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AN INDEX FORMULA FOR SUPERSYMMETRIC QUANTUM

MECHANICS

CLAY CÓRDOVA AND SHU-HENG SHAO

Abstract. We derive a localization formula for the refined index of gauged quantum mechan-
ics with four supercharges. Our answer takes the form of a residue integral on the complexified

Cartan subalgebra of the gauge group. The formula captures the dependence of the index on

Fayet-Iliopoulos parameters and the presence of a generic superpotential. The residue formula
provides an efficient method for computing cohomology of quiver moduli spaces. Our result

has broad applications to the counting of BPS states in four-dimensional N = 2 systems.
In that context, the wall-crossing phenomenon appears as discontinuities in the value of the

residue integral as the integration contour is varied. We present several examples illustrating

the various aspects of the index formula.

1. Introduction

Supersymmetric quantum mechanics has a wide variety of applications in mathematical
physics. It arises universally as the zero momentum sector of supersymmetric field theories
and governs the worldline dynamics of supersymmetric particles. A basic feature of any such
system is its set of supersymmetric ground states. When these states are counted with signs
according to their fermion number they form the Witten index [1], perhaps the most primitive
example of a quantity protected by supersymmetry.

Motivated by these general considerations, in this work we determine a general formula for
the index of N = 4 quantum mechanics. We focus on the class of quantum mechanics models
that have Lagrangians which arise from the dimensional reduction of four-dimensional super-
symmetric gauge theories. In this context the counting of vacua may be further sharpened using
R-charges. The result is a refined index

(1.1) Ω ≡ TrH

(
(−1)F exp(−βH)yR+2J3

)
.

Our main result is an integral expression for Ω derived by supersymmetric localization [2, 3].
Pragmatically speaking, our derivation of the index formula in §2 follows closely a similar

calculation for the elliptic genus of two-dimensional systems with N = (2, 2) supersymmetry.
Consequently, our final answer for the index Ω takes a similar form to that uncovered in [4–6]:
the index Ω can be expressed as a residue integral of a meromorphic form on a product of
complex annuli (C∗)r.

The index Ω depends in a subtle way on two pieces of data entering the quantum-mechanical
model.

• In gauge theories with abelian factors, the Lagrangian may contain Fayet-Iliopoulos
parameters ζ. The index Ω depends in a piecewise constant fashion on such FI param-
eters. Across codimension one walls in ζ-space, supersymmetric vacua may be created
or destroyed and the index Ω jumps. In our context, the FI parameters enter the index
through a specification of integration contour. The jumping of the index is mapped to
the change of a residue integral under large variations in the contour.

http://dx.doi.org/10.5427/jsing.2016.15b
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• In theories which admit non-trivial superpotentials, the refined index Ω depends on the
superpotential through the R-charge assignments that the latter implies for chiral fields.
We find that the residue formula accurately encodes this dependence for the case of
generic superpotential.

We highlight these key features of the index in our study of examples in §4.
In §2.3 we compare the residue formula to alternative computational approaches to the index.

The most straightforward technique involves two steps. First, one calculates the classical moduli
space of the supersymmetric quantum mechanics. Then, one finds the desired ground state
wavefunctions by quantizing the moduli space, i.e. computing its cohomology. Our residue
formula bypasses the intermediate step of the classical moduli space and computes directly the
refined index Ω which may be interpreted as a generating functional of the cohomology. In this
way our index formula is similar in spirit to the Reineke formula [7] for the cohomology of moduli
spaces of quiver representations, and to its cousin the MPS formula [8] obtained by geometric
quantization of the Coulomb branch.

One of the key physical applications of the index formula occurs in the study of BPS states
in four-dimensional systems with N = 2 supersymmetry. Often, the BPS spectrum may be
described via the ground states of quiver quantum mechanics. We briefly review this connection
in §3. The class of physical systems to which this paradigm applies is broad and includes black
holes in supergravity [9–12], dyons in four-dimensional gauge theories [13–15], and even more
exotic systems decorated by external defects [16,17].

In the context of BPS states, our result for the quantum mechanical index Ω can be interpreted
as an explicit formula for the protected spin character of BPS states with an electromagnetic
charge determined by the ranks of the quiver gauge groups. The jumps in Ω as the FI parameters
are varied are then mapped to the ubiquitous wall-crossing phenomenon first uncovered in [18–
20]. The fact that wall-crossing may be encoded by contour deformation of a residue integral is
a generalization of similar ideas in systems with N = 4 supersymmetry [21].

Wall-crossing has recently been extensively studied [22–27] due to the existence of universal
formulas [28–30] encoding the discontinuities in the BPS spectrum. In the simple examples that
we have investigated, the discontinuities in the residue formula for Ω agree with these universal
formulas. It would be interesting to understand the relation more concretely and explain why
our residue prescriptions obey wall-crossing formulas. We leave this, as well as applications of
the index formula to interesting four-dimensional N = 2 systems, as open problems for future
work.

Note added : While this work was being completed the preprint [31] appeared which develops
the same formula for the refined index in the context of generalized ADHM quantum mechan-
ics. Localization formulas for the index of supersymmetric quantum mechanics have also been
independently obtained in [32,33]. See additionally [34] for related work.

2. The Index of N = 4 Quantum Mechanics

In this section we present the residue formula for the index of N = 4 quantum mechanics. Our
derivation follows straightforwardly from the dimensional reduction of the elliptic genus formulas
of [5, 6]. Our discussion is brief and we refer to those works for a more complete treatment.

2.1. Gauged Quantum Mechanics and the Refined Index. The class of models we con-
sider are quantum-mechanical gauge theories with four real supercharges. We assume throughout
that the system is gapped so that there are a finite number of ground states which are separated
in energy from the excited states. Our aim is to count (with appropriate signs), the number of
ground states in such a model.
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In addition to possible flavor symmetries, the systems in question have R-symmetry group
su(2)J × u(1)R. There are two classes of multiplets:

• Vector multiplets associated to gauge groups. The bosonic fields consist of a one-

component gauge field A and a triplet of adjoint scalars ~X. The gauge field is uncharged
under the R-symmetry group, while the adjoint scalars transform in a 3 of su(2)J and
are neutral under u(1)R.

• Chiral multiplets associated to representations of the gauge groups. The bosonic fields
consist of a complex scalar Φ transforming as a singlet under su(2)J and with u(1)R
charge RΦ.

In addition to the spectrum of vector and chiral multiplets the Lagrangian for our quantum
mechanics depends on two additional pieces of data.

• FI parameters. Let the total gauge symmetry algebra for the quantum mechanics be g.
We decompose g = g̃ + gu(1), where g̃ is semi-simple and gu(1) =

⊕
i u(1)i is the abelian

part of the gauge algebra. We view the FI parameter ζ as an element of the dual space
g∗u(1).

• Superpotentials. If the model admits holomorphic gauge invariant monomials in the
chiral fields then we may activate them in the superpotential W. Consider a monomial
in W and let di denote the degree in this monomial of the chiral field Φi. The presence
of such a term restricts the R-charges of the chirals as

(2.1) R(W) = 2 =
∑
i

diRΦi .

The above constraint must be true for each monomial term in the superpotential and
restricts W to be quasi-homogeneous.

In our analysis, the superpotential will enter only through the above constraints on
the u(1)R charges of chiral fields. Thus our results are restricted to the case of quasi-
homogeneous superpotential. Aside from the constraint (2.1), the u(1)R charges of chiral
fields may be chosen arbitrarily.

We make two additional assumptions about W.
– We assume that all lowest degree terms consistent with quasi-homogeneity are in

fact present in W.1

– We assume that W is a generic polynomial of multi-degree consistent with (2.1)
and the previous assumption.

As we illustrate in the examples of §4.3, both of these assumptions are necessary for the
applicability of the residue formula of §2.2.2

Given a fixed gauged quantum mechanics, our object of interest is the refined Witten index
defined as

(2.2) Ω(y, ζ) ≡ TrH

(
(−1)F exp(−βH)yR+2J3

)
.

As usual, when the system is gapped the index receives contributions only from ground states
and hence is independent of β. In general, the index depends on both the FI parameter ζ and
the R-charges of chiral fields.3 The charge R+ 2J3 commutes with the supercharge used to form

1Thus, if a quadratic superpotential is possible we assume that it is present. If no quadratic superpotential is

possible and a cubic potential is possible we assume the later is present. And so on.
2Indeed without these additional assumptions, the spectrum will generally be non-discrete and the index as
studied here is incomplete.
3We suppress the dependence on R-charges in the notation.
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the index and hence we may further grade the ground states to obtain a non-trivial function of
y. It is convenient to define z as

y = eiπz.(2.3)

In the following we use z and y interchangeably.

2.2. The Residue Formula for the Index. The refined index Ω(y, ζ) can be computed by
a path integral on a circle with periodic boundary conditions for fermions, and background R-
symmetry gauge fields. A formula Ω(y, ζ) can be directly obtained by taking the dimensional
reduction limit of the various ingredients of the localized elliptic genus formula of [5, 6] (see §3
of [6] for the derivation). Our final answer takes the form of a residue

Ω(y, ζ) =
1

|W |
∑

u∗∈M∗
sing

JK-Res
u=u∗

(Q(u∗), ζ) Z1−loop(z, u),(2.4)

where |W | is the order of the Weyl group and ζ is the FI parameter.
In this section we explain the elements of this formula. In the remainder of the paper we

discuss its various applications.
Definition of the Space M.

The u variable that appears in (2.4) is valued in a space M of bosonic zero modes of the vector
multiplets. We restrict the gauge field and scalars to be valued in the Cartan subalgebra h of
the gauge algebra g. In the triplet of scalars in the vector multiplet, there is one real component
which is neutral under the charge R+ 2J3 and we denote this field by X. The field X may have
zero modes, while for generic y, the remaining members of the triplet do not have zero modes.

The definition of the variable u is then

u ≡ A(0) − iX(0),(2.5)

where A(0) and X(0) are the zero modes for the one-dimensional gauge field and the scalar X.
Since A is a gauge field, large gauge transformations make the real part of u periodic. Thus the
space M of zero modes is a product of annuli

M = hC/Q
∨ ∼= (C∗)r(2.6)

where r is the total rank of the gauge groups and Q∨ is the coroot lattice.
Definition of the Meromorphic Form Z1−loop(z, u).

The quantity Z1−loop(z, u) is a meromorphic top form on the space M. It is defined by
computing the one-loop determinant of the massive modes in the path integral on the circle. This
one-loop determinant receives contributions from the vector multiplets and the chiral multiplets
as

Z1−loop =
∏
V

ZV,G
∏
Φ

ZΦ,R.(2.7)

The quantities ZV,G and ZΦ,R can be obtained from direct dimensional reduction of (2.12) and
(2.8) in [5], respectively.

The contribution of a vector multiplet V with gauge group G to the one-loop determinant
Z1−loop is

ZV,G(z, u) =

[
− π

sin(πz)

]rankG ∏
α∈G

sin[πα(u)]

sin[πα(u)− πz]

rankG∏
a=1

dua.(2.8)

where the product of α is over the roots of G.
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The contribution of a chiral multiplet Φ in the representation R with u(1)R charge R is

ZΦ,R(z, u) =
∏
ρ∈R

sin
[
πρ(u) + π

(
R
2 − 1

)
z
]

sin
[
πρ(u) + πR2 z

] ,(2.9)

where the product of ρ is over the weights of R.
Definition of the Locus M∗sing.

Next we define the locus M∗sing ⊂M. The form Z1−loop has poles along hyperplanes Hi in M
where modes, which are massive at generic u, become massless. Specifically these hyperplanes
are

vector : Hi =
{
− z +Qi(u) = 0 mod Z

}
Qi = α,(2.10)

chiral : Hi =

{
Ri
2
z +Qi(u) = 0 mod Z

}
Qi = ρ.(2.11)

And the charge covectors Qi ∈ h∗ can be either the roots α of the gauge algebra or weights ρ of
the matter representations.

We define

M∗sing =
{
u∗ ∈M

∣∣∣ at least r linearly independent Hi’s meet at u∗

}
.(2.12)

M∗sing is the collection of points where the residue (2.4) is evaluated.
Definition of the Residue.

The Jeffrey-Kirwan residue operation JK-Res
u=u∗

(Q(u∗), η) is defined abstractly in [35] and stud-

ied constructively in [36].
For notational simplicity, we shift the point where we evaluate the residue to be at u∗ = 0.

Q(u∗) is a collection of charge covectors Qi ∈ h∗ with i = 1, · · · , n for some n. The collection
Q(u∗) defines n hyperplanes meeting at u = u∗:

Hi =
{
u ∈ Cr

∣∣∣Qi(u) = 0
}
.(2.13)

In addition, the Jeffrey-Kirwan residue operation depends on a choice of covector η ∈ h∗.
If all the charge covectors in Q(u∗) are contained in a half-space of h∗, the hyperplane ar-

rangement is said to be projective. For a projective arrangement, the Jeffrey-Kirwan residue is
the linear functional defined by the conditions

JK-Res
u=u∗

(Q(u∗), η)
du1

Qj1(u)
∧ · · · ∧ dur

Qjr (u)
=

{
det |(Qj1 · · ·Qjr )|−1 if η ∈ Cone(Qj1 · · ·Qjr ),
0 otherwise,

(2.14)

where Cone(Qj1 · · ·Qjr ) indicates the positive linear span of the covectors Qj1 , · · · , Qjr . In
particular, if n = r, the hyperplane arrangement is projective. For simplicity in this paper we
study examples with n = r.
Definition of the Contour.

Finally, we must specify the choice of the covector η ∈ h∗ in the definition of the Jeffrey-
Kirwan residue operation (2.14). This quantity is fixed by the FI parameter ζ as

η = ζ ∈ g∗u(1) ⊂ h∗.(2.15)
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This identification may be justified by demanding that the gaussian path integral over the zero
mode of the auxiliary D field in the vector multiplet passes through the point of stationary phase
fixed by the FI parameter ζ.

Equation (2.15) is a key aspect of the residue formula (2.4). Because of the discontinuity in
the Jeffrey-Kirwan residue operation (2.14) as ζ varies, the contour prescription (2.15) enables
the index Ω(y, ζ) to depend in a piecewise constant fashion on the FI parameter.

2.3. Cohomology of Higgs Branch Moduli Spaces. It is fruitful to compare the residue
formula for the refined index to other methods of calculating the ground states.

The most direct approach is to calculate the moduli space of classical vacua and then quantize
this moduli space to determine wavefunctions. As usual in supersymmetric gauge theory, the
classical moduli space is typically separated into multiple branches: Higgs branches where matter
fields are non-vanishing, and Coulomb branches where scalars from the vector multiplets are non-
vanishing. We isolate one of these branches and quantize. We focus on the Higgs branch as it is
typically better behaved. For Coulomb branch approaches see [8, 11,27].

The classical Higgs branchM is simply the set of solutions to the F and D flatness conditions
modulo the action of the gauge group.

Explicitly, let G denote the total gauge group of the gauged quantum mechanics. And let Φν
indicated the chiral fields transforming in representations Rν of G. We define a set in the vector
space ⊕νRν as the set of Φν obeying the following equations.

• For each chiral field Φν , the superpotential is stationary

(2.16)
∂W
∂Φν

= 0.

• The gauge groupG has a number of abelian factors, each with an associated FI parameter
ζi. Let qiν denote the charge of Φν under the i-th U(1). Then for each abelian factor we
demand

(2.17)
∑
ν

qiν |Φν |2 = ζi.

The Higgs branch moduli space M is the set of solutions to (2.16)-(2.17) quotiented by the
action of the group G.

In the most widely studied class of examples, the gauge group G is a product of unitary groups
and the representations Rν are chosen to be bifundamentals. In that caseM is the moduli space
of stable quiver representations [37].

In favorable circumstances, the moduli space M is compact and we may now extract the
ground state spectrum from its cohomology. To form the refined index we must then assemble
this cohomology into a generating function. Supersymmetry implies thatM is Kähler and hence
its cohomology may be bigraded into Dolbeault cohomology groups. We denote by hp,q (M) the
resulting Hodge numbers, and let d denote the complex dimension ofM. Then the refined index
is

(2.18) Ω(y, ζ) =

d∑
p,q=0

hp,q (M) (−1)p−qy2p−d.

Agreement between (2.18) and the residue formula (2.4) yields a direct way of extracting
information about the cohomology of the moduli spaceM which is similar in spirit to [7]. Note
however that the residue formula (2.4) is applicable only in the case of discrete spectrum which
in the context of quiver representations implies that ranks of the gauge groups must be coprime.
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3. Relation to BPS Particles of 4d N = 2 Systems

In this section, we briefly review the connection between supersymmetric gauged quantum
mechanics and BPS states of four-dimensional N = 2 systems. See [14] for a systematic intro-
duction and examples. This connection motivates the analysis of the refined index Ω(y, ζ) in a
broad class of quantum-mechanical models.

Fix a four-dimensional N = 2 system and a generic vacuum v on its Coulomb branch. At low
energies, the physics is described by an abelian gauge theory with electromagnetic charge lattice
Γ. The one-particle Hilbert space of the theory supports BPS states carrying charges γ ∈ Γ.
For each occupied charge the Hilbert space in that sector is a representation of su(2)J × su(2)I ,
where su(2)J is group of spatial rotations and su(2)I is the R-symmetry of the four-dimensional
theory. This representation takes the general form

(3.1)

[
(2,1)⊕ (1,2)

]
⊗Hγ .

We count BPS states by forming a protected spin character

(3.2) Ω(γ, y, v)4d = TrHγy
2J3(−y)2I3 .

Ω(γ, y, v)4d receives contributions only from BPS states, and is stable under small variations in
the vacuum v. Under large changes in v, Ω(γ, y, v)4d may jump according to the wall-crossing
formula [28–30].

Next, let us describe an approach to the calculation of the protected spin characters Ω(γ, y, v)4d

utilizing supersymmetric quantum mechanics. The basic physical paradigm of this method is
to isolate a collection of elementary BPS states, and then to view the remaining BPS particles
as non-relativistic composites of the elementary states. Since the worldvolume theory of a BPS
particle preserves four supercharges, the interactions governing the formation of non-relativistic
bound states are controlled by N = 4 quantum mechanics. Frequently this quantum mechanics
is of the gauge theory type investigated in the previous section.

In a large class of models the relevant N = 4 quantum mechanics is a quiver model with
unitary gauge groups and bifundamental matter. In broad strokes, the dictionary between the
two systems is as follows. Each elementary constituent BPS state is represented by a node of
the quiver giving a quantum mechanical gauge group. The interactions between these nodes are
encoded by the Dirac inner product of their electromagnetic charges and specify the number of
arrows in the quiver. In the quantum mechanics model, these are the chiral multiplets. Finally,
the central charges of the elementary BPS states map to the FI parameters ζ.4

The main difficulty in applying the quantum-mechanical approach outlined above is to deter-
mine an explicit basis of elementary BPS states. However in many four-dimensional theories,
including for instance arbitrary gauge theories coupled to fundamental matter [14, 15], such a
basis may be identified and the BPS spectrum may be investigated. When this is so we obtain a
direct relationship between the four-dimensional protected spin character and the refined index
of the associated gauged quantum mechanics:5

(3.3) Ω(γ, y, v)4d = Ω(y, ζ),

where in the above we have the following explicit identification of parameters.

4If a superpotential is permitted by the topology of the quiver, then it must also be specified. See e.g. [38] for a

class of four-dimensional gauge theories where the relevant quiver superpotential may be fixed.
5The identification (3.3) suggests that in models for which the correspondence holds, all the ground states of the

quantum mechanics are bosonic with vanishing u(1)R charge, and that the su(2)I charge acts trivially on the
spectrum of BPS particles as in the “no-exotics” conjecture of [39].
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• The i-th quiver gauge group is U(ni) where the ni are determined by expanding the
charge γ as a sum of the charges of the elementary BPS states

(3.4) γ =
∑
i

niγi.

Since the matter content from the chiral multiplets consists of bifundamentals, the
overall U(1) ⊂

∏
i U(ni) decouples and is treated as non-dynamical. Alternatively, one

may freely decouple any other convenient U(1) without effecting the refined index.
• The FI parameters are specified by the choice of vacuum v. Each elementary BPS state

has a central charge Zi(v) which depends explicitly on v. The central charge of γ is then
determined from (3.4) by linearity

(3.5) Z(γ, v) =
∑
i

niZi(v) ≡ |Z(γ, v)| exp(iα), α ∈ R.

The FI parameter at the i-th node is then given by

(3.6) ζi = =
(

exp(−iα)niZi(v)

)
.

Observe that by construction, the sum of the FI parameters is zero. This enables the
decoupling of the overall U(1) described above.

One interesting consequence of the identification (3.3) and the associated dictionary, is that
the four-dimensional wall-crossing phenomenon maps to the discontinuity in the refined index
Ω(y, ζ) under large changes in ζ. Because ζ enters our residue formula (2.4) as a definition of the
contour, it follows that the four-dimensional wall-crossing formulas of [28–30] must be encoded in
the variations of the residue integral as the contour is deformed. This is similar the perspective
on wall-crossing developed in systems with N = 4 supersymmetry in [21].

3.1. Toy Models. In this section we describe simple examples of the relation between BPS
particles and quiver quantum mechanics. We study these models using the residue formula in
§4.

3.1.1. Dyon Chains. A basic example illustrating the connection between four-dimensional BPS
particles and ground states of supersymmetric gauged quantum mechanics are dyon chains.
These have been studied from the semiclassical soliton perspective in [40] and from the quiver
quantum mechanics perspective in [11].

The relevant four-dimensional system is SU(M) super-Yang-Mills. One is interested in inves-
tigating the bound states of a collection of n + 1 ≤ M distinct dyons. We choose the electric
and magnetic charges of the dyons as

(3.7) (ei,mi) = (qiαi, αi),

where αi denote simple roots of the SU(M) algebra normalized such that

(3.8) αi · αj =


2 |i− j| = 0,

−1 |i− j| = 1,

0 |i− j| > 1,

and qi are integers satisfying

(3.9) qn+1 > qn > · · · > q3 > q2 > q1.
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If we denote by ki the quantity qi+1 − qi, then the symplectic products of the dyon charges
are

(3.10) (ei,mi) · (ej ,mj) =


+ki j = i+ 1,

−ki−1 j = i− 1,

0 j 6= i± 1.

The quiver governing the bound states of these dyons is then a linear chain illustrated in Figure
1.

1 1 1 · · · 1 1
k1 k2 k3 kn−1 kn

// // // // //

Figure 1. The general abelian linear quiver which governs the bounds states of
the specified dyons. The integers at the nodes denote the ranks of the associated
gauge groups, while ki are the number of bifundamentals (arrows).

The spectrum of bound states depends on the FI parameters ζi at the i-th node. When these
are such that

(3.11) ζn+1 > 0, ζn+1 + ζn > 0, · · · ζn+1 + ζn + · · ·+ ζ2 > 0,

there is a non-trivial classical Higgs branch, M, of supersymmetric vacua in the quiver. By
explicitly solving the F and D term equations of §2.3, one finds that the Higgs branch is a
product of projective spaces

(3.12) M =

n∏
i=1

Pki−1

quantizing this space as in (2.18) we find that the index is

(3.13) Ω(y, ζ) =

n∏
i=1

y−ki+1
ki−1∑
j=0

y2j

 ,

which reproduces the answers obtained by quantizing monopole moduli spaces [40].
We obtain this result using the residue formula (2.4) in §4.1.

3.1.2. Electron Halos. Another class of interesting examples arises from studying the bound
states of m identical electrons and a single monopole of magnetic charge k. In this case, the
relevant quiver is shown in Figure 2.

1 m
k

//

Figure 2. The quiver relevant for studying the bound states of a monopole
and a cloud of electrons. The integers at the nodes denote the ranks of the
associated gauge groups, while k is the number of bifundamentals (arrows).

Let ζ indicate the FI parameter at the second node and assume ζ > 0. By solving the
equations of §2.3, we determine that the moduli space is the Grassmannian Gr(m, k) of complex
m-planes in a k-dimensional space.6 Extracting the refined index from cohomology as in (2.18),

6The moduli space is empty if m > k.
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we find that

(3.14) Ω(y, ζ) =
ym(m−k)

∏k
i=1(1− y2i)∏m

i=1(1− y2i)
∏k−m
i=1 (1− y2i)

.

We reproduce this result using the residue formula (2.4) in §4.2.

4. Examples

In this section we explore various examples of the residue formula (2.4) for the refined index
Ω(y, ζ). The cases we consider illustrate several interesting features of the index: wall-crossing,
non-Abelian gauge groups, and superpotentials.

To achieve maximal overlap with the applications discussed in §3, we consider quantum-
mechanical quiver gauge theories with unitary gauge groups. In such examples a single U(1)
factor of the gauge group decouples. One may choose this U(1) to simplify the resulting quantum
mechanics. Correspondingly, we demand that the sum of the FI parameters vanishes as in (3.6).

4.1. Linear Abelian Quivers: Dyon Chains. We begin with the example of linear abelian
quivers. As described in §3.1.1, these quivers compute the bound states of chains of distinct
dyons. We aim to reproduce the result (3.13) using the residue formula (2.4).

1 1
k

//

(a)

1
k

//

(b)

1
k
//

(c)

Figure 3. The two-node linear quiver. The integers at the nodes denote the
ranks of the associated gauge groups, while k is the number of bifundamentals
(arrows). In (b) and (c), the two ways of decoupling a U(1).

4.1.1. Two Nodes. We start with the abelian two-node quiver with k bifundamental chiral mul-
tiplets between the two nodes. We can decouple a U(1) in two different ways as shown in Figure
3a. We decouple the first node as in Figure 3b. The other alternative clearly yields the same
answer.

In this case the one-loop determinant is

Z1−loop(z, u) = − π

sin(πz)

[
sin(πu− πz)

sin(πu)

]k
du.(4.1)

On M, there is a hyperplane H (in this case, point) where Z1−loop has a pole:

H : u = 0.(4.2)

The corresponding charge covector Q is just 1. Let ζ2 be the FI parameter of the second node.
The Jeffrey-Kirwan residue operation satisfies

JK-Res
u=0

({1}, ζ2)
du

u
=

{
1, if ζ2 > 0,

0, if ζ2 < 0.
(4.3)
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In the ζ2 > 0 case, we can therefore write the Jeffrey-Kirwan residue as the usual contour integral
around H = {u = 0 }:

JK-Res
u=0

({1}, ζ2)
du

u
=

1

2πi

∮
u=0

du

u
, if ζ2 > 0.(4.4)

The index is then given by

Ω(y, ζ2) = − π

sin(πz)
JK-Res
u=0

({1}, ζ2)

[
sin(πu− πz)

sin(πu)

]k
du

=

− π
sin(πz)

∮
u=0

du
2πi

[
sin(πu−πz)

sin(πu)

]k
if ζ2 > 0,

0 if ζ2 < 0.

=

{
y−k+1

∑k−1
j=0 y

2j if ζ2 > 0,

0 if ζ2 < 0.
(4.5)

1 1 1
k1 k2

// //

(a)

1 1
k1 k2

// //

(b)

1 + 1
k1 k2
// //

(c)

1 1
k1 k2

// //

(d)

Figure 4. The three-node linear quiver. The integers at the nodes denote the
ranks of the associated gauge groups, while ki are the number of bifundamentals
(arrows). In (b), (c), and (d), the three ways of decoupling a U(1). In (b), the
quiver has become disconnected and the model factorizes.

4.1.2. Three Nodes. Let us now move on to the three-node linear quiver with ki bifundamental
chiral multiplets between the i-th and the (i + 1)-th nodes. There are three distinct ways to
decouple a U(1) from the quiver as shown in Figure 4a. For purposes of illustration we will show
explicitly that all three choices yield the same answer.

The easiest choice is to decouple the second node as in Figure 4c, so that the quiver becomes
two decoupled one-node quivers. The index is immediately given by the product of the answers
(4.5) for the one-node quivers:

Ω(y, ζ) =

{(
y−k1+1

∑k1−1
i=0 y2i

)(
y−k2+1

∑k2−1
j=0 y2j

)
, if ζ1 < 0, ζ3 > 0,

0, otherwise.
(4.6)
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Alternatively, we can decouple the first node as in Figure 4b. The one-loop determinant is

Z1−loop(z, u) =

[
sin(πu2 − πz)

sin(πu2)

]k1 [ sin(−πu2 + πu3 − πz)
sin(−πu2 + πu3)

]k2
du2 ∧ du3.(4.7)

There are two hyperplanes on the complex two-dimensional space M where Z1−loop has poles:

H1 : u2 = 0,

H2 : −u2 + u3 = 0.
(4.8)

The corresponding charge covectors Qi that define Hi in M are

Q1 = (1, 0),

Q2 = (−1, 1),
(4.9)

as shown in Figure 5. The intersection H1 ∩H2 = {u = 0} is the point u∗ at which we evaluate
the residue. Since this theory is abelian, g∗u(1) = h∗ and we can take η = ζ to be on any point

on the h∗ plane in Figure 5.
From the definition of the Jeffrey-Kirwan residue operation, we have

JK-Res
u=0

({Q1, Q2}, ζ)
du2 ∧ du3

u2(−u2 + u3)
=

{
1, if ζ ∈ Cone(Q1, Q2),

0, otherwise.
(4.10)

If ζ ∈ Cone(Q1, Q2), we can then write the Jeffrey-Kirwan residue as

JK-Res
u=0

({Q1, Q2}, ζ)
du2 ∧ du3

u2(−u2 + u3)
=

(
1

2πi

)2 ∮
u2=0

∮
u3=u2

du2du3

u2(−u2 + u3)
.(4.11)

The index in the chamber ζ ∈ Cone(Q1, Q2) is

Ω(y, ζ) =

[
− π

sin(πz)

]2 ∮
u2=0

du2

2πi

∮
u3=u2

du3

2πi

[
sin(πu2 − πz)

sin(πu2)

]k1 [ sin(−πu2 + πu3 − πz)
sin(−πu2 + πu3)

]k2
=

(
y−k1+1

k1−1∑
i=0

y2i

)y−k2+1
k2−1∑
j=0

y2j

 .(4.12)

The condition ζ ∈ Cone(Q1, Q2) for nonzero index in components is

ζ3 > 0, ζ2 + ζ3 > 0,(4.13)

which is the same as the answer obtained by decoupling the second node in (4.6). Note that we
have used ζ1 + ζ2 + ζ3 = 0. Similarly one can show that the index obtained by decoupling the
U(1) as in Figure 4d is the same as above.
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Q2

Q1

η2

η3

Figure 5. Three-node quiver with the first node decoupled. The figure shows
the charge covectors Qi in h∗ = (u(1)2)∗ ∼= R2.

1 1 1 · · · 1 1
k1 k2 k3 kn−1 kn

// // // // //

(a)

1 + 1 · · · 1 1
k1 k2 k3 kn−1 kn
// // // // //

(b)

1 +
k1

1 +
k2

1 + · · ·+
k3

1 +
kn−1

1
kn

// // // // //

(c)

Figure 6. The general abelian linear quiver. The integers at the nodes denote
the ranks of the associated gauge groups, while ki are the number of bifunda-
mentals (arrows). In (b), a convenient choice of decoupled U(1). In (c), the
model is reduced to a product.

4.1.3. General Linear Abelian Quiver. Finally, we consider the general abelian linear quiver with
n+ 1 nodes and ki bifundamental chiral multiplets between the i-th and the (i+ 1)-th nodes.

In the abelian three-node quiver case (n = 2), we have shown that Ω(y, ζ) is the product of
the index of the one-node quiver with k1 chiral multiplets, and the index for the one-node quiver
with k2 chiral multiplets.

Now assume that for the n-node quiver Ω(y, ζ) is similarly given by the product of that for
n− 1 one-node quivers with ki chiral multiplets for the i-th decoupled node. Then for the linear
quiver with n+ 1 nodes, we can decouple the second node as shown in Figure 6b and the quiver
becomes the product of a one-node quiver with a n-node quiver. Inductively, we have shown
that the index for the (n+ 1)-node quiver is the same as the product of indices for n one-node
quivers as shown in Figure 6c.
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Thus, the index of the general abelian linear quiver is:

Ω(y, ζ) =

n∏
i=1

y−ki+1
ki−1∑
j=0

y2j

 ,(4.14)

if the FI parameters ζi satisfy the following conditions

(4.15) ζn+1 > 0, ζn+1 + ζn > 0, · · · ζn+1 + ζn + · · ·+ ζ2 > 0,

as can be easily seen from Figure 6b.
This is exactly the expected result (3.13).

4.2. Non-Abelian Phenomena: Electron Halos. In this section we consider an example
with non-abelian quiver gauge group. As described in §3.1.2 this example computes the bound
states of a single monopole and m identical electrons. Our goal is to reproduce the result (3.14)
using the residue formula (2.4).

1 m
k

//

(a)

m
k

//

(b)

Figure 7. The two-node linear quiver with a nonabelian gauge group. The
integers at the nodes denote the ranks of the associated gauge groups, while k
is the number of bifundamentals (arrows). In (b), a U(1) is decoupled leaving a
U(m) gauge theory with k fundamental chiral multiplets with +1 charge under
the U(1) of U(m).

Consider the quiver in Figure 7a. We decouple the U(1) node to compute the index as in
Figure 7b. One can alternatively decouple the central U(1) of U(m) and obtain the same answer.

The one-loop determinant for a U(m) vector multiplet with k chiral multiplets in the repre-
sentation 1 is

Z1−loop =
1

m!

[
− π

sin(πz)

]m m∏
b,c=1,
b 6=c

sin(πub − πuc)
sin(πub − πuc − πz)

m∏
a=1

[
sin(πua − πz)

sin(πua)

]k
du1 ∧ · · · ∧ dum.

(4.16)

On the complex m-dimensional space M, there are hyperplanes Hab and Hc, with

a, b, c = 1, · · · ,m and a 6= b,

where Z1−loop has poles:

vector : Hab : ua − ub − z = 0, a 6= b,

chiral : Hc : uc = 0.
(4.17)

For the index formula, we always pick the covector η in the definition of the Jeffrey-Kirwan
residue operation (2.14) to be in the u(1) part of the dual Cartan subalgebra g∗u(1) as in (2.15).

In the current example, this implies that η lies on a real one-dimensional line on the real m-
dimensional space h∗:

η = ζ(1, 1, · · · , 1) ∈ h∗ ∼= Rm,(4.18)

where ζ is the FI parameter for U(m).
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For a given ζ, the index can potentially receive contribution from various intersections of Hab

and Ha. For example, in the U(2) case shown in Figure 8, if we choose ζ > 0, the Jeffrey-Kirwan
residue operation receives contributions from H1 ∩H2, H12 ∩H2, and H21 ∩H1, while it gives
zero for ζ < 0. However, the contributions from H12∩H2 and H21∩H1 can be shown to be zero
by a direct computation.

For general m in the chamber ζ > 0, we therefore conjecture that the index only receives
contribution from the intersection H1 ∩H2 ∩ · · · ∩Hm.

With this assumption, the index can then be computed to be

Ω(y, ζ) =
1

m!

[
− π

sin(πz)

]m m∏
a=1

[∮
ua=0

dua
2πi

] m∏
b,c=1,
b 6=c

sin(πub − πuc)
sin(πub − πuc − πz)

m∏
d=1

[
sin(πud − πz)

sin(πud)

]k
.

(4.19)

On the other hand, from the result (3.14) we know that the index is given by

Ω(y, ζ) =


ym(m−k) ∏k

i=1(1−y2i)∏m
i=1(1−y2i)

∏k−m
i=1 (1−y2i)

if m ≤ k,

0 if m > k,
(4.20)

when ζ > 0.
We have checked by direct calculation that the two expressions (4.19) and (4.20) agree for

a wide range of m and k. This provides further evidence that index only receives contribution
from the intersection H1 ∩ H2 ∩ · · · ∩ Hm and yields an elegant combinatorial identity for the
residue integral (4.19).

Q12

Q21

Q1

Q2

η1

η2

η = (ζ, ζ)

Figure 8. A U(2) vector multiplet with k chiral multiplets in the fundamental
representation with +1 charge under the U(1) of U(2). The figure shows the
charge covectors Qab and Qa on h∗ ∼= R2. In the index formula, we choose η to
be on g∗u(1), which is the red line in the figure. As a result, we never need to

consider the chamber Cone(Q1, Q12) nor Cone(Q2, Q21).

4.3. Non-Trivial Superpotentials. In the examples of §4.1 and §4.2 the quivers do not admit
non-trivial superpotentials and hence the refined index is not sensitive to the choice of u(1)R
charge assignments for the chiral multiplets. In this section we generalize to examples where the
superpotential plays an important role. We find that as long as the superpotential satisfies the
properties described in §2.1 the index formula (2.4) still accurately computes the refined index.



AN INDEX FORMULA FOR SUPERSYMMETRIC QUANTUM MECHANICS 29

The examples we explore fall into the class of quivers analyzed from a representation theory
perspective in [28,41,42].

1 1

1

Y

X Z

//
��

[[

(a)

X Y Z
1 1// // //

(b)

Figure 9. The XY Z model. The integers at the nodes denote the ranks of
the associated gauge groups, while X,Y, Z label the fields. There is one arrow
between each pair of nodes. In (b), a choice of U(1) decoupling.

4.3.1. The XY Z Model. Consider a triangle quiver shown in Figure 9a with three U(1) vector
multiplets and three chiral multiplets X,Y, Z. We decouple the U(1) node where X and Z meet
as in Figure 9b.

We will assume the R-charges for the three chiral multiplets X,Y, Z to be RX , RY , RZ ,
respectively. Let k be a positive integer such that

2

k
= RX +RY +RZ .(4.21)

Given a k, we can allow for the following superpotential in the quantum mechanics:

W = (XY Z)k.(4.22)

For k = 1 we have the generic cubic superpotentialW = XY Z. There are no supersymmetric
ground states, so the expected answer for Ω(y, ζ) is zero. In this case we will see that the residue
formula (2.4) accurately computes the index.

When k > 1, the superpotential does not satisfy our hypotheses. A direct calculation in the
chamber where ζ1 > 0 and ζ2 > 0 shows that the expected index from quantizing the classical
moduli space is one. We will see that the residue formula does not produce this answer.

The one-loop determinant is

Z1−loop =

[
− π

sin(πz)

]2
[

sin
(
πu1 + π

(
RX
2 − 1

)
z
)

sin(πu1 + πRX2 z)

][
sin
(
−πu1 + πu2 + π

(
RY
2 − 1

)
z
)

sin(−πu1 + πu2 + πRY2 z)

]

×

[
sin
(
−πu2 + π

(
RZ
2 − 1

)
z
)

sin(−πu2 + πRZ2 z)

]
du1 ∧ du2 ∧ du3.(4.23)

It has poles at the hyperplanes

HX : u1 +
RX
2
z = 0,

HY : −u1 + u2 +
RY
2
z = 0,

HZ : −u2 +
RZ
2
z = 0.

(4.24)

The corresponding charge covectors QX , QY , QZ on h∗ ∼= R2 are shown in Figure 10. Since the
theory is abelian, g∗u(1) = h∗ and we can take ζ to be at any point on the plane h∗.
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There are three chambers on the FI parameter space ζ in Figure 10. For a given ζ, the index
receives contributions from one of the three intersections HX ∩HY , HY ∩HZ , and HX ∩HZ ,
depending on which chamber ζ is in. A direct computation shows that all three chambers give
the same answer.

For example, if ζ ∈ Cone(QX , QY ), the Jeffrey-Kirwan residue operation is nonzero at

HX ∩HY = {u1 = −RX
2
z, u2 = −RX +RY

2
z} :

JK-Res
u=HX∩HY

({QX , QY }, ζ)
du1 ∧ du2

(u1 + RX
2 z)(−u1 + u2 + RY

2 z)

=

(
1

2πi

)2 ∮
u1=−RX2 z

∮
u2=u1−

RY
2 z

du1du2

(u1 + RX
2 z)(−u1 + u2 + RY

2 z)

(4.25)

The index can then be computed as

Ω(y, ζ) =

[
− π

sin(πz)

]2 ∮
u1=−RX2 z

du1

2πi

∮
u2=u1−

RY
2 z

du2

2πi

[
sin
(
πu1 + π

(
RX
2 − 1

)
z
)

sin(πu1 + πRX2 z)

]

×

[
sin
(
−πu1 + πu2 + π

(
RY
2 − 1

)
z
)

sin(−πu1 + πu2 + πRY2 z)

][
sin
(
−πu2 + π

(
RZ
2 − 1

)
z
)

sin(−πu2 + πRZ2 z)

]

=
y1− 1

k − y−1+ 1
k

y−
1
k − y 1

k

.(4.26)

Note that the answer only depends on the sum of the R-charges 2/k, but not on the individual
assignments RX , RY , RZ . For k = 1, Ω(y, ζ) vanishes as expected. For k > 1, however, the
answer produced by the residue formula does not match that obtained by direct analysis. As
explained above, this is no contradiction since in this case the superpotential does not satisfy
our hypotheses.

QY

QX
QZ

η1

η2

Figure 10. The XY Z model with one node removed. The figure shows the
charge covectors QX , QY , QZ on h∗ ∼= R2.
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1 1

1

p

Yj

2Xi p Zk

//
��

[[

(a)

Xi

2 p

Yj

p

Zk
1 1// // //

(b)

Figure 11. The generalized XY Z model. The integers at the nodes denote the
ranks of the associated gauge groups, while the integers at the arrows denote
the number of bifundamental fields. In (b), a choice of U(1) decoupling.

4.3.2. Generalized XY Z Model. We continue our study of models with superpotential but now
with a more nontrivial index and wall-crossing phenomenon.

The quiver diagram is shown in Figure 11a. We have two Xi, i = 1, 2, and p Yj and Zk,
j, k = 1, · · · , p, chiral multiplets. We will assume the R-charges for all the Xi are the same and
will be denoted by RX . Similarly for Yj and Zk.

We will also assume 2 = RX + RY + RZ so that the superpotential is cubic. The charge
covectors are the same as the previous case shown in Figure 10. However, unlike the XY Z
model in the previous subsection, the index now does depend on the choice of the chamber.

In the ζ ∈ Cone(QX , QY ) chamber, the index is

Ω(y, ζ) =

[
− π

sin(πz)

]2 ∮
u1=−RX2 z

du1

2πi

∮
u2=u1−

RY
2 z

du2

2πi

[
sin
(
πu1 + π

(
RX
2 − 1

)
z
)

sin(πu1 + πRX2 z)

]2

×

[
sin
(
−πu1 + πu2 + π

(
RY
2 − 1

)
z
)

sin(−πu1 + πu2 + πRY2 z)

]p [
sin
(
−πu2 + π

(
RZ
2 − 1

)
z
)

sin(−πu2 + πRZ2 z)

]p
= p.(4.27)

Similarly the chamber ζ ∈ Cone(QX , QZ) gives the same answer as above.
In the chamber ζ ∈ Cone(QY , QZ), the index is

Ω(y, ζ) =

[
− π

sin(πz)

]2 ∮
u2=

RZ
2 z

du2

2πi

∮
u1=u2+

RY
2 z

du1

2πi

[
sin
(
πu1 + π

(
RX
2 − 1

)
z
)

sin(πu1 + πRX2 z)

]2

×

[
sin(−πu1 + πu2 + π

(
RY
2 − 1

)
z)

sin(−πu1 + πu2 + πRY2 z)

]p [
sin(−πu2 + π

(
RZ
2 − 1

)
z)

sin(−πu2 + πRZ2 z)

]p

=

{∑p
j=2(j − 1)

(
y2(p−j) + y−2(p−j)) if p > 1,

0 if p = 1.
(4.28)

Note that the index again does not depend on the individual R-charges RX , RY , RZ but only
on their sum. We assume RX +RY +RZ = 2 to allow for the generic cubic superpotential.

These results match those obtained by directly quantizing the quiver moduli space in [17].

4.3.3. 4d N = 2 SU(3) Yang-Mills Theory. As a final example we consider the quiver quantum
mechanics which governs the BPS states of four-dimensional N = 2 SU(3) Yang-Mills theory
[13, 14] shown in Figure 12a. We study an example where the ranks of the quiver gauge groups



32 CLAY CÓRDOVA AND SHU-HENG SHAO

are all one. The corresponding BPS particle is a W -boson. We expect that this particle is
stable, and hence ground states of the quantum-mechanics exist, in the weak coupling region of
the four-dimensional moduli space. This is the region in ζ-space where

(4.29) ζ2 < ζ3, ζ4 < ζ1.

ζ4

1 1

ζ3

1

ζ1

1

ζ2

Y

X

B1, B2 A1, A2

oo

KS
//

��

(a)

B1, B2 X A1, A2 Y

ζ1

1 1

ζ2

1

ζ3

+3 // +3 //

(b)

Figure 12. The BPS quiver for 4d N = 2 SU(3) Yang-Mills theory. The
integers at the nodes denote the ranks of the associated gauge groups in the
quantum mechanics, while the integers at the arrows denote the number of
bifundamental fields. The ζi indicate our convention for FI parameters. The
corresponding BPS particle is a W -boson in the 4d theory. In (b), a choice of
U(1) decoupling.

The superpotential is

W = B1XA1Y −B2XA2Y.(4.30)

From the symmetry of the quiver, we assume the R-charges for X and Y are the same and
denote them by R. From the superpotential and the symmetry we deduce that the R-charges
for A1, A2, B1, B2 are all 1−R.

We decouple the U(1) as in Figure 12b. The meromorphic top form is

Z1−loop =

[
− π

sin(πz)

]3
[

sin
(
πu1 + π

(
1−R

2 − 1
)
z
)

sin
(
πu1 + π 1−R

2 z
) ]2 [

sin
(
−πu1 + πu2 + π

(
R
2 − 1

)
z
)

sin
(
−πu1 + πu2 + πR2 z

) ]

×

[
sin
(
−πu2 + πu3 + π

(
1−R

2 − 1
)
z
)

sin
(
−πu2 + πu3 + π 1−R

2 z
) ]2 [

sin
(
−πu3 + π

(
R
2 − 1

)
z
)

sin
(
−πu3 + πR2 z

) ]
du1 ∧ du2 ∧ du3

(4.31)
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There are four hyperplanes in M where Z1−loop has poles:

H1 : u1 +
1−R

2
z = 0,

H2 : −u1 + u2 +
R

2
z = 0,

H3 : −u2 + u3 +
1−R

2
z = 0,

H4 : −u3 +
R

2
z = 0.

(4.32)

The charge covectors in h∗ that define these hyperplanes in M are

Q1 = (1, 0, 0),

Q2 = (−1, 1, 0),

Q3 = (0,−1, 1),

Q4 = (0, 0,−1).

(4.33)

M∗sing contains the following four points from the intersections of any three of the four hyper-
planes Hi:

u
(1)
∗ = H2 ∩H3 ∩H4 =

(
1 +R

2
z,

1

2
z,
R

2
z

)
,

u
(2)
∗ = H1 ∩H3 ∩H4 =

(
−1−R

2
z,

1

2
z,
R

2
z

)
,

u
(3)
∗ = H1 ∩H2 ∩H4 =

(
−1−R

2
z, −1

2
z,
R

2
z

)
,

u
(4)
∗ = H1 ∩H2 ∩H3 =

(
−1−R

2
z, −1

2
z, −2−R

2
z

)
.

(4.34)

Given the FI parameter ζ ∈ h∗, it belongs to a cone generated by three of the four Qi’s. The
Jeffrey-Kirwan residue only receives contribution from the intersection of the three correspond-
ing hyperplanes Hi. For example, we can write the Jeffrey-Kirwan residue operation in the
Cone(Q2, Q3, Q4) chamber as

JK-Res
u=u

(1)
∗

({Q2, Q3, Q4}, ζ)
du1 ∧ du2 ∧ du3(

−u1 + u2 + R
2 z
) (
−u2 + u3 + 1−R

2 z
) (
−u3 + R

2 z
)

=(−1)3

(
1

2πi

)3 ∮
u3=R

2 z

du3

∮
u2=u3+ 1−R

2 z

du2

∮
u1=u2+R

2 z

du1

× 1(
−u1 + u2 + R

2 z
) (
−u2 + u3 + 1−R

2 z
) (
−u3 + R

2 z
) .

(4.35)

The index in the four chambers are

Ω(y, ζ) =


0 if ζ ∈ Cone(Q2, Q3, Q4),

y + y−1 if ζ ∈ Cone(Q1, Q3, Q4),

0 if ζ ∈ Cone(Q1, Q2, Q4),

y + y−1 if ζ ∈ Cone(Q1, Q2, Q3).

(4.36)
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In terms of the components of the FI parameters, the chambers can be described as

Ω(y, ζ) =


0 if ζ4 > 0, ζ1 < 0, ζ1 + ζ2 < 0,

y + y−1 if ζ1 > 0, ζ2 < 0, ζ2 + ζ3 < 0,

0 if ζ2 > 0, ζ3 < 0, ζ1 + ζ2 > 0,

y + y−1 if ζ3 > 0, ζ4 < 0, ζ2 + ζ3 > 0.

(4.37)

This agrees with the expectation (4.29) and provides a complete picture of the walls of mar-
ginal stability where the W -boson decays.
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