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SINGULAR GEOMETRY OF THE MOMENTUM SPACE: FROM WIRE

NETWORKS TO QUIVERS AND MONOPOLES

RALPH M. KAUFMANN, SERGEI KHLEBNIKOV, AND BIRGIT WEHEFRITZ–KAUFMANN

Abstract. A new nano–material in the form of a double gyroid has motivated us to study
(non)–commutative C∗ geometry of periodic wire networks and the associated graph Hamil-

tonians.

Here we present a general more abstract framework, which is given by certain quiver
representations, with special attention to the original case of the gyroid as well as related

cases, such as graphene. The resulting effective C∗–geometry is that of the momentum space,
which parameterizes the quasi–momenta.

This geometry is usually singular, where the singularities describe so–called band intersec-

tions in physics. We give geometric and algebraic methods to study these intersections; their
origin being singularity theory and representation theory. A technique we newly apply to this

situation is the use of topological invariants, which we formalize and explain in the paper.

This uses K–theory and Chern classes as well as “slicing methods” for their computation.
In this method the invariants can be computed using Berry’s connection in the momentum

space. This brings monopole charges and issues of topological stability into the picture.

Adding a constant magnetic field or allowing projective representations makes the C∗

geometry non–commutative. In this case, we can also use K–theory, albeit in a different way,

to make statements about the band structure using gap labeling.

Introduction

Recently, a new nano–material in the form of a double gyroid has been synthesized [38].
It is based on a thickened triply-periodic minimal surface, whose complement consists of two
non-intersecting channels. These can be filled with conducting or semiconducting materials
[38] to function as nanowire networks with potentially useful electronic properties [26]. The
nontrivial topology of such a network has motivated our study of its commutative and non–
commutative geometry [21]. Following Bellissard and Connes [4, 9, 30], we proceed by identifying
the relevant C∗–algebra, which in our case is spanned by the symmetries and the tight-binding
(Harper) Hamiltonian of the skeletal graph obtained as a deformation retract of the channel. This
approach leads to an effective geometry described by a family of finite dimensional Hamiltonians
and their spectra; the latter determine the band structure of the original nanostructured solid
in the tight-binding approximation.

In this paper, we analyze this effective geometry, which in condensed matter physics is called
the momentum space and a cover of it, using methods from singularity theory and topology.
The singularities of the geometry are of particular interest as they determine physical properties
of the material. The most prominent example of this are the so–called Dirac points of graphene
which lead to its amazing properties including room temperature quantum Hall effect [8]. In
our setup, we show that these Dirac points can be thought of as pull backs of A1 singularities
for the particular case of the honeycomb lattice.

Singularities can also be forced by symmetries. One way to obtain such symmetries is via
symmetries of the underlying graph/quiver. This construction is not direct and proceeds through
several steps. The starting point is a re–gauging groupoid for matrix representations of the
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Hamiltonian. These are then “transferred” to actions on the base spaces of the effective geometry.
The outcome is given by projective representations of subgroups of the symmetries of the graph
on bundles over the subsets of the momentum space stabilized by the respective subgroups.

In this paper, we generalize the condensed matter setup to quiver representations stemming
from finite graphs, thus making the theory more applicable to other contexts. In the process
we adapt the techniques of [23] and [24] to this more general situation. In particular, we get
a classification of singularities in the spectrum—the band intersections. The simplest of these
is a conical intersection of two bands — these are the Dirac points mentioned above. We give
analytic tools to compute locations and properties of all the singular points.

In the general framework above, we also give a formulation and application of the Berry
phase phenomenon [7] in terms of K–theory and Chern–classes generalizing the observations
of Thouless et al. (TKNN) [37] and Simon [34]. These concepts include topological charges
in various guises: scalar, K–theoretic and cohomological. When the parameter space is three-
dimensional, isolated conical degeneracies are magnetic monopoles in the parameter space [7]. In
the present case, the parameters are components of the crystal momentum k; their number equals
the dimensionality of the original periodic structure. Thus, in three spatial dimensions—the case
of the gyroid—Dirac points are monopoles in the momentum space and, as we will see, are stable
with respect to small deformations of the graph Hamiltonian. Furthermore, using foliations, we
consider a slicing technique which leads to an effective numerical tool for finding singular points
in the spectrum, generalizing the method used for this purpose in [40]. This technique has been
implemented in [25] and corroborates the topological stability of the gyroid’s Dirac points. This
stability is not a common characteristic of all Dirac points: those of graphene, which is described
by the honeycomb lattice, do not exhibit this property for general deformations.. There of course
might be deformations which do preserve them see e.g. [12].

This fact has an elegant and short explanation in our approach. We expect that this analysis
will contribute to the understanding of potential applications of gyroid-based nanomaterials, as
well as to the theory of three-dimensional generalizations of the quantum Hall effect, along the
lines of [5]. In two dimensions, the TKNN equations for generalized Dirac–Harper operators
have been worked out in [29]. Analyses of higher-dimensional situations are contained in [11, 14,
6, 27, 15].

Even without going to complete generality provided by quiver representations, our approach
to studying wire networks is not restricted to the gyroid system and applies to any embedded
periodic wire network in Rn. We have already used it to study more examples, namely, Bravais
lattices, the honeycomb lattice and two other triply periodic surfaces and their wire networks,
the primitive cubic (P surface) and the diamond (D surface). We refer to these as the geometric
examples. We recall some results here and include a new consideration of the topological charges.

The effective C∗ geometry becomes non–commutative if we add an external magnetic field or
more generally allow projective representations for the quivers. In the embedded wire network
cases the noncommutative geometry is given by a subalgebra of a matrix algebra with coefficients
in the noncommutative torus. Here the parameters of the torus correspond to the coefficients of
the constant B–field that the material is subjected to.

One surprising fact is that some properties of the non–commutative situation are similar to the
situation without a magnetic field, and there is evidence for duality between these two situations.
The duality concerns the degenerate subspaces of the torus that appears as the relevant moduli
space in both cases. In the commutative case, i.e. in the absence of a magnetic field, the torus
is the base for the family of Hamiltonians and the requisite subspace is where the spectrum of
the Hamiltonian has degeneracies. In the noncommutative case, the same torus parameterizes
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the B–field and the locus of degeneracy is that of those values of B where the C∗–algebra is not
the full matrix algebra.

The paper is organized as follows: In Chapter 1, we start with a description of the material
that motivated this study and its underlying geometry. This is independent of the rest of the
paper and may be skipped by the reader interested in the more general setup. The first chapter
also discusses how the gyroid surface geometry is reduced to that of the skeletal graph—the
deformation retract of a channel component of the complement to the triply periodic surface.
We additionally introduce other related geometries which we consider in parallel. These are the
honeycomb lattice underlying graphene, and the P and D surfaces, which are the other triply
periodic self–symmetric surfaces.

Chapter 2 describes the mathematical model we work with. This includes the Harper Hamil-
tonian and the relevant Hilbert space and C∗ algebra for the commutative and non–commutative
cases. We first consider the case of a periodic lattice embedded in Rn and then give the gen-
eralization to groupoid quiver representations in section 2.2. The reader more interested in the
general mathematical framework can use this section as a starting point for reading the paper.

We discuss the resulting C∗ geometry in Chapter 3. This includes the general setup identifying
the singular locus as a pull–back from a miniversal unfolding, the representation theory using the
re–gauging groupoid and our analysis of the Berry connection, topological charges and stability
of the singular points as well as a slicing method to detect singular points or monopoles. Chapter
4 contains all results for the specific examples of the triply periodic wire systems P, D and G,
as well as the two–dimensional honeycomb system and Bravais lattices in any dimension. This
includes the new results about the topological charges. Using the methods of Chapter 3, we give
the singular locus that is the degeneracies in the spectrum of the Harper Hamiltonian. As a
second set of results, we review the classification results for the non–commutative geometries for
the cases above. Here the parameter space is given by the background magnetic field 2–forms.
In Chapter 5 we give a brief outlook including an observation of an almost duality.

1. The Double Gyroid (DG) and Related Geometries and Material

1.1. The Geometry. The gyroid is a triply periodic constant mean curvature surface that is
embedded in R3 [16]. Figure 1 shows a picture of the gyroid. It was discovered in 1970 by
Alan Schoen [33]. A single gyroid has symmetry group I4132 in Hermann-Maguin notation.
Here the letter I stands for bcc. The gyroid surface can be visualized by using the level surface
approximation [28]

(1) Lt : sinx cos y + sin y cos z + sin z cosx = t

In nature the single gyroid was observed as an interface for di–block co–polymers [18]. The
double gyroid consists of two mutually non–intersecting embedded gyroids. Its symmetry
group is Ia3̄d where the extra symmetry comes from interchanging the two gyroids. It also has
a level surface approximation which is given by the above expression (1) with Lw and L−w for

0 ≤ w <
√

2. The picture on the left-hand side of Figure 1 is actually a double gyroid or a
“thick” surface.

Let us fix some notation. We will denote by S = S1 q S2 the double gyroid surface. Its
complement C = R3 \S has three connected components, which we will call C+, C− and W . W
can be thought of as a “thickened” (fat) surface which we will refer to as DG wall. There is a
deformation retract of W onto a single gyroid.

There are also two channel systems C+ and C−, shown in Figure 1. These channels form Y-
junctions where three channels meet under a 120 degree angle. Each of these channel systems can
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Figure 1. The fat gyroid surface W (left) and the two channel systems C+

and C− (right)

be deformation retracted to a skeletal graph Γ±. We will concentrate on one of these channels
and its skeletal graph Γ+, shown in Figure 2.

Figure 2. One of the two channels (left) and its skeletal graph in the unit cell (right)

1.2. The Material and Production. A solid-state double gyroid can be synthesized by self-
assembly at the nanoscale, as demonstrated by Urade et al. [38]. The first step is production
of a nanoporous silica film with the structure of unidirectionally cotracted double gyroid (DG)
with lattice constant of about 18 nm. The pores in the structure can then be filled with other
materials to form nanowires. Fabrication of platinum DG nanowires by electrodeposition has
been demonstrated in [38], where it has also been mentioned that the process can be used for
other metals or semiconductors.

1.3. Related Geometries: the P and D surfaces. There are two other triply periodic self–
dual and symmetric CMC surfaces- the cubic (P) and the diamond (D) network. They are shown
in Figure 3 together with their wire networks obtained in the same way as for the gyroid. Here
we summarize the results from [22].



GEOMETRY OF THE MOMENTUM SPACE 57

The P surface has a complement which has two connected components each of which can
be retracted to the simple cubical graph whose vertices are the integer lattice Z3 ⊂ R3. The
translational group is Z3 in this embedding, so it reduces to the case of a Bravais lattice.

The D surface has a complement consisting of two channels each of which can be retracted
to the diamond lattice Γ�. The diamond lattice is given by two copies of the fcc lattice, where
the second fcc is the shift by 1

4 (1, 1, 1) of the standard fcc lattice, see Figure 3. The edges are
nearest neighbor edges. The symmetry group is Fd3̄m.

Figure 3. The cubic (P) (left) and the diamond (D) wire network (right)

1.4. Graphene. Graphene consists of one-atom thick planar sheets of carbon atoms that are
densely packed in a honeycomb crystal lattice. This two–dimensional material has attracted
much interest recently, partially because of the existence of Dirac points where excitations show
a linear dispersion relation. Its electronic properties are described by a Harper Hamiltonian: see
the review [8] and references therein. Here we will reproduce some of the known facts, such as
the Dirac points using our non–commutative geometry machine.

2. Mathematical Model and Generalization: Graphs and Groupoid
Representation

2.1. Discrete model and Harper Hamiltonian. We will now describe how to obtain the
Harper Hamiltonian for any given graph Γ ∈ Rn with a given maximal translation group L ' Zn
[19]. We will start with the commutative case without an external field, and then progress to
the non–commutative case where the graph is placed in a constant external magnetic field. The
mathematical set–up we will describe below can be understood in terms of Weyl quantization
and Peierls substitution in physics [32]. Without the magnetic field the Harper Hamiltonian is
given by translations, but in the presence of a magnetic field all translations turn into magnetic
translations or Wannier operators, which cease to commute with each other.

Mathematically the discretization by the above process yields the Hilbert space H = `2(V (Γ)),
where V (Γ) are the vertices of Γ, and a projective representation of the translation group L as
well as an operator H, the Harper Hamiltonian. Concretely, the elements l of L act on the
functions Ψ via the usual translations Tl : TlΨ(l′) = Ψ(l − l′).

2.1.1. Quotient Graph and Harper Hamiltonian. In general, given an embedded graph Γ ∈ Rn,
with a given maximal translation group L ' Zn, we consider the quotient graph Γ̄ := Γ/L and
the projection π : Γ→ Γ̄. The quotient graphs for our four main examples are given in Figure 4.
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Figure 4. The quotient graphs of the P,D,G surfaces and the honeycomb lat-
tice, together with a spanning tree and an order of the vertices.

The vertices of this graph are in 1–1 correspondence with vertices or sites of Γ in a fundamental
cell. We can think of the graph Γ̄ as embedded into Tn = Rn/Zn. Each edge e of Γ̄ lifts to a

pair of edge vectors
→
e ,
←
e= − →e where the underlying line segment is any lift of e to Γ. This is

well defined since any two lifts differ by a translation.
To each vertex v ∈ Γ̄ we can associate the Hilbert space Hv := `2(π−1(v)). Then the whole

Hilbert space H decomposes as

(2) H =
⊕

v vertex of Γ̄

Hv

Since all the Hv are separable Hilbert spaces, they are all isomorphic.
The Harper Hamiltonian is then given as follows. For each edge e between two vertices v and

w of Γ̄ let T→
e

be the translation operator from Hw → Hv. This extends to an operator T̂→
e

on

H via T̂→
e

= iv̄T→e Pw̄ where iv̄ : Hv̄ →H is the inclusion and Pw̄ : H →Hw̄ is the projection.
The Harper Hamiltonian is

(3) H =
∑

e edges of Γ̄

T̂→
e

+ T̂−→e

2.1.2. Harper Hamiltonian in the presence of a magnetic field. Adding a constant magnetic
field requires a slightly different definition of the Harper Hamiltonian. We will use projective
translation operators whose commutators include the fluxes of the magnetic field as follows: We
define a 2–cocycle αB ∈ Z2(L,U(1)) by a two–form Θ̂ on the ambient Rn. Such a two–form is

given by a skew symmetric matrix Θ with Θ̂ = Θijdxi ∧ dxj . We let B = 2πΘ̂ and interpret it
as a quadratic form1. In this way we obtain a two–cocycle

αB ∈ Z2(Rn, U(1)) : αB(u, v) = exp(
i

2
B(u, v))

which we then restrict to L.
We define magnetic translations by starting from A, which is a potential for B (on Rn). The

magnetic translation partial isometry is now acting on a wave function as

Ul′ψ(l) = e−i
∫ (l−l′)
l A ψ(l − l′)

1This is the quadratic form on constant vector fields, which can be identified with a quadratic form on Rn.
The matrix Θ is also the matrix for this quadratic form.
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The magnetic Harper operator is defined as

(4) H =
∑

e edges of Γ̄

U→
e

+ U←
e

2.2. Generalization: Groupoid and quiver representations. In the setting above, which
we call the geometric examples, we have distilled the following data: a finite graph Γ̄, the
translational groups L and a projective representation of it on H =

⊕
Hv and finally the

Hamiltonian H.
We will now explore the possibility of obtaining such data from a more general setup. There

are two ways to do this: in terms of groupoids or in terms of quivers.

2.2.1. Groupoid representation. Recall that a groupoid is a category whose morphisms are all
invertible. A representation of a groupoid is a functor ρ from this category into a linear category.
In our case this will be the category of separable Hilbert spaces which is the full subcategory of
the category of vector spaces whose objects are separable Hilbert spaces.

A graph Γ̄ (here Γ̄ need not be finite) determines a groupoid G as follows. The objects are
the vertices of Γ. The morphisms are generated by the edges. That is for each oriented edge
between v and w there is one generator φ→

e
in Hom(v, w). The morphisms in this category are

then the composable words in the φ→
e

where composable means that the source of a latter is the
target of the predecessor, with the relations that

(5) φ→
e
φ←
e

= idv ∈ Hom(v, v), the identity element

What this means is that the morphisms are the paths on Γ up to homotopy, with the constant
path yielding the identity.

A groupoid representation of G in separable Hilbert spaces then assigns to each vertex v of

Γ̄ a separable Hilbert space ρ(v) = Hv and to each oriented edge
→
e from v to w a morphism

ρ(φ→
e

) = Φ→
e
∈ Hom(Hv,Hw) with the relation that Φ→

e
Φ←
e

= idHv . We will abbriviate ρ(φ→
e

)

by ρ(
→
e ).

The groupoid representation is unitary if all the Φ→
e

are.

Remark 2.1. Notice that there is an involution ∗ on the morphisms, by transposing the word
and reversing the orientation of each letter. So we can only look at involutive functors, that is
functors which send ∗ to †, that is the Hermitian adjoint. This guarantees that the representation
is unitary.

2.2.2. Quiver representation. There is a way to formulate this in quiver language. Given a graph
Γ̄ and an arbitrary choice of directions for the edges determines a quiver. Now one can construct
the double of the quiver, where each oriented edge is doubled with reverse orientation. If we
started from a graph, this means that each unoriented edge e is replaced by the two oriented

edges
→
e and

←
e . Now the double of the quiver is independent of the original choice of orientation.

As above, there is an involution ∗ on the set of its oriented edges which is given by reversing the
orientation. We will restrict the quiver representations we consider to those where the involution
∗ goes to †.

2.2.3. Hamiltonian of the representation. Just as above we set H :=
⊕

v vertex of Γ̄ Hv and
define

H :=
∑

e edges of Γ̄

ρ(
→
e ) + ρ(

←
e ) : H →H
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2.2.4. Representation of π1(Γ̄). If we fix a vertex v0 of Γ̄, the groupoid representation naturally
gives a representation of π1(Γ̄, v0) as follows. We fix a set of symmetric generators of π1(Γ̄, v0)
which is isomorphic to the free group in b1 = 1−χ generators Fb1 , where χ = #vertices−#edges
is the Euler characteristic and b1 is the first Betti number. Each such generator gi is a directed

simple loop on the graph which is given by a sequence of directed edges
→
e 1i, . . . ,

→
e nii. Then

ρ(gi) = ρ(
→
e 1i) ◦ · · · ◦ ρ(

→
e nii) gives a representation of π1(Γ̄, v0) on Hv0 .

Definition 2.2. We will denote the algebra generated by ρ(π1) by T . We say ρ is maximal if
the generators of π1 map to linearly independent operators and we say that ρ is of torus type
if T = TnΘ, the non–commutative n-torus with parameters given by the skew-symmetric matrix
Θ. Here necessarily n = 1− χ(Γ) .

If ρ is of torus type then representation ρ of π1(Γ̄, v0) = Fb1 as a projective representation
factors through H1(Γ̄) = Zb1 = Fb1/[Fb1 ,Fb1 ], the Abelianization of π1. In the geometric setup
of nano-wire networks, these are given by a constant background B field and the parameter Θ
is the matrix corresponding to that field as discussed above; see [21] for additional details.

In the geometric situation of Chapter 1, maximality is equivalent to the fact that the trans-
lational symmetry group is maximal.

2.2.5. Spanning trees. If we pick a rooted spanning tree of Γ̄ then we get isomorphisms
φ0v : Hv0 'Hv by using ρ and concatenation along the unique shortest path of oriented edges

from v0 to v in the spanning tree. Let Φ =
⊕

v φ0v : H
|V |
v0 →H . Then this isomorphism yields

a representation ρ̃ on H
|V |
v0 via pullback.

Likewise φv0 induces an isomorphism of π1(Γ̄, v) and π1(Γ̄, v0). Using this identification, we

get a representation ρ̂ of T on H and via pull-back with Φ on H
|V |
v0 .

A rooted spanning tree (τ, v0) also gives rise to one more bijection. This is between a set of
(symmetric) generators of π1 and the edges not in the spanning tree. The bijection is as follows.

If
→
e is a directed edge from v to w then there is a generator g→

e
which is given by the following

path of ordered edges: (1) the unique shortest path in τ from v0 to v (2) the directed edge
→
e

and (3) the unique shortest path in τ from w to v0. It is clear that g→
e

= g−1
←
e

. By contracting

the spanning tree, we see that this is indeed a set of symmetric but otherwise independent
generators.

For convenience, we set g→
e

= 1 if e ∈ τ .

2.2.6. Quiver C∗–Geometry, the algebra B. Given a groupoid representation in separable Hilbert
spaces of a finite graph Γ̄ we call the C∗ algebra generated by the operators H and T via ρ̂ on
H the Bellissard–Harper algebra of the pair (Γ̄, ρ) and denote it by B.

This general set gives the generalization of one of the results of [21].

Theorem 2.3. Any choice of spanning tree together with an order on the vertices gives rise to
a faithful matrix representation of B in M|V |(T ).

Proof. This follows from the fact that under Φ, ρ(
→
e ) gets transformed to the matrix entry ρ(g→

e
)

between the copies of Hv0 corresponding to Hv and Hw under Φ. Enumerating these vertices
yields a matrix. �

In the following given a rooted spanning tree τ we will only choose orders < such that the
root is the first element. The resulting matrix Hamiltonian will be denoted by Hτ,<.
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3. C∗–geometry

3.1. Structure theorems for the C∗–geometry. The non–commutative C∗–geometry of such
a quiver representation in general and the one stemming from the geometric situation in partic-
ular is that of B.

Just like in [21, 22] one can now ask the question whether or not B is isomorphic to the
full matrix algebra and hence Morita equivalent to T itself. In the geometric case, we obtain
a family of algebras depending on a choice of magnetic field. To take this into account, we will
denote by BΘ the resulting matrix algebra for the choice of magnetic field determined by Θ. In
this notation, TΘ = TΘ is generically simple and led to the expectation —which we proved in
[21]— that generically BΘ = M|V |(TΘ). This of course need not be the case in general.

It stands to reason that other more complicated physical phenomena could be described by
such algebras.

It actually turns out that in the geometric examples not only is the algebra indeed the full
matrix algebra at generic irrational parameter values, but that there are even only finitely many
or at most a co–dimension–2 subset of matrix parameters Θ, where BΘ (Mk(TΘ).

Theorem 3.1. [21, 22] For the geometric cases of the G surface and the honeycomb lattice the
algebra BΘ is isomorphic to the full matrix algebra except at finitely many values of Θ given in
Chapter 4. For the P surface and all Bravais lattices BΘ = TΘ = M1(TΘ). For the D surface,
the set of values of Θ for which BΘ (M2(TΘ) is given by 6 one dimensional families and finitely
many special points (also listed in Chapter 4). If BΘ is the full matrix algebra then it is Morita
equivalent to TΘ.

Remark 3.2. Note that except for the P and general Bravais case, these families above give
examples of continuos variations of algebras whose K–theory does not vary continuously. In
those cases the K–theory for the commutative case Θ = 0, which corresponds to a nontrivial
ramified cover of the torus [21, 22], is different from the generic situation, which has the K-theory
of the torus. There are also certain special points where the algebra and hence the K–theory is
isomorphic to the commutative case, although the magnetic field is not 0. This happens if the
magnetic flux through the relevant cells is integer. We also expect the K–theory to drop at the
other special points, due to the presence of additional symmetries.

3.1.1. Inspecting the spectrum via K–theory labeling. One application of the non–commutative
approach is gap labeling by K–theory. If the Hamiltonian H has a spectrum bounded from
below, then each gap in the spectrum gives rise to a projector P<E onto the Eigenspaces with
Eigenvalues less than any fixed value E in the gap, see e.g. [4, 30]. The gap labeling then
associates the K–theory class of P<E to the gap.

By the above result, via the inclusion B ↪→ Mk(T ) the projector P<E also gives rise to a
K–theory class in K(Mk(T )) ' K(T ). Using this embedding, one can deduce analogues of the
famous Hofstadter Butterfly.

Theorem 3.3. If (Γ̄, ρ) is toric non–degenerate, then the Hamiltonian H as an operator on H
has only finitely many gaps if the magnetic field is rational in the sense that the matrix Θ is
rational.

3.2. Effective geometry in the commutative case: the momentum space and the
Eigenvalue cover. If B is commutative, for instance if Θ = 0 in the geometric situation, then
by the Gel’fand–Naimark theorem, there is a compact2 Hausdorff spaceX, such that B ' C0(X).
The points of X can be thought of as characters, i.e. C∗–homomorphisms χ : B → C. More

2B is unital.
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precisely these characters are in bijection with the maximal ideals of B which are the points. If
we wish to make this distinction, we write pχ for the point of X corresponding to the character
χ and vice–versa χp for the character corresponding to p. Likewise there is a space T which
corresponds to the C∗–algebra T . In the geometric case T = Tn = Rn/L.

As usual the correspondence between the algebra of functions and the spaces is contravariant.
This means that the inclusion ρ̂ : T → B gives rise to a morphism π : X → T . If (ρ,Γ) is
maximal, then T → B is injective and hence π : X → T is surjective.

Furthermore let us consider the algebra T ⊕k given by the direct sum of k copies of T . The
space corresponding to this algebra is simply T q · · · q T k–times.

Since after choosing an order and a rooted spanning tree B ⊂ M|V |(T ), we can lift any
character χ of T to a C∗-homomorphism: χ̂ : M|V |(T )→M|V |(C) of B by applying χ to each
entry.

Definition 3.4. We call a point χ of T degenerate if χ̂(H) has less than |V | distinct Eigenvalues
and we will denote this locus as Tdeg.

We also set Xdeg := π−1(Tdeg). These are the singular points of X.
Repeating the proof of [21] we arrive at the following

Theorem 3.5. If (ρ, Γ̄) is maximal the map π : X → T is ramified over the degenerate points
and furthermore X is the quotient of the trivial k–fold cover of T where the identifications are
made in the fibers over degenerate points. Moreover these correspond to the degeneracies of H
over these points.

In other words, X can be thought of as the spectrum of the family of Hamiltonians
H(p) = χp(H) parameterized over T .

The key ingredient is the image of H under the map B → T ⊕k dual to the map qki=1T → X

(6) H 7→
∑
i

λiei

where ei are the idempotents corresponding to the i–th component and λi is the i–th Eigenvalue.

3.3. Singular geometry of the momentum space and the Eigenvalue cover.

3.3.1. Characteristic map and Swallowtails. In the commutative case, the locus Xdeg has a nice
characterization in terms of singularity theory, [23]. First, there is an embedding of X into
T × R, where X is identified with the pairs (t, λi) for which λi is an Eigenvalue of H(t). Here
H(t) = χ̂t(H), i.e. the point t corresponds to the character χt under the Gel’fand representation.

The key ingredient is a newly defined characteristic map: for this let

P (z, t) = det(zId−H(t)) = zk + bk−1(t)zk−1 + · · ·+ b0(t),

let

P (z − bk−1

k
, z) = zk + ak−2(t)zk−2 + · · ·+ a0(t)

and let g be the isomorphism on T × R which sends (t, z) to (t, z − bk−1

k ).

The coefficients ak−2(t), . . . , a0(t) define a map Ξ : T → Ck−1 called the characteristic map.
We recall that the miniversal unfolding of the Ak−1 singularity zk is given by the family of
functions fa0,...,ak−2

= zk + ak−2z
k−2 + . . . a1z+ a0 , with the parameters (a0, . . . , ak−2) ∈ Ck−1

giving the base of this variation, see e.g. [2]. This is the base of the covers whose fiber over a
point (a0, . . . , ak−2) are the roots of fa0,...,ak−2

. The terms zi : 0 ≤ i ≤ k − 2 correspond to a

basis of the Milnor or Jacobian ring C[z]/(zk−1). It is miniversal in the sense that any other
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variation of resolving the singularity is a pull-back of a variation equivalent by diffeomorphism
to this one. Notice that the term with zk−1 is missing, which is why we used the map g to
reparameterize the characteristic equation.

Identifying Ck−1 with the base of the miniversal unfolding of the Ak−1 singularity, we obtain
the following (cf. [23]):

Theorem 3.6. The branched cover X → T is equivalent via g to the pull back of the miniversal
unfolding of the Ak−1 singularity along the characteristic map Ξ. Explicitly, if P̂ = P ◦ g then
the pull back along Ξ of the cover of the miniversal unfolding is the cover corresponding to the
roots of P̂ . Via g this cover is equivalent to the one of P and hence to the cover X. Moreover
if the family of Hamiltonians is traceless the cover is the pull–back on the nose.

The family is traceless if Γ̄ has no small loops —that is edges which are a loop at one vertex—
and if, additionally, the graph is also simply laced, then ak−2 ≡ |E(Γ̄)|. In other words, the
image of T under Ξ is contained in the corresponding slice ak−2 = |E(Γ̄)| of the base of the
miniversal unfolding.

This means that if Σ ⊂ Ck−1 is the discriminant locus or swallowtail, then Tdeg = g−1(Ξ−1(Σ))

and the fiber of π over a point t is exactly g−1π−1
A (Ξ(t)) where πA is the projection of the

miniversal unfolding.
Here the swallowtail Σ is the set of points (a0, . . . , ak−2) ⊂ Ck−1 where fa0,...,ak−2

has roots
of higher multiplicity – see Figure 5 for the A2 and A3 cases.

In other words the fibers over degenerate points are identified with the corresponding fibers
over their image points in the swallowtail.

Using Grothendieck’s characterization [10] of the swallowtail as stratified by lower order sin-
gularities obtained by deleting edges in the corresponding Dynkin diagram, and pulling this back
via Ξ, we obtain:

Corollary 3.7. Consider a variation of Hamiltonians given by (Γ̄, ρ) and assume that the Hamil-
tonians are traceless. The only possible types of singularities in the spectrum of this variation
are (Ar1 , . . . , Ars) with 1 ≤ s ≤ bk/2c, and

∑s
i=1 ri ≤ k − s.

In the simply laced case with no loops, ri < k

Remark 3.8. Notice that our approach is “orthogonal” to the considerations of [13] where the
projection T ×C→ C was used instead of the projection T ×C→ T which we use. Also in their
context, T needs to be complex one–dimensional and hence their arguments do not generalize
to arbitrary (odd and even) dimensions. This is because their theory relies on deep theorems
which are special to the algebraic geometry of curves.

Remark 3.9. Theorem 3.6 and the corollary above can be viewed as a generalization/refinement
of what is commonly referred to as the “von Neumann–Wigner theorem”. This is not a theorem
per se, but the expectation that for a “generic” variation the degenerate locus is of codimension
3. This goes back to the result of [39] that for the full family of all Hermitian Hamiltonians
Herm(k) (the space of all k×k Hermitian matrices) the degenerate locus is indeed of codimension
3.

The most prominent results about the geometry of Herm(k) were already obtained in [39].
Here one can find the co–dimensions of the strata of degenerate Eigenvalues, basically by a
dimension count. This was carried further in [3], where a fibration was introduced. For this and
other discussions it is sometimes convenient to mod out the k2-real-dimensional vector space
Herm(k) by translations and dilatations. Indeed shifting the spectrum or scaling it does not
change the topology of the situation. The translations are done by adding scalar matrices and
the dilatation, as usual, by multiplying by non–zero constants. Modding out by the translations
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Figure 5. The swallowtail for the A2 (left) and A3 (right) singularities

means that we can restrict to traceless matrices and modding out by dilatations means that
we can take the norm to be 1, unless we are dealing with the 0 matrix. The quotient space of
the space of non–scalar Hermitian matrices under the simultaneous action, which is naturally
identified with the co-invariants, is then a k2 − 2–dimensional sphere which we denote by S(k).
This sphere then has a filtration by pieces Fp for which the first p Eigenvalues are equal. Arnold
[3] studied this filtration and that study has been continued in [1].

Our main focus is the geometry of a given (not necessarily generic) family H : T → Herm(k)
dictated by a quiver representation. In this setting the exact codimension depends on the whole
family T and is given precisely as the preimage of Ξ. To be more precise locally it is the dimension
of the intersection of the image under Ξ with the swallowtail and the dimension of the fiber.

Proposition 3.10. In the maximal toric case increasing the number of links to arbitrarily high
values, the dimension of the degenerate locus Tdeg generically becomes −χ(Γ), so that the stable
expected codimension of the degenerate locus is 1.

Proof. Since the domain of Ξ is compact, so is the image. Its size is limited by the coefficients of
the Hamiltonian. The value of the i, j–th entry under a lifted character χ̂ is sharply bounded by
l where l is the number of edges between vi and vj . This is follows from to the definition of the
Hamiltonian as translations along edges and is a generalization to many edges of [23] [Section 2
(equation (6)]. As the number of edges grows, this bound increases. This implies that the sharp
bound on the coefficients ai also increases. If this is large enough, the image of Ξ will fill out a
bounded region of the complement of the swallowtail Σ over which the discriminant is positive.
Then the boundary of the image given by a part of the swallowtail Σ will be of codimension 1
and of dimension |VΓ| − 2. The generic dimension of the fiber will be dim(T ) − (|VΓ| − 1). In
total this gives the dimension of the critical locus as 1−χ(Γ)− |VΓ|+ 1 + |VΓ| − 2 = −χ(Γ). �

The test case of the triangular graph with possibly multiple edges has been calculated in [22]
which gives an example of the phenomenon described above. This is illustrated in Figure 6 and
Figure 7.

3.3.2. Characterizing Dirac points. Physically very interesting singularities of X are conical sin-
gularities, which are also called Dirac points. In order to find these singularities, we consider the
ambient space T × R and the function P : T × R→ R as given in §3.3.1. As we argued in [23],
Dirac points in the spectrum are isolated Morse singularities of P with signature (+,−, . . . ,−).
That argument did not need the specifics of the geometric situation and hence generalizes.
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Figure 6. Triangle graphs with possibly multiple edges

Figure 7. Spanning tree and characteristic region for the triangle graphs

As Morse singularities are of type A1 it is a necessary condition from the above is that there
is an A1 singularity in the fiber, e.g. via the methods given above. For a Dirac point, one in
addition needs to check the signature.

3.4. Forced degeneracies by Symmetries. One reason that singular points have to be
present is given by symmetries. If the momentum space geometry stems from a graph, such
symmetries can be induced by symmetries of the underlying graph. The procedure for this is
not straightforward though and proceeds via re–gauging groupoid and a “lift” of its action to the
momentum space [24]. The result of this rather elaborate process is the existence of projective
representations of subgroups of the symmetry group of the graph that appear as stabilizers in
the geometric action on the momentum space. We describe this construction below.

In the geometric examples of wire networks, we showed in [24] that all the singularities of the
Eigenvalue cover are forced by these enhanced re–gauging symmetries.

3.4.1. General setup. Going back to the embedding of BΘ into Mk(TnΘ) the relevant matrix
representation depended on the choice of a rooted spanning tree (τ, v0) and an order < on the
vertices. We will now fix that the first element in that order is given by the root. In [24] we
showed that the re–gauging from (τ,<) to (τ ′, <′) is given by conjugation by a unitary matrix

Uτ
′,<′

τ,< . These matrices are more complicated than just the permutation group and incorporate
local gaugings. These are given by diagonal matrices with invertible elements in TΘ indexed by
the vertices of the graph.

Moreover in this way, the automorphism group of Γ acts by re–gaugings. Namely, if φ ∈ Aut(Γ)
then given (τ,<), the image of τ , φ(τ), and the push forward of the order, φ∗(<), give rise to a

re–gauging by U
φ(τ),φ∗(<)
τ,< . Usually this action on a given Hamiltonian is not trivial, due to the

fact that ρ need not be trivial.
All these observations directly generalize to the more general case of a groupoid representation

(Γ̄, ρ). In this case TΘ is replaced by T . The arguments of [24] are not sensitive to the particular



66 RALPH M. KAUFMANN, SERGEI KHLEBNIKOV, AND BIRGIT KAUFMANN

structure of TΘ and hence carry over to the more general situation. We summarize the logical
steps here.

3.4.2. Re–gauging groupoid. The re–gaugings form a secondary groupoid, the re–gauging group-
oid. Its objects are given by tuples (τ,<) and between any two objects there is a unique
morphism ((τ,<), (τ ′, <′)). There is a morphism λ to matrices with coefficients in T by sending

((τ,<), (τ ′, <′)) to Uτ
′,<′

τ,< . This morphism need not be a representation, however, since we are

only guaranteed that λ(g1)λ(g2)λ(g1g2)−1 is a non–commutative 2–cocycle with values in U(T ),
the unitary elements of T . The reason for this is that under the identification given in §2.2.5
the re–gauging basically corresponds to an isomorphism of π1(Γ̄, v0) with π1(Γ̄, v′0) along a path,
v0 and v′0 being the roots of τ and τ ′ respectively. Concatenating the isomorphisms along these
paths as above, we end up with an isomorphism under a loop; but this is precisely conjugation
with an element of π1(Γ̄, v0). In the representation, this element becomes an element in U(T ).

3.4.3. Projective Groupoid Representations. In the commutative case the cocycle above gives

rise to a central extension by U(T ) and the matrices Uτ
′,<′

τ,< give a representation in Mk(T ) of
the central extension.

Evaluating with a character χ̂, the extension becomes an extension by U(1) and the matrices

χ̂(Uτ
′,<

τ,< ) form a projective representation of the groupoid in Mk(C).

3.4.4. Stabilizer Groups, Lifts, Projective Actions and Group Extensions. If we have a fixed
point, that is a Hamiltonian that is invariant under the action of non–trivial groupoid elements,
then these elements form a group of re–gaugings. Technically the representation of stabilizer
subgroupoid factors through the group given by identification of all objects in that groupoid to
one point.

In order to find such a stabilizer group, we look for an automorphism of T which compensates
the re–gauging by automorphisms of Γ̄. That is, given an automorphism φ of Γ̄, let Φτ,<τ ′,<′ be

the associated re–gauging. We then look for an automorphism Ψτ,<
τ ′,<′ of T such that

(7) χ̂t(Φ
τ,<
τ ′,<′(Hτ,<)) = χ̂Ψτ,<

τ′,<′ (t)
(Hτ,<)

This is done for one orbit of (τ,<) under Aut(Γ̄). This tool is most effective if the graphs are
completely symmetric, like the cases we considered.

If we find such a lift of the automorphism group Aut(Γ̄) → Aut(T ), then we can look for
points of enhanced symmetry. If t ∈ T has a non–trivial stabilizer group under this action
of Aut(Γ̄) then the matrix χ̂t(Hτ,<) has a non–trivial re–gauging fixed group. This action by
conjugation yields a projective representation of the stabilizer group.

Given such a projective representation, we know that it is a representation of a central U(1)
extension of the stabilizer group. If the stabilizer group is finite, we would furthermore like to find
a smaller if possible finite group which already carries the representation. That is an extension
of the stabilizer group by a finite group. For this one uses the theory of Schur multipliers.

The upshot is that the isotypical decomposition of the representation has to be commensurate
with the Eigenspace decomposition of the Hamiltonian – for that particular value t ∈ T . Practi-
cally this means that on the one hand if in the given representation there are irreps of dimension
bigger than one, one can infer that there are degeneracies in the spectrum of at least these
dimensions. On the other hand, the one dimensional isotypical components fix Eigenvectors and
hence make it easy to find the Eigenvalues. In general of course one only has to diagonalize the
Hamiltonian inside the isotypical summands.
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3.5. Invariants of the momentum space geometry. In the commutative case, a last way to
characterize the singularities in the momentum space geometry is to use topological invariants.
These come from the fact that although the cover X → T is unramified and trivial outside of
Tdeg the line bundles defined by each non-degenerate Eigenvalue carry non–trivial topology.

3.5.1. Basic bundles, and their K-theoretic and Cohomology Valued Charges. More precisely, let
Xdeg = π−1(Tdeg) be the closed singular locus of X. Then the restriction

π : X0 := X \Xdeg → T0 := T \ Tdeg

is the trivial k–fold cover, since the Eigenvalues are real. A trivialization is given by choosing
the order in each fiber according to the order in R of the Eigenvalues λ1 < · · · < λk.

On this restriction the C∗–algebra C0(X \ Xdeg) contains pairwise orthogonal projections
Pi such that H =

∑
i λiPi. Each of these Pi defines a rank 1 sub–bundle Li of the trivial

bundle X0 × C which is the Eigenbundle corresponding to the Eigenvalue λi. The projector
or equivalently the bundle Li defines an element in K–theory [Li] ∈ K(T0). We will continue
with the geometric interpretation of line bundles and K–theory here, although in a forthcoming
analysis we will concentrate on the C∗ version ofK–theory in oder to move to a non–commutative
setup.

We call the classes [Li] the K–theoretic charges and the associated Chern classes

βi := c1(Li) ∈ H2(T0)

the cohomological charges. We also let C =
⊕

i Li, and [C] ∈ K(T0) be its class in K–theory.
Finally we define the polynomial invariant Qc(ti) =

∏
i(1 + tiβi) ∈ Hev(T0)[ti]. This class

contains all the cohomological information of the Li and C.

Remark 3.11. One can generalize most of the arguments to non–Hermitian variations:
H : T → GL(k,C), but then one should impose that T0 is simply connected and π1(T0) = 1
in order for the characteristic polynomial to be irreducible over C0(T0) which is necessary to
define the Pi, see e.g. [17].

Remark 3.12. We assumed that the Hamiltonians are generically non–degenerate. It is suf-
ficient to assume that the ranks of the Eigenbundles are generically constant. In this case, we
have vector bundles Vi and total Chern classes c(Vi).

3.5.2. Numerical Invariants/Charges. One can try to get numerical information about Qc and
the βi by pairing them with appropriate homology classes. For this it is easier to assume that
we are dealing with oriented manifolds. If we furthermore have a differentiable structure, we
know that we can evaluate Chern classes by using Chern–Weil theory.

The paring then corresponds to the integral of the curvature form for any connection over a
submanifold of the correct even degree. The set of all such numbers on a set of generators of
homology of T0 then determines the cohomological charges as functions on homology. By the
classification theorem for line bundles, see e.g. [20] the first Chern class fixes the isomorphism
class of the line bundle. Furthermore, if we use at least Q coefficients, usually in physics we take
R of C, cohomology and K-theory are isomorphic via the Chern character and we can represent
homology by using submanifolds [20, 35]. Notice that by the results of Thom [35] all second
homology classes are of this type even over Z.

It then follows that the charges are trivial if T0 has vanishing second cohomology, which is
where the first Chern classes live, (e.g. if T0 is 2–connected). In that case the Chern classes βi
vanish and the line bundles [Li] are trivializable. This is the case in some examples, notably
the honeycomb. The effect of the line bundles being trivializable is that the associated points of
degeneracy are not topologically stable, see §3.6.
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The two–torus or the two–sphere do however have non–vanishing H2 and thus are prime
candidates to detect first Chern classes if we embed them into the momentum space.

In this particular case, we can evaluate the first Chern class of a line bundle with a connection
on a 2–dimensional submanifold by pulling back, i.e. restricting, the line bundle to the surface
and integrating the curvature form of the connection. Here if A is a connection form for the line
bundle, and the first Chern–class is represented by the curvature form Ω = dA+ 1

2A ∧A.
Explicitly, if Σ is an oriented compact surface and i : Σ→ T is an embedding, then

(8) QΣ,i :=

∫
Σ

i∗c1(Li) = 〈c1(Li), i∗([Σ])〉

where 〈 , 〉 is the standard pairing between cohomology and homology.

3.5.3. Berry connection. It was Berry’s [7] great insight in this context, that adiabatic transport
provides such a connection and that this connection is indeed not always trivial and produces
the so–called Berry phase as a possible monodromy.

Simon [34] realized that Berry’s formula is just the calculation of the first Chern class of [Li]
using a connection and Chern-Weil theory. Thus one can use any other connection, for instance
the so–called canonical connection used by Simon. By general theory the first Chern class is the
only obstruction for the line bundle, and hence the monodromy, to be trivial.

3.5.4. Standard Setup. Let us first fix the concrete setup which is usually present. Assume T
is compact orientable potentially with boundary and that Tdeg is in codimension at least 1; i.e.
T is generically non–degenerate. We furthermore assume that Tdeg ∩ ∂T = ∅. Then T0 is an
orientable manifold with boundary. Let N be a tubular neighborhood of Tdeg in T and N̄ its
closure.3 Then B = T \ N is a compact sub–manifold with boundary ∂B = ∂T q ∂N̄ where
∂N̄ = N̄ \N .

E.g. If we assume that Tdeg is a manifold with singularities and the smooth part of Tdeg is of
codimension r then ∂N̄ is an Sr−1 bundle over the smooth part of Tdeg. In particular, if Tdeg is a
discrete set of points pi we can take N to be the union of small open balls centered at each point
and N̄ will be the union of the closed balls, while ∂N will be the union of the corresponding
spheres.

3.5.5. Even dimensional B. If B is even dimensional, we can pair with B and consider
∫
B
Qc(ti).

If in particular T0 = T and T is two–dimensional then B = T and we obtain all the individual
charges by using B = Σ as Qi :=

∫
B
βi.

Following Simon [34] this if for instance the case for the quantum Hall effect. Here T = T 2

has no degenerate locus and we have that B = T can carry non–trivial line bundles. Indeed the
arguments of TKNN [37] establish the non–triviality of the corresponding line bundle.

3.5.6. Odd dimensional T with boundary. If T is odd dimensional, we can restrict the Li to the
boundary ∂T , since we assumed that ∂T ∩Tdeg = ∅ . Then the boundary charge is defined to be∫
∂T
Qc(t)|∂T0

.
In the differentiable case, we represent Qc by a closed form ω = dφ of even degree; strictly

speaking this is a polynomial form. Also, since B is odd dimensional, we have by Stokes’ Theorem

3I.e. N is a smooth submanifold of the same dimension as T , which can be deformation retracted onto Tdeg.
If Tdeg is smooth N can be chosen to be a standard small tubular neighborhood. Otherwise we assume that Tdeg

is sufficiently nice that we have a stratification that allows for Thom–Mather theory [36, 31].
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that 0 =
∫
B
ω =

∫
∂B

φ =
∫
∂T
φ+

∫
−∂N̄ φ.

(9)

∫
∂T

φ = −
∫
−∂N̄

φ =

∫
∂N̄

φ

where ∂N̄ has the outward orientation viewed from N̄ . Else we just use the usual pairing between
the corresponding homologies and cohomologies.

If the boundary is empty, then we have that
∫
∂N̄

φ = 0.

3.5.7. Local charges and codimension 3. For each component N̄k of N̄ , we can consider the
restriction i∗

∂N̄i
(Qc) of Qc to ∂Nk, where k indexes the components, and define the local charge

of that component to be
∫
∂N̄k

i∗
∂N̄i

(Qc). This is of course only useful if T is odd–dimensional, so

that ∂N̄ is even–dimensional.
A special situation arises, if the smooth part T sm

deg of Tdeg is of codimension 3. Recall that ∂N̄

is an Sr−1 bundle over T sm
deg, where r = codim(T sm

deg) which in this case is 3 and hence ∂N̄ is a

2–sphere bundle. Thus in this case, we can restrict the Li to the fiber S2 = S2(p) over any point
p of T sm

deg. We call
∫
S2(p)

βi|S2(p) the i–th local charge at p and
∫
S2(p)

Qc|S2(p) the local charge.

3.5.8. Isolated critical points in dimension 3. For isolated critical points of Tdeg the local charges
are just given by integrating over small spheres around these points, which is what ∂N̄ is. If
Tdeg consists only of isolated critical points, then formula (9) states that the boundary charge is
the sum over the local charges. If moreover the boundary is empty, this means that the sum of
all the i–th local charges is 0. This is the case for the gyroid.

3.5.9. Slicing. A slicing for T is a smooth codimension 1 foliation by compact oriented manifolds
of T which has a global transverse section S and the leaves of the foliation generically do not
intersect Tdeg. For this we need the Euler characteristic to be 0, which is in particular the case
for all odd dimensional compact manifolds.

For s ∈ S let Fs be the leaf of s and is be the inclusion, if Fs ∩ Tdeg = ∅, we can consider the
pullback of C and consider

(10) Qs :=

∫
Fs

i∗Qc

which is the total Chern class of the slice. An interesting commonly encountered situation arises
if

(1) Fs generically does not intersect Tdeg

(2) Each component of N̄ contains only one component for Tdeg.
(3) Any component of N̄ is contained between some pair of slices. That is for a component

T ′deg ⊂ Tdeg there are s1, s2 and an n–dimensional closed submanifold M of the n–

dimensional manifold T , such that M ∩Tdeg = T ′deg, and ∂M ∩Tdeg = ∅, ∂M = Fs1−Fs2
and the component of N̄ corresponding to T ′deg is entirely contained in M .

In this case, by using Stokes’ Theorem we get that the total contribution of T ′

(11)

∫
∂N̄∩M

Qs|∂N̄∩M = Qs1 −Qs2

Now (12) is a great tool to numerically find Tdeg. For this one just runs through the s ∈ S
and looks for jumps in Qs.
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3.5.10. Tdeg of codimension 3. If T ′ is smooth then the total charge is

(12)

∫
Tdeg

(

∫
S2(p)

Qc|S2(p))dp = Qs1 −Qs2

If we are in dimension 3 then codimension 3 means that the degenerate locus consists of only
isolated critical points. Here the equation (12) simplifies to just a finite sum over the critical
points.

If furthermore the critical points are A1 singularities, see §3.3.1, then the jumps in the charge
are from ±1 to ∓1, as calculated in [34, 17] depending on if one calculates for the upper or lower
band and the chosen orientation/parameterization.

3.5.11. 3–dimensional torus models. If we have that T = T 3 the situation is especially nice. It is
fibered by T 2s via any of the three projections πj : S1×S1×S1 → S1, j = 1, 2, 3. The inclusion
of fibers of the three coordinate projections actually generates the whole cohomology of T 3. It
has non–vanishing 2nd cohomology H2(T 3) ' Z3. In contrast to the two–torus where puncturing
kills the 2nd cohomology a punctured three torus actually still has second cohomology. It is given
explicitly in the proof of the theorem below. This is a main difference between graphene and the
gyroid, see below. One has to be sure however, that the condition of generically not intersecting
the degenerate locus is not violated. A counterexample is the case for the D–surface, see below.
Given finitely many points pi ∈ T 3, we say that they are in generic position with respect to an
identification T 3 ' S1 × S1 × S1, if all their coordinates (viz. projections) are pairwise distinct.
By changing the identification with automorphisms of T 3, we can always obtain this situation.

Notice that the slicing along any of the three co–ordinate foliations given by the projections
πj , j = 1, 2, 3 only gives a finite set of numbers Qs,i for each Eigenbundle Li, since the integral
over the Chern–class is constant as s varies in a component of S1 \ {πj(pi)}.

Theorem 3.13. For a smooth variation with base T 3 and only finitely many degenerate points,
which we may assume to be in generic position, the slicing method applied to all three coordinate
projections completely determines the K–theoretic charges and hence the line bundles Li up to
isomorphism.

Proof. For no degenerate points this is clear as H2(T 3,Z) ' Z3 and generators are given by the
three coordinate embeddings of T 2.

If there are m ≥ 1 degenerate points pi and pick a coordinate projection πj and let

z1, . . . , zm ∈ S1

be the images of the pi. Let t1, . . . , tm be points in between the zi, that is one point per
component of S1 \ {zi}. Consider the CW model of the torus, which has one 2–cell at height ti
and 3–cells in between and 0 and 1 cells accordingly. Then T0 = T \ {pi} deformation retracts
onto the 2–skeleton of this complex. And the homology of T0 can be calculated either (a) via the
standard Meyer–Vietoris sequence for T covered by N and a slightly enlarged B, or (b) using
cellular chains for the above CW complex. Using the former, we see that there are m − 1 + 3
classes in H2(T0,Z) ' Zm+2. Namely the three original classes, plus the classes of the m little
spheres minus the diagonal class of all the spheres. In the CW basis of (b) this is given by a
set of m horizontal slices separating the m points and the images of the two other coordinate
embeddings of T 2.

Now the slicing method will give the paring with these two cells and as the Poincaré paring is
non–degenerate, the cohomology class of c1(Li) is determined by these numbers and hence the
line bundle up to isomorphism. �
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k 

Figure 8. I. The base two torus with the singular points (as a square with
opposite sides identified), the anti–diagonal (φ, φ̄), the 2 points of Tdeg and the
discs making up N . II. A picture of the ramified double cover X.

Remark 3.14. In fact, one only needs one complete slicing and then one slice each in the other
coordinate directions as determining data.

3.6. Topological Stability. Having non–vanishing topological charges produces topological
stability. If we perturb the Hamiltonian slightly by adding a small perturbation term λH1 and
continuously vary λ starting at 0, then T0 does not move much —for instance as a submanifold of
T ×R, see §3.3.1. In particular, there will be no new singular points in T0 for small perturbation.
The Eigenbundles over T0 also vary continuously and hence so do their Chern classes. Since these
are defined over Z they are actually locally constant, so that all the non–vanishing charges, scalar,
K-theoretic or cohomological, must be preserved.

4. Results for the commutative and non–commutative C∗–geometries of wire
networks

In this section, we summarize our results for the different quantum wire networks, honeycomb,
P (or more generally any Bravais lattice), D and G. The basis are the results from [21, 22, 23, 24]
and a new analysis for the topological charges using slicing.

The first set of results are on the singular geometry of the momentum space in the commutative
situation. These include all the three aspects developed above, the branched cover and its
singularities, the symmetries and the topological invariants.

The second set of results are on the classification of the C∗–algebras that appear when one
allows a constant background magnetic field.

4.1. Singular geometry of the momentum space for periodic wire networks.

4.1.1. The Honeycomb Lattice. In this case the space X is a double cover of the torus T 2 ramified
at two points (e2πi 13 , e−2πi 13 ) and (e−2πi 13 , e2πi 13 ). These two points are A1 singularities and Dirac
points. This is depicted in Figure 8. T0 is T 2 with two points removed, so H2(T0) = 0 and so
all the charges vanish and all bundles are trivial, thus the two Dirac points are in general not
topologically stable. Along the anti–diagonal (φ, φ̄) we have the equation for the two sheets of
the cover E(φ) = ±(1 + 2 cos(φ)). This is depicted in Figure 9.
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Figure 9. The cover along the anti–diagonal (φ, φ̄)

Remark 4.1. There has been an investigation of deformation directions which do not destroy
these points [12]. In our setup this means the following: the characteristic map has its image in
[−9, 0] where the swallowtail for A1 is the point 0. One only considers deformations which still
have 0 in the image of the characteristic map.

At the Dirac points there is an enhanced symmetry which is Abelian, so it does not have any
higher dimensional irreps, but the isotypical decomposition is fully decomposed and forces the
double degeneracy at the Dirac points due to the form of the Hamiltonian.

4.1.2. The primitive cubic (P) case, and other Bravais cases. The cover X → T k is trivial and
so is the line bundle of Eigenvectors.

Remark 4.2. The analysis of [5] of the quantum Hall effect, however, suggests that there is a
non–trivial noncommutative line bundle in the case of k = 2 for non–zero B–field. Furthermore,
in this case there is a non–trivial bundle, not using the noncommutative geometry, but rather the
Eigenfunctions constructed in [37] for the full Hilbert space H . This is what is also considered
in [34]. We will study this phenomenon in the gyroid and the other cases in the future.

4.1.3. The Diamond (D) case. In this case, we see that that 1 − χ(Γ) = 3 and T is the 3–
Torus T 3. The space X defined by B in the commutative situation is a generically 2–fold cover
of T 3 where the ramification locus Tdeg is along three circles on T 3 given by the equations
φi = π, φj ≡ φk + π mod 2π with {i, j, k} = {1, 2, 3}. Tdeg = Ξ−1(0) is the inverse image —of
the characteristic map— of the only singular point (the origin) of the miniversal unfolding of
A1. The characteristic region is the interval [−16, 0].

Thus the singularities are of type A1 but they are not discrete, but rather pulled back to the
entire Tdeg, hence there are also no Dirac points. Figure 10 depicts the base 3–torus with the
singular locus, which is of codimension 2.

The space T0 = T 3 \ Tdeg contracts onto a 1–dimensional CW–complex and hence has
H2(T0) = 0. Thus there are no non–vanishing topological charges associated to this geome-
try and no stability.

Analogous to the honeycomb case there are Abelian enhanced symmetries with 1–dimensional
isotypical components, which force the double degeneracy in view of the structure of the Hamil-
tonian.

4.1.4. The Gyroid (G) case. For the gyroid, the commutative geometry is given by a generically
unramified 4-fold cover of the three torus, see [21]. There are only 4 ramification points. This
means that the locus is of real codimension 3 contrary to the D case where it was of codimension
2. Furthermore the degenerations are 3 branches coming together at 2 points —(0, 0, 0) and
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Figure 10. The base 3–torus as a cube with opposite sides identified and the
singular locus consisting of three S1s mutually intersecting in two points

(π, π, π)— and 2 pairs of branches coming together at the other two points —(π2 ,
π
2 ,

π
2 ) and

( 3π
2 ,

3π
2 ,

3π
2 ). The latter furnish double Dirac points.

Using the characteristic map the first type of singular point corresponds to an A2 singularity
and the second type corresponds to the type (A1, A1) stratum of the swallowtail. All the inverse
images have discrete fibers. There are two image points on the A2 stratum each with one inverse
image under Ξ and there is one point on the (A1, A1) stratum, with two inverse images.
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Figure 11. The −6 slice of the swallowtail of A3 and the region occupied by the gyroid

All the A1 singularities in the fibers are Dirac points. That is there are four of these points.
Furthermore at all points there are enhanced symmetries by non–Abelian groups.

At (0, 0, 0) the enhanced symmetry group is the symmetric group S4 —the full symmetry
group of Γ̄ which entirely lifts to Aut(T 3)— yielding one 1–dim irrep and one 3–dim irrep which
forces the triple degeneracy. At (π, π, π) we have an a priori projective representation of S4,
which we showed however to be equivalent to the standard representation of S4 and hence we
again get one 1–dim irrep and one 3–dim irrep which forces the triple degeneracy. At the other
two points things are really interesting. The stabilizer symmetry group is A4 and it yields a
projective representation which is carried by the double cover of A4 aka. 2A4, 2T, the binary
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Figure 12. The 4 points of Tdeg along the diagonal (again T 3 is depicted as a
cube with opposite sides identified) and the 4 spheres making up ∂N̄
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Figure 13. The spectrum/cover along the diagonal

tetrahedral group or SL(2, 3). The representation decomposes into two 2–dim irreps forcing the
two double degeneracies.

Notice that we essentially need a projective representation, since A4 itself has no 2–dim irreps.
Now Tdeg is the set of the four points above and T0 = T 3 \ Tdeg contracts onto a 2–dim CW

complex with non–trivial second homology.
Thus there are K–theoretic and cohomological charges. This is the special case of dimension

3 with codimension 3 degenerate points and moreover we have a slicing of T 3 by the fiber bundle
T 3 → S1 by any of the tree coordinate projections. In fact the homology is generated by any four
slices which sit in between the 4 slices that contain the degenerate points. Pairing with these
surfaces completely determines the Chern class of the line bundles and hence the line bundles
up to isomorphism.

Figure 12 depicts T 3 with the 4 singular point as well as the 4 spheres making up ∂N̄ . Figure
13 shows the cover along the diagonal of T 3 which contains Tdeg.

Figure 14 shows the different slices which on the one hand make up the CW complex and on
the other give the submanifolds the curvature is integrated over to yield the Qs,i. The relevant
numerics were carried out in [25].

The result of the numerical slicing is contained in Figure 15 as well as the analytic values.
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Figure 14. Slices corresponding to the first coordinate projection
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Figure 15. The charges Qs,i, i = 1, . . . 4 as functions of s, the position of the
slice (compare to Fig. 14). Left: the result of a numerical computation. Right:
the analytical values

In accordance with the analytic calculations of [34, 17] the Dirac points yield jumps in the
charge by ±1 for the two bands that cross. A new result is that the A2 points yield jumps
by −2, 0, 2 for the three bands that cross. This behavior is typical of a standard example of a
3–dimensional degenerating family of Hamiltonians with a single triple crossing considered in
[7, 34] and we conjecture that indeed locally the family of the Gyroid is diffeomorphic to this
family.

All these charges are topologically stable. In preliminary numerical simulations introducing
symmetry breaking deformations we found that the A2 points each split into four A1 points in
compliance with the jumps given above. We expect to explain this behavior using time reversal
symmetry.

4.2. Results on the non–commutative geometry. In this section we summarise our results
for the non-commutative geometry of the PDG, Bravais and Honeycomb wire networks, resulting
form a constant magnetic field B (see 2.1.2 and [21, 22]).

4.2.1. Honeycomb. Generically BΘ = T2
Θ. In order to give the degenerate points, let

−e1 := (1, 0), e2 =
1

2
(1,
√

3), e3 :=
1

2
(1,−

√
3)

be the lattice vectors and f2 := e2− e1 = 1
2 (−3,

√
3), f3 := e3− e1 = 1

2 (3,
√

3) the period vectors
of the honeycomb. The parameters we need are

(13) θ := Θ̂(f2, f3), q := e2πiθ and φ = Θ̂(−e1, e2), χ := eiπφ, thus q = χ̄6
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where Θ̂ is the quadratic from corresponding to the B–field B = 2πΘ̂.

Theorem 4.3. [21] The algebra BΘ is the full matrix algebra of M2(T2
θ) except in the following

finite list of cases

(1) q = 1.
(2) q = −1 and χ4 = 1.

The precise algebras are given in [21]. We wish to point out that q = χ = 1 is the commutative
case and q = −χ = 1 is isomorphic to the commutative case, while the other cases give non–
commutative proper subalgebras of M2(T2

θ).

4.2.2. P and Bravais cases. For the simple cubic lattice and any other Bravais lattice of rank k
(P is the rank 3 case): if Θ 6= 0 then BΘ is simply the noncommutative torus TkΘ and if Θ = 0
then this B0 is the C∗ algebra of T k. There are no degenerate points.

4.2.3. Diamond. In the non–commutative case, we express our results in terms of parameters qi
and ξi defined as follows: Set e1 = 1

4 (1, 1, 1), e2 = 1
4 (−1,−1, 1), e3 = 1

4 (−1, 1,−1) for B = 2πΘ
let

(14) Θ(−e1, e2) = ϕ1 Θ(−e1, e3) = ϕ2 Θ(e2, e3) = ϕ3 and χi = eiϕi for i = 1, 2, 3

There are three operators U, V,W , given explicitly in [22], which span T3
Θ and have commu-

tation relations

(15) UV = q1V U UW = q2WU VW = q3WV

where the qi expressed in terms of the χi are:

(16) q1 = χ̄1
2χ2

2χ
2
3 q2 = χ̄1

6χ̄2
2χ̄3

2 q3 = χ̄1
2χ̄2

6χ2
3

Vice versa, fixing the values of the qi fixes the χi up to eighth roots of unity:

(17) χ8
1 = q̄1q̄2 χ8

2 = q1q̄3 χ8
3 = q2

1 q̄2q3

Other useful relations are q2q̄3 = χ̄4
1χ

4
2χ̄

4
3 and q2q3 = χ̄8

1χ̄
8
2. the algebra BΘ is the full matrix

algebra except in the following cases in which it is a proper subalgebra.

(1) q1 = q2 = q3 = 1 (the special bosonic cases) and one of the following is true:

(a) All χ2
i = 1 then BΘ is isomorphic to the commutative algebra in the case of no

magnetic field above.

(b) Two of the χ4
i = −1, the third one necessarily being equal to 1.

(2) If qi = −1 (special fermionic cases) and χ4
i = 1. This means that either

(a) all χ2
i = −1 or

(b) only one of the χ2
i = −1 the other two being 1.

(3) q̄1 = q2 = q3 = χ̄4
2 and χ2

1 = 1 it follows that χ4
2 = χ4

3. This is a one-parameter family.

(4) q1 = q2 = q3 = χ̄4
1 and χ2

2 = 1 it follows that χ4
1 = χ̄4

3. This is a one-parameter family.

(5) q1 = q2 = q̄3 = χ̄4
1 and χ2

1 = χ̄2
2. It follows that χ4

3 = 1. This is a one-parameter family.
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4.2.4. Gyroid. To state the results of [21] we use the bcc lattice vectors

(18) g1 =
1

2
(1,−1, 1), g2 =

1

2
(−1, 1, 1), g3 =

1

2
(1, 1,−1)

θ12 =
1

2π
B · (g1 × g2), θ13 =

1

2π
B · (g1 × g3), θ23 =

1

2π
B · (g2 × g3)

α1 := e2πiθ12 ᾱ2 := e2πiθ13α3 := e2πiθ23

φ1 = e
π
2 iθ12 , φ2 = e

π
2 iθ31 , φ3 = e

π
2 iθ23 , Φ = φ1φ2φ3

Classification Theorem.

(1) If Φ 6= 1 or not all αi are real then BΘ = M4(T3
Θ).

(2) If Φ = 1, all αi = ±1, at least one αi 6= 1 and all φi are different then BΘ = M4(T3
Θ).

(3) If φi = 1 for all i then the algebra is the same as in the commutative case.
(4) In all other cases (this is a finite list) B is non–commutative and BΘ (M4(T3

Θ).

5. Outlook

5.1. Observation and conjecture. Looking at the cases above, we observe several regularities.
First and foremost, there is agreement on the dimension of the degenerate locus in T k between the
commutative and the non–commutative case. In the commutative case, this locus is Tdeg ⊂ T k;
in the non–commutative case, it is the locus Tncdeg ⊂ T k of values of the B–field, where the matrix

algebra is not the full matrix algebra. Here T k parameterizes the entries of Θ mod Z, which
parameterize the non–commutative tori.

We conjecture that this is always the case.
There are several possible points of attack here. The first is through the symmetries: as we

have seen, the re–gauging groupoid exists already in the non–commutative case. Another is to
consider how, in the presence of a conserved topological charge, larger representations, such as
A2 in the gyroid case, break into smaller pieces. Using the slicing method described above, one
can readily see how that happens under a deformation of the Hamiltonian in the commutative
case. The question is whether the effect of non-commutativity is something similar.

5.2. Stability, local structure and perturbations. We furthermore plan to analyze the
topological invariants further by studying local models for the crossings. In three dimensions,
a double crossing has a unique local model up to orientation as already remarked in [7, 34]. In
loc. cit. there are also examples of three-dimensional families with a unique singular point that
corresponds to an n-fold crossing. Given the jumps in Chern classes we conjecture that for the
Gyroid near the triple crossing the family of Hamiltonians restricted to the three bands that are
involved is indeed diffeomorphic to that standard family. If this is established, we can show using
an additional symmetry argument that the Chern class functions Qs for the slicing and hence
the whole geometry of line bundles is entirely determined by the singularities. A further study
will then be how higher (more than double) topologically protected crossings dissolve under
perturbations.
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