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SECTIONS, MULTISECTIONS, AND U(1) FIELDS IN F-THEORY

DAVID R. MORRISON AND WASHINGTON TAYLOR

Abstract. We show that genus-one fibrations lacking a global section fit naturally into
the geometric moduli space of Weierstrass models. Elliptic fibrations with multiple sections
(nonzero Mordell-Weil rank), which give rise in F-theory to abelian U(1) fields, arise as a
subspace of the set of genus-one fibrations with multisections. Higgsing of certain matter
multiplets charged under abelian gauge fields in the corresponding supergravity theories break
the U(1) gauge symmetry to a discrete gauge symmetry group. We demonstrate these results
explicitly in the case of bisections, and describe the general framework for multisections of
higher degree. We further show that nearly every U(1) gauge symmetry arising in an F-
theory model can be “unHiggsed” to an SU(2) gauge symmetry with adjoint matter, though
in certain situations this leads to a model in which a superconformal field theory is coupled to
a conventional gauge and gravity theory. The only exceptions are cases in which the attempted
unHiggsing leads to a boundary point at an infinite distance from the interior of the moduli
space.

1. Introduction

F-theory [1, 2, 3] is a nonperturbative approach to string theory in which the axiodilaton
τ = χ + ie−φ of type IIB supergravity is specified by means of an auxiliary complex torus
(elliptic curve), and 7-branes serve as sources for the RR scalar, providing an opportunity for
SL(2,Z)-multivaluedness of the τ field. In most work to date, F-theory is compactified on a base
Bn of complex dimension n, where the tori C/〈1, τ(ξ1, . . . , ξn)〉 parameterized by coordinates ξi
on the base are assumed to fit together to form a Calabi-Yau (n+1)-fold Xn+1 that is elliptically
fibered with section, π : Xn+1 → Bn, so that (after appropriate blowing down) Xn+1 can be
described by a Weierstrass model

(1) y2 = x3 + fx+ g ,

where f, g are sections of line bundles O(−4K),O(−6K) on the base Bn (locally described
simply as functions of the base coordinates). The 7-branes are located at the discriminant locus
{4f3 + 27g2 = 0}, in a manner specified by the Kodaira–Néron classification of singular fibers
[4, 5].

Recently, Braun and Morrison [6] considered a more general class of F-theory compactification
spaces, where the space Xn+1 has a genus-one (torus) fibration, but no global section. They
identified a large number of examples of such genus-one fibrations over the base B2 = P2 in the
comprehensive list compiled by Kreuzer and Skarke [7] of Calabi-Yau threefolds that are hyper-
surfaces in toric varieties. Any such Xn+1 has a Jacobian fibration Jn+1, which is an elliptically
fibered Calabi–Yau with section1 whose τ function and discriminant locus are identical to those
of Xn+1. The set of genus-one fibered Calabi–Yau manifolds with the same Jacobian fibration
Jn+1 is known as the Tate-Shafarevich group of Jn+1, denoted X(Jn+1), and is identified with

1This statement has been mathematically proven only for n + 1 ≤ 3 [4, 8, 9], but is likely true in arbitrary
dimension.
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the discrete part of the gauge group of F-theory following [10, 11]2. Note that X(Jn+1) repre-
sents not only a disjoint set of manifolds, but also includes an abelian group structure [12, 13].
Braun and Morrison identified in the examples they studied an apparent deficit in the num-
ber of scalar hypermultiplets required for gravitational anomaly cancellation, when the massless
scalars are identified only as the complex structure moduli of the smooth genus one fibrations
without global section. They resolved this apparent problem by identifying additional massless
hypermultiplets at nodes in the discriminant locus of the Jacobian fibrations (more specifically,
in the I1 part of that locus).

While this analysis supports the proposition that genus-one fibrations without a global sec-
tion are associated with consistent F-theory backgrounds, it also raises several questions, such as
whether these backgrounds are connected to other F-theory geometries or form a disjoint compo-
nent of the moduli space of the theory, and how the additional massless hypermultiplets should
be interpreted. In this note, we show how these genus-one fibrations and their Jacobians fit nat-
urally into the connected moduli space of Weierstrass models, and relate them to models with
U(1) gauge fields arising from extra sections of the elliptic fibrations. The structure of U(1) gauge
fields in F-theory is rather subtle, as they are determined by global features (the Mordell-Weil
group) of an elliptic fibration; F-theory models with one or more U(1) fields have been the subject
of significant recent research activity (see for example [14, 15, 16, 18, 19, 20, 17, 22, 21, 23]).

In rough outline, the framework developed in this note is as follows: over any complex n-
dimensional base Bn, there is a space W of Weierstrass models, parameterized by the sections
f, g in (1). Any Calabi-Yau (n + 1)-fold with a genus-one fibration has a multisection of some
degree k, and its associated Jacobian fibration has a Weierstrass model which is generally singular
when k > 1 (even in the absence of nonabelian gauge symmetry). We can map the set Mk of
genus-one fibrations with a k-fold multisection (a “k-section”, or when k = 2, a “bisection”) to
a subset J k ⊆ W of the set of Weierstrass models, consisting of the Jacobians of those genus-
one fibrations. The set of elliptic fibrations with k independent global sections (rank r = k − 1
Mordell-Weil group) can also be viewed through singular Weierstrass models as a subset Sk ⊆ W
of the full space of elliptic fibrations. For Calabi-Yau threefolds, these results follow for any k
from the result of Nakayama [24] and Grassi [25] that any elliptically fibered Calabi-Yau threefold
with section has a realization as a Weierstrass model that is also Calabi-Yau; as in the case of the
statements mentioned earlier concerning Jacobian fibrations of Calabi-Yau genus-one fibrations,
this statement has not been mathematically proven for Calabi-Yau fourfolds, but there are no
known examples to the contrary. Furthermore, we have

(2) Sk ⊆ J k ⊆ W ,

meaning that the set of models with k independent sections can be viewed as a subset of the
larger set of models with a k-fold multisection.

We give explicit formulae describing these inclusions in the case k = 2 in the next section, but
the inclusion Sk ⊆ J k clearly holds for any k since having k independent sections is a special
case of having a k-fold multisection where the k sections can be given distinct global labels.
In particular, we can think of the multisection of an (n + 1)-fold Xn+1 ∈ J k as a branched
cover of the base; the multisection breaks into k distinct global sections on a subspace of moduli
space where the branch points coalesce in such a way as to give trivial monodromy among the
branches. In this picture, going from a model in Sk to a model in J k can be interpreted physically
as a partial Higgsing, where Higgsing some charged matter fields breaks U(1)k−1 to a discrete
subgroup, under which the remaining fields parameterizing J k carry discrete charges. In the

2The discrete part of a gauge group corresponds to the set of connected components of the group; a purely
discrete gauge group is a finite group such as Zn
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case k = 2, for example, we can have matter fields with various integer-valued U(1) charges; if
we Higgs matter fields with charge Q, we break U(1) to ZQ.

In the case k = 2, we can also further analyze any model containing a U(1) by considering the
explicit form of a Weierstrass model with nonzero Mordell-Weil rank. From this point of view we
can demonstrate that every U(1) is associated geometrically with a nonabelian SU(2) (or larger)
symmetry arising from a Kodaira type I2 singularity along a divisor on the base. Starting with
such an SU(2) having both adjoint and fundamental matter, there are several possible Higgsing
steps: the first leaves us with a U(1) under which the remnant of the adjoint matter has charge3

2 and the remnant of the fundamental matter has charge 1; the second Higgsing (of matter fields
of charge 2) leaves us with gauge group Z2 under which the remnant of the original fundamental
matter is charged; a final Higgsing of the fields originally carrying charge 1 breaks the residual
discrete gauge group and moves the model out of J k and into the moduli space W of generic
Weierstrass models.

In §2 we describe the general framework for this geometrical picture explicitly in the case
k = 2, for a general base manifold Bn. In §3, we show explicitly in 6D how any U(1) gauge field
in an F-theory model can be associated with an SU(2) gauge group that has been Higgsed by an
adjoint matter field, and we look at several explicit examples. §4 contains some general remarks
about the implications of this picture for 6D and 4D supergravity theories, and some comments
on further directions for related research.

2. General framework

2.1. Calabi-Yau manifolds with bisections and with two different sections. In [6], an
exercise in Galois theory provides an equation for the Jacobian of a genus-one fibration with a
bisection

(3) y2 = x3 − e2x
2z2 + (e1e3 − 4e0e4)xz4 − (e2

1e4 + e0e
2
3 − 4e0e2e4)z6 ,

where e0, . . . , e4 are sections of various line bundles over the base Bn (to be determined below).
Completing the cube, changing variables, and setting z = 1 puts this in Weierstrass form

(4) y2 = x3 +
(
e1e3 −

1

3
e2

2 − 4e0e4

)
x+

(
− e0e

2
3 +

1

3
e1e2e3 −

2

27
e3

2 +
8

3
e0e2e4 − e2

1e4

)
.

This parameterizes the set of all Jacobians of genus-one fibrations over Bn with bisections,
represented through the Weierstrass models (of the Jacobian fibrations). In particular, this
describes how J 2 ⊆ W for any base Bn.

This class of Weierstrass models is closely related to the Weierstrass form for elliptically
fibered Calabi-Yau (n+ 1)-folds on Bn with two (different) sections. Elliptically fibered Calabi-
Yau manifolds with two sections can be described as models with a non-Weierstrass presentation
(like the E7 models of [26, 27]) that are smooth for generic moduli. All such (n+1)-folds, however,
also have a (possibly singular) description as Weierstrass models. In [16], the general form of
such a Weierstrass model was given as4

(5) y2 = x3 +
(
e1e3 −

1

3
e2

2 − b2e0

)
x+

(
− e0e

2
3 +

1

3
e1e2e3 −

2

27
e3

2 +
2

3
b2e0e2 −

1

4
b2e2

1

)
.

3A field is said to have “charge n” under a U(1) gauge symmetry if it transforms as einθ under a gauge
transformation eiθ ∈ U(1).

4We have modified eq. (5.35) of [16] by using a scaling (f, g) 7→ (i4f, i6g) to change the sign of g, and by
changing cj in that paper to ej here (j = 0, 1, 2, 3).
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Note that this equation is equivalent to (4) under the replacement b2 → 4e4. The interpretation
of this analysis is that, as stated in the introduction,

(6) S2 ⊆ J 2 ⊆ W ,

The condition e4 = b2/4 is precisely the condition that the branching loci of the bisection
associated with a genus-one fibration in J k coalesce in pairs so that the total structure is that
of an elliptic fibration with two sections.

In [6, 16], it was shown that for both an elliptic fibration with two sections, and for a genus-
one fibration with a bisection, there is a natural model with a quartic equation of the general
form

(7) w2 = e0u
4 + e1u

3v + e2u
2v2 + e3uv

3 + e4v
4 .

If e4 = b2/4, the equation can be rewritten

(8)
(
w +

1

2
bv2

)(
w − 1

2
bv2

)
= u(e0u

3 + e1u
2v + e2uv

2 + e3v
3) ,

which makes the two sections manifest: they are given by u = w ± 1
2bv

2 = 0. In general, when
there are two sections one might need to make a linear redefinition of the variables u, v before
(7) can be rewritten in the form (8), but after such a linear redefinition it can always be done.

From the condition that f, g in (1) are sections of the line bundles associated with −4K,−6K,
we can characterize the line bundles of which the ei and b are sections. Focusing on the ei’s, we
have

−4K = 2[e2] = [e1] + [e3] = [e0] + [e4] ,(9)
−6K = 2[e1] + [e4] = [e0] + 2[e3] .(10)

From 2[e2] = −4K, we have [e2] = −2K. We also note that [e0] = −6K − 2[e3] must be an even
divisor class. Choosing [e0] ≡ 2L, with L the class of an arbitrary line bundle, we have

[e0] = 2L(11)
[e1] = −K + L(12)
[e2] = −2K(13)
[e3] = −3K − L(14)
[e4] = −4K − 2L(15)
[b] = −2K − L .(16)

For any given base, L can be chosen subject to the conditions that [e1], [e3] are effective divisors
(if this condition is not satisfied, then the only non-vanishing terms in the Weierstrass model are
those proportional to powers of e2, and the discriminant vanishes identically). This constrains
the range of possibilities to a finite set of possible strata in the moduli space. The consequences
when [e4] and/or [e0] fail to be effective are discussed in §2.4.

This analysis shows that for any Calabi-Yau manifold Xn+1 that is a genus-one fibration
lacking a global section but having a bisection, there is a Jacobian fibration Jn+1, which has a
description as a Weierstrass model through (4). Taking the limit e4 → b2/4 gives a Weierstrass
model for an elliptically fibered Calabi-Yau (n + 1)-fold with two sections, which therefore has
a Mordell-Weil group of nonzero rank. In terms of the physical language of F-theory, as we
describe in more detail in the following sections, this corresponds to the reverse of a process
in which a U(1) gauge symmetry is broken by matter fields of charge 2, leaving a discrete Z2

symmetry. In §3 we describe several explicit examples of this setup in 6D F-theory constructions.
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2.2. Singular fibers of type I2 in codimension two. One of the key features of the quartic
models is the presence of singular fibers in codimension two of Kodaira type I2, observed in
[16] in the U(1) case, and in [6] in the bisection case. When there is a U(1), these singular
fibers determine matter hypermultiplets that are charged under the U(1), and there can be
different charges: [16] focussed on the case when the charges are 1 and 2 only and found distinct
geometrical interpretations for each of these. The geometric construction of I2 fibers of charge
1 under U(1) extends to the case of a bisection (in the deformation from S2 to J 2), as we will
now show explicitly. As explained above, the corresponding matter fields will be charged under
the discrete Z2 gauge symmetry. Both the bisection and U(1) cases have a description in terms
of the quartic model (7). We begin by considering the I2 fibers in the genus one (bisection) case
where e4 is generic, and then consider the limit where e4 = b2 is a perfect square, corresponding
to the U(1) model.

The curves of genus one in the quartic model are double covers of P1 branched in 4 points,
as illustrated in the left half of Figure 1. When the 4 branch points come together in pairs, the
resulting double cover splits into two curves of genus zero meeting in those two double branch
points, as illustrated in the right half of Figure 1. Such fibers in the family have type I2 in the
Kodaira classification.

Thus, to find such a fiber of type I2 in the quartic model, we seek points on the base Bn for
which the right-hand side of the equation (7) takes the form of a perfect square. As we explain
in appendix A, we can assume that e4 does not vanish at such points on the base (if the model
is sufficiently generic) and so we write our condition in the form

(17) e0u
4 + e1u

3v + e2u
2v2 + e3uv

3 + e4v
4 = e4(αu2 + βuv + v2)2 ,

for some unknown α and β. Multiplying out and equating coefficients, it is easy to solve

β = e3/2e4, α = (4e2e4 − e2
3)/8e2

4

and then determine the remaining conditions, which are:

e4
3 − 8e2e

2
3e4 + 16e2

2e
2
4 − 64e0e

3
4 = 0(18)

e3
3 − 4e2e3e4 + 8e1e

2
4 = 0(19)

Figure 1. Fiber of type I2 as a degenerate branched cover

To study the solutions of these equations, we introduce an auxiliary variable p and rewrite
the equations as

p4 − 8e2e4p
2 + 16e2

2e
2
4 − 64e0e

3
4 = 0(20)

p3 − 4e2e4p+ 8e1e
2
4 = 0(21)

In appendix A we explain how to determine the condition

(22) (4e0e2 − e2
1)2 = 64e3

0e4
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for these equations to have a common root, and why that root is

(23) p =
8e0e1e4

4e0e2 − e2
1

when all of the coefficient functions e0, . . . , e4 are generic. The points we seek can be described
as solutions to (22) which also satisfy e3 = p.

We now show how to count the solutions (i.e., the number of I2 fibers of this type), modifying
an argument from [16]. Let us take a limit, replacing e4 with ε2e4 and then taking ε very small
(with both e0 and e1 of order 1). Condition (22) then shows that 4e0e2−e2

1 has order ε, and (23)
shows that p has order ε2/ε = ε. It follows that any simultaneous solution to (22) and e3 = p
can be deformed to a simultaneous solution to (22) and e3 = 0. That is, the isolated I2 fibers
are in one-to-one correspondence with the set

(24) {e4
1 − 8e0e

2
1e2 + 16e2

0e
2
2 − 64e3

0e4 = 0} ∩ {e3 = 0} .
It follows that the number of I2 fibers is

(25) [4e1] · [e3] = 4(−K + L) · (−3K − L) ,

since e4
1 − 8e0e

2
1e2 + 16e2

0e
2
2 − 64e3

0e4 is in class [4e1].
When e4 = b2/4 so that we have a U(1), the analysis above reproduces the count of I2 fibers

found in [16] which correspond to matter of charge 1 under the U(1) gauge group. It was also
observed there (and will be mentioned again below) that when U(1) is further enhanced to
SU(2), this matter comes from matter in the fundamental representation of SU(2).

On the other hand, the description of the matter of charge 2 in [16] is a bit different: it
occurs where b and e3 both vanish, and from (8) and (3) we see that both the quartic model and
the Jacobian fibration have conifold singularities over each common zero of b and e3. When we
partially Higgs by relaxing the condition e4 = b2/4, we do a complex structure deformation of
that conifold singularity, giving a mass to the gauge field (as is standard in a conifold transition
[28]).5 It would be interesting to find a more geometric interpretation of this massive gauge field,
perhaps along the lines of [34, 35].6

The Weierstrass model of the Jacobian fibration also has a conifold singularity corresponding
to each I2. For models with two sections, these conifold singularities have a (simultaneous)
small resolution, as shown explicitly in [16] by blowing up the second section in the Weierstrass
model. However, for Jacobians of models with a bisection, the conifold singularities (i.e., the
deformations of those singularities whose corresponding hypermultiplet had charge 1 before
Higgsing) have no Calabi–Yau resolution, which led to the question raised in [6] of whether these
are genuinely new F-theory models.

2.3. Generalizations and geometry. In principle, our explicit analysis of bisections could be
extended to the spaces J k of Jacobian fibrations associated with genus-one fibered Calabi-Yau
manifolds with k-sections and Sk of elliptically fibered Calabi-Yau manifolds with rank r = k−1
Mordell-Weil group in a similar explicit fashion, at least for k ≤ 4. Explicit formulae for S3,S4,
the generic forms of elliptic fibrations with three and four sections respectively, were worked out
in [20, 21] and [23], and the analogous formulae for J k are known [37] (although unwieldy to
manipulate). For k = 3, 4, the points in Sk correspond to singular Weierstrass presentations of
Calabi-Yau (n+ 1)-folds with 3, 4 independent sections, which have smooth descriptions similar
to the E6 and D4 fibrations of [26, 27].

5The distinction between conifold singularities which admit a Kähler small resolution and those which do not,
and the relation to massive gauge fields, has appeared a number of times in the literature [29, 30, 31, 32, 33].

6We thank Volker Braun for emphasizing the crucial role which must be played by massive gauge fields in
these models [36].
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Even without an explicit description of the general form of a Jacobian fibration with a k-
section, it is clear that the framework described in the previous section should generalize. In
particular, we expect that any Jacobian fibration Jn+1 with a multisection will have a dis-
crete gauge group Γ in the corresponding F-theory picture, and that this will match the Tate-
Shafarevich group Γ = X(Jn+1). There is a simple and natural geometric interpretation of
this structure in the M-theory picture. When an F-theory model on Jn+1 is compactified on
a circle S1, it gives a 5D supergravity theory that can also be described by a compactification
of M-theory on a Calabi-Yau (n + 1)-fold Yn+1. When there is a discrete gauge group Γ in
the 6D F-theory model, a nontrivial gauge transformation (Wilson line) around the complex
direction gives a set of |Γ| distinct 5D vacua associated with Jn+1. In the M-theory picture this
corresponds precisely to the compactification on the set of distinct genus-one fibered Calabi-Yau
manifolds in the Tate-Shafarevich group X(Jn+1).

We can get a clear picture of the meaning of the multiple Calabi-Yau manifolds with the
same Jacobian fibration by considering the moduli space for the compactified theory on a circle,
which can be analyzed using M-theory. We illustrate this in Figure 2, in which the moduli space
W of Weierstrass models (shown in blue) contains the subset J 2 of Jacobians of models with
a bisection, and this in turn contains the subset S2 of Jacobians of models with two sections.
When there are two sections, the second Betti number of the Calabi-Yau increases and there is an
additional dimension in the Kähler moduli space, which becomes a modulus in the compactified
theory. We have illustrated this extra dimension as a red line emerging from the S2.

W

S2 J2

M2

Figure 2. Moduli spaces for M-theory compactifications on Calabi-Yau three-
folds with different structures of sections (described in text).

What initally seems puzzling is that while the Weierstrass models of Jacobians of genus one
fibrations with two sections deform seamlessly to Jacobians of genus one fibrations with bisections
(by relaxing the condition that e4 be a square), and similarly the nonsingular fibrations with
two sections deform seamless to genus one fibrations with a bisection, the conifold singularities
in the Weierstrass model cannot be resolved in the bisection case. The key to understanding this
is to remember that the extra divisor that is present when there are two sections (i.e., a U(1))
allows an additional Kähler degree of freedom which in particular allows us to specify the areas
of the two components of an I2 fiber independently. On the other hand, when there is only a
bisection, the homology classes of those two components must each be one-half of the homology
class of a smooth genus-one fiber; thus, the two components must have the same area.

The picture of the M-theory moduli space is thus completed by adding a new component
M2 of smooth genus-one fibrations with a bisection, illustrated in purple in Figure 2. The new
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component must emerge from the precise value of the additional Kähler classes (red line) at
which the two components of an I2 fiber in the U(1) case have an identical area. (Generally, the
red line can be viewed as parameterizing the difference of those areas.) The additional Kähler
class in a U(1) thus provides the connection between the Weierstrass models (in which the area
of one of the two components is zero, corresponding to the conifold point without a Calabi-Yau
resolution) and the bisection models (in which the areas of the two components are equal).

Let us reiterate the crucial point: away from the locus S2, the complex structures on the
Calabi-Yau manifolds represented by the spaces J 2 andM2 are different (and not even birational
to each other), and are only related by the “Jacobian fibration” contruction. However, they
determine the same underlying τ function, so the F-theory models are identical. Compactifying
on a circle produces two distinct geometries for M-theory models, which is precisely what one
expects for a discrete gauge symmetry. Moreover, the “extra” hypermultiplets have different
but consistent explanations on the two components of the M-theory moduli space. AlongM2,
they are seen as geometric I2 fibers being wrapped by M2-branes, which were argued to have no
continuous gauge charges in [6] (although we now see that they carry Z2 gauge charges). Along
J 2, these same hypermultiplets are seen as complex structure moduli transverse to the J 2 locus
(moduli which are absent inM2).

One of the important lessons that we learn from this picture is that it is important not to
discard an F-theory model just because all of the corresponding M-theory models after S1-
compactification are singular. The lack of a nonsingular model means that the M-theory com-
pactification cannot be studied in the supergravity approximation without some additional input
to its structure, but such models must be included for a consistent overall picture of the moduli
spaces.

2.4. Enhancement to SU(2). For any elliptically fibered threefold with nonzero Mordell-Weil
rank, we can carry the analysis of §2.1 further, and show that there is a limit in which an extra
section in the Mordell-Weil group transforms into a “vertical” divisor class lying over a point in
the base Bn. In the F-theory language this corresponds to an enhancement of the U(1) gauge
symmetry into a nonabelian gauge group with an su2 gauge algebra (or in some special cases, a
rank one enhancement of a larger nonabelian gauge group). At least at the level of geometry,
this shows that any U(1) gauge group factor in an F-theory construction can be found from
the breaking of a nonabelian group containing an SU(2) subgroup by Higgsing a field in the
adjoint representation [38]. This fits into a very simple and general story associated with the
Weierstrass form (4). Examples of situations where U(1)’s can be “unHiggsed” in this fashion
were described in [16, 31]. In most situations the unHiggsed model with a vertical divisor is
non-singular, though as we show explicitly in the following section, in some cases a singularity is
present which can be interpreted either as a coupled superconformal theory, or as an indication
that the unHiggsed model is at infinite distance from the interior of moduli.

If the classes associated with the coefficients e0, e4 in (4) are both effective, then all coefficients
e0, . . . , e4 can generically be chosen to be nonzero, and we have a family of Weierstrass models
that characterize Jacobian fibrations with a bisection, as discussed in §2.1. Let us consider what
happens when e0 and/or e4 factorize or vanish either by tuning or because the associated divisors
are not effective (in which case these coefficients would automatically vanish since there would
be no sections of the associated line bundles).

As described in §2.1, if e4 = b2/4 is a perfect square, then the bisection becomes a pair of
global sections, and the Mordell-Weil rank of the Jacobian fibration rises, which in the F-theory
picture corresponds to the appearance of a U(1) gauge factor. The equation is symmetric under
ei → e4−i, however, so we can also take e0 = a2/4 to produce a global section in another way.
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In [16] it was observed that the zeros of b correspond to the intersection points of the two
sections, and that the further tuning b → 0, which naïvely would place the two sections on
top of each other, in fact leads to a gauge symmetry enhancement to SU(2). We can see this
enhancement explicitly by choosing e4 = b2/4 = 0 so that the structure simplifies further, and
the equation of the discriminant factorizes into the form

(26) ∆ := 4f3 + 27g2 = e2
3(−18e0e1e2e3 + 4e3

1e3 − e2
1e

2
2 + 4e0e

3
2 + 27e2

0e
2
3) .

Since neither f nor g are generically divisible by e3, this corresponds to a family of singular fibers7

of Kodaira type I2 along the divisor {e3 = 0}, associated with an su2 Lie algebra component.
(In some special cases the su2 can be part of a larger nonabelian algebra, but we focus here on
the generic su2 case for simplicity.) In the F-theory picture the transition from the model with
b = 0 to the U(1) model with b 6= 0 is described by the Higgsing of an SU(2) gauge group by a
matter field in the adjoint representation.

Again, because the equation is symmetric, we can tune e0 = a2/4 = 0 in a similar fashion,
giving a second I2 singularity on the divisor {e1 = 0}. In the F-theory picture this gives a second
nonabelian gauge group factor with an su2 algebra.

This gives a very generic picture in which, when the divisor classes −K+L and −3K−L are
effective, we have a class of models with two A1 Kodaira singularities on the divisors e1, e3. This
corresponds in the F-theory picture to a theory with gauge algebra su2 ⊕ su2. When the divisor
classes L and −4K − 2L are effective we can turn on terms e0 = a2/4 and/or e4 = b2/4 that
turn the “vertical” A1 Kodaira singularities into global sections (without changing h1,1(Xn+1));
this corresponds in F-theory to Higgsing one or both of the nonabelian gauge groups through an
adjoint representation to the U(1) Cartan generator. When L,−4K − 2L are nonzero classes,
we can choose e0 and/or e4 to be generically nonzero and non-square, which further breaks the
U(1)’s to a discrete Z2 symmetry. Because the discrete Z2 symmetry in the generic bisection
model (4) is naturally identified with the center of both U(1) fields, we expect only one Z2 in
the center of the original nonabelian gauge group.

This can be seen geometrically by analyzing the charged matter under each of the SU(2)
factors, following [39, 40]. For any F-theory model, the “virtual” or “index” spectrum of massless
matter multiplets minus massless vector multiplets can be described in terms of an algebraic
cycle of codimension 2 on the base Bn, to each component of which is associated a representa-
tion of the gauge group. (For 6D compactifications, one then just counts points in the 2-cycle
to determine the multiplicity of the representation, but for 4D compactifications there is an ad-
ditional quantization which must be performed on each component of the 2-cycle to determine
the multiplicity [41, 42], which may depend on the G-flux; what is fixed by the geometry is
the set of representations which can appear in the spectrum.) For an I2 fiber located along
a divisor Σ, the virtual adjoint representation in the matter spectrum is associated to the al-
gebraic cycle Σ · 1

2 (K + Σ), while the fundamental representation is associated to the cycle8

Σ · (−8K − 2Σ). Since we have bifundamental matter at the intersection of [e1] and [e3], which
counts as 2(−K+L) · (−3K−L) fundamentals for each of the SU(2) factors, these bifundamen-
tals account for all of the fundamental matter.9 Neither adjoints nor bifundamentals tranform
nontrivially under the diagonal Z2 in the combined gauge group. Since in the M-theory picture

7Note that when I2 fibers occur in codimension one on the base, we associate them to su2, but when they
occur in codimension two on the base, they are responsible for (charged) matter only and no additional gauge
symmetry.

8More precisely, these cycles are determined by the intersections with {f = 0} and {g = 0} in the Weierstrass
model, as described in [40].

9Here we are using the fact that when Σ = −K+L, we have −8K−2Σ = 2(−3K−L) and when Σ′ = −3K−L,
we have −8K − 2Σ′ = 2(−K + L).
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the set of divisors must be dual to the set of curves in the Calabi-Yau, the diagonal Z2 is not
part of the gauge group unless some field (associated with a curve in the resolved threefold)
transforms under it [43, 44]. Thus, the full gauge group in the model with e0 = e4 = 0 will be
(SU(2)×SU(2))/Z2 where the discrete quotient is taken by the diagonal Z2. Note that if either
[e0] or [e4] is not effective then the corresponding A1 (on [e1] or [e3]) cannot be deformed away
in the Weierstrass model while preserving the element of h1,1(X) in the form of a section; in the
F-theory picture this corresponds to an SU(2) that does not have massless matter in the adjoint
representation.

We can confirm this analysis by exhibiting an explicit element of the Mordell-Weil group of
order 2, as predicted by [45] (see also [44]). Namely, when e0 = e4 = 0 the Weierstrass equation
(4) takes the form

(27) y2 = x3 +
(
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The factorization of the right side of the equation corresponds to a point of order two on each
elliptic fiber, and since this factorization is uniform over the base, the locus {x = − 1

3e2, y = 0}
defines a section which has order two in the Mordell-Weil group. Note that either on the locus
e1 = 0 or on the locus e3 = 0, the Weierstrass equation (27) takes the form
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showing that the A1 singularity of the singular fiber is located at {x = − 1
3e2, y = 0} in each

case, i.e., exactly at the section of order two. This implies that the Z2 quotient is nontrivial on
each SU(2), and thus that the global structure of the group must be (SU(2)×SU(2))/Z2 using
the diagonal Z2.

One additional complication that can arise in this picture is when −4K contains a divisor A
as an irreducible effective component. In this case, there may be an automatic vanishing of f, g
over A giving a nonabelian gauge group, such as in 6D for the non-Higgsable clusters of [46]. In
this case, this component must be subtracted out from −4K in computing the complementary
divisors on which the SU(2) factors reside, and some of the matter fields may transform under
the gauge group living on A as well as one of the SU(2) factors. We describe this mechanism
further in the 6D context in the following section.

The upshot of this analysis is that for any elliptically fibered Calabi-Yau manifold with a
nonzero rank Mordell-Weil group, a global section can be associated with a divisor class D = [e3]
to which the section can be moved as an A1 (or higher) Kodaira type singularity. In the language
of F-theory geometry (without considering effects such as G-flux relevant in four dimensions,
§4.2) this means that any U(1) gauge symmetry can be seen as arising from a broken nonabelian
symmetry. Furthermore, there is an intriguing structure in which for each such divisor class D
there is a complementary divisor class

(29) D′ = [e1] = −4K −D ,

that can (and in some cases must) also be tuned to support an A1 singularity, which may be
associated with a second independent section. In situations where −4K has a base locus over
which f, g have enforced vanishing associated with Kodaira singularities giving nontrivial gauge
groups, the base locus must also be subtracted out in (29). In the next section we give several
explicit examples of how this works in some 6D models.

3. 6D examples

The arguments given up to this point have been very general, and in principle apply to
elliptically fibered Calabi-Yau manifolds in all dimensions where a suitable Weierstrass model is
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available. In this section we consider some simple explicit examples of 6D F-theory models to
illustrate some of the general points. We begin by describing explicitly the way in which any
U(1) in 6D can be seen as arising from an SU(2) factor that has been Higgsed by turning on a
vacuum expectation value for an adjoint hypermultiplets. We then describe some general aspects
of models with bisections in this context, and conclude by explicitly analyzing various possible
ways in which the “unHiggsing” to SU(2) may encounter problems with singularities. While
such singularities do not arise in most cases, we identify one situation where such a singularity
arises, which can only be removed by blowing up the F-theory base manifold.

Before beginning, let us recall how the various moduli spaces of Weierstrass models are linked
together through transitions involving coupling to 6D superconformal field theories [47], some-
times called “tensionless string transitions” [48, 49]. As we tune the coefficients of a Weierstrass
model over a fixed base B2, various singularities are encountered that have explanations in terms
of nonabelian gauge symmetry or the massless matter spectrum. However, if a singular point P
is encountered at which f has multiplicity at least 4, and g has multiplicity at least 6, the model
has a superconformal field theory sector and another branch emerges in which a tensor multiplet
is activated [3, 50]. The other branch consists of Weierstrass models over the blowup BlP (B2)
of B2 at P , and the area of the exceptional curve of the blowup serves as the expectation value
of the scalar in the new tensor multiplet. We generally refer to such points as “(4, 6) points.”

Even more special is the case in which either (f, g) have multiplicities at least (8, 12) at a
point, or have multiplicities of at least (4, 6) along a curve. In this case, the total space of the
fibration is not Calabi-Yau, and in fact any resolution of the space in algebraic geometry has no
nonzero holomorphic 3-forms. It is known that the points in the moduli space of Weierstrass
models at which such singularities occur are boundary points of moduli at infinite distance from
the interior of the moduli space [51, 52].

3.1. U(1) from a Higgsed SU(2) in 6D. In six dimensions, we can demonstrate explicitly
that in most situations a U(1) can be enhanced to an SU(2) in a conventional F-theory model
on the same base (i.e., one not involving a superconformal theory or at infinite distance from the
interior of the moduli space) by considering general classes of acceptable U(1) model in which
tuning b2 → 0 in (5) need not introduce a (4, 6) point. We can also identify some situations
in which this tuning does necessarily lead to such a singularity. A forced (4, 6) point can in
principle occur in one of two ways: first, if [e3] contains a curve of negative self intersection
over which f, g are required to vanish to high degree, and second if [e3] has nonzero intersection
with another curve C or combination of curves A,B, . . . over which f, g vanish to high enough
degree to force a (4, 6) vanishing at an intersection point. We outline the general structure of
the analysis here, and describe some special cases in the later parts of this section.

First, let us consider the case where C is a curve in the class [e3], C is irreducible, and
[e1] = −4K − [e3] does not contain as irreducible components any curves of self-intersection
below −2. We consider the Weierstrass model of the form (5), and take the limit as b2 → 0,
which produces an SU(2) over C with matter in the adjoint representation. For the enhancement
to SU(2) with an adjoint or higher representation to occur on a curve C, the curve must have
genus g > 0. This follows from the general result [53] that every representation of SU(N) with
a Young diagram having more than one column makes a positive contribution to the genus of
the curve through the anomaly equations. It was shown in [46] that a curve of positive genus
cannot have negative self-intersection without forcing a (4, 6) vanishing all along the curve. So
C ·C ≥ 0 and f, g cannot be required to vanish on the irreducible curve for a generic Weierstrass
model over the given base. To see where there are enhanced singularities at points on C in the
SU(2) model, we can use the 6D anomaly cancellation conditions [54, 55, 56, 57, 58, 59]. For a
generic curve C in the class [e3], where SU(2) matter is only in A hypermultiplets that transform
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under the adjoint (symmetric) representation and x fundamental hypermultiplets, the anomaly
conditions read

K · C =
1

6
[4(1−A)− x](30)

C · C = −1

3
[8(1−A)− x/2] .(31)

Solving these equations gives

(32) A = g = 1 +
1

2
(K · C + C · C)

and

(33) x = 2C · (−4K − C) = 2[e3] · [e1] .

When e0 = a2/4 = 0 and there are SU(2) gauge factors supported on both e1 and e3, this shows
that all matter fields – and hence all enhanced singularities – arise at the intersection points
between these two curves. Note that this is the same conclusion about the matter spectrum that
we reached in §2.4 in a different way. Note also that the location of the singularities associated
with the matter charged under the SU(2) on C is the same whether or not we take the a → 0
limit, and that this matter corresponds to the extra charged matter fields found on the I2 locus
in §2.2.

Additional complications can arise if e1 or e3 are reducible, particularly when either or both
contain irreducible factors that carry nontrivial Kodaira singularities. In such cases, f, g will
vanish on the associated curve A, with an extra nonabelian gauge group factor, according to the
classification of non-Higgsable clusters in [46]. To show when a U(1) that arises in a Weierstrass
form (5) can be associated with a broken SU(2) in a conventional F-theory model without
changing the base, we need to prove that in these cases a (4, 6) point cannot be introduced by
taking the b→ 0 limit. There can also be more complicated singularities introduced if the curve
C is not a generic curve in the class [e3] and itself has singularities. There is not yet a complete
dictionary relating codimension two singularities of this type to matter representations, though
there has been some recent progress in this direction [60, 61, 62]. We do not consider such cases
here in any detail, though an example is discussed in §4.1; here we assume that the curve C is
taken to be generic in the class [e3], so the statement that a U(1) can be viewed as a Higgsing
of an SU(2) model should be understood as involving the Higgsing of an SU(2) model with a
generic C given [e3], with further tuning of C carried out as necessary to achieve the given U(1)
model of the form (5).

If [e3] intersects a curve A in [e1] that carries a nonabelian gauge group GA (again, assuming
A is a generic curve in its class), some of the matter charged under the SU(2) living on the curve
C will also be charged under GA. This must occur in such a way that setting b2 → 0 does not
increase the degree of vanishing of f, g on A, or the spectrum of fields charged under the U(1)
would not match the spectrum of fields charged under the SU(2) in the b→ 0 limit determined
as above by the anomaly conditions. Indeed, explicit analysis of the possibilities shows that such
an intersection can occur only when A is a −3 or −4 curve. In these cases, when [e3] · A 6= 0,
the degrees of vanishing of f, g on A are increased above the minimal Kodaira levels, and GA
carries an enhanced gauge group with charged matter that also carries charges under the U(1)
or SU(2) on C in a consistent fashion. When A is a −5 (or less) curve, there is a (4, 6) point
on A even in the U(1) model (5), so no such conventional U(1) theory can be constructed. We
consider some explicit examples of these cases in the subsequent sections and demonstrate the
unconventional presence of a superconformal theory explicitly for −5 curves in §3.6.
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In a similar fashion, we can analyze the special cases where e3 contains a curve D of negative
self-intersection as an irreducible component. Note that if d|e3 and also d|b, then we can move
the factor of d from e3 into e1 (with two factors of d extracted from b2 and moved into e0).
Thus, if [e3] contains [d] as a component, and b = −2K − L is such that [b]− [d] is effective, we
can tune b = db′ and the analysis becomes that of the previous case. So we need only consider
situations where e3 contains an irreducible component D that is not a component of b. It turns
out this is possible for curves of self-intersection −3,−4,−5, and −6; in each of these cases there
are configurations where e3 contains such curves as a component but b does not. When the
parameter b is tuned to vanish, the enhancement to SU(2) is combined with an enhancement
of the gauge group over D in a way that is consistent with anomaly cancellation and does not
introduce (4, 6) points. For curves of self-intersection −7 or below, the U(1) model already has
(4, 6) singularities, so there are no conventional models. We give some examples of these kinds
of configurations in the subsequent parts of this section.

Although a single curve of negative self-intersection contained in e3 does not lead to a prob-
lematic singularity, there are also situations where e3 contains a more complicated configuration
of intersecting negative self-intersection curves. In particular, there exist non-Higgsable clusters
identified in [46] that contain intersecting −3 and −2 curves. In such a situation, as we show
explicitly below, a (4, 6) point can arise at the intersection between these curves when a U(1)
is unHiggsed to SU(2) by taking the b → 0 limit. This is the one situation we have clearly
identified in which such a singularity can arise.

This argument shows that a U(1) gauge factor in a 6D F-theory model over any base can be
viewed as arising from an SU(2) gauge group supported on a corresponding effective irreducible
divisor class [e3], after Higgsing a matter hypermultiplet in the adjoint representation; in a wide
range of situations the unHiggsing results in a conventional F-theory model with reduced Mordell-
Weil rank, though in certain special cases the unHiggsing either gives rise to a model which is
coupled to a superconformal theory or is at infinite distance from the interior of moduli space.
This general framework gives strong restrictions on the ways in which U(1) factors can arise
in 6D F-theory models, and illuminates the structure of the Mordell-Weil group for elliptically
fibered Calabi-Yau threefolds over general bases.

3.2. 6D theories on P2 with two sections or a bisection. As a simple specific example
of a class of 6D theories that illustrate the general structure of models with bisection, two
sections (U(1)) and enhanced (SU(2) × SU(2))/Z2 gauge group, we consider the case of 6D
F-theory compactifications on the simplest base surface B2 = P2. Models of this type with U(1)
fields were considered from the point of view of supergravity and anomaly equations in [14],
and an explicit F-theory analysis and Calabi-Yau constructions were given in [16]. In this case,
−K = 3H, where H is the hyperplane (line) divisor with H ·H = 1. Tuning an I2 singularity
along a degree d curve C in P2 by adjusting the degrees of vanishing of f, g,∆ along C to
be 0, 0, 2, respectively, gives an F-theory model with gauge group SU(2). A generic curve of
degree d has genus g = (d − 1)(d − 2)/2, and the associated SU(2) gauge group has a matter
content consisting of g massless hypermultiplets in the adjoint representation and 24d − 2d2

multiplets in the fundamental representation (note that for SU(2), unlike SU(N) for N > 2,
the antisymmetric representation is trivial). By tuning higher order singularities in the curve C,
some of the adjoint matter fields can be transformed into higher-dimensional matter fields, with
a simple relation between the matter representations and contribution to the arithmetic genus
of C, as described in [53, 60].

To describe the class of Calabi-Yau threefolds on P2 associated with a Jacobian fibration with
a bisection, we consider Weierstrass equations of the form (4), where the classes of the ei are
given in (11–15). We parameterize the set of models of interest by [e3] = −3K−L = mH, where
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m corresponds to the degree of a curve in the class [e3]. For any m in the range 0 ≤ m ≤ 12
there is a class of Weierstrass models of the form (4) that give “good” F-theory models without
(4, 6) points (points which, if present, would involve coupling to superconformal field theories or
would violate the Calabi-Yau condition). The generic model in each of these classes corresponds
to a Jacobian fibration, and in the F-theory picture there is a discrete Z2 gauge group, with a
number of charged matter hypermultiplets. For 3 ≤ m ≤ 9, both [e0] and [e4] are effective; in
this range of models, there is a subset of models with e4 = b2/4 a perfect square, giving an extra
section contributing to the Mordell-Weil rank, which is associated in the F-theory picture with
a U(1) gauge factor, and there is also a (partially overlapping) subset of models with e0 = a2/4
with another U(1) factor. Either or both of these U(1) factors can be further enhanced to an
SU(2) by fixing b2 = 0 or a2 = 0. When both factors are enhanced (e0 = e4 = 0) the total
gauge group is (SU(2)× SU(2))/Z2. When m < 3 or m > 9 the story is similar but one of the
two SU(2) factors is automatically imposed by the non effectiveness of the divisor [e4] or [e0];
in these cases there is only one possible U(1) factor.

This class of models can be understood most easily in the F-theory picture starting from the
locus e0 = e4 = 0 where the gauge algebra is su2 ⊕ su2. In this case, the two su2 summands are
associated with 7-branes wrapped on divisorsD,D′ given by curves of degreesm and 12−m in the
classes [e3], [e1]. The spectrum of the theory consists ofm(12−m) bifundamental hypermultiplets
(associated with the intersection points of D,D′), and (m − 1)(m − 2)/2, (11 −m)(10 −m)/2
fields in the adjoint representation of each SU(2). The limiting cases m = 0, 12 correspond to
situations with only a single SU(2) factor and no fundamental hypermultiplets. In all cases,
an SU(2) on a curve of degree d ≥ 3 has adjoint hypermultiplets, of which one can be used
to Higgs the nonabelian gauge group to a U(1). Under this Higgsing, the remaining adjoints
become scalar fields of charge 2 under the resulting U(1), while fundamentals acquire a charge
of 1. When 3 ≤ m ≤ 9, such Higgsing to abelian factors is possible for both SU(2) factors;
for other values only one of the groups can be Higgsed. Once one or both of the nonabelian
factors are Higgsed to U(1) fields, a further breaking can be done by making e0 or e4 a generic
non-square. This corresponds to using the charge 2 fields to Higgs the U(1) to a discrete gauge
group Z2. Under this Higgsing, the charge 1 fields retain a charge under the discrete gauge
group. It is straightforward to check that the numbers of fields in each of these models satisfies
the gravitational anomaly cancellation condition H − V = 273 − 29T , and matches with the
results of [14, 16, 6] for the various component theories.

In particular, note that form = 3 the SU(2) gauge group on D = [e3] only has a single adjoint
field, so after breaking to U(1) there are only charge 1 hypermultiplets. Thus, in this case there
is no way of breaking to a model with a bisection and residual discrete gauge group. Note also
that by tuning a non-generic singularity on the curve C carrying an SU(2) factor, it should
be possible to construct higher dimensional representations of SU(2), which will correspond to
larger charges Q ≥ 3 after breaking to U(1), and which can give rise to higher order discrete
gauge groups ZQ. We return to this issue in §4.1. In Table 1, we provide an explicit list of
the charges that arise for the SU(2) and U(1) factors in the various relevant components of the
Weierstrass moduli space S2,J 2

3.3. 6D theories on F0 = P1×P1. A similar structure will hold on any base B2 that supports
an elliptically fibered Calabi-Yau threefold; a classification of such bases was given in [46], and
a complete list of toric bases was given in [65]. As another example we consider the Hirzebruch
surface F0 = P1 × P1.

For F0, a basis of h1,1 is given by S, F with S ·S = F ·F = 0, S ·F = 1. A divisor D = aS+bF
is effective if a, b ≥ 0, and the anticanonical class is −K = 2S+ 2F . The genus of a curve in the
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m na nf n2 n1

1 0 22 – –
2 0 40 – –
3 1 54 0 108
4 3 64 4 128
5 6 70 10 140
6 10 72 18 144
7 15 70 28 140
8 21 64 40 128
9 28 54 54 108
10 36 40 70 80
11 45 22 88 44
12 55 0 108 0

Table 1. Table of SU(2) charges in adjoint and fundamental, and U(1) charges in associated
theory, when e3 describes a curve of degree m in P2. Note that SU(2) and U(1) charges match
with Higgsing description (n2 = 2(na − 1), n1 = 2nf) as well as with charges computed in
[14, 16]. Note also that n1 matches for m, 12−m, in agreement with the general picture that
all charged matter lies on intersection points of [e1], [e3] for the (SU(2)× SU(2))/Z2 theory.

class C = aS + bF can be computed as

(34) (K + C) · C = 2g − 2 = 2(ab− a− b) .

The genus is nonzero iff 2 ≤ a, b.
The range of possible models (4) with a bisection is thus given by [e3] = aS + bF with

0 ≤ a, b ≤ 8. The values of a, b for which the curves [e3], [e1] both have nonzero genus and
associated SU(2)s can be broken is 2 ≤ a, b ≤ 6. Within this range we have the full set
of possible enhancements of a model of type (4); there is a model with (SU(2) × SU(2))/Z2

symmetry, where either or both SU(2)’s can be broken to U(1) or further to the discrete Z2

symmetry. Again, counting charged multiplets confirms that anomaly cancellation in both the
nonabelian and abelian theories matches with the Higgsing process. The spectrum of charged
matter fields for an SU(2) tuned on a divisor aS+ bF consists of g = ab− a− b+ 1 adjoints and
16(a+ b)− 4ab fundamentals. As in the P2 case, the number of fundamental fields is symmetric
under a ↔ 8− a, b ↔ 8− b (e1 ↔ e3), corresponding to the fact that all charged matter in the
overall (SU(2)×SU(2))/Z2 theory is contained in the adjoints and 8(a+ b)−2ab bifundamental
fields.

3.4. 6D theories on F3. Some interesting points are illuminated by examples on the Hirzebruch
surface F3. Here we have a basis of curves S, F with S · S = −3, S · F = 1, F · F = 0. The
canonical class is −K = 2S+5F , and there is an automatic vanishing of f, g,∆ to degrees 2, 2, 4
giving an SU(3) gauge group supported on the divisor S in a generic elliptic fibration.

The simplest irreducible curve e3 that can give rise to a U(1) factor is C = 2S̃ = 2S + 6F ,
since e4 must be effective; a generic curve in this class C is irreducible and has genus 2. Choosing

(35) [e3] = 2S + 6F, ⇒ [e1] = 6S + 14F .

We note that [e1] · S = −4, so [e1] contains S as an irreducible component with multiplicity at
least 2. There is an SU(3) over S, but this does not cause any problems since S · [e3] = 0 so
there is no matter charged under the SU(3) that interacts with the SU(2) supported on C or
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the corresponding U(1) when e4 = b2/4 6= 0 or discrete group Z/2 when e4 is non-square. So
this case works like the others above, with [e1] · [e3] = 28 bifundamental matter fields.

The next case of interest is

(36) [e3] = 2S + 7F, ⇒ [e1] = 6S + 13F .

In this case the curve C defined by the vanishing locus of e3 is generically a smooth irreducible
curve of genus 3. In this case, C ·S = 1, so there is matter charged under the gauge group lying
over S. To analyze this explicitly, we see that [e0] = 8S + 16F, [e1] = 6S + 13F, [e2] = 4S + 10F
contain the irreducible component S with multiplicities 3, 2, and 1 respectively. From (5), (26),
this shows that f, g,∆ vanish to degrees 2, 3, 6 at generic points over S, and to degrees 2, 3, 8 at
points of intersection [e3] · S. As discussed in §3.1, in this situation the gauge group over the
−3 curve has an algebra that is larger than the minimal su3 for a generic model over F3. The
configuration in this case is similar to the (−3,−2) non-Higgsable cluster [46], in which a −3
curve carries a g2 algebra, and there are matter fields charged under both this algebra and an
su2 on a curve that intersects the −3 curve.

We can also analyze the case where C = −K = 2S + 5F , where C is reducible and contains
S as a component in a similar fashion, which also gives a (2, 3, 6) vanishing on S, with a similar
interpretation

3.5. F4. The analysis in the case of a −4 curve in F4 is similar to F3. The curve S has S ·S = −4.
For the minimal irreducible case [e3] = 2S + 8F , there is an SU(2) with adjoint matter that
does not intersect S. For [e3] = 2S + 9F , we have

[e2] = 4S + 12F = S +X
(2)
eff(37)

[e1] = 6S + 16F = 2S +X
(1)
eff(38)

[e0] = 8S + 20F = 3S +X
(0)
eff(39)

where X(a)
eff are effective divisors that contain no further components of S. We can read off the

order of vanishing of f, g,∆ from (5) and (26) as (2, 3, 6) on S, enhanced to (2, 3, 8) on [e3] ·S, so
again we have hypermultiplets charged under the gauge group on S as well as the SU(2) on [e3].
For curves such as [e3] = −K = 2S + 6F, where [e3] contains S as an irreducible component, a
similar analysis holds.

3.6. F5 and −5 curves. Now let us consider a −5 curve, beginning with the case of F5. As in
the previous cases, for [e3] = 2S + 10F , there is no intersection with S and the SU(2) story is
as above. For the next interesting case, however, we have

[e3] = 2S + 11F(40)

[e2] = 4S + 14F = 2S +X
(2)
eff(41)

[e1] = 6S + 17F = 3S +X
(1)
eff(42)

[e0] = 8S + 21F = 4S +X
(0)
eff .(43)

Now, analyzing (5) and (26) we find vanishing orders of f, g,∆ on S of (3, 4, 9), enhanced to
(4, 6, 12) on S · [e3], even when b2 6= 0. Thus, there cannot be a U(1) model based on (5) using
e3 = 2S + 11F (unless the intersection point is blown up, giving a model on a different base).

More generally, we can show that a U(1) based on an extra section can never be constructed
on any curve [e3] = C if C · A > 0 for some curve A of self-intersection −5 or less. The
argument basically follows exactly the same steps as above. In general, as described in [46],
from [e2] = −2K it follows that e2 vanishes to degree 2 on A just as in the F5 case. We have
−4K ·A = −12 and [e3] ·A > 0, so [e1] ·A = (−4K − [e3]) ·A < −12 and e1 vanishes to degree 3



142 DAVID R. MORRISON AND WASHINGTON TAYLOR

on A. From [e3] ·A > 0, it follows that L ·A ≤ −10, so [e0] ·A ≤ −20, and e0 vanishes to order
4 on S. Thus, no U(1) can be built using (5) on any curve e3 that has positive intersection with
a curve A of self-intersection −5. The condition on each term is stronger as the self-intersection
decreases further, so the same result holds for any curve of self-intersection < −5.

Now, let us consider the case that e3 itself has a −5 curve D as a component. For this to
happen we must have [e3] · D < 0, but as argued in §3.1 we should also have [e4] · D ≥ 0, or
we could move the associated factor out of e3 and into e1. This can lead to a conventional
model when [e3] · D = −2 or −3. In these cases, e0, e1, e2, e3 vanish to degrees 3, 2, 2, 1 on
D, and f, g vanish to degrees 3, 4. In the limit b2 → 0, f, g vanish to degrees 3, 5 and the
symmetry is enhanced to e7. Note that when [e3] ·D = −1, e0, e1 vanish to degrees 4, 3 on D,
giving multiplicities (4, 5) along D that are enhanced to (4, 6) at points of intersection with the
remainder of e3, so such models are not conventional even before unHiggsing.

As an example of a conventional model of this type, consider on F5 the U(1) model given by
(5) with

[e3] = 2S + 8F = S +X
(3)
eff(44)

[e2] = 4S + 14F = 2S +X
(2)
eff(45)

[e1] = 6S + 20F = 2S +X
(1)
eff(46)

[e0] = 8S + 26F = 3S +X
(0)
eff .(47)

As discussed above, this gives (3, 4) vanishing on the −5 curve S in the U(1) model, enhanced
to (3, 5) at points of intersection with e1. When b → 0, the group is enhanced to (3, 5) on the
whole curve S, with further enhancement to (4, 5) at points of intersection with e3.

3.7. −6 curves. The situation for −6 curves is very similar to that for −5 curves. There is
a coupled superconformal theory if [e3] has positive intersection with a −6 curve, but [e3] can
contain a −6 curve D as a component if [e3] ·D = −4, in which case e0, e1, e2, e3 vanish to orders
3, 2, 2, 1 on D and the story is similar to the above. In this case, however, e1 does not intersect
D, so there are no points where this intersection increases the degree of the singularity.

3.8. −7 curves. There are no conventional U(1) configurations of the form (5) where e3 either
intersects or contains a curve D of self-intersection −7 or below. The closest to an acceptable
configuration is when [e3] · D = −5, in which case e0, e1, e2, e3 vanish to orders 3, 3, 2, 1 on D.
This leads to a (3, 5) vanishing of (f, g) on D, which is however enhanced to a (4, 6) vanishing
at the point where [e0] − [D] intersects D (of which there is at least one since [e0] ·D = −20).
Any other combination of intersections leads to a similar singularity. A similar problem arises
for curves of self-intersection −8 or below.

3.9. The −3,−2 non-Higgsable cluster. Finally, we consider the case where e3 contains both
a −3 curve A and a −2 curve B that intersects A transversely (A ·B = 1). In this case we find
that, at least for some choice of L, a (4, 6) point is forced at the intersection point between A
and B. In particular, we choose L = −2K, so that [en] = (n − 4)K. From the analysis in [46],
we know that a section of −4K must vanish on A,B to degrees 2, 1 respectively, so

(48) [e0] = 2A+B +X
(0)
eff .
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It follows that each of the en must contain both A and B as irreducible components at least
once, for n < 4,

[e1] = A+B +X
(1)
eff(49)

[e2] = A+B +X
(2)
eff(50)

[e3] = A+B +X
(3)
eff(51)

[b] = X
(4)
eff .(52)

Now, consider the degrees of vanishing of the various terms in (5). While for b 6= 0, there are
terms in f and g that only vanish to degrees (3, 5) at the intersection of A and B (namely those
proportional to e0b

2, e0e2b
2), when we take b→ 0, all the remaining non-vanishing terms are of

degrees at least (4, 6) at the intersection point.
This means that in such a situation, while there can exist a 6D F-theory model with a U(1)

gauge symmetry associated with a nontrivial Mordell-Weil rank, and the Weierstrass coefficients
can be tuned to naively produce a nonabelian SU(2) structure, the resulting model might have an
isolated (4, 6) point and hence be coupled to a superconformal theory,10 or in other situations [64]
might have (4, 6) singularities all along one or more curves after unHiggsing11, which indicates
that these models are at infinite distance from the interior of the moduli space. There are many
known examples of base surfaces that contain −3,−2 non-Higgsable clusters; a variety of such
examples were constructed in [65, 71]. It would be interesting to analyze in detail the structure
of U(1) symmetries that could be tuned over some of these bases.

4. Implications for 6D and 4D F-theory models

4.1. F-theory and supergravity in six dimensions. Six dimensions provides a rich but
tractable context in which to study general aspects of string vacua and quantum supergravity
theories. In six dimensions, F-theory seems to provide constructions for essentially all known
string vacua, and the space of F-theory vacua matches closely with the set of potentially consis-
tent quantum supergravity theories [66, 67, 68, 69, 59]. The class of 6D F-theory constructions
based on Weierstrass models of elliptically fibered Calabi-Yau threefolds with section form a
single moduli space of smooth components associated with different bases B2 that are connected
through tensionless string transitions [49, 3]; recent work has made progress in providing a
global picture of this connected moduli space [59, 46, 70]. The results of [6] raised a question of
whether genus-one fibrations without section might constitute a class of F-theory models that
were disconnected from the rest of the F-theory moduli space. The picture outlined in this note
makes it clear that in fact the Jacobian fibrations for threefolds without section fit neatly into
the connected moduli space of Weierstrass models. Furthermore, this picture sheds light on how
U(1) gauge fields in 6D F-theory models may be understood in the context of the full moduli
space of models.

In [6, 20, 21, 23], a systematic description was given of the general form for Weierstrass models
containing one, two, and three U(1) fields. It is known that 6D models can be constructed with
up to eight or more U(1) fields; for example, as described in [60] there are F-theory constructions
on P2 with an SU(9) tuned on a curve of genus one that contain an adjoint representation the
breaking of which gives gauge factors U(1)8, and in [71] a class of C∗-bases B2 were found with
varying automatic ranks for the Mordell-Weil group for generic elliptic fibrations; the resulting
threefolds are closely related to the Schoen manifold [64]. One such base in particular is a

10We would like to thank Jim Halverson for discussions on this point. Analogous curves in 4D F-theory models
are identified and classified in [63].

11We would like to thank D. Park for discussions on this point.
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generalized del Pezzo nine over which the generic elliptic fibration has a rank 8 Mordell-Weil
group, corresponding to gauge factors U(1)8. In [14], it was shown from 6D anomaly cancellation
arguments that for a pure abelian theory in 6D with no tensor multiplets (corresponding to an
F-theory model on P2) the number of U(1) fields is bounded above by r ≤ 17. The approach
taken in this paper shows that for a single U(1) factor, it is often possible to tune the model so
that the U(1) can be seen as arising from an SU(2) or larger nonabelian factor that is Higgsed by
VEVs for an adjoint field in a conventional F-theory model. It would be interesting to investigate
the possible apparent exceptions to this construction, such as the ones we encountered with base
contains a−3,−2 cluster, where the F-theory model becomes coupled to a superconformal theory.
While in general the construction of higher rank Mordell-Weil models seems very challenging
due to the global nature of the sections, it would be very interesting to explore when higher
rank abelian models can arise from Higgsed nonabelian gauge symmetries. This would provide
a powerful tool for the construction of general models with abelian gauge symmetries, since a
systematic analysis of the nonabelian sector is much more straightforward, both in F-theory and
6D supergravity. It would also be interesting to explore in more detail the way in which the
basic SU(2) → U(1) → Z2 Higgsing pattern interacts with other nonabelian gauge symmetries
which may be present in a given model.

The existence of an underlying SU(2) for many U(1) gauge factors also greatly clarifies the set
of possible spectra. The spectrum of SU(2) theories is quite constrained by anomaly cancellation
[53], which in turn places strong constraints on the spectrum of possible charges for abelian
factors in the 6D supergravity gauge group. When an SU(2) factor is tuned on a curve of genus
g over a general base B2 generically the model will include g symmetric (adjoint) representations
and some number of fundamentals. After breaking to a U(1), this gives charges 1 and 2, so these
are the only charges expected in generic models. For specially tuned singular curves, however,
higher representations of SU(2) are possible.

For example, following the lines of [60], we expect that an SU(2) on a quintic curve on
P 2 can carry a 3-symmetric (4-dimensional) representation when the curve is tuned to have a
triple point of self-intersection. Group theoretically, this should correspond to an embedding of
su2 ⊕ su2 ⊕ su2 in an e7 singularity associated with the triple intersection point. After breaking
the SU(2) to U(1) by an adjoint VEV, this would give rise to a massless scalar hypermultiplet
of charge ±3 under the U(1). By the mechanism discussed in this paper, such fields could then
be used to break the U(1) to a discrete Z3 gauge symmetry, associated again with a Weierstrass
model associated with the Jacobian of an elliptic fibration with a multisection. Exploring the
range of possibilities of this type that may be possible for general representations of SU(2) and
higher rank nonabelian groups on arbitrary curves on general F-theory bases B2 promises to
provide a rich and interesting range of phenomena. The analysis here shows that there are
strong constraints on the charge spectrum for U(1) fields in many 6D F-theory models. These
constraints are stronger than those imposed simply by 6D anomaly cancellation. In the spirit of
[66], it would be interesting to understand if some of the F-theory constraints on charge structure
could be seen as consistency conditions for the low-energy 6D supergravity theories with abelian
gauge factors.

4.2. Four dimensions. At the level of geometry, the framework developed in this paper should
be valid for Calabi-Yau manifolds of any dimension. It has not been shown, however, that all
genus-one fibered Calabi-Yau (n + 1)-folds Xn+1 that lack a global section have an associated
Jacobian fibration Jn+1 whose total space is Calabi-Yau when n ≥ 3, so it is possible in principle
that the analysis described here can only be applied in a subset of cases where there is a Jacobian
fibration available. If so, the application to four-dimensional F-theory constructions would only
be relevant in those cases. When a Jacobian fibration is available, however, the analysis of §2
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should hold: the Jacobian fibrations of all Calabi-Yau fourfolds with a genus-one fibration but
no global section should fit into the moduli space of Weierstrass models over complex threefold
bases B3, with an explicit description of the form (4) when the Jacobian fibration has a bisection.
When the section e4 = b2/4 is a perfect square, the bisection becomes a pair of global sections
and the Mordell-Weil rank increases by one. When b → 0, the extra section transforms into
a vertical A1 Kodaira type singularity without changing the total Hodge number h1,1(X4). In
many situations, the physics interpretation of this geometry through F-theory will be the same
as in 6 dimensions: the bisection geometry will be associated with a discrete Z2 gauge symmetry
that arises from a broken U(1) gauge field, which in turn can be viewed as coming from an
SU(2) gauge group broken by an adjoint VEV. Wrapping the 4D theory on a circle will give
distinct vacua, again associated with the Tate-Shafarevich group and in the M-theory picture
with a discrete choice of Calabi-Yau fourfold with a genus-one fibration but no section.

We also expect a similar story to hold for higher degree multisections and elliptic fibrations
with higher rank Mordell-Weil group. In four dimensions, however, there is additional structure
beyond the geometry that can modify this story. In particular, G-flux, associated with 4-form flux
of the antisymmetric 3-form potential in the dual M-theory picture, produces a superpotential
that gives masses to many of the scalar moduli of the Calabi-Yau geometry. This mechanism can
modify the gauge group and matter spectrum of the theory from that described purely by the
geometry. At this point a complete understanding of the role of G-flux in F-theory is still lacking,
despite some recent progress in this direction [72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 42]. We leave
the analysis of how the results in this note are affected by G-flux and the 4D superpotential to
further work. The implications of the generic appearance of an SU(2) (or larger) nonabelian
enhancement for most U(1) vector fields are, however, a question of obvious phenomenological
interest.
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Appendix A. Solving the equations determining I2 fibers

In this appendix, we will explain how to solve the equations (18), (19) which determine the
location of the codimension two I2 fibers by finding the conditions for the quartic equation to
be a square, as in (17). The first observation is that when the coefficient functions e0, e1, . . . e4

are generic, none of them will vanish at any of the solutions to (17).
In the case of e4, if e4 vanishes at a solution then u = 0 is one of the double roots so e3 must

also vanish. For the remaining root to be double, we also need e2
1 = 4e0e2 to vanish, but now

we have three conditions on the base and the solutions are in codimension two. The case of e0

is similar: if it vanishes, then e1 and e2
3 − e2e4 would both also have to vanish.

In the case of e3 vanishing, β would need to vanish and then the equation would take the
form e4((e2/2e4)u2 + v2)2. Again we get three condtions: e3 = 0, e1 = 0, and e2

2 = 4e0e4 which
is of too large a codimension to be generic. The case of e1 is similar.

Finally, in the case of e2 vanishing, we have an equation of the form

e4(−(e2
3/8e

2
4)u2 + (e3/2e4)uv + v2)2,

and this implies the additional conditions e3
3 = −8e2

4e1 and e4
3 = 64e3

4e0. Once again we have
three conditions and this is not possible.
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Now we turn to the solution of (18), (19). As in §2.2, the first step is to introduce an auxiliary
variable p, and to express the solutions as the common zeros of two auxiliary polynomials

Φ1 := p4 − 8e2e4p
2 + 16e2

2e
2
4 − 64e0e

3
4(53)

Φ2 := p3 − 4e2e4p+ 8e1e
2
4(54)

(together with the equation e3 = p). From this, we can form additional polynomials which must
vanish on the solution, roughly following the Gröbner basis algorithm (but allowing division by
e1, e2 or e4, which are known not to vanish on solutions). This gives the following sequence of
polynomials:

Φ3 := (−Φ1 + pΦ2)/4e4 = e2p
2 + 2e1e4p− 4e2

2e4 + 16e0e
2
4(55)

Φ4 := (−e2Φ2 + pΦ3)/2e4 = e1p
2 + 8e0e4p− 4e1e2e4(56)

Φ5 := (e1Φ3 − e2Φ4)/2e4 = (e2
1 − 4e0e2)p+ 8e0e1e4(57)

Φ6 := ((4e0e2 − e2
1)Φ4 + pe1Φ5)/4e2e4 = 8e2

0p− e1(4e0e2 − e2
1)(58)

Φ7 := (8e2
0Φ5 + (4e0e2 − e2

1)Φ6)/e1 = 64e3
0e4 − (4e0e2 − e2

1)2 .(59)

The variable p has been eliminated from Φ7, so the equation Φ7 = 0 gives the condition for a p
to exist (this is (22)). The equation Φ5 = 0 can then be solved for p; this gives (23).
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