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A Special Session on Singularities and Physics was organized for the AMS Sec-
tional Meeting held in Knoxville, TN on March 21–23, 2014. The session focused on
the theory of singularities and its interactions with different branches of theoretical
physics: singularities of elliptic fibrations in string theory, renormalization issues in
quantum field theory, Landau-Ginzburg models, wall-crossing phenomena, and other
recent points of contact. The aim was to bring together the mathematics and physics
communities, to foster further interactions. The speakers and talks at the session
were as follows:
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• Ralph Kaufmann: Singularities, swallowtails and topological properties in
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• Matilde Marcolli: Rota-Baxter algebras of singular hypersurfaces and appli-

cations to quantum field theory.
• Laurentiu Maxim: Intersection spaces, perverse sheaves and type IIB string

theory.
• Dave Morrison: Canonical singularities and superconformal field theories
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This volume collects articles written by some of the speakers on the occasion of this
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in discussions begun at the conference. We offer the contributors to this volume and
the other participants our heartfelt thanks for their work and for the relaxed yet
stimulating atmosphere permeating the special session.
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SPECTRAL COVERS, INTEGRALITY CONDITIONS, AND

HETEROTIC/F-THEORY DUALITY

LARA B. ANDERSON

Abstract. In this work we review a systematic, algorithmic construction of dual heterotic/F-

theory geometries corresponding to 4-dimensional, N = 1 supersymmetric compactifications.

We look in detail at an exotic class of well-defined Calabi-Yau fourfolds for which the stan-
dard formulation of the duality map appears to fail, leading to dual heterotic geometry which

appears naively incompatible with the spectral cover construction of vector bundles. In the

simplest class of examples the F-theory background consists of a generically singular ellip-
tically fibered Calabi-Yau fourfold with E7 symmetry. The vector bundles arising in the

corresponding heterotic theory appear to violate an integrality condition of an SU(2) spectral

cover. A possible resolution of this puzzle is explored by studying the most general form of the
integrality condition. This leads to the geometric challenge of determining the Picard group

of surfaces of general type. We take an important first step in this direction by computing
the Hodge numbers of an explicit spectral surface and bounding the Picard number.

1. An algorithm construction of dual heterotic/F-theory geometry

Compactifications of heterotic string theory and F-theory are believed to be dual – that is to
lead to the same effective low energy physics – whenever the compactification geometries take
the form [9, 10, 11, 12]

(1.1) Heterotic on πh : Xn
E−→ Bn−1 ⇔ F-theory on πf : Yn+1

K3−→ Bn−1

where the K3 fiber of Yn+1 is itself elliptically fibered over a P1 base. The compatibility of

these two fibrations leads to the observation that ρf : Yn+1
E−→ Bn and σf : Bn

P1

−→ Bn−1. In
recent work [5] this duality was used to systematically enumerate an interesting and finite class
of string backgrounds and the properties of the associated 4-dimensional effective theories. As
given in (1.1), the choice of geometry in F-theory consists simply of a K3-fibered Calabi-Yau
fourfold. For the E8×E8 heterotic string theory the background is determined by an elliptically
fibered Calabi-Yau threefold equipped with a pair of poly-stable, holomorphic vector bundles,
Vi (i = 1, 2) on X3 with structure groups, Hi ⊂ E8.

In [5] a program was set out to systematically study the general properties and constraints of
the dual effective theories and develop a general and algorithmic formalism to build consistent
heterotic/F-theory backgrounds. With this goal in mind, the first step in constructing a pair of
the form (1.1) is the choice of a twofold base, B2 appearing in both the heterotic and F-theory
geometry. For all smooth threefolds, X3, the possible choices for B2 have been classified [27] (and
B2 must be a generalized del Pezzo surface). Furthermore, to explore and test general structure
there is an important dataset of such manifolds consisting of 61, 539 toric surfaces systematically
constructed by Morrison and Taylor [2, 1, 8].

Key words and phrases. Heterotic string compactification, F-theory, 4-dimensional N = 1 string dualities,
algebraic geometry, surfaces of general type, Picard number.
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2 LARA B. ANDERSON

With these results in place it iso possible to begin to build the geometry of (1.1) from the
bottom up. In the Calabi-Yau fourfold geometry the next step is to choose a form for the P1-

fibration, σf : B3
P1

−→ B2. As described in Section 2, this can be accomplished for non-degenerate
fibrations by building B3 as a P1 bundle over B2, parameterized by a “twist”: a (1, 1)-form T in
B2 (see (2.1)). In the heterotic theory this choice of twist corresponds to a piece of the heterotic
vector bundle topology (more specifically, a component of the second Chern class c2(V )) [12]. In
[5] we established that given a twofold base B2, the set of all possible twists is in fact bounded
by the conditions imposed by 4-dimensional N = 1 supersymmetry. In the heterotic theory this
appears through the condition of slope stability of the vector bundles Vi and in F-theory by
the condition that the generically singular fourfold Y4 admits a smooth Calabi-Yau resolution.
Finally it should be noted that since we require all fibrations to admit (exactly one) section,
each elliptically fibered manifold is birationally equivalent to a Weierstrass model [49] (see (2.2)).
Thus, having chosen B2 and constructed a P1-bundle B3, we have fully specified X3 and Y4.

With consistency conditions in place and a scheme for algorithmically constructing pairs as
in (1.1), it remains to extract patterns and structure from the effective theories. Duality here
provides a powerful tool to determine otherwise difficult to calculate information on both sides
of the theory. While historically heterotic/F-theory duality has been used to determine the
effective physics of the mysterious and non-lagrangian F-theory, in [5] we also explored ways in
which the singularity structure of the F-theory fourfold could be used to determine non-trivial
information aboutMω(c(V )) – the moduli space of sheaves that are semi-stable with respect to
the Kähler form ω with fixed total Chern class c(V ). Such information is hard won, since very
few techniques exist to determineMω(c(V )) for sheaves/bundles over Calabi-Yau threefolds (or
their associated higher-rank Donaldson-Thomas invariants).

As one simple illustration of this correspondence, we note here that the presence of generic
symmetries on singular Calabi-Yau fourfolds make it possible to derive correlations between the
topology of a slope-stable heterotic vector bundle on a CY threefold and its structure group.
Initial investigations of this nature were first undertaken in [15, 14] who constructed “lower
bounds” on the second Chern class of a vector bundle with fixed structure group. In [5], we
continue to explore the links between structure group and topology, exploring not only these
lower bounds but also upper bounds as well (see Section 6 of [5]).

Structure Group, H Topology Structure Group, H Topology

SU(N) η ≥ N · c1(B2) E8 η ≥ 5 · c1(B2)

SO(7) η ≥ 4 · c1(B2) E7 η ≥ 14
3
· c1(B2)

SO(M) η ≥ M
2
· c1(B2) E6 η ≥ 9

2
· c1(B2)

Sp(K) η ≥ 2K · c1(B2) G2 η ≥ 7
2
· c1(B2)

F4 η ≥ 7
2
· c1(B2)

Table 1. Constraints linking the topology, η = c2(V )|B2 , of an H-bundle V and its
structure group on an elliptically fibered CY threefold, πh : X3 → B2. [15, 14].

Systematic patterns such as those shown in Table 1 are of use in string phenomenology (for
example they could simplify recent algorithmic searches for heterotic Standard Models carried
such as those carried out in [20, 21, 22, 18, 17, 4]). In order to fully understand such patterns
though, it is necessary to complete the geometric “dictionary” which matches heterotic/F-theory
geometry. This includes the inclusion of G-flux in the F-theory background and an understanding
of the zero-locus of the induced Gukov-Vafa-Witten superpotential [48]. In this context the
quantization conditions on flux and the corresponding constraints in the heterotic theory become
particularly important. Indeed, as described in detail [5], in our systematic search, we find
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many geometries which appear mysterious from the point of view of these commonly assumed
integrality conditions.

In the following sections we will review the standard construction of heterotic/F-theory dual
pairs. In its most explicit form, the duality map dependences on a particular method of con-
structing Mumford poly-stable vector bundles – namely, the spectral cover construction [12]. In
recent work [5, 6] it has been observed that many apparently consistent F-theory fourfolds have
topology which appears to be inconsistent with a naive construction of spectral cover bundles.
We will explore this discrepancy further in concrete examples in the following Sections.

Out of the dataset generated in [5], we consider one of the simplest examples of such an exotic
heterotic/F-theory dual pair. In particular, we explore the so-called “integrality” condition on
the spectral data (see (2.16)) and set out to determine whether it is really correct/necessary
as frequently implemented in the literature. In addition, we lay out the necessary geometric
questions that must be addressed if this criterion is to be refined or improved. We will argue
that in many cases the surface forming the SU(2) spectral cover can have a larger Picard group
than is generically assumed and that the heterotic bundle can in fact be described by a consistent
spectral cover pair (S,LS), consisting of a 2-sheeted cover πS : S → B2 and a line bundle over
it LS over it. We begin with a brief review of heterotic/F-theory duality in 4-dimensions to set
the stage for these investigations.

2. Heterotic/F-theory Duality in 4-dimensions

In this section we will provide a rough outline of the geometric correspondence that arises in
heterotic and F-theory dual pairs. Many excellent reviews exist in the literature and we refer the
reader to classic sources such as [12, 16] and modern summaries such as [5] for a more complete
treatment. In recent work, [5] a constructive algorithm was developed to consistently build
and enumerate dual heterotic/F-theory geometries. As a tractable starting point for that work,
heterotic backgrounds were considered consisting of a smooth elliptically fibered Calabi-Yau
threefold X3 (with a single section1) over a base B2, together with two holomorphic, Mumford
poly-stable vector bundles [7]. In such cases, the dual F-theory compactification geometry can
be built beginning with a rationally fibered threefold base B3 that is a P1 bundle over B2 (the
same surface used to define the heterotic Calabi-Yau threefold). The F-theory compactification
space is then an elliptically and K3-fibered fourfold, ρf : Y4 → B3. Following [12], without loss
of generality, the non-degenerate P1-fibered base (B3) can be defined as a P1 bundle through the
projectivization of a sum of two line bundles

(2.1) B3 = P(O ⊕ L) ,

where L is a general line bundle on the base B2. Over B3, the classes R = c1(O(1)), T = c1(L),
can be defined, where O(1) is a bundle that restricts to the usual O(1) on each P1 fiber. The
P1 fibration is equipped with sections Σ− and Σ+ = Σ− + T of B3 satisfying Σ− · Σ+ = 0,
corresponding to the relation R(R+ T ) = 0 in cohomology.

Finally, then the fourfold itself can be described in Weierstrass form as

(2.2) y2 = x3 + fx+ g

where y, x are (affine) coordinates along the elliptic fiber and f ∈ H0(B3,K−43 ), g ∈ H0(B3,K−63 ).
As usual the position of singular fibers is encoded in the discriminant locus, ∆ = 4f3 + 27g2.

For this choice of an F-theory model on Y4 and a heterotic theory on X3, it is now possible
to begin by matching topology [12, 16]. Starting with the E8 × E8 heterotic theory, the bundle

1For geometries without section and some of the physics of these more general genus-1 fibrations see recent
progress in [45, 46, 47].
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decomposes as V1 ⊕ V2, and without loss of generality, the curvatures split as

(2.3)
1

30
Tr F 2

i = ηi ∧ ω0 + ζi , i = 1, 2

where ηi, ζi are (pullbacks of) 2-forms and 4-forms on B2 and ω0 is Poincaré dual to the zero-
section of the elliptic fibration. The heterotic Bianchi identity [7] gives η1 + η2 = 12c1(B2).
Thus, it is possible to parameterize a solution as

(2.4) η1,2 = 6c1(B2)± T ′ , (E8 × E8)

where T ′ is a {1, 1} form on B2. Next, returning to the F-theory geometry described above in
(2.1), the canonical class of B3 is determined by adjunction to be

(2.5) −K3 = 2Σ− −K2 + T ,

By studying the 4-dimensional effective theories of these dual heterotic/F-theory compactifica-
tions it is straightforward to determine that the defining {1, 1} forms T, T ′ in B2 are in fact
identical: T = T ′ [12, 3]. The {1, 1}-form T is referred to as the “twist” (of the P1-fibration)
and is the crucial defining data of the simplest classes of heterotic/F-theory dual pairs.

2.1. The spectral cover construction. To explicitly match the degrees of freedom – including
the geometric moduli – of a heterotic/F-theory dual pair, it is necessary to modify our description
of the slope-stable holomorphic vector bundles arising as part of the heterotic background. A
powerful tool to this end is the description of vector bundles known as the “spectral cover
construction2” [12, 24, 25, 26]. In the simplest cases it is possible to form a 1 − 1, onto map
from a suitable3 slope-stable, holomorphic, rank N vector bundle π : V → X3 to a pair (S,LS)
(referred to as the “spectral data”) where S is a smooth divisor in X3 (forming an N -fold cover
of the base B2 and referred to as the “spectral cover”) and LS is a line bundle4 over S.

The spectral cover construction has been used extensively in heterotic theories to construct
rank N bundles with structure group SU(N) or Sp(2N) that are slope-stable in some region of
Kähler moduli space. As shown in [12], the class of the divisor S is given by

(2.6) [S] = N [σ] + π∗(η)

where σ is the zero section of π : X3 → B2 and η is defined as in (2.3) and (2.4).
It is helpful to once again describe the elliptically fibered heterotic threefold in Weierstrass

form:

(2.7) Ŷ 2 = X̂2 + f(u)X̂Ẑ4 + g(u)Ẑ6

where {X̂, Ŷ , Ẑ} are coordinates on the elliptic fiber (described as a degree six hypersurface in

P123) and {u} are coordinates on the base B2. Here Ẑ = 0 defines the section σ. For SU(N)
bundles, the spectral cover, S, can be represented as the zero set of the polynomial

(2.8) s = a0Ẑ
N + a2X̂Ẑ

N−2 + a3Ŷ Ẑ
N−3 + . . .

ending in aN X̂
N
2 for N even and aN X̂

N−3
2 Ŷ for N odd [12]. The polynomials ai are sections of

line bundles over the base B2

(2.9) ai ∈ H0(B2,K
⊗i
B2
⊗O(η)) ,

In order for the spectral cover to be an actual algebraic surface in X3 (a necessary condition
for the associated vector bundle to be Mumford slope-stability) it is necessary that S be an

2More generally, the “cameral” cover construction [25, 24].
3Here suitability is rigorously defined via the concept of “regularity” [13, 41].
4More generally, a rank 1 sheaf. For interesting physical examples where this distinction is crucial see [43, 42,

44].
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effective class in H4(X3,Z). There is a further condition – that the spectral cover must be
indecomposable – that must be imposed in order for the spectral cover bundle V to be slope
stable. It can be seen that S is indecomposable if η is base-point free (i.e., has no base locus in
a Zariski-type decomposition and η −Nc1(B2) is effective (see [29] for example)).

All that remains to fully determine the holomorphic bundle V is the data of the rank 1 sheaf,
LS . As described in [12], given the projection πS : S → B2, the Grothendieck-Riemann-Roch
theorem [30] indicates that

(2.10) πS∗

(
ec1(LS)Td(S)

)
= ch(π∗(V ))Td(B2)

At the level of the first Chern class this yields

(2.11) πS∗

(
c1(LS) +

1

2
c1(S)

)
=
N

2
c1(B2) + c1(V )

At this point, the condition that c1(V ) = 0 (necessary for our choice of SU(N) bundle V → X3)
fixes c1(LS) ∈ H1,1(S)∩H2(S,Z) up to a class γ ∈ ker(πS∗). Since πS is an N -sheeted cover of
B2, πS∗πS

∗(c1(B2)) = Nc1(B2) and hence

(2.12) c1(LS) =
Nσ + η + c1(B2)

2
+ γ

with

(2.13) πS∗(γ) = 0

Here we are faced with the generally difficult problem of determining γ. We will return to
this in the next section, but for now we simply review the observations made in [12]: c1(LS)
must be an integral (1, 1)-class on S. For the cases of interest, such classes may be scarce since
it can be verified that frequently h2,0(S) 6= 0. As a result, the only obvious (1, 1)-classes on S
are those inherited from X3, namely the restriction of the zero section of the elliptic fibration,
σ, and pullbacks π∗S(β) of integral (1, 1) classes on B2.

Since πS∗σ|S = η−Nc1(B) one finds [12] that a description of γ ∈ ker(πS∗) in this “obvious”
basis is

(2.14) γ = λ(Nσ|S − π∗S(η −Nc1(B))

where λ must be either integer or half integer according to

(2.15) λ =

{
m+ 1

2 , if N is odd

m, if N is even

When N is even it is clear that this integrality condition imposes

(2.16) η = c1(B2) mod 2

where “mod 2” indicates that η and c1(B2) differ only by an even element of H2(B2,Z). This
leads to the form most commonly assumed in the literature [12]:

(2.17) c1(LS) = N

(
1

2
+ λ

)
σ +

(
1

2
− λ
)
π∗Sη +

(
1

2
+Nλ

)
π∗Sc1(B2)

Having fully specified the topology of the spectral cover, it is possible to infer the full topology
of V itself. The Chern classes of a spectral cover bundle V , specified by η and the integers n
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and λ is [12, 13, 28, 23]

c1(V ) = 0(2.18)

c2(V ) = ησ − N3 −N
24

c1(B2)2 +
N

2

(
λ2 − 1

4

)
η · (η −Nc1(B2))(2.19)

c3(V ) = 2λση · (η −Nc1(B2))(2.20)

Note that since c1(V ) = 0, Ind(V ) = ch3(V ) = 1
2c3(V ).

The spectral cover construction provides a powerful tool in explicitly matching the geometric
moduli of heterotic/F-theory dual pairs. For the details of the duality map and the necessary
stable degeneration limit, we refer the reader to the classic references [12, 16] and conclude
here with only a rough hint in Table 2 of how the degrees of freedom associated to (S,LS)
correspond to the moduli of a Calabi-Yau fourfold in F-theory. In later investigations, we will

Het/Bundle Het/Spec. Cov. F-theory

H1(End0(V )) H2,0(S) ∼ Def(S) H3,1(Ỹ4)

H1,0(S) ∼ Pic0(S) H2,1(Ỹ4)

H1,1(S) ∼ Discrete data of LS H2,2(Ỹ4,Z)

Table 2. A rough, schematic matching of the heterotic vector bundle moduli,
encoded as spectral data (S,LS), and geometric moduli of the (resolved) F-
theory fourfold in the stable degeneration limit [12, 16].

further compare the structure of an SU(2) spectral cover with its F-theory dual consisting of a
generically singular fourfold with E7 symmetry.

3. A database of Heterotic/F-theory dual pairs

In [5] a systematic algorithm was laid out for constructing heterotic/F-theory dual pairs in
which B3 (the base of the elliptically fibered fourfold geometry) is constructed as a P1 bundle
over B2. To illustrate the methods of construction, the complete dataset of Calabi-Yau fourfolds
with smooth heterotic duals and toric twofold bases were enumerated. This consisted of 4962
Calabi-Yau fourfolds, dual to heterotic threefold/bundle geometry. Of these, 947 were found to
be generically singular with an E7 symmetry (in at least one heterotic E8 factor, equivalently
F -theory coordinate patch). In the heterotic theory the E7 gauge symmetry is realized by the
commutant structure within E8, via an SU(2) vector bundle over the dual Calabi-Yau threefold.
These rank 2 vector bundles provide one of the simplest windows into the generic properties
of the bundle moduli space Mω(c(V )). Because of the fact that these E7 symmetries are un-
Higgsable – that is the fourfolds are generically singular for all values of the complex structure
moduli, the results of Table 1 indicate that for this choice of η the moduli space of stable sheaves
contains only SU(2) bundles.

Since the heterotic/F-theory duality map is most clearly understood in the case that the
heterotic bundles can be described via spectral covers, it is natural to ask whether we can
use this formalism to explicitly match the full degrees of freedom in dual E7 effective theories
described above.

As described in [5], the three conditions on the defining topological data, η, for consistent
spectral covers are

• η effective



SPECTRAL COVERS, INTEGRALITY CONDITIONS, AND HETEROTIC/F-THEORY DUALITY 7

• η base-point-free within B2

• η = c1(B2) mod 2

In [5], it was explored how these conditions compare to those arising in defining good Calabi-
Yau fourfold backgrounds for F-theory. It can be shown that the first of these conditions is true
for all K3-fibered fourfolds arising as F-theory backgrounds. Moreover, it can be shown that if
the second condition is violated for a fourfold with a generic E7 singularity, then the Calabi-Yau
manifold is too singular to admit a Kähler resolution. To that point, the geometric consistency
conditions on an F-theory fourfold and an SU(2) heterotic spectral cover bundle are identical.
However, as we will see, at the final condition, this agreement appears to end.

The condition η = c1(B2) mod 2 is required for the integrality of LS in (2.16). However, a
direct construction of the dataset in [5] shows immediately that this is violated for most fourfolds
with generic E7 symmetries – in fact, 897 of the 947! How then are we to make sense of these
dual pairs?

One obvious resolution to the puzzle could occur if none of the 897 moduli spaces of SU(2)
bundles could admit any bundle built via the spectral cover construction. While possible, this
seems unlikely from experience of how generic spectral cover bundles appear to be in known
moduli spaces [41]. Another possible answer is that the integrality condition placed on c1(LS) in
(2.16) may be artificially restrictive. This will clearly be the case whenever the Picard number
of S is greater than 1 + h1,1(B2) as assumed by [12].

One class of examples in which the Picard group of S is larger than the generic case was
outlined in [23]. There, it was pointed out that if the matter curve a2 = 0 in (4.12) (in the class
[η − 2c1(B2)]) is reducible in B2, its components may in fact pull back to distinct, new divisors
in S. That is, if the curve η̄ ∈ [η − 2c1(B2)] can be written as η̄ = D + D′ ⊂ B2, then its
pullback can be described as

(3.1) π∗S(η̄) = D +D′

and even if D,D′ are well-understood divisors in B2, the class D in S may not be a simple linear
combination of the divisors σ|S and π∗S(φ) (with φ an effective curve class in B2) assumed in
the generic formula (2.12). In [6] we explored whether or not this observation could alleviate
the disparity of the mysterious 897 E7 theories found in [5]. While a handful of the examples
found over Hirzebruch bases could be resolved by this mechanism, the majority of them remained
unexplained [6]. To really resolve this puzzle and decide whether or not these geometries consist
of valid heterotic/F-theory dual pairs, it is necessary to go further and attempt to study the
integrality condition in detail. We turn to this now in the context a simple example of an SU(2)
bundle defined over πh : X3 → P2.

4. A case study: bounding the Picard number ρ(S)

To begin, it is useful to summarize the discussion of the previous sections in the context of
an SU(2) spectral cover. To fully specify the SU(2) gauge bundle appearing in the heterotic
compactification, it is not enough to choose a spectral cover of the form given in (2.6) and (2.8),
we must also fully describe the line bundle, LS over S. A priori, we can describe the 1st Chern
class of LS via (2.12) as

(4.1) c1(LS) =
Nσ + η + c1(B2)

2
+ γ

where πS∗(γ) = 0. By the construction of S ⊂ X3 there are 1 + h1,1(B2) natural integral
(1, 1)-classes on S (consisting of the restriction of σ, the section of the elliptic fibration, and the
pullback of classes from the base). Using these as basis (and ignoring any other possibilities for
γ) the integrality condition given in (2.14) and (2.16) were obtained in [12]. However, recent
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work on the F-theory side of the duality [5] indicates that this integrality condition appears to
be violated in the vast majority of known examples (897 of 947 generic E7 models enumerated in
[5]) we must now ask whether or not it is possible to derive a more general integrality condition
for c1(LS)? To accomplish this, LS must be expressed in a complete basis. We are thus led to
the following question:

Question 4.1. For a general surface S ⊂ X3 (as described above) which is a ramified, N -sheeted
cover of B2 in the class [Nσ + πh

∗(η)] what is the rank of the Picard group of S?

As illustrated in the next Section, generically h1,0(S) = 0 [12] and S is a surface of general
type. Unfortunately, determining the Picard number of such complex surfaces is a notoriously
difficult problem (see [33, 34, 35] and references therein for some recent advances). To begin, it
is enough to consider ways to bound the Picard number ρ(S) as an important first step.

Let us briefly recall a few standard definitions regarding the Picard group (see [30, 36] for
example). To define divisors (and hence line bundles), one begins with the exponential sequence

(4.2) 0→ Z i−→ O exp−→ O∗ → 0

where the map i is an inclusion and exp is the exponential map. With vanishing Pic0(S) (i.e.
with h1,0(S) = h1(S,O) = 0 there are no continuous degrees of freedom in the Picard group),
the associated long exact sequence in cohomology takes the form

(4.3) 0→ H1(S,O∗)→ H2(S,Z)→ H2(S,O)

The image of H1(S,O∗) (modulo torsion) in H2(S,Z) parametrizes the Neron-Severi group,
NS(S), of the surface and its rank is the Picard number (i.e. ρ(S), the number of discrete
parameters which we can use to construct LS). The Picard group is given by the kernel of the
map from H2(S,Z) to H2(S,O) = H0,2. The Hodge decomposition and Lefschetz’ theorem [30]
demonstrate that it is also zero in H2,0 and hence must be a subset of H1,1:

(4.4) NS(S) ' H2(S,Z) ∩H1,1(S)

Stated simply, divisors on S are determined by how the complex subspace H1,1 of H2(S,C)
intersects the discrete subgroup H2(S,Z). For surfaces with vanishing geometric genus, i.e.,
when pg = h0,2 = 0, this is a trivial identification, but few tools exist to address the general case
with pg 6= 0. To begin, it should be observed that there is at least a bound:

(4.5) ρ(S) ≤ h1,1(S)

Since in the present work we are focused on the case of 2-sheeted spectral covers and the
mysterious E7 cases described in the previous section, here we will try to make a first step
towards answering this question. We will consider a simple example appearing in [5], with
πS : S → P2. As we will see, even here determining the full Neron-Severi group is a non-trivial
problem in algebraic geometry and for this brief work, we content ourselves with simply bounding
the Picard number, ρ(S) as described above.

4.1. A double cover of P2. In an explicit example we can explore in detail the possible form
of the spectral line bundle, LS . We consider here a 2-sheeted spectral cover, S, and one of the
simplest examples arising in the dataset of [5]. Let π : X3 → P2 be a Calabi-Yau threefold
described via the generic (smooth) Weierstrass model over P2:

(4.6) Ŷ 2 = X̂2 + f(u)X̂Ẑ4 + g(u)Ẑ6

where ui (i = 1, 2, 3) are homogeneous coordinates of P2 and

(4.7) f ∈ H0(P2,O(12H)) , g ∈ H0(P2,O(18H))
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where H is the hyperplane divisor in P2. This Weierstrass model can be realized as hypersurface
inside a toric variety. In a language more familiar to physicists, this threefold also be written
via a GLSM-style charge matrix (see [32] for example):

Ŷ X̂ Ẑ u1 u2 u3
6 3 2 1 0 0 0
0 0 0 -3 1 1 1

The hodge numbers of this threefold are well-known to be h1,1 = 2, h2,1 = 272. Furthermore, a
basis of divisors on X3 is given by D1, D2 where D2 = π∗(H) is the pullback of the hyperplane

in P2 and D1 is related to the elliptic fiber such that the class of the zero section (Ẑ = 0) is
given in this basis as σ = D1 − 3D2. The tangent bundle of X3 is described via adjunction as

(4.8) 0→ TX3 → TA|X3
→ O(6D1)|X3

→ 0

where TA denotes the tangent sheaf of the toric ambient space. This in turn is defined by an
Euler sequence [30]:

(4.9) 0→ O⊕2 → O(3D1)⊕O(2D1)⊕O(D1 − 2D2)⊕O(D2)⊕3 → TA → 0

For this geometry we specify vector bundles and a dual F-theory geometry by making a choice
of twist as in Section 2, eq.(2.4). Here we select

(4.10) T = 10H

In the heterotic theory this leads to an SU(2) bundle V → X3 with

(4.11) η = 6c1(P2)− T = 8H

In the dual F-theory geometry this corresponds to a Calabi-Yau fourfold with generic E7 singu-
larity [5]. From (2.6), the spectral cover is in the class [S] = [2σ + 8π∗(H)] which in the basis
given above corresponds to a section of the line bundle NS = O(2D1 + 2D2). Explicitly S is
given by (2.8) as the zero locus of

(4.12) a0Ẑ
2 + a2X̂ = 0

with a0 ∈ H0(P2,O(8H)) and a2 ∈ H0(P2,O(2H)). Let us now take a closer look at S. The
complex, Kähler surface is a ramified double cover of P2 and we can directly compute its three
independent Hodge numbers

(4.13) h2,0(S), h1,0(S), h1,1(S)

To explicitly determine these numbers, we can once again make use of an adjunction formula,
this time for S itself as a hypersurface inside X3:

(4.14) 0→ TS → TX3|S → O(2D1 + 2D2)|S → 0

Furthermore, to determine the cohomology of vector bundles restricted to S, the Koszul sequence
for hypersurfaces

(4.15) 0→ OX3
(−2D1 − 2D2)→ OX3

→ OS → 0

and its associated long exact sequence in cohomology plays a useful role (see [37] for a review).
In the case at hand, all the relevant cohomology groups on X3 can be determined by considering
the defining sequences (4.14), (4.8) and (4.15) and line bundle cohomology on X3. For this
geometry we employed the techniques of [32] to compute line bundle cohomology on X3 (as
implemented in [31]).



10 LARA B. ANDERSON

To begin, we note that h2,0(S) = H0(S,O(2D1 + 2D2)|S). Twisting (4.15) by O(2D1 + 2D2)
we obtain

(4.16) 0→ OX3
→ OX3

(2D1 + 2D2)→ OS(2D1 + 2D2)→ 0

The associated long exact sequence in cohomology leads to

(4.17) H0(S,O(2D1 + 2D2)|S) = H0(X3,O(2D1 + 2D2))/C

Which can be directly calculated to yield

h0(S,O(2D1 + 2D2)|S) = h0(X3,O(2D1 + 2D2))− 1 = 51− 1.

This provides the first of three independent hodge numbers (the geometric genus):

(4.18) h2,0(S) = 50

Note that this is expected via the description of S in (4.12). By inspection of that formula it
can be noted that there are 51 degrees of freedom in the coefficients a0, a2 over P2. Subtracting
1 for the overall scale, we see that this agrees with the expectation of the embedding moduli of
S ⊂ X3.

Next, note that h1,0 = h1(S,OS) (the “irregularity” of the surface). Here the long exact
sequence in cohomology associated to (4.15) yields

(4.19) h1,0(S) = 0

Finally, to determine h1,1(S), consider the dual sequence

(4.20) 0→ O(−2D1 − 2D2)|S → TX3
∨|S → TS∨ → 0

To evaluate this it should first be noted that the Koszul sequence for O(−2D1 − 2D2) produces
the following short exact sequence

(4.21) 0→ OX3(−4D1 − 4D2)→ OX3(−2D1 − 2D2)→ OS(−2D1 − 2D2)→ 0

and from the associated sequence in cohomology

h0(S,OS(−2D1 − 2D2)) = h1(S,OS(−2D1 − 2D2)) = 0(4.22)

h2(S,OS(−2D1 − 2D2)) = 219

This gives the full cohomology of the first term bundle in (4.20). But what is H∗(S, TX3
∨|S)?

The last necessary pieces can be obtained by considering (4.15) twisted by TX∨3 :

(4.23) 0→ TX3 ⊗OX3
(−2D1 − 2D2)→ TX∨3 → TX∨3 |S → 0

Here the long exact sequence in cohomology produces

h0(S, TX∨3 |S) = 0(4.24)

h1(S, TX∨3 |S) = h1(X3, TX
∨) + dim(ker(φ)) = 2 + dim(ker(φ))

h2(S, TX∨3 |S) = dim(coker(φ))

φ : H2(X,TX3 ⊗OX3(−2D1 − 2D2))→ H2(X,TX∨3 )

Since h2(X,TX3 ⊗ OX3
(−2D1 − 2D2)) = 393 and h2(X,TX∨3 ) = 272, it follows that

dim(ker(φ)) = 121 +m for some m ≥ 0, and dim(coker(φ)) = m by exactness. In fact, for
generic choices of spectral cover in (4.12), we expect the induced map φ to be surjective and
h1(S, TX∨3 |S) = 123.
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With this in hand, we are now in a position to put the pieces together to determineH1(S, TS∨).
Using (4.22) and (4.24), and returning to the long exact sequence in cohomology associated to
(4.20) gives the following long exact sequence:

(4.25) 0→ H2(S, TX∨3 |S)→ H1,1(S)→ H2(S,OS(−2D1 − 2D2))→ H2(S, TX∨3 |S)→ 0

It is helpful to note that h2(S, TS∨) = h1,0 = 0, and the alternating sum of the dimensions in
(4.25) leads at last to

(4.26) h1,1(S) = (123 +m) + (219−m) = 342

Thus, in summary we have determined that S is a complex surface with h1,0 = 0, h2,0 = 50
and h1,1 = 342. It follows that the Euler number of S is e = 2 + 2pg + h1,1 − 4h1,0 = 444
(with e = c2(TS)) and the holomorphic Euler characteristic is χ = 51 (leading to K2

S = 168).
According to Kodaira’s classification, S is a surface of general type (Kodaira dimension 2).

Taking a step back, one can now ask what we have learned from the this example? The first
observation is that in this case

(4.27) 2 ≤ ρ(S) ≤ 342

where the lower bound arises from concrete construction of divisors [12] and the upper bound is
obtained from h1,1 as described in the previous Subsection. It should be noted here that there
are in principle hugely more parameters in the spectral data than are commonly assumed in
the physics literature. While the full computation of ρ(S) is beyond the scope of the present
work, tools exist to analyze the intersection structure of curves in S and can be used to further
constrain ρ(S) in many cases. We hope to explore this in future work. For the moment, in the
example above, we expect that H2(S,Z)∩H1,1(S) will generically be large. Indeed, despite the
fact that pg = 50, h1,1 is sufficiently big that contrary to the expectations of [12], it may be that
the Picard number ρ(S) is considerably above its minimum value of 2. In this case, there are
certainly more general choices available for the line bundle, LS , and the integrality condition in
(2.16) is manifestly incorrect and too restrictive.

To proceed further with this explicit example, it might be possible to consider the branch locus
of the two-sheeted cover in detail. Such an analysis was undertaken in [50] for certain double
covers of P2. There for special choices of topology, the resolution of singularities in the branch
curve led to concrete descriptions of the Neron-Severi group of the double cover (which was in
fact maximal in those cases). It would be interesting in the future to explore the application of
these techniques to heterotic spectral covers.

Finally it should be noted that as S is varied within the 50-parameter family given in (4.12),
the Picard number can surely change. While difficult to compute, these special, higher codimen-
sional “Noether-Lefschetz Loci” [38, 39] may be especially significant for the underlying physics,
determining for example, where the complex structure moduli of the dual F-theory geometry,
Y4 are stabilized by G-flux [40].

To conclude, the example above was provided as a simple illustration of the fact that the
integrality condition for spectral cover bundles given in (2.16) may be too restrictive in many
cases. Furthermore, it serves to highlight the interesting and frequently difficult geometric
questions that arise in fully determining the geometry of dual heterotic/F-theory pairs. As a
final comment on the mysterious 897 E7 examples highlighted in [5], the arguments presented
above indicate to us that in fact there is more to understand about integrality conditions in
spectral covers and that this may provide a resolution to the seeming discrepancy in all the
exotic heterotic/F-theory pairs. We hope in future work to build upon the simple examples
considered here and to fully compute the Picard group of S systematically in the full dataset.



12 LARA B. ANDERSON

By addressing these remaining geometric puzzles we hope it will be possible to complete the
program laid out in [5] and fully enumerate all consistent heterotic/F-theory dual pairs.
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AN INDEX FORMULA FOR SUPERSYMMETRIC QUANTUM

MECHANICS
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Abstract. We derive a localization formula for the refined index of gauged quantum mechan-
ics with four supercharges. Our answer takes the form of a residue integral on the complexified

Cartan subalgebra of the gauge group. The formula captures the dependence of the index on

Fayet-Iliopoulos parameters and the presence of a generic superpotential. The residue formula
provides an efficient method for computing cohomology of quiver moduli spaces. Our result

has broad applications to the counting of BPS states in four-dimensional N = 2 systems.
In that context, the wall-crossing phenomenon appears as discontinuities in the value of the

residue integral as the integration contour is varied. We present several examples illustrating

the various aspects of the index formula.

1. Introduction

Supersymmetric quantum mechanics has a wide variety of applications in mathematical
physics. It arises universally as the zero momentum sector of supersymmetric field theories
and governs the worldline dynamics of supersymmetric particles. A basic feature of any such
system is its set of supersymmetric ground states. When these states are counted with signs
according to their fermion number they form the Witten index [1], perhaps the most primitive
example of a quantity protected by supersymmetry.

Motivated by these general considerations, in this work we determine a general formula for
the index of N = 4 quantum mechanics. We focus on the class of quantum mechanics models
that have Lagrangians which arise from the dimensional reduction of four-dimensional super-
symmetric gauge theories. In this context the counting of vacua may be further sharpened using
R-charges. The result is a refined index

(1.1) Ω ≡ TrH

(
(−1)F exp(−βH)yR+2J3

)
.

Our main result is an integral expression for Ω derived by supersymmetric localization [2, 3].
Pragmatically speaking, our derivation of the index formula in §2 follows closely a similar

calculation for the elliptic genus of two-dimensional systems with N = (2, 2) supersymmetry.
Consequently, our final answer for the index Ω takes a similar form to that uncovered in [4–6]:
the index Ω can be expressed as a residue integral of a meromorphic form on a product of
complex annuli (C∗)r.

The index Ω depends in a subtle way on two pieces of data entering the quantum-mechanical
model.

• In gauge theories with abelian factors, the Lagrangian may contain Fayet-Iliopoulos
parameters ζ. The index Ω depends in a piecewise constant fashion on such FI param-
eters. Across codimension one walls in ζ-space, supersymmetric vacua may be created
or destroyed and the index Ω jumps. In our context, the FI parameters enter the index
through a specification of integration contour. The jumping of the index is mapped to
the change of a residue integral under large variations in the contour.

http://dx.doi.org/10.5427/jsing.2016.15b
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• In theories which admit non-trivial superpotentials, the refined index Ω depends on the
superpotential through the R-charge assignments that the latter implies for chiral fields.
We find that the residue formula accurately encodes this dependence for the case of
generic superpotential.

We highlight these key features of the index in our study of examples in §4.
In §2.3 we compare the residue formula to alternative computational approaches to the index.

The most straightforward technique involves two steps. First, one calculates the classical moduli
space of the supersymmetric quantum mechanics. Then, one finds the desired ground state
wavefunctions by quantizing the moduli space, i.e. computing its cohomology. Our residue
formula bypasses the intermediate step of the classical moduli space and computes directly the
refined index Ω which may be interpreted as a generating functional of the cohomology. In this
way our index formula is similar in spirit to the Reineke formula [7] for the cohomology of moduli
spaces of quiver representations, and to its cousin the MPS formula [8] obtained by geometric
quantization of the Coulomb branch.

One of the key physical applications of the index formula occurs in the study of BPS states
in four-dimensional systems with N = 2 supersymmetry. Often, the BPS spectrum may be
described via the ground states of quiver quantum mechanics. We briefly review this connection
in §3. The class of physical systems to which this paradigm applies is broad and includes black
holes in supergravity [9–12], dyons in four-dimensional gauge theories [13–15], and even more
exotic systems decorated by external defects [16,17].

In the context of BPS states, our result for the quantum mechanical index Ω can be interpreted
as an explicit formula for the protected spin character of BPS states with an electromagnetic
charge determined by the ranks of the quiver gauge groups. The jumps in Ω as the FI parameters
are varied are then mapped to the ubiquitous wall-crossing phenomenon first uncovered in [18–
20]. The fact that wall-crossing may be encoded by contour deformation of a residue integral is
a generalization of similar ideas in systems with N = 4 supersymmetry [21].

Wall-crossing has recently been extensively studied [22–27] due to the existence of universal
formulas [28–30] encoding the discontinuities in the BPS spectrum. In the simple examples that
we have investigated, the discontinuities in the residue formula for Ω agree with these universal
formulas. It would be interesting to understand the relation more concretely and explain why
our residue prescriptions obey wall-crossing formulas. We leave this, as well as applications of
the index formula to interesting four-dimensional N = 2 systems, as open problems for future
work.

Note added : While this work was being completed the preprint [31] appeared which develops
the same formula for the refined index in the context of generalized ADHM quantum mechan-
ics. Localization formulas for the index of supersymmetric quantum mechanics have also been
independently obtained in [32,33]. See additionally [34] for related work.

2. The Index of N = 4 Quantum Mechanics

In this section we present the residue formula for the index of N = 4 quantum mechanics. Our
derivation follows straightforwardly from the dimensional reduction of the elliptic genus formulas
of [5, 6]. Our discussion is brief and we refer to those works for a more complete treatment.

2.1. Gauged Quantum Mechanics and the Refined Index. The class of models we con-
sider are quantum-mechanical gauge theories with four real supercharges. We assume throughout
that the system is gapped so that there are a finite number of ground states which are separated
in energy from the excited states. Our aim is to count (with appropriate signs), the number of
ground states in such a model.
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In addition to possible flavor symmetries, the systems in question have R-symmetry group
su(2)J × u(1)R. There are two classes of multiplets:

• Vector multiplets associated to gauge groups. The bosonic fields consist of a one-

component gauge field A and a triplet of adjoint scalars ~X. The gauge field is uncharged
under the R-symmetry group, while the adjoint scalars transform in a 3 of su(2)J and
are neutral under u(1)R.

• Chiral multiplets associated to representations of the gauge groups. The bosonic fields
consist of a complex scalar Φ transforming as a singlet under su(2)J and with u(1)R
charge RΦ.

In addition to the spectrum of vector and chiral multiplets the Lagrangian for our quantum
mechanics depends on two additional pieces of data.

• FI parameters. Let the total gauge symmetry algebra for the quantum mechanics be g.
We decompose g = g̃ + gu(1), where g̃ is semi-simple and gu(1) =

⊕
i u(1)i is the abelian

part of the gauge algebra. We view the FI parameter ζ as an element of the dual space
g∗u(1).

• Superpotentials. If the model admits holomorphic gauge invariant monomials in the
chiral fields then we may activate them in the superpotential W. Consider a monomial
in W and let di denote the degree in this monomial of the chiral field Φi. The presence
of such a term restricts the R-charges of the chirals as

(2.1) R(W) = 2 =
∑
i

diRΦi .

The above constraint must be true for each monomial term in the superpotential and
restricts W to be quasi-homogeneous.

In our analysis, the superpotential will enter only through the above constraints on
the u(1)R charges of chiral fields. Thus our results are restricted to the case of quasi-
homogeneous superpotential. Aside from the constraint (2.1), the u(1)R charges of chiral
fields may be chosen arbitrarily.

We make two additional assumptions about W.
– We assume that all lowest degree terms consistent with quasi-homogeneity are in

fact present in W.1

– We assume that W is a generic polynomial of multi-degree consistent with (2.1)
and the previous assumption.

As we illustrate in the examples of §4.3, both of these assumptions are necessary for the
applicability of the residue formula of §2.2.2

Given a fixed gauged quantum mechanics, our object of interest is the refined Witten index
defined as

(2.2) Ω(y, ζ) ≡ TrH

(
(−1)F exp(−βH)yR+2J3

)
.

As usual, when the system is gapped the index receives contributions only from ground states
and hence is independent of β. In general, the index depends on both the FI parameter ζ and
the R-charges of chiral fields.3 The charge R+ 2J3 commutes with the supercharge used to form

1Thus, if a quadratic superpotential is possible we assume that it is present. If no quadratic superpotential is

possible and a cubic potential is possible we assume the later is present. And so on.
2Indeed without these additional assumptions, the spectrum will generally be non-discrete and the index as
studied here is incomplete.
3We suppress the dependence on R-charges in the notation.
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the index and hence we may further grade the ground states to obtain a non-trivial function of
y. It is convenient to define z as

y = eiπz.(2.3)

In the following we use z and y interchangeably.

2.2. The Residue Formula for the Index. The refined index Ω(y, ζ) can be computed by
a path integral on a circle with periodic boundary conditions for fermions, and background R-
symmetry gauge fields. A formula Ω(y, ζ) can be directly obtained by taking the dimensional
reduction limit of the various ingredients of the localized elliptic genus formula of [5, 6] (see §3
of [6] for the derivation). Our final answer takes the form of a residue

Ω(y, ζ) =
1

|W |
∑

u∗∈M∗
sing

JK-Res
u=u∗

(Q(u∗), ζ) Z1−loop(z, u),(2.4)

where |W | is the order of the Weyl group and ζ is the FI parameter.
In this section we explain the elements of this formula. In the remainder of the paper we

discuss its various applications.
Definition of the Space M.

The u variable that appears in (2.4) is valued in a space M of bosonic zero modes of the vector
multiplets. We restrict the gauge field and scalars to be valued in the Cartan subalgebra h of
the gauge algebra g. In the triplet of scalars in the vector multiplet, there is one real component
which is neutral under the charge R+ 2J3 and we denote this field by X. The field X may have
zero modes, while for generic y, the remaining members of the triplet do not have zero modes.

The definition of the variable u is then

u ≡ A(0) − iX(0),(2.5)

where A(0) and X(0) are the zero modes for the one-dimensional gauge field and the scalar X.
Since A is a gauge field, large gauge transformations make the real part of u periodic. Thus the
space M of zero modes is a product of annuli

M = hC/Q
∨ ∼= (C∗)r(2.6)

where r is the total rank of the gauge groups and Q∨ is the coroot lattice.
Definition of the Meromorphic Form Z1−loop(z, u).

The quantity Z1−loop(z, u) is a meromorphic top form on the space M. It is defined by
computing the one-loop determinant of the massive modes in the path integral on the circle. This
one-loop determinant receives contributions from the vector multiplets and the chiral multiplets
as

Z1−loop =
∏
V

ZV,G
∏
Φ

ZΦ,R.(2.7)

The quantities ZV,G and ZΦ,R can be obtained from direct dimensional reduction of (2.12) and
(2.8) in [5], respectively.

The contribution of a vector multiplet V with gauge group G to the one-loop determinant
Z1−loop is

ZV,G(z, u) =

[
− π

sin(πz)

]rankG ∏
α∈G

sin[πα(u)]

sin[πα(u)− πz]

rankG∏
a=1

dua.(2.8)

where the product of α is over the roots of G.
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The contribution of a chiral multiplet Φ in the representation R with u(1)R charge R is

ZΦ,R(z, u) =
∏
ρ∈R

sin
[
πρ(u) + π

(
R
2 − 1

)
z
]

sin
[
πρ(u) + πR2 z

] ,(2.9)

where the product of ρ is over the weights of R.
Definition of the Locus M∗sing.

Next we define the locus M∗sing ⊂M. The form Z1−loop has poles along hyperplanes Hi in M
where modes, which are massive at generic u, become massless. Specifically these hyperplanes
are

vector : Hi =
{
− z +Qi(u) = 0 mod Z

}
Qi = α,(2.10)

chiral : Hi =

{
Ri
2
z +Qi(u) = 0 mod Z

}
Qi = ρ.(2.11)

And the charge covectors Qi ∈ h∗ can be either the roots α of the gauge algebra or weights ρ of
the matter representations.

We define

M∗sing =
{
u∗ ∈M

∣∣∣ at least r linearly independent Hi’s meet at u∗

}
.(2.12)

M∗sing is the collection of points where the residue (2.4) is evaluated.
Definition of the Residue.

The Jeffrey-Kirwan residue operation JK-Res
u=u∗

(Q(u∗), η) is defined abstractly in [35] and stud-

ied constructively in [36].
For notational simplicity, we shift the point where we evaluate the residue to be at u∗ = 0.

Q(u∗) is a collection of charge covectors Qi ∈ h∗ with i = 1, · · · , n for some n. The collection
Q(u∗) defines n hyperplanes meeting at u = u∗:

Hi =
{
u ∈ Cr

∣∣∣Qi(u) = 0
}
.(2.13)

In addition, the Jeffrey-Kirwan residue operation depends on a choice of covector η ∈ h∗.
If all the charge covectors in Q(u∗) are contained in a half-space of h∗, the hyperplane ar-

rangement is said to be projective. For a projective arrangement, the Jeffrey-Kirwan residue is
the linear functional defined by the conditions

JK-Res
u=u∗

(Q(u∗), η)
du1

Qj1(u)
∧ · · · ∧ dur

Qjr (u)
=

{
det |(Qj1 · · ·Qjr )|−1 if η ∈ Cone(Qj1 · · ·Qjr ),
0 otherwise,

(2.14)

where Cone(Qj1 · · ·Qjr ) indicates the positive linear span of the covectors Qj1 , · · · , Qjr . In
particular, if n = r, the hyperplane arrangement is projective. For simplicity in this paper we
study examples with n = r.
Definition of the Contour.

Finally, we must specify the choice of the covector η ∈ h∗ in the definition of the Jeffrey-
Kirwan residue operation (2.14). This quantity is fixed by the FI parameter ζ as

η = ζ ∈ g∗u(1) ⊂ h∗.(2.15)
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This identification may be justified by demanding that the gaussian path integral over the zero
mode of the auxiliary D field in the vector multiplet passes through the point of stationary phase
fixed by the FI parameter ζ.

Equation (2.15) is a key aspect of the residue formula (2.4). Because of the discontinuity in
the Jeffrey-Kirwan residue operation (2.14) as ζ varies, the contour prescription (2.15) enables
the index Ω(y, ζ) to depend in a piecewise constant fashion on the FI parameter.

2.3. Cohomology of Higgs Branch Moduli Spaces. It is fruitful to compare the residue
formula for the refined index to other methods of calculating the ground states.

The most direct approach is to calculate the moduli space of classical vacua and then quantize
this moduli space to determine wavefunctions. As usual in supersymmetric gauge theory, the
classical moduli space is typically separated into multiple branches: Higgs branches where matter
fields are non-vanishing, and Coulomb branches where scalars from the vector multiplets are non-
vanishing. We isolate one of these branches and quantize. We focus on the Higgs branch as it is
typically better behaved. For Coulomb branch approaches see [8, 11,27].

The classical Higgs branchM is simply the set of solutions to the F and D flatness conditions
modulo the action of the gauge group.

Explicitly, let G denote the total gauge group of the gauged quantum mechanics. And let Φν
indicated the chiral fields transforming in representations Rν of G. We define a set in the vector
space ⊕νRν as the set of Φν obeying the following equations.

• For each chiral field Φν , the superpotential is stationary

(2.16)
∂W
∂Φν

= 0.

• The gauge groupG has a number of abelian factors, each with an associated FI parameter
ζi. Let qiν denote the charge of Φν under the i-th U(1). Then for each abelian factor we
demand

(2.17)
∑
ν

qiν |Φν |2 = ζi.

The Higgs branch moduli space M is the set of solutions to (2.16)-(2.17) quotiented by the
action of the group G.

In the most widely studied class of examples, the gauge group G is a product of unitary groups
and the representations Rν are chosen to be bifundamentals. In that caseM is the moduli space
of stable quiver representations [37].

In favorable circumstances, the moduli space M is compact and we may now extract the
ground state spectrum from its cohomology. To form the refined index we must then assemble
this cohomology into a generating function. Supersymmetry implies thatM is Kähler and hence
its cohomology may be bigraded into Dolbeault cohomology groups. We denote by hp,q (M) the
resulting Hodge numbers, and let d denote the complex dimension ofM. Then the refined index
is

(2.18) Ω(y, ζ) =

d∑
p,q=0

hp,q (M) (−1)p−qy2p−d.

Agreement between (2.18) and the residue formula (2.4) yields a direct way of extracting
information about the cohomology of the moduli spaceM which is similar in spirit to [7]. Note
however that the residue formula (2.4) is applicable only in the case of discrete spectrum which
in the context of quiver representations implies that ranks of the gauge groups must be coprime.
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3. Relation to BPS Particles of 4d N = 2 Systems

In this section, we briefly review the connection between supersymmetric gauged quantum
mechanics and BPS states of four-dimensional N = 2 systems. See [14] for a systematic intro-
duction and examples. This connection motivates the analysis of the refined index Ω(y, ζ) in a
broad class of quantum-mechanical models.

Fix a four-dimensional N = 2 system and a generic vacuum v on its Coulomb branch. At low
energies, the physics is described by an abelian gauge theory with electromagnetic charge lattice
Γ. The one-particle Hilbert space of the theory supports BPS states carrying charges γ ∈ Γ.
For each occupied charge the Hilbert space in that sector is a representation of su(2)J × su(2)I ,
where su(2)J is group of spatial rotations and su(2)I is the R-symmetry of the four-dimensional
theory. This representation takes the general form

(3.1)

[
(2,1)⊕ (1,2)

]
⊗Hγ .

We count BPS states by forming a protected spin character

(3.2) Ω(γ, y, v)4d = TrHγy
2J3(−y)2I3 .

Ω(γ, y, v)4d receives contributions only from BPS states, and is stable under small variations in
the vacuum v. Under large changes in v, Ω(γ, y, v)4d may jump according to the wall-crossing
formula [28–30].

Next, let us describe an approach to the calculation of the protected spin characters Ω(γ, y, v)4d

utilizing supersymmetric quantum mechanics. The basic physical paradigm of this method is
to isolate a collection of elementary BPS states, and then to view the remaining BPS particles
as non-relativistic composites of the elementary states. Since the worldvolume theory of a BPS
particle preserves four supercharges, the interactions governing the formation of non-relativistic
bound states are controlled by N = 4 quantum mechanics. Frequently this quantum mechanics
is of the gauge theory type investigated in the previous section.

In a large class of models the relevant N = 4 quantum mechanics is a quiver model with
unitary gauge groups and bifundamental matter. In broad strokes, the dictionary between the
two systems is as follows. Each elementary constituent BPS state is represented by a node of
the quiver giving a quantum mechanical gauge group. The interactions between these nodes are
encoded by the Dirac inner product of their electromagnetic charges and specify the number of
arrows in the quiver. In the quantum mechanics model, these are the chiral multiplets. Finally,
the central charges of the elementary BPS states map to the FI parameters ζ.4

The main difficulty in applying the quantum-mechanical approach outlined above is to deter-
mine an explicit basis of elementary BPS states. However in many four-dimensional theories,
including for instance arbitrary gauge theories coupled to fundamental matter [14, 15], such a
basis may be identified and the BPS spectrum may be investigated. When this is so we obtain a
direct relationship between the four-dimensional protected spin character and the refined index
of the associated gauged quantum mechanics:5

(3.3) Ω(γ, y, v)4d = Ω(y, ζ),

where in the above we have the following explicit identification of parameters.

4If a superpotential is permitted by the topology of the quiver, then it must also be specified. See e.g. [38] for a

class of four-dimensional gauge theories where the relevant quiver superpotential may be fixed.
5The identification (3.3) suggests that in models for which the correspondence holds, all the ground states of the

quantum mechanics are bosonic with vanishing u(1)R charge, and that the su(2)I charge acts trivially on the
spectrum of BPS particles as in the “no-exotics” conjecture of [39].
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• The i-th quiver gauge group is U(ni) where the ni are determined by expanding the
charge γ as a sum of the charges of the elementary BPS states

(3.4) γ =
∑
i

niγi.

Since the matter content from the chiral multiplets consists of bifundamentals, the
overall U(1) ⊂

∏
i U(ni) decouples and is treated as non-dynamical. Alternatively, one

may freely decouple any other convenient U(1) without effecting the refined index.
• The FI parameters are specified by the choice of vacuum v. Each elementary BPS state

has a central charge Zi(v) which depends explicitly on v. The central charge of γ is then
determined from (3.4) by linearity

(3.5) Z(γ, v) =
∑
i

niZi(v) ≡ |Z(γ, v)| exp(iα), α ∈ R.

The FI parameter at the i-th node is then given by

(3.6) ζi = =
(

exp(−iα)niZi(v)

)
.

Observe that by construction, the sum of the FI parameters is zero. This enables the
decoupling of the overall U(1) described above.

One interesting consequence of the identification (3.3) and the associated dictionary, is that
the four-dimensional wall-crossing phenomenon maps to the discontinuity in the refined index
Ω(y, ζ) under large changes in ζ. Because ζ enters our residue formula (2.4) as a definition of the
contour, it follows that the four-dimensional wall-crossing formulas of [28–30] must be encoded in
the variations of the residue integral as the contour is deformed. This is similar the perspective
on wall-crossing developed in systems with N = 4 supersymmetry in [21].

3.1. Toy Models. In this section we describe simple examples of the relation between BPS
particles and quiver quantum mechanics. We study these models using the residue formula in
§4.

3.1.1. Dyon Chains. A basic example illustrating the connection between four-dimensional BPS
particles and ground states of supersymmetric gauged quantum mechanics are dyon chains.
These have been studied from the semiclassical soliton perspective in [40] and from the quiver
quantum mechanics perspective in [11].

The relevant four-dimensional system is SU(M) super-Yang-Mills. One is interested in inves-
tigating the bound states of a collection of n + 1 ≤ M distinct dyons. We choose the electric
and magnetic charges of the dyons as

(3.7) (ei,mi) = (qiαi, αi),

where αi denote simple roots of the SU(M) algebra normalized such that

(3.8) αi · αj =


2 |i− j| = 0,

−1 |i− j| = 1,

0 |i− j| > 1,

and qi are integers satisfying

(3.9) qn+1 > qn > · · · > q3 > q2 > q1.
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If we denote by ki the quantity qi+1 − qi, then the symplectic products of the dyon charges
are

(3.10) (ei,mi) · (ej ,mj) =


+ki j = i+ 1,

−ki−1 j = i− 1,

0 j 6= i± 1.

The quiver governing the bound states of these dyons is then a linear chain illustrated in Figure
1.

1 1 1 · · · 1 1
k1 k2 k3 kn−1 kn

// // // // //

Figure 1. The general abelian linear quiver which governs the bounds states of
the specified dyons. The integers at the nodes denote the ranks of the associated
gauge groups, while ki are the number of bifundamentals (arrows).

The spectrum of bound states depends on the FI parameters ζi at the i-th node. When these
are such that

(3.11) ζn+1 > 0, ζn+1 + ζn > 0, · · · ζn+1 + ζn + · · ·+ ζ2 > 0,

there is a non-trivial classical Higgs branch, M, of supersymmetric vacua in the quiver. By
explicitly solving the F and D term equations of §2.3, one finds that the Higgs branch is a
product of projective spaces

(3.12) M =

n∏
i=1

Pki−1

quantizing this space as in (2.18) we find that the index is

(3.13) Ω(y, ζ) =

n∏
i=1

y−ki+1
ki−1∑
j=0

y2j

 ,

which reproduces the answers obtained by quantizing monopole moduli spaces [40].
We obtain this result using the residue formula (2.4) in §4.1.

3.1.2. Electron Halos. Another class of interesting examples arises from studying the bound
states of m identical electrons and a single monopole of magnetic charge k. In this case, the
relevant quiver is shown in Figure 2.

1 m
k

//

Figure 2. The quiver relevant for studying the bound states of a monopole
and a cloud of electrons. The integers at the nodes denote the ranks of the
associated gauge groups, while k is the number of bifundamentals (arrows).

Let ζ indicate the FI parameter at the second node and assume ζ > 0. By solving the
equations of §2.3, we determine that the moduli space is the Grassmannian Gr(m, k) of complex
m-planes in a k-dimensional space.6 Extracting the refined index from cohomology as in (2.18),

6The moduli space is empty if m > k.
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we find that

(3.14) Ω(y, ζ) =
ym(m−k)

∏k
i=1(1− y2i)∏m

i=1(1− y2i)
∏k−m
i=1 (1− y2i)

.

We reproduce this result using the residue formula (2.4) in §4.2.

4. Examples

In this section we explore various examples of the residue formula (2.4) for the refined index
Ω(y, ζ). The cases we consider illustrate several interesting features of the index: wall-crossing,
non-Abelian gauge groups, and superpotentials.

To achieve maximal overlap with the applications discussed in §3, we consider quantum-
mechanical quiver gauge theories with unitary gauge groups. In such examples a single U(1)
factor of the gauge group decouples. One may choose this U(1) to simplify the resulting quantum
mechanics. Correspondingly, we demand that the sum of the FI parameters vanishes as in (3.6).

4.1. Linear Abelian Quivers: Dyon Chains. We begin with the example of linear abelian
quivers. As described in §3.1.1, these quivers compute the bound states of chains of distinct
dyons. We aim to reproduce the result (3.13) using the residue formula (2.4).

1 1
k

//

(a)

1
k

//

(b)

1
k
//

(c)

Figure 3. The two-node linear quiver. The integers at the nodes denote the
ranks of the associated gauge groups, while k is the number of bifundamentals
(arrows). In (b) and (c), the two ways of decoupling a U(1).

4.1.1. Two Nodes. We start with the abelian two-node quiver with k bifundamental chiral mul-
tiplets between the two nodes. We can decouple a U(1) in two different ways as shown in Figure
3a. We decouple the first node as in Figure 3b. The other alternative clearly yields the same
answer.

In this case the one-loop determinant is

Z1−loop(z, u) = − π

sin(πz)

[
sin(πu− πz)

sin(πu)

]k
du.(4.1)

On M, there is a hyperplane H (in this case, point) where Z1−loop has a pole:

H : u = 0.(4.2)

The corresponding charge covector Q is just 1. Let ζ2 be the FI parameter of the second node.
The Jeffrey-Kirwan residue operation satisfies

JK-Res
u=0

({1}, ζ2)
du

u
=

{
1, if ζ2 > 0,

0, if ζ2 < 0.
(4.3)
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In the ζ2 > 0 case, we can therefore write the Jeffrey-Kirwan residue as the usual contour integral
around H = {u = 0 }:

JK-Res
u=0

({1}, ζ2)
du

u
=

1

2πi

∮
u=0

du

u
, if ζ2 > 0.(4.4)

The index is then given by

Ω(y, ζ2) = − π

sin(πz)
JK-Res
u=0

({1}, ζ2)

[
sin(πu− πz)

sin(πu)

]k
du

=

− π
sin(πz)

∮
u=0

du
2πi

[
sin(πu−πz)

sin(πu)

]k
if ζ2 > 0,

0 if ζ2 < 0.

=

{
y−k+1

∑k−1
j=0 y

2j if ζ2 > 0,

0 if ζ2 < 0.
(4.5)

1 1 1
k1 k2

// //

(a)

1 1
k1 k2

// //

(b)

1 + 1
k1 k2
// //

(c)

1 1
k1 k2

// //

(d)

Figure 4. The three-node linear quiver. The integers at the nodes denote the
ranks of the associated gauge groups, while ki are the number of bifundamentals
(arrows). In (b), (c), and (d), the three ways of decoupling a U(1). In (b), the
quiver has become disconnected and the model factorizes.

4.1.2. Three Nodes. Let us now move on to the three-node linear quiver with ki bifundamental
chiral multiplets between the i-th and the (i + 1)-th nodes. There are three distinct ways to
decouple a U(1) from the quiver as shown in Figure 4a. For purposes of illustration we will show
explicitly that all three choices yield the same answer.

The easiest choice is to decouple the second node as in Figure 4c, so that the quiver becomes
two decoupled one-node quivers. The index is immediately given by the product of the answers
(4.5) for the one-node quivers:

Ω(y, ζ) =

{(
y−k1+1

∑k1−1
i=0 y2i

)(
y−k2+1

∑k2−1
j=0 y2j

)
, if ζ1 < 0, ζ3 > 0,

0, otherwise.
(4.6)
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Alternatively, we can decouple the first node as in Figure 4b. The one-loop determinant is

Z1−loop(z, u) =

[
sin(πu2 − πz)

sin(πu2)

]k1 [ sin(−πu2 + πu3 − πz)
sin(−πu2 + πu3)

]k2
du2 ∧ du3.(4.7)

There are two hyperplanes on the complex two-dimensional space M where Z1−loop has poles:

H1 : u2 = 0,

H2 : −u2 + u3 = 0.
(4.8)

The corresponding charge covectors Qi that define Hi in M are

Q1 = (1, 0),

Q2 = (−1, 1),
(4.9)

as shown in Figure 5. The intersection H1 ∩H2 = {u = 0} is the point u∗ at which we evaluate
the residue. Since this theory is abelian, g∗u(1) = h∗ and we can take η = ζ to be on any point

on the h∗ plane in Figure 5.
From the definition of the Jeffrey-Kirwan residue operation, we have

JK-Res
u=0

({Q1, Q2}, ζ)
du2 ∧ du3

u2(−u2 + u3)
=

{
1, if ζ ∈ Cone(Q1, Q2),

0, otherwise.
(4.10)

If ζ ∈ Cone(Q1, Q2), we can then write the Jeffrey-Kirwan residue as

JK-Res
u=0

({Q1, Q2}, ζ)
du2 ∧ du3

u2(−u2 + u3)
=

(
1

2πi

)2 ∮
u2=0

∮
u3=u2

du2du3

u2(−u2 + u3)
.(4.11)

The index in the chamber ζ ∈ Cone(Q1, Q2) is

Ω(y, ζ) =

[
− π

sin(πz)

]2 ∮
u2=0

du2

2πi

∮
u3=u2

du3

2πi

[
sin(πu2 − πz)

sin(πu2)

]k1 [ sin(−πu2 + πu3 − πz)
sin(−πu2 + πu3)

]k2
=

(
y−k1+1

k1−1∑
i=0

y2i

)y−k2+1
k2−1∑
j=0

y2j

 .(4.12)

The condition ζ ∈ Cone(Q1, Q2) for nonzero index in components is

ζ3 > 0, ζ2 + ζ3 > 0,(4.13)

which is the same as the answer obtained by decoupling the second node in (4.6). Note that we
have used ζ1 + ζ2 + ζ3 = 0. Similarly one can show that the index obtained by decoupling the
U(1) as in Figure 4d is the same as above.
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Q2

Q1

η2

η3

Figure 5. Three-node quiver with the first node decoupled. The figure shows
the charge covectors Qi in h∗ = (u(1)2)∗ ∼= R2.

1 1 1 · · · 1 1
k1 k2 k3 kn−1 kn

// // // // //

(a)

1 + 1 · · · 1 1
k1 k2 k3 kn−1 kn
// // // // //

(b)

1 +
k1

1 +
k2

1 + · · ·+
k3

1 +
kn−1

1
kn

// // // // //

(c)

Figure 6. The general abelian linear quiver. The integers at the nodes denote
the ranks of the associated gauge groups, while ki are the number of bifunda-
mentals (arrows). In (b), a convenient choice of decoupled U(1). In (c), the
model is reduced to a product.

4.1.3. General Linear Abelian Quiver. Finally, we consider the general abelian linear quiver with
n+ 1 nodes and ki bifundamental chiral multiplets between the i-th and the (i+ 1)-th nodes.

In the abelian three-node quiver case (n = 2), we have shown that Ω(y, ζ) is the product of
the index of the one-node quiver with k1 chiral multiplets, and the index for the one-node quiver
with k2 chiral multiplets.

Now assume that for the n-node quiver Ω(y, ζ) is similarly given by the product of that for
n− 1 one-node quivers with ki chiral multiplets for the i-th decoupled node. Then for the linear
quiver with n+ 1 nodes, we can decouple the second node as shown in Figure 6b and the quiver
becomes the product of a one-node quiver with a n-node quiver. Inductively, we have shown
that the index for the (n+ 1)-node quiver is the same as the product of indices for n one-node
quivers as shown in Figure 6c.
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Thus, the index of the general abelian linear quiver is:

Ω(y, ζ) =

n∏
i=1

y−ki+1
ki−1∑
j=0

y2j

 ,(4.14)

if the FI parameters ζi satisfy the following conditions

(4.15) ζn+1 > 0, ζn+1 + ζn > 0, · · · ζn+1 + ζn + · · ·+ ζ2 > 0,

as can be easily seen from Figure 6b.
This is exactly the expected result (3.13).

4.2. Non-Abelian Phenomena: Electron Halos. In this section we consider an example
with non-abelian quiver gauge group. As described in §3.1.2 this example computes the bound
states of a single monopole and m identical electrons. Our goal is to reproduce the result (3.14)
using the residue formula (2.4).

1 m
k

//

(a)

m
k

//

(b)

Figure 7. The two-node linear quiver with a nonabelian gauge group. The
integers at the nodes denote the ranks of the associated gauge groups, while k
is the number of bifundamentals (arrows). In (b), a U(1) is decoupled leaving a
U(m) gauge theory with k fundamental chiral multiplets with +1 charge under
the U(1) of U(m).

Consider the quiver in Figure 7a. We decouple the U(1) node to compute the index as in
Figure 7b. One can alternatively decouple the central U(1) of U(m) and obtain the same answer.

The one-loop determinant for a U(m) vector multiplet with k chiral multiplets in the repre-
sentation 1 is

Z1−loop =
1

m!

[
− π

sin(πz)

]m m∏
b,c=1,
b 6=c

sin(πub − πuc)
sin(πub − πuc − πz)

m∏
a=1

[
sin(πua − πz)

sin(πua)

]k
du1 ∧ · · · ∧ dum.

(4.16)

On the complex m-dimensional space M, there are hyperplanes Hab and Hc, with

a, b, c = 1, · · · ,m and a 6= b,

where Z1−loop has poles:

vector : Hab : ua − ub − z = 0, a 6= b,

chiral : Hc : uc = 0.
(4.17)

For the index formula, we always pick the covector η in the definition of the Jeffrey-Kirwan
residue operation (2.14) to be in the u(1) part of the dual Cartan subalgebra g∗u(1) as in (2.15).

In the current example, this implies that η lies on a real one-dimensional line on the real m-
dimensional space h∗:

η = ζ(1, 1, · · · , 1) ∈ h∗ ∼= Rm,(4.18)

where ζ is the FI parameter for U(m).
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For a given ζ, the index can potentially receive contribution from various intersections of Hab

and Ha. For example, in the U(2) case shown in Figure 8, if we choose ζ > 0, the Jeffrey-Kirwan
residue operation receives contributions from H1 ∩H2, H12 ∩H2, and H21 ∩H1, while it gives
zero for ζ < 0. However, the contributions from H12∩H2 and H21∩H1 can be shown to be zero
by a direct computation.

For general m in the chamber ζ > 0, we therefore conjecture that the index only receives
contribution from the intersection H1 ∩H2 ∩ · · · ∩Hm.

With this assumption, the index can then be computed to be

Ω(y, ζ) =
1

m!

[
− π

sin(πz)

]m m∏
a=1

[∮
ua=0

dua
2πi

] m∏
b,c=1,
b 6=c

sin(πub − πuc)
sin(πub − πuc − πz)

m∏
d=1

[
sin(πud − πz)

sin(πud)

]k
.

(4.19)

On the other hand, from the result (3.14) we know that the index is given by

Ω(y, ζ) =


ym(m−k) ∏k

i=1(1−y2i)∏m
i=1(1−y2i)

∏k−m
i=1 (1−y2i)

if m ≤ k,

0 if m > k,
(4.20)

when ζ > 0.
We have checked by direct calculation that the two expressions (4.19) and (4.20) agree for

a wide range of m and k. This provides further evidence that index only receives contribution
from the intersection H1 ∩ H2 ∩ · · · ∩ Hm and yields an elegant combinatorial identity for the
residue integral (4.19).

Q12

Q21

Q1

Q2

η1

η2

η = (ζ, ζ)

Figure 8. A U(2) vector multiplet with k chiral multiplets in the fundamental
representation with +1 charge under the U(1) of U(2). The figure shows the
charge covectors Qab and Qa on h∗ ∼= R2. In the index formula, we choose η to
be on g∗u(1), which is the red line in the figure. As a result, we never need to

consider the chamber Cone(Q1, Q12) nor Cone(Q2, Q21).

4.3. Non-Trivial Superpotentials. In the examples of §4.1 and §4.2 the quivers do not admit
non-trivial superpotentials and hence the refined index is not sensitive to the choice of u(1)R
charge assignments for the chiral multiplets. In this section we generalize to examples where the
superpotential plays an important role. We find that as long as the superpotential satisfies the
properties described in §2.1 the index formula (2.4) still accurately computes the refined index.
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The examples we explore fall into the class of quivers analyzed from a representation theory
perspective in [28,41,42].

1 1

1

Y

X Z

//
��

[[

(a)

X Y Z
1 1// // //

(b)

Figure 9. The XY Z model. The integers at the nodes denote the ranks of
the associated gauge groups, while X,Y, Z label the fields. There is one arrow
between each pair of nodes. In (b), a choice of U(1) decoupling.

4.3.1. The XY Z Model. Consider a triangle quiver shown in Figure 9a with three U(1) vector
multiplets and three chiral multiplets X,Y, Z. We decouple the U(1) node where X and Z meet
as in Figure 9b.

We will assume the R-charges for the three chiral multiplets X,Y, Z to be RX , RY , RZ ,
respectively. Let k be a positive integer such that

2

k
= RX +RY +RZ .(4.21)

Given a k, we can allow for the following superpotential in the quantum mechanics:

W = (XY Z)k.(4.22)

For k = 1 we have the generic cubic superpotentialW = XY Z. There are no supersymmetric
ground states, so the expected answer for Ω(y, ζ) is zero. In this case we will see that the residue
formula (2.4) accurately computes the index.

When k > 1, the superpotential does not satisfy our hypotheses. A direct calculation in the
chamber where ζ1 > 0 and ζ2 > 0 shows that the expected index from quantizing the classical
moduli space is one. We will see that the residue formula does not produce this answer.

The one-loop determinant is

Z1−loop =

[
− π

sin(πz)

]2
[

sin
(
πu1 + π

(
RX
2 − 1

)
z
)

sin(πu1 + πRX2 z)

][
sin
(
−πu1 + πu2 + π

(
RY
2 − 1

)
z
)

sin(−πu1 + πu2 + πRY2 z)

]

×

[
sin
(
−πu2 + π

(
RZ
2 − 1

)
z
)

sin(−πu2 + πRZ2 z)

]
du1 ∧ du2 ∧ du3.(4.23)

It has poles at the hyperplanes

HX : u1 +
RX
2
z = 0,

HY : −u1 + u2 +
RY
2
z = 0,

HZ : −u2 +
RZ
2
z = 0.

(4.24)

The corresponding charge covectors QX , QY , QZ on h∗ ∼= R2 are shown in Figure 10. Since the
theory is abelian, g∗u(1) = h∗ and we can take ζ to be at any point on the plane h∗.
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There are three chambers on the FI parameter space ζ in Figure 10. For a given ζ, the index
receives contributions from one of the three intersections HX ∩HY , HY ∩HZ , and HX ∩HZ ,
depending on which chamber ζ is in. A direct computation shows that all three chambers give
the same answer.

For example, if ζ ∈ Cone(QX , QY ), the Jeffrey-Kirwan residue operation is nonzero at

HX ∩HY = {u1 = −RX
2
z, u2 = −RX +RY

2
z} :

JK-Res
u=HX∩HY

({QX , QY }, ζ)
du1 ∧ du2

(u1 + RX
2 z)(−u1 + u2 + RY

2 z)

=

(
1

2πi

)2 ∮
u1=−RX2 z

∮
u2=u1−

RY
2 z

du1du2

(u1 + RX
2 z)(−u1 + u2 + RY

2 z)

(4.25)

The index can then be computed as

Ω(y, ζ) =

[
− π

sin(πz)

]2 ∮
u1=−RX2 z

du1

2πi

∮
u2=u1−

RY
2 z

du2

2πi

[
sin
(
πu1 + π

(
RX
2 − 1

)
z
)

sin(πu1 + πRX2 z)

]

×

[
sin
(
−πu1 + πu2 + π

(
RY
2 − 1

)
z
)

sin(−πu1 + πu2 + πRY2 z)

][
sin
(
−πu2 + π

(
RZ
2 − 1

)
z
)

sin(−πu2 + πRZ2 z)

]

=
y1− 1

k − y−1+ 1
k

y−
1
k − y 1

k

.(4.26)

Note that the answer only depends on the sum of the R-charges 2/k, but not on the individual
assignments RX , RY , RZ . For k = 1, Ω(y, ζ) vanishes as expected. For k > 1, however, the
answer produced by the residue formula does not match that obtained by direct analysis. As
explained above, this is no contradiction since in this case the superpotential does not satisfy
our hypotheses.

QY

QX
QZ

η1

η2

Figure 10. The XY Z model with one node removed. The figure shows the
charge covectors QX , QY , QZ on h∗ ∼= R2.
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1 1

1

p

Yj

2Xi p Zk

//
��

[[

(a)

Xi

2 p

Yj

p

Zk
1 1// // //

(b)

Figure 11. The generalized XY Z model. The integers at the nodes denote the
ranks of the associated gauge groups, while the integers at the arrows denote
the number of bifundamental fields. In (b), a choice of U(1) decoupling.

4.3.2. Generalized XY Z Model. We continue our study of models with superpotential but now
with a more nontrivial index and wall-crossing phenomenon.

The quiver diagram is shown in Figure 11a. We have two Xi, i = 1, 2, and p Yj and Zk,
j, k = 1, · · · , p, chiral multiplets. We will assume the R-charges for all the Xi are the same and
will be denoted by RX . Similarly for Yj and Zk.

We will also assume 2 = RX + RY + RZ so that the superpotential is cubic. The charge
covectors are the same as the previous case shown in Figure 10. However, unlike the XY Z
model in the previous subsection, the index now does depend on the choice of the chamber.

In the ζ ∈ Cone(QX , QY ) chamber, the index is

Ω(y, ζ) =

[
− π

sin(πz)

]2 ∮
u1=−RX2 z

du1

2πi

∮
u2=u1−

RY
2 z

du2

2πi

[
sin
(
πu1 + π

(
RX
2 − 1

)
z
)

sin(πu1 + πRX2 z)

]2

×

[
sin
(
−πu1 + πu2 + π

(
RY
2 − 1

)
z
)

sin(−πu1 + πu2 + πRY2 z)

]p [
sin
(
−πu2 + π

(
RZ
2 − 1

)
z
)

sin(−πu2 + πRZ2 z)

]p
= p.(4.27)

Similarly the chamber ζ ∈ Cone(QX , QZ) gives the same answer as above.
In the chamber ζ ∈ Cone(QY , QZ), the index is

Ω(y, ζ) =

[
− π

sin(πz)

]2 ∮
u2=

RZ
2 z

du2

2πi

∮
u1=u2+

RY
2 z

du1

2πi

[
sin
(
πu1 + π

(
RX
2 − 1

)
z
)

sin(πu1 + πRX2 z)

]2

×

[
sin(−πu1 + πu2 + π

(
RY
2 − 1

)
z)

sin(−πu1 + πu2 + πRY2 z)

]p [
sin(−πu2 + π

(
RZ
2 − 1

)
z)

sin(−πu2 + πRZ2 z)

]p

=

{∑p
j=2(j − 1)

(
y2(p−j) + y−2(p−j)) if p > 1,

0 if p = 1.
(4.28)

Note that the index again does not depend on the individual R-charges RX , RY , RZ but only
on their sum. We assume RX +RY +RZ = 2 to allow for the generic cubic superpotential.

These results match those obtained by directly quantizing the quiver moduli space in [17].

4.3.3. 4d N = 2 SU(3) Yang-Mills Theory. As a final example we consider the quiver quantum
mechanics which governs the BPS states of four-dimensional N = 2 SU(3) Yang-Mills theory
[13, 14] shown in Figure 12a. We study an example where the ranks of the quiver gauge groups
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are all one. The corresponding BPS particle is a W -boson. We expect that this particle is
stable, and hence ground states of the quantum-mechanics exist, in the weak coupling region of
the four-dimensional moduli space. This is the region in ζ-space where

(4.29) ζ2 < ζ3, ζ4 < ζ1.

ζ4

1 1

ζ3

1

ζ1

1

ζ2

Y

X

B1, B2 A1, A2

oo

KS
//

��

(a)

B1, B2 X A1, A2 Y

ζ1

1 1

ζ2

1

ζ3

+3 // +3 //

(b)

Figure 12. The BPS quiver for 4d N = 2 SU(3) Yang-Mills theory. The
integers at the nodes denote the ranks of the associated gauge groups in the
quantum mechanics, while the integers at the arrows denote the number of
bifundamental fields. The ζi indicate our convention for FI parameters. The
corresponding BPS particle is a W -boson in the 4d theory. In (b), a choice of
U(1) decoupling.

The superpotential is

W = B1XA1Y −B2XA2Y.(4.30)

From the symmetry of the quiver, we assume the R-charges for X and Y are the same and
denote them by R. From the superpotential and the symmetry we deduce that the R-charges
for A1, A2, B1, B2 are all 1−R.

We decouple the U(1) as in Figure 12b. The meromorphic top form is

Z1−loop =

[
− π

sin(πz)

]3
[

sin
(
πu1 + π

(
1−R

2 − 1
)
z
)

sin
(
πu1 + π 1−R

2 z
) ]2 [

sin
(
−πu1 + πu2 + π

(
R
2 − 1

)
z
)

sin
(
−πu1 + πu2 + πR2 z

) ]

×

[
sin
(
−πu2 + πu3 + π

(
1−R

2 − 1
)
z
)

sin
(
−πu2 + πu3 + π 1−R

2 z
) ]2 [

sin
(
−πu3 + π

(
R
2 − 1

)
z
)

sin
(
−πu3 + πR2 z

) ]
du1 ∧ du2 ∧ du3

(4.31)
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There are four hyperplanes in M where Z1−loop has poles:

H1 : u1 +
1−R

2
z = 0,

H2 : −u1 + u2 +
R

2
z = 0,

H3 : −u2 + u3 +
1−R

2
z = 0,

H4 : −u3 +
R

2
z = 0.

(4.32)

The charge covectors in h∗ that define these hyperplanes in M are

Q1 = (1, 0, 0),

Q2 = (−1, 1, 0),

Q3 = (0,−1, 1),

Q4 = (0, 0,−1).

(4.33)

M∗sing contains the following four points from the intersections of any three of the four hyper-
planes Hi:

u
(1)
∗ = H2 ∩H3 ∩H4 =

(
1 +R

2
z,

1

2
z,
R

2
z

)
,

u
(2)
∗ = H1 ∩H3 ∩H4 =

(
−1−R

2
z,

1

2
z,
R

2
z

)
,

u
(3)
∗ = H1 ∩H2 ∩H4 =

(
−1−R

2
z, −1

2
z,
R

2
z

)
,

u
(4)
∗ = H1 ∩H2 ∩H3 =

(
−1−R

2
z, −1

2
z, −2−R

2
z

)
.

(4.34)

Given the FI parameter ζ ∈ h∗, it belongs to a cone generated by three of the four Qi’s. The
Jeffrey-Kirwan residue only receives contribution from the intersection of the three correspond-
ing hyperplanes Hi. For example, we can write the Jeffrey-Kirwan residue operation in the
Cone(Q2, Q3, Q4) chamber as

JK-Res
u=u

(1)
∗

({Q2, Q3, Q4}, ζ)
du1 ∧ du2 ∧ du3(

−u1 + u2 + R
2 z
) (
−u2 + u3 + 1−R

2 z
) (
−u3 + R

2 z
)

=(−1)3

(
1

2πi

)3 ∮
u3=R

2 z

du3

∮
u2=u3+ 1−R

2 z

du2

∮
u1=u2+R

2 z

du1

× 1(
−u1 + u2 + R

2 z
) (
−u2 + u3 + 1−R

2 z
) (
−u3 + R

2 z
) .

(4.35)

The index in the four chambers are

Ω(y, ζ) =


0 if ζ ∈ Cone(Q2, Q3, Q4),

y + y−1 if ζ ∈ Cone(Q1, Q3, Q4),

0 if ζ ∈ Cone(Q1, Q2, Q4),

y + y−1 if ζ ∈ Cone(Q1, Q2, Q3).

(4.36)
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In terms of the components of the FI parameters, the chambers can be described as

Ω(y, ζ) =


0 if ζ4 > 0, ζ1 < 0, ζ1 + ζ2 < 0,

y + y−1 if ζ1 > 0, ζ2 < 0, ζ2 + ζ3 < 0,

0 if ζ2 > 0, ζ3 < 0, ζ1 + ζ2 > 0,

y + y−1 if ζ3 > 0, ζ4 < 0, ζ2 + ζ3 > 0.

(4.37)

This agrees with the expectation (4.29) and provides a complete picture of the walls of mar-
ginal stability where the W -boson decays.
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Abstract. We study elliptic fibrations by analyzing suitable deformations of the fibrations

and vanishing cycles. We introduce geometric string junctions and describe some of their
properties. We show how the geometric string junctions manifest the structure of the Lie

algebra of the Dynkin diagrams associated to the singularities of the elliptic fibration. One
application in physics is in F-theory, where our novel approach connecting deformations and

Lie algebras describes the structure of generalized type IIB seven-branes and string junction

states which end on them.

1. Introduction

An elliptic fibration is a morphism π : X → B such that π−1(p) = Ep for a general point
p ∈ B is a smooth elliptic elliptic curve (a torus T 2); the discriminant locus is

Σ = {q ∈ B such that π−1(q) 6= T 2}.

In this paper we take X and B to be smooth; if π is also assumed to have a section σ, X
is the (smooth) resolution of the Weierstrass model W of the fibration [24] with Gorenstein
singularities. W is defined by the Weierstrass equation: y2z− (x3 + fxz2 + gz3) = 0, where f, g
are sections of appropriate bundles on B. If dimW = 2, the singularities are the rational double
points. It was noted by Du Val and Coxeter [8, 5] that rational double points are classified
by the Dynkin diagrams of the simply laced Lie algebras g of type an, dn, e6, e7, e8: in fact, the
dual diagram of the exceptional divisors in the minimal resolution is one of the above Dynkin
diagrams. In the case of higher dimensional elliptic fibrations also non simply-laced Dynkin
diagram can occur.

We study elliptic fibrations by analyzing suitable deformations of the fibrations; we introduce
“geometric string junctions”. String junctions were defined in the physics literature by DeWolfe,
Gaberdiel and Zwiebach [11, 6] as equivalence relations of closed paths in a punctured disc
C \Σ; the disc is the base of an elliptic fibration with discriminant locus Σ. The authors assign
composition rules and show that the junctions reflect the structure of exceptional gauge algebras
of the elliptic fibration. The gauge algebras which arise in this construction are the simply laced
ones a, d, e. Bonora and Savelli [3] later derived some non-simply laced algebras from junctions;
their construction is algebraic and not expressed in terms of the geometry of higher dimensional
elliptic fibrations. We will do this later in the paper. The techniques presented in this paper
have a number of applications in physics; for example, in describing BPS states of d = 4 N = 2
supersymmetric gauge theories, or in F-theory where they provide a direct approach to the
analysis of generalized type IIB seven-branes and the string junction states which end on them
[29, 22, 23, 7].

In Section 2 we consider a smooth elliptic surface on the open unit disc U with nodal singular
fibers over a collection of points {qj}. We then consider suitable, disjoint, paths in U from
a base point to each qj (a junction, in the physics language) and the corresponding vanishing
cycles and construct thimbles, the prongs in the physics language, in the relative homology. A
general geometric junction J defines then a chain with boundary in the elliptic fiber over the

http://dx.doi.org/10.5427/jsing.2016.15c
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base point p. Following the physics literature we define the asymptotic charge a(J) ∈ H1(Ep,Z),
a(J) = ∂[J ]p ∈ H1(Ep). We show that the junctions with asymptotic charge zero are the images
of spherical classes in [J ] ∈ H2(X) (Theorems 2.5, 2.7). We then define a self-intersection product
in the space of junctions, and we show that if a(J) = 0 the topological intersection is equal to
the the self-intersection product (Theorem 2.9). We also define an intersection pairing 〈J,K〉,
which we show it coincides with the topological pairing for junctions of zero asymptotic charge.
We provide an explicit formula in terms of the Ji and the intersection numbers of the vanishing
cycles. If X = W is a Weierstrass model we also provide an explicit alternative descriptions of
the class of junctions, which is implemented in a computer program in [28], [25]. In Section 3
we consider a smooth elliptic surface in Weierstrass equation over a disc, with a unique singular
fiber over the origin, an ADE singularity. Klein showed that resolutions and deformation of
ADE surface singularities (also known as kleinan singularities) are diffeomorphic. We deform
the elliptic fibration to a smooth fibration with nodal fibers, namely we perform a complete
Higgsing of the Weierstrass model. We study the junctions in the deformed model and we prove
that the lattice structure found in the previous Section 2 provides the weight structure of the
a, d, e algebras associated to the Dynkin diagram of the original singularities. As a particular
case, we obtain the roots of the a, d, e central singularity and the associated Cartan matrix from
the junctions with asymptotic charge zero. Our deformation analysis of the surface case show
that the junctions with a fixed non-zero asymptotic charge are associated to weights of other
representations and all the possible weights occur; we show that in higher dimensional variety
these weights can become associated to junctions of non-zero asymptotic charge and assume
geometric meaning, they become massless in the physics language [16, 13]. In contrast analysis
of the resolved surface provides only the root structure.

In addition we show that the deformation analysis distinguish the Kodaira type III (two
tangent rational curves) from I2 (a cycle of two rational curves), which are associated to the
su(2) gauge algebra, and the Kodaira type IV (three rational curves meeting at point) from I3
(a cycle of three rational curves, which are associated to the su(3) gauge algebra. This reflects in
physics the different brane structure of the two singularities. These results were first presented
in our previous papers [13, 16], and were obtained with the aid of a computer package especially
developed [25]. In [13] we show also that the local deformation techniques of the string junction
analysis can be adapted in compact cases, even in cases when global deformation do not exist
and also in higher dimension. In Section 4 we revisit the example of the g2 algebra first presented
in [16], and elliptic fibration of threefolds.

The techniques developed in Section 2 do not assume the existence of a section of the fibration,
and in principle can be applied also in that case. Resolutions to a smooth model with trivial
canonical class and an equidimensional fibration may not be available in higher dimension,
minimal models can have terminal singularities, however the deformation analysis can still be
performed. We will address such situations in a upcoming paper [14]. Our techniques can also
be extended to other type of fibrations between varieties which are not necessarily algebraic, for
example on varieties with G2 holonomy,
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2. Geometric String Junctions

Consider the smooth elliptic fibration π : X −→ U over an open set U ⊂ C with I1 singular
fibers above Σ = {q1 . . . , qN}. Fix a base point p ∈ B \ Σ with Ep the elliptic fiber π−1(p).
Choose a set of continuous embedded paths δ1, ..., δN , assumed disjoint except for the common
starting point δj(0) = p , ending at the points δj(1) = qj . Also assume the order is such that
the points in which the paths meet a small circle around p go around counter clockwise; for

example for a small r, δj(r) = re2πi
(j−1)
N in suitable local coordinates around q as the origin.

We also assume that for ε a small real number, there is also the formula δj(1− ε) = ε e2πiθj , θj
an ”angle” in suitable local coordinates around qj as the origin. (The local co-ordinates around
qj could of course be chosen so θj = 0 , but below we will use other paths coming in to qj at
different angles.)

q1
δ1

q2

δ2

qN

δN

qj
δ1δj

P

Any smooth fiber bundle Y → S1 over a circle is given by a monodromy of the fiber F .
This means there is a diffeomorphism [27]. In our case, over the circle of radius ε around qj , ,
the corresponding diffeomorphism ψj,1−ε : Eδj(1−ε) → Eδj(1−ε) will be referred to as the local
monodromy around qj .

The assumption that the singular fibers are of type I1 means that there is a real curve Cj,1−ε
on the fiber Eδj(1−ε) , ε small, which the local monodromy ψj,1−ε fixes, where:

ψj,1−ε : Eδj(1−ε) → Eδj(1−ε).

This curve collapses to a point q̂j as ε → 0 ; q̂j is the (nodal) singular point in the singular
fiber π−1(qj) . With any choice of orientation for this curve, the map induced on first homology,
(ψj,1−ε)∗ : H1(Eδj(1−ε))→ H1(Eδj(1−ε)) , satisfies [1], [2].

(1) (ψj,1−ε)∗(x) = x− (x · [Cj,1−ε]) [Cj,1−ε] , x ∈ H1(Eδj(1−ε)) .

The equation is a special case of the Picard-Lefshetz formula for this situation. Here x · [Cj,1−ε]
is the intersection number of x with the homology class [Cj,1−ε] of the curve Cj,1−ε .

Fix a small ε0 . The fibration π is trivial over the contractible set δj([0, 1− ε0]) ; let

(2) Ψj : [0, 1− ε0]× Eδj(1−ε0) → π−1(δj([0, 1− ε0]))

be a trivialization with Ψj(1− ε0, z) = z . Then we define the vanishing cycle γj ∈ H1(Ep) as

(3) γj = (Ψj |{0} × Eδj(1−ε0))∗[Cj,1−ε0 ] .
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This is the same as the homology class [Cj ] of the curve Cj = Ψj |{0} ×Eδj(1−ε0)(Cj,1−ε0) ⊂ Ep
that is is the image of the curve Cj,1−ε0 ⊂ Eδj(1−ε0) , and we also set

(4) Cj,t = Ψj |{t} × Eδj(1−ε0)(Cj,1−ε0) ,

so Cj = Cj,0 . The class γj is only defined up to sign, but we will systematically suppress this
ambiguity (however see Corollary 2.2 below).

Finally, we can use the diffeomorphism Ψj |{0} × Eδj(1−ε0) of Eδj(1−ε0) to Ep to tranfer the
local monodromy at qj to a global monodromy ψi : Ep → Ep that fixes Cj and also satisfies the
Picard-Lefshetz formula 1. The topological type of the fibration is determined by the isotopy
classes of the global monodromies [15].

We define the “prong” (physics terminology) or “thimble” (symplectic geometry terminology)

(5) Γj = Ψj([0, 1− ε0]× Cj,1−ε0) ∪
⋃

0<ε≤ε0

Cj,1−ε ∪ {q̂j} ,

and more generally we will need to use

(6) Γj,t = Ψj([t, 1− ε0]× Cj,1−ε0) ∪
⋃

0<ε≤ε0

Cj,1−ε ∪ {q̂j} .

The prong is a disk and represents a class [Γj ] ∈ H2(X,Ep) with ∂[Γj ] = γj .

Ep = Eδj(0)

Cj

Cj,t

Eδj(t)

Pj

Eqj = Eδj(1)

We have the following alternate description when there is a Weierstrass equation:

Proposition 2.1. [15] Let X = W have the Weierstrass equation

(7) zy2 = x3 + f xz2 + g z3

with section σ. Then Eq − σ(q) is the two-fold branched cover of C branched at the roots of
x3 + f(q)x + g(q) = 0 . For 0 ≤ t ≤ 1 , let ρj,1(t) and ρj,2(t) be continuous paths of two of
the roots at δj(t) , with the property ρj,1(1) = ρj,2(1) at the singular point qj Let ρj,3(t) be
the path of the remaining root, and assume that for all 0 ≤ s, t ≤ 1 , ρj,3(s) 6= ρj,1(t) and
ρj,3(s) 6= ρj,2(t) . Let C̄j,t be the closed loop (not necessarily embedded) in Eδj(t) that lies over
the path ρj,t = {ρj,1(s), ρj,2(s)|t ≤ s ≤ 1} . Then these loops have a consistent orientations so
that if Γ̄j =

⋃
0≤t≤1 C̄j,t , then [Γ̄j ] = [Γj ] ; in particular ∂[Γ̄j ] = γj .

The proof of the above proposition, presented in [15], also provides the following algorithm
for determining vanishing cycles:

Corollary 2.2. Assume, in addition to the hypotheses of Proposition 2.1 (for simplicity) the
roots ρ1, ρ2, ρ3 of x3 +f(p)x+g(p) = 0 , the first two being the ones that merge at qj , are not on
a common (real) line. Let m1 be the number of times ρ̄j,0 crosses from one side of the interior
of the straight line joining ρ1 = ρj,1(0) and ρ2 = ρj,1(0) to the other. Let m2 be one half the
sum of the intersection numbers of the path ρj,0 (with either orientation) and this straight line
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at the endpoints. (If an intersection at an endpoint is not transverse, make it so by a small
perturbation and count any additional crossings of the line that this produces in m1 as well.)
Let Z1, Z2, Z3 ∈ H1(Ep) be represented by loops that are inverse images in Ep of straight lines
joining ρ1 and ρ2 , ρ2 and ρ3 , and ρ3 and ρ1 . If m1 + m2 is even then γj = ±Z1 . If m1 + m2

is odd, then γj = ±Z2 ± Z3 , with any choice of signs so that γj · Z1 6= 0 .

In [13, 16] and in the examples in this paper we apply Proposition 2.1 and the algorithm in
simple special cases.

For the rest of this section we do not assume the existence of a Weierstrass model. Neverthe-
less, it can be shown [15] that there exists a topological section σ : U → X . We will not give a
proof here, but the reason is that the global monodromy maps, which determine the topological
type of the fibration, are isotopic to maps with a common fixed point.

Definition 2.3. As above, consider the smooth elliptic fibration π : X −→ U over an open
set U ⊂ C with I1 singular fibers above Σ = {q1 . . . , qN} and corresponding vanishing cycles
{γ1, . . . , γN}. Fix a base point p ∈ B \ Σ with Ep = π−1(p).

J = (J1, . . . , JN ) ∈ ZN is a junction and the cycle ap(J) = a(J) =
∑N

1 Jiγi ∈ H1(Ep,Z) is its
asymptotic charge.

Remark 2.4. A junction defines a chain (actually the image of a union of 2-disks)
∑N

1 JjΓj or∑N
1 JjΓ̄j in X , and hence a homology class

(8) [J ]p =

N∑
1

Jj [Γj ] ∈ H2(X,Ep) ,

(This homology class actually depends on the order of singular points, up to a cylcic permutation
of order N ..)

Clearly a(J) = ∂[J ]p ∈ H1(Ep) ; hence if a(J) = 0 , [J ]p will be the image of a class in
[J ] ∈ H2(X) ; it is only well defined up to a multiple of the image of orientation class [Ep] of Ep
in H2(X) . It will be unique subject to the extra condition that [J ] · σ(U) = 0 ; this intersection
number is well defined because the image of the section is a proper submanifold. If a(J) = 0 ,
then from the explicit construction one can see that [J ] is spherical, i.e. represented by a map
S2 → X . The class [J ] also depends on the basepoint p and the choice of paths.

Theorem 2.5. Let J denote the abelian group of junctions. Assume U is the interior of a region

bounded by a closed embedded smooth curve. Then J 7→ [J ]p =
∑N

1 Jj [Γj ] ∈ H2(X,Ep) induces
an isomorphism

(9) J ∼= H2(X,Ep)

and J 7→ [J ] induces an isomorphism

(10) {J ∈ J|a(J) = 0} ∼= H2(X)/Z[Ep] ∼= {x ∈ H2(X) |x · σ(U) = 0} .

Remark 2.6. The hypothesis on U can be weakened considerably at the cost of added complica-
tions in the proof below.

Proof. Recall from above that there exists a topological section σ : U → X, which gives a
splitting of the first map of the long exact homology sequence of a pair [9] :

(11) ....→ H2(Ep)→ H2(X)→ H2(X,Ep)→ H1(Ep)→ ...

since [Ep] · σ(U) = 1 . The statement in (9) follows then from (10) and the long exact sequence
above.
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The hypothesis on U implies that there is a topological extension of π to π : X → U ⊂ C ,
also a fiber bundle outside the points {q1, ..., qN} . There is a well defined topological intersection
pairing [26][4][18]

(12) H2(X,Ep)×H2(X − Ep, X −X)→ Z .

(Here is an intuitive geometric definition: Let (A, ∂A) and (B, ∂B) be oriented relative chains
representing α and β in these groups. Since ∂A∩∂B = ∅ , after an arbitrarily small deformation
fixing the boundaries, it can be assumed A and B are in ”general position”, meaning that they
intersect transversely in points in the interior of simplices. The intersection number α · β will
then be the number of these points, counted sign determined by the orientations. )

Possibly choosing ε0 above smaller, let δ̂j : [1 − ε0] → U be a small path, disjoint from δj
except at the endpoint δj(1) = qj = δ̂j(1) , where the two paths meet in one point. For example,

in local coordinates as above around qj , take δ̂j(1− ε) = εe2πiθ̂j for some angle θ̂j 6= θj .

Let Ĉj,1−ε , 0 < ε ≤ 1 , be the corresponding vanishing cycle. Let

(13) Γ̂j,ε0 =
⋃

0<ε≤ε0

Ĉj,1−ε ∪ {q̂j} .

be the corresponding local prong or thimble. Let δj,∞ be a path from δ̂j(1− ε0) = δj,∞(1− ε0)

to a point δj,∞(0) ∈ X −X , disjoint from the paths δk .

δ1

δ2,∞

δ2

δN

δ1δj

P

δ1,∞

δN,∞

δj,∞

Let

(14) Γj,∞ = Ψj,∞([0, 1− ε]× Ĉj,1−ε0)∪
⋃

0<ε≤ε0

Ĉj,1−ε ∪{q̂j} = Ψj,∞([0, 1− ε]× Ĉj,1−ε0)∪ Γ̂j,ε0 ,

be the corresponding prong, Ψj,∞ a trivialization of π|π −1δj,∞([0, 1− ε0]) .
Then
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(15) Γj,∞ ∩ Γj = {qj}

transversely and

(16) Γj,∞ ∩ Γk = ∅

for k 6= j . Therefore the classes [Γj,∞] ∈ H2(X − Ep, X −X) and [Γk] ∈ H2(X,Ep) satisfy

(17) [Γj ] · [Γj,∞] = ±1 ; [Γk] · [Γj,∞] = 0 k 6= j .

(The non-zero intersection number is actually −1; this will be discussed in more detail in the
proof of Theorem 2.9.) Therefore the map J 7→ [J ]p induces an isomorphism of J onto a
summand of H2(X,Ep) of rank N .

If Z → S1 is a smooth fiber bundle over a circle with fiber F , then there is a monodromy
φ : F → F such that Z is diffeomorphic to the mapping cylinder F × [0, 1]/(x, 0) ∼ (φ(x), 1) via
a diffeomorphism that carries the bundle projection to the map to map (f, t) 7→ e2πit . It follows
from the Mayer Vietoris sequence [9](or a spectral sequence argument [19]) that there is long
exact sequence

(18) ...→ Hk(F )
φ∗−1
→ Hk(F )→ Hk(E)→ Hk−1(F )→ ...

Further, the fiber bundle has a section σ : S1 → Z if and only if φ has a fixed point.
We apply this to π−1Bj(ε0) , the ball of radius ε0 in the local coordinates around qj . The

boundary of this manifold is a bundle over the circle ∂Bj(ε0) , with torus fiber. The monodromy
is the the map ψi,1−ε . It follows that H1(π−1∂Bj(ε0)) ∼= Z⊕Z generated by the orientation class
of a fiber and [Cj,1−ε0×σ(∂Bj(ε0))] , and H2(π−1∂Bj(ε0)) ∼= Z⊕Z generated by any class τ with
τ ·γj = 1 . and the class [σ(∂Bj(ε0)) . However π−1Bj(ε0) collapses homotopically equivalently to
the singular fiber over Eqj , whose second homology is generated by the image of the orientation
class under the collapse, and whose first homology by the image of τ , i.e. the collapse of a
class represented by a curve D1 that meets Cj,1−ε in one point. Also, σ(∂Bj(ε0)) = ∂σ(Bj(ε0)) .
Hence H2(π−1Bj(ε0), π−1∂Bj(ε0)) ∼= Z , generated by the homology class of σ(Bj(ε0), ∂Bj(ε0)) .

Let X0 = π−1U0 , U0 = U −
⋃N

1 Bj(ε0)◦ . We now claim the map

(19) H2(X,Ep)→ H2(X,X0) ∼=
N⊕
1

H2(π−1Bj(ε0), π−1∂Bj(ε0))

is trivial. In fact, the image of the connecting homomorphism in the long exact homology
sequence of the triple (X,X0, Ep) is generated by the classes

[σ(∂Bj(ε0))] ∈ H1(X0, Ep), π∗[σ(∂Bj(ε0))] = [∂Bj(ε0))] ∈ H1(U0, p) ,

and for j = 1, ..., N these classes form a basis of this group. Therefore the connecting homomor-
phism is one-to-one.

More precisely, the inclusion

(20)

N⋃
1

δj([0, 1− ε0]) ∪Bj(ε0)) ↪→ U0

is a homotopy equivalence, and hence so is
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(21) π−1
N⋃
1

δj([0, 1− ε0]) ∪Bj(ε0)) ↪→ X0

It follows by excision that

(22) H2(X0, Ep) ∼= H2(X0, π
−1

N⋃
1

δj([0, 1− ε0]) ∼=
N⊕
1

H2(π−1∂Bj(ε0)), Eδj(1−ε0)) .

Also by excision, for any bundle Z → S1 as discussed above, the quotient map induces and
isomorphsim Hi(F × [0, 1], F × {0, 1}) → Hi(Z,F ) . (This is part of one proof of the above
long exact sequence.) Therefore, in our case H2(π−1∂Bj(ε0)), Eδj(1−ε0))

∼= Z ⊕ Z and one of
the generators is represented by the closed class (i.e. in the image of the absolute homology)
represented by the torus [Cj,1−ε0×σ(∂Bj(ε0))] . This class obviously maps to zero in H2(X,Ep) ;
therefore this group is a quotient of a free abelian group of rank N . Therefore, J 7→ [J ]p , already
shown to be a one-to-one map onto a summand, is an isomorphism. �

We now outline how our construction also provides some topological information about the
representation of homology classes in H2(X) by embedded spheres:

Theorem 2.7. (See also [16]) Let J = (J1, ..., JN ) ∈ J with a(J) = 0 and |Ji| ≤ 2 . Then
[J ] ∈ H2(X) is represented by a smoothly embedded 2-sphere S2 ⊂ X .

Proof. (Outline) As mentioned above, the construction of prongs and the proof of 2.5 can be
used to provide an explicit geometric cycle representing [J ] , J a junction with a(J) = 0 . Suppose
first |Ji| ≤ 1 , 1 ≤ i ≤ N . The cycle representing [J ] can be then described as a union of some
of the (oriented) prongs ±Γj,t for a small value of t , together with a punctured sphere (a sphere
with some disks removed), in a product neighborhood E0×D2 of the smooth fiber, that bounds
the union of the bounding curves ±Cj,t . The construction of the punctured disk is indicated [16],
and, as explained there, the union of the prongs and the punctured disk is a smoothly embedded
S2 . This proves the case with |Ji| ≤ 1. For |Jj | = ±2 we need to consider Γj,t and a parallel

copy Γ̂j,t of the corresponding prong, using a slight deformation of the path δj in the base. This
construction is described in more detail below in the proof of the next theorem. The prong and
the deformed prong can then be added to one another in a way that eliminates the intersection
point at the singularity of Ej and provides an annulus bounding ±Cj,t ∪ ±Ĉj,t . These annuli,
the oriented prongs with coefficients ±1 , and the punctured sphere bounding the union of the
vanishing cycles in the different nearby smooth fibers again provide a smoothly embedded S2

representing [J ] ∈ H2(X) . �

This result is similar in spirit to the (simpler) topological fact that in H2(P2) a generator
or twice a generator can be represented by a smoothly embedded S2 [17]; however, in X these
representatives are not algebraic. As is the case with P2 [10], it appears that every element
of H2(X) can be represented by an topologically embedded S2 with a non-locally smoothable
point. It would be interesting the determine the minimal genus of a smoothly embedded closed
(oriented) real 2-manifold representing a given general element of H2(X) .

Definition 2.8. Consider a junction J . Define a self-intersection

(23) 〈J, J〉 = −
∑
k>j≥2

JkJj γk · γj −
N∑
j=1

J2
j
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Theorem 2.9. Let Jbe a junction with a(J) = 0 . Then the topological intersection number
satisfies

(24) [J ] · [J ] = 〈J, J〉 .

Remark 2.10. Different formulae are obtained by cyclically permuting the indices, i.e. rotating
the small circle around p . All these satisfy the conclusion of the Theorem. In fact, let p̂ be a point
near p that lies between the paths δ1 and δ2 . Then there will be defined a small “deformation”

of the paths δj , j = 1, ..., N , to paths δ̂j from p̂ to the points qj , which will be described in
the proof. The corresponding prongs will actually represent classes [J ]p ∈ H2(X − Ep̂, Ep) and
[J ]p̂ ∈ H2(X − Ep, Ep̂) . There is also a well defined topological intersection pairing on these
groups, and it will be shown that

(25) [J ]p · [J ]p̂ = 〈J, J〉 .

Thus the above formula for classes which do not have asymptotic charge zero has a topological
interpretation in terms of a deformation of the prongs, and all the possible formulas correspond
to the different possible small deformations, up to a suitable notion of homotopy.

Remark 2.11. The missing index j = 1 in the first term on the right side of 23 corresponds to
the fact that in the deformation used below (see the figure in the proof), since the deformed
basepoint p̂ lies between between δ1 and δ2 , we can reach q1 with a path near δ1 that does not
intersect δ1 except at q1 . We could also reach q2 without crossing δ2 but on the opposite side
of δ2 from that indicated in the figure, leading to a change in the formula in the corresponding
place in the second term.

Remark 2.12. An intersection pairing is defined by

(26) 〈J,K〉 =
1

2
(〈J +K,J +K〉 − 〈J, J〉 − 〈K,K〉) .

It follows that

(27) [J ] · [K] = 〈J,K〉 .

if a(J) = a(K) = 0 .

Proof. (of Theorem 2.9) We start by determining the sign in equation (17). We keep the same
notation. It was shown in the proof of Theorem 2.5 that H2(π−1Bj(ε0), Eδj(1−ε0)) is infinite
cyclic and the connecting homomorphism to H1(Eδj(1−ε0) is injective (with image generated by

the class of the local vanishing cycle.) In the general fiber bundle Z → S1 with monodromy φ
as in the previous proof, let w be a k − 1 cycle of F . Then the image of the relative F × {0, 1}
cycle w × [0, 1] in the quotient Z represents an element S(w) ∈ Hk(Z,F ) with

∂S(w) = (φ∗[w]− [w]) ∈ H1(F ) .

In our case, take for w a curve with
[w] · [Cj,1−ε0 ] = −1 . Then by 1, ∂S(w) = [Cj,1−ε0 ] ∈ H1(Eδj(1−ε0)) . Let

(28) i∗ : H2(π−1∂Bj(ε0), Eδj(1−ε0))→ H2(π−1Bj(ε0), Eδj(1−ε0))

be the map induced by inclusion. Then ∂i∗S(w) = [Cj,1−ε0 ] also, by naturality. Therefore
i∗S(w) = [Γj,ε0 ] , the class of the local “prong” corresponding to the restriction of δj to [1−ε0, 1] .
The intersection pairing is also defined between elements of H2(X,Eδj(1−ε0)) , to which the target
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of i∗ maps by another inclusion induced map, and elements of H1(X − Eδj(1−ε0), X − X) , in
which Γj,∞ represents an element. Therefore

(29) [Γj,ε0 ] · [Γj,∞] = S(w) · [Γ̂j,∞] = [w × {θ̂j}] · [Ĉj,1−ε0 ] = [w] · [Cj,1−ε0 ] = −1

It follows from the local nature of intersection numbers that the local prongs Γj,ε0 and Γ̂j,ε0 meet
with intersection number -1.

Let p̂ be near p , lying between the paths δ1 and δ2 , ; for example, take p̂ = r̂e2πη1 in local
the local coordinates near p , r̂ < r0 and 0 < η1 < N−1 both small; we assume for 0 ≤ r ≤ r0 ,

δj(r) = re
2πi
N in the local coordinates around p , as above. Define paths δ̂j from p̂ to qj in four

parts as follows: First take a straight line from q̂ to rj e
2πiη , r̂ < r1 < r2 < .... < rj < r0 . Follow

this with a circular arc rje
2πit , η ≤ t ≤ j−1

N + η . Parameterize what has been done so far so

that δ̂j(0) = p̂ and δ̂j(rj) = rje
2πi( j−1

N +ηj) . Then follow with paths parallel to δj , until we reach

Bj(ε0) at a point ε0e
2πiθ̂j in local coordinates around qj , and then follow the straight line to qj .

q1

q2q3

qj

qN

δ1

δ̂1

δ2
δ̂2δ3

δ̂3

δj

δ̂j

δN
δ̂N

Let Γ̂j be the corresponding prongs. For r ≤ r0 ,

(30) ir : H2(X,Eδj(r))→ H2(X,π−1Br(p)) îr : H2(X,Eδ̂j(r))→ H2(X,π−1Br(p))

be the maps induced by inclusion; these are isomorphisms (as the fiber bundle is trivial over
Br(p) . Then it follows by letting η, r̂ → 0 that

(31) îr[Γ̂j,r] = ir[Γj,r]

and that under the inclusion induced isomorphisms,

H1(Eδj(r))
∼= H1(π−1Br(p)) and H1(Eδ̂j(r))

∼= H1(π−1Br(p)) ,

the vanishing cycles [Cj,r] and [Ĉj,r] have the same image. The orientation classes of the fibers

also have the same image in H2 . In particular if δ̂k(s) = δj(t) , then

(32) [Ĉk,s] · [Cj,t] = [Ck] · [Cj ] = [Ĉk] · [Ĉj ] .

Now we compute the intersection numbers of the two sets of prongs. If k < j , then Γ̂k∩Γj = ∅ ;

hence [Γ̂k] · [Γj ] = 0 .

(33) Γ̂1 ∩ Γ1 = {q1} .
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It follows from the first paragraph that [Γ̂1] · [Γ1] = −1 . For 2 ≤ j ≤ N ,

(34) Γ̂j ∩ Γj = {qj} ∪
[
Ĉj,δ̂j(sj) ∩ Cj,δ̂j(rj)

]
,

sj the unique value with δ̂j(sj) = δj(rj) = rje
2πi(j−1)

N . At the point of intersection the path δ̂
meets δ with sign −1 ; hence

(35) [Γ̂j ] · [Γj ] = −1− [Ĉj,sj ] · [Cj,rj ] = −1− [Cj ] · [Cj ] = −1 .

Finally, if k > j ,

(36) Γ̂k ∩ Γj = Ĉk,δ̂j(sk,j) ∩ Cj,δ̂j(rj) ,

sk,j the unique value with δ̂j(sk,j) = δj(rj) = rje
2πi(j−1)

N . Therefore

(37) [Γ̂k] · [Γj ] = [Ĉk,sk,j ] · [Cj,rj ] = [Ck] · [Cj ]
Hence by bilinearity,

(38)
( N∑

1

Jj [Γ̂j ]
)
·
( N∑

1

Jj [Γj ]
)

= −
∑
k>j≥2

JkJj γk · γj −
N∑
j=1

J2
j .

In other words, in the junction notation, if J = (J1, ..., JN )

(39) [J ]p̂ · [J ]p = 〈J, J〉 .
Clearly, from the preceding paragraph, ∂[J ]p = 0 if and only if ∂[J ]p̂ = 0 . In this case it is clear
that any two closed classes A,B ∈ H2(X) with images [J ]p and [J ]p̂ satisfy B · A = 〈J, J〉 and
have the same image in H2(X,π−1Br(p)) ∼= H2(X,Ep) . Therefore A and B are equal up to a
multiple of the orientation class of Ep ; imposing the condition A · σ(U) = B · σ(U) = 0 then
implies A = B = [J ] , so [J ] · [J ] = 〈J, J〉 . �

3. Deformations, String Junctions, Lie Algebras and more

In this section we consider deformations of elliptic surfaces and the appearance of string
junctions in the deformed geometry. Let π : X −→ U be an elliptic fibration over an open
set U ⊂ C with section σ, with πW : W −→ U its associated Weierstrass model; suppose that
the ramification divisor Σ consists of the origin, namely Σ = {0} ⊂ U . W has local equation
y2 = x3 + fx+ g, then the possible singular fibers are described in the following table (see [20]):

Kodaira Fiber Type ord(f) ord (g) ord(∆) Singularity Type

smooth ≥ 0 ≥ 0 0 −
In 0 0 n an−1
II ≥ 1 1 2 −
III 1 ≥ 2 3 a1
IV ≥ 2 2 4 a2
I∗n 2 ≥ 3 n+ 6 dn+4

I∗n ≥ 2 3 n+ 6 dn+4

IV ∗ ≥ 3 4 8 e6
III∗ 3 ≥ 5 9 e7
II∗ ≥ 4 5 10 e8

Theorem 3.1. (i) There exists a deformation W0 of the Weierstrass equation, such that
π0 : W0 → U is an elliptic fibration with π−10 (q) an I1 singular fiber ∀q ∈ Σ.
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(ii) Let J (−2) be the set of junctions J of W0 such that a(J) = 0 and 〈J, J〉 = −2. Equiva-
lently, let J (−2) ⊂ H2(W0) consists of those elements x with x·x = −2 and x·σ(U) = 0 .
Then ] J (−2) is the number of roots of the Lie algebra associated to the singularity of π.

(iii) If J = (J1, ..., JN ) ∈ J (−2) , then |Ji| ≤ 1 . In particular, all elements of J (−2) are
represented by smoothly embedded S2’s.

(iv) There exist subsets {α1, ..., αr} ⊂ J (−2) with r elements such that 〈αi, αj〉 is the negative
Cartan matrix associated to the singularity of π.

Proof. We will illustrate the proof in three of the cases from the table. All the singularities on
the table can be handled in the same way, see [13, 16]. For the first case, assume that π−1(0)
is of type Ir+1 , in other words, an ar singularity. Then by [20] the defining equation in the
complement of the image of the section σ can be written near π−1(0) as

(40) y2 = x3 − 3a2x+ 2a3 + sr+1

The derivative on the right hand side vanishes for x = ± a . Therefore, assuming U was small
enough to exclude the r + 1-st roots of −2a3 , the singular locus is Σ = {0}.

In this case, take for W0 be the deformation of W defined by

(41) y2 = x3 − 3a2x+ 2a3 + sr+1 + ε

for ε ∈ C. For |ε| small enough, the new discriminant locus of this equation will intersect U in
the singular set of the fibration

(42) Σε = {e
2πij
r+1 ε0 | j = 0, ..., r}

with εr+1
0 = ε a specific r + 1-st root. The fiber π−1(s)− σ(s) is the two fold branched cover of

C branched along the roots of x3 − 3a2x+ 2a3 + sr+1 + ε = 0 ; in particular at each point of Σε
there is a multiple root corresponding to an I1-singularity. Let δj(t) = te

2πij
r+1 ε0 , 0 ≤ t ≤ 1 ,be the

straight line path from the origin to the jth point in Σε . Then the equation of π−1(δj(t))−σ(s) ,

(43) y2 = x3 − 3a2x+ 2a3 + tr+1ε0 + ε ,

is independent of j . For example, if ε is real and positive and we also take ε0 to be real and
positive, then as we move along each path from zero to one, the two imaginary roots converge
to a common real real of multiplicity two at the end point and the real root remains always
real. In any case, whether we set it up this way or not, it follows from the preceding section
that the vanishing cycles γj are all equal; γ1 = .... = γr+1 . From this it then also follows that
{J ∈ J|a(J) = 0} has the basis α1, ..., αr , with α1 = (1,−1, 0, ..., 0) , α2 = (0, 1,−1, 0, ..., 0) , etc.
Since γj · γk = 0 because all these classes are equal, 〈αj , αj〉 = −2 , 〈αj , αk〉 = 1 for |j − k| = 1
and zero for |j − k| ≥ 2 . This clearly implies the result for this case, we get the roots of the
Dynkin diagram and Cartan matrix of su(r) .

Next consider the case of singular fiber π−1(0) of type III , defined by

(44) y2 = x3 + sx+ s2 .

In this case for U small enough the the discriminant locus is only the origin. A deformation can
be defined by

(45) y2 = x3 + (s+ ε)x+ (s2 + ε)

Then it is not hard to see that, for U small enough, Σε = {q1, q2, q3} consists of three points.
We take the basepoint to the origin s = 0 , which is now a smooth fiber E0 = π−1ε (0) of
the deformed fibration πε . The fiber E0 − σ(0) is the double branched cover of C along the
roots of x3 + εx + ε = 0 . The inverse image in the branched over of the three lines joining
these roots determine curves representing elements Zi ∈ H1(E0) ; choose the orientations so that
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Z1+Z2+Z3 = 0 . In this case the algorithm in the previous section yields, for the three vanishing
cycles, γi = Zi . In [13] this is obtained for a specific choice of small ε using a computer program
solving cubics, but the result can also be obtained (tediously) by hand. Therefore there are
exactly two junctions, J = (1, 1, 1) and its negative, with 〈J, J〉 = −2 and a(J) = 0 , and we
obtain the roots and Cartan matrix of su(2) .

The third case, of type IV, is given by the equation

(46) y2 = x3 + s2x+ s2 .

(47) y2 = x3 + (s2 + 2ε)x+ s2 + ε .

provides a deformation of the local model. Near the origin there are now four points in the
deformed discriminant. Using the same notation of the preceding paragraph for the homology
classes determined by the roots, this time we will get the vanishing cycles γ1 = γ3 = Z1 and
γ2 = γ4 = Z3 for the set of ordered vanishing cycles, with the signs chosen so that Z1 · Z3 = 1 .
Again, this is done with a computer program in [13] for a specific choice of ε , but it can also
be worked out by hand. The set of junctions with a(J) = 0 therefore has dimension two with
basis, for example, J1, J2 = {(1, 0,−1, 0), (−, 1, 0,−1)} , 〈Ji, Ji〉 = −2 , 〈J1, J2〉 = 1 , there are
six elements in J (−2) , and we get the roots and negative Cartan matrix of su(3) .

�

The example of the fiber of type IV actually arises from restricting a general Weierstrass
model π : Wg → F3 for an elliptic Calabi-Yau threefold over the Hirzebruch surface F3. This
is an example of a “non-Higgsable cluster” (in physics language) with a type IV fiber; for this
fibration, there there exists no smoothing deformation of the global model to a fibration with
only I1 singularities [21]. Nevertheless

(48) y2 = x3 + (s2 + 2ε)x+ s2 + ε .

provides a deformation of the local model.
In the papers [13, 16] we actually derive the entire representation structure of the Lie algebra

associated to the singularity using geometric string junctions. However, perhaps the main ad-
vantage of this method is its usefulness in considering higher dimensional elliptic fibrations (see
also [12]).

4. Higher Dimension, higher codimension

In physics, matter can appear when there is a codimension two stratum in the discriminant
locus, arising as the intersection of two codimension one strata. Resolutions may be hard to
use or may not even be available in all cases; we will conclude this paper with two illustrative
examples of the deformation technique.

The example will be an elliptic fibration with section over an open set in C2 whose discriminant
locus is the union of two curves meeting transversely in a point. Over each general point in the
complement of the intersection, on one component we have an I∗0 singularity, on the other an
I1 singularity. Then without loss of generality it can be assumed there is a local equation in
Weierstrass form [20]:

(49) y2 = x3 − 3c2s2x+ 2c3s3 + ats3 .
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Here s, t are coordinates in the base. The fibration over the line obtained by fixing a non-zero
value of t has an I∗0 singularity at s = 0 . For fixed s 6= 0 the fibration has an I1 singularity. The
deformation we consider varies with t:

(50) y2 = x3 − 3c2s2x+ 2c3s3 + ats3 + tε.

For a fixed t 6= 0 and fixed s there are two possible singular points, y = 0, x = ±cs . For x = cs ,
the corresponding points on the singular locus are the three cube roots of − ε

a denoted by the

red dots in the picture below; for x = −cs the points are the cube roots of − εt
at+4c3 . denoted by

the blue dots in the picture below.

s

t

t 6= 0, fixed

Each of these is an I1 singularity and we have completely split the I∗0 singularity along s = 0 .
The smooth fiber E0,t for a fixed t and s = 0 , minus the point at infinity i.e. minus σ(0, t) , is
the double cover of C branched along the roots of x3 + tε = 0 .

Consider first the three cube roots of − ε
a and let us assume that ε, a are real, ε > 0 , a < 0 .

Fix t 6= 0 and consider the (real) plane C in the variable s. Let δ(r) , 0 ≤ r ≤ 1 , be the straight

line path from the origin to the real cube root. Let ζ = e
2πi
3 . Then ζδ(r) and ζ2δ(r) will the the

paths to the other two roots. Then, if ρ1(r), ρ2(r), ρ3(r) are the roots of

(51) x3 − 3c2(δ(r))2x+ 2c3(δ(r))3 + at(δ(r))3 + tε = 0 ,

the roots of

(52) x3 − 3c2(ζkδ(r))2x+ 2c3(ζkδ(r))3 + at(ζkδ(r))3 + tε = 0 ,

will be ζkρ1(r), ζkρ2(r), ζkρ3(r) . For example, if t is a real positive number, then all along the
path δ(r) the real root, say it is ρ1(0) , remains real for 0 ≤ r ≤ 1 whereas the complex roots

ρ2(0) and ρ3(0) = ρ2(0) remain complex until r = 1 , at which point they merge into a real root
of multiplicity two. Then, along the path ζδ(r) , the roots ζρ2(0) = ρ3(0) and ζρ3(0) = ρ1(0)
will merge while ρ2(r) remains disjoint from the paths taken by the other roots. Similarly along
ζ2δ(r) , the roots ρ1(0) and ρ2(0) will merge. The paths of the merging roots of equation (52)
will be the path of the merging roots of equation (51) multiplied by ζ or ζ2 . If we assume
2c3 > −at , then it is not hard to see that the real root ρ1(s) decreases with s . Therefore,
since ρ1(s) + ρ2(s) + ρ3(s) = 3c2(δ(r))2 increases with s , so does the real part of the complex
roots. Therefore the path of the merging roots never crosses the line joining the complex roots of
x3 + tε = 0 . It follows from the algorithm above or a simple direct argument that the vanishing
cycle corresponding to the real cube root of − ε

a will be a homology class Z ∈ H1(E0) represented
by the curve lying over this straight line.

The resulting determination of the vanishing cycles can be formulated as follows: Multiplica-
tion by ζ , i.e. rotation through 2π

3 , induces a homeomorphism of the smooth fiber E0 , viewed

as the double branched cover of P1 along the roots of x3 + tε = 0 and “infinity”, and hence an
isomorphism ζ∗ : H1(E0) → H1(E0) . The vanishing cycles corresponding the cube roots of − ε

a

will be {Z, ζ∗Z, ζ2∗Z} .
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Now suppose that we choose c real so that at + 4c3 > 0 . The same argument shows that
we get the same vanishing cycles for these points also. When we order all six points by
increasing argument in the complex plane, we therefore obtain as our ordered set of van-
ishing cycles {Z, ζ2∗Z, ζ∗Z,Z, ζ2∗Z, ζ∗Z} . Note that, in the usual counterclockwise orientation,
Z · ζZ = ζZ · ζ2Z = ζ2Z · Z = 1 . From the relation 1 + ζ + ζ2 = 0 , it follows that the set
{J | a(J) = 0} of junctions with vanishing asymptotic charge has dimension four. The elements
(53)
α1 = (0, 0, 0,−1,−1,−1) α2 = (0, 0,−1, 0, 0, 1) α3 = (0,−1, 0, 0, 1, 0) α4 = (−1, 0, 1,−1, 0, 1)

are a basis and satisfy

〈α1, α1〉 = 〈α2, α2〉 = 〈α3, α3〉 = 〈α4, α4〉 = −2

〈α1, α2〉 = 〈α1, α3〉 = 〈α1, α4〉 = 1

〈α2, α3〉 = 〈α2, α4〉 = 〈α3, α4〉 = 0 .(54)

Thus we get the d4 Dynkin diagram, and in fact this set of junctions gives the root lattice and
weight structure of the d4 Lie algebra; see [16] for more on the Lie algebra details given the
geometric junctions.

Finally, we determine the monodromy around the component t = 0 of the singular locus to
exhibit the collapse of the d4 algebra (in physics language the “gauge algebra” d4) to a g2 algebra
(“gauge algebra” in physics language). Instead of only t real, take t(θ) = teiθ . For t small enough,

the cube roots of − εt(θ)
at+4c3 will be closer to the origin than those of − ε

a and will rotate clockwise
in an almost circular motion around as θ goes from zero to 2π . When θ gets to 2π the roots will
have been permuted by multiplication by ζ . For each θ , let E0(θ) be the singular fiber over the
origin, the branched cover of C along the roots of x3+t(θ)ε = 0 and infinity . Then multiplication
by eiθ induces (eiθ)∗ : H1(E0) → H1(E0(θ)) . Since the lines from the origin to these points on
the discriminant will also rotate around with θ , only changing length slightly, it is clear that the

vanishing cycles of the cube roots of − εt(θ)
at+4c3 will be {(e iθ3 )∗Z, (e

iθ
3 )∗ζ∗Z, (e

iθ
3 )∗ζ

2
∗Z} . Therefore

the effect of θ going from 0 to 2π is that the vanishing cycles do not change, but the three points
on the discriminant locus undergo a rotation though 2π

3 i.e. the order of all six vanishing cycles
will have changed as the other three do not move.

In fact, as the three cube roots of − ε
a do not move as θ changes, the ordered sets of pairs of

roots that coalesce as we move out from zero to any of these cube roots will have be permuted
cyclically each time θ goes around through 2π . (For each discriminant point and one value of θ ,
a third root will cross one of these at a value of r less than one.) Thus, when we get to θ = 2π ,
these vanishing cycles will have moved to {ζ∗Z, ζ2∗Z,Z} . In other words, the effect of θ going
from zero to 2π will be, since these vanishing cycles moved and the other discriminant points
rotated,

(55) {Z, ζ2∗Z, ζ∗Z,Z, ζ2∗Z, ζ∗Z} 7→ {ζ∗Z,Z, ζ2∗Z, ζ∗Z,Z, ζ2∗Z} .

In other words, on the junction we have the “outer monodromy” map

λ(a, b, c, a, b, c) = (c, a, b, c, a, b) .

(Note: As θ rotates around, there will be three points where pairs of points on the discriminant
locus are on the same line segments from the origin. This is the reason the ”obvious” continuity
argument gives the wrong result.)

Now we replace α4 with α′4 = (−1, 0, 0, 1, 0, 0). The Dynkin diagram of the intersection form
on the junctions α1, α2, α3, α

′
4 is also that of d4 , and α′4 is also a root. Clearly λ(α1) = α1 ,

λ(α2) = α′4 , and λ(α′4) = α3 and λ(α3) = α1 . Therefore, this monodromy map fixes the root
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corresponding the the central node of the d4 Dynkin diagram and permutes the other three
nodes, and when we divide by this action, we get the g2 Dynkin diagram. However, α′4 is not a
simple root in the d4 algebra. Or, to put it other way, if we take these to be simple roots, we do
not get the simple root lattice of d4 .

The monodromy does not preserve the Weyl chamber spanned by α1, ..., α4 but moves it to
a different one. However, since it is of order three and must fix the central node because of
invariance of intersection numbers, there are only two possibilities for what the monodromy
induces on the Dynkin diagram, either a rotation of the extremal nodes or the identity. The
calculation with the non-simple root eliminates the trivial case, and therefore it can be concluded
from this argument using a non-simple root that the monodromy reduces the d4 root lattice and
weight structure, i.e. the Lie algebra, to that of g2 .

The result can also be establishes by considering the full set J (−2). In [16] we showed that
there are precisely 192 four element subsets of J (−2) which can serve as simple roots; this number
matches the dimension of the Weyl group of d4, as it should. Thus J−2 contains the full data of
the Lie algebra within it. It is straightforward to show that the outer monodromy map preserves
J (−2) and is not trivial. Thus it gives an automorphism of the algebra, and from the junction
description it is of order three; it cannot be trivial on the Dynkin diagram without being so on
all of J (−2) . Therefore it must induces an action on the Dynkin diagram which reduces d4 to g2.

For further details on the root structure and the full representation theory see [16].
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Abstract. A new nano–material in the form of a double gyroid has motivated us to study
(non)–commutative C∗ geometry of periodic wire networks and the associated graph Hamil-

tonians.

Here we present a general more abstract framework, which is given by certain quiver
representations, with special attention to the original case of the gyroid as well as related

cases, such as graphene. The resulting effective C∗–geometry is that of the momentum space,
which parameterizes the quasi–momenta.

This geometry is usually singular, where the singularities describe so–called band intersec-

tions in physics. We give geometric and algebraic methods to study these intersections; their
origin being singularity theory and representation theory. A technique we newly apply to this

situation is the use of topological invariants, which we formalize and explain in the paper.

This uses K–theory and Chern classes as well as “slicing methods” for their computation.
In this method the invariants can be computed using Berry’s connection in the momentum

space. This brings monopole charges and issues of topological stability into the picture.

Adding a constant magnetic field or allowing projective representations makes the C∗

geometry non–commutative. In this case, we can also use K–theory, albeit in a different way,

to make statements about the band structure using gap labeling.

Introduction

Recently, a new nano–material in the form of a double gyroid has been synthesized [38].
It is based on a thickened triply-periodic minimal surface, whose complement consists of two
non-intersecting channels. These can be filled with conducting or semiconducting materials
[38] to function as nanowire networks with potentially useful electronic properties [26]. The
nontrivial topology of such a network has motivated our study of its commutative and non–
commutative geometry [21]. Following Bellissard and Connes [4, 9, 30], we proceed by identifying
the relevant C∗–algebra, which in our case is spanned by the symmetries and the tight-binding
(Harper) Hamiltonian of the skeletal graph obtained as a deformation retract of the channel. This
approach leads to an effective geometry described by a family of finite dimensional Hamiltonians
and their spectra; the latter determine the band structure of the original nanostructured solid
in the tight-binding approximation.

In this paper, we analyze this effective geometry, which in condensed matter physics is called
the momentum space and a cover of it, using methods from singularity theory and topology.
The singularities of the geometry are of particular interest as they determine physical properties
of the material. The most prominent example of this are the so–called Dirac points of graphene
which lead to its amazing properties including room temperature quantum Hall effect [8]. In
our setup, we show that these Dirac points can be thought of as pull backs of A1 singularities
for the particular case of the honeycomb lattice.

Singularities can also be forced by symmetries. One way to obtain such symmetries is via
symmetries of the underlying graph/quiver. This construction is not direct and proceeds through
several steps. The starting point is a re–gauging groupoid for matrix representations of the

http://dx.doi.org/10.5427/jsing.2016.15d
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Hamiltonian. These are then “transferred” to actions on the base spaces of the effective geometry.
The outcome is given by projective representations of subgroups of the symmetries of the graph
on bundles over the subsets of the momentum space stabilized by the respective subgroups.

In this paper, we generalize the condensed matter setup to quiver representations stemming
from finite graphs, thus making the theory more applicable to other contexts. In the process
we adapt the techniques of [23] and [24] to this more general situation. In particular, we get
a classification of singularities in the spectrum—the band intersections. The simplest of these
is a conical intersection of two bands — these are the Dirac points mentioned above. We give
analytic tools to compute locations and properties of all the singular points.

In the general framework above, we also give a formulation and application of the Berry
phase phenomenon [7] in terms of K–theory and Chern–classes generalizing the observations
of Thouless et al. (TKNN) [37] and Simon [34]. These concepts include topological charges
in various guises: scalar, K–theoretic and cohomological. When the parameter space is three-
dimensional, isolated conical degeneracies are magnetic monopoles in the parameter space [7]. In
the present case, the parameters are components of the crystal momentum k; their number equals
the dimensionality of the original periodic structure. Thus, in three spatial dimensions—the case
of the gyroid—Dirac points are monopoles in the momentum space and, as we will see, are stable
with respect to small deformations of the graph Hamiltonian. Furthermore, using foliations, we
consider a slicing technique which leads to an effective numerical tool for finding singular points
in the spectrum, generalizing the method used for this purpose in [40]. This technique has been
implemented in [25] and corroborates the topological stability of the gyroid’s Dirac points. This
stability is not a common characteristic of all Dirac points: those of graphene, which is described
by the honeycomb lattice, do not exhibit this property for general deformations.. There of course
might be deformations which do preserve them see e.g. [12].

This fact has an elegant and short explanation in our approach. We expect that this analysis
will contribute to the understanding of potential applications of gyroid-based nanomaterials, as
well as to the theory of three-dimensional generalizations of the quantum Hall effect, along the
lines of [5]. In two dimensions, the TKNN equations for generalized Dirac–Harper operators
have been worked out in [29]. Analyses of higher-dimensional situations are contained in [11, 14,
6, 27, 15].

Even without going to complete generality provided by quiver representations, our approach
to studying wire networks is not restricted to the gyroid system and applies to any embedded
periodic wire network in Rn. We have already used it to study more examples, namely, Bravais
lattices, the honeycomb lattice and two other triply periodic surfaces and their wire networks,
the primitive cubic (P surface) and the diamond (D surface). We refer to these as the geometric
examples. We recall some results here and include a new consideration of the topological charges.

The effective C∗ geometry becomes non–commutative if we add an external magnetic field or
more generally allow projective representations for the quivers. In the embedded wire network
cases the noncommutative geometry is given by a subalgebra of a matrix algebra with coefficients
in the noncommutative torus. Here the parameters of the torus correspond to the coefficients of
the constant B–field that the material is subjected to.

One surprising fact is that some properties of the non–commutative situation are similar to the
situation without a magnetic field, and there is evidence for duality between these two situations.
The duality concerns the degenerate subspaces of the torus that appears as the relevant moduli
space in both cases. In the commutative case, i.e. in the absence of a magnetic field, the torus
is the base for the family of Hamiltonians and the requisite subspace is where the spectrum of
the Hamiltonian has degeneracies. In the noncommutative case, the same torus parameterizes
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the B–field and the locus of degeneracy is that of those values of B where the C∗–algebra is not
the full matrix algebra.

The paper is organized as follows: In Chapter 1, we start with a description of the material
that motivated this study and its underlying geometry. This is independent of the rest of the
paper and may be skipped by the reader interested in the more general setup. The first chapter
also discusses how the gyroid surface geometry is reduced to that of the skeletal graph—the
deformation retract of a channel component of the complement to the triply periodic surface.
We additionally introduce other related geometries which we consider in parallel. These are the
honeycomb lattice underlying graphene, and the P and D surfaces, which are the other triply
periodic self–symmetric surfaces.

Chapter 2 describes the mathematical model we work with. This includes the Harper Hamil-
tonian and the relevant Hilbert space and C∗ algebra for the commutative and non–commutative
cases. We first consider the case of a periodic lattice embedded in Rn and then give the gen-
eralization to groupoid quiver representations in section 2.2. The reader more interested in the
general mathematical framework can use this section as a starting point for reading the paper.

We discuss the resulting C∗ geometry in Chapter 3. This includes the general setup identifying
the singular locus as a pull–back from a miniversal unfolding, the representation theory using the
re–gauging groupoid and our analysis of the Berry connection, topological charges and stability
of the singular points as well as a slicing method to detect singular points or monopoles. Chapter
4 contains all results for the specific examples of the triply periodic wire systems P, D and G,
as well as the two–dimensional honeycomb system and Bravais lattices in any dimension. This
includes the new results about the topological charges. Using the methods of Chapter 3, we give
the singular locus that is the degeneracies in the spectrum of the Harper Hamiltonian. As a
second set of results, we review the classification results for the non–commutative geometries for
the cases above. Here the parameter space is given by the background magnetic field 2–forms.
In Chapter 5 we give a brief outlook including an observation of an almost duality.

1. The Double Gyroid (DG) and Related Geometries and Material

1.1. The Geometry. The gyroid is a triply periodic constant mean curvature surface that is
embedded in R3 [16]. Figure 1 shows a picture of the gyroid. It was discovered in 1970 by
Alan Schoen [33]. A single gyroid has symmetry group I4132 in Hermann-Maguin notation.
Here the letter I stands for bcc. The gyroid surface can be visualized by using the level surface
approximation [28]

(1) Lt : sinx cos y + sin y cos z + sin z cosx = t

In nature the single gyroid was observed as an interface for di–block co–polymers [18]. The
double gyroid consists of two mutually non–intersecting embedded gyroids. Its symmetry
group is Ia3̄d where the extra symmetry comes from interchanging the two gyroids. It also has
a level surface approximation which is given by the above expression (1) with Lw and L−w for

0 ≤ w <
√

2. The picture on the left-hand side of Figure 1 is actually a double gyroid or a
“thick” surface.

Let us fix some notation. We will denote by S = S1 q S2 the double gyroid surface. Its
complement C = R3 \S has three connected components, which we will call C+, C− and W . W
can be thought of as a “thickened” (fat) surface which we will refer to as DG wall. There is a
deformation retract of W onto a single gyroid.

There are also two channel systems C+ and C−, shown in Figure 1. These channels form Y-
junctions where three channels meet under a 120 degree angle. Each of these channel systems can
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Figure 1. The fat gyroid surface W (left) and the two channel systems C+

and C− (right)

be deformation retracted to a skeletal graph Γ±. We will concentrate on one of these channels
and its skeletal graph Γ+, shown in Figure 2.

Figure 2. One of the two channels (left) and its skeletal graph in the unit cell (right)

1.2. The Material and Production. A solid-state double gyroid can be synthesized by self-
assembly at the nanoscale, as demonstrated by Urade et al. [38]. The first step is production
of a nanoporous silica film with the structure of unidirectionally cotracted double gyroid (DG)
with lattice constant of about 18 nm. The pores in the structure can then be filled with other
materials to form nanowires. Fabrication of platinum DG nanowires by electrodeposition has
been demonstrated in [38], where it has also been mentioned that the process can be used for
other metals or semiconductors.

1.3. Related Geometries: the P and D surfaces. There are two other triply periodic self–
dual and symmetric CMC surfaces- the cubic (P) and the diamond (D) network. They are shown
in Figure 3 together with their wire networks obtained in the same way as for the gyroid. Here
we summarize the results from [22].
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The P surface has a complement which has two connected components each of which can
be retracted to the simple cubical graph whose vertices are the integer lattice Z3 ⊂ R3. The
translational group is Z3 in this embedding, so it reduces to the case of a Bravais lattice.

The D surface has a complement consisting of two channels each of which can be retracted
to the diamond lattice Γ�. The diamond lattice is given by two copies of the fcc lattice, where
the second fcc is the shift by 1

4 (1, 1, 1) of the standard fcc lattice, see Figure 3. The edges are
nearest neighbor edges. The symmetry group is Fd3̄m.

Figure 3. The cubic (P) (left) and the diamond (D) wire network (right)

1.4. Graphene. Graphene consists of one-atom thick planar sheets of carbon atoms that are
densely packed in a honeycomb crystal lattice. This two–dimensional material has attracted
much interest recently, partially because of the existence of Dirac points where excitations show
a linear dispersion relation. Its electronic properties are described by a Harper Hamiltonian: see
the review [8] and references therein. Here we will reproduce some of the known facts, such as
the Dirac points using our non–commutative geometry machine.

2. Mathematical Model and Generalization: Graphs and Groupoid
Representation

2.1. Discrete model and Harper Hamiltonian. We will now describe how to obtain the
Harper Hamiltonian for any given graph Γ ∈ Rn with a given maximal translation group L ' Zn
[19]. We will start with the commutative case without an external field, and then progress to
the non–commutative case where the graph is placed in a constant external magnetic field. The
mathematical set–up we will describe below can be understood in terms of Weyl quantization
and Peierls substitution in physics [32]. Without the magnetic field the Harper Hamiltonian is
given by translations, but in the presence of a magnetic field all translations turn into magnetic
translations or Wannier operators, which cease to commute with each other.

Mathematically the discretization by the above process yields the Hilbert space H = `2(V (Γ)),
where V (Γ) are the vertices of Γ, and a projective representation of the translation group L as
well as an operator H, the Harper Hamiltonian. Concretely, the elements l of L act on the
functions Ψ via the usual translations Tl : TlΨ(l′) = Ψ(l − l′).

2.1.1. Quotient Graph and Harper Hamiltonian. In general, given an embedded graph Γ ∈ Rn,
with a given maximal translation group L ' Zn, we consider the quotient graph Γ̄ := Γ/L and
the projection π : Γ→ Γ̄. The quotient graphs for our four main examples are given in Figure 4.
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Figure 4. The quotient graphs of the P,D,G surfaces and the honeycomb lat-
tice, together with a spanning tree and an order of the vertices.

The vertices of this graph are in 1–1 correspondence with vertices or sites of Γ in a fundamental
cell. We can think of the graph Γ̄ as embedded into Tn = Rn/Zn. Each edge e of Γ̄ lifts to a

pair of edge vectors
→
e ,
←
e= − →e where the underlying line segment is any lift of e to Γ. This is

well defined since any two lifts differ by a translation.
To each vertex v ∈ Γ̄ we can associate the Hilbert space Hv := `2(π−1(v)). Then the whole

Hilbert space H decomposes as

(2) H =
⊕

v vertex of Γ̄

Hv

Since all the Hv are separable Hilbert spaces, they are all isomorphic.
The Harper Hamiltonian is then given as follows. For each edge e between two vertices v and

w of Γ̄ let T→
e

be the translation operator from Hw → Hv. This extends to an operator T̂→
e

on

H via T̂→
e

= iv̄T→e Pw̄ where iv̄ : Hv̄ →H is the inclusion and Pw̄ : H →Hw̄ is the projection.
The Harper Hamiltonian is

(3) H =
∑

e edges of Γ̄

T̂→
e

+ T̂−→e

2.1.2. Harper Hamiltonian in the presence of a magnetic field. Adding a constant magnetic
field requires a slightly different definition of the Harper Hamiltonian. We will use projective
translation operators whose commutators include the fluxes of the magnetic field as follows: We
define a 2–cocycle αB ∈ Z2(L,U(1)) by a two–form Θ̂ on the ambient Rn. Such a two–form is

given by a skew symmetric matrix Θ with Θ̂ = Θijdxi ∧ dxj . We let B = 2πΘ̂ and interpret it
as a quadratic form1. In this way we obtain a two–cocycle

αB ∈ Z2(Rn, U(1)) : αB(u, v) = exp(
i

2
B(u, v))

which we then restrict to L.
We define magnetic translations by starting from A, which is a potential for B (on Rn). The

magnetic translation partial isometry is now acting on a wave function as

Ul′ψ(l) = e−i
∫ (l−l′)
l A ψ(l − l′)

1This is the quadratic form on constant vector fields, which can be identified with a quadratic form on Rn.
The matrix Θ is also the matrix for this quadratic form.
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The magnetic Harper operator is defined as

(4) H =
∑

e edges of Γ̄

U→
e

+ U←
e

2.2. Generalization: Groupoid and quiver representations. In the setting above, which
we call the geometric examples, we have distilled the following data: a finite graph Γ̄, the
translational groups L and a projective representation of it on H =

⊕
Hv and finally the

Hamiltonian H.
We will now explore the possibility of obtaining such data from a more general setup. There

are two ways to do this: in terms of groupoids or in terms of quivers.

2.2.1. Groupoid representation. Recall that a groupoid is a category whose morphisms are all
invertible. A representation of a groupoid is a functor ρ from this category into a linear category.
In our case this will be the category of separable Hilbert spaces which is the full subcategory of
the category of vector spaces whose objects are separable Hilbert spaces.

A graph Γ̄ (here Γ̄ need not be finite) determines a groupoid G as follows. The objects are
the vertices of Γ. The morphisms are generated by the edges. That is for each oriented edge
between v and w there is one generator φ→

e
in Hom(v, w). The morphisms in this category are

then the composable words in the φ→
e

where composable means that the source of a latter is the
target of the predecessor, with the relations that

(5) φ→
e
φ←
e

= idv ∈ Hom(v, v), the identity element

What this means is that the morphisms are the paths on Γ up to homotopy, with the constant
path yielding the identity.

A groupoid representation of G in separable Hilbert spaces then assigns to each vertex v of

Γ̄ a separable Hilbert space ρ(v) = Hv and to each oriented edge
→
e from v to w a morphism

ρ(φ→
e

) = Φ→
e
∈ Hom(Hv,Hw) with the relation that Φ→

e
Φ←
e

= idHv . We will abbriviate ρ(φ→
e

)

by ρ(
→
e ).

The groupoid representation is unitary if all the Φ→
e

are.

Remark 2.1. Notice that there is an involution ∗ on the morphisms, by transposing the word
and reversing the orientation of each letter. So we can only look at involutive functors, that is
functors which send ∗ to †, that is the Hermitian adjoint. This guarantees that the representation
is unitary.

2.2.2. Quiver representation. There is a way to formulate this in quiver language. Given a graph
Γ̄ and an arbitrary choice of directions for the edges determines a quiver. Now one can construct
the double of the quiver, where each oriented edge is doubled with reverse orientation. If we
started from a graph, this means that each unoriented edge e is replaced by the two oriented

edges
→
e and

←
e . Now the double of the quiver is independent of the original choice of orientation.

As above, there is an involution ∗ on the set of its oriented edges which is given by reversing the
orientation. We will restrict the quiver representations we consider to those where the involution
∗ goes to †.

2.2.3. Hamiltonian of the representation. Just as above we set H :=
⊕

v vertex of Γ̄ Hv and
define

H :=
∑

e edges of Γ̄

ρ(
→
e ) + ρ(

←
e ) : H →H
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2.2.4. Representation of π1(Γ̄). If we fix a vertex v0 of Γ̄, the groupoid representation naturally
gives a representation of π1(Γ̄, v0) as follows. We fix a set of symmetric generators of π1(Γ̄, v0)
which is isomorphic to the free group in b1 = 1−χ generators Fb1 , where χ = #vertices−#edges
is the Euler characteristic and b1 is the first Betti number. Each such generator gi is a directed

simple loop on the graph which is given by a sequence of directed edges
→
e 1i, . . . ,

→
e nii. Then

ρ(gi) = ρ(
→
e 1i) ◦ · · · ◦ ρ(

→
e nii) gives a representation of π1(Γ̄, v0) on Hv0 .

Definition 2.2. We will denote the algebra generated by ρ(π1) by T . We say ρ is maximal if
the generators of π1 map to linearly independent operators and we say that ρ is of torus type
if T = TnΘ, the non–commutative n-torus with parameters given by the skew-symmetric matrix
Θ. Here necessarily n = 1− χ(Γ) .

If ρ is of torus type then representation ρ of π1(Γ̄, v0) = Fb1 as a projective representation
factors through H1(Γ̄) = Zb1 = Fb1/[Fb1 ,Fb1 ], the Abelianization of π1. In the geometric setup
of nano-wire networks, these are given by a constant background B field and the parameter Θ
is the matrix corresponding to that field as discussed above; see [21] for additional details.

In the geometric situation of Chapter 1, maximality is equivalent to the fact that the trans-
lational symmetry group is maximal.

2.2.5. Spanning trees. If we pick a rooted spanning tree of Γ̄ then we get isomorphisms
φ0v : Hv0 'Hv by using ρ and concatenation along the unique shortest path of oriented edges

from v0 to v in the spanning tree. Let Φ =
⊕

v φ0v : H
|V |
v0 →H . Then this isomorphism yields

a representation ρ̃ on H
|V |
v0 via pullback.

Likewise φv0 induces an isomorphism of π1(Γ̄, v) and π1(Γ̄, v0). Using this identification, we

get a representation ρ̂ of T on H and via pull-back with Φ on H
|V |
v0 .

A rooted spanning tree (τ, v0) also gives rise to one more bijection. This is between a set of
(symmetric) generators of π1 and the edges not in the spanning tree. The bijection is as follows.

If
→
e is a directed edge from v to w then there is a generator g→

e
which is given by the following

path of ordered edges: (1) the unique shortest path in τ from v0 to v (2) the directed edge
→
e

and (3) the unique shortest path in τ from w to v0. It is clear that g→
e

= g−1
←
e

. By contracting

the spanning tree, we see that this is indeed a set of symmetric but otherwise independent
generators.

For convenience, we set g→
e

= 1 if e ∈ τ .

2.2.6. Quiver C∗–Geometry, the algebra B. Given a groupoid representation in separable Hilbert
spaces of a finite graph Γ̄ we call the C∗ algebra generated by the operators H and T via ρ̂ on
H the Bellissard–Harper algebra of the pair (Γ̄, ρ) and denote it by B.

This general set gives the generalization of one of the results of [21].

Theorem 2.3. Any choice of spanning tree together with an order on the vertices gives rise to
a faithful matrix representation of B in M|V |(T ).

Proof. This follows from the fact that under Φ, ρ(
→
e ) gets transformed to the matrix entry ρ(g→

e
)

between the copies of Hv0 corresponding to Hv and Hw under Φ. Enumerating these vertices
yields a matrix. �

In the following given a rooted spanning tree τ we will only choose orders < such that the
root is the first element. The resulting matrix Hamiltonian will be denoted by Hτ,<.
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3. C∗–geometry

3.1. Structure theorems for the C∗–geometry. The non–commutative C∗–geometry of such
a quiver representation in general and the one stemming from the geometric situation in partic-
ular is that of B.

Just like in [21, 22] one can now ask the question whether or not B is isomorphic to the
full matrix algebra and hence Morita equivalent to T itself. In the geometric case, we obtain
a family of algebras depending on a choice of magnetic field. To take this into account, we will
denote by BΘ the resulting matrix algebra for the choice of magnetic field determined by Θ. In
this notation, TΘ = TΘ is generically simple and led to the expectation —which we proved in
[21]— that generically BΘ = M|V |(TΘ). This of course need not be the case in general.

It stands to reason that other more complicated physical phenomena could be described by
such algebras.

It actually turns out that in the geometric examples not only is the algebra indeed the full
matrix algebra at generic irrational parameter values, but that there are even only finitely many
or at most a co–dimension–2 subset of matrix parameters Θ, where BΘ (Mk(TΘ).

Theorem 3.1. [21, 22] For the geometric cases of the G surface and the honeycomb lattice the
algebra BΘ is isomorphic to the full matrix algebra except at finitely many values of Θ given in
Chapter 4. For the P surface and all Bravais lattices BΘ = TΘ = M1(TΘ). For the D surface,
the set of values of Θ for which BΘ (M2(TΘ) is given by 6 one dimensional families and finitely
many special points (also listed in Chapter 4). If BΘ is the full matrix algebra then it is Morita
equivalent to TΘ.

Remark 3.2. Note that except for the P and general Bravais case, these families above give
examples of continuos variations of algebras whose K–theory does not vary continuously. In
those cases the K–theory for the commutative case Θ = 0, which corresponds to a nontrivial
ramified cover of the torus [21, 22], is different from the generic situation, which has the K-theory
of the torus. There are also certain special points where the algebra and hence the K–theory is
isomorphic to the commutative case, although the magnetic field is not 0. This happens if the
magnetic flux through the relevant cells is integer. We also expect the K–theory to drop at the
other special points, due to the presence of additional symmetries.

3.1.1. Inspecting the spectrum via K–theory labeling. One application of the non–commutative
approach is gap labeling by K–theory. If the Hamiltonian H has a spectrum bounded from
below, then each gap in the spectrum gives rise to a projector P<E onto the Eigenspaces with
Eigenvalues less than any fixed value E in the gap, see e.g. [4, 30]. The gap labeling then
associates the K–theory class of P<E to the gap.

By the above result, via the inclusion B ↪→ Mk(T ) the projector P<E also gives rise to a
K–theory class in K(Mk(T )) ' K(T ). Using this embedding, one can deduce analogues of the
famous Hofstadter Butterfly.

Theorem 3.3. If (Γ̄, ρ) is toric non–degenerate, then the Hamiltonian H as an operator on H
has only finitely many gaps if the magnetic field is rational in the sense that the matrix Θ is
rational.

3.2. Effective geometry in the commutative case: the momentum space and the
Eigenvalue cover. If B is commutative, for instance if Θ = 0 in the geometric situation, then
by the Gel’fand–Naimark theorem, there is a compact2 Hausdorff spaceX, such that B ' C0(X).
The points of X can be thought of as characters, i.e. C∗–homomorphisms χ : B → C. More

2B is unital.
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precisely these characters are in bijection with the maximal ideals of B which are the points. If
we wish to make this distinction, we write pχ for the point of X corresponding to the character
χ and vice–versa χp for the character corresponding to p. Likewise there is a space T which
corresponds to the C∗–algebra T . In the geometric case T = Tn = Rn/L.

As usual the correspondence between the algebra of functions and the spaces is contravariant.
This means that the inclusion ρ̂ : T → B gives rise to a morphism π : X → T . If (ρ,Γ) is
maximal, then T → B is injective and hence π : X → T is surjective.

Furthermore let us consider the algebra T ⊕k given by the direct sum of k copies of T . The
space corresponding to this algebra is simply T q · · · q T k–times.

Since after choosing an order and a rooted spanning tree B ⊂ M|V |(T ), we can lift any
character χ of T to a C∗-homomorphism: χ̂ : M|V |(T )→M|V |(C) of B by applying χ to each
entry.

Definition 3.4. We call a point χ of T degenerate if χ̂(H) has less than |V | distinct Eigenvalues
and we will denote this locus as Tdeg.

We also set Xdeg := π−1(Tdeg). These are the singular points of X.
Repeating the proof of [21] we arrive at the following

Theorem 3.5. If (ρ, Γ̄) is maximal the map π : X → T is ramified over the degenerate points
and furthermore X is the quotient of the trivial k–fold cover of T where the identifications are
made in the fibers over degenerate points. Moreover these correspond to the degeneracies of H
over these points.

In other words, X can be thought of as the spectrum of the family of Hamiltonians
H(p) = χp(H) parameterized over T .

The key ingredient is the image of H under the map B → T ⊕k dual to the map qki=1T → X

(6) H 7→
∑
i

λiei

where ei are the idempotents corresponding to the i–th component and λi is the i–th Eigenvalue.

3.3. Singular geometry of the momentum space and the Eigenvalue cover.

3.3.1. Characteristic map and Swallowtails. In the commutative case, the locus Xdeg has a nice
characterization in terms of singularity theory, [23]. First, there is an embedding of X into
T × R, where X is identified with the pairs (t, λi) for which λi is an Eigenvalue of H(t). Here
H(t) = χ̂t(H), i.e. the point t corresponds to the character χt under the Gel’fand representation.

The key ingredient is a newly defined characteristic map: for this let

P (z, t) = det(zId−H(t)) = zk + bk−1(t)zk−1 + · · ·+ b0(t),

let

P (z − bk−1

k
, z) = zk + ak−2(t)zk−2 + · · ·+ a0(t)

and let g be the isomorphism on T × R which sends (t, z) to (t, z − bk−1

k ).

The coefficients ak−2(t), . . . , a0(t) define a map Ξ : T → Ck−1 called the characteristic map.
We recall that the miniversal unfolding of the Ak−1 singularity zk is given by the family of
functions fa0,...,ak−2

= zk + ak−2z
k−2 + . . . a1z+ a0 , with the parameters (a0, . . . , ak−2) ∈ Ck−1

giving the base of this variation, see e.g. [2]. This is the base of the covers whose fiber over a
point (a0, . . . , ak−2) are the roots of fa0,...,ak−2

. The terms zi : 0 ≤ i ≤ k − 2 correspond to a

basis of the Milnor or Jacobian ring C[z]/(zk−1). It is miniversal in the sense that any other
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variation of resolving the singularity is a pull-back of a variation equivalent by diffeomorphism
to this one. Notice that the term with zk−1 is missing, which is why we used the map g to
reparameterize the characteristic equation.

Identifying Ck−1 with the base of the miniversal unfolding of the Ak−1 singularity, we obtain
the following (cf. [23]):

Theorem 3.6. The branched cover X → T is equivalent via g to the pull back of the miniversal
unfolding of the Ak−1 singularity along the characteristic map Ξ. Explicitly, if P̂ = P ◦ g then
the pull back along Ξ of the cover of the miniversal unfolding is the cover corresponding to the
roots of P̂ . Via g this cover is equivalent to the one of P and hence to the cover X. Moreover
if the family of Hamiltonians is traceless the cover is the pull–back on the nose.

The family is traceless if Γ̄ has no small loops —that is edges which are a loop at one vertex—
and if, additionally, the graph is also simply laced, then ak−2 ≡ |E(Γ̄)|. In other words, the
image of T under Ξ is contained in the corresponding slice ak−2 = |E(Γ̄)| of the base of the
miniversal unfolding.

This means that if Σ ⊂ Ck−1 is the discriminant locus or swallowtail, then Tdeg = g−1(Ξ−1(Σ))

and the fiber of π over a point t is exactly g−1π−1
A (Ξ(t)) where πA is the projection of the

miniversal unfolding.
Here the swallowtail Σ is the set of points (a0, . . . , ak−2) ⊂ Ck−1 where fa0,...,ak−2

has roots
of higher multiplicity – see Figure 5 for the A2 and A3 cases.

In other words the fibers over degenerate points are identified with the corresponding fibers
over their image points in the swallowtail.

Using Grothendieck’s characterization [10] of the swallowtail as stratified by lower order sin-
gularities obtained by deleting edges in the corresponding Dynkin diagram, and pulling this back
via Ξ, we obtain:

Corollary 3.7. Consider a variation of Hamiltonians given by (Γ̄, ρ) and assume that the Hamil-
tonians are traceless. The only possible types of singularities in the spectrum of this variation
are (Ar1 , . . . , Ars) with 1 ≤ s ≤ bk/2c, and

∑s
i=1 ri ≤ k − s.

In the simply laced case with no loops, ri < k

Remark 3.8. Notice that our approach is “orthogonal” to the considerations of [13] where the
projection T ×C→ C was used instead of the projection T ×C→ T which we use. Also in their
context, T needs to be complex one–dimensional and hence their arguments do not generalize
to arbitrary (odd and even) dimensions. This is because their theory relies on deep theorems
which are special to the algebraic geometry of curves.

Remark 3.9. Theorem 3.6 and the corollary above can be viewed as a generalization/refinement
of what is commonly referred to as the “von Neumann–Wigner theorem”. This is not a theorem
per se, but the expectation that for a “generic” variation the degenerate locus is of codimension
3. This goes back to the result of [39] that for the full family of all Hermitian Hamiltonians
Herm(k) (the space of all k×k Hermitian matrices) the degenerate locus is indeed of codimension
3.

The most prominent results about the geometry of Herm(k) were already obtained in [39].
Here one can find the co–dimensions of the strata of degenerate Eigenvalues, basically by a
dimension count. This was carried further in [3], where a fibration was introduced. For this and
other discussions it is sometimes convenient to mod out the k2-real-dimensional vector space
Herm(k) by translations and dilatations. Indeed shifting the spectrum or scaling it does not
change the topology of the situation. The translations are done by adding scalar matrices and
the dilatation, as usual, by multiplying by non–zero constants. Modding out by the translations
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Figure 5. The swallowtail for the A2 (left) and A3 (right) singularities

means that we can restrict to traceless matrices and modding out by dilatations means that
we can take the norm to be 1, unless we are dealing with the 0 matrix. The quotient space of
the space of non–scalar Hermitian matrices under the simultaneous action, which is naturally
identified with the co-invariants, is then a k2 − 2–dimensional sphere which we denote by S(k).
This sphere then has a filtration by pieces Fp for which the first p Eigenvalues are equal. Arnold
[3] studied this filtration and that study has been continued in [1].

Our main focus is the geometry of a given (not necessarily generic) family H : T → Herm(k)
dictated by a quiver representation. In this setting the exact codimension depends on the whole
family T and is given precisely as the preimage of Ξ. To be more precise locally it is the dimension
of the intersection of the image under Ξ with the swallowtail and the dimension of the fiber.

Proposition 3.10. In the maximal toric case increasing the number of links to arbitrarily high
values, the dimension of the degenerate locus Tdeg generically becomes −χ(Γ), so that the stable
expected codimension of the degenerate locus is 1.

Proof. Since the domain of Ξ is compact, so is the image. Its size is limited by the coefficients of
the Hamiltonian. The value of the i, j–th entry under a lifted character χ̂ is sharply bounded by
l where l is the number of edges between vi and vj . This is follows from to the definition of the
Hamiltonian as translations along edges and is a generalization to many edges of [23] [Section 2
(equation (6)]. As the number of edges grows, this bound increases. This implies that the sharp
bound on the coefficients ai also increases. If this is large enough, the image of Ξ will fill out a
bounded region of the complement of the swallowtail Σ over which the discriminant is positive.
Then the boundary of the image given by a part of the swallowtail Σ will be of codimension 1
and of dimension |VΓ| − 2. The generic dimension of the fiber will be dim(T ) − (|VΓ| − 1). In
total this gives the dimension of the critical locus as 1−χ(Γ)− |VΓ|+ 1 + |VΓ| − 2 = −χ(Γ). �

The test case of the triangular graph with possibly multiple edges has been calculated in [22]
which gives an example of the phenomenon described above. This is illustrated in Figure 6 and
Figure 7.

3.3.2. Characterizing Dirac points. Physically very interesting singularities of X are conical sin-
gularities, which are also called Dirac points. In order to find these singularities, we consider the
ambient space T × R and the function P : T × R→ R as given in §3.3.1. As we argued in [23],
Dirac points in the spectrum are isolated Morse singularities of P with signature (+,−, . . . ,−).
That argument did not need the specifics of the geometric situation and hence generalizes.
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Figure 6. Triangle graphs with possibly multiple edges

Figure 7. Spanning tree and characteristic region for the triangle graphs

As Morse singularities are of type A1 it is a necessary condition from the above is that there
is an A1 singularity in the fiber, e.g. via the methods given above. For a Dirac point, one in
addition needs to check the signature.

3.4. Forced degeneracies by Symmetries. One reason that singular points have to be
present is given by symmetries. If the momentum space geometry stems from a graph, such
symmetries can be induced by symmetries of the underlying graph. The procedure for this is
not straightforward though and proceeds via re–gauging groupoid and a “lift” of its action to the
momentum space [24]. The result of this rather elaborate process is the existence of projective
representations of subgroups of the symmetry group of the graph that appear as stabilizers in
the geometric action on the momentum space. We describe this construction below.

In the geometric examples of wire networks, we showed in [24] that all the singularities of the
Eigenvalue cover are forced by these enhanced re–gauging symmetries.

3.4.1. General setup. Going back to the embedding of BΘ into Mk(TnΘ) the relevant matrix
representation depended on the choice of a rooted spanning tree (τ, v0) and an order < on the
vertices. We will now fix that the first element in that order is given by the root. In [24] we
showed that the re–gauging from (τ,<) to (τ ′, <′) is given by conjugation by a unitary matrix

Uτ
′,<′

τ,< . These matrices are more complicated than just the permutation group and incorporate
local gaugings. These are given by diagonal matrices with invertible elements in TΘ indexed by
the vertices of the graph.

Moreover in this way, the automorphism group of Γ acts by re–gaugings. Namely, if φ ∈ Aut(Γ)
then given (τ,<), the image of τ , φ(τ), and the push forward of the order, φ∗(<), give rise to a

re–gauging by U
φ(τ),φ∗(<)
τ,< . Usually this action on a given Hamiltonian is not trivial, due to the

fact that ρ need not be trivial.
All these observations directly generalize to the more general case of a groupoid representation

(Γ̄, ρ). In this case TΘ is replaced by T . The arguments of [24] are not sensitive to the particular
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structure of TΘ and hence carry over to the more general situation. We summarize the logical
steps here.

3.4.2. Re–gauging groupoid. The re–gaugings form a secondary groupoid, the re–gauging group-
oid. Its objects are given by tuples (τ,<) and between any two objects there is a unique
morphism ((τ,<), (τ ′, <′)). There is a morphism λ to matrices with coefficients in T by sending

((τ,<), (τ ′, <′)) to Uτ
′,<′

τ,< . This morphism need not be a representation, however, since we are

only guaranteed that λ(g1)λ(g2)λ(g1g2)−1 is a non–commutative 2–cocycle with values in U(T ),
the unitary elements of T . The reason for this is that under the identification given in §2.2.5
the re–gauging basically corresponds to an isomorphism of π1(Γ̄, v0) with π1(Γ̄, v′0) along a path,
v0 and v′0 being the roots of τ and τ ′ respectively. Concatenating the isomorphisms along these
paths as above, we end up with an isomorphism under a loop; but this is precisely conjugation
with an element of π1(Γ̄, v0). In the representation, this element becomes an element in U(T ).

3.4.3. Projective Groupoid Representations. In the commutative case the cocycle above gives

rise to a central extension by U(T ) and the matrices Uτ
′,<′

τ,< give a representation in Mk(T ) of
the central extension.

Evaluating with a character χ̂, the extension becomes an extension by U(1) and the matrices

χ̂(Uτ
′,<

τ,< ) form a projective representation of the groupoid in Mk(C).

3.4.4. Stabilizer Groups, Lifts, Projective Actions and Group Extensions. If we have a fixed
point, that is a Hamiltonian that is invariant under the action of non–trivial groupoid elements,
then these elements form a group of re–gaugings. Technically the representation of stabilizer
subgroupoid factors through the group given by identification of all objects in that groupoid to
one point.

In order to find such a stabilizer group, we look for an automorphism of T which compensates
the re–gauging by automorphisms of Γ̄. That is, given an automorphism φ of Γ̄, let Φτ,<τ ′,<′ be

the associated re–gauging. We then look for an automorphism Ψτ,<
τ ′,<′ of T such that

(7) χ̂t(Φ
τ,<
τ ′,<′(Hτ,<)) = χ̂Ψτ,<

τ′,<′ (t)
(Hτ,<)

This is done for one orbit of (τ,<) under Aut(Γ̄). This tool is most effective if the graphs are
completely symmetric, like the cases we considered.

If we find such a lift of the automorphism group Aut(Γ̄) → Aut(T ), then we can look for
points of enhanced symmetry. If t ∈ T has a non–trivial stabilizer group under this action
of Aut(Γ̄) then the matrix χ̂t(Hτ,<) has a non–trivial re–gauging fixed group. This action by
conjugation yields a projective representation of the stabilizer group.

Given such a projective representation, we know that it is a representation of a central U(1)
extension of the stabilizer group. If the stabilizer group is finite, we would furthermore like to find
a smaller if possible finite group which already carries the representation. That is an extension
of the stabilizer group by a finite group. For this one uses the theory of Schur multipliers.

The upshot is that the isotypical decomposition of the representation has to be commensurate
with the Eigenspace decomposition of the Hamiltonian – for that particular value t ∈ T . Practi-
cally this means that on the one hand if in the given representation there are irreps of dimension
bigger than one, one can infer that there are degeneracies in the spectrum of at least these
dimensions. On the other hand, the one dimensional isotypical components fix Eigenvectors and
hence make it easy to find the Eigenvalues. In general of course one only has to diagonalize the
Hamiltonian inside the isotypical summands.
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3.5. Invariants of the momentum space geometry. In the commutative case, a last way to
characterize the singularities in the momentum space geometry is to use topological invariants.
These come from the fact that although the cover X → T is unramified and trivial outside of
Tdeg the line bundles defined by each non-degenerate Eigenvalue carry non–trivial topology.

3.5.1. Basic bundles, and their K-theoretic and Cohomology Valued Charges. More precisely, let
Xdeg = π−1(Tdeg) be the closed singular locus of X. Then the restriction

π : X0 := X \Xdeg → T0 := T \ Tdeg

is the trivial k–fold cover, since the Eigenvalues are real. A trivialization is given by choosing
the order in each fiber according to the order in R of the Eigenvalues λ1 < · · · < λk.

On this restriction the C∗–algebra C0(X \ Xdeg) contains pairwise orthogonal projections
Pi such that H =

∑
i λiPi. Each of these Pi defines a rank 1 sub–bundle Li of the trivial

bundle X0 × C which is the Eigenbundle corresponding to the Eigenvalue λi. The projector
or equivalently the bundle Li defines an element in K–theory [Li] ∈ K(T0). We will continue
with the geometric interpretation of line bundles and K–theory here, although in a forthcoming
analysis we will concentrate on the C∗ version ofK–theory in oder to move to a non–commutative
setup.

We call the classes [Li] the K–theoretic charges and the associated Chern classes

βi := c1(Li) ∈ H2(T0)

the cohomological charges. We also let C =
⊕

i Li, and [C] ∈ K(T0) be its class in K–theory.
Finally we define the polynomial invariant Qc(ti) =

∏
i(1 + tiβi) ∈ Hev(T0)[ti]. This class

contains all the cohomological information of the Li and C.

Remark 3.11. One can generalize most of the arguments to non–Hermitian variations:
H : T → GL(k,C), but then one should impose that T0 is simply connected and π1(T0) = 1
in order for the characteristic polynomial to be irreducible over C0(T0) which is necessary to
define the Pi, see e.g. [17].

Remark 3.12. We assumed that the Hamiltonians are generically non–degenerate. It is suf-
ficient to assume that the ranks of the Eigenbundles are generically constant. In this case, we
have vector bundles Vi and total Chern classes c(Vi).

3.5.2. Numerical Invariants/Charges. One can try to get numerical information about Qc and
the βi by pairing them with appropriate homology classes. For this it is easier to assume that
we are dealing with oriented manifolds. If we furthermore have a differentiable structure, we
know that we can evaluate Chern classes by using Chern–Weil theory.

The paring then corresponds to the integral of the curvature form for any connection over a
submanifold of the correct even degree. The set of all such numbers on a set of generators of
homology of T0 then determines the cohomological charges as functions on homology. By the
classification theorem for line bundles, see e.g. [20] the first Chern class fixes the isomorphism
class of the line bundle. Furthermore, if we use at least Q coefficients, usually in physics we take
R of C, cohomology and K-theory are isomorphic via the Chern character and we can represent
homology by using submanifolds [20, 35]. Notice that by the results of Thom [35] all second
homology classes are of this type even over Z.

It then follows that the charges are trivial if T0 has vanishing second cohomology, which is
where the first Chern classes live, (e.g. if T0 is 2–connected). In that case the Chern classes βi
vanish and the line bundles [Li] are trivializable. This is the case in some examples, notably
the honeycomb. The effect of the line bundles being trivializable is that the associated points of
degeneracy are not topologically stable, see §3.6.
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The two–torus or the two–sphere do however have non–vanishing H2 and thus are prime
candidates to detect first Chern classes if we embed them into the momentum space.

In this particular case, we can evaluate the first Chern class of a line bundle with a connection
on a 2–dimensional submanifold by pulling back, i.e. restricting, the line bundle to the surface
and integrating the curvature form of the connection. Here if A is a connection form for the line
bundle, and the first Chern–class is represented by the curvature form Ω = dA+ 1

2A ∧A.
Explicitly, if Σ is an oriented compact surface and i : Σ→ T is an embedding, then

(8) QΣ,i :=

∫
Σ

i∗c1(Li) = 〈c1(Li), i∗([Σ])〉

where 〈 , 〉 is the standard pairing between cohomology and homology.

3.5.3. Berry connection. It was Berry’s [7] great insight in this context, that adiabatic transport
provides such a connection and that this connection is indeed not always trivial and produces
the so–called Berry phase as a possible monodromy.

Simon [34] realized that Berry’s formula is just the calculation of the first Chern class of [Li]
using a connection and Chern-Weil theory. Thus one can use any other connection, for instance
the so–called canonical connection used by Simon. By general theory the first Chern class is the
only obstruction for the line bundle, and hence the monodromy, to be trivial.

3.5.4. Standard Setup. Let us first fix the concrete setup which is usually present. Assume T
is compact orientable potentially with boundary and that Tdeg is in codimension at least 1; i.e.
T is generically non–degenerate. We furthermore assume that Tdeg ∩ ∂T = ∅. Then T0 is an
orientable manifold with boundary. Let N be a tubular neighborhood of Tdeg in T and N̄ its
closure.3 Then B = T \ N is a compact sub–manifold with boundary ∂B = ∂T q ∂N̄ where
∂N̄ = N̄ \N .

E.g. If we assume that Tdeg is a manifold with singularities and the smooth part of Tdeg is of
codimension r then ∂N̄ is an Sr−1 bundle over the smooth part of Tdeg. In particular, if Tdeg is a
discrete set of points pi we can take N to be the union of small open balls centered at each point
and N̄ will be the union of the closed balls, while ∂N will be the union of the corresponding
spheres.

3.5.5. Even dimensional B. If B is even dimensional, we can pair with B and consider
∫
B
Qc(ti).

If in particular T0 = T and T is two–dimensional then B = T and we obtain all the individual
charges by using B = Σ as Qi :=

∫
B
βi.

Following Simon [34] this if for instance the case for the quantum Hall effect. Here T = T 2

has no degenerate locus and we have that B = T can carry non–trivial line bundles. Indeed the
arguments of TKNN [37] establish the non–triviality of the corresponding line bundle.

3.5.6. Odd dimensional T with boundary. If T is odd dimensional, we can restrict the Li to the
boundary ∂T , since we assumed that ∂T ∩Tdeg = ∅ . Then the boundary charge is defined to be∫
∂T
Qc(t)|∂T0

.
In the differentiable case, we represent Qc by a closed form ω = dφ of even degree; strictly

speaking this is a polynomial form. Also, since B is odd dimensional, we have by Stokes’ Theorem

3I.e. N is a smooth submanifold of the same dimension as T , which can be deformation retracted onto Tdeg.
If Tdeg is smooth N can be chosen to be a standard small tubular neighborhood. Otherwise we assume that Tdeg

is sufficiently nice that we have a stratification that allows for Thom–Mather theory [36, 31].
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that 0 =
∫
B
ω =

∫
∂B

φ =
∫
∂T
φ+

∫
−∂N̄ φ.

(9)

∫
∂T

φ = −
∫
−∂N̄

φ =

∫
∂N̄

φ

where ∂N̄ has the outward orientation viewed from N̄ . Else we just use the usual pairing between
the corresponding homologies and cohomologies.

If the boundary is empty, then we have that
∫
∂N̄

φ = 0.

3.5.7. Local charges and codimension 3. For each component N̄k of N̄ , we can consider the
restriction i∗

∂N̄i
(Qc) of Qc to ∂Nk, where k indexes the components, and define the local charge

of that component to be
∫
∂N̄k

i∗
∂N̄i

(Qc). This is of course only useful if T is odd–dimensional, so

that ∂N̄ is even–dimensional.
A special situation arises, if the smooth part T sm

deg of Tdeg is of codimension 3. Recall that ∂N̄

is an Sr−1 bundle over T sm
deg, where r = codim(T sm

deg) which in this case is 3 and hence ∂N̄ is a

2–sphere bundle. Thus in this case, we can restrict the Li to the fiber S2 = S2(p) over any point
p of T sm

deg. We call
∫
S2(p)

βi|S2(p) the i–th local charge at p and
∫
S2(p)

Qc|S2(p) the local charge.

3.5.8. Isolated critical points in dimension 3. For isolated critical points of Tdeg the local charges
are just given by integrating over small spheres around these points, which is what ∂N̄ is. If
Tdeg consists only of isolated critical points, then formula (9) states that the boundary charge is
the sum over the local charges. If moreover the boundary is empty, this means that the sum of
all the i–th local charges is 0. This is the case for the gyroid.

3.5.9. Slicing. A slicing for T is a smooth codimension 1 foliation by compact oriented manifolds
of T which has a global transverse section S and the leaves of the foliation generically do not
intersect Tdeg. For this we need the Euler characteristic to be 0, which is in particular the case
for all odd dimensional compact manifolds.

For s ∈ S let Fs be the leaf of s and is be the inclusion, if Fs ∩ Tdeg = ∅, we can consider the
pullback of C and consider

(10) Qs :=

∫
Fs

i∗Qc

which is the total Chern class of the slice. An interesting commonly encountered situation arises
if

(1) Fs generically does not intersect Tdeg

(2) Each component of N̄ contains only one component for Tdeg.
(3) Any component of N̄ is contained between some pair of slices. That is for a component

T ′deg ⊂ Tdeg there are s1, s2 and an n–dimensional closed submanifold M of the n–

dimensional manifold T , such that M ∩Tdeg = T ′deg, and ∂M ∩Tdeg = ∅, ∂M = Fs1−Fs2
and the component of N̄ corresponding to T ′deg is entirely contained in M .

In this case, by using Stokes’ Theorem we get that the total contribution of T ′

(11)

∫
∂N̄∩M

Qs|∂N̄∩M = Qs1 −Qs2

Now (12) is a great tool to numerically find Tdeg. For this one just runs through the s ∈ S
and looks for jumps in Qs.
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3.5.10. Tdeg of codimension 3. If T ′ is smooth then the total charge is

(12)

∫
Tdeg

(

∫
S2(p)

Qc|S2(p))dp = Qs1 −Qs2

If we are in dimension 3 then codimension 3 means that the degenerate locus consists of only
isolated critical points. Here the equation (12) simplifies to just a finite sum over the critical
points.

If furthermore the critical points are A1 singularities, see §3.3.1, then the jumps in the charge
are from ±1 to ∓1, as calculated in [34, 17] depending on if one calculates for the upper or lower
band and the chosen orientation/parameterization.

3.5.11. 3–dimensional torus models. If we have that T = T 3 the situation is especially nice. It is
fibered by T 2s via any of the three projections πj : S1×S1×S1 → S1, j = 1, 2, 3. The inclusion
of fibers of the three coordinate projections actually generates the whole cohomology of T 3. It
has non–vanishing 2nd cohomology H2(T 3) ' Z3. In contrast to the two–torus where puncturing
kills the 2nd cohomology a punctured three torus actually still has second cohomology. It is given
explicitly in the proof of the theorem below. This is a main difference between graphene and the
gyroid, see below. One has to be sure however, that the condition of generically not intersecting
the degenerate locus is not violated. A counterexample is the case for the D–surface, see below.
Given finitely many points pi ∈ T 3, we say that they are in generic position with respect to an
identification T 3 ' S1 × S1 × S1, if all their coordinates (viz. projections) are pairwise distinct.
By changing the identification with automorphisms of T 3, we can always obtain this situation.

Notice that the slicing along any of the three co–ordinate foliations given by the projections
πj , j = 1, 2, 3 only gives a finite set of numbers Qs,i for each Eigenbundle Li, since the integral
over the Chern–class is constant as s varies in a component of S1 \ {πj(pi)}.

Theorem 3.13. For a smooth variation with base T 3 and only finitely many degenerate points,
which we may assume to be in generic position, the slicing method applied to all three coordinate
projections completely determines the K–theoretic charges and hence the line bundles Li up to
isomorphism.

Proof. For no degenerate points this is clear as H2(T 3,Z) ' Z3 and generators are given by the
three coordinate embeddings of T 2.

If there are m ≥ 1 degenerate points pi and pick a coordinate projection πj and let

z1, . . . , zm ∈ S1

be the images of the pi. Let t1, . . . , tm be points in between the zi, that is one point per
component of S1 \ {zi}. Consider the CW model of the torus, which has one 2–cell at height ti
and 3–cells in between and 0 and 1 cells accordingly. Then T0 = T \ {pi} deformation retracts
onto the 2–skeleton of this complex. And the homology of T0 can be calculated either (a) via the
standard Meyer–Vietoris sequence for T covered by N and a slightly enlarged B, or (b) using
cellular chains for the above CW complex. Using the former, we see that there are m − 1 + 3
classes in H2(T0,Z) ' Zm+2. Namely the three original classes, plus the classes of the m little
spheres minus the diagonal class of all the spheres. In the CW basis of (b) this is given by a
set of m horizontal slices separating the m points and the images of the two other coordinate
embeddings of T 2.

Now the slicing method will give the paring with these two cells and as the Poincaré paring is
non–degenerate, the cohomology class of c1(Li) is determined by these numbers and hence the
line bundle up to isomorphism. �



GEOMETRY OF THE MOMENTUM SPACE 71

2/3 X

yk

1/3
k 

Figure 8. I. The base two torus with the singular points (as a square with
opposite sides identified), the anti–diagonal (φ, φ̄), the 2 points of Tdeg and the
discs making up N . II. A picture of the ramified double cover X.

Remark 3.14. In fact, one only needs one complete slicing and then one slice each in the other
coordinate directions as determining data.

3.6. Topological Stability. Having non–vanishing topological charges produces topological
stability. If we perturb the Hamiltonian slightly by adding a small perturbation term λH1 and
continuously vary λ starting at 0, then T0 does not move much —for instance as a submanifold of
T ×R, see §3.3.1. In particular, there will be no new singular points in T0 for small perturbation.
The Eigenbundles over T0 also vary continuously and hence so do their Chern classes. Since these
are defined over Z they are actually locally constant, so that all the non–vanishing charges, scalar,
K-theoretic or cohomological, must be preserved.

4. Results for the commutative and non–commutative C∗–geometries of wire
networks

In this section, we summarize our results for the different quantum wire networks, honeycomb,
P (or more generally any Bravais lattice), D and G. The basis are the results from [21, 22, 23, 24]
and a new analysis for the topological charges using slicing.

The first set of results are on the singular geometry of the momentum space in the commutative
situation. These include all the three aspects developed above, the branched cover and its
singularities, the symmetries and the topological invariants.

The second set of results are on the classification of the C∗–algebras that appear when one
allows a constant background magnetic field.

4.1. Singular geometry of the momentum space for periodic wire networks.

4.1.1. The Honeycomb Lattice. In this case the space X is a double cover of the torus T 2 ramified
at two points (e2πi 13 , e−2πi 13 ) and (e−2πi 13 , e2πi 13 ). These two points are A1 singularities and Dirac
points. This is depicted in Figure 8. T0 is T 2 with two points removed, so H2(T0) = 0 and so
all the charges vanish and all bundles are trivial, thus the two Dirac points are in general not
topologically stable. Along the anti–diagonal (φ, φ̄) we have the equation for the two sheets of
the cover E(φ) = ±(1 + 2 cos(φ)). This is depicted in Figure 9.
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Figure 9. The cover along the anti–diagonal (φ, φ̄)

Remark 4.1. There has been an investigation of deformation directions which do not destroy
these points [12]. In our setup this means the following: the characteristic map has its image in
[−9, 0] where the swallowtail for A1 is the point 0. One only considers deformations which still
have 0 in the image of the characteristic map.

At the Dirac points there is an enhanced symmetry which is Abelian, so it does not have any
higher dimensional irreps, but the isotypical decomposition is fully decomposed and forces the
double degeneracy at the Dirac points due to the form of the Hamiltonian.

4.1.2. The primitive cubic (P) case, and other Bravais cases. The cover X → T k is trivial and
so is the line bundle of Eigenvectors.

Remark 4.2. The analysis of [5] of the quantum Hall effect, however, suggests that there is a
non–trivial noncommutative line bundle in the case of k = 2 for non–zero B–field. Furthermore,
in this case there is a non–trivial bundle, not using the noncommutative geometry, but rather the
Eigenfunctions constructed in [37] for the full Hilbert space H . This is what is also considered
in [34]. We will study this phenomenon in the gyroid and the other cases in the future.

4.1.3. The Diamond (D) case. In this case, we see that that 1 − χ(Γ) = 3 and T is the 3–
Torus T 3. The space X defined by B in the commutative situation is a generically 2–fold cover
of T 3 where the ramification locus Tdeg is along three circles on T 3 given by the equations
φi = π, φj ≡ φk + π mod 2π with {i, j, k} = {1, 2, 3}. Tdeg = Ξ−1(0) is the inverse image —of
the characteristic map— of the only singular point (the origin) of the miniversal unfolding of
A1. The characteristic region is the interval [−16, 0].

Thus the singularities are of type A1 but they are not discrete, but rather pulled back to the
entire Tdeg, hence there are also no Dirac points. Figure 10 depicts the base 3–torus with the
singular locus, which is of codimension 2.

The space T0 = T 3 \ Tdeg contracts onto a 1–dimensional CW–complex and hence has
H2(T0) = 0. Thus there are no non–vanishing topological charges associated to this geome-
try and no stability.

Analogous to the honeycomb case there are Abelian enhanced symmetries with 1–dimensional
isotypical components, which force the double degeneracy in view of the structure of the Hamil-
tonian.

4.1.4. The Gyroid (G) case. For the gyroid, the commutative geometry is given by a generically
unramified 4-fold cover of the three torus, see [21]. There are only 4 ramification points. This
means that the locus is of real codimension 3 contrary to the D case where it was of codimension
2. Furthermore the degenerations are 3 branches coming together at 2 points —(0, 0, 0) and
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Figure 10. The base 3–torus as a cube with opposite sides identified and the
singular locus consisting of three S1s mutually intersecting in two points

(π, π, π)— and 2 pairs of branches coming together at the other two points —(π2 ,
π
2 ,

π
2 ) and

( 3π
2 ,

3π
2 ,

3π
2 ). The latter furnish double Dirac points.

Using the characteristic map the first type of singular point corresponds to an A2 singularity
and the second type corresponds to the type (A1, A1) stratum of the swallowtail. All the inverse
images have discrete fibers. There are two image points on the A2 stratum each with one inverse
image under Ξ and there is one point on the (A1, A1) stratum, with two inverse images.
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Figure 11. The −6 slice of the swallowtail of A3 and the region occupied by the gyroid

All the A1 singularities in the fibers are Dirac points. That is there are four of these points.
Furthermore at all points there are enhanced symmetries by non–Abelian groups.

At (0, 0, 0) the enhanced symmetry group is the symmetric group S4 —the full symmetry
group of Γ̄ which entirely lifts to Aut(T 3)— yielding one 1–dim irrep and one 3–dim irrep which
forces the triple degeneracy. At (π, π, π) we have an a priori projective representation of S4,
which we showed however to be equivalent to the standard representation of S4 and hence we
again get one 1–dim irrep and one 3–dim irrep which forces the triple degeneracy. At the other
two points things are really interesting. The stabilizer symmetry group is A4 and it yields a
projective representation which is carried by the double cover of A4 aka. 2A4, 2T, the binary
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Figure 12. The 4 points of Tdeg along the diagonal (again T 3 is depicted as a
cube with opposite sides identified) and the 4 spheres making up ∂N̄
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Figure 13. The spectrum/cover along the diagonal

tetrahedral group or SL(2, 3). The representation decomposes into two 2–dim irreps forcing the
two double degeneracies.

Notice that we essentially need a projective representation, since A4 itself has no 2–dim irreps.
Now Tdeg is the set of the four points above and T0 = T 3 \ Tdeg contracts onto a 2–dim CW

complex with non–trivial second homology.
Thus there are K–theoretic and cohomological charges. This is the special case of dimension

3 with codimension 3 degenerate points and moreover we have a slicing of T 3 by the fiber bundle
T 3 → S1 by any of the tree coordinate projections. In fact the homology is generated by any four
slices which sit in between the 4 slices that contain the degenerate points. Pairing with these
surfaces completely determines the Chern class of the line bundles and hence the line bundles
up to isomorphism.

Figure 12 depicts T 3 with the 4 singular point as well as the 4 spheres making up ∂N̄ . Figure
13 shows the cover along the diagonal of T 3 which contains Tdeg.

Figure 14 shows the different slices which on the one hand make up the CW complex and on
the other give the submanifolds the curvature is integrated over to yield the Qs,i. The relevant
numerics were carried out in [25].

The result of the numerical slicing is contained in Figure 15 as well as the analytic values.



GEOMETRY OF THE MOMENTUM SPACE 75

Figure 14. Slices corresponding to the first coordinate projection
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Figure 15. The charges Qs,i, i = 1, . . . 4 as functions of s, the position of the
slice (compare to Fig. 14). Left: the result of a numerical computation. Right:
the analytical values

In accordance with the analytic calculations of [34, 17] the Dirac points yield jumps in the
charge by ±1 for the two bands that cross. A new result is that the A2 points yield jumps
by −2, 0, 2 for the three bands that cross. This behavior is typical of a standard example of a
3–dimensional degenerating family of Hamiltonians with a single triple crossing considered in
[7, 34] and we conjecture that indeed locally the family of the Gyroid is diffeomorphic to this
family.

All these charges are topologically stable. In preliminary numerical simulations introducing
symmetry breaking deformations we found that the A2 points each split into four A1 points in
compliance with the jumps given above. We expect to explain this behavior using time reversal
symmetry.

4.2. Results on the non–commutative geometry. In this section we summarise our results
for the non-commutative geometry of the PDG, Bravais and Honeycomb wire networks, resulting
form a constant magnetic field B (see 2.1.2 and [21, 22]).

4.2.1. Honeycomb. Generically BΘ = T2
Θ. In order to give the degenerate points, let

−e1 := (1, 0), e2 =
1

2
(1,
√

3), e3 :=
1

2
(1,−

√
3)

be the lattice vectors and f2 := e2− e1 = 1
2 (−3,

√
3), f3 := e3− e1 = 1

2 (3,
√

3) the period vectors
of the honeycomb. The parameters we need are

(13) θ := Θ̂(f2, f3), q := e2πiθ and φ = Θ̂(−e1, e2), χ := eiπφ, thus q = χ̄6
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where Θ̂ is the quadratic from corresponding to the B–field B = 2πΘ̂.

Theorem 4.3. [21] The algebra BΘ is the full matrix algebra of M2(T2
θ) except in the following

finite list of cases

(1) q = 1.
(2) q = −1 and χ4 = 1.

The precise algebras are given in [21]. We wish to point out that q = χ = 1 is the commutative
case and q = −χ = 1 is isomorphic to the commutative case, while the other cases give non–
commutative proper subalgebras of M2(T2

θ).

4.2.2. P and Bravais cases. For the simple cubic lattice and any other Bravais lattice of rank k
(P is the rank 3 case): if Θ 6= 0 then BΘ is simply the noncommutative torus TkΘ and if Θ = 0
then this B0 is the C∗ algebra of T k. There are no degenerate points.

4.2.3. Diamond. In the non–commutative case, we express our results in terms of parameters qi
and ξi defined as follows: Set e1 = 1

4 (1, 1, 1), e2 = 1
4 (−1,−1, 1), e3 = 1

4 (−1, 1,−1) for B = 2πΘ
let

(14) Θ(−e1, e2) = ϕ1 Θ(−e1, e3) = ϕ2 Θ(e2, e3) = ϕ3 and χi = eiϕi for i = 1, 2, 3

There are three operators U, V,W , given explicitly in [22], which span T3
Θ and have commu-

tation relations

(15) UV = q1V U UW = q2WU VW = q3WV

where the qi expressed in terms of the χi are:

(16) q1 = χ̄1
2χ2

2χ
2
3 q2 = χ̄1

6χ̄2
2χ̄3

2 q3 = χ̄1
2χ̄2

6χ2
3

Vice versa, fixing the values of the qi fixes the χi up to eighth roots of unity:

(17) χ8
1 = q̄1q̄2 χ8

2 = q1q̄3 χ8
3 = q2

1 q̄2q3

Other useful relations are q2q̄3 = χ̄4
1χ

4
2χ̄

4
3 and q2q3 = χ̄8

1χ̄
8
2. the algebra BΘ is the full matrix

algebra except in the following cases in which it is a proper subalgebra.

(1) q1 = q2 = q3 = 1 (the special bosonic cases) and one of the following is true:

(a) All χ2
i = 1 then BΘ is isomorphic to the commutative algebra in the case of no

magnetic field above.

(b) Two of the χ4
i = −1, the third one necessarily being equal to 1.

(2) If qi = −1 (special fermionic cases) and χ4
i = 1. This means that either

(a) all χ2
i = −1 or

(b) only one of the χ2
i = −1 the other two being 1.

(3) q̄1 = q2 = q3 = χ̄4
2 and χ2

1 = 1 it follows that χ4
2 = χ4

3. This is a one-parameter family.

(4) q1 = q2 = q3 = χ̄4
1 and χ2

2 = 1 it follows that χ4
1 = χ̄4

3. This is a one-parameter family.

(5) q1 = q2 = q̄3 = χ̄4
1 and χ2

1 = χ̄2
2. It follows that χ4

3 = 1. This is a one-parameter family.
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4.2.4. Gyroid. To state the results of [21] we use the bcc lattice vectors

(18) g1 =
1

2
(1,−1, 1), g2 =

1

2
(−1, 1, 1), g3 =

1

2
(1, 1,−1)

θ12 =
1

2π
B · (g1 × g2), θ13 =

1

2π
B · (g1 × g3), θ23 =

1

2π
B · (g2 × g3)

α1 := e2πiθ12 ᾱ2 := e2πiθ13α3 := e2πiθ23

φ1 = e
π
2 iθ12 , φ2 = e

π
2 iθ31 , φ3 = e

π
2 iθ23 , Φ = φ1φ2φ3

Classification Theorem.

(1) If Φ 6= 1 or not all αi are real then BΘ = M4(T3
Θ).

(2) If Φ = 1, all αi = ±1, at least one αi 6= 1 and all φi are different then BΘ = M4(T3
Θ).

(3) If φi = 1 for all i then the algebra is the same as in the commutative case.
(4) In all other cases (this is a finite list) B is non–commutative and BΘ (M4(T3

Θ).

5. Outlook

5.1. Observation and conjecture. Looking at the cases above, we observe several regularities.
First and foremost, there is agreement on the dimension of the degenerate locus in T k between the
commutative and the non–commutative case. In the commutative case, this locus is Tdeg ⊂ T k;
in the non–commutative case, it is the locus Tncdeg ⊂ T k of values of the B–field, where the matrix

algebra is not the full matrix algebra. Here T k parameterizes the entries of Θ mod Z, which
parameterize the non–commutative tori.

We conjecture that this is always the case.
There are several possible points of attack here. The first is through the symmetries: as we

have seen, the re–gauging groupoid exists already in the non–commutative case. Another is to
consider how, in the presence of a conserved topological charge, larger representations, such as
A2 in the gyroid case, break into smaller pieces. Using the slicing method described above, one
can readily see how that happens under a deformation of the Hamiltonian in the commutative
case. The question is whether the effect of non-commutativity is something similar.

5.2. Stability, local structure and perturbations. We furthermore plan to analyze the
topological invariants further by studying local models for the crossings. In three dimensions,
a double crossing has a unique local model up to orientation as already remarked in [7, 34]. In
loc. cit. there are also examples of three-dimensional families with a unique singular point that
corresponds to an n-fold crossing. Given the jumps in Chern classes we conjecture that for the
Gyroid near the triple crossing the family of Hamiltonians restricted to the three bands that are
involved is indeed diffeomorphic to that standard family. If this is established, we can show using
an additional symmetry argument that the Chern class functions Qs for the slicing and hence
the whole geometry of line bundles is entirely determined by the singularities. A further study
will then be how higher (more than double) topologically protected crossings dissolve under
perturbations.
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Abstract. We consider Rota-Baxter algebras of meromorphic forms with poles along a (sin-

gular) hypersurface in a smooth projective variety and the associated Birkhoff factorization

for algebra homomorphisms from a commutative Hopf algebra. In the case of a normal cross-
ings divisor, the Rota-Baxter structure simplifies considerably and the factorization becomes

a simple pole subtraction. We apply this formalism to the unrenormalized momentum space

Feynman amplitudes, viewed as (divergent) integrals in the complement of the determinant
hypersurface. We lift the integral to the Kausz compactification of the general linear group,

whose boundary divisor is normal crossings. We show that the Kausz compactification is a

Tate motive and that the boundary divisor and the divisor that contains the boundary of the
chain of integration are mixed Tate configurations. The regularization of the integrals that

we obtain differs from the usual renormalization of physical Feynman amplitudes, and in par-
ticular it may give mixed Tate periods in some cases that have non-mixed Tate contributions

when computed with other renormalization methods.

1. Introduction

In this paper, we consider the problem of extracting periods of algebraic varieties from a class
of divergent integrals arising in quantum field theory. The method we present here provides a
regularization and extraction of finite values that differs from the usual (renormalized) physical
Feynman amplitudes, but whose mathematical interest lies in the fact that it gives a period of
a mixed Tate motive, for all graphs for which the amplitude can be computed using (global)
forms with logarithmic poles. For more general graphs, one also obtains a period, where the
nature of the motive involved depends on how a certain hyperplane arrangement intersects the
big cell in a compactification of the general linear group. More precisely, the motive considered
here is provided by the Kausz compactification of the general linear group and by a hyperplane
arrangement that contains the boundary of the chain of integration.

The regularization procedure we propose is modeled on the algebraic renormalization method,
based on Hopf algebras of graphs and Rota–Baxter algebras, as originally developed by Connes
and Kreimer [22] and by Ebrahmi-Fard, Guo, and Kreimer [31]. The main difference in our
approach is that we apply the formalism to a Rota–Baxter algebra of (even) meromorphic dif-
ferential forms instead of applying it to a regularization of the integral. The procedure becomes
especially simple in cases where the de Rham cohomology of the singular hypersurface com-
plement is all realized by forms with logarithmic poles, in which case we replace the divergent
integral with a family of convergent integrals obtained by a pole subtraction on the form and
by (iterated) Poincaré residues. A similar approach was developed for integrals in configuration
spaces by Ceyhan and the first author [21].

In Section 2 we introduce Rota–Baxter algebras of even meromorphic forms, along the lines
of [21], and we formulate a general setting for extraction of finite values (regularization and
renormalization) of divergent integrals modeled on algebraic renormalization applied to these
Rota–Baxter algebras of differential forms.

http://dx.doi.org/10.5427/jsing.2016.15e
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In Section 3 we discuss the Rota–Baxter algebras of even meromorphic forms in the case of
a smooth hypersurface Y ⊂ X. We show that, when restricted to forms with logarithmic poles,
the Rota–Baxter operator becomes simply a derivation, and the Birkhoff factorization collapses
to a simple pole subtraction, as in the case of log divergent graphs. We show that this simple
pole subtraction can lead to too much loss of information about the unrenormalized integrand
and we propose considering the additional information of the Poincaré residue and an additional
integral associated to the residue.

In Section 4 we consider the case of singular hypersurfaces Y ⊂ X given by a simple normal
crossings divisor. We show that, in this case, the Rota–Baxter operator satisfies a simplified form
of the Rota–Baxter identity, which however is not just a derivation. We show that this modified
identity still suffices to have a simple pole subtraction φ+(Γ) = (1 − T )φ(Γ) in the Birkhoff
factorization, even though the negative piece φ−(Γ) becomes more complicated. Again, to avoid
too much loss of information in passing from φ(Γ) to φ+(Γ), we consider, in addition to the
renormalized integral

∫
σ
φ+(Γ), the collection of integrals of the form

∫
σ∩YI ResYI (φ(Γ)), where

ResYI is the iterated Poincaré residue, [25], along the intersection YI = ∩j∈IYj of components of
Y . These integrals are all periods of mixed Tate motives if {YI} is a mixed Tate configuration,
in the sense of [33]. We discuss the question of further generalizations to more general types
of singularities, beyond the normal crossings case, via Saito’s theory of forms with logarithmic
poles [58], by showing that one can also define a Rota–Baxter structure on the Saito complex of
forms with logarithmic poles.

In Section 5 we present our main application, which is a regularization (different from the
physical one) of the Feynman amplitudes in momentum space, computed on the complement of
the determinant hypersurface as in [4]. Since the determinant hypersurface has worse singulari-
ties than what we need, we pull back the integral computation to the Kausz compactification [47]
of the general linear group, where the boundary divisor that replaces the determinant hypersur-
face is a simple normal crossings divisor. We show that the motive of the Kausz compactification
is Tate, and that the components of the boundary divisor form a mixed Tate configuration. We
discuss how one can replace the form ηΓ of the Feynman amplitude with a form with logarithmic
poles. In general, this form is defined on the big cell of the Kausz compactification. For certain
graphs, it is possible to show, using the mixed Hodge structure, that the form with logarithmic
poles extends globally to the Kausz compactification, with poles along the boundary divisor.

2. Rota–Baxter algebras of meromorphic forms

We generalize the algebraic renormalization formalism to a setting based on Rota–Baxter
algebras of algebraic differential forms on a smooth projective variety with poles along a hyper-
surface.

2.1. Rota–Baxter algebras. A Rota–Baxter algebra of weight λ is a unital commutative al-
gebra R over a field K such that λ ∈ K, together with a linear operator T : R → R satisfying
the Rota–Baxter identity

(2.1) T (x)T (y) = T (xT (y)) + T (T (x)y) + λT (xy).

For example, Laurent polynomials R = C[z, z−1] with T the projection onto the polar part
are a Rota–Baxter algebra of weight −1.

The Rota–Baxter operator T of a Rota–Baxter algebra of weight −1, satisfying

(2.2) T (x)T (y) + T (xy) = T (xT (y)) + T (T (x)y),

determines a splitting of R into R+ = (1 − T )R and TR, where (1 − T )R and TR are not
just vector spaces but algebras, because of the Rota–Baxter relation (2.2). The algebra TR is
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non-unital. In order to work with unital algebras, one defines R− to be the unitization of TR,
that is, TR ⊕ K with multiplication (x, t)(y, s) = (xy + ty + sx, ts). For an introduction to
Rota–Baxter algebras we refer the reader to [38].

2.2. Rota–Baxter algebras of even meromorphic forms. Let Y be a hypersurface in a
projective variety X, with defining equation Y = {f = 0}. We denote by M?

X the sheaf of
meromorphic differential forms on X, and byM?

X,Y the subsheaf of meromorphic forms on with

poles (of arbitrary order) along Y , that is, M?
X,Y = j∗Ω

1
U , where U = X r Y and j : U ↪→ X is

the inclusion. Passing to global sections of M?
X,Y gives a graded-commutative algebra over the

field of definition of the varieties X and Y , which, for simplicity, we will still denote by M?
X,Y .

We can write forms ω ∈M?
X,Y as sums ω =

∑
p≥0 αp/f

p, where the αp are holomorphic forms.

In particular, we consider forms of even degrees, so that Meven

X,Y is a commutative algebra
under the wedge product.

Lemma 2.1. The commutative algebra Meven

X,Y , together with the linear operator

T :Meven

X,Y →M
even

X,Y , defined as the polar part

(2.3) T (ω) =
∑
p≥1

αp/f
p,

is a Rota–Baxter algebra of weight −1.

Proof. For ω1 =
∑
p≥0 αp/f

p and ω2 =
∑
q≥0 βq/f

q, we have

T (ω1 ∧ ω2) =
∑

p≥0,q≥1

αp ∧ βq
fp+q

+
∑

p≥1,q≥0

αp ∧ βq
fp+q

−
∑

p≥1,q≥1

αp ∧ βq
fp+q

,

T (T (ω1) ∧ ω2) =
∑

p≥1,q≥0

αp ∧ βq
fp+q

,

T (ω1 ∧ T (ω2)) =
∑

p≥0,q≥1

αp ∧ βq
fp+q

,

T (ω1) ∧ T (ω2) =
∑

p≥1,q≥1

αp ∧ βq
fp+q

,

so that (2.2) is satisfied. �

Note that the restriction to even form is introduced only in order to ensure that the resulting
Rota–Baxter algebra is commutative, while (2.3) satisfies (2.2) regardless of the restriction on
degrees.

Remark 2.2. Equivalently, we have the following description of the Rota–Baxter operator,
which we will use in the following. The linear operator

(2.4) T (ω) = α ∧ ξ, for ω = α ∧ ξ + η,

acting on forms ω = α ∧ ξ + η, with α a meromorphic form on X with poles on Y and ξ and η
holomorphic forms on X, is a Rota–Baxter operator of weight −1.

The Rota–Baxter identity is equivalently seen then as follows. For ωi = αi ∧ ξi + ηi, with
i = 1, 2, we have

T (ω1 ∧ ω2) = (−1)|α2| |ξ1|α1 ∧ α2 ∧ ξ1 ∧ ξ2 + α1 ∧ ξ1 ∧ η2 + (−1)|η1| |α2|α2 ∧ η1 ∧ ξ2
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while

T (T (ω1) ∧ ω2) = (−1)|α2| |ξ1|α1 ∧ α2 ∧ ξ1 ∧ ξ2 + α1 ∧ ξ1 ∧ η2

T (ω1 ∧ T (ω2)) = (−1)|α2| |ξ1|α1 ∧ α2 ∧ ξ1 ∧ ξ2 + (−1)|η1| |α2|α2 ∧ η1 ∧ ξ2
and

T (ω1) ∧ T (ω2) = (−1)|α2| |ξ1|α1 ∧ α2 ∧ ξ1 ∧ ξ2,
where all signs are positive if the forms are of even degree. Thus, the operator T satisfies (2.2).

The proof automatically extends to the following slightly more general setting.

Lemma 2.3. Let (X`, Y`) for ` ≥ 1 be a collection of smooth projective varieties X` with
hypersurfaces Y`, all defined over the same field. Then the commutative algebra

∧
`M

even

X`,Y`
is a

Rota–Baxter algebra of weight −1 with the polar projection operator T determined by the T` on
each Meven

X`,Y`
.

A similar setting was considered in Theorem 6.4 of [21].

2.3. Renormalization via Rota–Baxter algebras. In [22], the BPHZ renormalization pro-
cedure of perturbative quantum field theory was reinterpreted as a Birkhoff factorization of loops
in the pro-unipotent group of characters of a commutative Hopf algebra of Feynman graphs. This
procedure of algebraic renormalization was reformulated in more general and abstract terms in
[31], using Hopf algebras and Rota–Baxter algebras.

We summarize here quickly the basic setup of algebraic renormalization. We refer the reader
to [22], [23], [31], [52] for more details.

The Connes–Kreimer Hopf algebra of Feynman graphs H is a commutative, non-cocom-
mutative, graded, connected Hopf algebra over Q associated to a given Quantum Field Theory
(QFT). A theory is specified by assigning a Lagrangian and the corresponding action functional,
which in turn determines which graphs occur as Feynman graphs of the theory. For instance,
the only allowed valences of vertices in a Feynman graph are the powers of the monomials in the
fields that appear in the Lagrangian. The generators of the Connes–Kreimer Hopf algebra of a
given QFT are the 1PI Feynman graphs Γ of the theory, namely those Feynman graphs that are
2-egde connected. As a commutative algebra, H is then just a polynomial algebra in the 1PI
graphs Γ. A grading on H is given by the loop number (first Betti number) of graphs. In the
case where Feynman graphs also have vertices of valence 2, one uses the number of internal edges
instead of loop number, to have finite dimensional graded pieces, but we ignore this subtlety for
the present purposes. The grading satisfies

deg(Γ1 · · ·Γn) =
∑
i

deg(Γi), deg(1) = 0.

The connectedness property means that the degree zero part is just Q. The coproduct in H is
given by

(2.5) ∆(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑

γ∈V(Γ)

γ ⊗ Γ/γ,

where the class V(Γ) consists of all (not necessarily connected) divergent subgraphs γ such that
the quotient graph (identifying each component of γ to a vertex) is still a 1PI Feynman graph
of the theory. As in any graded connected Hopf algebra, the antipode is constructed inductively
as

S(Γ) = −Γ−
∑

S(Γ′)Γ′′

for ∆(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑

Γ′ ⊗ Γ′′, with the terms Γ′, Γ′′ of lower degrees.
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Remark 2.4. The general element in the Hopf algebra H is not a graph Γ but a polynomial
function P =

∑
ai1,...,ikΓ

ni1
i1
· · ·Γnikik with Q coefficients in the generators given by the graphs.

However, for simplicity of notation, in the following we will just write Γ to denote an arbitrary
element of H.

An algebraic Feynman rule φ : H → R is a homomorphism of commutative algebras from the
Hopf algebra H of Feynman graphs to a Rota–Baxter algebra R of weight −1,

φ ∈ HomAlg(H,R).

The set HomAlg(H,R) has a group structure, where the multiplication ? is dual to the coproduct
in the Hopf algebra, φ1 ? φ2(Γ) = 〈φ1 ⊗ φ2,∆(Γ)〉.

Algebra homomorphisms φ : H → R between a Hopf algebra H and a Rota–Baxter algebra
R are also often referred to as “characters” in the renormalization literature.

The morphism φ by itself does not know about the coalgebra structure of H and the Rota–
Baxter structure of R. These enter in the factorization of φ into divergent and finite part.

A Birkhoff factorization of an algebraic Feynman rule consists of a pair of commutative algebra
homomorphisms

φ± ∈ HomAlg(H,R±)

where R± is the splitting of R induced by the Rota–Baxter operator T , with R+ = (1 − T )R
and R− the unitization of TR, satisfying

φ = (φ− ◦ S) ? φ+,

with the product ? dual to the coproduct ∆ as above. The Birkhoff factorization is unique if
one also imposes the normalization condition ε− ◦ φ− = ε, where ε is the counit of H and ε− is
the augmentation in the algebra R−.

As shown in Theorem 4 of [22] (see equations (32) and (33) therein), there is an inductive
formula for the Birkhoff factorization of an algebraic Feynman rule, of the form

(2.6) φ−(Γ) = −T (φ(Γ) +
∑

φ−(Γ′)φ(Γ′′)) and φ+(Γ) = (1− T )(φ(Γ) +
∑

φ−(Γ′)φ(Γ′′))

where ∆(Γ) = 1⊗ Γ + Γ⊗ 1 +
∑

Γ′ ⊗ Γ′′.

The Birkhoff factorization (2.6) of algebra homomorphisms φ ∈ HomAlg(H,R) is often referred
to as “algebraic Birkhoff factorization”, to distinguish it from the (analytic) Birkhoff factorization
formulated in terms of loops (or infinitesimal loops) with values in Lie groups. We refer the reader
to §6.4 of Chapter 1 of [23] for a discussion of the relation between these two kinds of Birkhoff
factorization.

In the original Connes–Kreimer formulation, this approach is applied to the unrenormalized
Feynman amplitudes regularized by dimensional regularization, with the Rota–Baxter algebra
consisting of germs of meromorphic functions at the origin, with the operator of projection onto
the polar part of the Laurent series.

In the following, we consider the following variant on the Hopf algebra of Feynman graphs.

Definition 2.5. As an algebra, Heven is the commutative algebra generated by Feynman graphs
of a given scalar quantum field theory that have an even number of internal edges, #E(Γ) ∈ 2N.
The coproduct (2.5) on Heven is similarly defined with the sum over divergent subgraphs γ with
even #E(γ), with 1PI quotient.

Notice that in dimension D ∈ 4N all the log divergent subgraphs γ ⊂ Γ have an even number
of edges, since Db1(γ) = 2#E(γ) in this case. This is a class of graphs that are especially
interesting in physical applications.
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Question 2.6. Is there a graded-commutative version of Birkhoff factorization involving graded-
commutative Rota–Baxter and Hopf algebras?

Such an extension to the graded-commutative case would be necessary to include the more
general case of differential forms of odd degree (associated to Feynman graphs with an odd
number of internal edges).

One can approach the question above by using the general setting of [32]:

(1) Let H be any connected filtered cograded Hopf algebra and let R be a (not necessarily
commutative) associative algebra equipped with a Rota-Baxter operator of weight λ 6= 0.
The algebraic Birkhoff factorization of any φ ∈ Hom(H,R) was obtained by Ebrahimi-
Fard, Guo and Kreimer in [32].

(2) However, if the target algebra R is not commutative, the set of characters Hom(H,R)
is not a group since it is not closed under convolution product, i.e. if f, g ∈ Hom(H,R),
then f ? g does not necessarily belong to Hom(H,R).

The usual proof (see Theorem 4 of [22] and Theorem 1.39 in Chapter 1 of [23]) of the fact
that the two parts φ± of the Birkhoff factorization are algebra homomorphisms uses explicitly
both the commutativity of the target Rota–Baxter algebra R and the fact that HomAlg(H,R) is
a group, and does not extend directly to the graded-commutative case. The argument given in
Theorems 3.4 and 3.7 of [32] provides a more general form of Birkhoff factorization that applies
to a graded-commutative (and more generally non-commutative) Rota–Baxter algebra. The
resulting form of the factorization is more complicated than in the commutative case, in general.
However, if the Rota–Baxter operator of weight −1 also satisfies T 2 = T and T (T (x)y) = T (x)y
for all x, y ∈ R, then the form of the Birkhoff factorization for not necessarily commutative
Rota–Baxter algebras simplifies considerably, and the φ+ part of the factorization consists of a
simple pole subtraction, as we prove in Proposition 2.10 below.

2.4. Rota–Baxter algebras and Atkinson factorization. In the following we will discuss
some interesting properties of algebraic Birkhoff decomposition when the Rota-Baxter operator
satisfies the identity T (T (x)y) = T (x)y.

Let e : H → R be the unit of Hom(H,R) (under the convolution product) defined by
e(1H) = 1R and e(Γ) = 0 on ⊕n>0Hn.

The main observation can be summarized as follows:

(1) If the Rota-Baxter operator T on R also satisfies the identity T (T (x)y) = T (x)y, then on
ker(e) = ⊕n>0Hn, the negative part of the Birkhoff factorization φ− takes the following
form:

φ− = −T (φ(Γ))−
∑

T (φ(Γ′))φ(Γ′′), for ∆(Γ) = 1⊗ Γ + Γ⊗ 1 +
∑

Γ′ ⊗ Γ′′.

(2) If T also satisfies T (xT (y)) = xT (y), ∀x, y ∈ R, then the positive part is given by
φ+(Γ) = (1− T )(φ(Γ)), ∀Γ ∈ ker(e) = ⊕n>0Hn.

This follows from the properties of the Atkinson Factorization in Rota–Baxter algebras, which
we recall below.

Proposition 2.7. (Atkinson Factorization, [7], see also [39]) Let (R, T ) be a Rota-Baxter algebra

of weight λ 6= 0. Let T̃ = −λid − T and let a ∈ R. Assume that bl and br are solutions of the
fixed point equations

(2.7) bl = 1 + T (bla), br = 1 + T̃ (abr).

Then

bl(1 + λa)br = 1.
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Thus

(2.8) 1 + λa = b−1
l b−1

r

if bl and br are invertible.

A Rota-Baxter algebra (R, T ) is called complete if there are algebras Rn ⊆ R, n ≥ 0, such
that (R,Rn) is a complete algebra and T (Rn) ⊆ Rn.

Proposition 2.8. (Existence and uniqueness of the Atkinson Factorization, [39]) Let (R, T,Rn)

be a complete Rota-Baxter algebra of weight λ 6= 0. Let T̃ = −λid− T and let a ∈ R1.

(1) Equations (2.7) have unique solutions bl and br. Further bl and br are invertible. Hence
the Atkinson Factorization (2.8) exists.

(2) If λ 6= 0 and T 2 = −λT (in particular if T 2 = −λT on R), then there are unique

cl ∈ 1 + T (R) and cr ∈ 1 + T̃ (R) such that

1 + λa = clcr.

Define

(Ta)[n+1] := T ((Ta)[n]a) and (Ta){n+1} = T (a(Ta){n})

with the convention that (Ta)[1] = T (a) = (Ta){1} and (Ta)[0] = 1 = (Ta){0}.

Proposition 2.9. Let (R,Rn, T ) be a complete filtered Rota-Baxter algebra of weight −1 such
that T 2 = T . Let a ∈ R1. If T also satisfies the following identity

(2.9) T (T (x)y) = T (x)y, ∀x, y ∈ R,

then the equation

(2.10) bl = 1 + T (bla).

has a unique solution

1 + T (a)(1− a)−1.

Proof. First, we have (Ta)[n+1] = T (a)an for n ≥ 0. In fact, the case when n = 0 just follows
from the definition. Suppose it is true up to n, then

(Ta)[n+2] = T ((Ta)[n+1]a) = T ((T (a)an)a) = T (T (a)an+1) = T (a)an+1.

Arguing as in [32], bl =
∑∞
n=0(Ta)[n] = 1 + T (a) + T (T (a)a) + · · ·+ (Ta)[n] + · · · is the unique

solution of (2.10). So

bl = 1 + T (a) + T (a)a+ T (a)a2 + · · ·
= 1 + T (a)(1 + a+ a2 + · · ·)
= 1 + T (a)(1− a)−1.

�

A bialgebra H over a field K is called a connected, filtered cograded bialgebra if there are
subspaces Hn of H such that (a) HpHq ⊆

∑
k≤p+qHk; (b) ∆(Hn) ⊆ ⊕p+q=nHp ⊗ Hq; (c)

H0 = im(u) = K, where u : K → H is the unit of H.

Proposition 2.10. Let H be a connected filtered cograded bialgebra (hence a Hopf algebra)
and let (R, T ) be a (not necessarily commutative) Rota-Baxter algebra of weight λ = −1 with
T 2 = T . Suppose that T also satisfies (2.9). Let φ : H → R be a character, that is, an algebra
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homomorphism. Then there are unique maps φ− : H → T (R) and φ+ : H → T̃ (R), where

T̃ = 1− T , such that

φ = φ
∗(−1)
− ∗ φ+,

where φ∗(−1) = φ ◦ S, with S the antipode. φ− takes the following form on ker(e) = ⊕n>0Hn:

φ−(Γ) = −T (φ(Γ))−
∞∑
n=1

(−1)n
∑

T (φ(Γ(1)))φ(Γ(2))φ(Γ(3)) · · · φ(Γ(n+1))

= −T (φ(Γ))−
∞∑
n=1

(−1)n((Tφ)∗̃φ∗̃
n

)(Γ).

Here we use the notation ∆̃n−1(Γ) =
∑

Γ(1)⊗···⊗Γ(n), and ∆̃(Γ) := ∆(Γ)−Γ⊗1−1⊗Γ (which

is coassociative), and ∗̃ is the convolution product defined by ∆̃. Furthermore, if T satisfies

(2.11) T (xT (y)) = xT (y), ∀x, y ∈ A,

then φ+ takes the form on ker(e) = ⊕n>0Hn:

φ+(Γ) = (1− T )(φ(Γ)).

Proof. Define R := Hom(H,R) and

P : R→ R, P (f)(Γ) = T (f(Γ)), f ∈ Hom(H,R),Γ ∈ H.

Then by [39], R is a complete algebra with filtration Rn = {f ∈ Hom(H,R)|f(Hn−1) = 0},
n ≥ 0, and P is a Rota-Baxter operator of weight −1 and P 2 = P . Moreover, since T satisfies
(2.9), it is easy to check that P (P (f)g) = P (f)g for any f, g ∈ Hom(H,R). Let φ : H → R be
a character. Then (e− φ)(1H) = e(1H)− φ(1H) = 1R − 1R = 0. So e− φ ∈ R1. Set a = e− φ,
by Proposition 2.8, we know that there are unique cl ∈ T (R) and cr ∈ (1 − T )(R) such that
φ = clcr. Moreover, by Proposition 2.9, we have

φ− = bl = c−1
l = e+ T (a)(e− a)−1 = e+ T (e− φ)

∞∑
n=0

(e− φ)n.

We also have
∑∞
n=0(e− φ)n(1H) = 1R and for any X ∈ ker(e) = ⊕n>0Hn, we have

(e− φ)0(Γ) = e(Γ) = 0; (e− φ)1(Γ) = −φ(Γ);

(e− φ)2(Γ) =
∑

(e− φ)(Γ′)(e− φ)(Γ′′) =
∑

φ(Γ′)φ(Γ′′).
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More generally, we have (e− φ)n(Γ) = (−1)n
∑
φ(Γ(1))φ(Γ(2)) · · ·φ(Γ(n)) = (−1)nφ∗̃

n

(Γ). So
for X ∈ ker(e) = ⊕n>0Hn,

φ−(Γ) = (T (e− φ)

∞∑
n=0

(e− φ)n)(Γ)

= T (e− φ)(1H)

∞∑
n=0

(e− φ)n(Γ) + T (e− φ)(Γ)

∞∑
n=0

(e− φ)n(1H)

+
∑

T ((e− φ)(Γ′))

∞∑
n=1

(e− φ)n(Γ′′)

= −T (φ(Γ))−
∑

T (φ(Γ′))

∞∑
n=1

(−1)n
∑

φ((Γ′′)(1))φ((Γ′′)(2)) · · ·φ((Γ′′)(n))

= −T (φ(Γ))−
∞∑
n=1

(−1)n
∑

T (φ(Γ(1)))φ(Γ(2))φ(X(3)) · · ·φ(Γ(n+1))

= −T (φ(Γ))−
∞∑
n=1

(−1)n((Tφ)∗̃φ∗̃
n

)(Γ).

Suppose that T also satisfies equation (2.11), then for any a, b ∈ R, we have

(1− T )(a)(1− T )(b) = ab− T (a)b− aT (b) + T (a)T (b)

= ab− T (T (a)b)− T (aT (b)) + T (a)T (b)

= ab− T (ab) = (1− T )(ab),

as T is a Rota-Baxter operator of weight −1. As shown in [22] and [32],

φ+(Γ) = (1− T )(φ(Γ) +
∑

φ−(Γ′)φ(Γ′′)).

So φ+(Γ) = (1−T )(φ(Γ)) +
∑

(1−T )(φ−(Γ′))(1−T )(φ(Γ′′)) by the previous computation. But
φ− is in the image of T and T 2 = T , so we must have (1 − T )(φ−(Γ′)) = 0, which shows that
φ+(Γ) = (1− T )(φ(Γ)). �

2.5. A variant of algebraic renormalization. We consider now a setting inspired by the
formalism of the Connes–Kreimer renormalization recalled above. The setting generalizes the
one considered in [21] for configuration space integrals and our main application will be to extend
the approach of [21] to momentum space integrals.

The main difference with respect to the Connes–Kreimer renormalization is that, instead of
renormalizing the Feynman amplitude (regularized so that it gives a meromorphic function), we
propose to renormalize the differential form, before integration, and then integrate the renor-
malized form to obtain a period.

The result obtained by this method differs from the physical renormalization, as we will discuss
further in Section 5.11 below. There are at present no explicit examples of periods that are known
not to be expressible in terms of rational combinations of mixed Tate periods, just because no
such general statement of algebraic independence of numbers is known. However, it is generally
expected that motives that are not mixed Tate will have periods that are not expressible in terms
of mixed Tate periods, for instance periods associated to H1 of an elliptic curve. There are known
examples ([18], [19]) of Feynman integrals that give periods of non-mixed Tate motives (a K3
surface, for instance). In our setting, the period obtained by applying the Birkhoff factorization
to the Feynman integrand ηΓ is always a mixed Tate period. However, it is difficult to ensure
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that the result is non-trivial. As we will discuss in more detail in Section 5, one can ensure
a non-trivial result by replacing the form ηΓ with a cohomologous form with logarithmic poles
and taking into account both the result of the pole subtraction and all the Poincaré residues.
However, passing to a form with logarithmic poles requires, in general, restricting to the big cell
of the Kausz compactification, and this introduces a constraint on the nature of the period. If
the intersection of the big cell of the Kausz compactification with the divisor Σ`,g that contains
the boundary of the chain of integeration is a mixed Tate motive, then the convergent integral
we obtain by replacing the integration form with a form with logarithmic poles is a mixed Tate
period. For particular graphs, for which the form with logarithmic poles extends globally to the
Kausz compactification, with poles along the boundary divisor, we obtain a mixed Tate period
without any further assumption.

The main steps required for our setup are the following. For a variety X, we denote by m(X)
the motive in the Voevodsky category.

• For each ` ≥ 1, we construct a pair (X`, Y`) of a smooth projective variety X` (de-
fined over Q) whose motive m(X`) is mixed Tate (over Z), together with a (singular)
hypersurface Y` ⊂ X`.

• For each Feynman graph Γ with loop number ` we construct a map

Υ : An r X̂Γ → X` r Y`,

where X̂Γ ⊂ An is the affine graph hypersurface, with n the number of edges of Γ.
• Using the map Υ, we describe the Feynman integrand as a morphism of commutative

algebras

φ : Heven →
∧
`

M
even

X`,Y`
, φ(Γ) = ηΓ,

withH the Connes–Kreimer Hopf algebra and with the Rota–Baxter structure of Lemma
2.3 on the target algebra, and with ηΓ an algebraic differential form on X` with polar
locus Y`, for ` = b1(Γ).

• We express the (unrenormalized) Feynman integrals as a (generally divergent) integral∫
Υ(σ)

ηΓ, over a chain Υ(σ) in X` that is the image of a chain σ in An.

• We construct a divisor Σ` ⊂ X`, that contains the boundary ∂Υ(σ), whose motive m(Σ`)
is mixed Tate (over Z) for all ` ≥ 1.

• We perform the Birkhoff decomposition φ± obtained inductively using the coproduct on
H and the Rota–Baxter operator T (polar part) on M∗X`,Y` .

• This gives a holomorphic form φ+(Γ) on X`. The divergent Feynman integral is then
replaced by the integral ∫

Υ(σ)

φ+(Γ)

which is a period of the mixed Tate motive m(X`,Σ`).
• In addition to the integral of φ+(Γ) on X` we consider integrals on the strata of the

complement X` r Y` of the polar part φ−(Γ), which under suitable conditions will be
interpreted as Poincaré residues.

If convergent, the Feynman integral
∫

Υ(σ)
ηΓ would be a period of m(X`rY`,Σ`r (Σ` ∩Y`)).

The renormalization procedure described above replaces it with a (convergent) integral that is a
period of the simpler motive m(X`,Σ`). By our assumptions on X` and Σ`, the motive m(X`,Σ`)
is mixed Tate for all `.

Thus, this strategy eliminates the difficulty of analyzing the motive m(X`rY`,Σ`r (Σ`∩Y`))
encountered for instance in [4]. The form of renormalization proposed here always produces a



90 MATILDE MARCOLLI AND XIANG NI

mixed Tate period, but at the cost of incurring in a considerable loss of information with respect
to the original Feynman integral.

Indeed, a difficulty in the procedure described above is ensuring that the resulting regularized
form

φ+(Γ) = (1− T )(φ(Γ) +
∑
γ⊂Γ

φ−(γ) ∧ φ(Γ/γ))

is nontrivial. This condition may be difficult to control in explicit cases, although we will
discuss below (see Section 5) conditions under which one can reduce the problem to forms
with logarithmic poles, where using the pole subtraction together with Poincaré residues one
can obtain nontrivial periods (although the result one obtains is not equivalent to the physical
renormalization of the Feynman amplitude).

An additional difficulty that can cause loss of information with respect to the Feynman integral
is coming from the combinatorial conditions on the graph given in [4] that we will use to ensure
that the map Υ to the complement of the determinant hypersurface is an embedding, see Section
5.11.

3. Rota–Baxter algebras and forms with logarithmic poles

We now focus on the case of meromorphic forms with logarithmic poles, where the Rota–
Baxter structure and the renormalization procedure described above drastically simplify.

Lemma 3.1. Let X be a smooth projective variety and Y ⊂ X a smooth hypersurface with
defining equation Y = {f = 0}. Let Ω?X(log(Y )) be the sheaf of algebraic differential forms on X
with logarithmic poles along Y . After passing to global sections, we obtain a graded-commutative
algebra, which we still denote by Ω?X(log(Y )), for simplicity. The Rota–Baxter operator T of

Lemma 2.1 preserves the commutative subalgebra Ω
even

X (log(Y )) and the pair (Ω
even

X (log(Y )), T )

is a graded Rota–Baxter algebra of degree −1 with the property that, for all ω1, ω2 ∈ Ω
even

X (log(Y )),
the wedge product T (ω1) ∧ T (ω2) = 0.

Proof. Forms ω ∈ Ω?X(log(Y )) can be written in canonical form

ω =
df

f
∧ ξ + η,

with ξ and η holomorphic, so that T (ω) = df
f ∧ξ. We then have (2.2) as in Remark 2.2 above, with

T (ω1)∧T (ω2) = (−1)|ξ1|+1α∧α∧ ξ1 ∧ ξ2 where α is the 1-form α = df/f so that α∧α = 0. �

Lemma 3.1 shows that, when restricted to Ω?X(log(Y )), the operator T satisfies the simpler
identity

(3.1) T (xy) = T (T (x)y) + T (xT (y)).

This property greatly simplifies the decomposition of the algebra induced by the Rota–Baxter
operator.

Let R+ = (1 − T )R. For an operator T satisfying (3.1) and T (x)T (y) = 0, for all x, y ∈ R,
the property that R+ ⊂ R is a subalgebra follows immediately from the simple identity

(1− T )(x) · (1− T )(y) = xy − T (x)y − xT (y)

= xy − T (x)y − xT (y)− (T (xy)− T (T (x)y)− T (xT (y))) = (1− T )(xy − T (x)y − xT (y)).

Moreover, we obtain a simplified form of the general result of Proposition 2.10, when taking into
account the vanishing T (x)T (y) = 0, as shown in Lemma 3.1.
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Lemma 3.2. Let R be a commutative algebra and T : R → R a linear operator that satisfies
the identity (3.1) and such that, for all x, y ∈ R, the product T (x)T (y) = 0. Then both T and
1− T are idempotent, T 2 = T and (1− T )2 = 1− T .

Proof. The identity (3.1) gives T (1) = 0, since taking x = y = 1 one obtains T (1) = 2T 2(1)
while taking x = T (1) and y = 1 gives T 2(1) = T 3(1). Then (3.1) with y = 1 gives

T (x) = T (xT (1)) + T (T (x)1) = T 2(x)

for all x ∈ R. For 1 − T we then have (1 − T )2(x) = x − 2T (x) + T 2(x) = (1 − T )(x), for all
x ∈ R. �

Lemma 3.3. Let R be a commutative algebra and T : R → R a linear operator that satisfies
the identity (3.1) and such that, for all x, y ∈ R the product T (x)T (y) = 0. If, for all x, y ∈ R,
the identity T (x)y + xT (y) = T (T (x)y) + T (xT (y)) holds, then the operator (1− T ) : R → R+

is an algebra homomorphism and the operator T is a derivation on R.

Proof. We have

(1− T )(xy) = xy − T (T (x)y)− T (xT (y)), while (1− T )(x) · (1− T )(y) = xy − T (x)y − xT (y).

Assuming that, for all x, y ∈ R, we have T (T (x)y) + T (xT (y)) = T (x)y + xT (y) gives

(1− T )(xy) = (1− T )(x) · (1− T )(y).

Moreover, the identity (3.1) can be rewritten as T (xy) = T (x)y + xT (y); hence T is just a
derivation on R. �

Consider then the case of a smooth hypersurface Y in a smooth projective variety X. We
have the following properties.

Proposition 3.4. Let Y ⊂ X be a smooth hypersurface in a smooth projective variety. The
Rota–Baxter operator T :Meven

X,Y →M
even

X,Y of weight −1 on meromorphic forms on X with poles

along Y restricts to a derivation on the graded algebra Ω
even

X (log(Y )) of forms with logarithmic

poles. Moreover, the operator 1− T is a morphism of commutative algebras from Ω
even

X (log(Y ))

to the algebra of holomorphic forms Ω
even

X .

Proof. It suffices to check that the polar part operator T : Ω
even

X (log(Y ))→ Ω
even

X (log(Y )) satisfies

the hypotheses of Lemma 3.3. We have seen that, for all ω1, ω2 ∈ Ω
even

X (log(Y )), the product
T (ω1)∧T (ω2) = 0. Moreover, for ωi = d log(f)∧ ξi + ηi, we have T (ω1)∧ω2 = d log(f)∧ ξ1 ∧ η2

and ω1∧T (ω2) = (−1)|η1|d log(f)∧η1∧ξ2, where the ξi and ηi are holomorphic, so that we have
T (T (ω1) ∧ ω2) = T (ω1) ∧ ω2 and T (ω1 ∧ T (ω2)) = ω1 ∧ T (ω2). Thus, the hypotheses of Lemma
3.3 are satisfied. �

3.1. Birkhoff factorization and forms with logarithmic poles. In cases where the pair
(X,Y ) has the property that all de Rham cohomology classes in H∗dR(XrY ) are represented by
global algebraic differential forms with logarithmic poles, the construction above simplifies sig-
nificantly. Indeed, the Birkhoff factorization becomes essentially trivial, because of Proposition
3.4. In other words, all graphs behave “as if they were log divergent”. This can be stated more
precisely as follows.

Proposition 3.5. Let Y ⊂ X be a smooth hypersurface inside a smooth projective variety and let
Ω

even

X (log(Y )) denote the commutative algebra of algebraic differential forms on X of even degree

with logarithmic poles on Y . Let φ : H → Ω
even

X (log(Y )) be a morphism of commutative algebras
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from a commutative Hopf algebra H to Ω
even

X (log(Y )) with the operator T of pole subtraction.
Then for every Γ ∈ H one has

φ+(Γ) = (1− T )φ(Γ),

while the negative part of the Birkhoff factorization takes the form

φ−(Γ) = −T (φ(Γ))−
∑

φ−(Γ′)φ(Γ′′),

where ∆(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑

Γ′ ⊗ Γ′′. Moreover, φ− takes the following nonrecursive form
on ker(e) = ⊕n>0Hn:

φ−(Γ) = −T (φ(Γ))−
∞∑
n=1

(−1)n
∑

T (φ(Γ(1)))φ(Γ(2))φ(Γ(3)) · · · φ(Γ(n+1))

= −T (φ(Γ))−
∞∑
n=1

(−1)n((Tφ)∗̃φ∗̃
n

)(Γ).

Proof. The operator T of pole subtraction is a derivation on Ω
even

X (log(Y )). By (2.6) we have
φ+(Γ) = (1−T )(φ(Γ) +

∑
φ−(Γ′)φ(Γ′′)). By Proposition 3.4 we know that, in the case of forms

with logarithmic poles along a smooth hypersurface, 1− T is an algebra homomorphism, hence
φ+(Γ) = (1 − T )(φ(Γ)) +

∑
(1 − T )(φ−(Γ′))(1 − T )(φ(Γ′′))), but φ−(Γ′) is in the range of T

and, again by Proposition 3.4, we have T 2 = T , so that the terms in the sum all vanish, since
(1− T )(φ−(Γ′)) = 0. By (2.6) we have

φ−(Γ) = −T (φ(Γ) +
∑

φ−(Γ′)φ(Γ′′)) = −Tφ(Γ)−
∑

T (φ−(Γ′))φ(Γ′′)−
∑

φ−(Γ′)T (φ(XΓ′)),

because by Proposition 3.4 T is a derivation. The last sum vanishes because φ−(Γ′) is in the
range of T and we have T (η) ∧ T (ξ) = 0 for all η, ξ ∈ Ω∗X(log(Y )). Thus, we are left with
φ−(Γ) = −Tφ(Γ)−

∑
T (φ−(Γ′))φ(Γ′′) = −Tφ(Γ)−

∑
φ−(Γ′)φ(Γ′′). The last part follows from

Proposition 2.10, since T (T (η) ∧ ξ) = T (η) ∧ ξ. �

Notice that this is compatible with the property that φ(Γ) = (φ− ◦ S ? φ+)(Γ) (with the ?-
product dual to the Hopf algebra coproduct). In fact, this identity is equivalent to φ+ = φ− ? φ,

which means that φ+(Γ) = 〈φ− ⊗ φ,∆(Γ)〉 = φ−(Γ) + φ(Γ) +
∑
φ−(Γ′)φ(Γ′′) = (1− T )φ̃(Γ) as

above. Equivalently, all the nontrivial terms φ−(Γ′)φ(Γ′′) in φ̃(Γ) satisfy

T (φ−(Γ′)φ(Γ′′)) = φ−(Γ′)φ(Γ′′),

because of the simplified form (3.1) of the Rota–Baxter identity.

Corollary 3.6. Suppose given a character φ : H → Ω
even

X (log(Y )) of the Hopf algebra of Feynman
graphs, where X = X` and Y = Y` independently of the number of loops ` ≥ 1. Then the negative
part of the Birkhoff factorization of Proposition 3.5 has the simple form

(3.2) φ−(Γ) = −dh
h
∧

ξΓ +
∑
N≥1

(−1)N
∑

γN⊂···⊂γ1⊂γ0=Γ

ξγN ∧
N∧
j=1

ηγj−1/γj

 ,

where φ(Γ) = dh
h ∧ ξΓ + ηΓ, and Y = {h = 0}.

Proof. The result follows from the expression

φ−(Γ) = −T (φ(Γ))−
∑
γ⊂Γ

φ−(γ)φ(Γ/γ),

obtained in Proposition 3.5, where φ(Γ) = ωΓ = dh
h ∧ ξΓ + ηΓ, so that T (φ(Γ)) = dh

h ∧ ξΓ and

φ(Γ/γ) = dh
h ∧ ξΓ/γ + ηΓ/γ . The wedge product of φ−(γ) = −T (φ(γ)) −

∑
γ2⊂γ φ−(γ2)φ(γ/γ2)



ROTA–BAXTER ALGEBRAS, SINGULAR HYPERSURFACES, RENORMALIZATION 93

with φ(Γ/γ) will give a term dh
h ∧ξγ∧ηΓ/γ and additional terms φ−(γ2)φ(γ/γ2)∧ηΓ/γ . Proceeding

inductively on these terms, one obtains (3.2). �

Remark 3.7. In the geometric construction we consider here, one does not have a single pair
(X,Y ) for all loop numbers. Instead, we consider a more general situation, where X` and Y`
depend on the loop number ` ≥ 1. In this case, the form of the negative piece φ−(Γ) is more
complicated than in Corollary 3.6, as it contains forms on the products X`(γ) × X`(Γ/γ) with
logarithmic poles along Y`(γ) × X`(Γ/γ) ∪ X`(γ) × Y`(Γ/γ). However, the general form of the
expression is similar, only more cumbersome to write explicitly.

3.2. Polar subtraction and the residue. We have seen that, in the case of a smooth hyper-
surface Y ⊂ X, the Birkhoff factorization in the algebra of forms with logarithmic poles reduces
to a simple pole subtraction, φ+(Γ) = (1−T )φ(Γ). If the unrenormalized φ(Γ) is a form written

as α + df
f ∧ β, with α and β holomorphic, then φ+(Γ) vanishes identically whenever α = 0. In

that case, all information about φ(Γ) is lost in the process of pole substraction. Suppose that∫
σ
φ(Γ) is the original unrenormalized integral. To maintain some additional information, it is

preferable to consider, in addition to the integral
∫
σ
φ+(Γ), also an integral of the form∫

σ∩Y
ResY (η),

where ResY (η) = β is the Poincaré residue of η = α + df
f ∧ β along Y . It is dual to the Leray

coboundary, in the sense that ∫
σ∩Y

ResY (η) =
1

2πi

∫
L(σ∩Y )

η,

where the Leray coboundary L(σ ∩ Y ) is a circle bundle over σ ∩ Y . In this way, even when
α = 0, one can still retain the nontrivial information coming from the Poincaré residue, which
is also expressed as a period.

4. Singular hypersurfaces and meromorphic forms

In our main application, we will need to work with pairs (X,Y ) where X is smooth projective,
but the hypersurface Y is singular. Thus, we now discuss extensions of the results above to more
general situations where Y ⊂ X is a singular hypersurface in a smooth projective variety X.

Again we denote byM∗X,Y the sheaf of meromorphic differential forms on X with poles along

Y , of arbitrary order, and by Ω∗X(log(Y )) the sub-sheaf of forms with logarithmic poles along Y .
Let h be a local determination of Y , so that Y = {h = 0}. We can then locally represent forms
ω ∈ M∗X,Y as finite sums ω =

∑
p≥0 ωp/h

p, with the ωp holomorphic. The polar part operator

T :Meven

X,Y →M
even

X,Y can then be defined as in (2.3).

In the case we considered in the previous section, with Y ⊂ X a smooth hypersurface, forms
with logarithmic poles can be represented as

(4.1) ω =
dh

h
∧ ξ + η,

with ξ and η holomorphic. The Leray residue is given by Res(ω) = ξ. It is well defined, as the
restriction of ξ to Y is independent of the choice of a local equation for Y .

In the next subsection we discuss how the case of a smooth hypersurface generalizes to the case
of a normal crossings divisor Y ⊂ X inside a smooth projective variety X. The normal crossings
divisor is a particularly nice case of a larger class of singular hypersurfaces. The complex of
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forms with logarithmic poles extends from the smooth hypersurface case to the normal crossings
divisor case as in [25]. For more general singular hypersurfaces, an appropriate notion of forms
with logarithmic poles was introduced by Saito in [58]. The construction of the residue was also
generalized from the smooth hypersurface case to the case where Y is a normal crossings divisor
in [25] and to more general singular hypersurfaces in [58].

4.1. Normal crossings divisors. The main case of singular hypersurfaces that we focus on
for our applications will be simple normal crossings divisors. In fact, while our formulation
of the Feynman amplitude in momentum space is based on the formulation of [4], where the
unrenormalized Feynman integral lives on the complement of the determinant hypersurface,
which has worse singularities, we will reformulate the integral on the Kausz compactification of
GLn where the boundary divisor of the compactification is normal crossings.

If Y ⊂ X is a simple normal crossings divisor in a smooth projective variety, with Yj the
components of Y , with local equations Yj = {fj = 0}, the complex of forms with logarithmic

poles Ω∗X(log(Y )) is spanned by the forms
dfj
fj

and by the holomorphic forms on X.

As in Theorem 6.3 of [21], we obtain that the Rota–Baxter operator of polar projection
T : Meven

X,Y → M
even

X,Y restricts to a Rota–Baxter operator T : Ω
even

X (log(Y )) → Ω
even

X (log(Y ))
given by

(4.2) T : η 7→ T (η) =
∑
j

dfj
fj
∧ ResYj (η),

where the holomorphic form ResYj (η) is the Poincaré residue of η restricted to Yj .

Unlike the case of a single smooth hypersurface, for a simple normal crossings divisor the
Rota–Baxter operator operator T does not satisfy T (x)T (y) ≡ 0, since we now have terms like
dfj
fj
∧ dfk

fk
6= 0, for j 6= k, so the Rota–Baxter identity for T does not reduce to a derivation,

but some of the properties that simplify the Birkhoff factorization in the case of a smooth
hypersurface still hold in this case.

Proposition 4.1. The Rota–Baxter operator T of (4.2) satisfies T 2 = T and the Rota–Baxter
identity simplifies to the form

(4.3) T (η ∧ ξ) = T (η) ∧ ξ + η ∧ T (ξ)− T (η) ∧ T (ξ).

The operator (1 − T ) : R → R+ is an algebra homomorphism, with R = Ω
even

X (log(Y )) and
R+ = (1−T )R. The Birkhoff factorization of a commutative algebra homomorphism φ : H → R,
with H a commutative Hopf algebra, is given by

(4.4)
φ+(Γ) = (1− T )φ(Γ)
φ−(Γ) = −T (φ(Γ) +

∑
φ−(Γ′)φ(Γ′′)).

Moreover, φ− takes the following form on ker(e) = ⊕n>0Hn:

φ−(Γ) = −T (φ(Γ))−
∞∑
n=1

(−1)n
∑

T (φ(Γ(1)))φ(Γ(2))φ(Γ(3)) · · ·φ(Γ(n+1))

= −T (φ(Γ))−
∞∑
n=1

(−1)n((Tφ)∗̃φ∗̃
n

)(Γ).

Proof. The argument is the same as in the proof of Theorem 6.3 in [21]. It is clear by construc-
tion that T is idempotent and the simplified form (4.3) of the Rota–Baxter identity follows by
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observing that T (T (η) ∧ ξ) = T (η) ∧ ξ and T (η ∧ T (ξ)) = η ∧ T (ξ) as in Theorem 6.3 in [21].
Then one sees that

(1− T )(η) ∧ (1− T )(ξ) = η ∧ ξ − T (η) ∧ ξ − η ∧ T (ξ) + T (η) ∧ T (ξ) = η ∧ ξ − T (η ∧ ξ)

by (4.3). Consider then the Birkhoff factorization. We write φ̃(Γ) := φ(Γ) +
∑
φ−(Γ′)φ(Γ′′).

The fact that (1− T ) is an algebra homomorphism then gives

φ+(Γ) = (1− T )(φ̃(Γ)) = (1− T )(φ(Γ) +
∑

φ−(Γ′)φ(Γ′′))

= (1− T )(φ(Γ)) +
∑

(1− T )(φ−(Γ′))(1− T )(φ(Γ′′))),

with (1 − T )(φ−(Γ′)) = −(1 − T )T (φ̃−(Γ′)) = 0, because T is idempotent. The last statement
again follows from Proposition 2.10, since we have T (T (η) ∧ ξ) = T (η) ∧ ξ. �

4.2. Multidimensional residues. In the case of a simple normal crossings divisor Y ⊂ X, we
can proceed as discussed in Section 3.2 for the case of a smooth hypersurface. Indeed, as we have
seen in Proposition 4.1, we also have in this case a simple pole subtraction φ+(Γ) = (1−T )φ(Γ),
even though the negative term φ−(Γ) of the Birkhoff factorization can now be more complicated
than in the case of a smooth hypersurface.

The unrenormalized φ(Γ) is a form η = α +
∑
j
dfj
fj
∧ βj , with α and βj holomorphic and

Yj = {fj = 0} the components of Y . Again, if α = 0 we loose all information about φ(Γ) in our
renormalization of the logarithmic form. To avoid this problem, we can again consider, instead
of the single renormalized integral

∫
σ
φ+(Γ), an additional family of integrals∫

σ∩YI
ResYI (η),

where YI = ∩j∈IYj is an intersection of components of the divisor Y and ResYI (η) is the iterated
(or multidimensional, or higher) Poincaré residue of η, in the sense of [25]. These are dual to
the iterated Leray coboundaries,∫

σ∩YI
ResYI (η) =

1

(2πi)n

∫
LI(σ∩YI)

η,

where LI = Lji ◦ · · · ◦ Ljn for YI = Yj1 ∩ · · · ∩ Yjn .
If arbitrary intersections YI of components of Y are all mixed Tate motives, then all these

integrals are also periods of mixed Tate motives.

4.3. Saito’s logarithmic forms. Given a singular reduced hypersurface Y ⊂ X, a differential
form ω with logarithmic poles along Y , in the sense of Saito [58], can always be written in the
form ([58], (1.1))

(4.5) f ω =
dh

h
∧ ξ + η,

where f ∈ OX defines a hypersurface V = {f = 0} with dim(Y ∩ V ) ≤ dim(X)− 2, and with ξ
and η holomorphic forms.

In the following, we use the notation SΩ?X(log(Y )) to denote the forms with logarithmic poles
along Y in the sense of Saito, to distinguish it from the more restrictive notion of forms with
logarithmic poles Ω?X(log(Y )) considered above for the normal crossings case.

Following [2], we say that a (reduced) hypersurface Y ⊂ X has Saito singularities if the mod-
ules of logarithmic differential forms and vector fields along Y are free. The condition that Y ⊂ X
has Saito singularities is equivalent to the condition that SΩnX(log(Y )) =

∧n SΩ1
X(log(Y )), [58].
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Let Y be a hypersurface with Saito singularities and let MY denote the sheaf of germs of
meromorphic functions on Y . Then setting

(4.6) Res(ω) =
1

f
ξ |Y

defines the residue as a morphism of OX -modules, for all q ≥ 1,

(4.7) Res : SΩqX(log(Y ))→MY ⊗OY Ωq−1
Y .

Unlike the case of smooth hypersurfaces and normal crossings divisors, in the case of more
general hypersurfaces with Saito singularities, the Saito residue of forms with logarithmic poles
is not a holomorphic form, but only a meromorphic form on Y .

For Y ⊂ X a reduced hypersurface that is quasihomogeneous with Saito singularities, a
refinement of (4.7), which we view as the exact sequence

0→ ΩqX →
SΩqX(log(Y ))

Res→ MY ⊗OY Ωq−1
Y ,

is given in [2], where the image of the Saito Poincaré residue is more precisely identified as

ResSΩqX(log(Y )) ' ωq−1
Y , where ω•Y denotes the module of regular meromorphic differential

forms in the sense of [8], with ω•Y ⊂ j∗j
∗Ω•Y , where j : S ↪→ Y is the inclusion of the singular

locus. Namely, it is shown in [2] that one has, for all q ≥ 2, an exact sequence of OX -modules

(4.8) 0→ ΩqX →
SΩqX(log(Y ))

Res−→ ωq−1
Y → 0.

It is natural to ask whether the extraction of polar part from forms with logarithmic poles that
we considered here for the case of smooth hypersurfaces and normal crossings divisors extends
to more general singular hypersurfaces using Saito’s formulation.

Question 4.2. Is there a Rota–Baxter operator T expressed in terms of the Saito residue, in
the case of a singular hypersurfaces Y ⊂ X with Saito singularities?

We describe here a possible approach to this question. We introduce an analog of the Rota–
Baxter operator considered above, given by the extraction of the polar part. The “polar part”
operator, in this more general case, does not map Ωeven

X (log(Y )) to itself, but we show below
that it gives a well defined Rota-Baxter operator of weight −1 on the space of Saito forms
SΩeven

X (log(Y )), and that this operator is a derivation.

Lemma 4.3. The set SY := {f |dim({f = 0} ∩ Y ) ≤ dim(X) − 2} is a multiplicative set.
Localization of the Saito forms with logarithmic poles gives S−1

Y
SΩX(log(Y )) = SΩX(log(Y )).

Proof. We have V12 = {f1f2 = 0} = {f1 = 0} ∪ {f2 = 0} and

dim(Y ∩ V12) = dim((Y ∩ {f1 = 0}) ∪ (Y ∩ {f2 = 0})) ≤ dim(X)− 2,

since dim(Y ∩{fi = 0}) ≤ dim(X)−2 for i = 1, 2. Thus, for any f1, f2 ∈ SY , we have f1f2 ∈ SY .
Moreover, we have 1 ∈ SY , hence SY is a multiplicative set. The localization of SΩ?X(log(Y ))

at SY is just SΩ?X(log(Y )) itself: in fact, for f̃−1ω ∈ S−1
Y

SΩ?X(log(Y )), with f̃ ∈ SY and
ω ∈ SΩ?X(log(Y )), expressed as in (4.5), we have

ff̃(f̃−1ω) = fω =
dh

h
∧ ξ + η,

where ff̃ ∈ SY , hence f̃−1ω ∈ SΩX(log(Y )). �
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Given a form ω ∈ SΩ?X(log(Y )), which we can write as in (4.5), the residue (4.6) is the image

under the restriction map S−1
Y Ω?X → S−1

Y Ω?Y of the form f−1ξ ∈ S−1
Y Ω?X . Moreover, we have an

inclusion Ω?X ↪→ SΩ?X(log(Y )), which induces a map of the localizations

S−1
Y Ω?X ↪→ S−1

Y
SΩ?X(log(Y )) = SΩ?X(log(Y )).

We can then define a linear operator

T : SΩ?X(log(Y ))→ SΩ?X(log(Y ))∧S−1
Y Ω?X ↪→ SΩ?X(log(Y ))∧S−1

Y
SΩ?X(log(Y )) = SΩ?X(log(Y ))

given by

(4.9) T (ω) =
dh

h
∧ ξ

f
, for f ω =

dh

h
∧ ξ + η.

Lemma 4.4. The operator T of (4.9) is a Rota–Baxter operator of weight −1 on SΩ
even

X (log(Y )),
which is just given by a derivation, satisfying the Leibnitz rule

T (ω1 ∧ ω2) = T (ω1) ∧ ω2 + ω1 ∧ T (ω2).

Proof. Let

f1 ω1 =
dh

h
∧ ξ1 + η1 f2 ω2 =

dh

h
∧ ξ2 + η2.

Then

f1 f2 ω1 ∧ ω2 = (
dh

h
∧ ξ1 + η1) ∧ (

dh

h
∧ ξ2 + η2) =

dh

h
∧ (ξ1 ∧ η2 + (−1)pη1 ∧ ξ2) + η1 ∧ η2,

where η1 ∈ Ωp(X). By Lemma 4.3, we know that f1f2 ∈ SY . We have

T (ω1 ∧ ω2) =
dh

h
∧ (

ξ1
f1
∧ η2

f2
+ (−1)p

η1

f1
∧ ξ2
f2

).

Since

T (ω1) =
dh

h
∧ ξ1
f1
, and T (ω2) =

dh

h
∧ ξ2
f2
,

we obtain

T (ω1) ∧ T (ω2) =
dh

h
∧ ξ1
f1
∧ dh
h
∧ ξ2
f2

= 0.

Moreover, we have

T (ω1) ∧ ω2 = (
dh

h
∧ ξ1
f1

) ∧ dh
h
∧ ξ2
f2

+
dh

h
∧ ξ1
f1
∧ η2

f2
=
dh

h
∧ ξ1
f1
∧ η2

f2
,

with

f1f2(T (ω1) ∧ ω2) =
dh

h
∧ ξ1 ∧ η2,

and similarly,

ω1 ∧ T (ω2) = (−1)p
dh

h
∧ η1

f1
∧ ξ2
f2
,

hence T satisfies the Leibnitz rule. The operator T also satisfies T (T (ω1) ∧ ω2) = T (ω1) ∧ ω2,
and T (ω1 ∧ T (ω2)) = ω1 ∧ T (ω2), hence the condition that T is a derivation is equivalent to the
condition that it is a Rota-Baxter operator of weight −1. �
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Correspondingly, we have

(1− T )ω = ω − dh

h
∧ ξ

f
=
η

f
∈ S−1

Y Ω
even

X .

Under the restriction map S−1
Y Ω

even

X → S−1
Y Ω

even

Y we obtain a form (1 − T )(ω)|Y . It follows
that we can define a “subtraction of divergences” operation on φ : H → SΩeven

X (log(Y )) by

taking φ+ : H → SΩ
even

X (log(Y )) given by φ+(a) = (1 − T )φ(a)|Y , for a ∈ H, which maps

φ(a) = ω to (1 − T )ω|Y = f−1η|Y , where f ω = dh
h ∧ ξ + η. While this has subtracted the

logarithmic pole along Y , it has also created a new pole along V = {f = 0}. Thus, it results
again in a meromorphic form. If we consider the restriction to Y of φ+(a) = f−1 η|Y , we obtain
a meromorphic form with first order poles along a subvariety V ∩ Y , which is by hypothesis of
codimension at least one in Y . Thus, we can conceive of a more complicated renormalization
method that progressively subtracts poles on subvarieties of increasing codimension, inside the
polar locus of the previous pole subtraction, by iterating this procedure. A more detailed account
of this iterative procedure and of possible applications to the setting of renormalization will be
discussed elsewhere.

5. Compactifications of GLn and momentum space Feynman integrals

In this section, we restrict our attention to the case of compactifications of PGL` and of GL`
and we use a formulation of the parametric Feynman integrals of perturbative quantum field
theory in terms of (possibly divergent) integrals on a cycle in the complement of the determinant
hypersurface [4], to obtain a new method of regularization and renormalization. This gives rise
to a renormalized integral that is a period of a mixed Tate motive, under certain conditions on
the graph and on the intersection of the big cell of the compactification with a divisor Σ`,g. We
show that a certain loss of information can occur with respect to the usual physical Feynman
integral.

5.1. The determinant hypersurface. In the following we use the notation D̂` and D`, respec-
tively, for the affine and the projective determinant hypersurfaces. Namely, we consider in the

affine space A`2 , identified with the space of all ` × `-matrices, with coordinates (xij)i,j=1,...,`,
the hypersurface

D̂` = {det(X) = 0 |X = (xij)} ⊂ A`
2

.

Since det(X) = 0 is a homogeneous polynomial in the variables (xij), we can also consider the

projective hypersurface D` ⊂ P`2−1.

The complement A`2 r D̂` is identified with the space of invertible `×`-matrices, namely with
GL`.

5.2. The Kausz compactification of GLn. We recall here some basic facts about the Kausz
compactification KGLn of GLn, following [47] and the exposition in §12 of [53].

We first recall the Vainsencher compactification [60] of PGL`. Let X0 = P`2−1 be the projec-
tivization of the vector space of square `× `-matrices. Let Yi be the locus of matrices of rank i
and consider the iterated blowups Xi = BlȲi(Xi−1), with Ȳi the closure of Yi in Xi−1. The Yi
are PGLi-bundles over a product of Grassmannians. It is shown in Theorem 1 and (2.4) of [60]
that the Xi are smooth, and that X`−1 is a wonderful compactification of PGL`, in the sense of
[24]. One denotes by PGL` the wonderful compactification of PGL` obtained in this way. We
also refer the reader to §12 of [53] for a quick overview of the main properties of the Vainsencher
compactification.
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The Kausz compactification [47] of GL` is similar. One regards A`2 as the big cell in

X0 = P`2 . The iterated sequence of blowups is given in this case by setting Xi = BlȲi−1∪H̄i(Xi−1),

where Yi ⊂ A`2 are the matrices of rank i and Hi are the matrices at infinity (that is, in

P`2−1 = P`2 r A`2) of rank i. The Kausz compactification is KGL` = X`−1. It is shown in
Corollary 4.2 of [47] that the Xi are smooth and in Corollary 4.2 and Theorem 9.1 of [47] that
the blowup loci are disjoint unions of loci with the following structure: the closure Ȳi−1 in
Xi−1 is a KGLi−1-bundle over a product of Grassmannians and the closure H̄i in in Xi−1 is
a PGLi-bundle over a product of Grassmannians. Theorem 9.1 of [47] also shows that these
compactifications have a moduli space interpretation. An overview of these properties and of
the relation between the Vainsencher and the Kausz compactifications is given in §12 of [53].

As observed in [53], the Kausz compactification is then the closure of GL` inside the wonderful
compactification of PGL`+1, see also [43], Chapter 3, §1.4. The compactification KGL` is smooth
and projective over Spec(Z) (Corollary 4.2 [47]).

The other property of the Kausz compactification that we will be using in the following is
the fact that the complement of the dense open set GL` inside the compactification KGL` is a
normal crossing divisor (Corollary 4.2 [47]).

5.3. The virtual motive of the Kausz compactification. We organize the computation
of the motive of the Kausz compactification in three subsections, respectively dealing with the
virtual motive (Grothendieck class), the numerical motive, and the Chow motive. The main
reason for providing separate arguments, instead of giving only the strongest result about the
Chow motive, is a pedagogical illustration of the difference between these three levels of motivic
structure, where one can see in a very explicit case what is needed to improve from one level
to the next, and what are the implications (conditional and unconditional). We begin with
the Grothendieck class, which is usually more familiar, especially in the mathematical physics
setting.

We use the description recalled above of the Kausz compactification, together with the blowup
formula, to check that the virtual motive (class in the Grothendieck ring) of the Kausz compact-
ification is Tate.

Proposition 5.1. Let K0(V) be the Grothendieck ring of varieties (defined over Q or over Z) and
let Z[L] ⊂ K0(V) be the Tate subring generated by the Lefschetz motive L = [A1]. For all ` ≥ 1
the class [KGL`] is in Z[L]. Moreover, let Z` be the normal crossings divisor Z` = KGL`rGL`.
Then all the unions and intersections of components of Z` have Grothendieck classes in Z[L].

Proof. We use the blowup formula for classes in the Grothendieck ring: if X̃ = BlY(X ), where
Y is of codimension m+ 1 in X , then the classes satisfy

(5.1) [X̃ ] = [X ] +

m∑
k=1

[Y]Lk.

The Kausz compactification is obtained as an iterated blowup, starting with a projective space,
whose class is in Z[L] and blowing up at each step a smooth locus that is a bundle over a prod-
uct of Grassmannians with fiber either a KGLi or a PGLi for some i < `. The Grothendieck
class of a bundle is the product of the class of the base and the class of the fiber. Classes of
Grassmannians (and products of Grassmannians) are in Z[L]. The classes of the wonderful com-
pactifications PGLi of PGLi are also in Z[L], since it is known that the motive of these wonderful
compactifications are mixed Tate (this follows, for instance, from the cell decomposition given in
Proposition 4.4. of [41]). Thus, it suffices to assume, inductively, that the classes [KGLi] ∈ Z[L]
for all i < `, and conclude via the blowup formula that [KGL`] ∈ Z[L].
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Consider then the boundary divisor Z` = KGL`rGL`. The geometry of the normal crossings
divisor Z` is described explicitly in §4 of [47]. It has components Yi and Zi, for 0 ≤ i ≤ `, that
correspond to the blowup loci described above. The multiple intersections ∩i∈IYi ∩ ∩j∈JZj of
these components of Z` are described in turn in terms of bundles over products of flag varieties
with fibers that are lower dimensional compactifications KGLi and PGLi and products. Again,
flag varieties have cell decompositions, hence their Grothendieck classes are in Z[L] and the rest
of the argument proceeds as in the previous case. If arbitrary intersections of the components
of Z` have classes in Z[L] then arbitrary unions and unions of intersections also do by inclusion-
exclusion in K0(V). �

5.4. The numerical motive of the Kausz compactification. Knowing that the Grothen-
dieck class [KGL`] is in the Tate subring Z[L] ⊂ K0(V) implies that the motive is of Tate type
in the category of pure motives with respect to the numerical equivalence. More precisely, we
have the following.

Proposition 5.2. Let hnum(KGL`) denote the motive of the Kausz compactification KGL` in
the category of pure motives over Q, with the numerical equivalence relation. Then hnum(KGL`)
is in the (tensor) subcategory generated by the Tate object. The same is true for arbitrary unions
and intersections of the components of the boundary divisor Z` of the compactification.

Proof. The same argument used in Proposition 5.1 can be upgraded at the level of numerical
motives. We replace the blowup formula (5.1) for Grothendieck classes with the corresponding
formula for motives, which follows (already at the level of Chow motives) from Manin’s identity
principle, [51]:

(5.2) h(X̃) = h(X)⊕
m⊕
r=1

h(Y )⊗ L⊗r,

with X̃ = BlY (X) the blowup of a smooth subvariety Y ⊂ X of codimension m+ 1 in a smooth
projective variety X, and where L = h2(P1) is the Lefschetz motive. Moreover, we use the fact
that, for numerical motives, the motive of a locally trivial fibration X → S with fiber Y is given
by the product

(5.3) hnum(X) = hnum(Y )⊗ hnum(S),

see Exercise 13.2.2.2 of [5]. The decomposition (5.3) allows us to describe the numerical motives
of the blowup loci of the iterated blowup construction of KGL` as products of numerical motives
of Grassmannians and of lower dimensional compactifications KGLi and PGLi. The motive of
a Grassmannian can be computed explicitly as in [49], already at the level of Chow motives. If
G(d, n) denotes the Grassmannian of d-planes in kn, the Chow motive h(G(d, n)) is given by

(5.4) h(G(d, n)) =
⊕
λ∈Wd

L⊗|λ|,

where

W d = {λ = (λ1, . . . , λd) ∈ Nd |n− d ≥ λ1 ≥ · · · ≥ λd ≥ 0}
and |λ| =

∑
i λi, see Theorem 2.1 and Lemma 3.1 of [49]. The same decomposition into powers

of the Lefschetz motive holds at the numerical level. Moreover, we know (also already for
Chow motives) that the motives h(PGLi) of the wonderful compactifications are Tate (see [41]),
and we conclude the argument as in Proposition 5.1 by assuming inductively that the motives
hnum(KGLi) are Tate, for i < `. The argument for the loci ∩i∈IYi ∩∩j∈JZj in Z` is analogous.

�
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Remark 5.3. Proposition 5.2 also follows from Proposition 5.1 using the general fact that
two numerical motives that have the same class in K0(Num(k)Q) are isomorphic as objects in
Num(k)Q, because of the semi-simplicity of the category of numerical motives [44], together with
the existence, for char(k) = 0, of a unique ring homomorphism (the motivic Euler characteristic)
χmot : K0(Vk) → K0(Num(k)Q), such that χmot([X]) = [hnum(X)], for X a smooth projective
variety, see Corollary 13.2.2.1 of [5].

5.5. The Chow motive of the Kausz compactification. Manin’s blowup formula (5.2)
and the computation of the motive of Grassmannians and of the wonderful compactifications
PGLi already hold at the level of Chow motives. However, if we want to extend the argument
of Proposition 5.2 to Chow motives, we run into the additional difficulty that one no longer
necessarily has the decomposition (5.3) for the motive of a locally trivial fibration. Under
some hypotheses on the existence of a cellular structure on the fibers, one can still obtain a
decomposition for motives of bundles, and more generally locally trivial fibrations, the fibers
of which have cell decompositions with suitable properties, see [46], and also [40], [41], [45],
[56]. We obtain an unconditional result on the Chow motive of the Kausz compactification, by
analyzing its cellular structure.

Recall that, for G a connected reductive algebraic group and B a Borel subgroup, a spherical
variety is a normal algebraic variety on which G acts with a dense orbit of B, [14]. Spherical
varieties can be regarded as a generalization of toric varieties: when G is a torus, one recovers
the usual notion of toric variety.

Proposition 5.4. The Chow motive h(KGL`) of the Kausz compactification is a Tate motive.

Proof. The result follows by showing that KGL` has a cellular structure for all ` ≥ 1, which
allows us to extend the decomposition of the motive used in Proposition 5.2 from the numerical
to the Chow case.

As shown in §3.1 of [14], it follows from the work of Bialynicki–Birula [11] that any complete,
smooth and spherical variety X has a cellular decomposition. This is determined by the decom-
position of the spherical variety into B-orbits and is obtained by considering a one-parameter
subgroup λ : Gm ↪→ X, such that the set of fixed points Xλ is finite. The cells are given by

(5.5) X(λ, x) = {z ∈ X | lim
t→0

λ(t)z = x}, for x ∈ Xλ.

The Kausz compactification KGL` is a smooth toroidal equivariant compactification of GL`,
see Proposition 1.15 of §3 of [43] and also Proposition 10.1 and Proposition 12.1 of [53]. In
particular, it is a spherical variety (see Proposition 10.1 of [53]), hence it has a cellular structure
as above.

A relative cellular variety, in the sense of [46], is a smooth and proper variety with a decompo-
sition into affine fibrations over proper varieties. The blowup loci of the Kausz compactification
KGL` are relative cellular varieties in this sense, since they are bundles over products of Grass-
mannians, with fiber a lower dimensional compactification KGLi, with i < `. Using the cell
decomposition of the fibers KGLi, we obtain a decomposition of these blowup loci as relative
cellular varieties, with pieces of the decomposition being fibrations over a product of Grassman-
nians, with fibers the cells of the cellular structure of KGLi.

There is an embedding of the category of pure Chow motives in the category of mixed motives,
see [5]. By viewing the Chow motives of these blowup loci as elements in the Voevodsky category
of mixed motives, Corollary 6.11 of [46] shows that they are direct sums of motives of products of
Grassmannians (which are Tate motives), with twists and shifts which depend on the dimensions
of the cells of KGLi. We conclude from this that all the blowup loci are Tate motives. We can
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then repeatedly apply the blowup formula for Chow motives to conclude (unconditionally) that
the Chow motive of KGL` is itself a Tate motive. Note that the blowup formula also holds in
the Voevodsky category, Proposition 3.5.3 of [61], in the form

m(BlY (X)) = m(X)⊕
codimX(Y )−1⊕

r=1

m(Y )(r)[2r],

which corresponds to the usual formula of [51] in the case of pure motives, after viewing them
as objects in the category of mixed motives. The result can also be obtained, in a similar way,
using Theorem 2.10 of [41] instead of Corollary 6.11 of [46]. �

Remark 5.5. Given the existence of a cellular decomposition of KGL`, as above, it is possible
to give a quicker proof that the Chow motive is Tate, by using distinguished triangles in the
Voevodsky category associated to the inclusions of unions of cells, showing that m(KGL`) is
mixed Tate, then using the inclusion of pure motives in the mixed motives to conclude that
h(KGL`) is Tate. In Proposition 5.4 above we chose to maintain the structure of the argument
more similar to the cases of the virtual and the numerical motive, for better direct comparison.

Remark 5.6. Notice that a conditional result about the Chow motive would follow directly from
Proposition 5.2 or Remark 5.3, if one assumes the Kimura–O’Sullivan finiteness conjecture (or
Voevodsky’s nilpotence conjecture, which implies it). For the precise statement and implications
of the Kimura–O’Sullivan finiteness conjecture, and its relation to Voevodsky’s nilpotence, we
refer the reader to the survey [6]. By arguing as in Lemma 13.2.1.1 of [5], that would extend the
result of Proposition 5.2 to the Chow motive. At the level of Grothendieck classes, the conjecture
in fact implies that the K0 of Chow motives and the K0 of numerical motives coincide, hence
one can argue as in Remark 5.3 and conclude that, in order to know that the Chow motive is
mixed Tate, it suffices to know that the Grothendieck class is mixed Tate.

5.6. Feynman integrals in momentum space and non-mixed-Tate examples. It was
shown in [12] that the parametric form of Feynman integrals in perturbative quantum field theory
can be formulated as a (possibly divergent) period integral on the complement of a hypersurface
defined by the vanishing of a combinatorial polynomial associated to Feynman graphs. Namely,
one writes the (unrenormalized) Feynman amplitudes for a massless scalar quantum field theory
as integrals

(5.6) U(Γ) =
Γ(n−D`/2)

(4π)`D/2

∫
σn

PΓ(t, p)−n+D`/2ωn
ΨΓ(t)−n+D(`+1)/2

where n = #EΓ is the number of internal edges, ` = b1(Γ) is the number of loops, and D is the
spacetime dimension. Here we consider the “unregularized” Feynman integral, where D is just
the integer valued dimension, without performing the procedure of dimensional regularization
that analytically continues D to a complex number. The domain of integration is a simplex
σn = {t ∈ Rn+|

∑
i ti = 1}. In the integrand, ωn is the volume form, and PΓ and ΨΓ are

polynomials defined as follows. The graph polynomial is defined as

ΨΓ(t) =
∑
T

∏
e/∈T

te

where the summation is over spanning trees (assuming the graph Γ is connected). The polynomial
PΓ is given by

(5.7) PΓ(t, p) =
∑
C⊂Γ

sC
∏
e∈C

te
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with the sum over cut-sets C (complements of a spanning tree plus one edge) and with variables
sC depending on the external momenta of the graph, sC = (

∑
v∈V (Γ1) Pv)

2, where Γ1 is one of

the connected components after the cut (by momentum conservation, it does not matter which).
The variables Pv are given by combinations of the external momenta p = (pe) ∈ Q#Eext(Γ)·D, in
the form Pv =

∑
e∈Eext(Γ),t(e)=v pe, where

∑
e∈Eext(Γ) pe = 0.

In the range −n + D`/2 ≥ 0, which includes the log divergent case n = D`/2, the Feynman
amplitude is therefore the integral of an algebraic differential form defined on the complement of
the graph hypersurface X̂Γ = {t ∈ An |ΨΓ(t) = 0}. Divergences occur due to the intersections
of the domain of integration σn with the hypersurface. Some regularization and renormalization
procedure is required to separate the chain of integration from the divergence locus. We refer
the reader to [12] (or to [52] for an introductory exposition).

It was originally conjectured by Kontsevich that the graph hypersurfaces X̂Γ would always
be mixed Tate motives, which would have explained the pervasive occurrence of multiple zeta
values in Feynman integral computations observed in [16]. A general result of [10] disproved
the conjecture, while more recent results of [18], [19], [29] showed explicit examples of Feynman
graphs that give rise to non-mixed-Tate periods.

5.7. Determinant hypersurface and parametric Feynman integrals. In [4] the compu-
tation of parametric Feynman integrals was reformulated by replacing the graph hypersurface
complement by the complement of the determinant hypersurface.

More precisely, the (affine) graph hypersurface X̂Γ is defined by the vanishing of the graph
polynomial ΨΓ. It follows from the matrix-tree theorem that this polynomial can be written as
a determinant

ΨΓ(t) = detMΓ(t) =
∑
T

∏
e/∈T

te ,

with MΓ(t) the `× ` matrix

(5.8) (MΓ)kr(t) =

n∑
i=1

tiηikηir,

where the matrix η is given by

ηik =

{
±1 edge ± ei ∈ loop `k

0 otherwise.

This definition of the matrix η involves the choice of a basis {`k} of the first homology H1(Γ;Z)
and the choice of an orientation of the edges of the graph, with ±e denoting the matching/reverse
orientation on the edge e. The resulting determinant ΨΓ(t) is independent of both choices.

One considers then the map

Υ : An → A`
2

, Υ(t)kr =
∑
i

tiηikηir

that realizes the graph hypersurface as the preimage

X̂Γ = Υ−1(D̂`)

of the determinant hypersurface D̂` = {det(xij) = 0}.
It is shown in [4] that the map

(5.9) Υ : An r X̂Γ ↪→ A`
2

r D̂`
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is an embedding whenever the graph Γ is 3-edge-connected with a closed 2-cell embedding of
face width ≥ 3.

Remark 5.7. As discussed in §3 of [4], the 3-edge-connected condition on graphs can be viewed
as a strengthening of the usual 1PI (one-particle-irreducible) condition assumed in physics, since
the 1PI condition corresponds to 2-edge-connectivity. In perturbative quantum field theory, one
considers 1PI graphs when computing the asymptotic expansion of the effective action. Similarly,
one can consider the 2PI effective action (which is related to non-equilibrium phenomena in
quantum field theory, see §10.5.1 of [57]) and restrict to 3-edge-connected graphs. The condition
of having a closed 2-cell embedding of face width ≥ 3, on the other hand, is a strengthening
of the analogous property with face width ≥ 2, which conjecturally is satisfied for all 2-vertex-
connected graphs (strong orientable embedding conjecture, see Conjecture 5.5.16 of [54]). 2-
vertex-connectivity is again a natural strengthening of the 1PI condition. A detailed discussion
of equivalent formulations and implications of these combinatorial conditions, as well as specific
examples of graphs that fail to satisfy them, are given in §3 of [4].

Let PΓ(x, p) denote a homogeneous polynomial in x ∈ A`2 , with p ∈ Q#Eext(Γ)·D, with the
property that the restriction to the image of the map Υ = ΥΓ agrees with the second Symanzik
polynomial PΓ defined in (5.7),

PΓ(x, p)|x=Υ(t)∈Υ(An) = PΓ(t, p).

When the map ΥΓ is an embedding, one can, without loss of information, rewrite the parametric
Feynman integral as (see Lemma 2.3 of [4])

(5.10) U(Γ) =

∫
Υ(σn)

PΓ(x, p)−n+D`/2ωΓ(x)

det(x)−n+(`+1)D/2
.

Here ωΓ(x) is an n-form on A`2 such that the restriction of ωΓ(x) to the subspace Υ(An) satisfies
ωΓ(Υ(t)) = ωn(t), with ωn the volume form on An. Under the condition that Υ is an embedding,
the restriction of the integrand to the image Υ(σn) then agrees with the original Feynman
integral.

The question on the nature of periods is then reformulated in [4] by considering a normal

crossings divisor Σ̂Γ in A`2 with Υ(∂σn) ⊂ Σ̂Γ and considering the motive

(5.11) m(A`
2

r D̂`, Σ̂Γ r (Σ̂Γ ∩ D̂`)).

The motive m(A`2 r D̂`) of the determinant hypersurface complement belongs to the category
of mixed Tate motives (see Theorem 4.1 of [4]), with Grothendieck class

[A`
2

r D̂`] = L(`2)
∏̀
i=1

(Li − 1).

However, as shown in [4], the nature of the motive (5.11) is much more difficult to discern,

because of the nature of the intersection between the divisor Σ̂Γ and the determinant hypersur-
face. Assuming the previous conditions on the graph (3-edge-connectedness with a closed 2-cell
embedding of face width at least 3), it is shown in Proposition 5.1 of [4] that one can consider

a divisor Σ̂`,g that only depends on ` = b1(Γ) and on the minimal genus g of the surface Sg
realizing the closed 2-cell embedding of Γ,

(5.12) Σ̂`,g = L1 ∪ · · · ∪ L(f2)
,
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where f = ` − 2g + 1 and the irreducible components L1, . . . , L(f2)
are linear subspaces defined

by the equations {
xij = 0 1 ≤ i < j ≤ f − 1

xi1 + · · ·+ xi,f−1 = 0 1 ≤ i ≤ f − 1.

For a given choice of subspaces V1, . . . , V` of a fixed `-dimensional space, one defines the
variety of frames as

F(V1, . . . , V`) := {(v1, . . . , v`) ∈ A`
2

r D̂` | vk ∈ Vk}.

In other words, the variety of frames F(V1, . . . , V`) consists of the set of `-tuples (v1, . . . , v`), with
vi ∈ Vi, such that dim span{v1, . . . , v`} = `. It is shown in [4] that the motives (5.11) are mixed
Tate if the varieties of frames F(V1, . . . , V`) are mixed Tate. This question is closely related to
the geometry of intersections of unions of Schubert cells in flag varieties and Kazhdan–Lusztig
theory.

In this paper we will follow a different approach, which uses the same reformulation of para-
metric Feynman integrals in momentum space in terms of determinant hypersurfaces, as in [4],
but instead of computing the integral in the determinant hypersurface complement, pulls it back
to the Kausz compactification of GL`, following the model of computations of Feynman integrals
in configuration spaces described in [21].

5.8. Cohomology and forms with logarithmic poles. Let X be a smooth projective variety
and Z ⊂ X a divisor. Let M?

X ,Z denote, as before, the complex of meromorphic differential

forms on X with poles (of arbitrary order) along Z, and let Ω?X (log(Z)) be the complex of forms
with logarithmic poles along Z. Let U = X r Z and j : U ↪→ X be the inclusion.

Grothendieck’s Comparison Theorem, [37], shows that the natural morphism (de Rham mor-
phism)

M?
X ,Z → Rj∗CU

is a quasi-isomorphism, hence de Rham cohomology H?
dR(U) is computed by the hypercohomol-

ogy of the meromorphic de Rham complex. In particular, for U affine, the hypercohomology is
not necessary and all classes are represented by closed global differential forms, with hyperco-
homology replaced by the cohomology of the complex of global sections.

The Logarithmic Comparison Theorem consists of the statement that, for certain classes of
divisors Z, the natural morphism

Ω?X (log(Z))→M?
X ,Z

is also a quasi-isomorphism. This is known to hold for simple normal crossings divisors by
[25], and for strongly quasihomogeneous free divisors by [20], and for a larger class of locally
quasihomogeneous divisors in [42]. For our purposes, we will focus only on the case of simple
normal crossings divisors.

In combination with Grothendieck’s Comparison Theorem, the Logarithmic Comparison The-
orem of [25] for a simple normal crossings divisor implies that the de Rham cohomology of the
divisor complement is computed by the hypercohomology of the logarithmic de Rham complex,

(5.13) H?
dR(U) ' H?(X ,Ω?X (logZ)).

Remark 5.8. Even under the assumption that the complement U is affine, the hypercohomology
on the right hand side of (5.13) cannot always be replaced by global sections and cohomology.
For example, if X is a smooth projective curve of genus g, and U is the complement of n points
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in X , then H1
dR(U) has dimension 2g + n− 1, but the dimension of the space of global sections

of the sheaf of logarithmic differentials is only g + n− 1 by Riemann-Roch.

Some direct comparisons between de Rham cohomology H?
dR(U) and the cohomology of the

logarithmic de Rham complex are known. We discuss in the coming subsections how these apply
to our specific case. Our purpose is to replace the meromorphic form that arises in the Feynman
integral computation with a cohomologous form with logarithmic poles along the divisor of the
Kausz compactification. In doing so, we need to maintain explicit control of the motive of
the variety over which cohomology is taken, and also maintain the algebraic nature of all the
differential forms involved.

5.9. Pullback to the Kausz compactification, forms with logarithmic poles, and
renormalization. For fixed D, ` ∈ N (respectively the integer spacetime dimension and the
loop number) and for assigned external momenta p ∈ QD, we now consider the algebraic differ-
ential form

(5.14) ηΓ,D,`,p(x) :=
PΓ(x, p)−n+D`/2ωΓ(x)

det(x)−n+(`+1)D/2
.

For simplicity, we write the above as ηΓ(x). This is defined on the complement of the determinant

hypersurface, A`2 r D̂` = GL`. Thus, by pulling back to the Kausz compactification, we can
regard it as an algebraic differential form on

KGL` r Z` = GL`,

where Z` is the normal crossings divisor at the boundary of the Kausz compactification.

5.9.1. Cellular decomposition approach. We consider a special case of a simple normal crossings
divisor Z in a smooth projective variety X , under the additional assumption that X has a cell
decomposition. We denote by {Xα,i} the finite collection of cells of dimension i, and in particular
we simply write Xα = Xα,dimX for the top dimensional cells.

Proposition 5.9. Let Z ⊂ X be a pair as above, with {Xα} the top dimensional cells of the
cellular decomposition. Given a meromorphic form η ∈ Mm

X ,Z , there exist forms β(α) on Xα

with logarithmic poles along the normal crossings divisor Z, such that

(5.15) [β(α)] = [η|Xα ] ∈ H∗dR(Xα r Z).

Proof. Lemma 2.5 of [20] shows that the Logarithmic Comparison Theorem is equivalent to the
statement that, for all Stein open sets V ⊂ X , there are isomorphisms

H?(Γ(V,Ω?X (logZ))) ' H?
dR(V r Z).

Namely, the hypercohomology in the Logarithmic Comparison Theorem can be replaced by
cohomology of the complex of sections, when restricted to Stein open sets. �

Remark 5.10. The forms β(α) do not match consistently on the closures of the cells Xα, because
of nontrivial Čech cocycles, hence they are not restrictions of a unique form with logarithmic
poles β defined on all of X . In particular, the forms β(α) obtained in this way depend on the
cellular decomposition used.

Lemma 5.11. Let Z ⊂ X and {Xα} be as above, and suppose given a meromorphic form
η ∈ MN

X ,Z , with N = dimX , and an N -chain σ ⊂ X with ∂σ ⊂ Σ, for a divisor Σ in X .
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After performing a pole subtraction on the logaritmic forms on each cell Xα one can replace the
integral

∫
Σ
η with a renormalized version

(5.16)

∫
σ

β+ :=
∑
α

∫
Xα∩σ

β(α),+,

where β(α),+ is a simple pole subtraction on β(α). The integral (5.16) is a sum of periods of
motives m(Xα, Xα ∩ Σ). The information contained in the subtracted polar part is recovered by
the Poincaré residues

(5.17)

∫
σ∩ZI

ResZI (β) :=
∑
α

∫
σ∩ZI∩Xα

ResZI (β
(α))

along the intersections of components ZI = Zi1 ∩ · · · ∩ Zik , I = {i1, . . . , ik} of the divisor Z.
These are sums of periods of the motives m(ZI ∩Xα).

Proof. Given the cell decomposition as above, we can write the integral as

(5.18)

∫
σ

η =
∑
α

∫
Xα∩σ

η|Xα =
∑
α

∫
Xα∩σ

β(α),

where each η|Xα is replaced by the cohomologous β(α) with logarithmic poles. After performing
a pole subtraction on each β(α) we obtain holomorphic forms β(α),+, hence the resulting integral
is a period of m(Xα, Xα ∩ Σ). For the relation between polar subtraction and the Poincaré
residues, see the discussion in §3.2 and §4.2 above. �

In both (5.16) and (5.17), we use the notation on the left-hand-side, with a global integral
and a global form β, purely as a formal shorthand notation for the sum of the integrals on the
cells of the β(α), since the latter are not restrictions of a global form β.

Remark 5.12. Notice that the resulting integral (5.16) obtained in this way can be identified
with a period of m(X ,Σ) only in the case where the forms β(α),+ are restrictions β(α),+ = β+|Xα
of a single holomorphic form β+ on X . More generally, the resulting (5.16) is only a sum of
periods of the motives m(Xα, Xα ∩ Σ).

Remark 5.13. If the cellular decomposition of X has a single top dimensional cell X, then a
unique form with logarithmic poles β ∈ Ω?X(logZ), satisfying [η|X ] = [β] ∈ H?

dR(XrZ), suffices
to regularize the integral

∫
σ
η, with regularized value

∫
σ∩X β

+.

As we discussed in Proposition 5.4, the Kausz compactification is a spherical variety (Propo-
sition 1.15 of §3 of [43] and also Propositions 9.1, 10.1 and 12.1 of [53]), hence it has a cellular
decomposition (§3.1 of [14]) into cells X(λ, x) as in (5.5). Thus, we can apply the procedure
described above, to regularize the integral

∫
Υ(σ)

ηΓ. While this regularization procedure depends

on the choice of the cell decomposition, the construction of [14] for spherical varieties provides
a cellular structure that is intrinsically defined by the orbit structure of KGL` and is quite
naturally reflecting its geometry. We can then perform a renormalization procedure based on
the pole subtraction procedure for forms with logarithmic poles described above.

Corollary 5.14. The cell decomposition {X(λ, x)} of KGL` has a single big cell X. Given
ηΓ = ηΓ,D,`,p as in (5.14), there is a form βΓ = βΓ,D,`,p on the big cell X, with logarithmic poles
along Z`, such that [ηΓ|X ] = [βΓ] ∈ H?

dR(X r Z). Applying the Birkhoff factorization for forms
with logarithmic poles to βΓ, we obtain a renormalized integral of the form

(5.19) R(Γ) =

∫
Υ̃(σn)∩X

β+
Γ,D,`,p,
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where β+
Γ is a simple pole subtraction on βΓ.

Proof. As mentioned in Proposition 5.4, the spherical variety KGL` is a smooth toroidal equi-
variant compactification of GL` (Proposition 1.15 of §3 of [43] and Propositions 9.1 and 12.1 of
[53]). By §2.3 of [15] and Proposition 9.1 of [53], it then follows that there is just one big cell X.
We can then write the integral as

(5.20)

∫
Υ̃(σn)

ηΓ =

∫
X∩Υ̃(σn)

ηΓ|X ,

where Υ̃(σn) is the pullback to KGL` of the domain of integration Υ(σn).

Let H be the Hopf algebra of Feynman graphs. The morphism φ : H →M∗X,Z`∩X assigns to
a Feynman graph Γ a meromorphic differential form βΓ = βΓ,D,`,p with logarithmic poles along
Z` satisfying [ηΓ|X ] = [βΓ] ∈ H?

dR(X r Z).

We then perform the Birkhoff factorization, and we denote by β+
Γ the regular differential form

on X ⊂ KGL` given by φ+(Γ) = β+
Γ . Since we only have logarithmic poles, by Proposition 4.1

the operation becomes a simple pole subtraction and we have β+
Γ = (1− T )βΓ. �

If we assume, as above, that the external momenta p in the polynomial PΓ(x, p) are rational,
then the form ηΓ = ηΓ,D,`,p(x) is an algebraic differential form defined over Q, hence we can also
assume that the form with logarithmic poles βΓ is also defined over Q.

In addition to the integral (5.19), one also has the collection of the iterated Poincaré residues
along the intersections of components of the divisor Z`. Namely, for any ZI,` = ∩j∈IZj,`, with
Zj,` the components of Z`, we have the additional integrals

(5.21) R(Γ)I =

∫
Υ̃(σn)∩ZI,`∩X

ResZI (βΓ).

5.9.2. Griffiths-Schmid approach. A global replacement of ηΓ by a single form βΓ,D,`,p on KGL`
with logarithmic poles along Z` can be obtained if we use the C∞-logarithmic de Rham complex
instead of the algebraic or analytic one.

Proposition 5.15. Consider the class [ηΓ] in the analytic de Rham cohomology H∗dR(GL`;C).
There is a C∞-form β∞Γ on KGL` with logarithmic poles along Z` such that

(5.22) [β∞Γ ] = [ηΓ] ∈ H∗dR(KGL` r Z`;C) = H∗dR(GL`;C).

Applying the Birkhoff factorization yields a renormalized integral

(5.23) R∞(Γ) =

∫
Υ̃(σn)

β∞,+Γ,D,`,p,

where β∞,+Γ is a simple pole subtraction on β∞Γ , and iterated residues

(5.24) R∞(Γ)I =

∫
Υ̃(σn)∩ZI,`

ResZI (β
∞
Γ ).

Proof. For X a complex smooth projective variety and Z a simple normal crossings divisor,
let ΩC∞(X )(logZ) be the C∞-logarithmic de Rham complex. The Griffiths-Schmid theorem
(Proposition 5.14 of [36]) shows that there is an isomorphism H∗dR(U) = H∗(ΩC∞(X )(logZ)). �
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Remark 5.16. With the Griffiths-Schmid theorem one looses the algebraicity of differential
forms. Namely, the forms β∞Γ and β∞,+Γ are only smooth and not algebraic or analytic differential

forms. Even if the resulting form β∞,+Γ , after pole subtraction, can then be replaced by an
algebraic de Rham form in the same cohomology class in H∗dR(KGL`;C), it will remain, in
general, only a form with C-coefficients and not one defined over Q. Thus, following this approach
one obtains a consistent renormalization procedure, but one can lose control on the description
of the resulting integrals as periods of motives defined over a number field.

5.9.3. The Hodge filtration approach. There is another case in which a form can be replaced
globally by a cohomologous one with logarithmic poles on the complement of a normal crossings
divisor, while only using algebraic or analytic forms. Indeed, there is a particular piece of the
de Rham cohomology that is always realized by global sections of the (algebraic) logarithmic de
Rham complex. This is the piece FnHn

dR(U) of the Hodge filtration of Deligne’s mixed Hodge
structure, with n = dimX . This Hodge filtration on U is given by

F pHk
dR(U) = Im(Hk(X ,Ω≥pX (logZ))→ Hk(X ,Ω?X (logZ))).

Proposition 5.17. Let X be a smooth projective variety with N = dimX , and let Z be a simple
normal crossings divisor with affine complement U = X r Z. Then, for n ≤ N , the Hodge
filtration satisfies

(5.25) H0(X ,ΩnX (logZ)) = FnHn
dR(U)/Fn+1Hn

dR(U).

In the case where n = N the right-hand-side is reduced to FNHN
dR(U).

Proof. The Hodge filtration F pHk
dR(U) is induced by the naive filtration on Ω?X (logZ). Recall

that (see Theorem 8.21 and Proposition 8.25 of [62]) the spectral sequence of a filtration F on
a complex K? that comes from a double complex Kp,q, with

F pKn = ⊕r≥p,r+s=nKr,s

has terms

Ep,q0 = GrFpK
p+q = F pKp+q/F p+1Kp+q = Kp,q

Ep,q1 = Hp+q(GrFpK
?) = Hq(Kp,?)

Ep,q∞ = GrFp H
p+q(K?).

The spectral sequence above, applied to the Hodge filtration F pHk
dR(U), is referred to as the

Frölicher spectral sequence. It has

Ep,q1 = Hq(X ,ΩpX (logZ))

Ep,q∞ = F pHp+q
dR (U)/F p+1Hp+q

dR (U).

In particular,

En,01 = H0(X ,ΩnX (logZ)) and En,0∞ = FnHn
dR(U)/Fn+1Hn

dR(U).

When n = N = dimX , the term FN+1HN
dR(U) vanishes for dimensional reasons.

Deligne proved in [25] (see also the formulation of the result given in Theorem 8.35 of [62])
that, in the case where Z is a normal crossings divisor, the Frölicher spectral sequence of the
Hodge filtration degenerates at the E1 term. Thus, in particular, we obtain (5.25). �
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Corollary 5.18. Given a meromorphic form η with [η] ∈ FnHn
dR(GL`)/F

n+1Hn
dR(GL`), with

n ≤ `2 = dimKGL`, there is a form β on KGL` with logarithmic poles along the normal
crossings divisor Z`, such that

(5.26) [β] = [η] ∈ Hn
dR(KGL` r Z`) = Hn

dR(GL`).

Then after pole subtraction one obtains

(5.27)

∫
Υ̃(σn)

β+,

which is a period of m(KGL`,Σ`,g).

In this case also, in addition to the integral (5.27), we also have the iterated residues (which
in this case exist globally),

(5.28)

∫
Υ̃(σn)∩ZI,`

ResZI (β).

In general, it is difficult to estimate where the form ηΓ lies in the Hodge filtration. One can
give an estimate, based on the relation between the filtration by order of pole and the Hodge
filtration, but it need not be accurate because exact forms can cancel higher order poles. The
same issue was discussed, in the original formulation in the graph hypersurface complement, in
§9.2 and Proposition 9.8 of [13].

Let X be a smooth projective variety and Z ⊂ X a simple normal crossings divisor. As before,
let M?

Z,X denote the complex of meromorphic differential forms on X with poles (of arbitrary

order) along Z. This complex has a filtration P ?M?
Z,X by order of poles (polar filtration), where

P kMm
Z,X consists of the m-forms with pole of order at most m − k + 1, if m − k ≥ 0 and zero

otherwise. Deligne showed in §II.3, Proposition 3.13 of [26] and Proposition 3.1.11 of [25], that
the filtration induced on the subcomplex Ω?X (logZ) by the polar filtration onM?

Z,X is the naive

filtration (that is, the Hodge filtration), and that the natural morphism

(Ω?X (logZ), F ?)→ (M?
Z,X , P

?)

is a filtered quasi-isomorphism. In particular (Theorem 2 of [27]) the image of H?(X , P kM?
X ,Z)

inside H?
dR(U) contains F kH?

dR(U). This means that we can use the order of pole to obtain at
least an estimate of the position of [ηΓ] in the Hodge filtration. We need to compute the order of
pole of the pullback of the form ηΓ along the blowups in the construction of the compactification
KGL`.

Proposition 5.19. For a graph Γ with n = #EΓ and ` = b1(Γ), such that n ≥ ` − 2, and
with spacetime dimension D ∈ N, the position of [ηΓ] in the Hodge filtration F kHn

dR(GL`) is
estimated by k ≥ n− (`− 1)(−n+ (`+ 1)D/2) + (`− 1)2.

Proof. At the first step in the construction of the compactification KGL` we blow up the locus
of matrices of rank one. We need to compare the order of vanishing of det(x)−n+(`+1)D/2 along
this locus, with the order of zero acquired by the form ωΓ along the exceptional divisor of this
blowup. The determinant vanishes at order ` − 1 on that stratum. The form ωΓ, on the other
hand, acquires a zero of order c − 1 where c is the codimension of the blowup locus. This can
be seen in a local model: when blowing up a locus L = {z1 = · · · = zc = 0} in CN , the local
coordinates wi in the blowup can be taken as wiwc = zi for i < c and wi = zi for i ≥ c, with
E = {wc = 0} the exceptional divisor. Then for n ≥ c, and a form dz1 ∧ · · · ∧ dzn, the pullback
satisfies

π∗(dz1 ∧ · · · ∧ dzn) = d(wcw1) ∧ · · · ∧ d(wcwc−1) ∧ d(wc) ∧ · · · ∧ d(wn) = wc−1
c dw1 ∧ · · · ∧ dwn.
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The codimension of the locus of rank one matrices is c = (` − 1)2. Thus, when performing the
first blowup in the construction of KGL`, the pullback of the form ηΓ acquires a pole of order
(` − 1)(−n + (` + 1)D/2) − (` − 1)2 + 1 along the exceptional divisor. Further blowups do not
alter this pole order, hence we can estimate that the pullback of the n-form ηΓ to the Kausz
compactification is in the term P k of the polar filtration, with

n− k + 1 = (`− 1)(−n+ (`+ 1)D/2)− (`− 1)2 + 1.

Taking into account the possibility of reductions of the order of pole, due to cancellations coming
from exact forms, we obtain an estimate for the position in the polar and in the Hodge filtration,
with k ≥ n− (`− 1)(−n+ (`+ 1)D/2) + (`− 1)2. �

5.10. Nature of the period. We then discuss the nature of the period obtained by the eval-
uation of (5.27). We need a preliminary result. We define a mixed Tate configuration Y in an
ambient variety X as follows.

Definition 5.20. Let X be a smooth projective variety and Y ⊂ X a divisor with irreducible
components {Yi}Ni=1. Let CY = {YI = Yi1 ∩ · · · ∩ Yik | I = (i1, . . . , ik), k ≤ N}. Then Y is a
mixed Tate configuration if all unions YI1 ∪ · · · ∪ YIr of elements of the set CY have motives
m(YI1 ∪ · · · ∪ YIr ) contained in the Voevodsky derived category of mixed Tate motives.

Remark 5.21. Note that in Definition 5.20 we do not require that Y is necessarily a normal
crossings divisor. However, in the case of the boundary divisor Z` of KGL`, we will use in
Proposition 5.29 the fact that it is also normal crossings, in addition to satisfying the condition
of Definition 5.20 (see Lemma 5.23).

Let Σ`,g be the proper transform of the divisor given by the projective version of Σ̂`,g described
in (5.12), defined by the same equations.

Lemma 5.22. The divisor Σ`,g is a mixed Tate configuration.

Proof. By (5.12), Σ`,g and any arbitrary union of components are hyperplane arrangements. It is
known from [9] that motives of hyperplane arrangements are mixed Tate, see also §1.7.1–1.7.2 and
§3.1.1 of [30], where the computation of the motive in the Voevodsky category can be obtained in
terms of Orlik–Solomon models. Using a characterization of the mixed Tate condition in terms
of eigenvalues of Frobenius, the mixed Tate nature of hyperplane arrangements was also proved
in Proposition 3.1.1 of [48]. The mixed Tate property can be seen very explicitly at the level of
the virtual motive. In fact, the Grothendieck class of an arrangement A in Pn is explicitly given
(Theorem 1.1. of [3]) by

[A] = [Pn]−
χÂ(L)

L− 1
,

where χÂ(t) is the characteristic polynomial of the associated central arrangement Â in An+1.
It then follows by inclusion-exclusion in the Grothendieck ring that all unions and intersections
of components of A are mixed Tate. �

Lemma 5.23. The boundary divisor Z` of the Kausz compactification KGL` is a mixed Tate
configuration.

Proof. The motives of unions of intersections of components of Z` can be described in terms
of motives of bundles over products of flag varieties with fibers that are lower dimensional
compactifications KGLi and PGLi, and we proved in Proposition 5.4 (see also Propositions 5.1
and 5.2) that all these motives are Tate, hence the condition of Definition 5.20 is satisfied. �
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Proposition 5.24. When the form βΓ,D,`,p on the big cell extends to a logarithmic form in
Ω?KGL`

(logZ`), the integral R(Γ) =
∫

Υ̃(σn)
β+

Γ,D,`,p is a period of a mixed Tate motive.

Proof. In the globally defined case, this is an integral of an algebraic differential form defined
on the compactification KGL`, hence a genuine period, in the sense of algebraic geometry, of
KGL`. By Proposition 5.4, we know that the Chow motive h(KGL`) is Tate. We also know
from Lemma 5.22 that the motive m(Σ`,g) is mixed Tate. Under the embedding of pure motives
into mixed motives we obtain objects m(KGL`) and m(Σ`,g) in the derived category of mixed
Tate motives, DMTM(Q), that is, the smallest triangulated subcategory of the Voevodsky
triangulated category of mixed motives DM(Q) containing all the Tate objects Q(n). It then
follows that the relative motive m(KGL`,Σ`,g) is also mixed Tate, as it sits in a distinguished
triangle in the Voevodsky triangulated category, where the other two terms are mixed Tate. �

Remark 5.25. In the proof of Proposition 5.24 here above, we viewed the motive m(KGL`,Σ`,g)
as an element in the derived category DMTM(Q) of mixed Tate motives. All the varieties we are
considering are defined over a number field, in fact over Q. In the number field case, an abelian
category of mixed Tate motives can be constructed as the heart of a t-structure in DMTM(Q):
this is possible because the Beilinson-Soulé vanishing conjecture holds over a number field, see
[50]. We denote byMTM(Q) this abelian category of mixed Tate motives. The obtain objects
in MTM(Q) one applies the cohomology functor with respect to the t-structure. For example,
for a projective space Pn, one has the motive m(Pn) = Q(0) ⊕ Q(−1)[2] ⊕ · · · ⊕ Q(−n)[2n] in
DMTM(Q); its cohomology with respect to the t-structure is h2i(m(Pn)) = Q(−i), which is
an object in MTM(Q), while the shifts are not. In the following, with an abuse of notation,
we will write the motive simply as m(KGL`,Σ`,g), and more generally m(KGL` rA,B) for the
cases considered in Proposition 5.29, although when we refer to the motive in MTM(Q) what
we are really considering are the pieces of the cohomology with respect to the t-structure, and
in particular, for the conclusion about the period, the piece that corresponds to the degree of
the differential form.

Proposition 5.26. Let βΓ,D,`,p be the form with logarithmic poles on the top cell X of the
cellular decomposition of KGL`, as in Corollary 5.14. If the motive m(Σ`,g ∩X) is mixed Tate,
then the integral R(Γ) =

∫
Υ̃(σn)

β+
Γ,D,`,p is a period of a mixed Tate motive.

Proof. Using distinguished triangles in the Voevodsky category, we see that, if the motive
m(Σ`,g ∩ X) is mixed Tate, then the motive m(X,Σ`,g ∩ X) also is, since the big cell has

m(X) = L`2 . The result then follows, since the integral is by construction a period of the
motive m(X,Σ`,g ∩X). �

Remark 5.27. The central difficulty in the approach of [4], which was to analyze the nature
of the motive of m(Σ`,g ∩ D`), is here replaced by the problem of identifying the nature of the
motive m(Σ`,g ∩X), where X is the big cell of KGL`.

It may seem at first that we have simply substituted the problem of understanding for which
range of (`, g) the intersection of the divisor Σ`,g with GL` remains mixed Tate, with the very
similar problem of when the intersection of Σ`,g with the big cell X of KGL` remains mixed
Tate. However, this reformulation makes it possible to use the explicit description of the cells
X(λ, x) of spherical varieties in terms of limits as in (5.5), to analyze this question. We do not
discuss this further in the present paper, and we simply state it as a question.
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Question 5.28. Let X be the big cell of the cellular decomposition (5.5) of KGL` and let Σ`,g
be the divisor described above. For which pairs (`, g) is the motive m(Σ`,g ∩X) mixed Tate?

One defines the category MTM(Z) of mixed Tate motives over Z as mixed Tate motives in
MTM(Q) that are unramified over Z. An object ofMTM(Q) is unramified over Z if and only
if, for any prime p, there exists a prime ` 6= p such that the `-adic realization is unramified at p,
see Proposition 1.8 of [28]. In the following statement our notation for the motives is meant as
in Remark 5.25 above.

Proposition 5.29. The motives m(KGL`) are unramified over Z. More generally, if A and B
are unions of two disjoint sets of components of the boundary divisor Z` of the compactification
KGL`, the motives m(KGL` rA,B) are unramified over Z.

Proof. This question can be approached in a way analogous to our previous discussion of the
Chow motive, namely using the description of KGL` as an iterated blowup and the properties of
the divisor of the compactification. The argument is similar to the one used in Theorem 4.1 and
Proposition 4.3 of [35] to prove the analogous statement for the moduli spaces M0,n of rational

curved with marked points. There, it is shown that M0,n is unramified over Z by showing
that the combinatorics of the normal crossings divisor of the compactification is not altered by
reductions mod p, see Definition 4.2 of [35]. For a pair (X ,Z), with Z ⊂ X a normal crossing
divisor, the condition that the reduction mod p does not alter the combinatorics means that X
and all the strata of Z are smooth over Zp and the reduction mod p gives a bijection from the
strata of Z to those of the special fiber (see Definition 4.2 of [35] and Definition 3.9 of [34]). In
our case we have X = KGL`, with Z = Z` the boundary divisor of the Kausz compactification.
As we showed in §§5.3, 5.4, and 5.5, the motive m(KGL`) is a Tate motive. More generally, the
motives m(KGL` rA,B) are mixed Tate over Q: this can be seen as in Proposition 3.6 of [34],
using Lemma 5.23, which shows that Z` is both a normal crossings divisor and a mixed Tate
configuration in the sense of Definition 5.20. This implies, by the argument of Proposition 3.6
of [34], that all the motives m(KGL` rA,B) are mixed Tate over Q.

To check the condition that the reduction map preserves the combinatorics of (KGL`,Z`),
first note that both KGL` and the strata of the normal crossing divisor Z` are smooth over
Z, by Corollary 4.2 [47]. Moreover, the description of the Kausz compactification and of the
strata of its boundary divisor given in Theorems 9.1 and 9.3 of [47] also holds over fields of
characteristic p and is compatible with reduction, so that the set of strata is matched under
the reduction map. The argument of Proposition 4.3 of [35] showing that the `-adic realization
is then unramified, for all ` with ` 6= p, is based on the argument of Proposition 3.10 of [34].
Following this reasoning, the cohomologies H∗(X r A,B) can be computed using a simplicial
resolution S•(X r A,B), whose simplexes correspond to unions of intersections of components
of the divisor. The argument of Proposition 3.10 of [34] then shows that the reduction map
applied to the simplicial schemes S•(X r A,B) induces an isomorphism in étale cohomology,
H∗et(X̄ r Ā, B̄,Q`) ' H∗et(X̄ 0 r Ā0, B̄0,Q`), where X̄ = X ⊗Zp Qp and X 0 is the special fiber of
the reduction. This shows that the étale realization is unramified for ` 6= p. By Proposition 1.8
of [28] this means that the motives m(KGL` rA,B) are mixed Tate over Z. �

Remark 5.30. Given that the unramified condition holds, one can conclude from Brown’s
theorem [17] and the previous Proposition 5.24 (and Proposition 5.26, when m(Σ`,g ∩ X) is
mixed Tate) that the integral (5.27) is a Q[ 1

2πi ]-linear combination of multiple zeta values.
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5.11. Comparison with Feynman integrals. The result obtained in this way clearly dif-
fers from the usual computation of Feynman integrals, where the methods used are based on
regularization and pole subtraction of the integral (dimensional regularization, cutoff, zeta reg-
ularization, etc.) There are several reasons behind this difference, which we now discuss briefly.

In the usual physical renormalization non-mixed-Tate periods are known to occur, [18], [19].
In the setting we discussed here, the only possible source of non-mixed-Tate cases is the motive
of the intersection Σ`,g ∩ X, where X is the big cell of the Kausz compactification KGL`. In
particular, this locus is the same for all graphs with fixed loop number ` and fixed genus g.
However, in the usual physical renormalization, not all graphs with the same ` and g have
periods of the same nature, as one can see from the examples analyzed in [29], [59].

There is loss of information in mapping the computation of the Feynman integral from the
complement of the graph hypersurface (as in [12], [18], [19]) to the complement of the determinant
hypersurface (as in [4]), when the combinatorial conditions on the graph recalled in §5.7 are not
satisfied. Explicit examples of graphs that violate those conditions are given in §3 of [4]. In such
cases the map (5.9) need not be an embedding, hence part of the information contained in the
Feynman integral calculation (5.6) will be lost in passing to (5.10).

However, this type of loss of information does not affect some of the cases where non-mixed
Tate motives are known to appear in the momentum space Feynman amplitude.

Example 5.31. Let Γ be the graph with 14 edges that gives a counterexample to the Kontsevich

polynomial countability conjecture, in Section 1 of [29]. The map Υ : An → A`2 of (5.9) has
n = #E(Γ) = 14 and ` = b1(Γ) = 7. Let Υi denote the composition of the map Υ with the
projection onto the i-th row of the matrix MΓ of (5.8). In order to check if the embedding
condition for Υ is satisfied, we know from Lemma 3.1 of [4] that it suffices to check that Υi is
injective for i ranging over a set of loops such that every edge of Γ is part of a loop in that set.
This can then be checked by computer verification for the matrix MΓ of this particular graph.

The example above is a log divergent graph in dimension four. It is known to give a non-
mixed Tate contribution with the usual method of computation of the Feynman integral, [29],
[18]. The same verification method we used for this case can be applied to the other currently
known explicit counterexamples in [29], [18], [59], [19].

Even for integrals (including the example above) where the map (5.9) is an embedding, the
regularization and renormalization procedure described here, using the Kausz compactification
and subtraction of residues for forms with logarithmic poles, is not equivalent to the usual
renormalization procedures of the regularized integrals. For instance, our regularized form (hence
our regularized integral) can be trivial in cases where the usual regularization and renormalization
would give a non-trivial result. This may occur if the form β with logarithmic poles happens to
have a nontrivial residue, but a trivial holomorphic part β+.

In such cases, part of the information loss coming from pole subtraction on the differential
form is compensated by keeping track of the residues. However, in our setting these also deliver
only mixed Tate periods, so that even when this information is included, one still loses the
richer structure of the periods arising from other methods of regularization and renormalization,
adopted in the physics literature.
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[49] B. Köck, Chow motif and higher Chow theory of G/P , Manuscripta Math. 70, no. 4, 363–372, (1991).

[50] M. Levine, Tate motives and the vanishing conjectures for algebraic K-theory, in “Algebraic K-theory and
algebraic topology” (Lake Louise, AB, 1991), 167–188, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 407,

Kluwer Acad. Publ., (1993). DOI: 10.1007/978-94-017-0695-7 7
[51] Yu.I. Manin, Correspondences, motifs and monoidal transformations, Mat. Sb. (N.S.) 77 (119), 475–507,

(1968).

[52] M. Marcolli, Feynman motives, World Scientific, (2010).
[53] J. Martens, M. Thaddeus, Compactifications of reductive groups as moduli stacks of bundles, Compositio

Math. 152, 62–98, (2016). DOI: 10.1112/S0010437X15007484

[54] B. Mohar, C. Thomassen, Graphs on surfaces, Johns Hopkins University Press, (2001).
[55] D. Mond, Notes on logarithmic vector fields, logarithmic differential forms and free divisors, preprint, (2012).

[56] C. Pompeyo-Gutiérrez, Chow motive of a locally trivial fibration. arχiv:1205.4287

[57] J. Rammer, Quantum field theory of non-equilibrium states, Cambridge University Press, (2007).
DOI: 10.1017/CBO9780511618956

[58] K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo

Sect. IA Math. 27, no. 2, 265–291, (1980).
[59] O. Schnetz, Quantum field theory over Fq , Electron. J. Comb.18, no.1, P102, (2011).

[60] I. Vainsencher, Complete collineations and blowing up determinantal ideals, Math. Ann. 267, no. 3, 417–432,
(1984). DOI: 10.1007/BF01456098

[61] V. Voevodsky, Triangulated categories of motives over a field, in “Cycles, transfer and motivic homology

theories”, Annals of Mathematical Studies, Vol. 143, Princeton Univ. Press, pp. 188–238, (2000).

http://dx.doi.org/10.1007/s11005-011-0501-1
https://tel.archives-ouvertes.fr/tel-01083524/document
http://dx.doi.org/10.1088/0305-4470/37/45/020
http://arxiv.org/abs/math/0103059
http://arxiv.org/abs/math/0202154v2
http://dx.doi.org/10.1112/S0010437X03000125
http://dx.doi.org/10.1007/BF02684807
http://arxiv.org/abs/1112.4110v3
https://tel.archives-ouvertes.fr/tel-00716402/document
http://dx.doi.org/10.1007/BF01231898
http://dx.doi.org/10.1090/pspum/067/1743239
http://dx.doi.org/10.1007/978-94-017-0695-7_7
http://dx.doi.org/10.1112/S0010437X15007484
http://arxiv.org/abs/1205.4287
http://dx.doi.org/10.1017/CBO9780511618956
http://dx.doi.org/10.1007/BF01456098


ROTA–BAXTER ALGEBRAS, SINGULAR HYPERSURFACES, RENORMALIZATION 117

[62] C. Voisin, Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics,

Vol.76, Cambridge University Press, (2007).

Department of Mathematics, Division of Mathematics, Physics and Astronomy, California Insti-
tute of Technology, 1200 E. California Blvd. Pasadena, CA 91125, USA

E-mail address: matilde@caltech.edu

E-mail address: xni@caltech.edu



Journal of Singularities
Volume 15 (2016), 118-125

Proc. of AMS Special Session on
Singularities and Physics, Knoxville, 2014

DOI: 10.5427/jsing.2016.15f

INTERSECTION SPACES, PERVERSE SHEAVES
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LAURENTIU MAXIM

Abstract. We survey recent results describing a perverse sheaf realization of Banagl’s in-
tersection space homology in the context of projective hypersurfaces with only isolated sin-

gularities. Intersection space homology has been recently proved to be relevant in type IIB

string theory, as it provides the correct count of massless 3-branes arising during a Calabi-Yau
conifold transition.

1. Introduction

In addition to the four dimensions that model our space-time, string theory requires six
dimensions for a string to vibrate. By supersymmetry, these six real dimensions must be realized
by a Calabi-Yau space. However, given the multitude of known topologically distinct Calabi-Yau
3-folds, the string model remains undetermined. Therefore, it is important to have mechanisms
that allow one to move from one Calabi-Yau space to another. In Physics, a solution to this
problem was first proposed by Green-Hübsch [GH1, GH2] who, motivated by Reid’s “fantasy”
[Re87], conjectured that topologically distinct Calabi-Yau 3-folds are connected to each other by
means of conifold transitions, which induce a phase transition between the corresponding string
models.

A conifold transition starts out with a smooth Calabi-Yau 3-fold, passes through a singular
variety — the conifold — by a deformation of complex structure, and arrives at a topologically
distinct smooth Calabi-Yau 3-fold by a small resolution of singularities. The deformation col-
lapses embedded three-spheres (called vanishing cycles) to isolated ordinary double points, while
the resolution resolves the singular points by replacing each of them with a CP1. In Physics,
the topological change resulted from passing from one of the Calabi-Yau’s to the conifold was
interpreted by Strominger [Str95] by the condensation of massive black holes to massless ones.
In type IIA string theory, there are charged two-branes that wrap around the CP1 2-cycles,
and which become massless when these 2-cycles are collapsed to points by the resolution map.
Goresky-MacPherson’s intersection homology [GM80, GM83] of the conifold accounts for all
of these massless two-branes, and since it also satisfies Poincaré duality, it may be viewed as
a physically correct homology theory for type IIA string theory. Similarly, in type IIB string
theory there are charged three-branes wrapped around the vanishing cycles, and which become
massless as these vanishing cycles are collapsed by the deformation of complex structure. Neither
ordinary homology nor intersection homology of the conifold account for these massless three-
branes; see [Ba10][Section 3.7] for more details. So a natural problem is to find a physically
correct homology theory for type IIB string theory. A solution to this question was suggested
by Banagl in [Ba10] via his intersection space homology theory.
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In [Ba10], Banagl developed a homotopy-theoretic method which associates to certain types of
singular spaces X (e.g., a conifold) a CW complex IX, called the intersection space of X, whose
reduced rational homology groups satisfy Poincaré Duality. Roughly speaking, the intersection
space IX associated to a singular space X is constructed by replacing links of singularities of
X by their corresponding Moore approximations, a process called spatial homology truncation.
The intersection space homology

(1) HI∗(X;Q) := H∗(IX;Q)

is not isomorphic to the intersection homology of the space X, and in fact it can be seen that in
the middle degree and for isolated singularities, this new theory takes more cycles into account
than intersection homology. For a conifold X, Banagl showed that the dimension of HI3(X)
equals the number of physically present massless 3-branes in IIB theory, so intersection space
homology can be viewed as a physically correct homology theory for type IIB string theory.

Our approach for studying intersection space homology is motivated by mirror symmetry. In
mirror symmetry, given a Calabi-Yau 3-fold X, the mirror map associates to it another Calabi-
Yau 3-fold Y so that type IIB string theory on R4×X corresponds to type IIA string theory on
R4 × Y . If X and Y are smooth, their Betti numbers are related by precise algebraic identities
(e.g., see [CK99]), e.g.,

(2) β3(Y ) = β2(X) + β4(X) + 2,

etc. Morrison [Mor99] conjectured that the mirror of a conifold transition is again a conifold
transition, but performed in the reverse order (i.e., by exchanging resolutions and deformations).
Thus, if X and Y are mirrored conifolds (in mirrored conifold transitions), the intersection space
homology of one space and the intersection homology of the mirror space form a mirror-pair, in
the sense that

(3) β3(IY ) = Iβ2(X) + Iβ4(X) + 2,

etc., where Iβi denotes the i-th intersection homology Betti number (see [Ba10] for details). This
suggests that it should be possible to compute the intersection space homology HI∗(X;Q) of a
variety X in terms of the topology of a smoothing deformation, by “mirroring” known results
(e.g., [BBD, dCM, GM82]) relating the intersection homology groups IH∗(X;Q) of X to the
topology of a resolution of singularities.

This point of view was successfully exploited in [BM11, BBM], where we considered the case
of a hypersurface X ⊂ CPn+1 with only isolated singularities, this being the main source of
examples for conifold transitions. In this note, we review some of the main constructions and
results from these works.

Convention: By “manifold” we mean a “complex projective manifold”, and by “singular space”
we mean a “complex projective variety of pure complex dimension n”. We are only interested in
“middle-perversity” calculations, so any mentioning of other perversity functions will be ignored.
Unless otherwise specified, all (intersection) (co)homology groups will be computed with rational
coefficients. Spaces considered in this paper will have at most isolated singularities.

Some of the properties of intersection (co)homology of a singular space X which are relevant
for the above-mentioned “mirror” approach are:

(a) Intersection homology IH∗(X) satisfies Poincaré duality.

(b) If X̃ is a resolution of singularities of X, then IH∗(X) is a sub-vector space of H∗(X̃).

Moreover, if X̃ is a small resolution, then IH∗(X) ∼= H∗(X̃).
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(c) IH∗(X) is realized by a perverse, self-dual, constructible sheaf complex ICX , i.e.

(4) IHi(X) ∼= Hi(X, ICX [−n]).

(d) IH∗(X) carries the Kähler package, including Hodge structures, as well as weak and
hard Lefschetz theorems.

Based on the above considerations, it is therefore natural to try to “mirror” such properties
in the context of intersection space (co)homology. As already mentioned, the Poincaré duality
property is satisfied by the intersection spaces. We will thus focus on the properties (b), (c) and
(d).

2. Hypersurface singularities and smoothing invariance of intersection space
homology

Let X be a complex projective hypersurface of dimension n > 2, which, for simplicity, is
assumed to have only one isolated singular point x. Let Lx, Fx and Tx : Hn(Fx) → Hn(Fx)
denote the link, Milnor fiber and local monodromy operator of the isolated hypersurface singu-
larity germ (X,x), respectively. By [Mi68], the link Lx is an (n − 2)-connected closed oriented
(2n−1)-dimensional manifold. Moreover, the Milnor fiber Fx is a parallelizable (n−1)-connected
2n-dimensional manifold, which has the homotopy type of

∨
Sn, a wedge of n-spheres. The num-

ber µx = rkHn(Fx) of these n-spheres (also called vanishing cycles) is the local Milnor number
at x. It is known that all eigenvalues of Tx are roots of unity. We say that the local monodromy
operator Tx is trivial if all eigenvalues of Tx are equal to 1.

The assumption on the dimension of X is needed to assure that the link Lx of x is simply-
connected, so the intersection space IX can be defined as in [Ba10]. The actual definition of
an intersection space is not needed here, only the calculation of Betti numbers, as described in
Theorem 2.1 below, will be used in the sequel. Nevertheless, let us indicate briefly how IX is
obtained from X. Let M be the complement of an open cone neighborhood of x so that M
is a compact manifold with boundary ∂M = Lx. The spatial homology n-truncation of Lx is
a topological space L<nx such that Hi(L

<n
x ) = 0 for i ≥ n, together with a continuous map

f : L<nx → L which induces a homology isomorphism in degrees i < n. The intersection space
IX is then defined as the homotopy cofiber of the composition

L<nx
f−→ Lx = ∂M

incl
↪→ M

(see [Ba10] for complete details, and [BM12] for a mild introduction).
The following result can be viewed as a generalization of the Betti calculation from [Ba10] in

the context of conifold transitions:

Theorem 2.1. ([BM11][Thm.4.1, Thm.5.2]) Let Xs be a nearby smoothing of X. Then, under
the above assumptions and notations, the following holds:

(5) dimHIi(X;Q) =

 dimHi(Xs;Q) if i 6= n, 2n;
dimHi(Xs;Q)− rk(Tx − 1) if i = n;
0 if i = 2n.

Moreover, under some mild technical assumption on the homology of the link (that is, if
Hn−1(Lx;Z) is torsion-free), the above identities are derived via a continuous map IX → Xs,

and we obtain a smoothing invariance of the intersection space (co)homology H̃∗(IX) if, and only
if, the local monodromy operator Tx is trivial. So this result can be viewed as mirroring property
(b) of intersection homology, expressing the intersection cohomology of X as a sub-vector space
of the cohomology of any resolution, with an isomorphism in the case of a small resolution.
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Moreover, the local trivial monodromy condition (or the existence of “small deformations”)
should be regarded as mirroring that of the existence of small resolutions.

3. Perverse sheaf approach to intersection space homology

3.1. Summary of results. Guided by a similar philosophy derived from mirror symmetry,
in [BBM] we constructed a perverse sheaf1 ISX , the intersection-space complex, whose global
hypercohomology calculates (abstractly) the intersection space cohomology groups of a projective
hypersurface X ⊂ CPn+1 with one isolated singular point.

Theorem 3.1. ([BBM]) Let Xs be a nearby smoothing of X. Then there exists a perverse sheaf
complex ISX on X so that there are (abstract) isomorphisms

(6) Hi(X; ISX [−n]) '

{
Hi(IX) if i 6= 2n

H2n(Xs) = Q if i = 2n.

Our construction (see Section 3.2.2 for a sketch) can be viewed as mirroring the fact that the
intersection cohomology groups can be computed from a perverse sheaf, namely the intersection
cohomology complex ICX . We would like to point out that for general X there cannot exist a
perverse sheaf P on X such that HI∗(X;Q) can be computed from the hypercohomology group
H∗(X;P[−n]). Indeed, the stalk vanishing conditions that such a perverse sheaf P satisfies would
give Hi(X;P[−n]) = Hi(M), for i < n, while Hi(IX) = Hi(M,∂M) if i < n. (Here M denotes
as before the complement of an open cone neighborhood of x in X.) However, due to the high-
connectivity of the links, this goal can be achieved in the case when X is a hypersurface with
only isolated singularities, this being in fact the main source of examples for conifold transitions.
This fact motivates our study of intersection spaces associated to hypersurfaces with only isolated
singularities.

Furthermore, by construction, the intersection space complex ISX underlies a mixed Hodge
module, therefore its hypercohomology groups carry canonical mixed Hodge structures. This
result mirrors the corresponding one for the intersection cohomology complex ICX .

It follows from the above interpretation of intersection space cohomology that the groups
H∗(X; ISX) satisfy Poincaré duality globally, which raises the question whether this duality is
induced by a more powerful (Verdier-) self-duality isomorphism D(ISX) ' ISX in the derived
category of constructible bounded sheaf complexes on X. In [BBM], we showed the following:

Theorem 3.2. ([BBM]) If the local monodromy Tx at the singular point x is semi-simple in
the eigenvalue 1, then the intersection space complex ISX is Verdier self-dual. In particular, for
any integer i, there is a non-degenerate pairing

H−i(X; ISX)×Hi(X; ISX)→ Q.

The assumption on the semi-simplicity of local monodromy in the eigenvalue 1 is satisfied by
a large class of isolated singularities, e.g., the weighted homogeneous ones.

1Let us recall here the definition of a perverse sheaf on a singular space X with only one isolated singular

point x. Such a space can be given a Whitney stratification X with only two strata: {x} and X \ {x}. Denote by

i : {x} ↪→ X and j : X \ {x} ↪→ X the corresponding closed and open embeddings. Then a complex K ∈ Db
c(X),

which is constructible with respect to X , is perverse on X if j∗K[−n] is cohomologically a local system on X \{x}
and, moreover, the following two (stalk and, respectively, co-stalk vanishing) conditions hold:

Hj(i∗K) = 0, for any j > 0,

Hj(i!K) = 0, for any j < 0.
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Let us next recall that the Beilinson-Bernstein-Deligne decomposition [BBD] for the pushfor-

ward Rf∗QX̃ [n] of the constant sheaf QX̃ under an algebraic resolution map f : X̃ → X splits
off the intersection sheaf ICX of X plus contributions from the singularities of X. Suppose now

that X sits as X = π−1(0) in a family π : X̃ → S of projective hypersurfaces over a small disc

around 0 ∈ C such that X̃ is smooth, and Xs = π−1(s) is smooth over nearby s ∈ S, s 6= 0.
In this situation, the nearby cycle functor ψπ for π can be defined, and we have the following
result:

Theorem 3.3. ([BBM]) If the local monodromy Tx at the singular point x is semi-simple in the
eigenvalue 1, then the intersection space complex ISX is a direct summand of the nearby cycle
complex ψπQX̃ [n].

The summand complementary to ISX has the interpretation as being contributed by the
singularity x, since it is supported only over {x}. We regard this splitting of nearby cycles as
mirroring the above Beilinson-Bernstein-Deligne decomposition theorem in the following sense.
For s sufficiently close to 0, there is a map sp : Xs → X, the specialization map, which should
be viewed as mirroring a resolution map. Moreover, the nearby cycle complex ψπQX̃ [n] can
be computed by the (derived) pushforward R(sp)∗QXs

[n] of the constant sheaf on a nearby
smoothing of X. Altogether, we have a decomposition

(7) R(sp)∗QXs
[n] ' ISX ⊕ C,

with C a perverse sheaf supported on the singular set {x}.
Finally, in [BBM] we prove the following result which mirrors the existence of the Kähler

package on intersection cohomology groups:

Theorem 3.4. ([BBM]) If the local monodromy Tx at x is semi-simple in the eigenvalue 1,
and the global monodromy T acting on H∗(Xs) is semi-simple in the eigenvalue 1, then the
hypercohomology groups H∗(X; ISX) carry pure Hodge structures satisfying the Hard Lefschetz
theorem.

3.2. Intersection space complex. Let us now sketch the construction of the perverse sheaf
ISX , see [BBM] and references therein for complete details. We will try to keep the technical
details at a minimum, in order not to obscure the presentation.

3.2.1. Nearby and vanishing cycles. Let us consider, as before, a hypersurface X ⊂ CPn+1 with

Sing(X) = {x}. Let π : X̃ → S ⊂ C be a family of hypersurfaces over a small disc S centered at

the origin, with X = π−1(0), and so that X̃ is smooth and Xs := π−1(s) for s 6= 0 is a smooth
hypersurface in CPn+1. Let

ψπ, ϕπ : Db
c(X̃)→ Db

c(X)

be the nearby and vanishing cycle functors for π, with monodromy T and resp. T̃ . Then

(8) Hi(Xs;Q) ∼= Hi(X;ψπQX̃),

and, for the point inclusion ix : {x} ↪→ X, with Fx denoting as before the Milnor fiber of the
hypersurface singularity germ (X,x), we have

(9) Hi(Fx;Q) ∼= Hi(i∗xψπQX̃) and H̃i(Fx;Q) ∼= Hi(i∗xϕπQX̃),

with compatible monodromy actions. Note that Supp(ϕπQX̃) = Sing(X) = {x}.
There are canonical morphisms:

can : ψπ → ϕπ and var : ϕπ → ψπ

so that can ◦ var = T̃ − 1, var ◦ can = T − 1.



INTERSECTION SPACES, PERVERSE SHEAVES AND STRING THEORY 123

The monodromy automorphisms T and T̃ have Jordan decompositions

T = Tu ◦ Ts = Ts ◦ Tu,

where Ts is semisimple (and locally of finite order) and Tu is unipotent, and similarly for T̃ . For

any λ ∈ Q and K ∈ Db
c(X̃), denote by ψπ,λK the generalized λ-eigenspace for T , and similarly

for φπ,λK. There are decompositions

ψπ = ψπ,1 ⊕ ψπ,6=1 and ϕπ = ϕπ,1 ⊕ ϕπ,6=1

so that Ts = 1 on ψπ,1, T̃s = 1 on ϕπ,1, and Ts and T̃s have no 1-eigenspace on ψπ,6=1 and ϕπ,6=1,
respectively. Moreover, can : ψπ,6=1 → ϕπ,6=1 and var : ϕπ,6=1 → ψπ,6=1 are isomorphisms.

Let N := log(Tu), and similarly for Ñ . The morphism ϕπK
Var−→ ψπK is defined by the cone

of the pair (0, N). Then can ◦Var = Ñ and Var ◦ can = N .

The functors pψπ := ψπ[−1] and pϕπ := ϕπ[−1] from Db
c(X̃) to Db

c(X) commute with the
Verdier duality functor D (up to natural isomorphisms), and send perverse sheaves to perverse
sheaves. These functors and their decompositions into unipotent and non-unipotent parts lift to

the category of mixed Hodge modules, as do the functors can, N , Ñ and Var . For an introduction
to Saito’s theory of mixed Hodge modules, the interested reader is advised to consult [Sa89].

3.2.2. Intersection space complex: construction. First note that ψπQX̃ [n], ϕπQX̃ [n] are perverse
sheaves on X. Consider the perverse sheaf

(10) C := Image(T̃ − 1) ⊆ ϕπQX̃ [n],

and denote by

ιϕ : C ↪→ ϕπQX̃ [n]

the corresponding inclusion in the abelian category Perv(X). Then Supp(C) = {x}, and we
have

(11) Hi(X; C) =

{
0 , if i 6= 0,

Image(Tx − 1) , if i = 0.

Let

ι := var ◦ ιϕ : C −→ ψπQX̃ [n].

In view of (8), (11) and the Betti calculation of Theorem 2.1, it is natural to define the intersection
space complex by:

(12) ISX := Coker
(
ι : C −→ ψπQX̃ [n]

)
∈ Perv(X).

Remark 3.5. If π is a small deformation of X, i.e., if the local monodromy operator Tx is
trivial, then C ' 0, so we get an isomorphism of perverse sheaves ISX ' ψπQX̃ [n]. In view
of the Betti identity of Theorem 2.1, this isomorphism can be interpreted as a sheaf-theoretical
enhancement of the stability result from [BM11] mentioned in the Section 2.

Remark 3.6. The above construction can be easily adapted to the situation of hypersurfaces
with multiple isolated singular points. It then follows from Theorem 3.1 and [Ba11a][Prop.3.6]
that the hypercohomology of ISX for conifolds X provides the correct count of massless 3-branes
in type IIB string theory.

Some of the results described in Section 3.1 can be obtained as direct consequences of the
definition of the intersection complex ISX . We describe some of these instances below. Others
require more intricate proofs based on Saito’s theory of (mixed) Hodge modules, or, alternatively,
on the theory of zig-zags; see [BBM] for complete details on these proofs.
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By using the facts stated in Section 3.2.1, it is not hard to see that the intersection space
complex ISX underlies a mixed Hodge module. More precisely, we have that:

(13) ISX = coker
(

Image(Ñ)
Var−→ pψπ,1QX̃ [n+ 1]

)
and, as already mentioned, the functors Ñ , Var and pψπ,1 admit lifts to the category of mixed
Hodge modules.

It can also be seen that if Tx is semi-simple in the eigenvalue 1, then:

ISX ∼= ψπ,1QX̃ [n].

So in this case ISX is self-dual, since ψπQX̃ [n] is self-dual and D respects the decomposition

ψπ = ψπ,1 ⊕ ψπ,6=1. Moreover, in this case, the weight filtration on Hi(X, ISX) coincides (up
to a shift) with the monodromy filtration defined by the nilpotent endomorphism N acting on
Hi(pψπ,1) := Hi(X; pψπ,1QX̃ [n+ 1]). So the mixed Hodge structure on Hi(X, ISX) ∼= Hi(pψπ,1)

is pure if and only if N = 0, or equivalently if T = Ts on Hi(pψπ,1). In other words, one has
purity if the action of T on H∗(Xs) is semi-simple in the eigenvalue 1. Moreover, if this is the
case, one can show as in [DMSS][Section 3] that the Hard Lefschetz theorem also holds for the
hypercohomology groups Hi(X; ISX).

4. Concluding remarks

A natural problem is to extend the construction and study of intersection spaces of complex
hypersurfaces beyond the case of isolated singularities. This problem is motivated by string
theoretic considerations since, given the success of the use of intersection homology on the one
hand and homology of the intersection space on the other hand in the context of the conifold
transition, it is natural to investigate the use of such Poincaré duality homology theories in more
singular situations encountered in string theory, e.g., for the fibre singularities in F-theory. This
is particularly important as the non-uniqueness of the (small) resolutions of singular elliptic
fibrations calls for a more model-independent procedure to determine the homology relevant for
the physical theory. Recent progress in this direction has been recently made by Banagl and his
students, e.g, see [Ba11b]. On the other hand, the sheaf-theoretic approach presented in this note
is valid in more general settings, so it can be used to define an intersection space (co)homology
theory directly, without having to construct an intersection space at all.

Acknowledgements. The author thanks his collaborators M. Banagl and N. Budur for their
contributions to the research described in this note. He also thanks Paolo Aluffi and Mboyo Esole
for organizing a very interesting conference, where part of this work was presented.
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SECTIONS, MULTISECTIONS, AND U(1) FIELDS IN F-THEORY

DAVID R. MORRISON AND WASHINGTON TAYLOR

Abstract. We show that genus-one fibrations lacking a global section fit naturally into
the geometric moduli space of Weierstrass models. Elliptic fibrations with multiple sections
(nonzero Mordell-Weil rank), which give rise in F-theory to abelian U(1) fields, arise as a
subspace of the set of genus-one fibrations with multisections. Higgsing of certain matter
multiplets charged under abelian gauge fields in the corresponding supergravity theories break
the U(1) gauge symmetry to a discrete gauge symmetry group. We demonstrate these results
explicitly in the case of bisections, and describe the general framework for multisections of
higher degree. We further show that nearly every U(1) gauge symmetry arising in an F-
theory model can be “unHiggsed” to an SU(2) gauge symmetry with adjoint matter, though
in certain situations this leads to a model in which a superconformal field theory is coupled to
a conventional gauge and gravity theory. The only exceptions are cases in which the attempted
unHiggsing leads to a boundary point at an infinite distance from the interior of the moduli
space.

1. Introduction

F-theory [1, 2, 3] is a nonperturbative approach to string theory in which the axiodilaton
τ = χ + ie−φ of type IIB supergravity is specified by means of an auxiliary complex torus
(elliptic curve), and 7-branes serve as sources for the RR scalar, providing an opportunity for
SL(2,Z)-multivaluedness of the τ field. In most work to date, F-theory is compactified on a base
Bn of complex dimension n, where the tori C/〈1, τ(ξ1, . . . , ξn)〉 parameterized by coordinates ξi
on the base are assumed to fit together to form a Calabi-Yau (n+1)-fold Xn+1 that is elliptically
fibered with section, π : Xn+1 → Bn, so that (after appropriate blowing down) Xn+1 can be
described by a Weierstrass model

(1) y2 = x3 + fx+ g ,

where f, g are sections of line bundles O(−4K),O(−6K) on the base Bn (locally described
simply as functions of the base coordinates). The 7-branes are located at the discriminant locus
{4f3 + 27g2 = 0}, in a manner specified by the Kodaira–Néron classification of singular fibers
[4, 5].

Recently, Braun and Morrison [6] considered a more general class of F-theory compactification
spaces, where the space Xn+1 has a genus-one (torus) fibration, but no global section. They
identified a large number of examples of such genus-one fibrations over the base B2 = P2 in the
comprehensive list compiled by Kreuzer and Skarke [7] of Calabi-Yau threefolds that are hyper-
surfaces in toric varieties. Any such Xn+1 has a Jacobian fibration Jn+1, which is an elliptically
fibered Calabi–Yau with section1 whose τ function and discriminant locus are identical to those
of Xn+1. The set of genus-one fibered Calabi–Yau manifolds with the same Jacobian fibration
Jn+1 is known as the Tate-Shafarevich group of Jn+1, denoted X(Jn+1), and is identified with

1This statement has been mathematically proven only for n + 1 ≤ 3 [4, 8, 9], but is likely true in arbitrary
dimension.

http://dx.doi.org/10.5427/jsing.2016.15g
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the discrete part of the gauge group of F-theory following [10, 11]2. Note that X(Jn+1) repre-
sents not only a disjoint set of manifolds, but also includes an abelian group structure [12, 13].
Braun and Morrison identified in the examples they studied an apparent deficit in the num-
ber of scalar hypermultiplets required for gravitational anomaly cancellation, when the massless
scalars are identified only as the complex structure moduli of the smooth genus one fibrations
without global section. They resolved this apparent problem by identifying additional massless
hypermultiplets at nodes in the discriminant locus of the Jacobian fibrations (more specifically,
in the I1 part of that locus).

While this analysis supports the proposition that genus-one fibrations without a global sec-
tion are associated with consistent F-theory backgrounds, it also raises several questions, such as
whether these backgrounds are connected to other F-theory geometries or form a disjoint compo-
nent of the moduli space of the theory, and how the additional massless hypermultiplets should
be interpreted. In this note, we show how these genus-one fibrations and their Jacobians fit nat-
urally into the connected moduli space of Weierstrass models, and relate them to models with
U(1) gauge fields arising from extra sections of the elliptic fibrations. The structure of U(1) gauge
fields in F-theory is rather subtle, as they are determined by global features (the Mordell-Weil
group) of an elliptic fibration; F-theory models with one or more U(1) fields have been the subject
of significant recent research activity (see for example [14, 15, 16, 18, 19, 20, 17, 22, 21, 23]).

In rough outline, the framework developed in this note is as follows: over any complex n-
dimensional base Bn, there is a space W of Weierstrass models, parameterized by the sections
f, g in (1). Any Calabi-Yau (n + 1)-fold with a genus-one fibration has a multisection of some
degree k, and its associated Jacobian fibration has a Weierstrass model which is generally singular
when k > 1 (even in the absence of nonabelian gauge symmetry). We can map the set Mk of
genus-one fibrations with a k-fold multisection (a “k-section”, or when k = 2, a “bisection”) to
a subset J k ⊆ W of the set of Weierstrass models, consisting of the Jacobians of those genus-
one fibrations. The set of elliptic fibrations with k independent global sections (rank r = k − 1
Mordell-Weil group) can also be viewed through singular Weierstrass models as a subset Sk ⊆ W
of the full space of elliptic fibrations. For Calabi-Yau threefolds, these results follow for any k
from the result of Nakayama [24] and Grassi [25] that any elliptically fibered Calabi-Yau threefold
with section has a realization as a Weierstrass model that is also Calabi-Yau; as in the case of the
statements mentioned earlier concerning Jacobian fibrations of Calabi-Yau genus-one fibrations,
this statement has not been mathematically proven for Calabi-Yau fourfolds, but there are no
known examples to the contrary. Furthermore, we have

(2) Sk ⊆ J k ⊆ W ,

meaning that the set of models with k independent sections can be viewed as a subset of the
larger set of models with a k-fold multisection.

We give explicit formulae describing these inclusions in the case k = 2 in the next section, but
the inclusion Sk ⊆ J k clearly holds for any k since having k independent sections is a special
case of having a k-fold multisection where the k sections can be given distinct global labels.
In particular, we can think of the multisection of an (n + 1)-fold Xn+1 ∈ J k as a branched
cover of the base; the multisection breaks into k distinct global sections on a subspace of moduli
space where the branch points coalesce in such a way as to give trivial monodromy among the
branches. In this picture, going from a model in Sk to a model in J k can be interpreted physically
as a partial Higgsing, where Higgsing some charged matter fields breaks U(1)k−1 to a discrete
subgroup, under which the remaining fields parameterizing J k carry discrete charges. In the

2The discrete part of a gauge group corresponds to the set of connected components of the group; a purely
discrete gauge group is a finite group such as Zn
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case k = 2, for example, we can have matter fields with various integer-valued U(1) charges; if
we Higgs matter fields with charge Q, we break U(1) to ZQ.

In the case k = 2, we can also further analyze any model containing a U(1) by considering the
explicit form of a Weierstrass model with nonzero Mordell-Weil rank. From this point of view we
can demonstrate that every U(1) is associated geometrically with a nonabelian SU(2) (or larger)
symmetry arising from a Kodaira type I2 singularity along a divisor on the base. Starting with
such an SU(2) having both adjoint and fundamental matter, there are several possible Higgsing
steps: the first leaves us with a U(1) under which the remnant of the adjoint matter has charge3

2 and the remnant of the fundamental matter has charge 1; the second Higgsing (of matter fields
of charge 2) leaves us with gauge group Z2 under which the remnant of the original fundamental
matter is charged; a final Higgsing of the fields originally carrying charge 1 breaks the residual
discrete gauge group and moves the model out of J k and into the moduli space W of generic
Weierstrass models.

In §2 we describe the general framework for this geometrical picture explicitly in the case
k = 2, for a general base manifold Bn. In §3, we show explicitly in 6D how any U(1) gauge field
in an F-theory model can be associated with an SU(2) gauge group that has been Higgsed by an
adjoint matter field, and we look at several explicit examples. §4 contains some general remarks
about the implications of this picture for 6D and 4D supergravity theories, and some comments
on further directions for related research.

2. General framework

2.1. Calabi-Yau manifolds with bisections and with two different sections. In [6], an
exercise in Galois theory provides an equation for the Jacobian of a genus-one fibration with a
bisection

(3) y2 = x3 − e2x
2z2 + (e1e3 − 4e0e4)xz4 − (e2

1e4 + e0e
2
3 − 4e0e2e4)z6 ,

where e0, . . . , e4 are sections of various line bundles over the base Bn (to be determined below).
Completing the cube, changing variables, and setting z = 1 puts this in Weierstrass form

(4) y2 = x3 +
(
e1e3 −

1

3
e2

2 − 4e0e4

)
x+

(
− e0e

2
3 +

1

3
e1e2e3 −

2

27
e3

2 +
8

3
e0e2e4 − e2

1e4

)
.

This parameterizes the set of all Jacobians of genus-one fibrations over Bn with bisections,
represented through the Weierstrass models (of the Jacobian fibrations). In particular, this
describes how J 2 ⊆ W for any base Bn.

This class of Weierstrass models is closely related to the Weierstrass form for elliptically
fibered Calabi-Yau (n+ 1)-folds on Bn with two (different) sections. Elliptically fibered Calabi-
Yau manifolds with two sections can be described as models with a non-Weierstrass presentation
(like the E7 models of [26, 27]) that are smooth for generic moduli. All such (n+1)-folds, however,
also have a (possibly singular) description as Weierstrass models. In [16], the general form of
such a Weierstrass model was given as4

(5) y2 = x3 +
(
e1e3 −

1

3
e2

2 − b2e0

)
x+

(
− e0e

2
3 +

1

3
e1e2e3 −

2

27
e3

2 +
2

3
b2e0e2 −

1

4
b2e2

1

)
.

3A field is said to have “charge n” under a U(1) gauge symmetry if it transforms as einθ under a gauge
transformation eiθ ∈ U(1).

4We have modified eq. (5.35) of [16] by using a scaling (f, g) 7→ (i4f, i6g) to change the sign of g, and by
changing cj in that paper to ej here (j = 0, 1, 2, 3).
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Note that this equation is equivalent to (4) under the replacement b2 → 4e4. The interpretation
of this analysis is that, as stated in the introduction,

(6) S2 ⊆ J 2 ⊆ W ,

The condition e4 = b2/4 is precisely the condition that the branching loci of the bisection
associated with a genus-one fibration in J k coalesce in pairs so that the total structure is that
of an elliptic fibration with two sections.

In [6, 16], it was shown that for both an elliptic fibration with two sections, and for a genus-
one fibration with a bisection, there is a natural model with a quartic equation of the general
form

(7) w2 = e0u
4 + e1u

3v + e2u
2v2 + e3uv

3 + e4v
4 .

If e4 = b2/4, the equation can be rewritten

(8)
(
w +

1

2
bv2

)(
w − 1

2
bv2

)
= u(e0u

3 + e1u
2v + e2uv

2 + e3v
3) ,

which makes the two sections manifest: they are given by u = w ± 1
2bv

2 = 0. In general, when
there are two sections one might need to make a linear redefinition of the variables u, v before
(7) can be rewritten in the form (8), but after such a linear redefinition it can always be done.

From the condition that f, g in (1) are sections of the line bundles associated with −4K,−6K,
we can characterize the line bundles of which the ei and b are sections. Focusing on the ei’s, we
have

−4K = 2[e2] = [e1] + [e3] = [e0] + [e4] ,(9)
−6K = 2[e1] + [e4] = [e0] + 2[e3] .(10)

From 2[e2] = −4K, we have [e2] = −2K. We also note that [e0] = −6K − 2[e3] must be an even
divisor class. Choosing [e0] ≡ 2L, with L the class of an arbitrary line bundle, we have

[e0] = 2L(11)
[e1] = −K + L(12)
[e2] = −2K(13)
[e3] = −3K − L(14)
[e4] = −4K − 2L(15)
[b] = −2K − L .(16)

For any given base, L can be chosen subject to the conditions that [e1], [e3] are effective divisors
(if this condition is not satisfied, then the only non-vanishing terms in the Weierstrass model are
those proportional to powers of e2, and the discriminant vanishes identically). This constrains
the range of possibilities to a finite set of possible strata in the moduli space. The consequences
when [e4] and/or [e0] fail to be effective are discussed in §2.4.

This analysis shows that for any Calabi-Yau manifold Xn+1 that is a genus-one fibration
lacking a global section but having a bisection, there is a Jacobian fibration Jn+1, which has a
description as a Weierstrass model through (4). Taking the limit e4 → b2/4 gives a Weierstrass
model for an elliptically fibered Calabi-Yau (n + 1)-fold with two sections, which therefore has
a Mordell-Weil group of nonzero rank. In terms of the physical language of F-theory, as we
describe in more detail in the following sections, this corresponds to the reverse of a process
in which a U(1) gauge symmetry is broken by matter fields of charge 2, leaving a discrete Z2

symmetry. In §3 we describe several explicit examples of this setup in 6D F-theory constructions.
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2.2. Singular fibers of type I2 in codimension two. One of the key features of the quartic
models is the presence of singular fibers in codimension two of Kodaira type I2, observed in
[16] in the U(1) case, and in [6] in the bisection case. When there is a U(1), these singular
fibers determine matter hypermultiplets that are charged under the U(1), and there can be
different charges: [16] focussed on the case when the charges are 1 and 2 only and found distinct
geometrical interpretations for each of these. The geometric construction of I2 fibers of charge
1 under U(1) extends to the case of a bisection (in the deformation from S2 to J 2), as we will
now show explicitly. As explained above, the corresponding matter fields will be charged under
the discrete Z2 gauge symmetry. Both the bisection and U(1) cases have a description in terms
of the quartic model (7). We begin by considering the I2 fibers in the genus one (bisection) case
where e4 is generic, and then consider the limit where e4 = b2 is a perfect square, corresponding
to the U(1) model.

The curves of genus one in the quartic model are double covers of P1 branched in 4 points,
as illustrated in the left half of Figure 1. When the 4 branch points come together in pairs, the
resulting double cover splits into two curves of genus zero meeting in those two double branch
points, as illustrated in the right half of Figure 1. Such fibers in the family have type I2 in the
Kodaira classification.

Thus, to find such a fiber of type I2 in the quartic model, we seek points on the base Bn for
which the right-hand side of the equation (7) takes the form of a perfect square. As we explain
in appendix A, we can assume that e4 does not vanish at such points on the base (if the model
is sufficiently generic) and so we write our condition in the form

(17) e0u
4 + e1u

3v + e2u
2v2 + e3uv

3 + e4v
4 = e4(αu2 + βuv + v2)2 ,

for some unknown α and β. Multiplying out and equating coefficients, it is easy to solve

β = e3/2e4, α = (4e2e4 − e2
3)/8e2

4

and then determine the remaining conditions, which are:

e4
3 − 8e2e

2
3e4 + 16e2

2e
2
4 − 64e0e

3
4 = 0(18)

e3
3 − 4e2e3e4 + 8e1e

2
4 = 0(19)

Figure 1. Fiber of type I2 as a degenerate branched cover

To study the solutions of these equations, we introduce an auxiliary variable p and rewrite
the equations as

p4 − 8e2e4p
2 + 16e2

2e
2
4 − 64e0e

3
4 = 0(20)

p3 − 4e2e4p+ 8e1e
2
4 = 0(21)

In appendix A we explain how to determine the condition

(22) (4e0e2 − e2
1)2 = 64e3

0e4
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for these equations to have a common root, and why that root is

(23) p =
8e0e1e4

4e0e2 − e2
1

when all of the coefficient functions e0, . . . , e4 are generic. The points we seek can be described
as solutions to (22) which also satisfy e3 = p.

We now show how to count the solutions (i.e., the number of I2 fibers of this type), modifying
an argument from [16]. Let us take a limit, replacing e4 with ε2e4 and then taking ε very small
(with both e0 and e1 of order 1). Condition (22) then shows that 4e0e2−e2

1 has order ε, and (23)
shows that p has order ε2/ε = ε. It follows that any simultaneous solution to (22) and e3 = p
can be deformed to a simultaneous solution to (22) and e3 = 0. That is, the isolated I2 fibers
are in one-to-one correspondence with the set

(24) {e4
1 − 8e0e

2
1e2 + 16e2

0e
2
2 − 64e3

0e4 = 0} ∩ {e3 = 0} .
It follows that the number of I2 fibers is

(25) [4e1] · [e3] = 4(−K + L) · (−3K − L) ,

since e4
1 − 8e0e

2
1e2 + 16e2

0e
2
2 − 64e3

0e4 is in class [4e1].
When e4 = b2/4 so that we have a U(1), the analysis above reproduces the count of I2 fibers

found in [16] which correspond to matter of charge 1 under the U(1) gauge group. It was also
observed there (and will be mentioned again below) that when U(1) is further enhanced to
SU(2), this matter comes from matter in the fundamental representation of SU(2).

On the other hand, the description of the matter of charge 2 in [16] is a bit different: it
occurs where b and e3 both vanish, and from (8) and (3) we see that both the quartic model and
the Jacobian fibration have conifold singularities over each common zero of b and e3. When we
partially Higgs by relaxing the condition e4 = b2/4, we do a complex structure deformation of
that conifold singularity, giving a mass to the gauge field (as is standard in a conifold transition
[28]).5 It would be interesting to find a more geometric interpretation of this massive gauge field,
perhaps along the lines of [34, 35].6

The Weierstrass model of the Jacobian fibration also has a conifold singularity corresponding
to each I2. For models with two sections, these conifold singularities have a (simultaneous)
small resolution, as shown explicitly in [16] by blowing up the second section in the Weierstrass
model. However, for Jacobians of models with a bisection, the conifold singularities (i.e., the
deformations of those singularities whose corresponding hypermultiplet had charge 1 before
Higgsing) have no Calabi–Yau resolution, which led to the question raised in [6] of whether these
are genuinely new F-theory models.

2.3. Generalizations and geometry. In principle, our explicit analysis of bisections could be
extended to the spaces J k of Jacobian fibrations associated with genus-one fibered Calabi-Yau
manifolds with k-sections and Sk of elliptically fibered Calabi-Yau manifolds with rank r = k−1
Mordell-Weil group in a similar explicit fashion, at least for k ≤ 4. Explicit formulae for S3,S4,
the generic forms of elliptic fibrations with three and four sections respectively, were worked out
in [20, 21] and [23], and the analogous formulae for J k are known [37] (although unwieldy to
manipulate). For k = 3, 4, the points in Sk correspond to singular Weierstrass presentations of
Calabi-Yau (n+ 1)-folds with 3, 4 independent sections, which have smooth descriptions similar
to the E6 and D4 fibrations of [26, 27].

5The distinction between conifold singularities which admit a Kähler small resolution and those which do not,
and the relation to massive gauge fields, has appeared a number of times in the literature [29, 30, 31, 32, 33].

6We thank Volker Braun for emphasizing the crucial role which must be played by massive gauge fields in
these models [36].
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Even without an explicit description of the general form of a Jacobian fibration with a k-
section, it is clear that the framework described in the previous section should generalize. In
particular, we expect that any Jacobian fibration Jn+1 with a multisection will have a dis-
crete gauge group Γ in the corresponding F-theory picture, and that this will match the Tate-
Shafarevich group Γ = X(Jn+1). There is a simple and natural geometric interpretation of
this structure in the M-theory picture. When an F-theory model on Jn+1 is compactified on
a circle S1, it gives a 5D supergravity theory that can also be described by a compactification
of M-theory on a Calabi-Yau (n + 1)-fold Yn+1. When there is a discrete gauge group Γ in
the 6D F-theory model, a nontrivial gauge transformation (Wilson line) around the complex
direction gives a set of |Γ| distinct 5D vacua associated with Jn+1. In the M-theory picture this
corresponds precisely to the compactification on the set of distinct genus-one fibered Calabi-Yau
manifolds in the Tate-Shafarevich group X(Jn+1).

We can get a clear picture of the meaning of the multiple Calabi-Yau manifolds with the
same Jacobian fibration by considering the moduli space for the compactified theory on a circle,
which can be analyzed using M-theory. We illustrate this in Figure 2, in which the moduli space
W of Weierstrass models (shown in blue) contains the subset J 2 of Jacobians of models with
a bisection, and this in turn contains the subset S2 of Jacobians of models with two sections.
When there are two sections, the second Betti number of the Calabi-Yau increases and there is an
additional dimension in the Kähler moduli space, which becomes a modulus in the compactified
theory. We have illustrated this extra dimension as a red line emerging from the S2.

W

S2 J2

M2

Figure 2. Moduli spaces for M-theory compactifications on Calabi-Yau three-
folds with different structures of sections (described in text).

What initally seems puzzling is that while the Weierstrass models of Jacobians of genus one
fibrations with two sections deform seamlessly to Jacobians of genus one fibrations with bisections
(by relaxing the condition that e4 be a square), and similarly the nonsingular fibrations with
two sections deform seamless to genus one fibrations with a bisection, the conifold singularities
in the Weierstrass model cannot be resolved in the bisection case. The key to understanding this
is to remember that the extra divisor that is present when there are two sections (i.e., a U(1))
allows an additional Kähler degree of freedom which in particular allows us to specify the areas
of the two components of an I2 fiber independently. On the other hand, when there is only a
bisection, the homology classes of those two components must each be one-half of the homology
class of a smooth genus-one fiber; thus, the two components must have the same area.

The picture of the M-theory moduli space is thus completed by adding a new component
M2 of smooth genus-one fibrations with a bisection, illustrated in purple in Figure 2. The new
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component must emerge from the precise value of the additional Kähler classes (red line) at
which the two components of an I2 fiber in the U(1) case have an identical area. (Generally, the
red line can be viewed as parameterizing the difference of those areas.) The additional Kähler
class in a U(1) thus provides the connection between the Weierstrass models (in which the area
of one of the two components is zero, corresponding to the conifold point without a Calabi-Yau
resolution) and the bisection models (in which the areas of the two components are equal).

Let us reiterate the crucial point: away from the locus S2, the complex structures on the
Calabi-Yau manifolds represented by the spaces J 2 andM2 are different (and not even birational
to each other), and are only related by the “Jacobian fibration” contruction. However, they
determine the same underlying τ function, so the F-theory models are identical. Compactifying
on a circle produces two distinct geometries for M-theory models, which is precisely what one
expects for a discrete gauge symmetry. Moreover, the “extra” hypermultiplets have different
but consistent explanations on the two components of the M-theory moduli space. AlongM2,
they are seen as geometric I2 fibers being wrapped by M2-branes, which were argued to have no
continuous gauge charges in [6] (although we now see that they carry Z2 gauge charges). Along
J 2, these same hypermultiplets are seen as complex structure moduli transverse to the J 2 locus
(moduli which are absent inM2).

One of the important lessons that we learn from this picture is that it is important not to
discard an F-theory model just because all of the corresponding M-theory models after S1-
compactification are singular. The lack of a nonsingular model means that the M-theory com-
pactification cannot be studied in the supergravity approximation without some additional input
to its structure, but such models must be included for a consistent overall picture of the moduli
spaces.

2.4. Enhancement to SU(2). For any elliptically fibered threefold with nonzero Mordell-Weil
rank, we can carry the analysis of §2.1 further, and show that there is a limit in which an extra
section in the Mordell-Weil group transforms into a “vertical” divisor class lying over a point in
the base Bn. In the F-theory language this corresponds to an enhancement of the U(1) gauge
symmetry into a nonabelian gauge group with an su2 gauge algebra (or in some special cases, a
rank one enhancement of a larger nonabelian gauge group). At least at the level of geometry,
this shows that any U(1) gauge group factor in an F-theory construction can be found from
the breaking of a nonabelian group containing an SU(2) subgroup by Higgsing a field in the
adjoint representation [38]. This fits into a very simple and general story associated with the
Weierstrass form (4). Examples of situations where U(1)’s can be “unHiggsed” in this fashion
were described in [16, 31]. In most situations the unHiggsed model with a vertical divisor is
non-singular, though as we show explicitly in the following section, in some cases a singularity is
present which can be interpreted either as a coupled superconformal theory, or as an indication
that the unHiggsed model is at infinite distance from the interior of moduli.

If the classes associated with the coefficients e0, e4 in (4) are both effective, then all coefficients
e0, . . . , e4 can generically be chosen to be nonzero, and we have a family of Weierstrass models
that characterize Jacobian fibrations with a bisection, as discussed in §2.1. Let us consider what
happens when e0 and/or e4 factorize or vanish either by tuning or because the associated divisors
are not effective (in which case these coefficients would automatically vanish since there would
be no sections of the associated line bundles).

As described in §2.1, if e4 = b2/4 is a perfect square, then the bisection becomes a pair of
global sections, and the Mordell-Weil rank of the Jacobian fibration rises, which in the F-theory
picture corresponds to the appearance of a U(1) gauge factor. The equation is symmetric under
ei → e4−i, however, so we can also take e0 = a2/4 to produce a global section in another way.
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In [16] it was observed that the zeros of b correspond to the intersection points of the two
sections, and that the further tuning b → 0, which naïvely would place the two sections on
top of each other, in fact leads to a gauge symmetry enhancement to SU(2). We can see this
enhancement explicitly by choosing e4 = b2/4 = 0 so that the structure simplifies further, and
the equation of the discriminant factorizes into the form

(26) ∆ := 4f3 + 27g2 = e2
3(−18e0e1e2e3 + 4e3

1e3 − e2
1e

2
2 + 4e0e

3
2 + 27e2

0e
2
3) .

Since neither f nor g are generically divisible by e3, this corresponds to a family of singular fibers7

of Kodaira type I2 along the divisor {e3 = 0}, associated with an su2 Lie algebra component.
(In some special cases the su2 can be part of a larger nonabelian algebra, but we focus here on
the generic su2 case for simplicity.) In the F-theory picture the transition from the model with
b = 0 to the U(1) model with b 6= 0 is described by the Higgsing of an SU(2) gauge group by a
matter field in the adjoint representation.

Again, because the equation is symmetric, we can tune e0 = a2/4 = 0 in a similar fashion,
giving a second I2 singularity on the divisor {e1 = 0}. In the F-theory picture this gives a second
nonabelian gauge group factor with an su2 algebra.

This gives a very generic picture in which, when the divisor classes −K+L and −3K−L are
effective, we have a class of models with two A1 Kodaira singularities on the divisors e1, e3. This
corresponds in the F-theory picture to a theory with gauge algebra su2 ⊕ su2. When the divisor
classes L and −4K − 2L are effective we can turn on terms e0 = a2/4 and/or e4 = b2/4 that
turn the “vertical” A1 Kodaira singularities into global sections (without changing h1,1(Xn+1));
this corresponds in F-theory to Higgsing one or both of the nonabelian gauge groups through an
adjoint representation to the U(1) Cartan generator. When L,−4K − 2L are nonzero classes,
we can choose e0 and/or e4 to be generically nonzero and non-square, which further breaks the
U(1)’s to a discrete Z2 symmetry. Because the discrete Z2 symmetry in the generic bisection
model (4) is naturally identified with the center of both U(1) fields, we expect only one Z2 in
the center of the original nonabelian gauge group.

This can be seen geometrically by analyzing the charged matter under each of the SU(2)
factors, following [39, 40]. For any F-theory model, the “virtual” or “index” spectrum of massless
matter multiplets minus massless vector multiplets can be described in terms of an algebraic
cycle of codimension 2 on the base Bn, to each component of which is associated a representa-
tion of the gauge group. (For 6D compactifications, one then just counts points in the 2-cycle
to determine the multiplicity of the representation, but for 4D compactifications there is an ad-
ditional quantization which must be performed on each component of the 2-cycle to determine
the multiplicity [41, 42], which may depend on the G-flux; what is fixed by the geometry is
the set of representations which can appear in the spectrum.) For an I2 fiber located along
a divisor Σ, the virtual adjoint representation in the matter spectrum is associated to the al-
gebraic cycle Σ · 1

2 (K + Σ), while the fundamental representation is associated to the cycle8

Σ · (−8K − 2Σ). Since we have bifundamental matter at the intersection of [e1] and [e3], which
counts as 2(−K+L) · (−3K−L) fundamentals for each of the SU(2) factors, these bifundamen-
tals account for all of the fundamental matter.9 Neither adjoints nor bifundamentals tranform
nontrivially under the diagonal Z2 in the combined gauge group. Since in the M-theory picture

7Note that when I2 fibers occur in codimension one on the base, we associate them to su2, but when they
occur in codimension two on the base, they are responsible for (charged) matter only and no additional gauge
symmetry.

8More precisely, these cycles are determined by the intersections with {f = 0} and {g = 0} in the Weierstrass
model, as described in [40].

9Here we are using the fact that when Σ = −K+L, we have −8K−2Σ = 2(−3K−L) and when Σ′ = −3K−L,
we have −8K − 2Σ′ = 2(−K + L).
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the set of divisors must be dual to the set of curves in the Calabi-Yau, the diagonal Z2 is not
part of the gauge group unless some field (associated with a curve in the resolved threefold)
transforms under it [43, 44]. Thus, the full gauge group in the model with e0 = e4 = 0 will be
(SU(2)×SU(2))/Z2 where the discrete quotient is taken by the diagonal Z2. Note that if either
[e0] or [e4] is not effective then the corresponding A1 (on [e1] or [e3]) cannot be deformed away
in the Weierstrass model while preserving the element of h1,1(X) in the form of a section; in the
F-theory picture this corresponds to an SU(2) that does not have massless matter in the adjoint
representation.

We can confirm this analysis by exhibiting an explicit element of the Mordell-Weil group of
order 2, as predicted by [45] (see also [44]). Namely, when e0 = e4 = 0 the Weierstrass equation
(4) takes the form

(27) y2 = x3 +
(
− 1

3
e2

2 + e1e3

)
x+

(1

3
e1e2e3 −

2

27
e3

2

)
=

(
x+

1

3
e2

)(
x2 − 1

3
e2x−

2

9
e2

2 + e1e3

)
.

The factorization of the right side of the equation corresponds to a point of order two on each
elliptic fiber, and since this factorization is uniform over the base, the locus {x = − 1

3e2, y = 0}
defines a section which has order two in the Mordell-Weil group. Note that either on the locus
e1 = 0 or on the locus e3 = 0, the Weierstrass equation (27) takes the form

(28) y2 = x3 +
(
− 1

3
e2

2 + e1e3

)
x+

(1

3
e1e2e3 −

2

27
e3

2

)
=

(
x+

1

3
e2

)2(
x− 2

3
e2

)
,

showing that the A1 singularity of the singular fiber is located at {x = − 1
3e2, y = 0} in each

case, i.e., exactly at the section of order two. This implies that the Z2 quotient is nontrivial on
each SU(2), and thus that the global structure of the group must be (SU(2)×SU(2))/Z2 using
the diagonal Z2.

One additional complication that can arise in this picture is when −4K contains a divisor A
as an irreducible effective component. In this case, there may be an automatic vanishing of f, g
over A giving a nonabelian gauge group, such as in 6D for the non-Higgsable clusters of [46]. In
this case, this component must be subtracted out from −4K in computing the complementary
divisors on which the SU(2) factors reside, and some of the matter fields may transform under
the gauge group living on A as well as one of the SU(2) factors. We describe this mechanism
further in the 6D context in the following section.

The upshot of this analysis is that for any elliptically fibered Calabi-Yau manifold with a
nonzero rank Mordell-Weil group, a global section can be associated with a divisor class D = [e3]
to which the section can be moved as an A1 (or higher) Kodaira type singularity. In the language
of F-theory geometry (without considering effects such as G-flux relevant in four dimensions,
§4.2) this means that any U(1) gauge symmetry can be seen as arising from a broken nonabelian
symmetry. Furthermore, there is an intriguing structure in which for each such divisor class D
there is a complementary divisor class

(29) D′ = [e1] = −4K −D ,

that can (and in some cases must) also be tuned to support an A1 singularity, which may be
associated with a second independent section. In situations where −4K has a base locus over
which f, g have enforced vanishing associated with Kodaira singularities giving nontrivial gauge
groups, the base locus must also be subtracted out in (29). In the next section we give several
explicit examples of how this works in some 6D models.

3. 6D examples

The arguments given up to this point have been very general, and in principle apply to
elliptically fibered Calabi-Yau manifolds in all dimensions where a suitable Weierstrass model is
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available. In this section we consider some simple explicit examples of 6D F-theory models to
illustrate some of the general points. We begin by describing explicitly the way in which any
U(1) in 6D can be seen as arising from an SU(2) factor that has been Higgsed by turning on a
vacuum expectation value for an adjoint hypermultiplets. We then describe some general aspects
of models with bisections in this context, and conclude by explicitly analyzing various possible
ways in which the “unHiggsing” to SU(2) may encounter problems with singularities. While
such singularities do not arise in most cases, we identify one situation where such a singularity
arises, which can only be removed by blowing up the F-theory base manifold.

Before beginning, let us recall how the various moduli spaces of Weierstrass models are linked
together through transitions involving coupling to 6D superconformal field theories [47], some-
times called “tensionless string transitions” [48, 49]. As we tune the coefficients of a Weierstrass
model over a fixed base B2, various singularities are encountered that have explanations in terms
of nonabelian gauge symmetry or the massless matter spectrum. However, if a singular point P
is encountered at which f has multiplicity at least 4, and g has multiplicity at least 6, the model
has a superconformal field theory sector and another branch emerges in which a tensor multiplet
is activated [3, 50]. The other branch consists of Weierstrass models over the blowup BlP (B2)
of B2 at P , and the area of the exceptional curve of the blowup serves as the expectation value
of the scalar in the new tensor multiplet. We generally refer to such points as “(4, 6) points.”

Even more special is the case in which either (f, g) have multiplicities at least (8, 12) at a
point, or have multiplicities of at least (4, 6) along a curve. In this case, the total space of the
fibration is not Calabi-Yau, and in fact any resolution of the space in algebraic geometry has no
nonzero holomorphic 3-forms. It is known that the points in the moduli space of Weierstrass
models at which such singularities occur are boundary points of moduli at infinite distance from
the interior of the moduli space [51, 52].

3.1. U(1) from a Higgsed SU(2) in 6D. In six dimensions, we can demonstrate explicitly
that in most situations a U(1) can be enhanced to an SU(2) in a conventional F-theory model
on the same base (i.e., one not involving a superconformal theory or at infinite distance from the
interior of the moduli space) by considering general classes of acceptable U(1) model in which
tuning b2 → 0 in (5) need not introduce a (4, 6) point. We can also identify some situations
in which this tuning does necessarily lead to such a singularity. A forced (4, 6) point can in
principle occur in one of two ways: first, if [e3] contains a curve of negative self intersection
over which f, g are required to vanish to high degree, and second if [e3] has nonzero intersection
with another curve C or combination of curves A,B, . . . over which f, g vanish to high enough
degree to force a (4, 6) vanishing at an intersection point. We outline the general structure of
the analysis here, and describe some special cases in the later parts of this section.

First, let us consider the case where C is a curve in the class [e3], C is irreducible, and
[e1] = −4K − [e3] does not contain as irreducible components any curves of self-intersection
below −2. We consider the Weierstrass model of the form (5), and take the limit as b2 → 0,
which produces an SU(2) over C with matter in the adjoint representation. For the enhancement
to SU(2) with an adjoint or higher representation to occur on a curve C, the curve must have
genus g > 0. This follows from the general result [53] that every representation of SU(N) with
a Young diagram having more than one column makes a positive contribution to the genus of
the curve through the anomaly equations. It was shown in [46] that a curve of positive genus
cannot have negative self-intersection without forcing a (4, 6) vanishing all along the curve. So
C ·C ≥ 0 and f, g cannot be required to vanish on the irreducible curve for a generic Weierstrass
model over the given base. To see where there are enhanced singularities at points on C in the
SU(2) model, we can use the 6D anomaly cancellation conditions [54, 55, 56, 57, 58, 59]. For a
generic curve C in the class [e3], where SU(2) matter is only in A hypermultiplets that transform
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under the adjoint (symmetric) representation and x fundamental hypermultiplets, the anomaly
conditions read

K · C =
1

6
[4(1−A)− x](30)

C · C = −1

3
[8(1−A)− x/2] .(31)

Solving these equations gives

(32) A = g = 1 +
1

2
(K · C + C · C)

and

(33) x = 2C · (−4K − C) = 2[e3] · [e1] .

When e0 = a2/4 = 0 and there are SU(2) gauge factors supported on both e1 and e3, this shows
that all matter fields – and hence all enhanced singularities – arise at the intersection points
between these two curves. Note that this is the same conclusion about the matter spectrum that
we reached in §2.4 in a different way. Note also that the location of the singularities associated
with the matter charged under the SU(2) on C is the same whether or not we take the a → 0
limit, and that this matter corresponds to the extra charged matter fields found on the I2 locus
in §2.2.

Additional complications can arise if e1 or e3 are reducible, particularly when either or both
contain irreducible factors that carry nontrivial Kodaira singularities. In such cases, f, g will
vanish on the associated curve A, with an extra nonabelian gauge group factor, according to the
classification of non-Higgsable clusters in [46]. To show when a U(1) that arises in a Weierstrass
form (5) can be associated with a broken SU(2) in a conventional F-theory model without
changing the base, we need to prove that in these cases a (4, 6) point cannot be introduced by
taking the b→ 0 limit. There can also be more complicated singularities introduced if the curve
C is not a generic curve in the class [e3] and itself has singularities. There is not yet a complete
dictionary relating codimension two singularities of this type to matter representations, though
there has been some recent progress in this direction [60, 61, 62]. We do not consider such cases
here in any detail, though an example is discussed in §4.1; here we assume that the curve C is
taken to be generic in the class [e3], so the statement that a U(1) can be viewed as a Higgsing
of an SU(2) model should be understood as involving the Higgsing of an SU(2) model with a
generic C given [e3], with further tuning of C carried out as necessary to achieve the given U(1)
model of the form (5).

If [e3] intersects a curve A in [e1] that carries a nonabelian gauge group GA (again, assuming
A is a generic curve in its class), some of the matter charged under the SU(2) living on the curve
C will also be charged under GA. This must occur in such a way that setting b2 → 0 does not
increase the degree of vanishing of f, g on A, or the spectrum of fields charged under the U(1)
would not match the spectrum of fields charged under the SU(2) in the b→ 0 limit determined
as above by the anomaly conditions. Indeed, explicit analysis of the possibilities shows that such
an intersection can occur only when A is a −3 or −4 curve. In these cases, when [e3] · A 6= 0,
the degrees of vanishing of f, g on A are increased above the minimal Kodaira levels, and GA
carries an enhanced gauge group with charged matter that also carries charges under the U(1)
or SU(2) on C in a consistent fashion. When A is a −5 (or less) curve, there is a (4, 6) point
on A even in the U(1) model (5), so no such conventional U(1) theory can be constructed. We
consider some explicit examples of these cases in the subsequent sections and demonstrate the
unconventional presence of a superconformal theory explicitly for −5 curves in §3.6.



138 DAVID R. MORRISON AND WASHINGTON TAYLOR

In a similar fashion, we can analyze the special cases where e3 contains a curve D of negative
self-intersection as an irreducible component. Note that if d|e3 and also d|b, then we can move
the factor of d from e3 into e1 (with two factors of d extracted from b2 and moved into e0).
Thus, if [e3] contains [d] as a component, and b = −2K − L is such that [b]− [d] is effective, we
can tune b = db′ and the analysis becomes that of the previous case. So we need only consider
situations where e3 contains an irreducible component D that is not a component of b. It turns
out this is possible for curves of self-intersection −3,−4,−5, and −6; in each of these cases there
are configurations where e3 contains such curves as a component but b does not. When the
parameter b is tuned to vanish, the enhancement to SU(2) is combined with an enhancement
of the gauge group over D in a way that is consistent with anomaly cancellation and does not
introduce (4, 6) points. For curves of self-intersection −7 or below, the U(1) model already has
(4, 6) singularities, so there are no conventional models. We give some examples of these kinds
of configurations in the subsequent parts of this section.

Although a single curve of negative self-intersection contained in e3 does not lead to a prob-
lematic singularity, there are also situations where e3 contains a more complicated configuration
of intersecting negative self-intersection curves. In particular, there exist non-Higgsable clusters
identified in [46] that contain intersecting −3 and −2 curves. In such a situation, as we show
explicitly below, a (4, 6) point can arise at the intersection between these curves when a U(1)
is unHiggsed to SU(2) by taking the b → 0 limit. This is the one situation we have clearly
identified in which such a singularity can arise.

This argument shows that a U(1) gauge factor in a 6D F-theory model over any base can be
viewed as arising from an SU(2) gauge group supported on a corresponding effective irreducible
divisor class [e3], after Higgsing a matter hypermultiplet in the adjoint representation; in a wide
range of situations the unHiggsing results in a conventional F-theory model with reduced Mordell-
Weil rank, though in certain special cases the unHiggsing either gives rise to a model which is
coupled to a superconformal theory or is at infinite distance from the interior of moduli space.
This general framework gives strong restrictions on the ways in which U(1) factors can arise
in 6D F-theory models, and illuminates the structure of the Mordell-Weil group for elliptically
fibered Calabi-Yau threefolds over general bases.

3.2. 6D theories on P2 with two sections or a bisection. As a simple specific example
of a class of 6D theories that illustrate the general structure of models with bisection, two
sections (U(1)) and enhanced (SU(2) × SU(2))/Z2 gauge group, we consider the case of 6D
F-theory compactifications on the simplest base surface B2 = P2. Models of this type with U(1)
fields were considered from the point of view of supergravity and anomaly equations in [14],
and an explicit F-theory analysis and Calabi-Yau constructions were given in [16]. In this case,
−K = 3H, where H is the hyperplane (line) divisor with H ·H = 1. Tuning an I2 singularity
along a degree d curve C in P2 by adjusting the degrees of vanishing of f, g,∆ along C to
be 0, 0, 2, respectively, gives an F-theory model with gauge group SU(2). A generic curve of
degree d has genus g = (d − 1)(d − 2)/2, and the associated SU(2) gauge group has a matter
content consisting of g massless hypermultiplets in the adjoint representation and 24d − 2d2

multiplets in the fundamental representation (note that for SU(2), unlike SU(N) for N > 2,
the antisymmetric representation is trivial). By tuning higher order singularities in the curve C,
some of the adjoint matter fields can be transformed into higher-dimensional matter fields, with
a simple relation between the matter representations and contribution to the arithmetic genus
of C, as described in [53, 60].

To describe the class of Calabi-Yau threefolds on P2 associated with a Jacobian fibration with
a bisection, we consider Weierstrass equations of the form (4), where the classes of the ei are
given in (11–15). We parameterize the set of models of interest by [e3] = −3K−L = mH, where
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m corresponds to the degree of a curve in the class [e3]. For any m in the range 0 ≤ m ≤ 12
there is a class of Weierstrass models of the form (4) that give “good” F-theory models without
(4, 6) points (points which, if present, would involve coupling to superconformal field theories or
would violate the Calabi-Yau condition). The generic model in each of these classes corresponds
to a Jacobian fibration, and in the F-theory picture there is a discrete Z2 gauge group, with a
number of charged matter hypermultiplets. For 3 ≤ m ≤ 9, both [e0] and [e4] are effective; in
this range of models, there is a subset of models with e4 = b2/4 a perfect square, giving an extra
section contributing to the Mordell-Weil rank, which is associated in the F-theory picture with
a U(1) gauge factor, and there is also a (partially overlapping) subset of models with e0 = a2/4
with another U(1) factor. Either or both of these U(1) factors can be further enhanced to an
SU(2) by fixing b2 = 0 or a2 = 0. When both factors are enhanced (e0 = e4 = 0) the total
gauge group is (SU(2)× SU(2))/Z2. When m < 3 or m > 9 the story is similar but one of the
two SU(2) factors is automatically imposed by the non effectiveness of the divisor [e4] or [e0];
in these cases there is only one possible U(1) factor.

This class of models can be understood most easily in the F-theory picture starting from the
locus e0 = e4 = 0 where the gauge algebra is su2 ⊕ su2. In this case, the two su2 summands are
associated with 7-branes wrapped on divisorsD,D′ given by curves of degreesm and 12−m in the
classes [e3], [e1]. The spectrum of the theory consists ofm(12−m) bifundamental hypermultiplets
(associated with the intersection points of D,D′), and (m − 1)(m − 2)/2, (11 −m)(10 −m)/2
fields in the adjoint representation of each SU(2). The limiting cases m = 0, 12 correspond to
situations with only a single SU(2) factor and no fundamental hypermultiplets. In all cases,
an SU(2) on a curve of degree d ≥ 3 has adjoint hypermultiplets, of which one can be used
to Higgs the nonabelian gauge group to a U(1). Under this Higgsing, the remaining adjoints
become scalar fields of charge 2 under the resulting U(1), while fundamentals acquire a charge
of 1. When 3 ≤ m ≤ 9, such Higgsing to abelian factors is possible for both SU(2) factors;
for other values only one of the groups can be Higgsed. Once one or both of the nonabelian
factors are Higgsed to U(1) fields, a further breaking can be done by making e0 or e4 a generic
non-square. This corresponds to using the charge 2 fields to Higgs the U(1) to a discrete gauge
group Z2. Under this Higgsing, the charge 1 fields retain a charge under the discrete gauge
group. It is straightforward to check that the numbers of fields in each of these models satisfies
the gravitational anomaly cancellation condition H − V = 273 − 29T , and matches with the
results of [14, 16, 6] for the various component theories.

In particular, note that form = 3 the SU(2) gauge group on D = [e3] only has a single adjoint
field, so after breaking to U(1) there are only charge 1 hypermultiplets. Thus, in this case there
is no way of breaking to a model with a bisection and residual discrete gauge group. Note also
that by tuning a non-generic singularity on the curve C carrying an SU(2) factor, it should
be possible to construct higher dimensional representations of SU(2), which will correspond to
larger charges Q ≥ 3 after breaking to U(1), and which can give rise to higher order discrete
gauge groups ZQ. We return to this issue in §4.1. In Table 1, we provide an explicit list of
the charges that arise for the SU(2) and U(1) factors in the various relevant components of the
Weierstrass moduli space S2,J 2

3.3. 6D theories on F0 = P1×P1. A similar structure will hold on any base B2 that supports
an elliptically fibered Calabi-Yau threefold; a classification of such bases was given in [46], and
a complete list of toric bases was given in [65]. As another example we consider the Hirzebruch
surface F0 = P1 × P1.

For F0, a basis of h1,1 is given by S, F with S ·S = F ·F = 0, S ·F = 1. A divisor D = aS+bF
is effective if a, b ≥ 0, and the anticanonical class is −K = 2S+ 2F . The genus of a curve in the
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m na nf n2 n1

1 0 22 – –
2 0 40 – –
3 1 54 0 108
4 3 64 4 128
5 6 70 10 140
6 10 72 18 144
7 15 70 28 140
8 21 64 40 128
9 28 54 54 108
10 36 40 70 80
11 45 22 88 44
12 55 0 108 0

Table 1. Table of SU(2) charges in adjoint and fundamental, and U(1) charges in associated
theory, when e3 describes a curve of degree m in P2. Note that SU(2) and U(1) charges match
with Higgsing description (n2 = 2(na − 1), n1 = 2nf) as well as with charges computed in
[14, 16]. Note also that n1 matches for m, 12−m, in agreement with the general picture that
all charged matter lies on intersection points of [e1], [e3] for the (SU(2)× SU(2))/Z2 theory.

class C = aS + bF can be computed as

(34) (K + C) · C = 2g − 2 = 2(ab− a− b) .

The genus is nonzero iff 2 ≤ a, b.
The range of possible models (4) with a bisection is thus given by [e3] = aS + bF with

0 ≤ a, b ≤ 8. The values of a, b for which the curves [e3], [e1] both have nonzero genus and
associated SU(2)s can be broken is 2 ≤ a, b ≤ 6. Within this range we have the full set
of possible enhancements of a model of type (4); there is a model with (SU(2) × SU(2))/Z2

symmetry, where either or both SU(2)’s can be broken to U(1) or further to the discrete Z2

symmetry. Again, counting charged multiplets confirms that anomaly cancellation in both the
nonabelian and abelian theories matches with the Higgsing process. The spectrum of charged
matter fields for an SU(2) tuned on a divisor aS+ bF consists of g = ab− a− b+ 1 adjoints and
16(a+ b)− 4ab fundamentals. As in the P2 case, the number of fundamental fields is symmetric
under a ↔ 8− a, b ↔ 8− b (e1 ↔ e3), corresponding to the fact that all charged matter in the
overall (SU(2)×SU(2))/Z2 theory is contained in the adjoints and 8(a+ b)−2ab bifundamental
fields.

3.4. 6D theories on F3. Some interesting points are illuminated by examples on the Hirzebruch
surface F3. Here we have a basis of curves S, F with S · S = −3, S · F = 1, F · F = 0. The
canonical class is −K = 2S+5F , and there is an automatic vanishing of f, g,∆ to degrees 2, 2, 4
giving an SU(3) gauge group supported on the divisor S in a generic elliptic fibration.

The simplest irreducible curve e3 that can give rise to a U(1) factor is C = 2S̃ = 2S + 6F ,
since e4 must be effective; a generic curve in this class C is irreducible and has genus 2. Choosing

(35) [e3] = 2S + 6F, ⇒ [e1] = 6S + 14F .

We note that [e1] · S = −4, so [e1] contains S as an irreducible component with multiplicity at
least 2. There is an SU(3) over S, but this does not cause any problems since S · [e3] = 0 so
there is no matter charged under the SU(3) that interacts with the SU(2) supported on C or
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the corresponding U(1) when e4 = b2/4 6= 0 or discrete group Z/2 when e4 is non-square. So
this case works like the others above, with [e1] · [e3] = 28 bifundamental matter fields.

The next case of interest is

(36) [e3] = 2S + 7F, ⇒ [e1] = 6S + 13F .

In this case the curve C defined by the vanishing locus of e3 is generically a smooth irreducible
curve of genus 3. In this case, C ·S = 1, so there is matter charged under the gauge group lying
over S. To analyze this explicitly, we see that [e0] = 8S + 16F, [e1] = 6S + 13F, [e2] = 4S + 10F
contain the irreducible component S with multiplicities 3, 2, and 1 respectively. From (5), (26),
this shows that f, g,∆ vanish to degrees 2, 3, 6 at generic points over S, and to degrees 2, 3, 8 at
points of intersection [e3] · S. As discussed in §3.1, in this situation the gauge group over the
−3 curve has an algebra that is larger than the minimal su3 for a generic model over F3. The
configuration in this case is similar to the (−3,−2) non-Higgsable cluster [46], in which a −3
curve carries a g2 algebra, and there are matter fields charged under both this algebra and an
su2 on a curve that intersects the −3 curve.

We can also analyze the case where C = −K = 2S + 5F , where C is reducible and contains
S as a component in a similar fashion, which also gives a (2, 3, 6) vanishing on S, with a similar
interpretation

3.5. F4. The analysis in the case of a −4 curve in F4 is similar to F3. The curve S has S ·S = −4.
For the minimal irreducible case [e3] = 2S + 8F , there is an SU(2) with adjoint matter that
does not intersect S. For [e3] = 2S + 9F , we have

[e2] = 4S + 12F = S +X
(2)
eff(37)

[e1] = 6S + 16F = 2S +X
(1)
eff(38)

[e0] = 8S + 20F = 3S +X
(0)
eff(39)

where X(a)
eff are effective divisors that contain no further components of S. We can read off the

order of vanishing of f, g,∆ from (5) and (26) as (2, 3, 6) on S, enhanced to (2, 3, 8) on [e3] ·S, so
again we have hypermultiplets charged under the gauge group on S as well as the SU(2) on [e3].
For curves such as [e3] = −K = 2S + 6F, where [e3] contains S as an irreducible component, a
similar analysis holds.

3.6. F5 and −5 curves. Now let us consider a −5 curve, beginning with the case of F5. As in
the previous cases, for [e3] = 2S + 10F , there is no intersection with S and the SU(2) story is
as above. For the next interesting case, however, we have

[e3] = 2S + 11F(40)

[e2] = 4S + 14F = 2S +X
(2)
eff(41)

[e1] = 6S + 17F = 3S +X
(1)
eff(42)

[e0] = 8S + 21F = 4S +X
(0)
eff .(43)

Now, analyzing (5) and (26) we find vanishing orders of f, g,∆ on S of (3, 4, 9), enhanced to
(4, 6, 12) on S · [e3], even when b2 6= 0. Thus, there cannot be a U(1) model based on (5) using
e3 = 2S + 11F (unless the intersection point is blown up, giving a model on a different base).

More generally, we can show that a U(1) based on an extra section can never be constructed
on any curve [e3] = C if C · A > 0 for some curve A of self-intersection −5 or less. The
argument basically follows exactly the same steps as above. In general, as described in [46],
from [e2] = −2K it follows that e2 vanishes to degree 2 on A just as in the F5 case. We have
−4K ·A = −12 and [e3] ·A > 0, so [e1] ·A = (−4K − [e3]) ·A < −12 and e1 vanishes to degree 3
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on A. From [e3] ·A > 0, it follows that L ·A ≤ −10, so [e0] ·A ≤ −20, and e0 vanishes to order
4 on S. Thus, no U(1) can be built using (5) on any curve e3 that has positive intersection with
a curve A of self-intersection −5. The condition on each term is stronger as the self-intersection
decreases further, so the same result holds for any curve of self-intersection < −5.

Now, let us consider the case that e3 itself has a −5 curve D as a component. For this to
happen we must have [e3] · D < 0, but as argued in §3.1 we should also have [e4] · D ≥ 0, or
we could move the associated factor out of e3 and into e1. This can lead to a conventional
model when [e3] · D = −2 or −3. In these cases, e0, e1, e2, e3 vanish to degrees 3, 2, 2, 1 on
D, and f, g vanish to degrees 3, 4. In the limit b2 → 0, f, g vanish to degrees 3, 5 and the
symmetry is enhanced to e7. Note that when [e3] ·D = −1, e0, e1 vanish to degrees 4, 3 on D,
giving multiplicities (4, 5) along D that are enhanced to (4, 6) at points of intersection with the
remainder of e3, so such models are not conventional even before unHiggsing.

As an example of a conventional model of this type, consider on F5 the U(1) model given by
(5) with

[e3] = 2S + 8F = S +X
(3)
eff(44)

[e2] = 4S + 14F = 2S +X
(2)
eff(45)

[e1] = 6S + 20F = 2S +X
(1)
eff(46)

[e0] = 8S + 26F = 3S +X
(0)
eff .(47)

As discussed above, this gives (3, 4) vanishing on the −5 curve S in the U(1) model, enhanced
to (3, 5) at points of intersection with e1. When b → 0, the group is enhanced to (3, 5) on the
whole curve S, with further enhancement to (4, 5) at points of intersection with e3.

3.7. −6 curves. The situation for −6 curves is very similar to that for −5 curves. There is
a coupled superconformal theory if [e3] has positive intersection with a −6 curve, but [e3] can
contain a −6 curve D as a component if [e3] ·D = −4, in which case e0, e1, e2, e3 vanish to orders
3, 2, 2, 1 on D and the story is similar to the above. In this case, however, e1 does not intersect
D, so there are no points where this intersection increases the degree of the singularity.

3.8. −7 curves. There are no conventional U(1) configurations of the form (5) where e3 either
intersects or contains a curve D of self-intersection −7 or below. The closest to an acceptable
configuration is when [e3] · D = −5, in which case e0, e1, e2, e3 vanish to orders 3, 3, 2, 1 on D.
This leads to a (3, 5) vanishing of (f, g) on D, which is however enhanced to a (4, 6) vanishing
at the point where [e0] − [D] intersects D (of which there is at least one since [e0] ·D = −20).
Any other combination of intersections leads to a similar singularity. A similar problem arises
for curves of self-intersection −8 or below.

3.9. The −3,−2 non-Higgsable cluster. Finally, we consider the case where e3 contains both
a −3 curve A and a −2 curve B that intersects A transversely (A ·B = 1). In this case we find
that, at least for some choice of L, a (4, 6) point is forced at the intersection point between A
and B. In particular, we choose L = −2K, so that [en] = (n − 4)K. From the analysis in [46],
we know that a section of −4K must vanish on A,B to degrees 2, 1 respectively, so

(48) [e0] = 2A+B +X
(0)
eff .
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It follows that each of the en must contain both A and B as irreducible components at least
once, for n < 4,

[e1] = A+B +X
(1)
eff(49)

[e2] = A+B +X
(2)
eff(50)

[e3] = A+B +X
(3)
eff(51)

[b] = X
(4)
eff .(52)

Now, consider the degrees of vanishing of the various terms in (5). While for b 6= 0, there are
terms in f and g that only vanish to degrees (3, 5) at the intersection of A and B (namely those
proportional to e0b

2, e0e2b
2), when we take b→ 0, all the remaining non-vanishing terms are of

degrees at least (4, 6) at the intersection point.
This means that in such a situation, while there can exist a 6D F-theory model with a U(1)

gauge symmetry associated with a nontrivial Mordell-Weil rank, and the Weierstrass coefficients
can be tuned to naively produce a nonabelian SU(2) structure, the resulting model might have an
isolated (4, 6) point and hence be coupled to a superconformal theory,10 or in other situations [64]
might have (4, 6) singularities all along one or more curves after unHiggsing11, which indicates
that these models are at infinite distance from the interior of the moduli space. There are many
known examples of base surfaces that contain −3,−2 non-Higgsable clusters; a variety of such
examples were constructed in [65, 71]. It would be interesting to analyze in detail the structure
of U(1) symmetries that could be tuned over some of these bases.

4. Implications for 6D and 4D F-theory models

4.1. F-theory and supergravity in six dimensions. Six dimensions provides a rich but
tractable context in which to study general aspects of string vacua and quantum supergravity
theories. In six dimensions, F-theory seems to provide constructions for essentially all known
string vacua, and the space of F-theory vacua matches closely with the set of potentially consis-
tent quantum supergravity theories [66, 67, 68, 69, 59]. The class of 6D F-theory constructions
based on Weierstrass models of elliptically fibered Calabi-Yau threefolds with section form a
single moduli space of smooth components associated with different bases B2 that are connected
through tensionless string transitions [49, 3]; recent work has made progress in providing a
global picture of this connected moduli space [59, 46, 70]. The results of [6] raised a question of
whether genus-one fibrations without section might constitute a class of F-theory models that
were disconnected from the rest of the F-theory moduli space. The picture outlined in this note
makes it clear that in fact the Jacobian fibrations for threefolds without section fit neatly into
the connected moduli space of Weierstrass models. Furthermore, this picture sheds light on how
U(1) gauge fields in 6D F-theory models may be understood in the context of the full moduli
space of models.

In [6, 20, 21, 23], a systematic description was given of the general form for Weierstrass models
containing one, two, and three U(1) fields. It is known that 6D models can be constructed with
up to eight or more U(1) fields; for example, as described in [60] there are F-theory constructions
on P2 with an SU(9) tuned on a curve of genus one that contain an adjoint representation the
breaking of which gives gauge factors U(1)8, and in [71] a class of C∗-bases B2 were found with
varying automatic ranks for the Mordell-Weil group for generic elliptic fibrations; the resulting
threefolds are closely related to the Schoen manifold [64]. One such base in particular is a

10We would like to thank Jim Halverson for discussions on this point. Analogous curves in 4D F-theory models
are identified and classified in [63].

11We would like to thank D. Park for discussions on this point.
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generalized del Pezzo nine over which the generic elliptic fibration has a rank 8 Mordell-Weil
group, corresponding to gauge factors U(1)8. In [14], it was shown from 6D anomaly cancellation
arguments that for a pure abelian theory in 6D with no tensor multiplets (corresponding to an
F-theory model on P2) the number of U(1) fields is bounded above by r ≤ 17. The approach
taken in this paper shows that for a single U(1) factor, it is often possible to tune the model so
that the U(1) can be seen as arising from an SU(2) or larger nonabelian factor that is Higgsed by
VEVs for an adjoint field in a conventional F-theory model. It would be interesting to investigate
the possible apparent exceptions to this construction, such as the ones we encountered with base
contains a−3,−2 cluster, where the F-theory model becomes coupled to a superconformal theory.
While in general the construction of higher rank Mordell-Weil models seems very challenging
due to the global nature of the sections, it would be very interesting to explore when higher
rank abelian models can arise from Higgsed nonabelian gauge symmetries. This would provide
a powerful tool for the construction of general models with abelian gauge symmetries, since a
systematic analysis of the nonabelian sector is much more straightforward, both in F-theory and
6D supergravity. It would also be interesting to explore in more detail the way in which the
basic SU(2) → U(1) → Z2 Higgsing pattern interacts with other nonabelian gauge symmetries
which may be present in a given model.

The existence of an underlying SU(2) for many U(1) gauge factors also greatly clarifies the set
of possible spectra. The spectrum of SU(2) theories is quite constrained by anomaly cancellation
[53], which in turn places strong constraints on the spectrum of possible charges for abelian
factors in the 6D supergravity gauge group. When an SU(2) factor is tuned on a curve of genus
g over a general base B2 generically the model will include g symmetric (adjoint) representations
and some number of fundamentals. After breaking to a U(1), this gives charges 1 and 2, so these
are the only charges expected in generic models. For specially tuned singular curves, however,
higher representations of SU(2) are possible.

For example, following the lines of [60], we expect that an SU(2) on a quintic curve on
P 2 can carry a 3-symmetric (4-dimensional) representation when the curve is tuned to have a
triple point of self-intersection. Group theoretically, this should correspond to an embedding of
su2 ⊕ su2 ⊕ su2 in an e7 singularity associated with the triple intersection point. After breaking
the SU(2) to U(1) by an adjoint VEV, this would give rise to a massless scalar hypermultiplet
of charge ±3 under the U(1). By the mechanism discussed in this paper, such fields could then
be used to break the U(1) to a discrete Z3 gauge symmetry, associated again with a Weierstrass
model associated with the Jacobian of an elliptic fibration with a multisection. Exploring the
range of possibilities of this type that may be possible for general representations of SU(2) and
higher rank nonabelian groups on arbitrary curves on general F-theory bases B2 promises to
provide a rich and interesting range of phenomena. The analysis here shows that there are
strong constraints on the charge spectrum for U(1) fields in many 6D F-theory models. These
constraints are stronger than those imposed simply by 6D anomaly cancellation. In the spirit of
[66], it would be interesting to understand if some of the F-theory constraints on charge structure
could be seen as consistency conditions for the low-energy 6D supergravity theories with abelian
gauge factors.

4.2. Four dimensions. At the level of geometry, the framework developed in this paper should
be valid for Calabi-Yau manifolds of any dimension. It has not been shown, however, that all
genus-one fibered Calabi-Yau (n + 1)-folds Xn+1 that lack a global section have an associated
Jacobian fibration Jn+1 whose total space is Calabi-Yau when n ≥ 3, so it is possible in principle
that the analysis described here can only be applied in a subset of cases where there is a Jacobian
fibration available. If so, the application to four-dimensional F-theory constructions would only
be relevant in those cases. When a Jacobian fibration is available, however, the analysis of §2
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should hold: the Jacobian fibrations of all Calabi-Yau fourfolds with a genus-one fibration but
no global section should fit into the moduli space of Weierstrass models over complex threefold
bases B3, with an explicit description of the form (4) when the Jacobian fibration has a bisection.
When the section e4 = b2/4 is a perfect square, the bisection becomes a pair of global sections
and the Mordell-Weil rank increases by one. When b → 0, the extra section transforms into
a vertical A1 Kodaira type singularity without changing the total Hodge number h1,1(X4). In
many situations, the physics interpretation of this geometry through F-theory will be the same
as in 6 dimensions: the bisection geometry will be associated with a discrete Z2 gauge symmetry
that arises from a broken U(1) gauge field, which in turn can be viewed as coming from an
SU(2) gauge group broken by an adjoint VEV. Wrapping the 4D theory on a circle will give
distinct vacua, again associated with the Tate-Shafarevich group and in the M-theory picture
with a discrete choice of Calabi-Yau fourfold with a genus-one fibration but no section.

We also expect a similar story to hold for higher degree multisections and elliptic fibrations
with higher rank Mordell-Weil group. In four dimensions, however, there is additional structure
beyond the geometry that can modify this story. In particular, G-flux, associated with 4-form flux
of the antisymmetric 3-form potential in the dual M-theory picture, produces a superpotential
that gives masses to many of the scalar moduli of the Calabi-Yau geometry. This mechanism can
modify the gauge group and matter spectrum of the theory from that described purely by the
geometry. At this point a complete understanding of the role of G-flux in F-theory is still lacking,
despite some recent progress in this direction [72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 42]. We leave
the analysis of how the results in this note are affected by G-flux and the 4D superpotential to
further work. The implications of the generic appearance of an SU(2) (or larger) nonabelian
enhancement for most U(1) vector fields are, however, a question of obvious phenomenological
interest.

Acknowledgements: We would like to thank Lara Anderson, Volker Braun, Antonella
Grassi, Jim Halverson, and Daniel Park for helpful discussions. We also thank the organizers
and participants of the AMS special session on “Singularities and Physics,” Knoxville, Tennessee,
March 2014, during which much of this work was carried out. This research was supported by
the DOE under contract #DE-FC02-94ER40818, and by the National Science Foundation under
grant PHY-1307513.

Appendix A. Solving the equations determining I2 fibers

In this appendix, we will explain how to solve the equations (18), (19) which determine the
location of the codimension two I2 fibers by finding the conditions for the quartic equation to
be a square, as in (17). The first observation is that when the coefficient functions e0, e1, . . . e4

are generic, none of them will vanish at any of the solutions to (17).
In the case of e4, if e4 vanishes at a solution then u = 0 is one of the double roots so e3 must

also vanish. For the remaining root to be double, we also need e2
1 = 4e0e2 to vanish, but now

we have three conditions on the base and the solutions are in codimension two. The case of e0

is similar: if it vanishes, then e1 and e2
3 − e2e4 would both also have to vanish.

In the case of e3 vanishing, β would need to vanish and then the equation would take the
form e4((e2/2e4)u2 + v2)2. Again we get three condtions: e3 = 0, e1 = 0, and e2

2 = 4e0e4 which
is of too large a codimension to be generic. The case of e1 is similar.

Finally, in the case of e2 vanishing, we have an equation of the form

e4(−(e2
3/8e

2
4)u2 + (e3/2e4)uv + v2)2,

and this implies the additional conditions e3
3 = −8e2

4e1 and e4
3 = 64e3

4e0. Once again we have
three conditions and this is not possible.
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Now we turn to the solution of (18), (19). As in §2.2, the first step is to introduce an auxiliary
variable p, and to express the solutions as the common zeros of two auxiliary polynomials

Φ1 := p4 − 8e2e4p
2 + 16e2

2e
2
4 − 64e0e

3
4(53)

Φ2 := p3 − 4e2e4p+ 8e1e
2
4(54)

(together with the equation e3 = p). From this, we can form additional polynomials which must
vanish on the solution, roughly following the Gröbner basis algorithm (but allowing division by
e1, e2 or e4, which are known not to vanish on solutions). This gives the following sequence of
polynomials:

Φ3 := (−Φ1 + pΦ2)/4e4 = e2p
2 + 2e1e4p− 4e2

2e4 + 16e0e
2
4(55)

Φ4 := (−e2Φ2 + pΦ3)/2e4 = e1p
2 + 8e0e4p− 4e1e2e4(56)

Φ5 := (e1Φ3 − e2Φ4)/2e4 = (e2
1 − 4e0e2)p+ 8e0e1e4(57)

Φ6 := ((4e0e2 − e2
1)Φ4 + pe1Φ5)/4e2e4 = 8e2

0p− e1(4e0e2 − e2
1)(58)

Φ7 := (8e2
0Φ5 + (4e0e2 − e2

1)Φ6)/e1 = 64e3
0e4 − (4e0e2 − e2

1)2 .(59)

The variable p has been eliminated from Φ7, so the equation Φ7 = 0 gives the condition for a p
to exist (this is (22)). The equation Φ5 = 0 can then be solved for p; this gives (23).
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