A
)p = Ω1

Ãp/Ap
, (IÃ/A)p = IÃp/Ap

,

and following statements are equivalent:

(a) Ãp is unramified over Ap.
(b) Ω1

Ãp/Ap
= 0.

(c) IÃp/Ap
= Ãp.

In particular, Ω1
Ã/A

= 0 if and only if Ai = Ãi for i = 1, . . . , s.

Proof. By finiteness of Ã over A, the conductor (3.1) commutes with flat base change and Ω1
Ã/A

is the universal differential module which commutes with base change. Fitting ideals commute
with flat base change. The first claim and the equivalences follow (see [21, Prop. 6.8]). In

particular, Ω1
Ã/A

= 0 if and only if Ã is unramified over A. Since k = k, this is equivalent to

Ai/mAi = Ãi/mÃi
= Ãi/mAÃi = Ãi/mAiÃi

and hence to Ai = Ãi for i = 1, . . . , s by Nakayama’s Lemma. �

4. Curve singularities

Keeping all hypotheses of §2, we assume in addition that r = dimA = 1. Informally we refer
to A as a curve (singularity) with branches A1, . . . , As and we call it plane if

edimA := dimk(mA/m
2
A) ≤ 2.

By Serre’s normality criterion, the Ãi in (2.3) are regular and hence (see [14, II.§5.3])

Ãi = k〈〈ti〉〉.
We denote by e1, . . . , es ∈ Ã the primitive idempotents with Ãei = Ãi.

For curve singularities we characterize SNCC numerically in terms of the De Rham cohomol-
ogy of ωA and the δ-invariant of A

δA := dimk(Ã/A).



136 MATHIAS SCHULZE

Proposition 4.1. If A is a curve singularity then

dimkH
1(ωA) ≤ δA

with equality equivalent to SNCC.

Proof. We set λA := dimkN
0
A (see (1.9)). Then (see [20, (4.5) Satz]),

dimkH
1(ωA) = µA − λA + s− 1.

Using Milnor’s formula µA = 2δA − s+ 1 (see [9, Prop. 1.2.1.1)]) this gives

dimkH
1(ωA) = 2δA − λA.

By Corollary 2.3, the degree-0 part of the leftmost square in diagram (2.5) reads

Ã
c0
Ã

ω0
Ã� _

��

A �
� c0A //
?�

OO

ω0
A.

Thus, λA = δA + dimk(ω0
A/ω

0
Ã

) and the claim follows. �

Our goal is to show that the only curve singularities satisfying SNCC are plane normal cross-
ing. For convenience we extend this notion as follows. Denote the fiber product of the Ãi over
k by

A ↪→ Ã′ := Ã1 ×k · · · ×k Ãs ↪→ Ã.

Definition 4.2. We call a curve singularity A normal crossing if A = Ã′.

If A is normal crossing then mA = mÃ, Ai = Ãi for i = 1, . . . , s, edimA = s and

(4.1) CÃ/A =

{
A, if s = 1,

mA = mÃ, if s ≥ 2.

We will first investigate the Gorenstein property of normal crossing curve singularities using
the well-known results collected in the following lemma. The statement on regularity goes back
to Jacobinski in far greater generality (see [17]).

Lemma 4.3.

(a) A ⊆ m−1
A and, unless A is regular, m−1

A ⊆ Ã.

(b) A is Gorenstein if and only if dimk(m−1
A /A) = 1.

Proof.
(a) If m−1

A ( EndA(mA) then there is a surjection mA � A. Since A is projective it splits
and hence mA = xA⊕ I for some x ∈ Areg Then xI ⊆ xA ∩ I = 0 implies I = 0. It follows that
mA = 〈x〉 and A is regular.

(b) Any x ∈ mA ∩Areg induces an isomorphism

Ext1
A(k,A) ∼= HomA(k,A/xA) ∼= (xA :A mA)/xA m−1

A /A.∼=
·xoo �

Proposition 4.4. A normal crossing curve singularity is Gorenstein if and only if it is plane.

Proof. We may assume that A is singular, that is, s ≥ 2. By (4.1) and Lemma 4.3.(a), m−1
A = Ã

and hence
m−1
A /A ∼= (Ã/mÃ)/(A/mA) ∼= ks/k ∼= ks−1.

By Lemma 4.3.(b), A is therefore Gorenstein if and only if edimA = s ≤ 2. �
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We now give a characterization of SNCC for curve singularities. The proof relies on the
identity (see [23, Lem. 3.2])

(4.2) ωr
Ã

= CÃ/Aω
r
A.

We abbreviate Der := Derk to denote k-linear derivations.

Proposition 4.5. A curve singularity A satisfies SNCC if and only if

(a) A has regular branches, that is, Ai = Ãi for i = 1, . . . , s, and
(b) any k-derivation A→ ω1

A factors through ω1
Ã

, or equivalently,

Der(A) = Der(A,CÃ/A)

in case A is Gorenstein.

If A is Gorenstein and singular then (b) holds true if

(4.3) CÃ/A = mA

and conversely (b) implies (4.3) if in addition A is quasihomogeneous.

Proof. Recall from the proof of Proposition 2.1 that T 1(Ã/A) and Ω1
Ã/A

in (2.8) are torsion. So

dualizing the short exact sequence

0→ (Ã⊗A Ω1
A)/T 1(Ã/A)→ Ω1

Ã
→ Ω1

Ã/A
→ 0

obtained from (2.8) with the torsion-free module ω1
Ã

yields the following expansion of dia-

gram (2.11) in case r = 1 and p = 0.

(4.4) 0 // Der(A,ω1
Ã

) // Der(A,ω1
A)

0 // HomA(Ω1
A, ω

1
Ã

) // HomA(Ω1
A, ω

1
A)

ω0
Ã

ω0
A

0 // HomÃ(Ω1
Ã
, ω1

Ã
) // HomÃ(Ã⊗A Ω1

A, ω
1
Ã

) // Ext1
Ã

(Ω1
Ã/A

, ω1
Ã

) // 0

The upper inclusion comes from the universal property of Ω1
A. Its surjectivity is condition (b)

and reads Der(A) = Der(A,CÃ/A) for Gorenstein A due to (4.2). Since ω1
Ã

is a canonical module

of Ã by (1.3) and Ext1
Ã

(Ω1
Ã/A

, ω1
Ã

) is the dual of Ω1
Ã/A

(see [8, Thm. 3.3.10]), surjectivity of the

lower inclusion is equivalent to Ω1
Ã/A

= 0 and hence to condition (a) by Lemma 3.2. Therefore

the diagram proves the first claim.
The remaining claims are due to the following facts. If A is singular then CÃ/A ⊆ mA and

Der(A) ⊆ Der(A,mA) (see [35, (1.1)]). If A is quasihomogeneous then χ(A) = mA for some
Euler derivation χ ∈ Der(A,mA) (see [22] for a converse). �

Remark 4.6. Let A be a Gorenstein curve singularity.
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(a) Combining the degree-0 part of the leftmost square in diagram (2.5) with diagram (4.4)
using (1.11) and (4.2) yields commutative diagram

Ã
c0
Ã // ω0

Ã� _

��

� � // Der(A,CÃ/A)
� _

��

A �
� c0A //
?�

OO

ω0
A ∼=

// Der(A).

The image of the bottom row is the module ∆ of trivial derivations (see [23, §3] or [20, §5]).
Condition (b) in Proposition 4.5 can therefore be rephrased as

Der(A)/∆→ Der(A,A/CÃ/A)

being the zero map.
(b) Proposition 2.6 can be deduced from Proposition 4.5 as follows. It suffices to show that

condition (b) in Proposition 4.5 descends from A to AI for any subset I ⊆ {1, . . . , s}. By (2.3),
there is a commutative diagram

Ã
π̃I // // ÃI

A
?�

OO

πI // // AI
?�

OO

and any δI ∈ Der(AI) lifts to a δ ∈ Der(A) preserving aI . For xI ∈ AI , pick x ∈ A with
πI(x) = xI . Assuming δ(x) ∈ CÃ/A, we compute using 4.5.(b) for A that

δI(xI)ÃI = πI(δ(x))π̃I(Ã) = π̃I(δ(x)Ã) ⊆ π̃I(A) = AI

and hence δI(xI) ∈ CÃI/AI
which is 4.5.(b) for AI .

We now examine SNCC for normal crossing curve singularities.

Lemma 4.7. A normal crossing curve singularity satisfies condition (b) of Proposition 4.5 if
and only if it is plane.

Proof. The canonical module ω1
A of A is an ideal (see [8, Prop. 3.3.18]). With A = Ã′ also this

ideal is standard graded and thus isomorphic to A or to mA. Using Proposition 4.4, (4.2) and
(4.1), this implies that

ω1
A
∼=

{
A, if s ≤ 2,

mA, if s ≥ 3,
ω1
Ã

=

{
ω1
A, if s = 1,

mAω
1
A, if s ≥ 2.

If A is singular then Der(A) ⊆ Der(A,mA) (see [35, (1.1)]) and χ(A) = mA for some Euler
derivation χ ∈ Der(A,mA). Therefore condition (b) of Proposition 4.5 holds true if and only if
s ≤ 2. �

Our starting point for understanding SNCC for general curve singularities are two examples
that occur in the proof of the main theorem in [13].

Example 4.8.
(a) In [13, Ex. 3.3.(2)], A is a plane quasihomogeneous curve defined by a = 〈x2(x2 − xp1)〉

where p ≥ 1. Its normalization is given by x1 = (t1, t2), x2 = (0, tp2) and

CÃ/A = 〈(tp1, t
p
2)〉 = 〈xp1, x2〉.

By Proposition 4.5, A satisfies SNCC if and only if p = 1.
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(b) In [13, Ex. 3.3.(3)], A is the line arrangement defined by a = 〈x1x2(x1 − x2)〉. Its nor-
malization is given by x1 = (t1, 0, t3), x2 = (0, t2, t3) and

CÃ/A =
〈
(t21, t

2
2, t

2
3)
〉

=
〈
x2

1, x
2
2

〉
.

By Proposition 4.5, SNCC does not hold.
Both statements above are shown in loc. cit. by a different argument due to Saito.

Generalizations of Example 4.8 appear under the following conditions.

Lemma 4.9. Let A be a non-normal crossing curve singularity different from that in Exam-
ple 4.8.(a) with s ≥ 2 branches. Assume that AI is normal crossing for all I ⊂ {1, . . . , s} with
|I| = s− 1. Then A is the union of s− 1 ≥ 2 coordinate axes and a diagonal as defined by (4.7).
In particular, A is homogeneous and Gorenstein of embedding dimension n = edimA = s − 1
with conductor CÃ/A = m2

A.

Proof. With s ≥ 2 also n ≥ 2 and Ai = Ãi for i = 1, . . . , s. Set J := {1, . . . , s− 1}. Then AJ is
normal crossing but A is not. Thus, there is a commutative diagram with exact rows

0 // mAs
// Ã′ // Ã′J

// 0

0 // aJ
� ?

OO

// A
� ?

OO

// AJ // 0

in which the leftmost inclusion is strict. For any j ∈ J , both AJ and A{1,...,s}\{j} are normal
crossing. So there is an element xj ∈ mA inducing uniformizers of Aj and As but zero in mAi

for any i 6= j, s. Additional generators of A can be chosen from aJ ⊆ m2
As

. The inclusion A ⊆ Ã′
is then given by

(4.5) xi =

{
uitiei + vitses, i = 1, . . . , s− 1,

wit
pi
s es, i = s, . . . , n,

where the ui ∈ A∗i and the vi, wi ∈ A∗s are units, pi ≥ 2, and n ≥ s− 1. If n ≥ s, we may assume
that p := ps is minimal and replace ts to absorb ws. For i < s, we replace xi and ti to absorb
vi and ui. For i > s and j < s, we have

xi = wit
pi
s es = wit

pi−p
s tpses = wi(tjej + tses)(tjej + tses)

pi−ptpses = wi(xj)x
pi−p
j xs

which makes xi redundant.
So we may finally assume that ui = vi = wi = 1 and n ≤ s in (4.5). This leaves the following

two cases extending Example 4.8.

n = s ≥ 2, p ≥ 2, xi =

{
tiei + tses, i = 1, . . . , s− 1,

tpses, i = n,
(4.6)

n = s− 1 ≥ 2, xi = tiei + tses, i = 1, . . . , n.(4.7)

For n = 2, (4.6) and (4.7) define the curve singularities from parts (a) and (b) of Example 4.8,

respectively. For n ≥ 3, (4.6) reduces to (4.7) since xn = x1x
p−1
2 is redundant. Then Lemma 4.10

below concludes the proof. �

Lemma 4.10. The curve singularity A defined by (4.7) is homogeneous and Gorenstein.
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Proof. It follows from (4.7) that A = R/a is defined by a = 〈xk(xi − xj) | k 6= i, j〉, and hence

homogeneous, and that the conductor equals CÃ/A = m2
Ã

= m2
A. By Lemma 4.3.(a), m−1

A /A can

be seen as a subquotient in

m2
Ã

= CÃ/A ⊆ A ⊆ m−1
A ⊆ Ã.

Due to homogeneity of A this is a chain of standard graded ideals. Then with Ã/m2
Ã

also m−1
A /A

is non trivial at most in degrees 0 and 1. It follows from (4.7) that m−1
A and A have equal constant

parts. Setting t :=
∑s
i=1 tiei, we have t · xi = x2

i ∈ A for i = 1, . . . , n and hence t ∈ m−1
A \ A.

On the other hand, x1, . . . , xn, t is a k-basis of the linear part of Ã with x1, . . . , xn ∈ A. Thus, t
represents a k-basis of m−1

A /A and A is Gorenstein by Lemma 4.3.(b). �

We can finally show that SNCC characterizes plane normal crossings among all curve singu-
larities.

Proposition 4.11. A curve singularity satisfies SNCC if and only if it is plane normal crossing.

Proof. Plane normal crossing curve singularities are Gorenstein and therefore satisfy SNCC by
(4.1) and Proposition 4.5. Conversely, let A be a curve singularity with s branches satisfying

SNCC. If s = 1 then A = A1 = Ã1 = Ã′ by Proposition 4.5.(a). We now proceed by induction
on s assuming s ≥ 2. Due to Proposition 2.6 and the induction hypothesis, AI is normal crossing
for all I ⊂ {1, . . . , s} with |I| = s− 1. The only curve singularity in Example 4.8.(a) satisfying
SNCC is plane normal crossing. The conclusion of Lemma 4.9 contradicts to Proposition 4.5.
Therefore A must be normal crossing and hence plane by Lemma 4.7. �

5. Gorenstein singularities

Keeping all hypotheses of §2, we assume in addition that A is Cohen–Macaulay and Gorenstein
at p ∈ SpecA. By (1.3), ωrA is then a canonical module of A and hence (see [8, Thms. 3.3.5.(b),
3.3.7])

(5.1) ωrA,p = ωrAp
∼= Ap.

In particular, −−1 := HomAp
(−, Ap) corresponds to the duality HomAp

(−, ωrA,p) on maximal
Cohen–Macaulay modules.

Lemma 5.1. Let A be Cohen–Macaulay and Gorenstein at p ∈ SpecA. Then

ωr
Ã,p

= CÃp/Ap
ωrA,p

∼= CÃp/Ap
.

Proof. Let (1.1) be a Noether normalization. By (1.3) and Hom-tensor-adjunction,

ωr
Ã

= HomR(Ã,ΩrR) = HomA(Ã,HomR(A,ΩrR)) = HomA(Ã, ωrA).

By finiteness of Ã over A and (5.1), localization at p turns this into

ωr
Ã,p

= HomAp
(Ãp, ω

r
A,p) = HomAp

(Ãp, Ap)ωrA,p = CÃp/Ap
ωrA,p. �

Definition 5.2. The Jacobian and ω-Jacobian (ideal) of A are defined by

(5.2) JA := F rA(Ω1
A), J ′A := Ann coker crA = im(crA ⊗ (ωrA)−1).

The ideals in (5.2) satisfy inclusion relations (see [26, Prop. 3.1])

(5.3) JA ⊆ J ′A ⊆ CÃ/A.

The second inclusion is due to Lemma 5.1 and the degree-r part of the leftmost square in
diagram (2.5).
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Remark 5.3. Since Ω1
A has rank r (see [32, (4.4)]), JA,pi

= F rApi
(Ω1

A,pi
) = Api

for i = 1, . . . , s

and JA contains a regular element of A by prime avoidance. It follows that both JA and J ′A are
fractional ideals of A. In case of J ′A this follows also from cA being an isomorphism at regular
primes of A (see [18, (5.7.3)]) and Serre’s reducedness criterion. If A is a complete intersection
then JA = J ′A (see [33, Lem. 3.1] or [27, Prop. 1] and [26, Prop. 3.2] for a converse).

The statement of [13, Prop. 3.4] for hypersurface singularities generalizes by replacing the
Jacobian by the ω-Jacobian.

Lemma 5.4. Let A be Cohen–Macaulay and Gorenstein at p ∈ SpecA. Then

σ0
A,p = (J ′A,p)−1

as fractional ideals of Ap.

Proof. We use (1.6) to identify ωA with σA. By (5.2) and the Gorenstein hypothesis this turns
crA,p into a map ΩrA,p � J ′A,pσ

r
A,p with torsion cokernel. Then (1.7) localized at p becomes

σ0
A,p = HomA,p(J ′A,pσ

r
A,p, σ

r
A,p) = (J ′A,p)−1. �

Definition 5.5. We call A free at p ∈ SpecA if A is Cohen–Macaulay, Ap is Gorenstein and
J ′A,p is a Cohen–Macaulay ideal. We say that A is free if it is free at mA.

The Aleksandrov–Terao theorem (see [1, §2 Thm.] and [38, Prop. 2.4]) generalizes as follows.

Proposition 5.6. Let A be Cohen–Macaulay and Gorenstein at p ∈ SpecA. Then freeness of
A at p with Ap 6= J ′A,p is equivalent to Ap/J

′
A,p being Cohen–Macaulay of dimension dimAp−1.

Proof. By Remark 5.3, J ′A,p ( Ap is a fractional ideal of Ap (see §3). In particular, it contains

an element of Areg
p \ A∗p and hence htJ ′A,p ≥ 1. The claim follows (see [15, Satz 4.13] and [8,

Thm. 2.1.2.(a)]). �

By (5.3), (3.1), Corollary 2.3, and Propositions 2.1, there is an ascending chain of fractional
ideals

(5.4) J ′A ⊆ CÃ/A ⊆ A ⊆ Ã = σ0
Ã
⊆ σ0

A.

We deduce the following generalization of [13, Cor. 3.7].

Corollary 5.7. Let A be Cohen-Macaulay and free at p ∈ SpecA. Then A satisfies SNCC at p
if and only if J ′A,p = CÃp/Ap

.

Proof. By reflexivity of Ã (see [13, Lem. 2.8]), (3.1) and Lemma 5.4, the first and last inclusions
in (5.4) localized at p ∈ SpecA are duals of each other. �

We recall an identity of ideals due to Piene (see [27, Cor. 1]) in case of a smooth normalization.

Lemma 5.8. Let A be Cohen–Macaulay and let p ∈ SpecA such that Ap is Gorenstein and Ãp

is regular. Then IÃp/Ap
CÃp/Ap

= ÃJ ′A,p.

Proof. Since Ãp is regular, Ω1
Ã,p

is locally free of rank r (see [32, (4.4),(8.7)]). The map Ã⊗ dνA
from (2.8) is a presentation of Ω1

Ã/A
. Using Lemma 3.2, it follows that IÃp/Ap

Ωr
Ã,p

is the image

of the map

Ã⊗
r∧
dνA,p : Ã⊗A ΩrA,p → Ωr

Ã,p
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obtained by localizing the map Ã⊗
∧r

dνA from (2.9) at p. Together with the degree-r part of
the leftmost square in diagram (2.5) localized at p this map fits into a commutative diagram

Ωr
Ã,p

cr
Ã,p

∼=
// ωr
Ã,p� _

��

ΩrA,p

zzttttttttt

crA,p
//

∧r dνA,p

OO

ωrA,p

Ã⊗A ΩrA,p

Ã⊗
∧r dνA,p

CC���������������� Ã⊗crA,p

55kkkkkkkkkkkkkkkk

where cr
Ã,p

is an isomorphism since Ãp is regular (see [18, (5.7.3)]). Using Lemma 5.1 and (5.1)

it follows that

IÃp/Ap
CÃp/Ap

ωrA,p = IÃp/Ap
ωr
Ã,p

= im
(
cr
Ã,p
◦ Ã⊗

r∧
dνA,p

)
= im(Ã⊗ crA,p) = Ã im crA,p = ÃJ ′A,pω

r
A,p.

The claim follows by (5.1). �

The following result generalizes [13, Lem. 4.2].

Proposition 5.9. Let A be Cohen–Macaulay and free at p ∈ SpecA such that Ãp is regular.

Then A satisfies SNCC at p if and only if J ′A,p is an ideal of Ãp and Ãp is unramified over Ap.

Proof. By Lemma 5.1, (1.12) and regularity of Ãp (see [18, (5.7.3)]),

CÃp/Ap

∼= ωr
Ã,p
∼= Ωr

Ã,p
=

r∧
Ω1
Ã,p

is locally free of rank 1 (see [32, (4.4),(8.7)]). By Corollary 5.7, SNCC for A at p is equivalent

to J ′A,p = CÃp/Ap
. By Lemma 5.8, this is equivalent to ÃpJ

′
A,p = J ′A,p and IÃp/Ap

= Ãp. The

claim follows using Lemma 3.2. �

6. Complex analytic spaces

In order to consider analytic spaces, we need in addition to the hypotheses of §2 that k is
non-discretely valued. Therefore we assume that k = C and consider (germs of) complex analytic
spaces.

LetX be a reduced r-equidimensional complex analytic space with normalization νX : X̃ → X.
Then there is an OX -coherent graded (ΩX , d)-module ωX and a trace map cX : ΩX → ωX (see
[7]). The Jacobian and ω-Jacobian (ideals) JX and J ′X of X are defined as in (5.2). Taking stalks
at x ∈ X leads to the corresponding objects for A = OX,x. By a complex analytic singularity we
mean the germ of a complex analytic space.

Definition 6.1. We say that a reduced equidimensional complex analytic space X satisfies
Saito’s normal crossing condition (SNCC) or that X is free if A = OX,x satisfies the correspond-
ing property for all x ∈ X (see Definition 2.4 and Definition 5.5). We say that X satisfies a
property in codimension (up to) c if it does outside of an analytic subset of codimension at least
c + 1. We define the corresponding properties for complex analytic singularities by requiring
them for some representative.
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Remark 6.2. That X satisfies SNCC means that the inclusion of coherent OX -modules
(νX)∗ω

0
X̃
↪→ ω0

X is an equality (see [7, p.195, Ex. i)]). In particular, SNCC is an open con-
dition.

Freeness is an open condition as well. In fact, Cohen–Macaulay loci of coherent OX -modules
are open (see [31, Satz 7]) and the Gorenstein locus of a Cohen–Macaulay X is the open set
where the coherent OX -module ωrX is locally free of rank 1 (see [8, Thm. 3.3.7.(a)]).

Both SNCC and freeness are satisfied in codimension 0, that is, generically.

The following is the analytic version of Proposition 2.5.

Proposition 6.3. A reduced equidimensional complex analytic singularity X satisfies SNCC if
it does in codimension one.

Proof. Assume that X satisfies SNCC in codimension one and replace X by a representative.
Let x ∈ X and set A := OX,x. Consider the coherent OX -module F = ω0

X/(νX)∗ω
0
X̃

and

the coherent OX -ideal I = Ann F . By hypothesis and Remark 6.2, V (I ) = Supp F and
hence V (Ix) has codimension at least 2. In particular, for any p ∈ SpecA with ht p = 1,
Ann(Fx) = Ix 6∈ p and hence ω0

A,p/ω
0
Ã,p

= (Fx)p = 0. In other words, A satisfies SNCC in

codimension one. Then OX,x = A satisfies SNCC due to Proposition 2.5. This means that X
satisfies SNCC at x. Therefore X satisfies SNCC as claimed. �

In case of smooth irreducible components our results from §4 apply to a transversal curve
singularity.

Proposition 6.4. Let X be a reduced equidimensional complex analytic singularity with smooth
local irreducible components in codimension one. If X satisfies SNCC then it must be a normal
crossing divisor in codimension one.

Proof. Set r := dimX and denote by m := n − r the codimension of X in some smooth
ambient space (Cn, 0). We may freely move the base point of the germ X to a general point
in codimension one. Let Z be the reduced singular locus of X. We may assume that Z 6= ∅ is
smooth of codimension one and that the irreducible components X1, . . . , Xs of X are smooth
containing Z. By Proposition 2.6, SNCC descends to any union of irreducible components of X.
We may therefore assume that 2 ≤ s ≤ 3 and that X1 ∪ · · · ∪Xs−1 is a normal crossing divisor.
Then there are local coordinates such that

Z = {x1 = · · · = xm+1 = 0},(6.1)

Xi = {x1 = · · · = x̂i = · · · = xm+1 = 0}, i = 1, . . . , s− 1.

By the implicit function theorem, there is a j ∈ {1, . . . ,m+ 1} such that

Xs = {xi = yi(xj , xm+2, . . . , xn) | j 6= i = 1, . . . ,m+ 1}.
If yi 6= 0 then we may write yi = xpij ui with ui(0, xm+2, . . . , xn) 6= 0. We may then assume

that the latter and hence also ui is a unit. Dividing xi by ui results in ui = 1 leaving (6.1)
unchanged. This makes the defining equations of X1, . . . , Xs, and hence of X, independent of
xm+2, . . . , xn. Then X becomes a product X = C × Z where C is a curve in the transversal
slice {xm+2 = · · · = xn = 0}. By Proposition 2.10, with X also C satisfies SNCC. Then
Proposition 4.11 forces C to be plane normal crossing. In particular, s = 2 and X is a normal
crossing divisor. �

Example 6.5. The free divisor D = {xy(x+ y)(x+ xz) = 0} has smooth reduced singular locus
Z = {x = y = 0} and 4 smooth local irreducible components at points of Z. However it is not
analytically trivial along Z in codimension one.
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We are finally ready to prove our main result.

Proof of Theorem 0.1. Suppose first that X satisfies SNCC. By Proposition 6.3, SNCC for X is
a codimension-one condition. We may therefore assume that X is free and that X̃ is smooth.
Proposition 5.9 then implies that νX is unramified. By Lemma 3.2 this means that X has smooth
local irreducible components. Proposition 6.4 then forces X to be a normal crossing divisor in
codimension one. The converse implication follows from Propositions 2.10, 4.11, and 6.3. �

We conclude with an application of our approach to splayed divisors. By a divisor we mean
a reduced hypersurface singularity. Let D1, D2 ⊂ (Cr+1, 0) be divisors. Then D1 and D2 are
called splayed (see [12]) if

D1
∼= D′1 × (Cr2+1, 0), D2

∼= (Cr1+1, 0)×D′2.

for divisors D′i ⊂ (Cri+1, 0) for i = 1, 2 under some isomorphism (Cr+1, 0) ∼= (Cr1+1, 0) ×
(Cr2+1, 0). In this case we call the union D1 ∪ D2 a splayed divisor. In other words, splayed
divisors are product unions

D′1 ∪× D′2 := D′1 × (Cr2+1, 0) ∪ (Cr1+1, 0)×D′2
of divisors (see [10, §3]). Aluffi and Faber characterized splayedness in terms of logarithmic
differential forms (see [6, Thm. 2.12]). Passing to the residual part of these forms yields a
characterization in terms of regular differential forms.

Proposition 6.6. Let Di = V (hi) ⊆ (Cr+1, 0) for i = 1, 2 be divisors. If D1 and D2 are splayed
then the natural map

(6.2) ω0
D1tD2

= ω0
D1
⊕ ω0

D2
→ ω0

D

is an isomorphism. The converse holds true if D = D1 ∪D2 is free.

Proof. The map in (6.2) is obtained using (2.14) by applying HomOD
(−, ω0

D) to the inclusion

(6.3) OD1tD2 = OD1 × OD2 ←↩ OD.

If D1 and D2 have a common irreducible component D′, which is not the case if they are are
splayed, then applying HomOD

(−, ω0
D) to the commutative diagram

OD1
× OD2

����

OD

����

? _oo

OD′ × OD′ OD′
(id,id)
oo

and using (2.14) yields a commutative diagram

ω0
D1
⊕ ω0

D2

// ω0
D

ω0
D′ ⊕ ω0

D′

?�

OO

+
// ω0
D′

?�

OO

whose top row is (6.2). As ω0
D′ 6= 0 this shows that (6.2) is not injective in this case. Therefore

we may assume that D1 and D2 do not have a common irreducible component. Then (6.3) has
a torsion cokernel and (6.2) is an inclusion since ω0

D is torsion-free.
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As in Proposition 2.1 there is a commutative diagram

(6.4) σ0
D1
⊕ σ0

D2

� � //

∼=
��

σ0
D

∼=
��

ω0
D1
⊕ ω0

D2

� � // ω0
D.

In fact, using (1.17) and (6.3) one computes that

cD1 + cD2 =

[
dh1

h1

]
+

[
dh2

h2

]
7→
[
h2dh1 + h1dh2

h1h2

]
=

[
d(h1h2)
h1h2

]
= cD

by the lower inclusion in (6.4). By [6, Thm. 2.2], D1 and D2 are splayed if and only if the natural
inclusion of Jacobian ideals

(6.5) JD ↪→ h2JD1
⊕ h1JD2

is an equality. Lemma 5.4 identifies the upper inclusion in (6.4) as the dual of (6.5) and the first
claim follows. Indeed, dualizing OD1

= OD/h1OD over OD yields

HomOD
(OD1

,OD) = ker(h1 : OD → OD) = h2OD = h2OD1

and hence by Hom-tensor-adjunction

HomOD
(−,OD) = HomOD1

(−,HomOD
(OD1

,OD)) = h2 HomOD1
(−,OD1

)

on OD1
-modules. Conversely, if D is free then JD is reflexive and hence

(σ0
D)−1 = JD ↪→ h2JD1 ⊕ h1JD2 ↪→ h2 · (σ0

D1
)−1 ⊕ h1 · (σ0

D2
)−1 = (σ0

D1
⊕ σ0

D2
)−1.

Thus, dualizing an equality in (6.4) yields an equality in (6.5). �

Remark 6.7. If the divisors D1 and D2 have no common irreducible component then

D̃ � D1 tD2 � D

and condition (6.2) can be seen as a weak form of SNCC.
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22(1):47–61, 1977. DOI: 10.1007/BF01182066
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Fribourg, 1974. Vorlesungen über Kommutative Algebra (Wintersemester 1973/74), Schriftenreihe des Math-
ematischen Institutes der Universität Freiburg, No. 5.

[31] Günter Scheja. Fortsetzungssätze der komplex-analytischen Cohomologie und ihre algebraische Charakter-

isierung. Math. Ann., 157:75–94, 1964. DOI: 10.1007/BF01362668

[32] Günter Scheja and Uwe Storch. Differentielle Eigenschaften der Lokalisierungen analytischer Algebren. Math.
Ann., 197:137–170, 1972. DOI: 10.1007/BF01419591

[33] Günter Scheja and Uwe Storch. Residuen bei vollständigen Durchschnitten. Math. Nachr., 91:157–170, 1979.
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SIMPLE DYNAMICS AND INTEGRABILITY FOR SINGULARITIES OF

HOLOMORPHIC FOLIATIONS IN DIMENSION TWO

BRUNO SCÁRDUA

Abstract. In this paper we study the dynamics of a holomorphic vector field near a singular
point in dimension two. We consider those for which the set of separatrices is finite and the

orbits are closed off this analytic set. We assume that none of the singularities arising in

the reduction of the foliation has a zero eigenvalue. Under these hypotheses we prove that
one of the following cases occurs: (i) there is a holomorphic first integral, (ii) the induced

foliation is a pull-back of a hyperbolic linear singularity, (iii) there is a formal Liouvillian first
integral. For a germ with closed leaves off the set of separatrices we prove that the existence

of a holomorphic first integral is equivalent to the existence of some closed leaf arbitrarily

close to the singularity. For this we do not need to assume any non-degeneracy hypothesis on
the reduction of singularities. We also study some examples illustrating our results and we

prove a characterization of pull-backs of hyperbolic singularities in terms of the dynamics of

the leaves off the set of separatrices.

1. Introduction and main results

In this paper we resume the subject of dynamics versus integrability for a singularity of
holomorphic vector field in dimension two (see [9, 27]). Some references in this subject are
results of H. Poincaré, G. Darboux ([13]) (for polynomial vector fields in the complex plane) and
more recently [16].

A modern starting point is the following theorem of Mattei-Moussu ([16]): A germ of a
holomorphic vector field at the origin of C2 admits a holomorphic first integral if, and only if, it
has only finitely many leaves accumulating at the singularity and all other leaves are closed. Also
notable is the point of view adopted in [1] where the authors suppose the existence of an uniform
bound for the volume of the orbits of the vector field. A holomorphic vector field X defined in
a neighborhood U ⊂ C2 of the origin 0 ∈ C2, with an isolated singularity at the origin, defines a
germ of holomorphic foliation with a singularity at the origin, and conversely. In this paper we
shall adopt the foliation terminology. We shall refer to a germ of a holomorphic foliation F as
induced such a pair (X,U) where X is a holomorphic vector field defined a neighborhood U of the
origin 0 ∈ C2, singular at the origin X(0) = 0. Recall that a separatrix is an invariant irreducible
analytic curve containing the singularity. Throughout this paper we will only consider germs of
foliations with a finite number of separatrices, called non-dicritical singularities. In this case,
we shall say that a leaf of F (i.e., an orbit of (X,U) for U small enough) is closed off the set of
separatrices if either it is a separatrix, or it is not a separatrix but accumulates only at the union
of separatrices. In few words, it accumulates at no leaf which is not contained in a separatrix. We
then characterize those germs of foliations, under the additional hypothesis that they belong to
the class of generalized curves, meaning that the reduction of singularities does not exhibit final
singularities with a null eigenvalue. Before stating our first result we shall state a few notions.
Recall that a germ of a singular holomorphic foliation F at the origin 0 ∈ C2 is defined by a germ
of a holomorphic one-form ω at the origin. We shall assume that sing(ω) = {0}. A holomorphic
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first integral for F is a germ of a (non-constant) holomorphic function O2 3 f : (C2, 0)→ (C, 0)
such that ω ∧ df = 0. In terms of Saito-De Rham division lemma, this is equivalent to say that
ω = gdf for some germ g ∈ O2, provided that we take f ∈ O2 as a reduced germ. The function
g is necessarily a unit. Thus, if we write η = dg

g then we have a germ of a closed holomorphic

one-form such that dω = η ∧ ω. In general, the germ F admits a Liouvillian first integral if
there is a closed meromorphic one-form germ η such that dω = η ∧ ω. Such a form η is called a
generalized integrating factor for ω. In this case we say that the first integral is the Liouvillian
function F defined by the differential algebraic equation dF = ω

exp
∫
η

. This is all discussed in

[31, 28]. We shall now introduce a slightly more general notion:

Definition 1.1. We shall say that F admits a formal Liouvillian first integral F̂ if there is a
formal generalized integrating factor η̂ which is a formal closed meromorphic one-form such that
(∗) dω = η̂ ∧ ω.

We may rewrite (*) as d( ω
exp

∫
η̂

) = 0, so that the formal Liouvillian first integral is defined by

dF̂ = ω
exp

∫
η̂

. By a formal meromorphic one-form we mean a formal expression η̂ = Âdx+ B̂dy

where Â, B̂ are quotient of formal functions Â = â1/â2, B̂ = b̂1/b̂2, âj , b̂j ∈ Ô2 ([12]). With
these notions we can state:

Theorem 1.2. Let F be a germ of a non-dicritical generalized curve at 0 ∈ C2. Assume that
the leaves of F are closed off the set of separatrices. Then we have three possibilities:

(1) F admits a holomorphic first integral.
(2) F is a holomorphic pull-back of a hyperbolic (linearizable) singularity.
(3) F admits a formal Liouvillian first integral.

Possibility (3) really occurs, indeed, there is a number of examples which correspond to this
last situation. We shall refer to these foliations as of formal Liouvillian type. Some information
about these foliations is given in § 5. Indeed, the formal one-form η̂ is actually convergent except
in the so called exceptional case, which we will detail later on.

The foliation is already in case (2) if some singularity in the reduction of the singularities of
the foliation is a non-resonant singularity. More generally, we are in case (2) if there is some
non-resonant map in the virtual holonomy group of any separatrix of F . Indeed, from the proof
we give for Theorem 1.2 we obtain:

Theorem 1.3. For a germ of a generalized curve holomorphic foliation F at the origin 0 ∈ C2

assume that the following conditions are true:

(1) There is only a finite number of separatrices and all leaves are closed off the set of
separatrices.

(2) Some separatrix has a holonomy map which is not a resonant map.

Then F is the pull-back of a hyperbolic singularity.

We stress that the second hypothesis means that there is some separatrix of F whose local

holonomy is of the form f(z) = e2π
√
−1λz + ak+1z

k+1 + ..., where λ ∈ C \ Q. We may assume,
instead of (2), the weaker condition that the virtual holonomy of some separatrix contains some
non-resonant map.

The hypotheses in Theorems 1.2 and 1.3 depend on the concept of reduction of singularities,
detailed in Section 2. In short, F is a generalized curve if its reduction of singularities only
produces singularities with non-zero eigenvalues. It is non-dicritical if there are only finitely
many separatrices. The necessity of the generalized curve hypothesis in Theorems 1.2 and 1.3 is
discussed in Examples 5.3 and 5.4.
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We may conclude that we are in case (1) if arbitrarily close to the union of the separatrices
we can find some closed leaf. Indeed, for the next result we do not need to assume that the
singularity is a generalized curve:

Theorem 1.4. Let F be a germ of a non-dicritical foliation at 0 ∈ C2. Assume that the leaves
of F are closed off the set of separatrices and there is a closed leaf arbitrarily close to the origin.
Then F admits a holomorphic first integral.

Outline of the proofs:
The proofs are based on a product of two points:

• A description of subgroups of germs of one-dimensional complex diffeomorphisms with
closed orbits off the fixed point: these groups are finite, abelian linearizable generated
by a hyperbolic map and a periodic (rational) rotation, or solvable discrete (cf. Propo-
sition 4.2).
• A description of the singularities in the reduction of singularities of F by the blowing-up

process.

We apply the above to the holonomy groups arising in the reduction of singularities of F and
to some enriched groups called virtual holonomy groups. The possible combinations of these
larger groups are also studied in order to prove that they are all solvable of a same type. For
this we consider the connection between two such groups associated to adjacent components
of the exceptional divisor of the reduction of singularities. This connection is given by the so
called Dulac correspondence in suitable cases. When there is a closed leaf arbitrarily close to the
singular point it is proven that all these groups have a closed orbit and then are finite. This is
the case that correspond to the holomorphic first integral (cf. [16], [9]). It is also proven that
if some of these virtual holonomy groups contains a map whose linear part is not periodic, then
it must be hyperbolic and all these groups are abelian generated by a hyperbolic map and a
rational rotation. This case corresponds to (2) in Theorem 1.2 via techniques from [5]. Finally,
in the remaining case all the singularities in the reduction process are resonant as well as all the
holonomies are solvable. In this case, by techniques from [26] or [21] we are able to construct a
formal Liouvillian first integral. This construction is detailed in the Appendix § 9.

Acknowledgements: I want to acknowledge valuable conversations with Professor César Ca-
macho, which co-authored most of the results in this paper. I am very much indebted to the
referee, for his/her constructive comments, careful reading, valuable suggestions and various
hints, that have greatly improved this article. This work was conceived during a visit to the
Graduate School of Mathematical Sciences at The University of Tokyo. I wish to express my
gratitude to Professor Taro Asuke for his support and warm hospitality.

2. Reduction of singularities in dimension two ([30])

Fix now a germ of holomorphic foliation with a singularity at the origin 0 ∈ C2. Choose a
representative F(U) for the germ F , defined in an open neighborhood U of the origin, such that
0 is the only singularity of F(U) in U . The Theorem of reduction of singularities of Seidenberg

([30]) asserts the existence of a proper holomorphic map σ : Ũ → U which is a finite composition
of quadratic blowing-up’s, starting with a blowing-up at the origin, such that the pull-back
foliation F̃ := σ∗F of F by σ satisfies:

(1) The exceptional divisor E(F) = σ−1(0) ⊂ Ũ can be written as E(F) =
⋃m
j=1Dj , where

each irreducible component Dj is diffeomorphic to an embedded projective line CP (1)
introduced as a divisor of the successive blowing-up’s ([7]).
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(2) singF̃ ⊂ E is a finite set, and any singularity p̃ ∈ singF̃ is irreducible i.e., belongs to one
of the following categories:
(a) xdy − λydx + h.o.t. = 0 and λ is not a positive rational number, i.e. λ /∈ Q+

(non-degenerate singularity),
(b) yp+1dx− [x(1+λyp)+h.o.t.] dy = 0, p ≥ 1. This case is called a saddle-node ([18]).

A singularity is a generalized curve if its reduction of singularities produces only non-degenerate
(i.e., no saddle-node) singularities ([6]). We call the lifted foliation F̃ the desingularization or

reduction of singularities of F . The foliation is non-dicritical iff E(F) is invariant by F̃ . Any
two components Di and Dj , i 6= j, of the exceptional divisor, intersect (transversely) at at most
one point, which is called a corner. There are no triple intersection points.

3. Holonomy and virtual holonomy groups

Let now F be a holomorphic foliation with (isolated) singularities on a complex surface M
(we have in mind here, the result of a reduction of singularities process). Denote by sing(F) the
singular set of F . Given a leaf L0 of F we choose any base point p ∈ L0 ⊂ M \ sing(F) and a
transverse disc Σp bM to F centered at p. The holonomy group of the leaf L0 with respect to
the disc Σp and to the base point p is image of the representation Hol : π1(L0,p)→ Diff(Σp,p)
obtained by lifting closed paths in L0 with base point p, to paths in the leaves of F , starting
at points z ∈ Σp, by means of a transverse fibration to F containing the disc Σp ([4]). Given
a point z ∈ Σp we denote the leaf through z by Lz. Given a closed path γ ∈ π1(L0, p) we
denote by γ̃z its lift to the leaf Lz and starting (the lifted path) at the point z. Then the
image of the corresponding holonomy map is h[γ](z) = γ̃z(1), i.e., the final point of the lifted
path γ̃z. This defines a diffeomorphism germ map h[γ] : (Σp, p) → (Σp, p) and also a group
homomorphism Hol : π1(L0,p) → Diff(Σp,p). The image Hol(F ,L0,Σp,p) ⊂ Diff(Σp,p) of
such homomorphism is called the holonomy group of the leaf L0 with respect to Σp and p. By
considering any parametrization z : (Σp, p) → (D, 0) we may identify (in a non-canonical way)
the holonomy group with a subgroup of Diff(C, 0). It is clear from the construction that the
maps in the holonomy group preserve the leaves of the foliation. Nevertheless, this property can
be shared by a larger group that may therefore contain more information about the foliation in
a neighborhood of the leaf. The virtual holonomy group of the leaf with respect to the transverse
section Σp and base point p is defined as ([5], [8])

Holvirt(F ,Σp,p) = {f ∈ Diff(Σp,p)
∣∣Lz = Lf(z),∀z ∈ (Σp,p)}.

The virtual holonomy group contains the holonomy group and consists of the map germs that
preserve the leaves of the foliation.

Fix now a germ of holomorphic foliation with a singularity at the origin 0 ∈ C2, with a
representative F(U) as above. Let Γ be a separatrix of F . By Newton-Puiseaux parametrization
theorem, Γ\{0} is biholomorphic to a punctured disc D∗ = D\{0}. In particular, we may choose
a loop γ ∈ Γ \ {0} generating the (local) fundamental group π1(Γ \ {0}). The corresponding
holonomy map hγ is defined in terms of a germ of complex diffeomorphism at the origin of a local
disc Σ transverse to F and centered at a non-singular point q ∈ Γ\{0}. This map is well-defined
up to conjugacy by germs of holomorphic diffeomorphisms, and is generically referred to as local
holonomy of the separatrix Γ. The connection between the dynamics of the leaves and the local
holonomy is stated as follows:

Lemma 3.1. Let F be a germ of a holomorphic foliation at the origin 0 ∈ C2. Assume that F
has only a finite number of separatrices and that there is a neighborhood V of the origin such
that on V each leaf of the foliation is closed off the set of separatrices. Let Γ ⊂ V be a separatrix
of F

∣∣
V

, p ∈ Γ \ {0} and Σp a small disc transverse to the foliation and centered at p.
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Then:

(1) The orbits of the local holonomy of Γ and of the virtual holonomy group of Γ are closed
off the origin.

(2) A leaf that accumulates at Γ properly and is a closed leaf in V , induces for the virtual

holonomy group Holvirt(F ,Σp,p) a pseudo-orbit which is closed.

In what follows we consider the following situation: F is a foliation as in Theorem 1.2. We
perform the reduction of singularities for F obtaining:

(1) A proper map σ : Ũ → U which is a finite composition of quadratic blow-ups.

(2) A foliation F̃ = σ∗(F) with only irreducible singularities of non-degenerate type.

(3) An invariant exceptional divisor E(F) = σ−1(0) =
r⋃
j=1

Dj .

Lemma 3.2. Let q = Di ∩Dj be a (non-degenerate) corner singularity. Given small transverse
discs Σj and Σi with Σj ∩Dj = {qj} and Σi ∩Di = {qi}, nonsingular points close enough to q,

then we have: any local leaf of F̃ that accumulates properly at the origin of Σi also accumulates
properly at the origin of Σj.

A combination of Lemmas 3.1 and 3.2 actually shows that:

Proposition 3.3. Let F be as in Theorem 1.2. Then, all virtual holonomy groups Holvirt(F̃ ,Dj)
of the components of Dj ⊂ E(F) are groups with closed orbits off the origin. If moreover F
has a closed leaf arbitrarily close to the origin, then each virtual holonomy group Holvirt(F̃ ,Dj)
exhibits a closed pseudo-orbit arbitrarily close to the origin.

4. Groups of complex diffeomorphisms

Let Diff(C, 0) denote the group of germs at the origin 0 ∈ C of holomorphic diffeomorphisms.
It is a well-known result that a a finite group of germs of complex diffeomorphisms is analytically
conjugate to a cyclic group generated by a rational rotation. We shall now study the connection
between our dynamical hypothesis and the classification of the possible holonomy groups arising
in the reduction of singularities. We start with the case of a sole irreducible singularity. This is
done in what follows (cf. Lemma 6.1).

4.1. Non-resonant maps and Pérez-Marco results. A germ of a complex diffeomorphism

f at the origin 0 ∈ C writes f(z) = e2π
√
−1λz + ak+1z

k+1 + .... The linear part f ′(0) = e2π
√
−1λ

does not depend on the coordinate system. We shall say that the germ f ∈ Diff(C, 0) is resonant
if λ ∈ Q∗. If λ /∈ R then |f ′(0)| 6= 1 and the germ is hyperbolic. In the hyperbolic case the
diffeomorphism is analytically linearizable, i.e., conjugated to its linear part by a germ of a map
([2]). In particular, its dynamics is one of an attractor or of a repeller. If |f ′(0)| = 1, then we

have f ′(0) = e2π
√
−1θ for some θ ∈ R. If f ′(0) is a root of the unity (i.e., if λ ∈ Q) then f is called

resonant and the dynamics of f is well-known ([2, 3]). In particular, if f is not linearizable, the
orbits are closed off the origin, but no orbit is closed. If f ′(0) is not a root of the unity then we
have λ ∈ R \Q. In this case we shall say that the diffeomorphism if non-resonant. Assume that
the map is not analytically linearizable. Given a representative defined in an open connected

subset 0 ∈ U ⊂ C the stable set of f in U is defined by K(U, f) =
∞⋂
j=0

f−j(U) According to Pérez-

Marco [22, 23])). It is compact, connected and not reduced to {0}. Any point of K(U, f) \ {0}
is recurrent (that is, a limit point of its orbit). Moreover, there is an orbit in K(U, f) which

∗It is common to refer to a map as a non-resonant map in case λ ∈ R \ Q. This may cause some confusion in

our current framework. That is why we only define the resonant maps. All other maps are non-resonant for us.
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accumulates at the origin and no non-trivial orbit of f converges to the origin. Such a map f
will also be referred to in this paper as a Pérez-Marco map germ.

4.2. Groups with closed orbits off the origin. We shall now study the case of groups
modeling the holonomy and virtual holonomy groups appearing in the reduction of singularities.
The following definition will be useful.

Definition 4.1. A group G ⊂ Diff(C, 0) of germs of holomorphic diffeomorphisms will be called
resonant if each map g ∈ G is a resonant germ. This is equivalent to the fact that G has a set
of generators consisting only of resonant maps.

Denote by ξ ⊂ C the subset of roots of the unity. Our main result is:

Proposition 4.2. Let G ⊂ Diff(C, 0) be a finitely generated subgroup such that pseudo-orbits
are closed off the origin in any small neighborhood of the origin 0 ∈ C.

Then we have the following possibilities:

(1) G is a finite cyclic group, generated by a rational rotation.
(2) G is abelian analytically linearizable generated by a periodic rotation and a hyperbolic

map.
(3) G is resonant, either abelian or solvable non-abelian. In the non-abelian case G is

formally conjugate to a subgroup of {(z 7→ az

(1+bzk)
1
k

) ; a ∈ ξ, b ∈ C}, for some k ∈ N.

In this case the subgroup G1 ⊂ G of maps tangent to the identity is discrete of the form
(z 7→ z

(1+βzk)
1
k

) ; β ∈ C, where all the β belong to a set of type {n1β1 +n2β2;n1, n2 ∈ Z}
for some β1, β2 ∈ C.

In particular, if G contains some non-resonant map, then it is as in (2).

Proof. By Nakai density theorem, the group G must be solvable. In particular, G is abelian or
it is formally conjugate to a subgroup of the group Hk = {(z 7→ az

(1+bzk)
1
k

) ; a 6= 0, b ∈ C}, for

some k ∈ N ([10], [15]). Notice that Hk is a finite ramified covering of the group of homographies
H1 by a map z 7→ zk ([10]). If G is finite then G is as in (1) as it is well-known. Assume that
G contains some hyperbolic diffeomorphism, say a map f ∈ G whose multiplier is of the form

f ′(0) = e2π
√
−1α where α ∈ C \ R. In this case we claim that G is abelian. Indeed, assume that

G is not abelian. Then G contains some nontrivial commutator and therefore some nontrivial
flat element g ∈ G, g = z + cz` + h.o.t. for some c 6= 0. By what we have observed above
there is a homography fixing the origin T (z) = λz

1+µz such that (f(z))k = T (zk). From this we

get f ′(0) = λ
1
k . Since f is hyperbolic we have that 1 6= λ = T ′(0). Therefore T is conjugated

to a linear map by another homography. Consequently, we may assume that f(z) = f ′(0).z
and g(z) = z

(1+βzk)
1
k

. By a ramified covering map (ramified change of coordinates) Z = 1
zk

we

consider the subgroup corresponding to 〈f, g〉 and which is generated by a homothety (Z 7→ µZ),
with |µ| 6= 1, and a translation (Z 7→ Z + β). It is well known that such a group has no orbit
closed off the origin. The same then holds for the group G that contains the subgroup generated
by f, g above, contradiction.

The above shows that in case G contains a hyperbolic map, it must be abelian, without
flat elements. Since it contains a hyperbolic (analytically linearizable) map, the group G is
analytically linearizable, so that it embeds as a subgroup of the multiplicative group C∗ = C\{0}.
Again, because G has orbits closed off the origin, G must then be generated by a hyperbolic
map and a rational rotation (see the proof of Lemma 8 in [5] for a similar situation). The group
G is then as in (2).
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Now for the final part of the proposition, we may therefore proceed assuming that G contains
no hyperbolic map. We claim:

Claim 4.3. The group G contains no non-resonant map f ∈ G, i.e., there is no map f ∈ G
with multiplier f ′(0) = e2π

√
−1θ where θ ∈ R \Q.

proof of the Claim. Assume by contradiction that there is f ∈ G a nonresonant map. If f is
analytically linearizable then no orbit is closed off the origin, indeed such orbits are dense on
circles centered at the origin in some linearizing coordinates. Thus this case is excluded. Assume
therefore that f ∈ G is a Pérez-Marco map. In this case by Pérez-Marco result in Section 4.1
there is a pseudo-orbit which is not closed off the origin, contradiction. This case is also excluded
then. �

Assume now that G is not abelian. Let us now conclude that the group is as in (3). Every
map in the group G is resonant. We embed G ↪→ Hk = {(z 7→ αz

(1+βzk)
1
k

) ; α 6= 0, β ∈ C}. This

embedding is analytic unless the group is exceptional, in which case it already has the desired
form (cf. [10] page 460 Theorem 1, see also Example 5.7). Assume then that the embedding
is analytic. Given any map g ∈ G we write g(z) = az

(1+bzk)
1
k
∈ G. Since g is resonant we have

a ∈ ξ. Since G is solvable, the subgroup G1 ⊂ G of flat elements, is abelian and analytically
conjugated to a group of the form (z 7→ z

(1+βzk)1/k
) ; β ∈ C. In particular, G1 acts like a group

of translations in the line C. Since the orbits of G are closed orbits off the origin, we conclude
that G1 must be discrete so that all the β belong to a set of type {n1β1 + n2β2;n1, n2 ∈ Z} for
some β1, β2 ∈ C. This shows that G is as in (3). �

From the proof of Proposition 4.2 we actually get:

Corollary 4.4. Let G ⊂ Diff(C, 0) be a (not necessarily finitely generated) subgroup such that
pseudo-orbits are closed off the origin in any small neighborhood of the origin 0 ∈ C. Then:

(1) Any finitely generated subgroup H ⊂ G with a non-trivial closed pseudo-orbit is finite.
(2) If the group G contains a map which is not a resonant map then G is abelian linearizable

generated by a hyperbolic attractor and a periodic rotation.

Proof. We apply Proposition 4.2. If a subgroup H ⊂ G contains a non-trivial closed pseudo-orbit
then it cannot contain any flat element (i.e., any element tangent to the identity). In particular,
H is abelian and its resonant maps are periodic. Moreover, there are no non-resonant maps: a
non-resonant map f ∈ H is of the form f(z) = e2πiλz+ ak+1z

k+1 + . . . with λ 6∈ Q. If λ ∈ C \R
then f is hyperbolic and linearizable. This map cannot have a finite orbit off the origin. If
λ ∈ R \Q then by the proof of Proposition 4.2 we know that f cannot have all its orbits closed
off the origin. We conclude that H is abelian consisting only of periodic maps. If H is finitely
generated then it is finite. This proves the first part of the lemma. Let us now assume that G
contains some map f ∈ G which is non-resonant. This map is necessarily hyperbolic as we have
seen above. But then G is abelian by Proposition 4.2 because in all other cases the group G is
resonant. Applying the result of this same proposition we conclude that G is generated by g and
some rational rotation. �

5. Examples

In this section we perform a construction and give some examples related to our main results.
We also discuss some possible extensions and a related question.

Example 5.1. We shall now construct an example of a fully-resonant foliation F with closed
leaves off the origin, non-dicritical and a generalized curve, but without a holomorphic first
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integral†. Fixed a ∈ C \ {0} we consider the subgroup G ⊂ H2 of maps of the form z 7→ ξz√
1+naz2

where n ∈ Z and ξ4 = 1. The group G has discrete pseudo-orbits off the origin, indeed, it is
generated by the periodic maps f(z) = iz√

1+az2
and g(z) = iz, where i2 = −1. The group G is

finitely generated by periodic maps (f has order 4 and g has order 2), but it has infinite order
because g ◦ f(z) = −z√

1+az2
.

The map f is conjugate to the local holonomy map of the separatrix (y = 0) of a linearizable
saddle-type singularity qf with a holomorphic first integral, say of the form xdy + 4ydx = 0.
Similarly g is conjugate to the holonomy of a separatrix (y = 0) of a linearizable saddle singularity
qg with holomorphic first integral, of the form xdy + 2ydx = 0. Finally, the map h = (g ◦ f)−1

is conjugate to the holonomy of a separatrix (y = 0) of a non-linearizable resonant saddle-type

singularity qh of the form ωk,` = kxdy + `y(1 +
√
−1

2π x`yk)dx = 0 where ` = 1 and k = 2.

According to [14] we can construct a germ of a holomorphic foliation F at the origin 0 ∈ C2,
having three separatrices contained in lines, and which can be reduced with a single blowing-up
at the origin. The blow-up foliation F̃(1) then has exactly three singularities in the invariant

projective line E(F)(1), and the holonomy group of the leaf L0 = E(1)\sing(F̃(1)) is conjugated
to the group generated by f, g and h = (g ◦ f)−1, which is the group G. The singularities of

F̃(1) are locally conjugated to qf , qg and qh with the above mentioned separatrices contained in
the exceptional divisor. All the dynamics of the foliation F is then described by its projective
holonomy, i.e., by the holonomy of the leaf L0 of the blow-up foliation F̃(1). In particular, F
has closed leaves off the set of separatrices. Nevertheless, because group G is not abelian, F is
not given by a closed meromorphic one-form. The foliation admits a Liouvillian first integral.
Indeed, the group G embeds into H2, F is non-dicritical reduced with a single blow-up and it
is a generalized curve ([29] Chapter I, §5, pages 185-188 or [21]). This is also proved as follows:
There is a system of coordinate charts {Uj , (xj , yj)}j∈J covering a neighborhood of L0 in the

blow-up C̃2
0, such that:

• E(F)(1) ∩ Uj = L0 ∩ Uj ⊂ {yj = 0}.
• On each open subset Uj the blow-up foliation F̃(1) is given by dyj = 0.
• If Ui ∩Uj 6= ∅ then Ui ∩Uj is connected and in this intersection we have yj = φij(yi) for

some map φij ∈ H2.

Then we can write on each Uj the lifted one-form ω̃ = π∗(ω) as ω̃
∣∣
Uj

= gjdyj for some meromor-

phic function gj on Uj . Then we define η̃ on each Uj by η̃
∣∣
Uj

= 2
dyj
yj

+
dgj
gj

. The extension of η̃

to the singularities qf , qg and qh is then proved as in [8] or else [26]. This shows the existence of
a closed meromorphic one-form η̃ in a neighborhood of the projective line E(F)(1) in the space

C̃2
0. This form satisfies dω̃ = η̃∧ ω̃. Projecting this one-form into a one-form η in a neighborhood

of the origin 0 ∈ C2 we get a generalized integrating factor for ω. Thus F admits a Liouvillian
first integral. Another (much more general) way of constructing the form η is given in [21] and
it is based on the notion of symmetry for the group G.

Notice that in Example 5.1 above, one of the singularities has a non-periodic holonomy. This
seems to be an unavoidable situation if one looks for groups which are not finite, but with closed
pseudo-orbits off the origin as projective holonomy groups. This fact together with Theorem 1.3
in [27] and Theorem 1.1 in [9], suggests the following question:

Question 5.2. Given a germ of a foliation F at 0 ∈ C2 such that:

(1) F is a non-dicritical generalized curve.
(2) The leaves of F are closed off the separatrices.

†I am grateful to the anonymous referee for showing me Example 5.1.
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(3) Each separatrix has a periodic local holonomy map.

Does F admit a holomorphic first integral?

Example 5.3. This example suggests the possibility of extending the conclusion of Theorem 1.2
for singularities which are not generalized curves. We consider a germ of a saddle-node singularity
F , given by xdy−yk+1dx+ . . . = 0 at 0 ∈ C2. According to [18] there is a formal diffeomorphism

φ̂ ∈ D̂iff(C2, 0) such that φ∗(F) is given by Sk,a : x(1+ayk)dy−yk+1dx = 0, for some a ∈ C. The
formal model Sk,a admits the Liouvillian first integral given by the generalized integrating factor
η = d log(xyk+1). In particular, the saddle-node F admits a formal Liouvillian first integral.
An example with closed leaves off the set of separatrices is given by ω = xdy − y2dx = 0 at the

origin 0 ∈ C2. Integration of Ω = 1
xy2ω gives the first integral f = xe

−1
y . The leaves are closed

off the strong separatrix (y = 0).

Example 5.4. This example is related to Question 5.2 above formulated. We construct a germ
of a foliation F at 0 ∈ C2 such that:

(1) F is non-dicritical.
(2) The leaves of F are closed off the separatrices.
(3) Each separatrix has a periodic local holonomy map.
(4) F does not admit a holomorphic first integral.

Nevertheless:

(4) F is not a generalized curve.

We consider the subgroup G ⊂ Diff(C, 0) generated by f(z) = z
1−z and g(z) = −z. This group

is solvable, finite discrete pseudo-orbits off the origin. Indeed, it leaves invariant the function
ϕ(z) = cos( 2π

z ). We show that this group corresponds to the holonomy group of the projective

line of the blowing-up of a non-dicritical singularity germ F at the origin 0 ∈ C2. Indeed, we
first consider the map h = f ◦ g, i.e., h(z) = −z

1+z . This is a periodic map since h ◦ h = Id. Thus,
we have f ◦ g ◦ h = Id. Moreover, each diffeomorphism above corresponds to the holonomy of a
germ of irreducible singularity as follows:

• f is conjugate to the map z 7→ z
1+2πz , which is the holonomy map of the strong separatrix

(y = 0) of the saddle-node qf : xdy − y2dx = 0, evaluated at the transverse disc
Σ : (x = 1).

• g(z) = −z is the holonomy of the separatrix (y = 0) of the singularity with holomorphic
first integral qg : xy2.

• h is also the holonomy of a separatrix of a singularity with first integral qh : xy2.

Then, according to [14] we can construct a germ of a holomorphic foliation at the origin
0 ∈ C2, having three separatrices, and which can be reduced with a single blowing-up at the
origin. The foliation F̃(1) then has exactly three singularities in the invariant projective line

E(F)(1), and the holonomy group of the leaf L0 = E(F)(1) \ sing(F̃(1)) is conjugated to the

group generated by f, g and h, which is the group G. The singularities of F̃(1) are locally
conjugated to qf , qg and qh. In particular, the saddle-node has its strong manifold contained in
the projective line E(F)(1) and the separatrix associated to this singularity at 0 is the central
manifold, which has trivial holonomy map. The foliation F then has closed leaves off the set of
separatrices, and periodic holonomy for each of its separatrices. Nevertheless, it does not admit
a holomorphic first integral (it is not a generalized curve).

Example 5.5 (resonant singularities cf. [17]). According to Martinet-Ramis ([17]) a resonant
non-linearizable singularity is formally isomorphic to an unique equation

ωp/q,k,λ := p(1 + (λ− 1)uk)ydx+ q(1 + λuk)xdy,
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where p, q, k ∈ N, λ ∈ C and u := xpyq. Moreover p/q, k, λ are the formal invariants of the
equation. By introducing integral numbers n,m ∈ Z such that mp − nq = 1 we can rewrite
ωp/q,k,λ = (1+(λ−mp)uk)(pydx+ qxdy)+pquk(nydx+mxdy). This last expression admits the

integrating factor hp/q,k,λ = pqxyuk, this means that the one-form 1
hp/q,k,λ

ωp/q,k,λ := Ωp/q,k,λ

is closed and meromorphic, with poles of order kp + 1 in (x = 0) and kq + 1 in (y = 0). In
particular we can state:

Claim 5.6. There is a single formal meromorphic closed one-form η with simple poles in (y = 0)
such that dωp/q,k,λ = η ∧ ωp/q,k,λ. This form is η = dhp/q,k,λ/hp/q,k,λ.

Proof. Indeed, since Ωp/q,k,λ is closed we conclude that η0 := dhp/q,k,λ/hp/q,k,λ satisfies the
equation dωp/q,k,λ = η ∧ ωp/q,k,λ. Now assume that ω is a closed meromorphic formal one-form
as in the statement. We have η − η0 = g.Ωp/q,k,λ for some meromorphic function g such that
dg ∧ Ωp/q,k,λ = 0. If g is not constant then Ωp/q,k,λ admits a formal meromorphic first integral.
This is not possible, because it does not admit a holomorphic first integral (see for instance
[16]). Therefore g must be constant. Because both η and η0 have simple poles, this implies that
gΩp/q,k,λ has simple poles, therefore g = 0. �

Example 5.7 (exceptional case). According to [10] a subgroup G ⊂ Diff(C, 0) is called ex-
ceptional if it is formally conjugated to a group Gξ,k, 0 < k ∈ N, ξ ∈ C, generated by the

maps fξ : z 7→ ξz and gk : z 7→ z

(1−kzk)
1
k

, with ξk = −1 and (1)
1
k = 1. In particular an

exceptional group is a solvable non-abelian group, formally conjugated to a discrete subgroup
of Hk = {(z 7→ az

(1+bzk)
1
k

) ; a 6= 0, b ∈ C}. A non-exceptional group is formally rigid (cf. [10]

Theorem 1 page 460)‡. Moreover we have:

Any non-abelian solvable subgroup G ⊂ Diff(C, 0) is formally conjugated to a subgroup of some
Hk, and this conjugation is analytic if G is not exceptional ([10],[15]).

Thus, in our Proposition 4.2 the only possibility for the group G to be not analytically
conjugated to a subgroup of some Hk is that either G is abelian, or G is exceptional, i.e.,
formally equivalent to some Gξ,k. In the exceptional case the group leaves invariant the formal

function φ̂(z) = cos(2π
zk

). We now extend the notion of exceptionality to germs of foliations:

Definition 5.8. A germ of a non-dicritical generalized curve F at 0 ∈ C2 will be called solvable
exceptional if every virtual holonomy group in the reduction of singularities of F is solvable
(possibly abelian), and at least one virtual holonomy is solvable exceptional.

Concrete examples of non-formally rigid exceptional groups are found in [10] and [19], asso-
ciated to certain cusp singularities. By a result due to Pérez-Marco and Yoccoz [24] any germ
of a complex diffeomorphism f ∈ Diff(C, 0) is conjugate to the local holonomy of a separatrix
associated to a germ of a non-degenerate holomorphic foliation F(f) : xdy − λydx + . . . = 0,
having two transverse separatrices. This completes previous results from Martinet-Ramis [17],
by solving the “non-resonant” case. Adding to this the (local) synthesis result in [14] we conclude
that:

Given an exceptional subgroup Gexc ∼= Gξ,k there is a germ of a foliation F(Gexc) at 0 ∈ C2

such that:

• F is a non-dicritical generalized curve, admitting a reduction with a single blow-up, and
the exceptional divisor is an invariant projective line E(F) ∼= P1.

‡The group G is formally rigid if given any formal conjugation with another group G′ there is an analytic

conjugation.
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• F exhibits three separatrices, all in general position.
• The (reduced) foliation F̃ = F̃(1) exhibits three singularities, all non-degenerate, say

sing(F̃) = {p̃1, p̃2, p̃3}.
• The holonomy of the leaf L0 = E(F) \ {p̃1, p̃2, p̃3} is conjugate to the group Gexc.

To the list of properties above we can add:

• Assume thatGexc is not formally rigid, more precisely, assume that the formal embedding
Gexc ⊂ Hk cannot be analytic. Then the virtual holonomy Hvirt := Holvirt(F̃ ,L0) of the

leaf L0 of F̃ is conjugate to Gexc.

Indeed, Hvirt contains Gexc and it is also solvable with closed orbits off the origin. If Hvirt

contains properly Gexc then Hvirt is not exceptional, therefore it admits an analytic embedding
into some Hk. This embedding gives an analytic embedding of Gexc on Hk.

Thus, under the above non-formal rigidity condition we can state:

• The virtual holonomy of the leaf L0 = E(F)\{p̃1, p̃2, p̃3} is conjugate to the group Gexc.

Using the above and material in the Appendix § 9 we can state:

Proposition 5.9. Let F be a germ of a solvable exceptional foliation at 0 ∈ C2. Then F admits
a formal first integral of Liouvillian type Φ̂. This first integral admits a transversely formal
development along the separatrices of F . Given a separatrix Γ and a transverse disc Σ to F
and Γ, the restriction Φ̂

∣∣
Γ

can be written as cos( 2π
xk

) in suitable formal coordinates x, for some
k ∈ N.

6. The irreducible case

Let us consider a germ of a holomorphic foliation F at the origin 0 ∈ C2, a germ of an
irreducible non-degenerate singularity. In suitable local coordinates we can write F as given by

x(1 +A(x, y))dy − λy(1 +B(x, y))dx = 0,

for some holomorphic A(x, y), B(x, y) with 0 6= λ ∈ C\Q+, A(0, 0) = B(0, 0) = 0. In the normal
form above, the separatrices are the coordinate axes. Let us denote by f the holonomy map (its
class up to holomorphic conjugacy) of the separatrix (y = 0). From the correspondence between
the leaves of F and the orbits of f ([16, 17, 24]) and according to the well-known properties
of f discussed in § 4.1 (see also [2, 3]) we conclude that the foliation F exhibits the following
characteristics:

Lemma 6.1. Let F be a germ of an irreducible non-degenerate singularity at the origin 0 ∈ C2

as above. We have:

(1) In the hyperbolic case and in the resonant non-linearizable case, λ ∈ Q−, all leaves of F
are closed off the set of separatrices, no leaf is closed.

(2) In the non-resonant (Siegel or Poincaré) case, λ ∈ R\Q, F has always some leaves which
are recurrent. Moreover, no leaf converges only to the set of separatrices, therefore if a
leaf is closed off the set of separatrices then it is already a closed leaf.

Proof. If the singularity is in the Poincaré domain then, since it is not a resonance (because
λ, 1/λ /∈ N) it is analytically linearizable. We may therefore choose local coordinates (x, y) on
(C2, 0) such that the germ writes as xdy − λydx = 0. The holonomy of one of the coordinate
axes with respect to a small disc Σ : {x = a} is given by h(y) = exp(2π

√
−1λ)y. Suppose that

λ is irrational then the map h is an irrational rotation, and the leaves (not contained in the set
of separatrices) are recurrent, therefore not closed off the set of separatrices.

�
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7. Fully resonant singularities

The following notion is useful in our framework.

Definition 7.1 (fully resonant). A germ of a generalized curve F at the origin 0 ∈ C2 will be
called fully resonant if every singularity arising in the reduction of singularities is a resonant
singularity.

Lemma 7.2. Let F be a germ of a non-dicritical generalized curve in a neighborhood of the
origin 0 ∈ C2. Suppose that for some representative FU of F defined in a neighborhood U of the
origin, all leaves are closed off the set of separatrices. Then we have two possibilities:
(i) F is a fully-resonant generalized curve.
(ii) The reduction of singularities of F exhibits some hyperbolic singularity, all the final singu-
larities are linearizable. Moreover, given any separatrix Γ through the origin, and a transverse
disc Σ meeting Γ at a point q 6= 0, the virtual holonomy group Holvirt(F ,Σ, q) contains a hyper-
bolic map. In particular, it is an abelian linearizable group generated by a hyperbolic map and a
periodic map.

Proof. We proceed by induction on the number r ∈ {0, 1, 2, ...} of blowing-ups in the reduction
of singularities for the germ F .
Case 1. (r = 0). In this case the singularity is already irreducible. The result follows from
Lemma 6.1.
Case 2 (Induction step). Assume that the result is proved for foliation germs that admit a
reduction of singularities with a number of blowing-ups less greater than or equal to r. Suppose
that the fixed germ F admits a reduction of singularities consisting of r+1 blowing-ups. Then we
perform a first blow-up σ1 : Ũ(1) → U at the origin and obtain a lifted foliation F̃(1) = σ∗1(F)
with (first) exceptional divisor E(F)(1) = σ−1

1 (0) consisting of a single embedded invariant

projective line in Ũ(1) (by hypothesis the exceptional divisor is invariant by F̃(1)). Given

a leaf L of F in U we denote by L̃(1) the lifting L̃(1) = σ−1
1 (L) of L to Ũ(1) by the map

σ1 : Ũ(1) → U . Now, if a leaf L of F in U is closed in U \ sep(F ,U), then its lift L̃(1) is

closed in Ũ(1) \ sep(F̃(1), Ũ(1)) (notice that for each singularity p̃ ∈ sing(F̃(1)) ⊂ E(1) the set

of local separatrices of F̃(1) through p̃ is formed by E(F)(1) union the local branches through

p̃, of the strict transform by σ(1) of sep(F ,U)). Given a singularity p̃ ∈ sing(F̃(1)) ⊂ E(1) of

F̃(1), since the blow-up map is proper, we can conclude that for any small enough neighborhood

W̃p̃ of p̃ in Ũ(1), a leaf L̃0 of the restriction F̃(1)
∣∣
W̃p̃

is closed in W̃p̃ \ sep(F̃(1), p̃) provided

that it projects into a piece of leaf σ1(L̃0) which is contained in a leaf L of F that is closed in
U \ sep(F ,U). Furthermore, since the blow-up map defines a biholomorphism between C2 \ {0}
and the complement of the exceptional divisor C̃2

0 \ E(1), we conclude that:

The leaves of F̃(1)
∣∣
W̃p̃

are closed off the set of local separatrices of F̃(1) through p̃. Thus, by

the induction hypothesis, each singularity p̃ ∈ sing(F̃(1)) in the first blow-up is fully-resonant or
its reduction of singularities exhibits some hyperbolic singularity, all the final singularities are
linearizable. Moreover, given any separatrix Γ̃p̃ through this singularity, and a transverse disc

Σ̃p̃ meeting Γ̃p̃ at a point p̃ 6= q̃ = Σ̃p̃ ∩Γp̃, the virtual holonomy group Holvirt(F̃(1),Σp̃, q̃) is an
abelian linearizable group generated by a hyperbolic map and a periodic map.

We have then two possibilities:
(a) All singularities in the first blow-up are fully-resonant. In this case, the original singularity
is fully-resonant.

(b) Some singularity p̃ ∈ sing(F̃(1)) in the first blow-up is not fully-resonant.
We shall consider this second possibility:
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Claim 7.3. Given a singularity p̃1 ∈ sing(F̃(1)) ⊂ E(1) its reduction of singularities only pro-
duces linearizable singularities. Moreover, given any separatrix Γp̃1 through p̃1, and a transverse

disc Σ meeting Γp̃1 at a point p̃1 6= q̃1 = Σ∩Γp̃1 , the virtual holonomy group Holvirt(F̃(1),Σ, q̃1)
is an abelian linearizable group generated by a hyperbolic map and a periodic map.

Proof. At first sight it may seem that this is a straightforward consequence of the Induction
hypothesis. Nevertheless, it is not clear that we are dealing with a singularity which is not
fully-resonant. Let us see how to study the case p̃1 is fully resonant. Since E(F)(1) is invariant,
the hyperbolic element in the virtual holonomy of the separatrix through p̃ contained in E(F)(1)
induces a hyperbolic element on the virtual holonomy of the separatrix through p̃1 contained in
the exceptional divisor E(F)(1). This is done as follows. Given two points q̃ and q̃1, close to p̃
and p̃1 respectively, and transverse discs Σ and Σ1 meeting E(F)(1) at these points respectively,

we can choose a simple path α : [0, 1] → E(1) \ sing(F̃(1)) from q̃ to q̃1. The holonomy map

hα : (Σ, q̃)→ (Σ1, q̃1) associated to the path α (recall that E(F)(1)\sing(F̃(1)) is a leaf of F̃(1)),
induces a natural morphism for the virtual holonomy groups

α∗ : Holvirt(F̃(1),Σ1, q̃1)→ Holvirt(F̃(1),Σ, q̃),

by α∗ : h 7→ h−1
α ◦ h ◦ hα. Since hα−1 = (hα)−1 in terms of holonomy maps, we conclude

that the above morphism is actually an isomorphism between the virtual holonomy groups.
Thus the virtual holonomy group Holvirt(F̃(1)p̃1

,E(F)(1),Σp̃1
, p̃1) contains a hyperbolic map.

Now we can use the Dulac correspondence in order to “pass” this hyperbolic map from the
above virtual holonomy (of the separatrix contained in E(F)(1)) to the virtual holonomy of

any separatrix of F̃p̃1 (see the Appendix § 9). Indeed, because Holvirt(F̃(1)p̃1
,E(F)(1),Σq̃1

, q̃1)
contains a hyperbolic element, according to Proposition 4.2 it must be linearizable, generated by
this hyperbolic map and a periodic map. This already implies that all local holonomies arising
in the reduction of singularities of q̃ are linearizable, therefore the corresponding singularities
are linearizable. Because the singularities are linearizable, the Dulac map allows to pass the
hyperbolic attractor from E(F)(1) to any separatrix through q̃, proving in this way that any
separatrix through q̃ contains a hyperbolic attractor in its virtual holonomy group§. Thus, also
the virtual holonomy group associated to the separatrix Γ̃ of F̃(1) through p̃1 contains some
hyperbolic map. �

Now consider any separatrix Γ of F through the origin. Since the projective line E(F)(1) in

the first blow-up is invariant, the lift Γ̃ is the separatrix of some singularity p̃ of F̃(1). If F is
not fully-resonant, then by the above, we conclude that the virtual holonomy group associated
to this separatrix Γ̃ contains a hyperbolic map. Recall that the blow-up is a diffeomorphism off
the origin and off the exceptional divisor, so that the maps in the virtual holonomy of Γ̃ induce
maps in the disc Σ transverse to Γ in C2, but which are defined only in the punctured disc, i.e.,
off the origin. Nevertheless, since these projected maps are one-to-one, the classical Riemann
extension theorem for bounded holomorphic maps shows that indeed such maps induce germs of
diffeomorphisms defined in the disc Σ. These diffeomorphisms are the virtual holonomy maps of
the separatrix Γ of F̃(1) evaluated at the transverse section Σ. Hence, by projecting the maps

in Holvirt(F̃(1),Σ, q̃) we obtain hyperbolic maps in this virtual holonomy group as stated. Now
the Induction Principle applies to finish the proof of the lemma. �

§The details of the construction of the Dulac map and the “passage” of (virtual) holonomy maps to virtual

holonomy maps on adjacent components are are found in the Appendix § 9 and extensively explained in [8] and

in [25] §2.3, pages 371 to 374.



SIMPLE DYNAMICS AND INTEGRABILITY 161

8. Germs of foliations with closed leaves off the set of separatrices

In this section we prove Theorems 1.2, 1.3 and 1.4. We rely on Lemma 7.2 and on Lemmas 8.1
and 8.9 below.

Lemma 8.1. Let F be a foliation germ as in Theorem 1.2. Then the following are equivalent:

(1) F admits a holomorphic first integral in some neighborhood of the origin.
(2) F is fully-resonant, has a closed leaf arbitrarily close to the origin and all singularities

in the reduction of singularities are linearizable.

Proof. Since (1) implies (2) is well-known (cf.[16],[27]), we prove the converse. Assume then that
F (is as in Theorem 1.2 and moreover) has a closed leaf arbitrarily close to the origin and that
all final singularities in the reduction process are resonant and linearizable. We must prove that
F admits a holomorphic first integral.

We proceed by induction on the number r ∈ {0, 1, 2, ...} of blow-ups in the reduction of
singularities for the germ F .
Case 1. (r = 0). In this case the singularity is already irreducible and resonant linearizable.
Since it is resonant, it admits a holomorphic first integral.
Case 2. (r − 1 =⇒ r). Assume that the result is proved for foliation germs that admit a
reduction of singularities with a number of blow-ups smaller than r. Suppose that the fixed
germ F admits a reduction of singularities consisting of r blow-ups. Let U be a small connected
neighborhood of the origin where the leaves of F are closed off the set of separatrices. We also
assume that for U arbitrarily small the foliation F exhibits a closed leaf in U . Then we proceed
as in the proof of Lemma 7.2 from where we import the notation. Thus we perform a first blow-
up σ1 : Ũ(1)→ U at the origin and obtain a lifted foliation F̃(1) = σ∗1(F) with (first) exceptional

divisor E(F)(1) = σ−1
1 (0) consisting of a single embedded invariant projective line in Ũ(1) (by

hypothesis the exceptional divisor is invariant by F̃(1)). Given a leaf L of F in U we denote by

L̃(1) the lifting L̃(1) = σ−1
1 (L) of L to Ũ(1) by the map σ1 : Ũ(1)→ U . Now, if a leaf L of F in

U is closed in U \ sep(F ,U), then its lift L̃(1) is closed in Ũ(1) \ sep(F̃(1), Ũ(1)) (notice that for

each singularity p̃ ∈ sing(F̃(1)) ⊂ E(1) the set of local separatrices of F̃(1) through p̃ is formed
by E(F)(1) union the local branches through p̃, of the strict transform by σ(1) of sep(F ,U)).

Given a singularity p̃ ∈ sing(F̃) ⊂ E of F̃ , since the blow-up map is proper, we can conclude

that for any small enough neighborhood W̃p̃ of p̃ in Ũ , a leaf L̃0 of the restriction F̃
∣∣
W̃p̃

is closed

in W̃p̃ provided that it projects into a piece of leaf π(L̃0) which is contained in a leaf L of F that

is closed in U . Similarly, a leaf L̃0 is closed in W̃p̃ \E provided that it projects into a piece of leaf

π(L̃0) which is contained in a leaf L of F that is closed in U \ {0}. By the Induction hypothesis,

each singularity p̃ ∈ sing(F̃) admits a holomorphic first integral say f̃p̃ defined in W̃p̃ if this

last is small enough. Now we analyze the holonomy of the leaf L0 := E(F) \ sing(F̃). Choose
a regular point q̃ ∈ E0 and a small transverse disc Σ to L0 centered at q̃. The corresponding
holonomy group representation will be denoted by H := Hol(F̃ ,Σ, q̃) ⊂ Diff(Σ, q̃). We know
that this group is finitely generated and by the invariance of E(F) and the above argumentation
and Lemma 3.1, we know that actually, the orbits of the holonomy group H of the exceptional
divisor are closed off the origin, one of which is closed. Applying Corollary 4.4 we conclude
that the holonomy group is finite. Since the virtual holonomy group preserves the leaves of the
foliation, the arguments above already show that the orbits of the virtual holonomy group Hvirt

are closed off the origin, one of which is closed. The problem is we still do not know that the
virtual holonomy group is finitely generated. Nevertheless, from Corollary 4.4 we obtain:

Claim 8.2. Any finitely generated subgroup H of the virtual holonomy group Hvirt is a finite
group.
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Let us then proceed as follows: given the singularities {p̃1, ..., p̃m} = sing(F̃) ⊂ E, by induction
hypothesis each singularity admits a local holomorphic first integral. Thus, there are small discs
Dj ⊂ E, centered at the p̃j and such that in a neighborhood Vj of p̃j in the blow-up space

C̃2
0 , of product type Vj = Dj × Dε, we have a holomorphic first integral gj : Vj → C, with

gj(p̃j) = 0. Fix now a point p̃0 ∈ E \ sing(F̃). Since E(F) has the topology of the 2-sphere,
we may choose a simply-connected domain Aj ⊂ E such that Aj ∩ {p̃0, p̃1, ..., p̃m} = {p̃0, p̃j},
for every j = 1, ...,m. Since Aj is simply-connected, we may extend the local holomorphic first

integral gj to a holomorphic first integral g̃j for F̃ in a neighborhood Uj of Dj ∪ Aj , we may
assume that Uj contains Vj . We observe that g̃j can be chosen to be primitive, i.e., it has
connected fibers, therefore it cannot be written as g̃j = hn, for some holomorphic function h
with n ≥ 2. Now, given a local transverse section Σ0 centered at p̃0 and contained in Uj , we
may introduce the invariance group of the restriction g0

j := g̃j
∣∣
Σ0

as the group

Inv(g0
j ) := {f ∈ Diff(Σ0, p̃0), g0

j ◦ f = g0
j }.

In other words, the invariance group of g0
j is the group of germs of maps that preserve the

fibers of g0
j . Clearly Inv(g0

j ) is a finite (resonant) group ([16] Proposition 1.1. page 475). Let

us now denote by Inv(F̃ ,Σ0) ⊂ Diff(Σ0, p̃0) the subgroup generated by the invariance groups

Inv(g0
j ), j = 1, ...,m. We call Inv(F̃ ,Σ0) the global invariance group of F̃ with respect to (Σ0, p̃0).

Then, from the above we immediately obtain:

Claim 8.3. Inv(F̃ ,Σ0) is a finite group.

Proof. Indeed, first notice that Inv(F̃ ,Σ0) is finitely generated (by periodic maps). Since

Inv(F̃ ,Σ0) preserves the leaves of F̃ (recall that g̃j was chosen to be primitive) we have that

Inv(F̃ ,Σ0) ⊂ Holvirt(F̃ ,Σ0, p̃0) and therefore by Corollary 4.4 Inv(F̃ ,Σ0) is a finite group. �

Notice that this global invariance group contains in a natural way the local invariance groups
of the local first integrals gj . Therefore, as observed in [16], once we have proved that the global

invariance group Inv(F̃ ,Σ0) is finite, together with the fact that the singularities in E(F) exhibit

local holomorphic first integrals, we conclude as in [16] that the foliation F̃ and therefore the
foliation F has a holomorphic first integral.

�

As a consequence of the proof of the above lemma we have:

Lemma 8.4. Let F be a foliation germ as in Theorem 1.2. Assume that F has a closed leaf
arbitrarily close to the origin. Then F admits a holomorphic first integral in some neighborhood
of the origin.

Proof. The proof is based on Lemma 8.1 above and in the following claims:

Claim 8.5. The foliation F is fully-resonant.

Proof. Indeed, this is a consequence of the fact that any singularity in the reduction of singu-
larities is such that the local induced foliation has closed leaves off the set of local separatrices
and of Lemma 6.1. �

Claim 8.6. Each virtual holonomy group in the reduction of singularities of F exhibits a closed
pseudo-orbit arbitrarily close to the origin.

Proof. This is a consequence of (what we have observed in the proof of) Proposition 3.3. �
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Then, we conclude, as in the proof of Lemma 8.1, that each local holonomy map of a separatrix
of a singularity in the reduction of singularities of F , is a finite periodic map. This implies that all
the singularities of the reduction of F are linearizable (and resonant). Applying now Lemma 8.1
we conclude. �

Lemma 8.7. Let F be a foliation germ as in Theorem 1.2. Assume that some separatrix Γ of
F contains some hyperbolic map in its virtual holonomy group. Then F is given by a closed
meromorphic one-form with simple poles.

Proof. We proceed by induction on the number r ∈ {0, 1, 2, ...} of blowing-ups in the reduction
of singularities for the germ F .
Case 1. (r = 0). In this case the singularity is already irreducible. Since it is not a saddle-node
it can be written as xdy − λydx+ . . . = 0 for some λ ∈ C \Q+. We claim:

Claim 8.8. The singularity is not a resonant singularity, i.e., λ 6∈ Q.

Proof of the Claim. Assume that we have λ = −n/m ∈ Q− for some n,m ∈ N with< n,m >= 1.
In this case we have two possibilities.

(1) The singularity is analytically linearizable. In this case we can write nxdy + mydx = 0.
Then we have a holomorphic first integral f = xmyn and any virtual holonomy map must
preserve the fibers of f . This implies that any virtual holonomy map is actually a finite periodic
map. This case is therefore excluded.

(2) The singularity is not analytically linearizable. As we have seen in Example 5.5, by [17]
the foliation is formally isomorphic to an unique equation

ωp/q,k,λ := p(1 + (λ− 1)uk)ydx+ q(1 + λuk)xdy,

where p, q, k ∈ N, λ ∈ C and u := xpyq and mp− nq = 1. We can rewrite

ωp/q,k,λ = (1 + (λ−mp)uk)(pydx+ qxdy) + pquk(nydx+mxdy).

This last expression admits the integrating factor hp/q,k,λ = pqxyuk, this means that the one-

form 1
hp/q,k,λ

ωp/q,k,λ := Ωp/q,k,λ is closed and meromorphic, with poles of order kp+ 1 in (x = 0)

and kq + 1 in (y = 0). Now, if there is a hyperbolic map in the virtual holonomy of one of the
separatrices (given by the axes) then this map clearly forces the closed meromorphic one-form
to have simple poles along that separatrix, which is not the case, contradiction.

�

Because the singularity is non-resonant we have λ ∈ C \Q. We claim that this singularity is
a hyperbolic singularity, i.e., λ ∈ C \ R. Indeed, if λ ∈ R \Q then we have two possibilities.

(i) The singularity is analytically linearizable. In this case we may assume that it is of the
form xdy − λydx = 0. Then, the leaves are not closed off the origin, because a typical leaf has
as closure the three-dimensional manifold given by |y||x|−λ = c for some c > 0.

(ii) The singularity is not analytically linearizable. In this case we must have λ ∈ R− and the
foliation is in the so called Siegel domain. In particular, there exactly are two separatrices and
we may assume that it is of the form xdy − λy(1 + A(x, y))dx = for some A(x, y) holomorphic
with A(0, 0) = 0. Such a singularity has a local holonomy map for the separatrix (y = 0) of the
form f(y) = exp(2πλ)y + . . .. In particular, such a holonomy map is not a resonant map. By
Lemma 6.1 or also by the considerations in the proof of Proposition 4.2 we know that the only
possibility compatible with the fact that the leaves of F are closed off the origin, is that f is a
hyperbolic map, i.e., λ ∈ C \ R.
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We conclude that the singularity is hyperbolic and that any separatrix has a hyperbolic
holonomy map. The singularity is linearizable as xdy − λydx = 0 in suitable local coordinates.
In these coordinates the foliation is given by the closed one-form Ωλ = dy

y − λ
dx
x .

Case 2 (Induction step). Assume that the result is proved for foliation germs that admit a
reduction of singularities with a number of blowing-ups less greater than or equal to r. Suppose
that the fixed germ F admits a reduction of singularities consisting of r+1 blowing-ups. Then we
perform a first blow-up σ1 : Ũ(1) → U at the origin and obtain a lifted foliation F̃(1) = σ∗1(F)
with (first) exceptional divisor E(F)(1) = σ−1

1 (0) consisting of a single embedded invariant

projective line in Ũ(1) (by hypothesis the exceptional divisor is invariant by F̃(1)). Given a leaf

L of F in U we denote by L̃(1) the lifting L̃(1) = σ−1
1 (L) of L to Ũ(1) by the map σ1 : Ũ(1)→ U .

By hypothesis F has some separatrix Γ containing a hyperbolic map in its virtual holonomy.

Let then p̃ ∈ sing(F̃(1)) be a singularity exhibiting some separatrix Γ̃p̃ = σ−1
1 (Γ \ {0}) not

contained in the projective line E(F)(1) and having a hyperbolic map in its virtual holonomy.

By the Induction hypothesis the germ F̃(1)p̃ induced by F̃(1) at p̃, is given by a simple poles

closed meromorphic one-form say Ω̃p̃. Since Ẽ(1) is invariant, it contains a separatrix of the

germ F̃(1)p̃. Because of the form Ω̃p̃, all the separatrices of F̃(1)p̃ contain hyperbolic maps

in their virtual holonomy groups. Therefore, the separatrix of F̃(1)p̃ contained in E(F)(1),
contains a hyperbolic map for its virtual holonomy group. Thanks to the invariance of E(F)(1)

for F̃(1) this implies that each singularity q̃ of F̃(1) in E(F)(1) contains a hyperbolic map in
the virtual holonomy of the corresponding separatrix contained in E(F)(1). Then, again by

Induction hypothesis, each singularity q̃ ∈ E(1) ∩ sing(F̃(1)) is given by a closed meromorphic

one-form Ω̃q̃ having simple poles. Now we focus on the leaf L0 = E(1) \ sing(F̃(1)) and on its

virtual holonomy group, which we shall denote simply by Holvirt(F̃(1),L0). This leaf contains
therefore hyperbolic maps in its virtual holonomy group. In view of Proposition 4.2 the group
Holvirt(F̃(1),L0) is abelian linearizable. Using this and the well-known techniques from [5] we

can construct a simple poles closed meromorphic one-form Ω̃ in a neighborhood of E(F)(1),

which defines F̃(1). Projecting this one-form onto a neighborhood of the origin 0 ∈ C2, we
obtain a closed meromorphic one-form Ω with simple poles, defining F . The lemma is proved
by Induction. �

Lemma 8.9. Let F be a foliation germ as in Theorem 1.2. Assume that F is not fully resonant.
Then:

(1) Each separatrix contains some hyperbolic map in its virtual holonomy group.
(2) F is given by a closed meromorphic one form with simple poles.

Proof. This is essentially a direct consequence of the lemma above. The idea is the following.
Since F is not fully-resonant, it contains some singularity which is not resonant. As in the proof
of Lemma 8.7, this singularity must be hyperbolic. The local holonomies of the separatrices of
this singularity then are hyperbolic maps, which induce hyperbolic maps on the virtual holonomy
of each separatrix of the foliation. By Lemma 8.7 we conclude. �

Lemma 8.10. Let F be a foliation germ as in Theorem 1.2. Assume that F is fully resonant.
Then F admits a formal Liouvillian first integral.

Proof. First we recall that all the virtual holonomy groups in the reduction of F are groups
with closed orbits off the origin. Then, according to Proposition 4.2 these groups are solvable.
Moreover, by hypothesis, there are no saddle-nodes in the reduction of singularities and all the
projective lines are invariant. Then, as already mentioned in Example 5.1, using the techniques
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from [26], [8] or the more general techniques from [21] we can construct a formal generalized
integrating factor for F . We give the detailed proof in the Appendix § 9. �

Proof of Theorem 1.2. Let F be a germ of a non-dicritical generalized curve at 0 ∈ C2. Assume
that the leaves of F are closed off the set of separatrices. By hypothesis, there is a neighborhood
U of the origin where the leaves are all closed off the set of separatrices. According to Lemma 8.9
we have only two possibilities:

(1) F is fully resonant.
(2) F is contains some hyperbolic singularity in its reduction of singularities and:

(a) Each separatrix contains some hyperbolic map in its virtual holonomy group.
(b) F is given by a closed meromorphic one form with simple poles.

We study the different possibilities:

Possibility 1. The singularity is fully-resonant. In this case, by Lemma 8.10 F admits a formal
Liouvillian first integral.

Possibility 2. The singularity is a generalized curve which is not fully-resonant. Moreover, we
have:

(1) F is given by a closed formal meromorphic one form with simple poles,
(2) Given any separatrix Γ through the origin, and a transverse disc Σ meeting Γ at a

point q 6= 0, the virtual holonomy group Holvirt(F ,Σ, q) is an abelian linearizable group
generated by a hyperbolic map and a periodic map.

As in [5] (page 440, paragraph after the proof Lemma 8) we can conclude that F is indeed a
holomorphic pull-back of a linear hyperbolic singularity xdy − λydx = 0, λ ∈ C \ R. This ends
the proof of Theorem 1.2. �

Proof of Theorem 1.3. According to Lemma 8.7 F is given by a closed meromorphic one-form
with simple poles. The rest of the proof goes as in final part of the above proof of Theorem 1.2.

�

Proof of Theorem 1.4. If we already know that F is a generalized curve then this is just the
result of Lemma 8.4. Let us then prove that this is the case. Recall that, by hypothesis F is
non-dicritical, its leaves are closed off the set of separatrices and F has a leaf which is closed on
each small neighborhood of the origin. Assume that there is a saddle-node in the reduction of
singularities of F . Then the strong manifold of this saddle-node exhibits a non-trivial holonomy
tangent to the identity, say of the form z 7→ z + ak+1z

k+1 + . . . for some ak+1 6= 0, k ∈ N. This
map has no closed orbit. Because the exceptional divisor is invariant and connected, and thanks
to Lemma 3.2, any given closed leaf must approach a saddle-node singularity by at least one
of its separatrices. If it approaches by the strong separatrix then we have a contradiction with
the above holonomy map dynamics. Therefore, the closed leaf must approach the saddle-node
through the central separatrix. Nevertheless, thanks to the local description of the saddle-node,
it is well-known that any leaf not contained in a separatrix and that accumulates properly at
the central separatrix also accumulates properly at the strong separatrix. Therefore, again, we
have a contradiction. This shows that the existence of a saddle-node is not possible under the
additional hypothesis of existence of a closed leaf sufficiently close to the original singularity.
Thus F is indeed a generalized curve. �

9. Appendix: Construction of generalized integrating factors

We shall now detail the construction of the formal generalized integrating factor indicated in
the proof of Lemma 8.10. We shall adopt the notation of that section. We shall also denote
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by Hj (respectively, by Hvirt
j ) the holonomy group (respectively, the virtual holonomy group)

of the component Dj of the divisor E(F), j = 1, ..., r, which is by hypothesis invariant. We
also denote by D∗j = Dj \ sing(F). The virtual holonomy group Hvirt

j has closed pseudo-
orbits off the origin. This group is therefore solvable in the terms of Proposition 4.2. Fixed
a regular point qj ∈ Dj − sing(F̃) ∩ Dj , a small transverse disk Σj ∼= D, Σj ∩ Dj = {qj}
we have holonomy and virtual holonomy identifications Hol(F̃ ,Dj,Σj) ∼= Hj ⊂ Diff(C, 0) and

Holvirt(F̃ ,Dj,Σj) ∼= Hvirt
j ⊂ Diff(C, 0). We recall the following result from groups of germs of

complex diffeomorphisms in dimension one ([10], [21]):

Lemma 9.1. Let H ⊂ Diff(C, 0) be a subgroup. Then:

(1) H is abelian ⇔ there exists a formal vector field ξ in one complex variable which is

H-invariant, i.e., g ∗ ξ̂ = ξ̂, ∀ g ∈ H.

(2) H is solvable ⇔ there is a formal vector field ξ̂ in one complex variable which is H-

projectively invariant, i.e., for each g ∈ H we have g ∗ ξ̂ = cg · ξ̂ for some cg ∈ C∗.

As a consequence we have the following possibilities for Hvirt
j :

(a) Hj is abelian ⇒ there exists a formal vector field ξ̂j in one complex variable yj ∈ Σj ,

yj(Σj) = D, yj(qj) = 0, ξ̂j writes in some formal coordinates ξ̂j(ẑ) =
ẑk+1

1 + aẑk
d

dẑ
such

that: (a*) g ∗ ξ̂j = ξ̂j , ∀ g ∈ Hj ,

(b) Hj is solvable non abelian ⇒ there exists a formal vector field ξ̂j such that: (b*)

g ∗ ξ̂j = cj · ξ̂j , cg ∈ C∗, ∀ g ∈ Hj and cg 6= 1 for some g ∈ Hj . The vector field ξ̂j writes

in some formal coordinate ẑ as ξ̂j(ẑ) = ẑk+1 d

dẑ
.

Definition 9.2 (normalizing coordinates). Let H ⊂ Diff(C, 0) be solvable and ξ̂ a projectively

invariant as in Lemma 9.1 above. The vector field ξ̂j writes in some formal coordinate ẑ as

ξ̂j(ẑ) =
ẑk+1

1 + aẑk
d

dẑ
. Such coordinates are called normalizing coordinates for the group G.

Let ω be a holomorphic one-form defining F in a neighborhood U ⊂ C2 of the origin. Denote
by ω̃ the lift of ω by the reduction of singularities for F , i.e., ω̃ = σ∗(ω) where σ : Ũ → U is the
morphism described in Section 2.

Lemma 9.3. There exists a transversely formal 1-form η̂j defined over D∗j such that dω̃ = η̂j∧ω̃,
dη̂j = 0, η̂j has simple poles along D∗j and along (ω̃)∞ ∪ (ω̃)0 .

Moreover, if C ⊂ (ω̃)∞ ∪ (ω̃)0 is an irreducible component with C ∩ Dj 6= ∅, then either
ResCη̂j = −ord((ω̃)∞,C), or ResCη̂j = ord(ω̃)0.

Proof. First we assume that Hj is abelian. We consider ξ̂j as in (a) above. Condition (a*)

allows as to extend ξ̂j as a transversely formal global section τ̂j of the sheaf Ŝim(F , D∗j ) of

transversely formal symmetries associated to F̃ , over the open curve D∗j . Indeed, this is just the

usual holonomy extension of ξ̂ as a constant vector field along the plaques of F near D∗j . Then

ĥj = ω̃(τ̂j) is a transversely formal function defined overD∗j and which satisfies dω̃ =
dĥj

ĥj
∧ω̃ [21],

so that we take η̂j =
dĥj

ĥj
. This 1-form clearly satisfies the required properties.
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Now we assume that Hj is solvable non abelian. We consider ξ̂j as in (b). Condition (b*) allows

the construction of a section τ̂j of the quotient sheaf Ŝim(F , D∗j )/C∗ . Thus
d(ω̃(τ̂j))

ω̃(τ̂j)
= η̂j is

well-defined over D∗j and has the required properties [21]. �

Now we prove that η̂j constructed in Lemma 9.3, extends to the singularities in Dj ∩ sing(F̃).

Let then qo ∈ singF̃ ∩ Dj be a singularity. If it is a corner, say qo = Di ∩ Dj is a corner then
it has two separatrices, contained in Di and Dj . Since qo is not a saddle-node we have three
distinct cases to consider:
(1) qo admits a formal first integral. In this case by [16] qo admits a holomorphic first integral
so that ω̃ admits a holomorphic integrating factor around qo and qo is analytically linearizable.
(2) qo is non-resonant of the form xdy − λydx + h.o.t. = 0, λ /∈ Q: In this case the local
holonomy around qo is a non-periodic linear part so that Hj is analytically normalizable and we

may assume that (ξ̂j and therefore) η̂j is convergent.
(3) qo is resonant not formally linearizable: In this case qo admits the so called Martinet-
Ramis formal normal forms [17]. In particular the 1-form ω̃ admits a formal integrating factor

ĥ defined at qo ; that is, (*) d

(
ω̃

ĥ

)
= 0 and ĥ is a formal series at qo . This equation (*)

exhibits resommation properties for ĥ so that by a Briot-Bouquet type argument [17],[18] ĥ can

be written ĥ(x, y) =
+∞∑
j=0

aj(x)yj , where (x, y) ∈ U is a local coordinate centered at qo , such that

Dj ∩U = {y = 0}, Di ∩U = {x = 0}, aj(x) is a holomorphic function converging in a small disk
Dqo ⊂ Dj centered at qo , not depending on j ∈ N.

Thus, in any of the three cases above, we conclude that there exists a transversely formal 1-
form η̂qo defined over a small disk qo ∈ Dqo ⊂ Dj and with simple poles along the separatrices (so
along Di and Dj), such that dη̂qo = 0 and dω̃ = η̂qo ∧ ω̃. The difference η̂j − η̂qo writes therefore

as η̂j − η̂qo = ĥ · ω̃ for some transversely formal integrating factor ĥ for ω̃ (i.e., d(ĥ · ω̃) = 0)
defined over the punctured disc D∗qo = Dqo \ {qo} .

Now we consider these three cases separately.
Case (1): There exists a local chart (x, y) ∈ U , x(qo) = y(qo) = 0 such that

ω̃(x, y) = g(x, y)(nxdy +mydx)

for some n,m ∈ N∗ and some holomorphic g ∈ O2 . We consider the 1-form

η̂qo =
dg

g
+
d(xy)

xy
=
dg

g
+
dx

x
+
dy

y
,

which is meromorphic in U . Let also ωo = n
dy

y
+
dx

x
. Then we have η̂j− η̂qo = ĥ · ω̃ = (ĥxyg)ωo

and since d(ĥ · ω̃) = 0 = dωo it follows that d(ĥxyg)∧ωo = 0, that is, f̂ = ĥxyg is a transversely

formal first integral for F̃ over D∗qo . Since fo = xmyn is already a primitive first integral for

F̃ around qo (if we choose 〈n,m〉 = 1) it follows that f̂ = l̂(fo) for some one variable formal

expression, that is, f̂ = l̂(xmyn) and since f̂ is defined as a transversely formal expression over
D∗qo which contains points of the form (x, 0), x 6= 0 and since xmyn = 0 at these points, it follows

that l̂ is a formal series on the disk D ⊂ C and therefore f̂ extends as a transversely formal first

integral along Dqo . It follows that (ĥ and therefore) η̂j extends as a transversely formal object
to Dqo .
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Case (2): There exists a formal linearization for F̃ at qo,

ω̃(x, y) = g(x, y)(xdy − λy(1 + b(x, y))dx),

b ∈ O2 /∈ g, λ ∈ C\Q, b(0, 0) = 0, (x, y) is a holomorphic chart and we can find a formal

chart (x, Ŷ ) at qo , with Ŷ (x, y) =
+∞∑
j=1

aj(x)yj , aj(x) holomorphic in Dqo , ∀ j, such that,

ω̃(x, Ŷ ) = Ĝ(x, Ŷ ) · (xdŶ − λŶ dx) is linearized. We define η̂qo = dĜ

Ĝ
+ d(xŶ )

xŶ
= dĜ

Ĝ
+ dx

x + dŶ

Ŷ

and ω̂o =
dŶ

Ŷ
− λdxx .

Therefore we may write η̂j − η̂qo = (ĥ · x · Y · Ĝ) · ω̂0 and d(ĥ · x · Ŷ · Ĝ) ∧ ω̂0 = 0. We

put f̂ := ĥx · Ŷ · Ĝ and write f̂ =
+∞∑
j=0

fj(x)yj where fj(x) is holomorphic in D∗qo , ∀ j. Then

df̂ ∧ ω̂0 = 0 gives (∗) xf̂x + λŶ · f̂Ŷ = 0 over D∗qo ; where by definition (notice that ∂Ŷ
∂x and

∂Ŷ
∂y are invertible elements of the ring of formal power series):

f̂x :=
∂f̂

∂x
=

+∞∑
j=0

f ′j(x)yj , f̂y :=
∂f̂

∂y
=

+∞∑
j=1

jfj(x)yj−1 f̂Ŷ := f̂x

(
∂Ŷ

∂x

)−1

+ f̂y

(
∂Ŷ

∂y

)−1

and

∂Ŷ

∂x
:=

+∞∑
j=1

a′j(x)yj ,
∂Ŷ

∂y
:=

+∞∑
j=1

jaj(x)yj−1.

Thus by (*) we conclude that f̂x = 0, f̂Ŷ = 0⇒ f̂x = 0, f̂y = 0⇒ f̂ = fo is a constant and

therefore f̂ extends naturally to Dqo . This shows that (ĥ and therefore) η̂j extends to Dqo .
Case (3): In this case we have local holomorphic coordinates (x, y) ∈ U centered at qo , such
that ω̃(x, y) = g(x, y)[nxdy + my(1 + b(x, y))dx] where n,m ∈ N∗, 〈n,m〉 = 1, g, b ∈ O2 ,
b(0, 0) = 0 [17]. According to [17] and also from what we have observed above we may choose a

formal coordinate system (x, Ŷ ) at q0 , Ŷ =
+∞∑
j=1

aj(x)yj , aj ∈ O(Dqo) ∀ j, such that if λ = n/m

then
ω̃(x, Ŷ ) = Ĝ(x, Ŷ )[n(1 + (λ− 1)(xmŶ n)k)xdŶ +m(1 + λ(xmŶ m)k)Ŷ dx].

In this case we define

η̂qo = d log[Ĝ(x, Ŷ ) · xm+1Ŷ m+1] =
dĜ

Ĝ
+ (m+ 1)

dx

x
+ (n+ 1)

dŶ

Ŷ

and

ω̂o =
ω̃

Ĝxn+1Ŷ n+1
= −d

(
Ŷ

xmŶ n

)
+ (xmŶ n)k−1

[
n(λ− 1)

dŶ

Ŷ
+ λ.m

dx

x

]
.

Since λ = n/m it is a straightforward calculation to show that dω̂o = 0 and therefore if

f̂ = h · Ĝxm+1Ŷ n+1,

then dv̂ ∧ ω̂o = 0. As in the case above, the fact that ω̂o admits no first integral outside one

separatrix implies that f̂ is constant and therefore η̂ extends to Dqo . But we remark that η̂− η̂qo
has simple poles along Dqo ⊂ Dj and ω̂o has poles of order n + 1 ≥ 2 along Dqo , so that
η̂ − η̂qo = const.. ω̂o ⇒ const.. = 0 and therefore we have in fact concluded that if qo is of
type (3) then η̂j extends as η̂j = η̂qo to qo .
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Summarizing the above discussion we obtain:

Proposition 9.4. Given any component Dj ⊂ E(F) there exists a transversely formal general-
ized integrating factor η̂j for ω̃ defined over Dj which also satisfies: the formal polar set (η̂j)∞
has order one.

Now it remains to show how to construct the forms η̂j in a compatible way, i.e., such that if
Di ∩Dj = {q} then both forms bind up into a transversely form defined in Di ∪Dj . For this we
need the solvability of the virtual holonomy group Hvirt

j , not only of the holonomy group Hj .
The idea is basically the following: Take a component Di ⊂ E(F) that meets Dj at a corner
singularity q = Di ∩Dj . We may assume that q is resonant so that we are in Case 1 or 3 of the
above argumentation. The difference α̂ij := η̂i − η̂j is a formal closed meromorphic one-form
at q such that α̂ij ∧ ω̃ = 0. Moreover, α̂ij is zero or it has only simple poles. Thus, we may

assume that we are just in Case 1 of the above argumentation, i.e., that F̃ has a holomorphic
first integral at q. In this case the so called Dulac correspondence is defined as follows:

Choose a small neighborhood Ũ of q, where we take small transverse sections Σj to Dj and
Σi to Di. Denote by F(Σj) the collection of subsets E ⊂ Σj such that E is contained in some

leaf of F̃
∣∣
Ũ

. Define F(Σi) in a similar way. Roughly speaking, the Dulac correspondence is
a multivalued correspondence Dq : Σj → Σi, which is obtained by tracing the local leaves of

F̃
∣∣
Ũ

. Given any x ∈ Σj the set of intersections of the local leaf of F̃
∣∣
Ũ

that contains x, with
the transverse section Σj , is denoted by Lx ∩Σj ∈ F(Σj). The correspondence Dq associates to
any point z ∈ Lx ∩ Σj , the subset Dq(z) ⊂ Lx ∩ Σi ∈ F(Σi), usually defined by the some local

normal form of F̃ in Ũ .
Given an element h ∈ Holvirt(F̃ ,Dj,Σj), we associate h with a collection of elements

{hD} ⊂ Diff(Σi, qi) ⊂ Holvirt(F̃ ,Di,Σi),

each of which satisfies the following relation

hD ◦ Dq = Dq ◦ h ,
called the adjunction equation. We remark that the adjunction equation is not exactly an
equation, but rather an equality of sets or correspondences. More precisely, given any element
h ∈ Holvirt(F̃ ,Dj,Σj), each diffeomorphism hD ∈ Holvirt(F̃ ,Di,Σi) must satisfy, for every x ∈ Σi,
the equality of sets hD(Dq(x)) = Dq(h(x)), where Dq(x) ⊂ Lx ∩ Σi and Dq(h(x)) ⊂ Lx ∩ Σj
are subsets as above. This adjunction is adequately defined for the special case of singularities
{q} = Di ∩Dj we are considering as we shall see in what follows. There are local holomorphic

coordinates (x, y) ∈ Ũ such that Di ∩ Ũ = {x = 0}, Dj ∩ Ũ = {y = 0}, and such that F̃
∣∣
Ũ

is given in the normal form as nxdy + mydx = 0 and q : x = y = 0, where n/m ∈ Q+ and
〈n,m〉 = 1. We fix the local transverse sections as Σj = {x = 1} and Σi = {y = 1}, such
that Σi ∩ Di = qi 6= q and Σj ∩ Dj = qj 6= q. The local leaves of the foliation are given by
xmyn = const. The Dulac correspondence is the correspondence obtained by following these
leaves

Dq : Σj → Σi, Dq(x) = {xm/n}.
from a local transverse section Σj to Dj to another transverse section Σi to Di. Let be given
a map f in the virtual holonomy Hvirt

i of Di. We search for a well-defined map fDq ∈ Hvirt
j in

the virtual holonomy of Dj , such that it satisfies the “ adjunction equation” fDq ◦ Dq = Dq ◦ f.
The fact that we can construct both η̂i and η̂j in a compatible way, i.e., such that η̂i and

η̂j agree as formal objects at q is a consequence of the following: (1) η̂i and η̂j are constructed
in a compatible way (agreeing) with the virtual holonomy groups Hvirt

i and Hvirt
j respectively.

(2) these virtual holonomy groups are related by the Dulac correspondence. Indeed, we can
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embed the virtual holonomy group of Dj into the virtual holonomy group of Di. Thus, the
solvability of the group Hvirt

i means that, in a certain sense, both virtual holonomy groups
are solvable and simultaneously written in formal normalizing coordinates. In particular, we
can already choose the form η̂i in such a way that it agrees with η̂j as formal objects at q.
The details of this construction and compatibility conditions are thoroughly discussed in [21].
There the author mentions the so called zone holomorphe, zone logarithmique,.... To such a
zone, denoted by Z, the author associates a holonomy pseudo-group Hol(Z, fZ) which measures
the obstruction to the integration of the foliation in a neighborhood of the zone Z. The main
point is that under our hypothesis, both components Di and Dj are accumulated by analytic
leaves and therefore both exhibit solvable virtual holonomy groups. On the other hand, any
generalized holonomy Hol(Z, fZ) constructed in [21] is contained in the virtual holonomy. This
implies that the conditions of [21] are automatically satisfied by Proposition 3.3. Now we can
finish the argumentation just by observing that from the above discussion we already conclude
from Proposition 3.3 that the forms η̂j can be constructed in a compatible way, resulting into a

global transversely formal one-form ˜̂η along the divisor D =
⋃
j

Dj . Blowing down this one-form

we obtain a transversely formal generalized integrating factor η̂ for ω in a neighborhood of the
origin 0 ∈ C2.

Sketch of the proof of Proposition 5.9. We perform the reduction of singularities of the foliation
F . The first step is:

Claim 9.5. All the virtual holonomy groups are exceptional, isomorphic.

The next step is:

Claim 9.6. There is a transversely formal function Φ̂j defined along D∗j = Dj \ sing(F̃), with
the property below: Given any point q ∈ D∗j and a transverse disc Σq with ΣD̃ ∩Dj = {q}, we
choose a formal normalizing coordinate x̂q ∈ Σq, centered at q, for the virtual holonomy group

Holvirt(F̃ ,Dj,Σq), q). Then we have Φ̂j
∣∣
Σq

(x̂q) = cos( 2π

x̂
kj
q

).

In the case Holvirt(F̃ ,Dj,Σq, q) is exceptional we define Φ̂j
∣∣
Σq

as Φ̂j(x̂q) = cos( 2π

x̂
kj
q

). Then:

Claim 9.7. The function Φ̂j extends to each singularity p ∈ Dj ∩ sing(F̃), the result is a

transversely formal Liouvillian function along Dj which is a first integral for F̃ .

Proceeding as in the proof of Proposition 9.4 we obtain:

Claim 9.8. Given any corner p = Di ∩Dj there is a constant cij ∈ C such that at p we have

Φ̂i = cijΦ̂j as formal objects.

Since the exceptional divisor E(F) contains no cycles we may choose a globally defined

transversely formal function Φ̂ along E(F) by suitable choices of constants cj ∈ C and setting

Φ̂ = cjΦ̂j whenever it makes sense. Blowing down Φ̂ we obtain the desired formal Liouvillian
first integral. This completes the proof of Lemma 8.10. �
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GEODESICS IN GENERALIZED FINSLER SPACES: SINGULARITIES IN

DIMENSION TWO

A.O. REMIZOV

Abstract. We study singularities of geodesics flows in two-dimensional generalized Finsler
spaces (pseudo-Finsler spaces). Geodesics are defined as extremals of a certain auxiliary

functional whose non-isotropic extremals coincide with extremals of the action functional.

This allows us to consider isotropic lines as (unparametrized) geodesics.

Introduction

This paper is a study of singularities of geodesics flows in generalized Finsler spaces (pseudo-
Finsler spaces). This is a natural development of ongoing research on understanding the geometry
of surfaces endowed with a signature-varying pseudo-Riemannian metric; see [8, 10, 11, 16, 19,
20, 21] and the references therein. One of the purposes of this paper is to compare singularities
of geodesics flows in pseudo-Finsler and pseudo-Riemannian metrics. On the other hand, the
interest in pseudo-Finsler spaces is motivated by physical applications; see, e.g., [1, 5].

Following [23], by a pseudo-Finsler space, we mean a manifold M , dimM = m, with co-

ordinates (xi) endowed with a metric function f(xi; ẋi) = F (xi; ẋi)
1
n , where F : TM → R is

positively homogeneous in (ẋi) of degree n and smooth on the complement of the zero sec-
tion of TM (a more detailed definition is given in Sections 1.1, 1.2). A well-known example is

Berwald–Moor space (M,f), where f(xi; ẋi) = (ẋ1 · · · ẋn)
1
n , n = m; see, e.g., [6, 14, 23].

This paper starts with a discussion of the notion of geodesics in Finsler and pseudo-Finsler
spaces with n ≥ 3 (Section 1). Here, we use the variational definitions of geodesics [7, 23]. In
contrast to pseudo-Riemannian spaces (n = 2), where naturally parametrized geodesics of all
types (including isotropic) can be defined as extremals of the action functional, in pseudo-Finsler
spaces a similar definition is not correct for isotropic lines. The solution of this problem is either
to exclude isotropic lines from consideration or to find a natural extension of the definition of
geodesics.

In the present paper, we choose the second way. Based on a simple variational property,
we define geodesics as extremals of a certain auxiliary functional whose non-isotropic extremals
coincide with extremals of the action functional. In this direction, we have the following result:
in the case m = 2, all isotropic lines are (unparametrized) geodesics.

In Section 2, we consider singularities of the geodesic flows in pseudo-Finsler spaces (M,f),
where m = 2 and F is a polynomial in (ẋi) of degree n ≥ 3. The main results are presented
in Section 2.2, where we consider the case n = 3 in detail. It is proved that singularities of
the geodesic flow are connected with the degeneracy of the isotropic lines net. Namely, if the
function F is generic, the manifold M contains two open domains M+ and M− separated by a
curve M0 so that, at every point q ∈M+ (resp., M−), there exist 3 (resp., 1) different isotropic
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directions and isotropic lines which are tangent at q ∈ M0. Singularities of the geodesic flow
appear in the domain M− and on the curve M0.

Section 3 is devoted to a special case: pseudo-Finsler spaces (M,f), where M is a surface in
n-dimensional Berwald–Moor space. The corresponding function F is a non-generic polynomial
in (ẋi) of degree n. In this case, the domain M− = ∅, and singularities of the geodesic flow
appear on the curve M0 only.

The author expresses deep gratitude to Prof. Farid Tari (ICMC-USP, São Carlos, Brazil) for
attention to the work, useful advice, and remarks. I am also grateful to the reviewer for many
constructive comments and suggestions.

1. Variational definition of geodesics

1.1. Finsler spaces. Consider a smooth (here and below, by smooth, we mean C∞ unless other-
wise stated) manifold M , dimM = m, with coordinates (xi) and a function F (xi; ẋi) : TM → R
that is positively homogeneous of degree n ≥ 2 in (ẋi) and smooth on the complement of the
zero section of TM .

Define the function f(xi; ẋi) = F
1
n (xi; ẋi), which is positively homogeneous of degree 1 in

(ẋi). The pair (M, f) or, equivalently, (M,F ) is a Finsler space (in the classic sense), if the
following conditions hold:

B. F (xi; ẋi) > 0 if |ẋ1|+ · · ·+ |ẋm| 6= 0.

C. The Hessian of the function f
2

with respect to (ẋi) is positive definite, that is,

(1.1)
m∑

i,j=1

∂2
(
f

2)
∂ẋi∂ẋj

ξiξj > 0 if
m∑
i=1

|ξi| 6= 0.

Here, we use the letters B and C to preserve the notations from the book [23], to which we shall
refer. The quadratic form (1.1) is called the fundamental tensor, and f (positive and smooth on
the complement of the zero section of TM) is called the metric function on M .

The metric function f(xi; ·) defines a Minkowski norm on each tangent space TxM . For
a curve γ : I → M , it allows us to define the length and the action functionals similarly to
Riemannian metrics:

(1.2) J (ν)(γ) =

∫
I

f
ν
(xi; ẋi) dt =

∫
I

F
ν
n (xi; ẋi) dt, ẋi =

dxi
dt
,

with ν = 1 (length) and ν = 2 (action), see, e.g., [13, 23]. As in the Riemannian case, the length
functional J (1) is invariant with respect to reparametrizations of γ, while J (2) is not.

Parametrized geodesics can be defined as extremals of the action functional J (2), the corre-
sponding parametrization is called natural or canonical (it coincides with the arc-length para-
metrization, where ds = f).

Non-parametrized geodesics can be defined as extremals of any one of the functionals J (2)

and J (1). The difference between using J (2) and J (1) is the following. In the first case, we
simply forget the natural parametrization of the extremals of J (2), while in the second case
the Euler-Lagrange system with the Lagrangian f(xi; ẋi) contains m− 1 independent equations
only [23]. This reflects the fact that the length functional J (1)(γ) is invariant with respect to
reparametrizations of γ. Using this degree of freedom and assuming that we deal with con-
tinuously differentiable geodesics with definite tangent directions at all points, one can set (at
least, locally) the parameter t equal to one of the coordinates xi, and consequently, reduce the
Euler-Lagrange system for J (1)(γ).
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From now on, we use the following general notation. Let Φ(xi; ẋi) be a function on TM which
is positively homogeneous of degree k in (ẋi), then the formula

(1.3) Φ =
Φ

ẋk1

defines a function on the projectivized tangent bundle PTM . For instance, put x = x1 and
yi = xi, pi = dyi/dx for i = 2, . . . ,m. This yields

(1.4)
d

dx

(
∂f

∂pi

)
=
∂f

∂yi
, f(x, yi, pi) =

f(xi; ẋi)

ẋ1
, i = 2, . . . ,m.

The passage to equation (1.4) is the standard projectivization Π: TM → PTM of the tangent
bundle. Moreover, non-parametrized geodesics can be defined as extremals of J (ν) with arbitrary
ν ≥ 1, on the basis of the following simple property (see, e.g., [15]).

Lemma 1. Let ψ : R → R be a function such that ψ ◦ F is C2-smooth on the complement of
the zero section of TM and ψ′(s) 6= 0 for all s 6= 0. Then non-parametrized extremals of the
functional

(1.5) Jψ(γ) =

∫
I

ψ ◦ F (xi; ẋi) dt, ẋ =
dx

dt
, ẏ =

dy

dt
,

coincide with non-parametrized extremals of Jid(γ), where id is the identity map.

Proof. The Euler-Lagrange equation of Jψ(γ) reads

(1.6)
d

dt

(
ψ′ ◦ F (xi; ẋi) ·

∂F

∂ẋi

)
= ψ′ ◦ F (xi; ẋi) ·

∂F

∂xi
, i = 1, . . . ,m.

In light of the condition F (xi; ẋi) > 0, every curve γ admits the arc-length parametrization, that
is, F (xi; ẋi) ≡ c 6= 0 along γ. Using the arc-length parametrization in (1.5), after reducing the
constant factor ψ′ ◦F (xi; ẋi) = ψ′(c) in both sides of (1.6), we get the Euler-Lagrange equation
of the functional Jid(γ).

Thus non-parametrized geodesics can be defined as extremals of Jψ(γ) with arbitrary function

ψ from Lemma 1, in particular, of the functional Jid(γ), which is equal to J (ν)(γ) with ν = n
from (1.2). In classical Finsler spaces this extended definition of geodesics gives us nothing
essentially new, but it can be useful for generalized Finsler spaces considered below.

1.2. Generalized Finsler spaces. A generalization of the notion of a Finsler space may be
obtained if conditions B and C are dropped, such spaces are sometimes called special Finsler
or pseudo-Finsler. Here we take the liberty to cite a passage from the classical book [23] (page
265):

Again, it should be remarked that very frequently the metric function which is
given by a homogeneous Lagrangian function of a dynamical system does not
always satisfy conditions B and C. The singularities which may occur as a result
of the relaxation of condition C are usually ignored, but it is well possible that
an investigation of these singularities in connection with physical applications
cannot be avoided and might furthermore prove to be fruitful.

From now on, we will consider pseudo-Finsler spaces (M,F ), where the function F is not
assumed to satisfy conditions B and C.

The absence of condition B brings us to the existence of the isotropic hypersurface F given by
the equation F (xi; ẋi) = 0 in TM or, equivalently, F (x, yi, pi) = 0 in PTM . The Euler-Lagrange
equation for the functional J (ν)(γ) with ν < n is not defined on F , since the derivatives of
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F
ν
n (xi; ẋi) are discontinuous on F . This explains the advantage of the functional J (n)(γ) for

the definition of geodesics compared to J (ν)(γ) with ν < n.
The Euler-Lagrange equation for the functional J (n)(γ) reads

(1.7)
m∑
j=1

∂2F

∂ẋi∂ẋj
ẍj +

m∑
j=1

∂2F

∂ẋi∂xj
ẋj =

∂F

∂xi
, i = 1, . . . ,m,

or, equivalently,

(1.8) ẍi =
Hi(xi; ẋi)

H(xi; ẋi)
, where H = det

(
∂2F

∂ẋi∂ẋj

)
, i = 1, . . . ,m,

and Hi are the determinants defined from (1.7) by Cramer’s rule. It is not hard to see that the
functions Hi are positively homogeneous of degree n in (ẋi) and H is positively homogeneous of
degree n− 2 in (ẋi).

Similarly to (1.4), the projectivization Π: TM → PTM sends equation (1.8) to

(1.9) pi =
dyi
dx

,
dpi
dx

=
dpi
dt

(
dx

dt

)−1

=
1

ẋ

d

dt

(
ẏi
ẋ

)
=
ÿiẋ− ẏiẍ

ẋ3
=

1

ẋ2

Hi − piH1

H
=
Hi − piH1

H
, i = 2, . . . ,m,

where the functions H,Hi are obtained from H,Hi by (1.3). Recall that, by formula (1.3), the
independent variable x is the coordinate x1. From Lemma 1, it follows that out of the isotropic
hypersurface F , integral curves of (1.9) coincide with integral curves of (1.4). However, equation
(1.9) is defined in the whole space PTM .

Lemma 2. F is an invariant hypersurface of both equations (1.7) and (1.9). Moreover, in the
case m = 2 all isotropic lines are non-parametrized extremals of the functional J (n).1

Proof. After straightforward transformations, equation (1.4) gives a direction field which is
parallel to

(1.10) F−µX

(
∂

∂x
+ p

∂

∂y

)
+ F−µ

m∑
i=2

Yi
∂

∂pi
,

where µ = (m− 1)(2− 1
n ) and X,Yi are smooth functions on PTM .

Since the vector field (1.10) is derived directly from the Euler-Lagrange equation (1.4), it is
divergence-free in PTM except for the hypersurface F where the factor F−µ is discontinuous,
and the field is not defined. By Theorem 1 [8], F is an invariant hypersurface of the vector field

(1.11) X

(
∂

∂x
+ p

∂

∂y

)
+

m∑
i=2

Yi
∂

∂pi
,

which is obtained from (1.10) by eliminating the common factor F−µ. By Lemma 1, integral
curves of (1.11) coincide with integral curves of (1.9); hence, X = H, Yi = Hi − piH1, and F
is an invariant hypersurface of (1.9). We remark that every solution of (1.7) is obtained from
a solution of (1.9) by choosing an appropriate parametrization x1(t). Thus F is an invariant
hypersurface of equation (1.7) also.

Finally, consider the case m = 2. Then dimPTM = 3 and dim F = 2. The field of contact
planes y2 = p2dx cuts a direction field on F , which coincides with the restriction of the field

1 This statement holds true only for m = 2, while in the case m > 2 some isotropic lines are geodesics and

some of them are not. An example is given for m = 3, n = 2 (pseudo-Riemannian metrics) in [20].
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(1.9) to F . Hence the projection of integral curves from the surface F ⊂ PTM to M are
isotropic lines and non-parametrized extremals of the functional J (n) simultaneously.

In accordance with the previous reasoning, one can give the following definition.

Definition 1. The projections of integral curves of equation (1.9) from PTM to M distinguished
from a point are non-parametrized geodesics in the pseudo-Finsler space (M,F ).

By Lemma 2, in the case m = 2, all isotropic lines are geodesics in the sense of the given
definition.

The natural parametrization of non-isotropic geodesics is defined by equation (1.6) with

ψ(s) = s
2
n and coincides with the arc-length parametrization. In the case n > 2, the natu-

ral parametrization of isotropic geodesics is not defined, while in the case n = 2 it is defined by
equation (1.6) with ψ = id.

2. Polynomial pseudo-Finsler metrics on 2-manifolds

From now on, we consider the case when m = 2 and the function F is a homogeneous
polynomial of degree n ≥ 2 in (ẋi). Denote the coordinates on the manifold M by (x, y).

Consider a pseudo-Finsler space with the metric function f = F
1
n , where

(2.1) F (x, y; ẋ, ẏ) =
n∑
i=0

ai(x, y)ẋn−iẏi, F (x, y; p) =
n∑
i=0

ai(x, y)pi,

the coefficients ai smoothly depend on (x, y). Then equation (1.8) reads

(2.2) ẍ =
H1

H
, ÿ =

H2

H
, H =

∣∣∣∣F ẋẋ F ẋẏ
F ẋẏ F ẏẏ

∣∣∣∣ , H1 =

∣∣∣∣G1 F ẋẏ
G2 F ẏẏ

∣∣∣∣ , H2 =

∣∣∣∣F ẋẋ G1

F ẋẏ G2

∣∣∣∣ ,
where G1 = F x − ẋF ẋx − ẏF ẋy and G2 = F y − ẋF xẏ − ẏF ẏy.

Lemma 3. The projectivization Π: TM → PTM sends equation (2.2) to

(2.3) p =
dy

dx
,

dp

dx
=
H2 − pH1

H
=
P

∆
,

where

(2.4)
∆(x, y; p) = nFFpp − (n− 1)F 2

p ,

P (x, y; p) = nF (Fy − Fxp − pFyp) + (n− 1)Fp(Fx + pFy).

Proof. Taking into account (1.9), it remains for us to establish the equality H2−pH1

H = P
∆ ,

where ∆, P are defined in (2.4). Let us prove that H = (n− 1)∆ and H2− pH1 = (n− 1)P , i.e.,
H = ẋ2n−4(n− 1)∆ and H2 − pH1 = ẋ2n−2(n− 1)P . Since both sides of the two last equalities
can be treated as quadratic forms on a0, . . . , an with coefficients depending on ẋ, ẏ, it suffices to
compare the coefficients of the monomials aiaj in the left- and right-hand sides.

Put εij = 1 if i 6= j and εij = 1
2 if i = j. Direct calculation shows that the coefficient of the

monomial aiaj , i+ j = k, in the expression H = F ẋẋF ẏẏ − F
2

ẋẋ is αijεij ẋ
2(n−1)−kẏk−2, where

(2.5) αij = (n− i)(n− 1− i)j(j − 1) + (n− j)(n− 1− j)i(i− 1)− 2ij(n− i)(n− j) =

(n− 1)
(
n(k2 − k − 4ij) + 2ij

)
.

On the other hand, the coefficient of the monomial aiaj , i+ j = k, in the expression

∆ = nFFpp − (n− 1)F 2
p
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is βijεijp
k−2, where

(2.6) βij = n(i(i− 1) + j(j − 1))− 2ij(n− 1) = n(k2 − k − 4ij) + 2ij.

From (2.5) and (2.6), we have αij = (n − 1)βij , that proves H = ẋ2n−4(n − 1)∆. The proof of

the equality H2 − pH1 = ẋ2n−2(n− 1)P is similar.

Remark 1. From formula (2.4), it follows that ∆ and P are polynomials in p of degrees not
greater than 2n− 4 and 2n− 1, respectively. For instance,

∆(x, y; p) = (2nanan−2 − (n− 1)a2
n−1)p2n−4 + · · ·+ 2na0a2 − (n− 1)a2

1.

For our further purposes, it is convenient to write equation (2.3) as the field

(2.7) ∆

(
∂

∂x
+ p

∂

∂y

)
+ P

∂

∂p
.

The field (2.7) is defined on the whole space PTM including the isotropic surface F . The field
of contact planes dy = pdx defines on F a direction field whose integral curves correspond to
isotropic lines, while all remaining integral curves of the field (2.7) (that do not belong entirely
to the isotropic surface) correspond to non-isotropic geodesics.

In accordance with Definition 1, non-parametrized geodesics in the pseudo-Finsler space
(M,F ) are the projections of integral curves of the field (2.7) from PTM to M distinguished
from a point. Singularities of geodesics occur at the points of PTM where ∆(x, y; p) vanishes.
To describe the locus of such points, we use the following lemma.

Lemma 4. Given a polynomial

(2.8) Φ(p) =
n∏
i=1

(p+ γi), γi ∈ R, n ≥ 2,

consider the polynomial

(2.9) ∆(p) = nΦ(p)Φ′′(p)− (n− 1)Φ′(p)2.

Then the following statements hold:

(a) ∆ ≡ 0 if and only if γ1 = · · · = γn.
(b) Suppose that γi 6= γj for at least one pair i, j. Then p is a real root of the polynomial ∆

if and only if p is a multiple root of the polynomial Φ.
(c) If p is a double root of Φ and n ≥ 3, then p is a double root of ∆.

Proof. The implications γ1 = · · · = γn ⇒ ∆ ≡ 0 in (a) and Φ(p) = Φ′(p) = 0 ⇒ ∆(p) = 0 in
(b) are trivial. The implication ∆ ≡ 0 ⇒ γ1 = · · · = γn in (a) follows from (b). Indeed, assume
that ∆ ≡ 0 holds and any two of the numbers γ1, . . . , γn are not equal. By (b), ∆(p) = 0 implies
Φ(p) = 0. Hence Φ ≡ 0, which contradicts (2.8).

Statement (c) is also trivial: differentiating (2.9) twice, from Φ(p) = Φ′(p) = 0, we get

∆(p) = ∆′(p) = 0 and ∆′′(p) = (2− n)Φ′′(p)
2 6= 0, if Φ′′(p) 6= 0 and n 6= 2.

It remains to prove the implication ∆(p) = 0 and p ∈ R ⇒ Φ(p) = Φ′(p) = 0 in statement
(b). Assume that γi 6= γj for at least one pair i, j and there exists p∗ ∈ R such that Φ(p∗) 6= 0.
Making the change of variables p 7→ p−p∗, without loss of generality we can assume that p∗ = 0.
Then Φ(0) = γ1 · · · γn 6= 0, and

Φ′(0) =
n∑
i=1

αiΦ(0), Φ′′(0) = 2
∑
i<j

αiαjΦ(0), αi =
1

γi
.
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Substituting the above formulae in (2.9), after straightforward transformations we get

(2.10) ∆(0) = Φ2(0)
(

2n
∑
i<j

αiαj − (n− 1)
( n∑
i=1

αi

)2)
= −Φ2(0)ϕn(α1, . . . , αn),

where

ϕn(α1, . . . , αn) = n
n∑
i=1

α2
i −

( n∑
i=1

αi

)2

.

Let us prove that for any n ≥ 2 the form ϕn(α1, . . . , αn) ≥ 0 and ϕn(α1, . . . , αn) = 0 if
and only if α1 = · · · = αn. Indeed, consider the vectors α = (α1, . . . , αn) and β = (1, . . . , 1)
in n-dimensional Euclidean space with the standard inner product. Then the Cauchy–Schwarz
inequality (α, β)2 ≤ (α, α)(β, β) gives the required assertion.

By our assumption, αi 6= αj for at least one pair i, j. Then ϕn(α1, . . . , αn) > 0, and equality
(2.10) implies that ∆(0) = 0 ⇔ Φ(0) = 0. Moreover, from (2.9) it follows that

∆(p∗) = Φ(p∗) = 0 ⇒ Φ′(p∗) = 0,

i.e., p∗ = 0 is a multiple root of Φ. The lemma is proved.

Remark 2. Obviously, the implication Φ = Φ′ = 0 ⇒ ∆ = 0 holds true for all polynomial Φ,
not necessarily (2.8). However, the inverse implication ∆ = 0 ⇒ Φ = 0 is not valid if Φ has a
complex root. The reason for this is easily ascertained: the inequality ϕn(α1, . . . , αn) ≥ 0 is not
valid if among the numbers αi some are complex.

For example, consider the polynomial Φ = p3 + p with the unique real root p = 0. Then the
corresponding polynomial ∆ = 2(3p2 − 1) has two real roots, none of those coincides with 0.
Moreover, the polynomial Φ = p4+6p2+1 does not have real roots at all, while the corresponding
polynomial ∆ = 48(p2 − 1)2 has two double roots p = ±1.

Lemma 4 gives a simple geometrical description of the singular locus of equation (2.3) for the
domain M ′ ⊂ M , where the pseudo-Finsler space (M,F ) has m isotropic lines passing through
every point of M ′, i.e., the polynomial F (p) has m real roots (taking into account the multiplicity
and possibly including p = ∞). For (x, y) ∈ M ′, the function ∆(x, y; p) vanishes if and only
if at least two of m isotropic lines are tangent at (x, y) and p is the corresponding tangential
direction. We remark that this statement is not valid for the complement of M ′, where the
polynomial F (p) has complex roots.

This question will be considered in detail for n = 3.

2.1. Pseudo-Riemannian metrics. By Remark 1, in the case n = 2 (pseudo-Riemannian
metrics) ∆ is a zero degree polynomial in p, that is, ∆ does not depend on p. Moreover, it is
easy to check that ∆ = −4D[F ], where D[F ] means the discriminant of the quadratic polynomial
F . Hence the locus of singularities of equation (2.3) coincides with the discriminant curve
of the implicit differential equation F (x, y; p) = 0. It is not hard to see that the equation
∆(x, y) = 0 defines an invariant surface of the field (2.7) filled with integral curves whose
projections PTM →M are points forming the discriminant curve.

This property leads to a curious phenomenon: geodesics cannot pass through a point (x, y)
of the discriminant curve in arbitrary tangential directions, but only in admissible directions
p defined by the condition P (x, y; p) = 0. Generically, P (x, y; p) is a cubic polynomial in p
and the number of admissible directions is 1 or 3. Singularities of the geodesic flows in pseudo-
Riemannian metrics are studied in detail (the interested reader is referred to the papers [8, 19, 20]
devoted to 2-dimensional pseudo-Riemannian metrics; similar results for 3-dimensional pseudo-
Riemannian metrics were announced in [16]).
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It should be remarked that the case n = 2 is exceptional from the viewpoint of Finsler and
pseudo-Finsler geometry (n > 2). In the case n > 2, ∆ generically depends on p and the notion
of admissible directions does not appear. Geodesics pass through every point of M in all possible
directions, but some directions at some points are singular. In other words, only points of the
space PTM may have the property of being singular.

In the rest of the paper, we consider the case n = 3 (cubic pseudo-Finsler metrics) in detail.

2.2. Cubic pseudo-Finsler metrics. Let D[F ] and D[∆] be the discriminants of the cubic poly-
nomial F (x, y; p) and the quadratic polynomial ∆(x, y; p) in p, respectively. A direct calculation
shows that D[∆] = −12D[F ].

Introduce the following stratification of the manifold M . The open domains M+,M− are
defined by the conditions D[F ] > 0, D[F ] < 0, respectively. Generically, M+,M− are separated
by the discriminant curve M0 : D[F ] = 0, which consists of regular points (the cubic polynomial
F has one prime root and one double root) and cusps (F has a triple root). By M0,1 denote
the set of all regular points of M0, while M0,0 = M0 \M0,1. The discriminant of the quadratic
polynomial ∆ is strictly negative in M+; hence singularities of equation (2.3) occur only in
M− and M0. Further we exclude from consideration the stratum M0,0 of dimension zero, and
consider only M− and M0,1.

In a neighborhood of every point of M \M0,0, the cubic polynomial F has at least one prime
real root p∗(x, y) smoothly depending on x, y. To simplify calculations, choose local coordinates

such that the integral curves of the vector field dy
dx = p∗(x, y) (one of three families of isotropic

lines) become x = const. This yields a3(x, y) ≡ 0 and

(2.11)

F = ap2 + 2bp+ c, ∆ = −2(ap+ b)2 + 6(ac− b2), D[F ] = 4a2(b2 − ac),
M± = {±(b2 − ac) > 0, a 6= 0}, M0,1 = {b2 − ac = 0, a 6= 0},
P = 3F (Fy − Fxp − pFyp) + 2Fp(Fx + pFy).

2.2.1. Singularities in the stratum M−. At every point in M−, the quadratic equation ∆ = 0
has two prime real roots

(2.12) p1,2 =
±δ − b
a

, δ =
√

3(ac− b2),

and the domain M− is filled with two transverse families of integral curves of the binary implicit
differential equation ∆ = 0, which we shall call singular lines of the metric.

Consider the curves Si ⊂ M− defined by the equations P (x, y; pi) = 0, i = 1, 2, where P
is defined in (2.11). They can be also considered as the branches of the locus res(∆, P ) = 0,
where “res” means the resultant of two polynomials in p. In the space PTM , consider the
corresponding curves

Si = {(x, y; pi) : (x, y) ∈ Si}, i = 1, 2,

which consist of singular points of the field (2.7).
Let Γq denote the family of geodesics outgoing from a point q = (x, y). The simplest type of

singularities of the geodesic flow (codimension 0) is given in the following theorem.

Theorem 1. Let q ∈M− and (q; pi) /∈ Si, i = 1, 2. Then there exists a unique geodesic passing
through the point q with tangential direction pi: a semicubic parabola with the cusp at q. In
particular, if q ∈M− \ (S1 ∪S2), the family Γq contains two semicubic parabolas with tangential
directions pi, while geodesics with all remaining directions at q are smooth.

Proof. If P (q; pi) 6= 0, then, by the standard existence and uniqueness theorem, the field
(2.7) has a unique integral curve γi passing through the point (q; pi). From the conditions a 6= 0,
ac− b2 6= 0, it follows that ∆ and ∆p do not vanish simultaneously; see (2.11).
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Hence the curve γi has first order tangency with the vertical direction (the vertical direction
in the space PTM is called the p-direction, i.e., the kernel of the natural projection PTM →M)
at the point (q; pi), and the projection of the curve γi to M is a semicubic parabola with the
cusp at q.

Example 1. Let F be given by formula (2.11) with a = 1 and b = 0. Then ∆ = 2(3c− p2) and
P = 7cyp

2 + 4cxp+ 3ccy. The strata M− and M0,1 are defined by the conditions c(x, y) > 0 and

c(x, y) = 0, respectively, and the curves Si are cx = ±2cy
√

3c.
I. Put c(x, y) = −x (Fig. 1, left). Then S1 = S2 = ∅ and the semiplane x > 0 (M+) is filled

with the net of isotropic lines y = ± 2
3x

3
2 + const (dashed curves), while the semiplane x < 0

(M−) is filled with the net of singular lines y = ± 2√
3
(−x)

3
2 + const (dotted curves). Cusps

appear when geodesics (solid curves) are tangent to singular lines. We remark that geodesics
pass from M− to M+ or vise versa through M0,1 (the y-axis) without singularity if they intersect
the y-axis with any non-isotropic tangential direction p 6= 0. Otherwise, equation (2.3) has a
singularity. As we shall see in Section 2.2.2, at such points there exist a one-parameter family of
geodesics outgoing in both domains M+ and M− with the common tangential direction p = 0,
and the prolongation of geodesics through M0,1 is not naturally defined.

II. Put c(x, y) = αy2 − x with α 6= 0. Then Si 6= ∅, i = 1, 2, but both curves Si do not
pass through the origin. In a neighborhood of the origin that does not contain the curves Si,
geodesics are presented in Fig. 1 (right). Here, for definiteness, we assume α > 0. All notations
have the same meanings as before.

y

x

y

x

M+M
-

M+M
-

Figure 1. Example 1: I and II (left and right, resp.). The stratum M0,1 (the
y-axis on the left and the parabola on the right) is depicted with the bold solid
line. Solid and dotted curves present geodesics and singular lines, respectively.
Dashed curves present isotropic lines.

The next type of singularities of the geodesic flow in the domain M− (codimension 1) is
connected with vanishing of the field (2.7). This field belongs to a special class of vector fields
whose singular points are not isolated, but form a manifold W of codimension 2 in the phase
space. Yet such fields appear in many problems, see, e.g., [3, 8, 12, 17, 18, 22, 24]. It is convenient
to expressed the above condition in the following algebraic form: the germs of all components
of the field at every singular point belong to the ideal I (in the ring of smooth germs) generated
by two of them.
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The spectrum of the linear part of such a field (for brevity, we shall call it the spectrum of the
field) contains only two non-zero eigenvalues λ1,2, which play a prominent role in establishing
the local normal form of the field. For instance, all components of the field (2.7) belong to the
ideal I = 〈∆, P 〉, and the set of singular points W = S1 ∪ S2. The eigenvalues λ1,2 and the
corresponding eigenvectors are described by the following lemma.

Lemma 5.
1. The resonance λ1 + λ2 = 0 holds at all points (q; p) ∈ Si, i.e., λ1,2 are real or pure

imaginary numbers with opposite signs.
2. The following conditions are equivalent:
2.1. The eigenvalues λ1, λ2 at (q; p) ∈ Si are not equal to zero.
2.2. Si is a regular curve transversal to the contact plane pdx− dy = 0 at (q; p).
2.3. Si is a regular curve and the direction pi is transversal to Si at q.
3. Generically, at almost all points (q; p) ∈ Si, conditions 2.1 – 2.3 hold.

Proof. Without loss of generality, suppose that q = 0 (the origin) belongs to S1 and choose
local coordinates centered at 0 that preserve the lines x = const and send integral curves of the
vector field dy

dx = p1(x, y) to parallel lines y = const. The existence of such local coordinates
follows from the general fact: if V1 and V2 are smooth vector fields on the plane transversal at
the point 0, then in a neighborhood of 0 there exist local coordinates such that integral curves
of V1 and V2 coincide with the coordinate lines.

Then the polynomials F , ∆, D[F ] have the form (2.11) and the identities p1 ≡ 0 and

b(x, y) ≡ δ(x, y) hold. Note that the first of them implies 3ac ≡ 4b2. From b2 − ac < 0, it
follows that ac > 0. Taking into account 3ac ≡ 4b2, we conclude that none of the coefficients
a, b, c vanishes at 0. Below, we present the proof for the stratum S1 given by the equation
3c(cy − 2bx) + 4bcx = 0. The proof for the stratum S2 is similar.

Let Λ be the matrix of the linear part of the field (2.7) and Λ1 be the matrix of the Pfaffian
system d∆ = 0, dP = 0, pdx − dy = 0 considered at arbitrary point (q; p) ∈ S1, that is, for
q ∈ S1 and p = 0:

Λ =

∆x ∆y ∆p

0 0 0
Px Py Pp

∣∣∣∣∣
p=0

, Λ1 =

∆x ∆y ∆p

Px Py Pp
0 −1 0

∣∣∣∣∣
p=0

,

where

(2.13)

∆x

∣∣
p=0

= 6(acx + axc)− 16bbx, ∆p

∣∣
p=0

= −4ab,

Px
∣∣
p=0

= cx(3cy − 2bx) + 4bcxx + 3c(cxy − 2bxx),

Pp
∣∣
p=0

= 4acx − 6axc+ 2b(5cy − 2bx).

1. To prove the first statement, it suffices to show that tr Λ = 0. Taking into account the
equality 3c(cy − 2bx) + 4bcx = 0 on S1 and the identity b ≡ δ (that implies 3ac ≡ 4b2 in a
neighborhood of the origin), from (2.13), we have

tr Λ = (∆x + Pp)
∣∣
p=0

= 10[acx + b(cy − 2bx)] = 10
(
acx − b

4bcx
3c

)
=

10cx
3c

(3ac− 4b2) = 0.

Hence the characteristic equation of the matrix Λ reads λ(λ2 + |Λ1|) = 0; this yields the equation
λ2 + |Λ1| = 0 for λ1,2.



182 A.O. REMIZOV

2. Differentiating the identity 4b2 ≡ 3ac by x, we get 8bbx ≡ 3(axc + acx). Using these
identities and (2.13), we have

∆x

∣∣
p=0

= 6(acx + axc)− 16bbx = 6(acx + axc)− 6(acx + axc) = 0,

|Λ1| = −∆pPx
∣∣
p=0

= 16ab2cxx − 8abbxcx + 12ab[cxcy + ccxy − 2bxxc] =

12a2ccxx − 3acx(axc+ acx) + 12ab[cxcy + ccxy − 2bxxc].

Thus the condition λ1,2 6= 0 is equivalent to |Λ1| 6= 0 that, in turn, is equivalent to condition 2.2.
On the other hand, the curve S1 is tangent to the direction p = 0 at the point q = 0 if and only

if [3c(cy−2bx)+4bcx]′x = 0. Taking into account the equalities 4b2 ≡ 3ac and 8bbx ≡ 3(axc+acx),
we get

[3c(cy − 2bx) + 4bcx]′x = 3(cxcy + ccxy)− 6bxxc+
4b2cxx − 2bbxcx

b
=

3(cxcy + ccxy)− 6bxxc+
12accxx − 3(axc+ acx)cx

4b
=
|Λ1|
4ab

.

This proves that λ1,2 6= 0 is equivalent to condition 2.3.

3. Generically, at almost all points (q; p) ∈ S1, the determinants∣∣∣∣∆x ∆y

Px Py

∣∣∣∣ , |Λ1| =
∣∣∣∣∆x ∆p

Px Pp

∣∣∣∣
are not equal to zero. Hence S1 and S1 are regular curves and, moreover, conditions 2.1 – 2.3
hold.

Theorem 2. Let (q; pi) ∈ Si be a generic singular point of the field (2.7). Then the germ (2.7)
at (q; pi) is smoothly orbitally equivalent to

ξ
∂

∂ξ
− η ∂

∂η
+ ξη

∂

∂ζ
, if λ1,2 ∈ R \ 0,(2.14)

η
∂

∂ξ
− ξ ∂

∂η
+ (ξ2 + η2)

∂

∂ζ
, if λ1,2 ∈ I \ 0,(2.15)

where R, I are real and imaginary axes, respectively.
In the first case, there exist two geodesics passing through the point q ∈ Si with the tangential

direction pi, both of them smooth. In the second case, there are no geodesics passing through the
point q ∈ Si with the tangential direction pi.

Proof. Since (q; pi) ∈ Si is a generic singular point, |Λ1| 6= 0. By Lemma 5, the eigenvalues
λ1,2 6= 0 and Si is a regular curve consisting of singular points of the field (2.7). The linear
part of the germ (2.7) at (q; pi) (and every singular point sufficiently close to (q; pi)) is orbitally
equivalent to the linear part of the field (2.14) or (2.15) if |Λ1| < 0 or |Λ1| > 0, respectively. Here
we use the following terminology: two vector fields are called orbitally smoothly (resp., topo-
logically) equivalent, if there exists a diffeomorphism (resp., homeomorphism) that conjugates
their integral curves, i.e., orbits of their phase flows.2

Recall that the field (2.7) belongs to the class of vector fields whose singular points are not
isolated, but form a manifold W of codimension 2 in the phase space (in our case, W = Si).
Local normal forms of such fields were studied by many authors. In [21] (Appendix A), we
present a brief survey of such results, which covers all cases with Reλ1,2 6= 0. This condition

2 It slightly differs from the generally accepted definition of the orbital equivalence, where coincidence of

the orientation of integral curves is also required. Our definition is naturally related to directions fields, whose

integral curves do not have an orientation a priori.
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is equivalent to the assumption that W = Si is the local center manifold, and consequently,
the phase portrait of (2.7) has a simple topological structure (we shall discuss it later on, in
the proof of Theorem 4). For instance, in the case λ1,2 ∈ R \ 0, the germ (2.7) with generic
quadratic part is smoothly orbitally equivalent to (2.14). This result belongs to Roussarie [22].
The genericity condition is determined explicitly in [21] (Theorem 5.7). The case λ1,2 ∈ I \ 0 is
more complicated. However, in [3] (Chapter 2, Section 1.2) and [12] it is claimed that in this
case the germ (2.7) with generic quadratic part is smoothly orbitally equivalent to (2.15).

We remark that the diffeomorphism that brings the germ (2.7) to the normal form (2.14)
or (2.15) does not give a normal form of equation (2.3), since it does not preserve the contact
structure dy = pdx. However, we need not a normal form of (2.3).

To prove the last statement of the theorem, we only need to consider the possible mutual
relationships between the phase portrait of the germ (2.7) and the (x, y)-plane in the space
PTM . Geodesics are obtained from those integral curves of the field (2.7) whose projection on
the (x, y)-plane are distinguished from points. Moreover, isotropic geodesics correspond to those
integral curves that belong to the isotropic hypersurface F (by Lemma 2, F is an invariant
hypersurface of the field (2.7)).

We consider the real and imaginary cases separately.
The real case. The field (2.14) has the first integral ξη. The invariant foliation ξη = const

contains only two leaves ξ = 0 and η = 0 that pass through singular points of the field, while all
remaining invariant leaves are hyperbolic cylinders ξη = const 6= 0, which do not intersect the
set of singular points. It is easy to see that, for every singular point of the field (2.14), there are
only two integral curves passing through this point: the straight lines parallel to the ξ-axis and
the η-axis, respectively.

We prove now that the eigenvectors with the eigenvalues λ1,2 6= 0 are not vertical. Let
e be an eigenvector of the matrix Λ with λi. Then Λe = λie, and e = α∂x + β∂p, where
(∆x

∣∣
p=0
−λi)α + ∆p

∣∣
p=0

β = 0. If the eigenvector e is vertical, i.e., α = 0, β 6= 0, this equality

yields ∆p

∣∣
p=0

= 0. From (2.13), we have a(0) = 0 or b(0) = 0. This contradicts the fact

(established in the proof of Lemma 5) that none of the coefficients a, b, c vanishes at 0.
From the considerations above, it follows that the field (2.7) has only two integral curves

passing through the given point (q; pi), both of them smooth and having non-vertical tangential
directions. Projecting these integral curves from PTM to M , we get two smooth geodesics
passing through the point q ∈ Si with the tangential direction pi; see Fig. 2 (left).

The imaginary case. The field (2.15) has the first integral ξ2 + η2. The invariant foliation
ξ2 + η2 = const contains a one-dimensional degenerate leaf ξ = η = 0, which consists of singular
points of the field (2.15) and a one-parameter family of two-dimensional leaves (elliptic cylinders
ξ2 + η2 = const 6= 0), which do not intersect the set of singular points. The elliptic cylinders are
filled with helix-like integral curves, whose projections to M have cusps; see Fig. 2 (right).

To complete the proof, observe that, in both the real and imaginary cases, the curve Si itself
is not a geodesic, since Si is transversal to the contact plane pdx − dy = 0 (statement 2.2 in
Lemma 5). Consequently, Si is not a lift of a curve on M .

Example 2. Let F be given by formula (2.11) with a = 1, b = 0, c(x, y) = αy2 − x. Then
∆ = 2(3c − p2), P = 12αyp2 − 4p + 6αyc, and the curves Si are the connected components
of the graph x = αy2 − 1

48/α
2y2 lying in the upper and lower semiplanes. A straightforward

calculation shows that pi
∣∣
Si

= 12αy(αy2 − x); hence the direction pi is tangent to the curve Si

at x = 47
48/
√
α only. By statement 2.3 in Lemma 5, the eigenvalues λ1,2 6= 0 at all points of Si

if α < 0 and at all points of Si with x 6= 47
48/
√
α if α ≥ 0.
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y

x

y

x

p p

Figure 2. The phase portraits of the field (2.7) with the normal form (2.14)
or (2.15) (left and right, resp.) and the projections of its integral curves to M .
Dashed curves present Si (up) and Si (down).

In Fig. 3 (left and center), we present geodesics in the case α > 0. Here both real and
imaginary eigenvalues exist. The parts of Si with real (imaginary) eigenvalues λ1,2 6= 0 are
presented as short-dashed (resp., long-dashed) lines. The dots represent the points of Si with
x = 47

48/
√
α, where λ1,2 = 0. In Fig. 3 (right), we present geodesics in the case α < 0. Here only

real eigenvalues exist, and the curves Si are presented as short-dashed lines. The dots represent
the points where geodesics intersect the curves Si with the singular tangential direction pi.

y

x x

y

x

y

Figure 3. Example 2: F = p2 + c, where c = αy2 − x with α > 0 (left,
center) and α < 0 (right). The solid lines present geodesics. M0,1 is depicted
with a bold solid line, Si are depicted with short-dashed (long-dashed) lines if
λ1,2 ∈ R \ 0 (λ1,2 ∈ I \ 0, respectively).

2.2.2. Singularities in the stratum M0,1. In this section as before, we proceed in the local coor-
dinates where F , ∆ and D[F ] have the form (2.11). At every point q ∈M0,1, the polynomial F
has the double root p0 = −b/a. It is easy to see that p0 is also a double root of the polynomial
∆ at q (this follows from Lemma 4 also). Thus (q; p0), q ∈ M0,1, are singular points of both
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implicit differential equations F = 0 and ∆ = 0. From (2.4), it follows that P (q; p0) = 0; hence
(q; p0), q ∈M0,1, are singular points of the field (2.7).

Furthermore, we restrict ourselves to generic points q ∈ M0,1 where M0,1 is a regular curve
and the isotropic direction p0 is transverse to M0,1. Then both implicit differential equations
F = 0 and ∆ = 0 have Cibrario normal forms at such a point and their integral curves are
semicubic parabolas lying on opposite sides of M0,1 (in the domains M+ and M−, resp.), as is
presented in Fig. 1.

Theorem 3. Suppose that the isotropic direction p0 is transverse to M0,1 at q ∈ M0,1. Then
the germ (2.7) at its singular point (q; p0) is smoothly orbitally equivalent to

(2.16) 3ξ
∂

∂ξ
+ 2η

∂

∂η
+ 0

∂

∂ζ
,

and to p0 corresponds a one-parameter family of geodesics outgoing from q into M+ and M−.
There exist smooth local coordinates centered at q such that this family is

(2.17) x = α|η| 32 + η2 + αX̄α(η), y = αη|η| 32 + εη3 + αȲα(η), ε 6= 0,

where X̄α(η) = o
(
|η| 32

)
and Ȳα(η) = o

(
|η| 52

)
are C2-smooth functions.

Here α > 0 (α < 0) corresponds to non-isotropic geodesics outgoing from q in M+ (resp.,
M−), while α = 0 gives the isotropic geodesic, a semicubic parabola lying in M+. The limit case
α → ∞ corresponds to a unique smooth geodesic passing through q with the direction p0. In a
neighborhood of q, every non-isotropic geodesics outgoing from q in M+ belongs to the curvilinear
tongue-like sector bounded by the branches of the isotropic geodesic as it is presented in Figure 4
(left).

M+M
-

q q

M+M+

Figure 4. Illustrations of Theorem 3 (left) and Theorem 4 (right). The
stratum M0,1 is depicted with the bold solid line. Solid and dashed curves
present non-isotropic and isotropic geodesics, respectively.

Proof. Without loss of generality, suppose that q = 0 (the origin of the (x, y)-plane) and
choose local coordinates centered at 0 that preserve the lines x = const and give b(x, y) ≡ 0.
This can be done using an appropriate change of variables y 7→ yu(x, y), u(0) 6= 0. We remark
that (unlike Lemma 5) we do not have the identity p1 ≡ 0 nor p2 ≡ 0 in a neighborhood of 0.
Moreover, it is impossible to get any these identities using smooth changes of variables, since
the integral curves of the implicit equation ∆ = 0 with roots p1, p2 have cusps on M0,1.
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In the local coordinates chosen above, we have

(2.18)
F = ap2 + c, ∆ = −2(ap)2 + 6ac, D[F ] = −4a3c,

P = aayp
4 − 2aaxp

3 + (7acy − 3ayc)p
2 + (4acx − 6axc)p+ 3ccy.

The curve M0,1 is given by c(x, y) = 0 and the direction p0 = 0 at every q ∈ M0,1. Hence the
condition “the direction p0 is transverse to M0,1 at 0” is equivalent to cx(0) 6= 0.

Substituting ∆ and P from (2.18) into (2.7), one can find that the spectrum of the field (2.7)
at every point (q; 0), q ∈ M0,1, is (λ1, λ2, 0), where λ1 = 6acx, λ2 = 4acx. A straightforward
computation shows that the corresponding eigenvectors are

(2.19) e1 = 2a∂x + 3cy∂p, e2 = ∂p, e0 = cy∂x − cx∂y.

Note that λ1 : λ2 ≡ 3 : 2 at all points (q; 0), q ∈ M0,1, the pair (λ1, λ2) is non-resonant and
belongs to the Poincaré domain. Therefore, the germ (2.7) at 0 is smoothly orbitally equivalent
to the linear field (2.16) (Theorem 5.5 in [21]). Moreover, comparing (2.7) and (2.16), one can
see that the conjugating diffeomorphism (x, y, p) 7→ (ξ, η, ζ) can be chosen in the form

(2.20) x = 2aξ + cyζ + f1(ξ, η, ζ), p = 3cyξ + η + f2(ξ, η, ζ), y = −cxζ + f3(ξ, η, ζ),

where a, cx, cy are evaluated at 0 and fi ∈M1 (Mk, k ≥ 0, is the ideal of k-flat functions in the
ring of smooth functions).

The field (2.16) has the invariant foliation ζ = const. The set of integral curves of (2.16)
passing through the origin consists of the ξ-axis and the one-parameter family

(2.21) {ξ = α|η| 32 , ζ = 0}, α ∈ R,

tending to the ξ-axis as α→∞. Consider the possible mutual relationships between the phase
portrait of the germ (2.7) at 0 and the (x, y)-plane in the space PTM using the eigenvectors
(2.19). The integral curve of the field (2.7) corresponding to the ξ-axis in (2.16) has a non-
vertical tangential direction at 0 (the eigenvector e1); hence its projection to the (x, y)-plane is
a smooth geodesic. On the contrary, the family (2.21) gives a family of integral curves of (2.7)
with vertical tangential direction at 0 (the eigenvector e2). The projections of these curves to
the (x, y)-plane have a singularity at 0.

To establish the character of the singularity, substitute (2.21) in (2.20). This yields

x = 2aα|η| 32 + f̄1,α(η), p = η + f̄2,α(η),

where f̄i,α(η) = fi(α|η|
3
2 , η, 0). Observe that the functions f̄1,α = o

(
|η| 32

)
and f̄2,α = o(η) are

C2 and C1, resp. Denote the sign of η by s(η), then we have the equation

dy = pdx =
(
η + f̄2,α(η)

)(
3aα|η| 12 s(η) + f̄ ′1,α(η)

)
dη =

(
3aα|η| 32 + gα(η)

)
dη,

where gα = o
(
|η| 32

)
is C1-smooth. Integrating, we get

y = 6
5aα|η|

5
2 s(η) + hα(η) = 6

5aαη|η|
3
2 + hα(η),

where hα = o
(
|η| 52

)
is C2-smooth. The scaling y 7→ 5

3y, α 7→ ±2aα yields

(2.22) x = α|η| 32 +Xα(η), y = αη|η| 32 + Yα(η),

where Xα = o
(
|η| 32

)
and Yα = o

(
|η| 52

)
are C2-smooth, and α > 0 (α < 0) corresponds to the

domain M+ (M−, resp.). The asymptotic formula (2.22) makes sense for all real α 6= 0.
In order to take care of the omitted case α = 0, recall that the isotropic surface F is an invari-

ant surface of the field (2.7) (Lemma 2) and contains its singular points (Lemma 4). Hence, in
the normal coordinates (ξ, η, ζ), the surface F contains the ζ-axis and intersects every invariant
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leaf ζ = const in a certain integral curve of (2.16). For instance, F intersects the leaf ζ = 0 in an
integral curve of the family (2.21), which corresponds to an isotropic geodesic passing through 0.

On the other hand, we know that the implicit differential equation F = ap2 + c = 0, which
described the isotropic lines in (M,F ), has a Cibrario normal form at 0. Hence there exists a
unique isotropic geodesic passing through 0, the semicubic parabola

(2.23) x = η2, y = η3N(η), N(0) 6= 0,

lying in the domain M+.
From the uniqueness of the isotropic geodesic passing through 0, it follows that the lift of

(2.23) is the curve of the family (2.22) with α = 0 and Y0(η) = η3N(η). Using the representation
N(η) = N1(η2) + ηN2(η2) and the change of variables y 7→ N1(0)(y − x2N2(x))/N1(x), we get
N(η) ≡ N(0). It is not hard to check that the number ε = N(0) is a mutual invariant of the
curves (2.22) and (2.23).

In Example 1, we considered F = p2 + c with c = −x and c = αy2 − x. In both cases the
isotropic direction p0 = 0 is transverse to the curve M0,1 given by the equation x = 0 and
x = αy2, respectively, and the conditions of Theorem 3 hold true.

Example 3. We consider here the case F = p2 − x in more detail. The field (2.7) is

(2.24) − 2(3x+ p2)

(
∂

∂x
+ p

∂

∂y

)
− 4p

∂

∂p
.

It is easy to check that the isotropic surface F given by p2 = x is an invariant surface of the field
(2.24) and the unique isotropic line passing through 0 is given by x = p2, y = 2

3p
3. Integrating

the equation dp/dx = 2p/(3x + p2), we get the family x = α|p| 32 + p2, where α is the constant
of integration, and a single integral curve p = 0, which gives the smooth non-isotropic geodesic
y = 0.

Integrating the relation dy = pdx = p
(

3
2α|p|

1
2 s(p) + 2p

)
dp =

(
3
2α|p|

3
2 + 2p2

)
dp, we get

y = 3
5αp|p|

3
2 + 2

3p
3 + c1, where c1 is the second constant of integration. The family of geodesics

outgoing from q = 0 is characterized by c1 = 0. The scaling y → 5
3y brings this family to the

form (2.17) with X̄α ≡ Ȳα ≡ 0 and η = p:

(2.25) x = α|η| 32 + η2, y = αη|η| 32 + 10
9 η

3.

For α = 0, formula (2.25) gives the isotropic geodesic. For α→∞, the curves (2.25) tend to the
smooth geodesic y = 0.

Remark 3. Theorem 3 shows that the extension of geodesics through the curve M0,1 is not
uniquely defined. Indeed, all geodesics of the family (2.17) have the same tangential direction
at q ∈ M0,1 and almost all of then have a singularity of the same type at q. So, a curve given
by formula (2.17) with any α 6= 0 does not have any advantages in comparison with the curve
consisting of two bows (2.17) with α1 if (x, y) ∈M+ and α2 if (x, y) ∈M−.

3. Surfaces in Berwald–Moor spaces

Consider the space Rn, n ≥ 3, with the coordinates (x1, . . . , xn) equipped with the Berwald–

Moor metric ds = (dx1 · · · dxn)
1
n , and a smooth two-dimensional surface M ⊂ Rn parametrized

by xi = fi(x, y), i = 1, . . . , n. The Berwald–Moor metric of the ambient space defines a two-

dimensional pseudo-Finsler space (M,F ) with the metric function f = F
1
n , where

(3.1) F (x, y; ẋ, ẏ) =

n∏
i=1

(
fix(x, y)ẋ+ fiy(x, y)ẏ

)
, fix =

∂fi
∂x

, fiy =
∂fi
∂y

,
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and n families of isotropic lines

(3.2) fi(x, y) = const, i = 1, . . . , n.

Given q ∈ M , the isotropic direction p is called simple (double or multiple) if there exist
only one (only two or more than one, resp.) isotropic lines (3.2) passing through q with given
direction p. By Lemma 4, singularities of the geodesic flow occur at the points q ∈M that have
at least one multiple isotropic direction.

Remark 4. In the case n = 3, we have a cubic pseudo-Finsler space (M,F ). But unlike
Section 2.2, the function F given by (3.1) is not generic. The corresponding cubic polynomial
F (x, y; p) at every point q ∈ M has n real roots (taking into account the multiplicity and
including the root p = ∞), and M− = ∅. Hence singularities of geodesics appear only at the
points where at least two of three isotropic lines (3.2) are tangent. Here the stratum M0,1

consists of the points where two isotropic lines are tangent (the double isotropic direction) and
the third one is transversal to them (the simple isotropic direction).

From now on, we assume that the functions fi(x, y) have non-degenerate differentials and
every point q ∈ M may have simple or double isotropic directions only (the number of double
isotropic directions can vary from 0 to [n2 ]). Moreover, assume that the tangency of isotropic
lines with double isotropic directions has first order. Consider geodesics passing through a point
q with a double isotropic direction p0 satisfying the above conditions.

Without loss of generality assume that q = 0 (the origin in the (x, y)-plane) and p0 corresponds
to the isotropic lines f1(x, y) = 0 and f2(x, y) = 0, where f2y(0) 6= 0. Making the change of
variable y 7→ f2(x, y), we transform the metric function (3.1) into a similar one with f2(x, y) = y
and f1x(0) = 0, f1y(0) 6= 0, f1xx(0) 6= 0. The double isotropic direction p0 becomes p = 0
and, moreover, in a neighborhood of 0, p = 0 is the double isotropic direction at all points
q ∈M0,1 = {f1x(x, y) = 0}.

By the condition f1xx(0) 6= 0, M0,1 is a smooth curve transversal to the x-axis. Making the
change of variable x 7→ f1x(x, y), we transform M0,1 into x = 0 and the metric function (3.1) into
a similar one with f1x = xa(x, y), f1y = b(x, y), f2(x, y) = y, where a, b are smooth functions
non-vanishing at 0. So, we get

(3.3) F (x, y; p) = p(ax+ bp)G, G(x, y; p) =
n∏
i=3

(fix + fiyp), G(0, 0; 0) 6= 0.

Substituting (3.3) in (2.4), we get

(3.4)
∆ =

(
(1− n)(ax)2 + 2(2− n)abxp+ 2(2− n)(bp)2

)
G2 + ∆0,

P = ap
(
(n− 2)bp− ax+ P0

)
G2,

where ∆0 ∈ 〈x3, x2p, xp2, p3〉 and P0 ∈ 〈x2, xp, p2〉 (both ideals are in the ring of smooth func-
tions on x, y, p). Formula (3.4) shows that all components of the field (2.7) vanish on the line
{x = p = 0} and the spectrum of (2.7) at any point of this line has three zero eigenvalues. This
does not allow us to establish a normal form similar to Theorem 3.

To overcome this problem, consider the blowing up

(3.5) B : (x, y, u) 7→ (x, y, p), p = xu, u ∈ RP 1 = R ∪∞.
The mapping B is one-to-one except on the plane Π = {(x, y, u) : x = 0}, whose image is the
line B(Π) = {(x, y, p) : x = p = 0}. The mapping B is a local diffeomorphism at all points of the
(x, y, u)-space except Π. It has an inverse defined on R3 \ B(Π) given by

B−1(x, y, p) =
(
x, y,

p

x

)
.
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Observe that there is no geodesic that coincides with the line B(Π). A straightforward calcu-
lation shows that the field (2.7) corresponds to a smooth field in the (x, y, u)-space (away of Π)
that, after dividing by the common factor xG2, is

(3.6) x
(
A+ . . .

)( ∂

∂x
+ xu

∂

∂y

)
+ u(n− 2)

(
2(bu)2 + 3abu+ a2 + . . .

) ∂
∂u
,

where
A(x, y, u) = (1− n)a2 + 2(2− n)(abu+ (bu)2);

here and below the dots mean terms that belong to the ideal 〈x〉.

Remark 5. There exists ε > 0 such that A(x, y, u) 6= 0 for all u if |x|+ |y| < ε. Indeed, consider
A(x, y, u) as a quadratic polynomial on u with the discriminant

D = (2− n)2(ab)2 − 2(1− n)(2− n)(ab)2 = n(2− n)(ab)2,

which is strictly negative if x, y are sufficiently close to zero.

Dividing the field (3.6) by (A+ . . .), we get

(3.7) x

(
∂

∂x
+ xu

∂

∂y

)
+ u(n− 2)(U + . . .)

∂

∂u
, U(x, y, u) =

2(bu)2 + 3abu+ a2

A(x, y, u)
.

Remark 6. The plane x = 0 is invariant for the fields (3.6) and (3.7). Moreover, it is filled with
vertical (i.e., parallel to the u-direction) straight integral lines of these fields, whose projections
to the (x, y)-plane along the u-axis are points on the y-axis.

Lemma 6. Geodesics can pass through a point q ∈ M lying on the y-axis with the direction
p = 0 only with the following admissible values u :

(3.8) u0 = 0, u1 = −a/2b, u2 = −a/b.

Proof. By the standard existence and uniqueness theorem, for every point (x, y, u) such that
x = 0 and U(x, y, u) 6= 0, there exists a unique integral curve of the field (3.7) passing through
this point. By Remark 6, it is a vertical straight line, whose projection to the (x, y)-plane is a
point on the y-axis. Hence geodesics can pass through a point q ∈ M lying on the y-axis with
the direction p = 0 only with u = 0 or u such that 2(bu)2 + 3abu+ a2 = 0. This gives the three
values in (3.8).

Lemma 7. The set of singular points of the field (3.7) consists of three mutually disjoint curves

W c
i = {(x, y, u) : x = 0, u = ui(y)}, i = 0, 1, 2.

On every curve W c
i , the linear part of the field (3.7) has the constant spectrum (1, λ, 0), where

λ = n−2
n if i = 1 or λ = n−2

1−n if i ∈ {0, 2}. In both cases, ∂u is the eigenvector with λ.

Proof. The first statement is trivial. All other statements are by direct calculations.

Theorem 4. Suppose that the functions fi(x, y) have non-degenerate differentials and p0 is a
double isotropic direction at q ∈ M such that the corresponding isotropic lines have first order
of tangency at q. Then the field (3.7) at its singular points (q;ui) has local orbital normal forms
indicated in Table 1 and to p0 corresponds a one-parameter family of geodesics outgoing from
q. There exist smooth local coordinates centered at q such that this family consists of C2-smooth
non-isotropic geodesics

(3.9) y = x2 + Y (x, α|x|λ), Y (x, α|x|λ) = o(x2), λ = n−2
n , α ∈ R,

where Y (·, ·) is a C∞-smooth function, together with two C∞-smooth isotropic geodesics

(3.10) y = 0 and y = 2x2 + o(x2).
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In a neighborhood of q, every geodesic of the family (3.9) belongs to the curvilinear tongue-like
sector bounded by the curves (3.10) as it is presented in Figure 4 (right).

Orbital normal form

topological C∞-smooth

W c
1 ξ ∂∂ξ + η ∂

∂η + 0 ∂
∂ζ ξ ∂∂ξ + λη ∂

∂η + 0 ∂
∂ζ , where λ = n−2

n

W c
0 ξ(n− 1 + Φ1(ρ, ζ)) ∂∂ξ − η(n− 2 + Φ2(ρ, ζ)) ∂∂η + ρΨ(ρ, ζ) ∂∂ζ ,

and ξ ∂∂ξ − η
∂
∂η + 0 ∂

∂ζ where ρ = ξn−2ηn−1;

W c
2 (n− 1)ξ ∂∂ξ − (n− 2)η ∂

∂η + ρ ∂
∂ζ , if Ψ(0, 0) 6= 0.

Table 1. Local orbital normal forms of the field (3.7).

Proof. Choose local coordinates so that q ∈M is the origin and consider the field (3.7) in a
neighborhood of its singular points (0, 0, ui), i = 0, 1, 2, where ui are given by formula (3.8). By
Lemma 7, at all singular points the condition Reλ1,2 6= 0 holds, and every curve W c

i , i = 0, 1, 2,
is the center manifold of this field. Moreover, there exist also 2-dimensional unstable manifolds if
i = 1 and a pair of 1-dimensional stable and unstable manifolds if i = 0, 2. Hence all topological
normal forms in Table 1 trivially follow from the reduction principle [2, 4, 9].

Indeed, the reduction principle asserts that the germ (3.7) is orbitally topologically equivalent
to the direct product of the standard 2-dimensional node (if i = 1) or saddle (if i = 0, 2) and the
restriction of the field to the center manifold W c

i . Since the restriction of the field (3.7) to every
center manifold W c

i , i = 0, 1, 2, is identically zero, this gives us the topological normal forms in
Table 1.

We establish now the smooth normal forms in the cases i = 1 and i = 0, 2 separately.
The case i = 1. By Lemma 7, the linear part of the field (3.7) at any point on W c

1 has
spectrum

(
1, λ, 0

)
with λ = n−2

n . Then Theorem 5.5 in [21] asserts that the germ (3.7) at any
point on W c

1 is orbitally C∞-smoothly equivalent to

(3.11) (ξ + ϕ(ζ)η1/λ)
∂

∂ξ
+ λη

∂

∂η
+ 0

∂

∂ζ
,

where ϕ(ζ) ≡ 0 if the number 1/λ is not integer (non-resonant case).
Assume 1/λ is an integer and prove that ϕ(ζ) ≡ 0 iff for every point ω∗ ∈ W c

1 the field (3.7)
has a C∞-smooth integral curve passing through ω∗ with the vertical tangential direction ∂u.
By Remark 6, such integral curves exist (the vertical straight lines); hence this establishes the
equality ϕ(ζ) ≡ 0 in the remaining cases 1/λ = 3 (n = 3) and 1/λ = 2 (n = 4).

For this, note that the field (3.11) has the invariant foliation ζ = const. Every invariant leaf
contains a single integral curve η = 0 corresponding to eigendirection with the eigenvalue 1 and
the one-parameter family of integral curves

(3.12) ξ = η1/λ(α+ ϕ(ζ) ln |η|), α ∈ R,

corresponding to eigendirections with the eigenvalue λ. All curves (3.12) are C1/λ−1-smooth (but
not C1/λ-smooth at zero) if ϕ(ζ) 6= 0 and C∞-smooth if ϕ(ζ) = 0. Without loss of generality,
assume that the point ω∗ ∈ W c

1 in the (x, y, u)-space corresponds to (0, 0, ζ∗) in the (ξ, η, ζ)-
space. The equality ϕ(ζ∗) = 0 is equivalent to the existence of at least one C∞-smooth integral
curve of the field (3.11) with tangential direction ∂η lying on the invariant leaf {ζ = ζ∗}. To
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complete the proof, remark that the eigendirection ∂η of (3.11) corresponds to the eigendirection
∂u of (3.7).

The cases i = 0, 2. By Lemma 7, the linear part of the field (3.7) at all points on the curves
W c

0 and W c
2 has spectrum (λ1, λ2, 0), where λ1 = 1 and λ2 = n−2

1−n . This gives the resonance

(3.13) µλ1 + νλ2 = 0

with the resonant monomial ρ = ξµην , where we set µ = n− 2 and ν = n− 1. Everything that
we say below is true as well for arbitrary relatively prime µ, ν ∈ N.

The resonance (3.13) does not allow us to get a normal form with one identically zero com-
ponent (as we have in the case i = 1) even in the finite-smooth category; see the discussion in
[8] (Section 3.2). Moreover, (3.13) generates two infinite series of resonances

(1 + lµ)λ1 + lνλ2 = λ1, lµλ1 + (1 + lν)λ2 = λ2, l = 1, 2, . . . ,

and consequently, an infinite number of resonant monomials in the corresponding (orbital)
Poincaré–Dulac normal form:

(3.14) ξ(ν + Φ1(ρ, ζ))
∂

∂ξ
− η(µ+ Φ2(ρ, ζ))

∂

∂η
+ ρΨ(ρ, ζ)

∂

∂ζ
;

see, e.g., [8] (Section 3.2) or [17] (Section 5).
Moreover, if in addition, Ψ 6= 0 at a point ω∗, the germ (3.14) at ω∗ is smoothly orbitally

equivalent to

(3.15) νξ
∂

∂ξ
− µη ∂

∂η
+ ρ

∂

∂ζ
.

The normal form (3.15) was first established by Roussarie [22] in the partial case µ = ν = 1 in
the C∞-smooth category. For arbitrary integers µ, ν, the proof (in the finite-smooth category)
can be found in [17] (Section 5). Combining the methods from [22] and [17], one can establish
the normal form (3.15) with arbitrary µ, ν in the C∞-smooth category also.

Completion of the proof. Integral curves of the field (3.7) passing through (0, 0, u1) correspond
to integral curves of the field ξ ∂∂ξ + λη ∂

∂η lying on the invariant leaf {ζ = 0}: a single curve

that coincides with the η-axis and one-parameter family {η = α|ξ|λ, ζ = 0}, α ∈ R. Comparing
the germ (3.7) at (0, 0, u1) with its normal form ξ ∂∂ξ + λη ∂

∂η , one can see that the conjugating

diffeomorphism (x, y, u) 7→ (ξ, η, ζ) can be chosen in the form

(3.16) x = ξ, u = u1 + η + c1ξ + c2ζ + ϕ(ξ, η, ζ), y = ζ + ψ(ξ, η, ζ), ϕ, ψ ∈M2,

where Mk, k ≥ 0, is the ideal of k-flat functions in the ring of smooth functions. Substituting
ξ = ζ = 0 in (3.16) and taking into account p = ux, we get x = p = 0. Hence the η-axis does
not correspond to a geodesic.

Substituting η = α|ξ|λ and ζ = 0 in (3.16) and taking into account x = ξ and p = ux, we get
p = x(u1 + f(x, α|x|λ)) with a certain smooth function f ∈M0. This gives the relation

dy = pdx = x(u1 + f(x, α|x|λ))dx,

where xf(x, α|x|λ) = o(x) is a C1-smooth function. Integrating, we get y = u1

2 x
2 + Y (x, α|x|λ).

Here Y (·, ·) is a smooth function and Y (x, α|x|λ) = o(x2) is C2-smooth. After the scaling
y → 2y/u1, we get the family (3.9).

The topological and smooth orbital normal forms in Table 1 show that the field (3.7) has only
two integral curves passing through its singular point (0, 0, ui), where i = 0 or 2. Moreover, one
of these integral curves is a straight vertical line, whose projection to the (x, y)-plane is a point
(see Remark 6 and Lemma 7). Another integral curve has a non-vertical tangential direction at
(0, 0, ui); hence its projection to the (x, y)-plane is regular.
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Thus all of the admissible values u0 and u2 give a smooth geodesic passing through the point q
with tangential direction p = 0. It is not hard to see that these geodesics are isotropic lines, which
are solutions of differential equations p = 0 and ax + bp = 0, respectively (see formula (3.3)).
Taking into account (3.8), after the scaling y → 2y/u1 we get (3.10).

Remark 7. The normal forms 3ξ ∂∂ξ + 2η ∂
∂η and ξ ∂∂ξ + n−2

n η ∂
∂η in Theorems 3, 4 are valid also

in the analytic category; see, e.g., [25]. Therefore, in the analytic case, formulae (2.17) and (3.9)
present Puiseux series for geodesics.

Example 4. Consider geodesics on the surface z = y− 2x2 in the Berwald–Moor space (x, y, z)

with the metric ds = (dx dy dz)
1
3 . This yields

(3.17) F (x, y; p) = p(p− 4x), ∆ = −2(p2 − 4xp+ 16x2), P = −4p(p+ 4x),

and the equation of geodesics (2.3) reads

(3.18)
dp

dx
=

2p(p+ 4x)

p2 − 4xp+ 16x2
.

The isotropic lines are solutions of the differential equation p(p − 4x) = 0. This gives two
families of isotropic lines y = const and y = 2x2 + const, which have first order tangency on the
line x = 0. Substituting them into (3.18), one can see that they are geodesics.

Consider the geodesics outgoing from the point q = 0 with the double isotropic directions
p0 = 0. (Recall that, for every p 6= 0, there exists a unique geodesic passing through q with
tangential direction p; we exclude such geodesics from further consideration.) The isotropic
geodesics y = 0 and y = 2x2 (formula (3.10)) separate the (x, y)-plane into four parts: the upper
domain y > 2x2, the semiplane y < 0 and two tongue-like sectors between them. See Fig. 4
(right); the isotropic geodesics y = 0 and y = 2x2 are depicted with dashed lines.

Theorem 4 claims that there exists a one-parameter family of geodesics outgoing from q with
the double isotropic directions p0 = 0 into the tongue-like sectors (non-isotropic family (3.9))
and there are no geodesics outgoing from q with the double isotropic directions p0 = 0 into
two remaining parts of the plane. Geodesics of the family (3.9) correspond the admissible value
u1 = 2 (compare formulae (3.3), (3.8) and (3.17)) and they can be presented as the Puiseux
series

y = t6 + 3t6
∑
i≥4

ai
i+ 3

ti−3, p =
dy

dx
=

1

3t2
dy

dt
= 2t3 +

∑
i≥4

ait
i, where x = t3.

Substituting the above expression for p in (3.18), we obtain recurrence relations for the unknown
coefficients ai.

Namely, ai = 0 for all odd i (this also follows from the fact that the surface z = y − 2x2 is
symmetric with respect to the plane x = 0). For even i, we have 24a6+4a3

4 = 0, 48a8+14a2
4a6 = 0,

72a10 + 16(a4a
2
6 + a2

4a8) = 0, etc. In general,

(3.19) 12(2i− 4)a2i + b2i = 0, i = 3, 4, 5, . . . ,

where b2i is a polynomial on a2j with j < i with zero free term. This shows that the coefficient
a4 is arbitrary, and all a2i with i ≥ 3 are uniquely defined by equations (3.19). This gives the
one-parameter non-isotropic family (3.9). In particular, a4 = 0 gives a2i = 0 for all i ≥ 3, and
the corresponding solution y = x2 presents the unique C∞-smooth geodesic of non-isotropic
family (3.9) (the corresponding value of the parameter is α = 0).
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[22] Roussarie R., Modèles locaux de champs et de formes. Asterisque, vol. 30 (1975), pp. 1–181.
[23] Rund H., The differential geometry of Finsler spaces. Die Grundlehren der Mathematischen Wissenschaften,

Bd. 101. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959, xiii+284 pp.

[24] Sotomayor J., Zhitomirskii M., Impasse singularities of differential systems of the form A(x)x′ = F (x). J.
Diff. Equations 169 (2001), no. 2, pp. 567–587. DOI: 10.1006/jdeq.2000.3908

[25] Voronin S. M., The Darboux–Whitney theorem and related questions. In: Nonlinear Stokes phenomenon

(Yu.S. Ilyashenko, ed.). Adv. Sov. Math. 14, Providence (1993), pp. 139–233.
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DECOMPOSITION THEOREM FOR SEMI-SIMPLES

MARK ANDREA A. DE CATALDO

Abstract. We use standard constructions in algebraic geometry and homological algebra to

extend the decomposition and hard Lefschetz theorems of T. Mochizuki and C. Sabbah so
that they remains valid without the quasi-projectivity assumptions.

1. Introduction

M. Kashiwara [Ka] has put-forward a series of conjectures concerning the behavior of holo-
nomic semi-simple D-modules on a complex algebraic variety under proper push-forward and
under taking nearby/vanishing cycles.

Inspired by this conjecture, T. Mochizuki [Mo] has proved Kashiwara conjectures in the very
important case where one assumes the holonomic D-modules to be regular. Mochizuki’s work
built on earlier work by C. Sabbah [Sa]. Because of the regularity assumptions (see [Sa, p.2-3,
Remark 6]) for more context), part of their results can be expressed, via the Riemann-Hilbert
correspondence, in the form of Theorem 2.1.1 below.

The methods employed in [Mo, Sa] are essentially analytic. Moreover, [Mo, Sa] are placed in
the context of projective morphisms of quasi projective manifolds, so that Theorem 2.1.2 below,
which generalizes Theorem 2.1.1, is not directly affordable by their methods: one would first
need to extend aspects of their theory of polarizable pure twistor D-modules from projective
manifolds to complex algebraic varieties. To my knowledge, this extension is not in the literature.

V. Drinfeld [Dr] has shown that an arithmetic conjecture by A. de Jong implies, rather
surprisingly and again under the regularity assumption, Kashiwara’s conjectures. Drinfeld’s
proof uses also algebraic geometry for varieties over finite fields. Note that [Dr] allows for
arbitrary characteristic-zero coefficients. de Jong’s conjecture has been proved by D. Gaitsgory
[Ga] and by G. Böckle and C. Khare [Bo-Ka].

The combination of the work in [Dr, Ga, Bo-Ka] yields an arithmetic proof of Theorems 2.1.1
and of 2.1.2 below.

The purpose of this note is to provide a proof of Theorem 2.1.2 that stems directly from
Theorem 2.1.1 and uses only simple reductions based on standard constructions in algebraic
geometry.

Acknowledgments. I am grateful to T. Mochizuki and to C. Sabbah for very useful remarks.

2. Decomposition and relative hard Lefschetz for semi-simples

2.1. Statement. A variety is a separated scheme of finite type over the field of complex numbers
C. For the necessary background concerning what follows, the reader may consult [dCM]. Given
a variety Y, we work with the rational and complex constructible derived categories D(Y,Q)
and D(Y,C) endowed with the middle-perversity t-structures, whose hearts, i.e. the respective
categories of perverse sheaves on Y, are denoted by P (Y,Q) and P (Y,C), respectively. The
simple objects in P (Y,Q) and in P (Y,C) have the form ICS(L), where S is an irreducible closed

Partially supported by N.S.F. grant DMS 1600515.
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subvariety of Y, L is a simple (i.e. irreducible) complex/rational local system defined on some
dense open subset of the regular part of S, and IC stands for intersection complex. We say that
K ∈ D(Y,Q) is semi-simple if it is isomorphic to the finite direct sum of shifted simple perverse
sheaves as above: K ∼= ⊕b

pHb(K)[−b] ∼= ⊕b⊕(S,L)∈EVb
ICS(L)[−b], where pHb denotes the b-th

perverse cohomology sheaf functor, and EVb is a uniquely determined finite set of pairs (S,L)
as above. Similarly, with C-coefficients.

Our starting point is the following result of T. Mochizuki [Mo, §14.5 and §14.6], which gener-
alizes one of C. Sabbah [Sa]. In fact, they both work in the more refined setting of polarized pure
twistor D-modules and their results have immediate and evident counterparts in the setting of
the constructible derived category, which is the one of this note.

Theorem 2.1.1. Let f : X → Y be a projective map of irreducible quasi projective nonsingular
varieties. If K ∈ P (X,C) is semi-simple, then f∗K ∈ D(Y,C) is semi-simple. The relative hard
Lefschetz theorem holds.

Even if the methods in [Mo] seem to require the smoothness and quasi projectivity assump-
tions, as well as C-coefficients, one can deduce the following more general statement. We have
nothing to say concerning the refined context of polarizable pure twistor D-modules.

Theorem 2.1.2. Let f : X → Y be a proper map of varieties. If K ∈ P (X,Q) is semi-simple,
then f∗K ∈ D(Y,Q) is semi-simple. If f is projective, then the relative hard Lefschetz theorem
holds.

We first show how to deduce the D(Y,C)-version of Theorem 2.1.2 from Theorem 2.1.1. Then
we show how the D(Y,C)-version implies formally the D(Y,Q)-version.

The reader should have no difficulty in replacing Q with any field of characteristic zero and
proving the same result.

2.2. Proof of Theorem 2.1.2 for D(Y,C). Theorem 2.1.1 is stated for C-coefficients. In this
section, we use this statement to deduce Theorem 2.1.2 for C-coefficients, i.e. to deduce Corollary
2.2.1 below.

The theorem will be reduced to several special cases, where we progressively relax the hy-
potheses on f , from projective, to quasi projective, to proper, and on X and Y , from smooth
quasi projective, to quasi projective, to arbitrary. These conditions will be denoted symbolically
by (fproj , X

sm
qp , . . .). For example, we summarize the hypotheses of Theorem 2.1.1 graphically

as follows:

(fproj , X
sm
qp , Y

sm
qp ) (f projective, X and Y smooth and quasi projective).

Our goal is to establish Corollary 2.2.1 as an immediate consequence of the five following
claims.

(1) Theorem 2.1.1 holds for (fproj , X
sm
qp , Yqp).

Choose any closed embedding g : Y → U of Y into a Zariski-dense open subvariety
U ⊆ P of some projective space. Apply Theorem 2.1.1 to h := g ◦ f and observe that,
modulo the natural identification of the objects in D(Y,C) with the ones in D(U,C)
supported on Y, we have h∗K = f∗K.

(2) Theorem 2.1.1 holds for (fproj , Xqp, Yqp).
Pick a resolution of the singularities g : Z → X of X with g projective. Let

Xo ⊆ Xreg ⊆ X be a dense Zariski open subset on which the simple local system M
is defined and over which g is an isomorphism. Let ICZ(M) ∈ P (Z,C) be the inter-
section complex on Z with coefficients in the local system M transplanted to g−1(Uo).
Apply 1. to g and h. Observe that ICX(M) is a direct summand of g∗ICZ(M). Deduce
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that f∗ICX(M) is a direct summand of h∗ICZ(M) so that the first part of Theorem
2.1.1 holds for (fproj , Xqp, Yqp). In order to prove the second part of Theorem 2.1.1,
i.e. the relative hard Lefschetz theorem for f , we argue as in [dCM], Lemma 5.1.1: we
do not need self-duality to conclude: the argument gives injectivity; by dualizing we
get surjectivity for the dual of the hard Lefschetz maps; this dualized map is the hard
Lefschetz map for f, ICX(M)∨ and the f -ample η ∈ H2(X,C); by switching the roles
of M and M∨, we see that the relative hard Lefschetz theorem maps are isomorphisms.
(N.B.: we may impose self-duality artificially, by replacing M with M ⊕M∨ and reach
the same conclusion.)

(3) Theorem 2.1.1 holds for (fproj , Xqp, Y ).
Let Y = ∪iYi be an affine open covering. Let fi : Xi := f−1(Yi) → Yi be the

obvious maps. By 2., the relative Hard Lefschetz holds for fi. Since the relative hard
Lefschetz maps are defined over Y and they are isomorphisms over the Yi, the relative
hard Lefschetz holds for f over Y . By the Deligne-Lefschetz criterion [De], we have
f∗K ∼= ⊕b

pHb(f∗K)[−b]. It remains to show that the P b := pHb(f∗K) are semi-simple.
By 2., the P b

|Yi
are semi-simple after restriction to the open affine Yi. By a repeated use

of the the splitting criterion [dCM], Lemma 4.1.31 applied in the context of a Whitney
stratification of Y w.r.t. which the P b are cohomologically constructible, we deduce
that the P b split as direct sum of intersection complexes with coefficients in some local
systems. (Note that [dCM], Assumption 4.1.1 is fulfilled in view of [dCM], Remark 4.1.2,
because we already know that Pb splits as desired over the open Yi.) We need to verify
that these local systems are semi-simple. Since a local system on an integral normal
variety is semisimple if and only if it is semisimple after restriction to a Zariski dense
open subvariety, the desired semi-simplicity can be checked by restriction to the chosen
affine covering of Y, where we can apply 2.

(4) Theorem 2.1.1 holds for (fproj , X, Y ).
As it was pointed out in 3., the relative hard Lefschetz can be verified on an affine

covering Y = ∪iYi. The resulting Xi are then quasi-projective and we can apply 3. For
the semisimplicity of the direct image f∗ICX(M), we take a Chow envelope g : Z → X
of X (Z quasi projective, g projective and birational); we produce ICZ(M) as above
and we deduce the semisimplicity of f∗ICX(M) from the one –established in 3.– of
h∗ICZ(M), as it was done in 2.

(5) The semisimplicity statement in Theorem 2.1.1 holds for (fproper, X, Y ).
Take a Chow envelope g : Z → X of f (g birational, g and h := f ◦ g projective).

Produce ICZ(M) as above. Apply 4. and deduce that f∗ICX(M) is a direct summand
of the semi-simple h∗ICZ(M).

The above, together with the obvious remark that it is enough to prove Theorem 2.1.2 in the
case when X,Y are irreducible and K = ICX(M), yields the following

Corollary 2.2.1. Theorem 2.1.2 holds for C-coefficients.

2.3. Theorem 2.1.2 for D(Y,C) implies the same for D(Y,Q). Let f be projective. Then
we have the relative hard Lefschetz for C-coefficients, hence for Q-coefficients as well. By the
Deligne-Lefschetz criterion, we have the isomorphism f∗K ∼= ⊕b

pHb(f∗K)[−b] in D(Y,Q). We

1Let P be a perverse sheaf on a variety Z; let Z = U
∐

Z be Whitney-stratified in such a way that U ⊆ Z
is open and union of strata, S ⊆ Z is a closed stratum, and P is cohomologically constructible with respect to

the stratification; Lemma 4.1.3 in [dCM] is an iff criterion for the splitting of P into the intermediate extension
j!∗(P|U ) to Z of the restriction P|U of P to U , direct sum a local system on S placed in cohomological degree

minus the codimension of the stratum; the criterion is local in the classical and even in the Zariski topology
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need to show that each P b := pHb(f∗K)[−b] is semi-simple in P (Y,Q). Note that extending the
coefficients from Q to C is a t-exact functor D(Y,Q)→ D(Y,C). In particular, the formation of
P b is compatible with complexification. By arguing as in point 3. of the previous section, we see
that each P b is a direct sum of intersection complexes ICS(L), where the L are rational local
systems (note that [dCM], Assumption 4.1.1 is now fulfilled in view of [dCM], Remark 4.1.2,
because we already know that the complexification of P b splits as desired over Y ). We need to
verify that each L is a semi-simple rational local system. We know its complexification is, hence
so is L, in fact: let 0→ L′ → L→ L′′ → 0 be an extension of rational locally constant sheaves
on So; it is classified by an element e ∈ H1(So, L′′

∗ ⊗ L′); this element becomes trivial after
complexification, hence it is trivial over Q.

If f is proper, we take a Chow envelope g : Z → X of f, we set h := f ◦ g and we deduce
semisimplicity of f∗ from the semisimplicity of h∗ (h is projective) as in point 5. of the previous
section.
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