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HETEROTIC/F-THEORY DUALITY
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Abstract. In this work we review a systematic, algorithmic construction of dual heterotic/F-

theory geometries corresponding to 4-dimensional, N = 1 supersymmetric compactifications.

We look in detail at an exotic class of well-defined Calabi-Yau fourfolds for which the stan-
dard formulation of the duality map appears to fail, leading to dual heterotic geometry which

appears naively incompatible with the spectral cover construction of vector bundles. In the

simplest class of examples the F-theory background consists of a generically singular ellip-
tically fibered Calabi-Yau fourfold with E7 symmetry. The vector bundles arising in the

corresponding heterotic theory appear to violate an integrality condition of an SU(2) spectral

cover. A possible resolution of this puzzle is explored by studying the most general form of the
integrality condition. This leads to the geometric challenge of determining the Picard group

of surfaces of general type. We take an important first step in this direction by computing
the Hodge numbers of an explicit spectral surface and bounding the Picard number.

1. An algorithm construction of dual heterotic/F-theory geometry

Compactifications of heterotic string theory and F-theory are believed to be dual – that is to
lead to the same effective low energy physics – whenever the compactification geometries take
the form [9, 10, 11, 12]

(1.1) Heterotic on πh : Xn
E−→ Bn−1 ⇔ F-theory on πf : Yn+1

K3−→ Bn−1

where the K3 fiber of Yn+1 is itself elliptically fibered over a P1 base. The compatibility of

these two fibrations leads to the observation that ρf : Yn+1
E−→ Bn and σf : Bn

P1

−→ Bn−1. In
recent work [5] this duality was used to systematically enumerate an interesting and finite class
of string backgrounds and the properties of the associated 4-dimensional effective theories. As
given in (1.1), the choice of geometry in F-theory consists simply of a K3-fibered Calabi-Yau
fourfold. For the E8×E8 heterotic string theory the background is determined by an elliptically
fibered Calabi-Yau threefold equipped with a pair of poly-stable, holomorphic vector bundles,
Vi (i = 1, 2) on X3 with structure groups, Hi ⊂ E8.

In [5] a program was set out to systematically study the general properties and constraints of
the dual effective theories and develop a general and algorithmic formalism to build consistent
heterotic/F-theory backgrounds. With this goal in mind, the first step in constructing a pair of
the form (1.1) is the choice of a twofold base, B2 appearing in both the heterotic and F-theory
geometry. For all smooth threefolds, X3, the possible choices for B2 have been classified [27] (and
B2 must be a generalized del Pezzo surface). Furthermore, to explore and test general structure
there is an important dataset of such manifolds consisting of 61, 539 toric surfaces systematically
constructed by Morrison and Taylor [2, 1, 8].
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With these results in place it iso possible to begin to build the geometry of (1.1) from the
bottom up. In the Calabi-Yau fourfold geometry the next step is to choose a form for the P1-

fibration, σf : B3
P1

−→ B2. As described in Section 2, this can be accomplished for non-degenerate
fibrations by building B3 as a P1 bundle over B2, parameterized by a “twist”: a (1, 1)-form T in
B2 (see (2.1)). In the heterotic theory this choice of twist corresponds to a piece of the heterotic
vector bundle topology (more specifically, a component of the second Chern class c2(V )) [12]. In
[5] we established that given a twofold base B2, the set of all possible twists is in fact bounded
by the conditions imposed by 4-dimensional N = 1 supersymmetry. In the heterotic theory this
appears through the condition of slope stability of the vector bundles Vi and in F-theory by
the condition that the generically singular fourfold Y4 admits a smooth Calabi-Yau resolution.
Finally it should be noted that since we require all fibrations to admit (exactly one) section,
each elliptically fibered manifold is birationally equivalent to a Weierstrass model [49] (see (2.2)).
Thus, having chosen B2 and constructed a P1-bundle B3, we have fully specified X3 and Y4.

With consistency conditions in place and a scheme for algorithmically constructing pairs as
in (1.1), it remains to extract patterns and structure from the effective theories. Duality here
provides a powerful tool to determine otherwise difficult to calculate information on both sides
of the theory. While historically heterotic/F-theory duality has been used to determine the
effective physics of the mysterious and non-lagrangian F-theory, in [5] we also explored ways in
which the singularity structure of the F-theory fourfold could be used to determine non-trivial
information aboutMω(c(V )) – the moduli space of sheaves that are semi-stable with respect to
the Kähler form ω with fixed total Chern class c(V ). Such information is hard won, since very
few techniques exist to determineMω(c(V )) for sheaves/bundles over Calabi-Yau threefolds (or
their associated higher-rank Donaldson-Thomas invariants).

As one simple illustration of this correspondence, we note here that the presence of generic
symmetries on singular Calabi-Yau fourfolds make it possible to derive correlations between the
topology of a slope-stable heterotic vector bundle on a CY threefold and its structure group.
Initial investigations of this nature were first undertaken in [15, 14] who constructed “lower
bounds” on the second Chern class of a vector bundle with fixed structure group. In [5], we
continue to explore the links between structure group and topology, exploring not only these
lower bounds but also upper bounds as well (see Section 6 of [5]).

Structure Group, H Topology Structure Group, H Topology

SU(N) η ≥ N · c1(B2) E8 η ≥ 5 · c1(B2)

SO(7) η ≥ 4 · c1(B2) E7 η ≥ 14
3
· c1(B2)

SO(M) η ≥ M
2
· c1(B2) E6 η ≥ 9

2
· c1(B2)

Sp(K) η ≥ 2K · c1(B2) G2 η ≥ 7
2
· c1(B2)

F4 η ≥ 7
2
· c1(B2)

Table 1. Constraints linking the topology, η = c2(V )|B2 , of an H-bundle V and its
structure group on an elliptically fibered CY threefold, πh : X3 → B2. [15, 14].

Systematic patterns such as those shown in Table 1 are of use in string phenomenology (for
example they could simplify recent algorithmic searches for heterotic Standard Models carried
such as those carried out in [20, 21, 22, 18, 17, 4]). In order to fully understand such patterns
though, it is necessary to complete the geometric “dictionary” which matches heterotic/F-theory
geometry. This includes the inclusion of G-flux in the F-theory background and an understanding
of the zero-locus of the induced Gukov-Vafa-Witten superpotential [48]. In this context the
quantization conditions on flux and the corresponding constraints in the heterotic theory become
particularly important. Indeed, as described in detail [5], in our systematic search, we find
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many geometries which appear mysterious from the point of view of these commonly assumed
integrality conditions.

In the following sections we will review the standard construction of heterotic/F-theory dual
pairs. In its most explicit form, the duality map dependences on a particular method of con-
structing Mumford poly-stable vector bundles – namely, the spectral cover construction [12]. In
recent work [5, 6] it has been observed that many apparently consistent F-theory fourfolds have
topology which appears to be inconsistent with a naive construction of spectral cover bundles.
We will explore this discrepancy further in concrete examples in the following Sections.

Out of the dataset generated in [5], we consider one of the simplest examples of such an exotic
heterotic/F-theory dual pair. In particular, we explore the so-called “integrality” condition on
the spectral data (see (2.16)) and set out to determine whether it is really correct/necessary
as frequently implemented in the literature. In addition, we lay out the necessary geometric
questions that must be addressed if this criterion is to be refined or improved. We will argue
that in many cases the surface forming the SU(2) spectral cover can have a larger Picard group
than is generically assumed and that the heterotic bundle can in fact be described by a consistent
spectral cover pair (S,LS), consisting of a 2-sheeted cover πS : S → B2 and a line bundle over
it LS over it. We begin with a brief review of heterotic/F-theory duality in 4-dimensions to set
the stage for these investigations.

2. Heterotic/F-theory Duality in 4-dimensions

In this section we will provide a rough outline of the geometric correspondence that arises in
heterotic and F-theory dual pairs. Many excellent reviews exist in the literature and we refer the
reader to classic sources such as [12, 16] and modern summaries such as [5] for a more complete
treatment. In recent work, [5] a constructive algorithm was developed to consistently build
and enumerate dual heterotic/F-theory geometries. As a tractable starting point for that work,
heterotic backgrounds were considered consisting of a smooth elliptically fibered Calabi-Yau
threefold X3 (with a single section1) over a base B2, together with two holomorphic, Mumford
poly-stable vector bundles [7]. In such cases, the dual F-theory compactification geometry can
be built beginning with a rationally fibered threefold base B3 that is a P1 bundle over B2 (the
same surface used to define the heterotic Calabi-Yau threefold). The F-theory compactification
space is then an elliptically and K3-fibered fourfold, ρf : Y4 → B3. Following [12], without loss
of generality, the non-degenerate P1-fibered base (B3) can be defined as a P1 bundle through the
projectivization of a sum of two line bundles

(2.1) B3 = P(O ⊕ L) ,

where L is a general line bundle on the base B2. Over B3, the classes R = c1(O(1)), T = c1(L),
can be defined, where O(1) is a bundle that restricts to the usual O(1) on each P1 fiber. The
P1 fibration is equipped with sections Σ− and Σ+ = Σ− + T of B3 satisfying Σ− · Σ+ = 0,
corresponding to the relation R(R+ T ) = 0 in cohomology.

Finally, then the fourfold itself can be described in Weierstrass form as

(2.2) y2 = x3 + fx+ g

where y, x are (affine) coordinates along the elliptic fiber and f ∈ H0(B3,K−43 ), g ∈ H0(B3,K−63 ).
As usual the position of singular fibers is encoded in the discriminant locus, ∆ = 4f3 + 27g2.

For this choice of an F-theory model on Y4 and a heterotic theory on X3, it is now possible
to begin by matching topology [12, 16]. Starting with the E8 × E8 heterotic theory, the bundle

1For geometries without section and some of the physics of these more general genus-1 fibrations see recent
progress in [45, 46, 47].
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decomposes as V1 ⊕ V2, and without loss of generality, the curvatures split as

(2.3)
1

30
Tr F 2

i = ηi ∧ ω0 + ζi , i = 1, 2

where ηi, ζi are (pullbacks of) 2-forms and 4-forms on B2 and ω0 is Poincaré dual to the zero-
section of the elliptic fibration. The heterotic Bianchi identity [7] gives η1 + η2 = 12c1(B2).
Thus, it is possible to parameterize a solution as

(2.4) η1,2 = 6c1(B2)± T ′ , (E8 × E8)

where T ′ is a {1, 1} form on B2. Next, returning to the F-theory geometry described above in
(2.1), the canonical class of B3 is determined by adjunction to be

(2.5) −K3 = 2Σ− −K2 + T ,

By studying the 4-dimensional effective theories of these dual heterotic/F-theory compactifica-
tions it is straightforward to determine that the defining {1, 1} forms T, T ′ in B2 are in fact
identical: T = T ′ [12, 3]. The {1, 1}-form T is referred to as the “twist” (of the P1-fibration)
and is the crucial defining data of the simplest classes of heterotic/F-theory dual pairs.

2.1. The spectral cover construction. To explicitly match the degrees of freedom – including
the geometric moduli – of a heterotic/F-theory dual pair, it is necessary to modify our description
of the slope-stable holomorphic vector bundles arising as part of the heterotic background. A
powerful tool to this end is the description of vector bundles known as the “spectral cover
construction2” [12, 24, 25, 26]. In the simplest cases it is possible to form a 1 − 1, onto map
from a suitable3 slope-stable, holomorphic, rank N vector bundle π : V → X3 to a pair (S,LS)
(referred to as the “spectral data”) where S is a smooth divisor in X3 (forming an N -fold cover
of the base B2 and referred to as the “spectral cover”) and LS is a line bundle4 over S.

The spectral cover construction has been used extensively in heterotic theories to construct
rank N bundles with structure group SU(N) or Sp(2N) that are slope-stable in some region of
Kähler moduli space. As shown in [12], the class of the divisor S is given by

(2.6) [S] = N [σ] + π∗(η)

where σ is the zero section of π : X3 → B2 and η is defined as in (2.3) and (2.4).
It is helpful to once again describe the elliptically fibered heterotic threefold in Weierstrass

form:

(2.7) Ŷ 2 = X̂2 + f(u)X̂Ẑ4 + g(u)Ẑ6

where {X̂, Ŷ , Ẑ} are coordinates on the elliptic fiber (described as a degree six hypersurface in

P123) and {u} are coordinates on the base B2. Here Ẑ = 0 defines the section σ. For SU(N)
bundles, the spectral cover, S, can be represented as the zero set of the polynomial

(2.8) s = a0Ẑ
N + a2X̂Ẑ

N−2 + a3Ŷ Ẑ
N−3 + . . .

ending in aN X̂
N
2 for N even and aN X̂

N−3
2 Ŷ for N odd [12]. The polynomials ai are sections of

line bundles over the base B2

(2.9) ai ∈ H0(B2,K
⊗i
B2
⊗O(η)) ,

In order for the spectral cover to be an actual algebraic surface in X3 (a necessary condition
for the associated vector bundle to be Mumford slope-stability) it is necessary that S be an

2More generally, the “cameral” cover construction [25, 24].
3Here suitability is rigorously defined via the concept of “regularity” [13, 41].
4More generally, a rank 1 sheaf. For interesting physical examples where this distinction is crucial see [43, 42,

44].



SPECTRAL COVERS, INTEGRALITY CONDITIONS, AND HETEROTIC/F-THEORY DUALITY 5

effective class in H4(X3,Z). There is a further condition – that the spectral cover must be
indecomposable – that must be imposed in order for the spectral cover bundle V to be slope
stable. It can be seen that S is indecomposable if η is base-point free (i.e., has no base locus in
a Zariski-type decomposition and η −Nc1(B2) is effective (see [29] for example)).

All that remains to fully determine the holomorphic bundle V is the data of the rank 1 sheaf,
LS . As described in [12], given the projection πS : S → B2, the Grothendieck-Riemann-Roch
theorem [30] indicates that

(2.10) πS∗

(
ec1(LS)Td(S)

)
= ch(π∗(V ))Td(B2)

At the level of the first Chern class this yields

(2.11) πS∗

(
c1(LS) +

1

2
c1(S)

)
=
N

2
c1(B2) + c1(V )

At this point, the condition that c1(V ) = 0 (necessary for our choice of SU(N) bundle V → X3)
fixes c1(LS) ∈ H1,1(S)∩H2(S,Z) up to a class γ ∈ ker(πS∗). Since πS is an N -sheeted cover of
B2, πS∗πS

∗(c1(B2)) = Nc1(B2) and hence

(2.12) c1(LS) =
Nσ + η + c1(B2)

2
+ γ

with

(2.13) πS∗(γ) = 0

Here we are faced with the generally difficult problem of determining γ. We will return to
this in the next section, but for now we simply review the observations made in [12]: c1(LS)
must be an integral (1, 1)-class on S. For the cases of interest, such classes may be scarce since
it can be verified that frequently h2,0(S) 6= 0. As a result, the only obvious (1, 1)-classes on S
are those inherited from X3, namely the restriction of the zero section of the elliptic fibration,
σ, and pullbacks π∗S(β) of integral (1, 1) classes on B2.

Since πS∗σ|S = η−Nc1(B) one finds [12] that a description of γ ∈ ker(πS∗) in this “obvious”
basis is

(2.14) γ = λ(Nσ|S − π∗S(η −Nc1(B))

where λ must be either integer or half integer according to

(2.15) λ =

{
m+ 1

2 , if N is odd

m, if N is even

When N is even it is clear that this integrality condition imposes

(2.16) η = c1(B2) mod 2

where “mod 2” indicates that η and c1(B2) differ only by an even element of H2(B2,Z). This
leads to the form most commonly assumed in the literature [12]:

(2.17) c1(LS) = N

(
1

2
+ λ

)
σ +

(
1

2
− λ
)
π∗Sη +

(
1

2
+Nλ

)
π∗Sc1(B2)

Having fully specified the topology of the spectral cover, it is possible to infer the full topology
of V itself. The Chern classes of a spectral cover bundle V , specified by η and the integers n
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and λ is [12, 13, 28, 23]

c1(V ) = 0(2.18)

c2(V ) = ησ − N3 −N
24

c1(B2)2 +
N

2

(
λ2 − 1

4

)
η · (η −Nc1(B2))(2.19)

c3(V ) = 2λση · (η −Nc1(B2))(2.20)

Note that since c1(V ) = 0, Ind(V ) = ch3(V ) = 1
2c3(V ).

The spectral cover construction provides a powerful tool in explicitly matching the geometric
moduli of heterotic/F-theory dual pairs. For the details of the duality map and the necessary
stable degeneration limit, we refer the reader to the classic references [12, 16] and conclude
here with only a rough hint in Table 2 of how the degrees of freedom associated to (S,LS)
correspond to the moduli of a Calabi-Yau fourfold in F-theory. In later investigations, we will

Het/Bundle Het/Spec. Cov. F-theory

H1(End0(V )) H2,0(S) ∼ Def(S) H3,1(Ỹ4)

H1,0(S) ∼ Pic0(S) H2,1(Ỹ4)

H1,1(S) ∼ Discrete data of LS H2,2(Ỹ4,Z)

Table 2. A rough, schematic matching of the heterotic vector bundle moduli,
encoded as spectral data (S,LS), and geometric moduli of the (resolved) F-
theory fourfold in the stable degeneration limit [12, 16].

further compare the structure of an SU(2) spectral cover with its F-theory dual consisting of a
generically singular fourfold with E7 symmetry.

3. A database of Heterotic/F-theory dual pairs

In [5] a systematic algorithm was laid out for constructing heterotic/F-theory dual pairs in
which B3 (the base of the elliptically fibered fourfold geometry) is constructed as a P1 bundle
over B2. To illustrate the methods of construction, the complete dataset of Calabi-Yau fourfolds
with smooth heterotic duals and toric twofold bases were enumerated. This consisted of 4962
Calabi-Yau fourfolds, dual to heterotic threefold/bundle geometry. Of these, 947 were found to
be generically singular with an E7 symmetry (in at least one heterotic E8 factor, equivalently
F -theory coordinate patch). In the heterotic theory the E7 gauge symmetry is realized by the
commutant structure within E8, via an SU(2) vector bundle over the dual Calabi-Yau threefold.
These rank 2 vector bundles provide one of the simplest windows into the generic properties
of the bundle moduli space Mω(c(V )). Because of the fact that these E7 symmetries are un-
Higgsable – that is the fourfolds are generically singular for all values of the complex structure
moduli, the results of Table 1 indicate that for this choice of η the moduli space of stable sheaves
contains only SU(2) bundles.

Since the heterotic/F-theory duality map is most clearly understood in the case that the
heterotic bundles can be described via spectral covers, it is natural to ask whether we can
use this formalism to explicitly match the full degrees of freedom in dual E7 effective theories
described above.

As described in [5], the three conditions on the defining topological data, η, for consistent
spectral covers are

• η effective
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• η base-point-free within B2

• η = c1(B2) mod 2

In [5], it was explored how these conditions compare to those arising in defining good Calabi-
Yau fourfold backgrounds for F-theory. It can be shown that the first of these conditions is true
for all K3-fibered fourfolds arising as F-theory backgrounds. Moreover, it can be shown that if
the second condition is violated for a fourfold with a generic E7 singularity, then the Calabi-Yau
manifold is too singular to admit a Kähler resolution. To that point, the geometric consistency
conditions on an F-theory fourfold and an SU(2) heterotic spectral cover bundle are identical.
However, as we will see, at the final condition, this agreement appears to end.

The condition η = c1(B2) mod 2 is required for the integrality of LS in (2.16). However, a
direct construction of the dataset in [5] shows immediately that this is violated for most fourfolds
with generic E7 symmetries – in fact, 897 of the 947! How then are we to make sense of these
dual pairs?

One obvious resolution to the puzzle could occur if none of the 897 moduli spaces of SU(2)
bundles could admit any bundle built via the spectral cover construction. While possible, this
seems unlikely from experience of how generic spectral cover bundles appear to be in known
moduli spaces [41]. Another possible answer is that the integrality condition placed on c1(LS) in
(2.16) may be artificially restrictive. This will clearly be the case whenever the Picard number
of S is greater than 1 + h1,1(B2) as assumed by [12].

One class of examples in which the Picard group of S is larger than the generic case was
outlined in [23]. There, it was pointed out that if the matter curve a2 = 0 in (4.12) (in the class
[η − 2c1(B2)]) is reducible in B2, its components may in fact pull back to distinct, new divisors
in S. That is, if the curve η̄ ∈ [η − 2c1(B2)] can be written as η̄ = D + D′ ⊂ B2, then its
pullback can be described as

(3.1) π∗S(η̄) = D +D′

and even if D,D′ are well-understood divisors in B2, the class D in S may not be a simple linear
combination of the divisors σ|S and π∗S(φ) (with φ an effective curve class in B2) assumed in
the generic formula (2.12). In [6] we explored whether or not this observation could alleviate
the disparity of the mysterious 897 E7 theories found in [5]. While a handful of the examples
found over Hirzebruch bases could be resolved by this mechanism, the majority of them remained
unexplained [6]. To really resolve this puzzle and decide whether or not these geometries consist
of valid heterotic/F-theory dual pairs, it is necessary to go further and attempt to study the
integrality condition in detail. We turn to this now in the context a simple example of an SU(2)
bundle defined over πh : X3 → P2.

4. A case study: bounding the Picard number ρ(S)

To begin, it is useful to summarize the discussion of the previous sections in the context of
an SU(2) spectral cover. To fully specify the SU(2) gauge bundle appearing in the heterotic
compactification, it is not enough to choose a spectral cover of the form given in (2.6) and (2.8),
we must also fully describe the line bundle, LS over S. A priori, we can describe the 1st Chern
class of LS via (2.12) as

(4.1) c1(LS) =
Nσ + η + c1(B2)

2
+ γ

where πS∗(γ) = 0. By the construction of S ⊂ X3 there are 1 + h1,1(B2) natural integral
(1, 1)-classes on S (consisting of the restriction of σ, the section of the elliptic fibration, and the
pullback of classes from the base). Using these as basis (and ignoring any other possibilities for
γ) the integrality condition given in (2.14) and (2.16) were obtained in [12]. However, recent
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work on the F-theory side of the duality [5] indicates that this integrality condition appears to
be violated in the vast majority of known examples (897 of 947 generic E7 models enumerated in
[5]) we must now ask whether or not it is possible to derive a more general integrality condition
for c1(LS)? To accomplish this, LS must be expressed in a complete basis. We are thus led to
the following question:

Question 4.1. For a general surface S ⊂ X3 (as described above) which is a ramified, N -sheeted
cover of B2 in the class [Nσ + πh

∗(η)] what is the rank of the Picard group of S?

As illustrated in the next Section, generically h1,0(S) = 0 [12] and S is a surface of general
type. Unfortunately, determining the Picard number of such complex surfaces is a notoriously
difficult problem (see [33, 34, 35] and references therein for some recent advances). To begin, it
is enough to consider ways to bound the Picard number ρ(S) as an important first step.

Let us briefly recall a few standard definitions regarding the Picard group (see [30, 36] for
example). To define divisors (and hence line bundles), one begins with the exponential sequence

(4.2) 0→ Z i−→ O exp−→ O∗ → 0

where the map i is an inclusion and exp is the exponential map. With vanishing Pic0(S) (i.e.
with h1,0(S) = h1(S,O) = 0 there are no continuous degrees of freedom in the Picard group),
the associated long exact sequence in cohomology takes the form

(4.3) 0→ H1(S,O∗)→ H2(S,Z)→ H2(S,O)

The image of H1(S,O∗) (modulo torsion) in H2(S,Z) parametrizes the Neron-Severi group,
NS(S), of the surface and its rank is the Picard number (i.e. ρ(S), the number of discrete
parameters which we can use to construct LS). The Picard group is given by the kernel of the
map from H2(S,Z) to H2(S,O) = H0,2. The Hodge decomposition and Lefschetz’ theorem [30]
demonstrate that it is also zero in H2,0 and hence must be a subset of H1,1:

(4.4) NS(S) ' H2(S,Z) ∩H1,1(S)

Stated simply, divisors on S are determined by how the complex subspace H1,1 of H2(S,C)
intersects the discrete subgroup H2(S,Z). For surfaces with vanishing geometric genus, i.e.,
when pg = h0,2 = 0, this is a trivial identification, but few tools exist to address the general case
with pg 6= 0. To begin, it should be observed that there is at least a bound:

(4.5) ρ(S) ≤ h1,1(S)

Since in the present work we are focused on the case of 2-sheeted spectral covers and the
mysterious E7 cases described in the previous section, here we will try to make a first step
towards answering this question. We will consider a simple example appearing in [5], with
πS : S → P2. As we will see, even here determining the full Neron-Severi group is a non-trivial
problem in algebraic geometry and for this brief work, we content ourselves with simply bounding
the Picard number, ρ(S) as described above.

4.1. A double cover of P2. In an explicit example we can explore in detail the possible form
of the spectral line bundle, LS . We consider here a 2-sheeted spectral cover, S, and one of the
simplest examples arising in the dataset of [5]. Let π : X3 → P2 be a Calabi-Yau threefold
described via the generic (smooth) Weierstrass model over P2:

(4.6) Ŷ 2 = X̂2 + f(u)X̂Ẑ4 + g(u)Ẑ6

where ui (i = 1, 2, 3) are homogeneous coordinates of P2 and

(4.7) f ∈ H0(P2,O(12H)) , g ∈ H0(P2,O(18H))
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where H is the hyperplane divisor in P2. This Weierstrass model can be realized as hypersurface
inside a toric variety. In a language more familiar to physicists, this threefold also be written
via a GLSM-style charge matrix (see [32] for example):

Ŷ X̂ Ẑ u1 u2 u3
6 3 2 1 0 0 0
0 0 0 -3 1 1 1

The hodge numbers of this threefold are well-known to be h1,1 = 2, h2,1 = 272. Furthermore, a
basis of divisors on X3 is given by D1, D2 where D2 = π∗(H) is the pullback of the hyperplane

in P2 and D1 is related to the elliptic fiber such that the class of the zero section (Ẑ = 0) is
given in this basis as σ = D1 − 3D2. The tangent bundle of X3 is described via adjunction as

(4.8) 0→ TX3 → TA|X3
→ O(6D1)|X3

→ 0

where TA denotes the tangent sheaf of the toric ambient space. This in turn is defined by an
Euler sequence [30]:

(4.9) 0→ O⊕2 → O(3D1)⊕O(2D1)⊕O(D1 − 2D2)⊕O(D2)⊕3 → TA → 0

For this geometry we specify vector bundles and a dual F-theory geometry by making a choice
of twist as in Section 2, eq.(2.4). Here we select

(4.10) T = 10H

In the heterotic theory this leads to an SU(2) bundle V → X3 with

(4.11) η = 6c1(P2)− T = 8H

In the dual F-theory geometry this corresponds to a Calabi-Yau fourfold with generic E7 singu-
larity [5]. From (2.6), the spectral cover is in the class [S] = [2σ + 8π∗(H)] which in the basis
given above corresponds to a section of the line bundle NS = O(2D1 + 2D2). Explicitly S is
given by (2.8) as the zero locus of

(4.12) a0Ẑ
2 + a2X̂ = 0

with a0 ∈ H0(P2,O(8H)) and a2 ∈ H0(P2,O(2H)). Let us now take a closer look at S. The
complex, Kähler surface is a ramified double cover of P2 and we can directly compute its three
independent Hodge numbers

(4.13) h2,0(S), h1,0(S), h1,1(S)

To explicitly determine these numbers, we can once again make use of an adjunction formula,
this time for S itself as a hypersurface inside X3:

(4.14) 0→ TS → TX3|S → O(2D1 + 2D2)|S → 0

Furthermore, to determine the cohomology of vector bundles restricted to S, the Koszul sequence
for hypersurfaces

(4.15) 0→ OX3
(−2D1 − 2D2)→ OX3

→ OS → 0

and its associated long exact sequence in cohomology plays a useful role (see [37] for a review).
In the case at hand, all the relevant cohomology groups on X3 can be determined by considering
the defining sequences (4.14), (4.8) and (4.15) and line bundle cohomology on X3. For this
geometry we employed the techniques of [32] to compute line bundle cohomology on X3 (as
implemented in [31]).
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To begin, we note that h2,0(S) = H0(S,O(2D1 + 2D2)|S). Twisting (4.15) by O(2D1 + 2D2)
we obtain

(4.16) 0→ OX3
→ OX3

(2D1 + 2D2)→ OS(2D1 + 2D2)→ 0

The associated long exact sequence in cohomology leads to

(4.17) H0(S,O(2D1 + 2D2)|S) = H0(X3,O(2D1 + 2D2))/C

Which can be directly calculated to yield

h0(S,O(2D1 + 2D2)|S) = h0(X3,O(2D1 + 2D2))− 1 = 51− 1.

This provides the first of three independent hodge numbers (the geometric genus):

(4.18) h2,0(S) = 50

Note that this is expected via the description of S in (4.12). By inspection of that formula it
can be noted that there are 51 degrees of freedom in the coefficients a0, a2 over P2. Subtracting
1 for the overall scale, we see that this agrees with the expectation of the embedding moduli of
S ⊂ X3.

Next, note that h1,0 = h1(S,OS) (the “irregularity” of the surface). Here the long exact
sequence in cohomology associated to (4.15) yields

(4.19) h1,0(S) = 0

Finally, to determine h1,1(S), consider the dual sequence

(4.20) 0→ O(−2D1 − 2D2)|S → TX3
∨|S → TS∨ → 0

To evaluate this it should first be noted that the Koszul sequence for O(−2D1 − 2D2) produces
the following short exact sequence

(4.21) 0→ OX3(−4D1 − 4D2)→ OX3(−2D1 − 2D2)→ OS(−2D1 − 2D2)→ 0

and from the associated sequence in cohomology

h0(S,OS(−2D1 − 2D2)) = h1(S,OS(−2D1 − 2D2)) = 0(4.22)

h2(S,OS(−2D1 − 2D2)) = 219

This gives the full cohomology of the first term bundle in (4.20). But what is H∗(S, TX3
∨|S)?

The last necessary pieces can be obtained by considering (4.15) twisted by TX∨3 :

(4.23) 0→ TX3 ⊗OX3
(−2D1 − 2D2)→ TX∨3 → TX∨3 |S → 0

Here the long exact sequence in cohomology produces

h0(S, TX∨3 |S) = 0(4.24)

h1(S, TX∨3 |S) = h1(X3, TX
∨) + dim(ker(φ)) = 2 + dim(ker(φ))

h2(S, TX∨3 |S) = dim(coker(φ))

φ : H2(X,TX3 ⊗OX3(−2D1 − 2D2))→ H2(X,TX∨3 )

Since h2(X,TX3 ⊗ OX3
(−2D1 − 2D2)) = 393 and h2(X,TX∨3 ) = 272, it follows that

dim(ker(φ)) = 121 +m for some m ≥ 0, and dim(coker(φ)) = m by exactness. In fact, for
generic choices of spectral cover in (4.12), we expect the induced map φ to be surjective and
h1(S, TX∨3 |S) = 123.
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With this in hand, we are now in a position to put the pieces together to determineH1(S, TS∨).
Using (4.22) and (4.24), and returning to the long exact sequence in cohomology associated to
(4.20) gives the following long exact sequence:

(4.25) 0→ H2(S, TX∨3 |S)→ H1,1(S)→ H2(S,OS(−2D1 − 2D2))→ H2(S, TX∨3 |S)→ 0

It is helpful to note that h2(S, TS∨) = h1,0 = 0, and the alternating sum of the dimensions in
(4.25) leads at last to

(4.26) h1,1(S) = (123 +m) + (219−m) = 342

Thus, in summary we have determined that S is a complex surface with h1,0 = 0, h2,0 = 50
and h1,1 = 342. It follows that the Euler number of S is e = 2 + 2pg + h1,1 − 4h1,0 = 444
(with e = c2(TS)) and the holomorphic Euler characteristic is χ = 51 (leading to K2

S = 168).
According to Kodaira’s classification, S is a surface of general type (Kodaira dimension 2).

Taking a step back, one can now ask what we have learned from the this example? The first
observation is that in this case

(4.27) 2 ≤ ρ(S) ≤ 342

where the lower bound arises from concrete construction of divisors [12] and the upper bound is
obtained from h1,1 as described in the previous Subsection. It should be noted here that there
are in principle hugely more parameters in the spectral data than are commonly assumed in
the physics literature. While the full computation of ρ(S) is beyond the scope of the present
work, tools exist to analyze the intersection structure of curves in S and can be used to further
constrain ρ(S) in many cases. We hope to explore this in future work. For the moment, in the
example above, we expect that H2(S,Z)∩H1,1(S) will generically be large. Indeed, despite the
fact that pg = 50, h1,1 is sufficiently big that contrary to the expectations of [12], it may be that
the Picard number ρ(S) is considerably above its minimum value of 2. In this case, there are
certainly more general choices available for the line bundle, LS , and the integrality condition in
(2.16) is manifestly incorrect and too restrictive.

To proceed further with this explicit example, it might be possible to consider the branch locus
of the two-sheeted cover in detail. Such an analysis was undertaken in [50] for certain double
covers of P2. There for special choices of topology, the resolution of singularities in the branch
curve led to concrete descriptions of the Neron-Severi group of the double cover (which was in
fact maximal in those cases). It would be interesting in the future to explore the application of
these techniques to heterotic spectral covers.

Finally it should be noted that as S is varied within the 50-parameter family given in (4.12),
the Picard number can surely change. While difficult to compute, these special, higher codimen-
sional “Noether-Lefschetz Loci” [38, 39] may be especially significant for the underlying physics,
determining for example, where the complex structure moduli of the dual F-theory geometry,
Y4 are stabilized by G-flux [40].

To conclude, the example above was provided as a simple illustration of the fact that the
integrality condition for spectral cover bundles given in (2.16) may be too restrictive in many
cases. Furthermore, it serves to highlight the interesting and frequently difficult geometric
questions that arise in fully determining the geometry of dual heterotic/F-theory pairs. As a
final comment on the mysterious 897 E7 examples highlighted in [5], the arguments presented
above indicate to us that in fact there is more to understand about integrality conditions in
spectral covers and that this may provide a resolution to the seeming discrepancy in all the
exotic heterotic/F-theory pairs. We hope in future work to build upon the simple examples
considered here and to fully compute the Picard group of S systematically in the full dataset.
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By addressing these remaining geometric puzzles we hope it will be possible to complete the
program laid out in [5] and fully enumerate all consistent heterotic/F-theory dual pairs.
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