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INTERSECTION SPACES, EQUIVARIANT MOORE APPROXIMATION

AND THE SIGNATURE

MARKUS BANAGL AND BRYCE CHRIESTENSON

Abstract. We generalize the first author’s construction of intersection spaces to the case
of stratified pseudomanifolds of stratification depth 1 with twisted link bundles, assuming

that each link possesses an equivariant Moore approximation for a suitable choice of structure

group. As a by-product, we find new characteristic classes for fiber bundles admitting such
approximations. For trivial bundles and flat bundles whose base has finite fundamental group

these classes vanish. For oriented closed pseudomanifolds, we prove that the reduced rational
cohomology of the intersection spaces satisfies global Poincaré duality across complementary

perversities if the characteristic classes vanish. The signature of the intersection spaces agrees

with the Novikov signature of the top stratum. As an application, these methods yield new
results about the Goresky-MacPherson intersection homology signature of pseudomanifolds.

We discuss several nontrivial examples, such as the case of flat bundles and symplectic toric

manifolds.

1. Introduction

Classical approaches to Poincaré duality on singular spaces are Cheeger’s L2 cohomology
with respect to suitable conical metrics on the regular part of the space ([16], [15], [17]), and
Goresky-MacPherson’s intersection homology [22], [23], depending on a perversity parameter p̄.
More recently, the first author has introduced and investigated a different, spatial perspective on
Poincaré duality for singular spaces ([3]). This approach associates to certain classes of singular
spaces X a cell complex IpX, which depends on a perversity p̄ and is called an intersection space
of X. Intersection spaces are required to be generalized rational geometric Poincaré complexes
in the sense that when X is a closed oriented pseudomanifold, there is a Poincaré duality isomor-

phism H̃i(IpX;Q) ∼= H̃n−i(I
qX;Q), where n is the dimension of X, p̄ and q̄ are complementary

perversities in the sense of intersection homology theory, and H̃∗, H̃∗ denote reduced singular
(or cellular) cohomology and homology.

The resulting homology and cohomology theories

HI p̄∗ (X) = H∗(I
pX;Q) and HI∗p̄ (X) = H∗(IpX;Q)

are not isomorphic to intersection (co)homology I p̄H∗(X;Q), Ip̄H
∗(X;Q). Since its inception,

the theory HI∗p̄ has so far had applications in areas ranging from fiber bundle theory and com-
putation of equivariant cohomology ([4]), K-theory ([3, Chapter 2.8], [37]), algebraic geometry
(smooth deformation of singular varieties ([10], [11]), perverse sheaves [8], mirror symmetry
[3, Chapter 3.8]), to theoretical Physics ([3, Chapter 3], [8]). For example, the approach of in-
tersection spaces makes it straightforward to define intersection K-groups by K∗(IpX). These
techniques are not accessible to classical intersection cohomology. There are applications to
L2-theory as well: In [9], for every perversity p̄ a Hodge theoretic description of the theory
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H̃I∗p̄ (X;R) is found; that is, a Riemannian metric on the top stratum (which is in fact a fiber-
wise scattering metric and thus very different from Cheeger’s class of metrics) and a suitable
space of L2 harmonic forms with respect to this metric (the extended weighted L2 harmonic forms

for suitable weights) which is isomorphic to H̃I∗p̄ (X;R). A de Rham description of HI∗p̄ (X;R)
has been given in [5] for two-strata spaces whose link bundle is flat with respect to the isometry
group of the link.

At present, intersection spaces have been constructed for isolated singularities and for spaces
with stratification depth 1 whose link bundles are a global product, [3]. Constructions of IpX
in some depth 2 situations have been provided in [7]. The fundamental idea in all of these
constructions is to replace singularity links by their Moore approximations, a concept from
homotopy theory Eckmann-Hilton dual to the concept of Postnikov approximations. In the
present paper, we undertake a systematic treatment of twisted link bundles. Our method is
to employ equivariant Moore approximations of links with respect to the action of a suitable
structure group for the link bundle.

Equivariant Moore approximations are introduced in Section 3. On the one hand, the exis-
tence of such approximations is obstructed and we give a discussion of some obstructions. For
instance, if Sn−1 is the fiber sphere of a linear oriented sphere bundle, then the structure group
can be reduced so as to allow for an equivariant Moore approximation to Sn−1 of degree k,
0 < k < n, if and only if the Euler class of the sphere bundle vanishes (Proposition 12.1).
If the action of a group G on a space X allows for a G-equivariant map X → G, then the
existence of a G-equivariant Moore approximation to X of positive degree k implies that the
rational homological dimension of G is at most k − 1. On the other hand, we present geomet-
ric situations where equivariant Moore approximations exist. If the group acts trivially on a
simply connected CW complex X, then a Moore approximation of X exists. If the group acts
cellularly and the cellular boundary operator in degree k vanishes or is injective, then X has an
equivariant Moore approximation. Furthermore, equivariant Moore approximations exist often
for the effective Hamiltonian torus action of a symplectic toric manifold. For instance, we prove
(Proposition 12.3) that 4-dimensional symplectic toric manifolds always possess T 2-equivariant
Moore approximations of any degree.

In Section 6, we use equivariant Moore approximations to construct fiberwise homology trun-
cation and cotruncation. Throughout, we use homotopy pushouts and review their properties
(universal mapping property, Mayer-Vietoris sequence) in Section 2. Proposition 6.5 relates the
homology of fiberwise (co)truncations to the intersection homology of the cone bundle of the
given bundle. Of fundamental importance for the later developments is Lemma 6.6, which shows
how the homology of the total space of a bundle is built up from the homology of the fiberwise
truncation and cotruncation. In order to prove these facts, we employ a notion of precosheaves
together with an associated local to global technique explained in Section 4. Proposition 6.7
establishes Poincaré duality between fiberwise truncations and complementary fiberwise cotrun-
cations.

At this point, we discover a new set of characteristic classes

Oi(π, k, l) ⊂ Hd(E;Q), d = dimE, i = 0, 1, 2, . . . ,

defined for fiber bundles π : E → B which possess degree k, l fiberwise truncations (Definition
6.8). We show that these characteristic classes vanish if the bundle is a global product (Propo-
sition 6.11). Furthermore, they vanish for flat bundles if the fundamental group of the base is
finite (Theorem 7.1). On the other hand, we construct in Example 6.13 a bundle π for which
O2(π, 2, 1) does not vanish. The example shows also that the characteristic classes O∗ seem to
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be rather subtle, since the bundle of the example is such that all the differentials of its Serre
spectral sequence do vanish.

Now the relevance of these characteristic classes vis-à-vis Poincaré duality is the following:
While, as mentioned above, there is always a Poincaré duality isomorphism between truncation
and complementary cotruncation, this isomorphism is not determined uniquely and may not
commute with Poincaré duality on the given total space E. Proposition 6.9 states that the
duality isomorphism in degree r between fiberwise truncation and cotruncation can be chosen to
commute with Poincaré duality on E if and only if Or(π, k, l) vanishes. In this case, the duality
isomorphism is uniquely determined by the commutation requirement. Thus, we refer to the
classes O∗ as local duality obstructions, since in the subsequent application to singular spaces,
these classes are localized at the singularities.

The above bundle-theoretic analysis is then applied in Section 9 in constructing intersection
spaces IpX for stratified pseudomanifolds X of stratification depth 1 such that every connected
component of every singular stratum has a closed neighborhood whose boundary is the total
space of a fiber bundle, the link bundle, while the neighborhood itself is described by the cor-
responding cone bundle. A large and well-studied class of stratified spaces that have such link
bundle structures are the Thom-Mather stratified spaces, which we review in Section 8 with par-
ticular emphasis on depth 1. We assume that the link bundles allow for structure groups with
equivariant Moore approximations. The central definition is 9.1; the main result here, Theorem
9.5, establishes generalized Poincaré duality

(1.1) H̃r(IpX;Q) ∼= H̃n−r(I
qX;Q)

for complementary perversity intersection spaces, provided the local duality obstructions of the
link bundle vanish.

In the Sections 10, 11, we investigate the signature and Witt element of intersection forms.
We show first that if a Witt space allows for middle-degree equivariant Moore approximation,
then its intersection form on intersection homology agrees with the intersection form of the top
stratum as an element in the Witt group W (Q) of the rationals (Corollary 10.2). Section 11
shows that the duality isomorphism (1.1), where we now use the (lower) middle perversity, can
in fact be constructed so that the associated middle-degree intersection form is symmetric when
the dimension n is a multiple of 4. Let σ(IX) denote the signature of this symmetric form.
Theorem 11.3 asserts that σ(IX) = σ(M,∂M), where σ(M,∂M) denotes the signature of the
top stratum. In particular then, σ(IX) agrees with the intersection homology signature. For the
rather involved proof of this theorem, we build on the method of Spiegel [37], which in turn is
partially based on the methods introduced in the proof of [3, Theorem 2.28]. It follows from all
of this that there are interesting global signature obstructions to fiberwise homology truncation
in bundles. For instance, viewing the complex projective space CP2 as a stratified space with
bottom stratum CP1 ⊂ CP2, the signature of CP2 is 1, whereas the signature of the top stratum
D4 vanishes. Indeed, the normal circle bundle of CP1, i.e. the Hopf bundle, does not have a
degree 1 fiberwise homology truncation, as can of course be verified directly.

On notation: Throughout this paper, all homology and cohomology groups are taken with

rational coefficients. Reduced homology and cohomology will be denoted by H̃∗ and H̃∗. The
linear dual of a K-vector space V is denoted by V † = Hom(V,K).

2. Properties of Homotopy Pushouts

This paper uses homotopy pushouts in many constructions. We recall here their definition,
as well as the two properties we will need: their universal mapping property and the associated
Mayer-Vietoris sequence.
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Definition 2.1. Given continuous maps Y1 X
f1oo f2 // Y2 between topological spaces we

define the homotopy pushout of f1 and f2 to be the topological space Y1 ∪X Y2, the quotient of
the disjoint union X × [0, 1] t Y1 t Y2 by the smallest equivalence relation generated by

{(x, 0) ∼ f1 (x) | x ∈ X} ∪ {(x, 1) ∼ f2 (x) | x ∈ X}

We denote ξi : Yi → Y1 ∪X Y2, for i = 1, 2, and ξ0 : X × I → Y1 ∪X Y2, to be the inclusions into
the disjoint union followed by the quotient map, where I = [0, 1].

Remark 2.2. The homotopy pushout satisfies the following universal mapping property: Given
any topological space Z, continuous maps gi : Yi → Z, and homotopy h : X × I → Z satisfying
h (x, i) = gi+1 ◦ fi+1 (x) for x ∈ X, and i = 0, 1, then there exists a unique continuous map
g : Y1 ∪X Y2 → Z such that gi = g ◦ ξi for i = 1, 2, and h = g ◦ ξ0.

From the data of a homotopy pushout we get a long exact sequence of homology groups

(2.1) · · · // Hr (X)
(f1∗,f2∗)// Hr (Y1)⊕Hr (Y2)

ξ1∗−ξ2∗// Hr (Y1 ∪X Y2)
δ // · · ·

This is the usual Mayer-Vietoris sequence applied to Y1 ∪X Y2 when it is decomposed into the
union of (Y1 ∪X Y2) \ Yi for i = 1, 2, whose overlap is X crossed with the open interval. If X is
not empty, then there is also a version for reduced homology:

(2.2) · · · // H̃r (X)
(f1∗,f2∗)// H̃r (Y1)⊕ H̃r (Y2)

ξ1∗−ξ2∗// H̃r (Y1 ∪X Y2)
δ // · · ·

3. Equivariant Moore Approximation

Our method to construct intersection spaces for twisted link bundles rests on the concept of
an equivariant Moore approximation. The transformation group of the general abstract concept
will eventually be a suitable reduction of the structure group of a fiber bundle, which will enable
fiberwise truncation and cotruncation. The basic idea behind degree-k Moore approximations
of a space X is to find a space X<k, whose homology agrees with that of X below degree k,
and vanishes in all other degrees. It is well-known that Moore-approximations cannot be made
functorial on the category of all topological spaces and continuous maps, as explained in [3].
The equivariant Moore space problem was raised in 1960 by Steenrod, who asked whether given
a group G, a right Z[G]-module M and an integer k > 1, there exists a topological space X

such that π1(X) = G, Hi(X̃;Z) = 0, i 6= 0, k, H0(X̃;Z) = Z, and Hk(X̃;Z) = M, where X̃
is the universal cover of X, equipped with the G-action by covering translations. The first
counterexample was due to Gunnar Carlsson, [14]. Further work on Steenrod’s problem has
been done by Douglas Anderson [1], James Arnold [2], Peter Kahn [26], [27], Frank Quinn [34],
and Justin Smith [36].

Definition 3.1. Let G be a topological group. A G-space is a pair (X, ρX), where X is a
topological space and ρX : G→ Homeo (X) is a continuous group homomorphism. A morphism
between G-spaces f : (X, ρX)→ (Y, ρY ) is a continuous map f : X → Y that satisfies

ρY (g) ◦ f = f ◦ ρX(g), for every g ∈ G.

We denote the set of morphisms by HomG(X,Y ). Morphisms are also called G-equivariant maps.
We will write g · x = ρX(g)(x), x ∈ X, g ∈ G.

Let cX be the closed cone X × [0, 1]/X × {0}. If X is a G-space, then the cone cX becomes
a G-space in a natural way: the cone point is a fixed point and for t ∈ (0, 1], g ∈ G acts



INTERSECTION SPACES, EQUIVARIANT MOORE APPROXIMATION AND THE SIGNATURE 145

by g · (x, t) = (g · x, t). More generally, given G-equivariant maps Y1 X
f1oo f2 // Y2 , the

homotopy pushout Y1 ∪X Y2 is a G-space in a natural way.

Definition 3.2. Given a G-space X and an integer k ≥ 0, a G-equivariant Moore approximation
toX of degree k is aG-spaceX<k together with a continuousG-equivariant map f<k : X<k → X,
satisfying the following properties:

• Hr (f<k) : Hr (X<k)→ Hr (X) is an isomorphism for all r < k, and
• Hr (X<k) = 0 for all r ≥ k.

Definition 3.3. Let X be a nonempty topological space. The (Q-coefficient) homological di-
mension of X is the number

Hdim (X) = min {n ∈ Z : Hm (X) = 0 for all m > n} ,

if such an n exists. If no such n exists, then we say that X has infinite homological dimension.

Example 3.4. There are two extreme cases, in which equivariant Moore approximations are
trivial to construct. For k = 0, any Moore approximation must satisfy Hi (X<0) = 0, for all
i ≥ 0. This forces X<0 = ∅, and f<0 is the empty function. If X has Hdim (X) = n, then for
k ≥ n + 1 set X<k = X and f<k = idX . Hence, any space of homological dimension n has an
equivariant Moore approximation of degrees k ≤ 0 and k > n.

Example 3.5. If G acts trivially on a simply connected CW complex X, then Moore approxi-
mations of X exist in every degree. For spatial homology truncation in the nonequivariant case,
see Chapter 1 of [3], which also contains a discussion of functoriality issues arising in connec-
tion with Moore approximations. The simple connectivity condition is sufficient, but far from
necessary.

Example 3.6. Let G be a compact Lie group acting smoothly on a smooth manifold X. Then,
according to [25], one can arrange a CW structure on X in such a way that G acts cellularly.
Now suppose that X is any G-space equipped with a CW structure such that G acts cellularly.
If the k-th boundary operator ∂k : Ck(X) → Ck−1(X) in the cellular chain complex of X
vanishes, then the (k − 1)-skeleton of X, together with its inclusion into X and endowed with
the restricted G-action, is an equivariant Moore-approximation X<k = Xk−1. This condition is
for example satisfied for the standard minimal CW structure on complex projective spaces and
tori. However, in order to make a given action cellular, one may of course be forced to endow
spaces with larger, nonminimal, CW structures. Similarly, if ∂k is injective, then X<k = Xk is
an equivariant Moore-approximation.

The following observation can sometimes be used to show that certain G-spaces and degrees
do not allow for an equivariant Moore approximation.

Proposition 3.7. Let G be a topological group and X a nonempty G-space. Let Gλ be the
G-space G with the action by left translation. If

HomG (X,Gλ) 6= ∅

and X has a G-equivariant Moore approximation of degree k > 0, then

k − 1 ≥ Hdim (G) .

Proof. Let f<k : X<k → X be a G-equivariant Moore approximation, k > 0. Precomposition
with f<k induces a map

f ]<k : HomG (X,Gλ)→ HomG (X<k, Gλ) .



146 MARKUS BANAGL AND BRYCE CHRIESTENSON

As k > 0 and X is not empty, we have H0(X<k) ∼= H0(X) 6= 0. Thus X<k is not empty. For
each φ ∈ HomG (X<k, Gλ), we note that φ is surjective since X<k is not empty, left translation
is transitive and φ is equivariant. Choose x ∈ X<k such that φ (x) = e. Define hx : G → X<k

by hx (g) = g · x. Then φ ◦ hx = idG, since

φ (hx (g)) = φ (g · x) = gφ (x) = ge = g.

Therefore the map induced by φ on homology has a splitting induced by hx, so there is an
isomorphism

Hr (X<k) ∼= Ar ⊕Hr (G)

for some subgroup Ar ⊂ Hr (X<k) and every r. Since by definition Hr (X<k) = 0 for r ≥ k,
then if such a φ exists we must have Hdim (G) ≤ k − 1. The condition HomG (X,Gλ) 6= ∅ is
sufficient to guarantee the existence of such a φ. �

Example 3.8. By Proposition 3.7, the action of S1 on itself by rotation does not have an
equivariant Moore space approximation of degree 1.

Consider S1 acting on X = S1 × S2 by rotation in the first coordinate and trivially in
the second coordinate. Example 3.4 shows that for k ≤ 0 and k ≥ 4, S1-equivariant Moore
approximations exist trivially. By Proposition 3.7, there is no such approximation for k = 1. We
shall now construct an approximation for degree k = 2. Fix a point y0 ∈ S2. Let i : S1 → X,
θ 7→ (θ, y0) , be the inclusion at y0. Let S1 act on itself by rotation, then the map i is equivariant.
Furthermore, by the Künneth theorem we know that H1 (X) ∼= Q is generated by the class
[S1 × y0], and H1 (i) : H1

(
S1
)
→ H1 (X) is an isomorphism taking [S1] to [S1 × y0]. Thus

since both S1 and X are connected, we have that the map i gives a S1-equivariant Moore space
approximation of degree 2.

Further positive results asserting the existence of Moore approximations in geometric situa-
tions such as symplectic toric manifolds are discussed in Section 12.

4. Precosheaves and Local to Global Techniques

The material of this section is fairly standard ([12]); we include it in order to fix terminology
and notation. Let B be a topological space and let V SQ denote the category of rational vector
spaces and linear maps.

Definition 4.1. A covariant functor F : τB → V SQ from the category τB of open sets on B,
with inclusions for morphisms, to the category V SQ, is called a precosheaf on B. For open sets
U ⊂ V ⊂ B, we denote the result of applying F to the inclusion map U ⊂ V by

iFU,V : F (U)→ F (V ) .

A morphism f : F → G of precosheaves on B is a natural transformation of functors.

Let U = {Uα}α∈Λ be an open cover of B, and let τU be the category whose objects are unions
of finite intersections of open sets in U and whose morphisms are inclusions. There is a natural
inclusion functor u : τU → τB, regarding an open set in τU as an object of τB. This realizes
τU as a full subcategory of τB.

Definition 4.2. A precosheaf F on B is U-locally constant if for any Uα ∈ U and any U which
is a finite intersection of elements of U and intersects Uα nontrivially, the map

iFUα∩U,Uα : F (Uα ∩ U)→ F (Uα)

is an isomorphism.
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Consider the product category τU × τU whose objects are pairs (U, V ) with U, V ∈ τU , and
whose morphism are pairs of inclusions (U, V )→ (U ′, V ′) given by U ⊂ U ′ and V ⊂ V ′. Define
the functors ∩,∪ : τU × τU → τU that take the object (U, V ) to U ∩ V and U ∪ V , respectively,
and the morphism (U, V ) → (U ′, V ′) to the inclusions U ∩ V ⊂ U ′ ∩ V ′ and U ∪ V ⊂ U ′ ∪ V ′.
Similarly we have the projection functors pi : τU × τU → τU , for i = 1, 2 where pi projects onto
the i-th factor. The inclusions U, V ⊂ U ∪ V and U ∩ V ⊂ U, V induce natural transformations
of functors ji : pi → ∪, and ιi : ∩ → pi for i = 1, 2. Applying a precosheaf F to the ji(U, V ),
we obtain linear maps F(U) → F(U ∪ V ), F(V ) → F(U ∪ V ), which we will again denote by
j1, j2 (rather than F(ji(U, V ))). Similarly for the ιi. Thus for any precosheaf F on B we have
the morphisms

F (U ∩ V )
(ι1,ι2)// F (U)⊕F (V )

j1−j2 // F (U ∪ V )

for any object (U, V ) in τU × τU . The functoriality of F implies that (j1 − j2) ◦ (ι1, ι2) = 0.
Any morphism of precosheaves f : F → G gives a commutative diagram

(4.1) F (U ∩ V )
(ι1,ι2)//

f(U∩V )

��

F (U)⊕F (V )
j1−j2 //

f(U)⊕f(V )

��

F (U ∪ V )

f(U∪V )

��
G (U ∩ V )

(ι1,ι2)// G (U)⊕ G (V )
j1−j2 // G (U ∪ V ) .

Definition 4.3. Let Fr be a collection of precosheaves on B, for r ≥ 0, and let U be an open
cover of B. We say that the sequence Fr satisfies the U-Mayer-Vietoris property if there is a
natural transformation of functors on τU × τU ,

δFi : Fi ◦ ∪ −→ Fi−1 ◦ ∩,

for each i, such that for every pair of open sets U, V ∈ τU the following sequence is exact:

// Fi+1 (U ∪ V )
δFi+1 // Fi (U ∩ V )

(ιi1,ι
i
2)// Fi (U)⊕Fi (V )

ji1−j
i
2 // Fi (U ∪ V )

δFi // .

A collection of morphisms fr : Fr → Gr, for r ≥ 0, is called δ-compatible if for each pair of open
sets U, V ∈ τU the following diagram commutes for all i ≥ 0:

(4.2) Fi+1 (U ∪ V )
δFi+1(U,V )

//

fi+1(U∪V )

��

Fi (U ∩ V )

fi(U∩V )

��
Gi+1 (U ∪ V )

δGi+1(U,V )
// Gi (U ∩ V ) .

Proposition 4.4. Let B be a compact topological space and let U be an open cover of B. Let
fi : Fi → Gi be a sequence of δ-compatible morphisms between U-locally constant precosheaves
on B that satisfy the U-Mayer-Vietoris property. If fi (U) : Fi (U)→ Gi (U) is an isomorphism
for every U ∈ U and for every i ≥ 0, then fi (B) : Fi (B) → Gi (B) is an isomorphism for all
i ≥ 0.

Proof. We shall prove the following statement by induction on n: For every U ∈ τU which can be
written as a union U = U1∪· · ·∪Un of n open sets Uj ∈ τU , each of which is a finite intersection
of open sets in U , the map fi(U) : Fi(U)→ Gi(U) is an isomorphism for all i ≥ 0. The base case
n = 1 follows from the fact that Fi,Gi are U-locally constant together with the assumption on
fi(U) for U ∈ U . Denote U j = U1∪· · ·∪Ûj∪· · ·∪Un and V j = (U1 ∩ Uj) · · ·∪Ûj∪· · ·∪(Un ∩ Uj);
then U = U j ∪ Uj and V j = U j ∩ Uj . Since the fi are δ-compatible, by (4.2) and (4.1) we have
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the commutative diagram below, whose rows are the U-Mayer-Vietoris sequences associated to
the pair U j and Uj :

// Fi
(
V j
)

//

fi(V j)
��

Fi
(
U j
)
⊕Fi (Uj) //

fi(Uj)⊕fi(Uj)
��

Fi (U)
δ //

fi(U)

��

Fi−1

(
V j
)

//

fi−1(V j)
��

// Gi
(
V j
)

// Gi
(
U j
)
⊕ Gi (Uj) // Gi (U)

δ // Gi−1

(
V j
)

// .

Each of V j , U j , and Uj is a union of less than n open sets, each of which is a finite intersection
of elements of U . Thus by induction hypothesis, fi(V

j), fi(U
j) and fi(Uj) are isomorphisms for

all i. By the 5-lemma, fi(U) is an isomorphism for all i, which concludes the induction step.
Since B is compact, there is a finite number of open sets in U which cover B. Thus the induction
yields the desired result. �

5. Examples of Precosheaves

Throughout this section we consider a topological fiber bundle π : E → B with fiber L and
topological structure group G. We assume that B,E, and L are compact oriented topological
manifolds such that E is compatibly oriented with respect to the orientation of B and L. Set
n = dimE, b = dimB and c = dimL = n − b. We may form the fiberwise cone of this
bundle, DE, by defining DE to be the homotopy pushout, Definition 2.1, of the pair of maps

B E
πoo id // E. By Remark 2.2, the map π induces a map πD : DE → B, given by idB on

B and (x, t) 7→ π(x) for (x, t) ∈ E× I. This makes DE into a fiber bundle whose fiber is cL, the
cone on L, and whose structure group is G. We point out, for U ⊂ B open, that π−1

D U → U is

obtained as the homotopy pushout of the pair of maps U π−1U
π|π−1Uoo id // π−1U . One more

fact that will be needed is that the pair (DE,E), where E is identified with E×{1} ⊂ DE, along
with a stratification of DE given by B ⊂ DE, is a compact Q-oriented ∂-stratified topological
pseudomanifold, in the sense of Friedman and McClure [21]. Here we have identified B with
the image σ (B) of the “zero section” σ : B → DE, sending x ∈ B to the cone point of cL
over x. Similarly for any open U ⊂ B, the pair

(
π−1
D U, π−1U

)
is a Q-oriented ∂-stratified

pseudomanifold, though it will not be compact unless U is compact. We write ∂π−1
D U = π−1U.

Example 5.1. For each r ≥ 0, there are precosheaves π∗Hr on B defined by

U 7→ Hr

(
π−1 (U)

)
.

By the Eilenberg-Steenrod axioms, these are U-locally constant, and satisfy the U-Mayer-Vietoris
property for any good open cover U of B. (An open cover U of a b-dimensional manifold is good,
if every nonempty finite intersection of sets in U is homeomorphic to Rb. Such a cover exists if
the manifold is smooth or PL.)

Let π′ : E′ → B be another fiber bundle, and f : E → E′ a morphism of fiber bundles. Then
f induces a morphism of precosheaves f∗ : π∗Hr → π′∗Hr, given on any open set U ⊂ B by

f∗(U) := (f |π−1U )∗ : Hr

(
π−1U

)
→ Hr

(
π′−1U

)
.
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Furthermore, for any pair of open sets U, V ⊂ B, we have the following commutative diagram
whose rows are exact Mayer-Vietoris sequences:

(5.1) // Hr

(
π−1(U ∩ V )

)
//

fr(U∩V )

��

Hr

(
π−1U

)
⊕Hr

(
π−1V

)
//

fr(U)⊕fr(V )

��

Hr

(
π−1(U ∪ V )

) δ //

fr(U∪V )

��
// Hr

(
π′−1(U ∩ V )

)
// Hr

(
π′−1U

)
⊕Hr

(
π′−1V

)
// Hr

(
π′−1(U ∪ V )

) δ //

Thus, for any good open cover U , the map f induces a δ-compatible sequence of morphisms
between precosheaves which satisfy the U-Mayer-Vietoris property, and are U-locally constant.

Example 5.2. Define the precosheaf of intersection homology groups, πD∗IpHr for each r ≥ 0,
and each perversity p, by assigning to the open set U ⊂ B the vector space, IpHr

(
π−1
D U

)
. We

use the definition of intersection homology via finite singular chains as in [21]. This is a slightly
more general definition than that of King,[28], and Kirwan-Woolf [29]. For our situation the
definitions all agree with the exception that the former allows for more general perversities, see
the comment after Prop. 2.3 in [21] for more details. In Section 4.6 of Kirwan-Woolf [29] it
is shown that each πD∗IpHr is a precosheaf for each r ≥ 0, and that this sequence satisfies
the U-Mayer-Vietoris property for any open cover U of B. Furthermore, these are all U-locally
constant for any good cover U of B.

Let f : E → E′ be a bundle morphism with dimE ≥ dimE′. Using the levelwise map
E × I → E′ × I, (e, t) 7→ (f(e), t), and the identity map on B, f induces a bundle morphism
fD : DE → DE′. Recall that a continuous map between stratified spaces is called stratum-
preserving if the image of every pure stratum of the source is contained in a single pure stratum of
the target. A stratum-preserving map g is called placid if codim g−1(S) ≥ codimS for every pure
stratum S of the target. Placid maps induce covariantly linear maps on intersection homology
(which is not true for arbitrary continuous maps). The map fD is indeed stratum-preserving
and, since dimE ≥ dimE′, placid and thus induces maps

(fD|π−1
D (U))∗ : IpHr

(
π−1
D U

)
−→ IpHr

(
π′D
−1
U
)

for each open set U ⊂ B. This way, we obtain a sequence of δ-compatible morphisms

fD∗ : πD∗IpHr → π′D∗IpHr.

With IpC∗(X) the singular rational intersection chain complex as in [21], we define in-
tersection cochains by IpC

∗(X) = Hom(IpC∗(X),Q) and define intersection cohomology by
IpH

∗(X) = H∗(IpC
∗(X)). Then the universal coefficient theorem

IpH
∗(X) ∼= Hom(IpH∗(X),Q)

holds. Theorem 7.10 of [21] establishes Poincaré-Lefschetz duality for compact Q-oriented n-
dimensional ∂-stratified pseudomanifolds (X, ∂X). Some important facts are established there
in the proof:

(1) For complementary perversities p + q = t, there is a commutative diagram whose rows
are exact:

(5.2)
jr∂ // IpHr (X)

ir∂ //

DrX∼=
��

IpH
r (∂X)

δr∂ //

Dr∂X∼=
��

IpH
r+1 (X, ∂X) //

DXn−r−1
∼=
��j∂n−r // IqHn−r (X, ∂X)

δ∂n−r // IqHn−r−1 (∂X)
i∂n−r−1 // IqHn−r−1 (X) //
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(2) The inclusion X \ ∂X → X induces an isomorphism

(5.3) IqHn−r (X \ ∂X) ∼= IqHn−r (X) .

Consider the smooth oriented c-dimensional manifold L. The closed cone cL is a compact Q-
oriented (c+ 1)-dimensional ∂-stratified pseudomanifold. Thus the long exact sequence coming
from the bottom row of diagram (5.2) gives

(5.4) // IpHr+1 (cL, L)
δ∂r+1 // IpHr (L)

i∂r // IpHr (cL)
j∂r // IpHr (cL, L) // .

Proposition 5.3. Let p be a perversity and let k = c−p (c+ 1). Then for the maps in the exact
sequence (5.4) we have an isomorphism

i∂r : Hr (L)→ IpHr (cL),

when r < k, and an isomorphism

δ∂r+1 : IpHr+1 (cL, L)→ Hr (L),

when r ≥ k.

Proof. The standard cone formula for intersection homology asserts that for a closed c-dimensional
manifold L, the inclusion L ↪→ cL as the boundary induces an isomorphism

IpHr (L) ∼= IpHr (cL) for r < c− p(c+ 1),

whereas IpHr (cL) = 0 for r ≥ c− p(c+ 1). (By (5.3) above, this holds both for the closed and
the open cone.) This already establishes the first claim. The second one follows from the cone
formula together with the exact sequence (5.4). �

6. Fiberwise Truncation and Cotruncation

Let π : E → B be a fiber bundle of closed topological manifolds with fiber L and structure
group G such that B,E and L are compatibly oriented. Suppose that a G-equivariant Moore
approximation L<k of degree k exists for the fiber L. The bundle E has an underlying principal
G-bundle EP → B such that E = EP ×G L. Using the G-action on L<k, we set

ft<kE = EP ×G L<k.

Then ft<kE is the total space of a fiber bundle π<k : ft<kE → B with fiber L<k, structure group
G and underlying principal bundle EP . The equivariant structure map f<k : L<k → L defines
a morphism of bundles

F<k : ft<kE = EP ×G L<k → EP ×G L = E.

Definition 6.1. The pair (ft<kE,F<k) is called the fiberwise k-truncation of the bundle E.

Definition 6.2. The fiberwise k-cotruncation ft≥kE is the homotopy pushout of the pair of
maps

B ft<kE
π<koo F<k // E .

Let c≥k : E → ft≥kE, and σ : B → ft≥kE be the maps ξ2 and ξ1, respectively, appearing in
Definition 2.1.

Since F<k satisfies π<k = π ◦ F<k we have, by the universal property of Remark 2.2, using
the constant homotopy, a unique map π≥k : ft≥kE → B satisfying π = π≥k ◦ c≥k, π≥k ◦ σ = idB
and (π≥k ◦ ξ0)(x, t) = π<k(x) for all t ∈ I, where ξ0 : ft<kE × I → ft≥kE is induced by the
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inclusion (as in Definition 2.1). The map π≥k : ft≥kE → B is a fiber bundle projection with
fiber the homotopy pushout of

? L<koo f<k // L ,

i.e. the mapping cone of f<k. Note that this mapping cone is a G-space in a natural way (with
? as a fixed point), since f<k is equivariant. The map c≥k : E → ft≥kE is a morphism of fiber
bundles. Furthermore, the bundle π≥k has a canonical section σ, sending x ∈ B to ? over x.

Definition 6.3. Define the space Q≥kE to be the homotopy pushout of the pair of maps

? Boo σ // ft≥kE .

This is the mapping cone of σ and hence

H̃∗(Q≥kE) ∼= H∗(ft≥kE,B),

where we identified B with its image under the embedding σ. Define the maps

ξ≥k : ft≥kE → Q≥kE and [c] : ?→ Q≥kE

to be the maps ξ2 and ξ1, respectively (Definition 2.1). Set

C≥k = ξ≥k ◦ c≥k : E → Q≥kE.

For each open set U ⊂ B, the space π−1
≥kU is the pushout of the pair of maps

U π−1
<kU

π<k|oo F<k| // π−1U

and the restrictions of c≥k induce a morphism of fiber bundles c≥k(U) : π−1U → π−1
≥kU . Define

the precosheaf πQ∗ Hr by the assignment U 7→ Hr(π
−1
≥kU,U) (again identifying U with its image

under σ). That this assignment is indeed a precosheaf follows from the functoriality of homology
applied to the commutative diagram of inclusions

(π−1
≥kU,U) //

&&

(π−1
≥kV, V )

��
(π−1
≥kW,W )

associated to nested open sets U ⊂ V ⊂ W . The maps Ckr (U) : Hr(π
−1U) → Hr(π

−1
≥kU,U),

given by the composition

Hr(π
−1U)

c≥k(U)∗−→ Hr(π
−1
≥kU) −→ Hr(π

−1
≥kU,U),

define a morphism of precosheaves

Ckr : π∗Hr → πQ∗ Hr
for all r ≥ 0. The following lemma justifies the terminology “cotruncation”.

Lemma 6.4. For U ∼= Rb, the map Ckr (U) is an isomorphism for r ≥ k, while Hr(π
−1
≥kU,U) = 0

for r < k.

Proof. Let L≥k denote the mapping cone of f<k : L<k → L. Since the bundles π and π≥k both
(compatibly) trivialize over U ∼= Rb, the map Ckr (U) can be identified with the composition

Hr(Rb × L) −→ Hr(Rb × L≥k) −→ Hr(Rb × (L≥k, ?)),
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which can further be identified with

Hr(L) −→ H̃r(L≥k).

This map fits into a long exact sequence

Hr(L<k)
f<k∗−→ Hr(L) −→ H̃r(L≥k) −→ Hr−1(L<k).

The result then follows from the defining properties of the Moore approximation f<k. �

As in Example 5.1, the map F<k,r : Hr (ft<kE) → Hr (E) is F<k,r (B) for the morphism of

precosheaves F<k,r : π<k∗Hr → π∗Hr given by F<k|∗ : Hr(π
−1
<kU)→ Hr(π

−1U) for each r ≥ 0.
For each open set U we have the long exact sequence of perversity p-intersection homology

groups

(6.1) · · · // IpHr+1

(
π−1
D U, ∂π−1

D U
) δ∂r+1(U)

// Hr

(
π−1U

) i∂r (U) // IpHr

(
π−1
D U

) j∂r (U) // // · · ·

(Recall that πD : DE → B is the projection of the cone bundle.) When U varies, this exact
sequence forms a precosheaf of acyclic chain complexes. In particular the morphisms i∂r and
δ∂r+1 are morphisms of precosheaves for every r ≥ 0. From now on, in order to have good open
covers, we assume that B is either smooth or at least PL.

Proposition 6.5. Fix a perversity p. Let n − 1 = dimE, b = dimB, c = n − b − 1, and
k = c − p (c+ 1). Assume that B is compact and that an equivariant Moore approximation
f<k : L<k → L to L of degree k exists. Then the compositions

i∂r (B) ◦ F<k∗ : Hr (ft<kE)→ IpHr (DE)

and
Ckr ◦ δ∂r+1 (B) : IpHr+1 (DE,E)→ Hr(ft≥kE,B) ∼= H̃r (Q≥kE)

are isomorphisms for all r ≥ 0.

Proof. We use our local to global technique. Let U be a finite good open cover of B which
trivializes E. The map F<k induces (by restrictions to preimages of open subsets) a map of
precosheaves as demonstrated in Example 5.1. Both i∂r and F<k,∗ are sequences of δ-compatible
morphisms of U-locally constant precosheaves that satisfy the U-Mayer-Vietoris property. Let
U ∈ U , then Hr

(
π−1
<kU

) ∼= Hr (L<k) and F<k,r = f<k∗ is an isomorphism in degrees r < k

and 0 in degrees r ≥ k. Likewise by Proposition 5.3, the map i∂r induces an isomorphism
Hr (L) ∼= IpHr

(
π−1
D U

)
in degrees r < k and 0 in degrees r ≥ k, since

π−1
D U ∼= U × cL ∼= Rb × cL,

IpHr

(
Rb × cL

) ∼= IpHr (cL), and we can identify i∂r (U) with i∂r from (5.4). Thus, the composi-
tion is an isomorphism in every degree. We can now apply Proposition 4.4 to obtain the desired
result.

A analogous argument gives the desired result for the second statement, using Lemma 6.4 in
conjunction with Proposition 5.3 to establish the base case. �

It follows from Proposition 6.5 that i∂r (B) : Hr(E) → IpHr (DE) is surjective for all r,
F<k∗ : Hr(ft<kE)→ Hr(E) is injective for all r, Ckr : Hr(E)→ Hr(ft≥kE,B) is surjective for all
r, and δ∂r+1(B) : IpHr+1 (DE,E)→ Hr(E) is injective for all r. We may use the isomorphisms

in Proposition 6.5 to identify Hr (ft<kE) with IpHr (DE) and H̃r (Q≥kE) with IpHr+1 (DE,E).
In doing so, we may consider the exact sequence

(6.2) // IpHr+1 (DE,E)
δ∂r+1 // Hr (E)

i∂r // IpHr (DE)
j∂r // ,



INTERSECTION SPACES, EQUIVARIANT MOORE APPROXIMATION AND THE SIGNATURE 153

and identify F<k,r as a section of i∂r , and Ckr as a section of δ∂r+1. Thus we see that j∂r = 0 for
every r ≥ 0, and we have a split short exact sequence

(6.3) 0 // IpHr+1 (DE,E)

δ∂r+1 ,,
Hr (E)

i∂r ..

Ckr

oo IpHr (DE) //

F<k,r

ll 0.

Lemma 6.6. The sequence

0→ Hr(ft<kE)
F<k,∗−→ Hr(E)

C≥k,∗−→ H̃r(Q≥kE)→ 0

is exact.

Proof. Only exactness in the middle remains to be shown. The standard sequence

ft<kE
F<k−→ E ↪→ cone(F<k)

induces an exact sequence

(6.4) Hr(ft<kE)
F<k,r−→ Hr(E) −→ H̃r(cone(F<k)).

Collapsing appropriate cones yields homotopy equivalences

cone(F<k)
'−→ ft≥kE/B

'←− Q≥kE
such that the diagram

E �
� //� _

c≥k

��

cone(F<k)
' // ft≥kE/B

ft≥kE
� � ξ≥k // Q≥kE

' // ft≥kE/B

commutes. The induced diagram on homology,

Hr(E) //

c≥k∗

��

H̃r(cone(F<k))
∼= // H̃r(ft≥kE/B)

Hr(ft≥kE)
ξ≥k∗ // H̃r(Q≥kE)

∼= // H̃r(ft≥kE/B),

shows that the homology kernel of E → cone(F<k) equals the kernel of ξ≥k∗c≥k∗ = C≥k∗, but it
also equals the image of F<k,r by the exactness of (6.4). �

Proposition 6.7. Let n − 1 = dimE, b = dimB and c = n − b − 1. For complementary
perversities p + q = t, let k = c − p (c+ 1) and l = c − q (c+ 1). Assume that an equivariant
Moore approximation to L exists of degree k and of degree l. Then there is a Poincaré duality
isomorphism

Dk,l : Hr(ft<kE) ∼= H̃n−r−1(Q≥lE).

Proof. We use the isomorphisms in Proposition 6.5 and the Poincaré-Lefschetz duality of [21],
as described here in (5.2), applied to the ∂-stratified pseudomanifold (DE,E). By definition,
Dk,l is the unique isomorphism such that

Ip̄H
r(DE)

F∗<k◦i
∗

∼=
//

∼= DDE

��

Hr(ft<kE)

Dk,l
��

I q̄Hn−r(DE,E)
Cln−r−1◦δ
∼=

// H̃n−r−1(Q≥lE)
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commutes. �

It need not be true, however, that the diagram

(6.5) Hr (E)
F∗<k //

DE ∼=
��

Hr (ft<kE)

Dk,l∼=
��

Hn−r−1 (E)
C≥l∗// H̃n−r−1 (Q≥lE)

commutes, see Example 6.13 below. It turns out that there is an obstruction to the existence of

any isomorphism Hr(ft<kE) ∼= H̃n−r−1(Q≥lE) such that the diagram (6.5) commutes.

Definition 6.8. Let k, l be two integers. Given G-equivariant Moore approximations

f<k : L<k → L, f<l : L<l → L,

the local duality obstruction in degree i is defined to be

Oi(π, k, l) = {C∗≥k(x) ∪ C∗≥l(y) | x ∈ H̃i(Q≥kE), y ∈ H̃n−1−i(Q≥lE)} ⊂ Hn−1(E).

Locality of this obstruction refers to the fact that in the context of stratified spaces, the
obstruction arises only near the singularities of the space. Clearly, the definition of Oi(π, k, l)
does not require any smooth or PL structure on B and thus is available for topological base
manifolds. The obstruction set Oi(π, k, l) is a cone: If z = C∗≥k(x)∪C∗≥l(y) is in Oi(π, k, l) then
for any λ ∈ Q,

λz = C∗≥k(λx) ∪ C∗≥l(y) ∈ Oi(π, k, l).
If E is connected, then Hn−1(E) ∼= Q is one-dimensional, so

either Oi(π, k, l) = 0 or Oi(π, k, l) ∼= Q.

Proposition 6.9. There exists an isomorphism D : Hr(ft<kE) ∼= H̃n−r−1(Q≥lE) such that

Hr (E)
F∗<k //

DE ∼=
��

Hr (ft<kE)

D∼=
��

Hn−r−1 (E)
C≥l∗// H̃n−r−1 (Q≥lE)

commutes if and only if the local duality obstruction Or(π, k, l) vanishes. In this case, D is
uniquely determined by the diagram.

Proof. We have seen that both F ∗<k and C≥l∗ are surjective and their respective images have
equal rank. Thus by linear algebra D exists if and only if DE(kerF ∗<k) = kerC≥l∗. By

Lemma 6.6, kerF ∗<k = imC∗≥k. Thus the condition translates to: For every x ∈ H̃r(Q≥kE),

C≥l∗DEC
∗
≥k(x) = 0. Rewriting this entirely cohomologically using the universal coefficient the-

orem, this translates further to
C∗≥k(x) ∪ C∗≥l(y) = 0

for all x, y.
The uniqueness of D is standard: If x ∈ Hr(ft<kE)), then D(x) = C≥l∗DE(x′), where

x′ ∈ Hr(E) is any element with F ∗<k(x′) = x. By the condition on the kernels, this is independent
of the choice of x′. �

Proposition 6.10. If Oi(π, k, l) = 0, then the unique D given by Proposition 6.9 equals the
Dk,l constructed in Proposition 6.7.



INTERSECTION SPACES, EQUIVARIANT MOORE APPROXIMATION AND THE SIGNATURE 155

Proof. This follows from the diagram

IpH
r(DE)

i∗ //

DDE ∼=
��

Hr(E)
F∗<k //

DE ∼=
��

Hr(ft<k E)

D∼=
��

IqHn−r(DE,E)
δ // Hn−r−1(E)

C≥l∗// H̃n−r−1(Q≥lE).

The left hand square is part of the commutative ladder (5.2). The right hand square commutes
by the construction of D. Since the horizontal compositions are isomorphisms, D = Dk,l. �

Although superficially simple, this proposition has rather interesting geometric ramifications:
Since Dk,l can always be defined, even when the duality obstruction is not zero, the proposition
implies that in such a case, diagram (6.5) cannot commute. This means that Dk,l is not always
a geometrically “correct” duality isomorphism, and the duality obstructions govern when it is
and when it is not.

It was already shown in [3, Section 2.9] that if the link bundle is a global product, then
Poincaré duality holds for the corresponding intersection spaces. This suggests that the duality
obstruction vanishes for a global product. We shall now verify this directly:

Proposition 6.11. For complementary perversities p+ q = t, let

k = c− p (c+ 1) and l = c− q (c+ 1) .

If π : E = B × L→ B is a global product, then Oi(π, k, l) = 0 for all i.

Proof. We have ft≥k E = B × L≥k and by the Künneth theorem, the reduced cohomology of
Q≥kE is given by

H̃∗(Q≥kE) = H∗(ft≥k E,B) = H∗(B × L≥k, B × ?) = H∗(B × (L≥k, ?))

∼= H∗(B)⊗H∗(L≥k, ?).

Let f≥k : L → L≥k be the structural map associated to the cotruncation. By the naturality of
the cross product, the square

H∗(E) H∗(B)⊗H∗(L)
×
∼=

oo

H̃∗(Q≥kE)

C∗≥k

OO

H∗(B)⊗H∗(L≥k, ?)
×
∼=

oo

id⊗f∗≥k

OO

commutes. Let x ∈ H̃i(Q≥kE), y ∈ H̃n−1−i(Q≥lE). Their images under the Eilenberg-Zilber
map are of the form

EZ(x) =
∑
r

br ⊗ e≥kr , br ∈ H∗(B), e≥kr ∈ H∗(L≥k, ?),

EZ(y) =
∑
s

b′s ⊗ e≥ls , b′s ∈ H∗(B), e≥ls ∈ H∗(L≥l, ?),

deg br + deg e≥kr = i, deg b′s + deg e≥ls = n− 1− i. Thus

(id⊗f∗≥k) EZ(x) ∪ (id⊗f∗≥l) EZ(y) =

(∑
r

br ⊗ f∗≥k(e≥kr )

)
∪

(∑
s

b′s ⊗ f∗≥l(e≥ls )

)



156 MARKUS BANAGL AND BRYCE CHRIESTENSON

and

C∗≥k(x) ∪ C∗≥l(y) = × ◦ (id⊗f∗≥k) EZ(x) ∪ × ◦ (id⊗f∗≥l) EZ(y)

=

(∑
r

br × f∗≥k(e≥kr )

)
∪

(∑
s

b′s × f∗≥l(e≥ls )

)
=
∑
r,s

±(br ∪ b′s)× (f∗≥k(e≥kr ) ∪ f∗≥l(e≥ls )).

If deg f∗≥k(e≥kr ) + deg f∗≥l(e
≥l
s ) < dimL, then deg br + deg b′s > dimB and thus br ∪ b′s = 0.

If deg f∗≥k(e≥kr ) + deg f∗≥l(e
≥l
s ) > dimL, then trivially f∗≥k(e≥kr ) ∪ f∗≥l(e≥ls ) = 0. Finally, if

deg f∗≥k(e≥kr ) + deg f∗≥l(e
≥l
s ) = dimL, then f∗≥k(e≥kr )∪ f∗≥l(e≥ls ) = 0 by the defining properties of

cotruncation and the fact that k and l are complementary. This shows that

C∗≥k(x) ∪ C∗≥l(y) = 0.

�

This result means that, as for other characteristic classes, the duality obstructions of a bundle
are a measure of how twisted a bundle is. An important special case is p(c+ 1) = q(c+ 1). Then

k = l, Q≥kE = Q≥lE, and for x ∈ H̃i(Q≥kE), y ∈ H̃n−1−i(Q≥kE),

C∗≥k(x) ∪ C∗≥l(y) = C∗≥k(x ∪ y).

By the injectivity of C∗≥k, this product vanishes if and only if x ∪ y = 0. So in the case k = l

the local duality obstruction O∗(π, k, k) vanishes if and only complementary cup products in

H̃∗(Q≥kE) vanish. For a global product this is indeed always the case, by Proposition 6.11.

Example 6.12. Let B = S2, L = S3 and E = B ×L = S2 × S3. Then c = 3 and, taking p and
q to be lower and upper middle perversities,

k = 3−m(4) = 2 = 3− n(4) = l.

The degree 2 Moore approximation is L<2 = pt and the cotruncation is L≥2 ' S3 = L. Thus

ft≥2E = B × L≥2 ' S2 × S3 = E.

The reduced cohomology H̃i(Q≥2E) = Hi(S2× (S3,pt)) is isomorphic to Q for i = 3, 5 and zero
for all other i. Thus all (and in particular, the complementary) cup products vanish and so the
local duality obstruction O∗(π, 2, 2) vanishes.

Here is an example of a fiber bundle whose duality obstruction does not vanish.

Example 6.13. Let Dh be the disc bundle associated to the Hopf bundle h : S3 → S2, i.e. Dh
is the normal disc bundle of CP 1 in CP 2. Now take two copies Dh+ → S2

+ and Dh− → S2
− of

this disc bundle and define E as the double

E = Dh+ ∪S3 Dh−.

Then E is the fiberwise suspension of h and so an L = S2-bundle over B = S2, with L the
suspension of a circle. Let σ+, σ− ∈ L be the two suspension points. The bundle E is the sphere
bundle of a real 3-plane vector bundle ξ over S2 with ξ = η ⊕ R1, where η is the real 2-plane
bundle whose circle bundle is the Hopf bundle and R1 is the trivial line bundle. The points σ±
are fixed points under the action of the structure group on L. Let p be the lower, and q the
upper middle perversity. Here n = 5, b = 2 and c = 2. Therefore, k = 2 and l = 1. Both
structural sequences

L<1
f<1−→ L

f≥1−→ L≥1
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and

L<2
f<2−→ L

f≥2−→ L≥2

are given by

{σ+} ↪→ S2 id−→ S2.

The identity map is of course equivariant, but the inclusion of the suspension point is equivariant
as well, since this is a fixed point. It follows that the fiberwise (co)truncations

ft<1E −→ E −→ ft≥1E

and

ft<2E −→ E −→ ft≥2E

are both given by

S2
+

s+
↪→ E

id−→ E,

where s+ is the section of π : E → S2 given by sending a point to the suspension point σ+ over
it. Furthermore,

Q≥1E = Q≥2E = E ∪S2
+
D3,

which is homotopy equivalent to complex projective space CP2. Indeed, a homotopy equivalence
is given by the quotient map

Q≥1E
'−→ Q≥1E

D3
∼=

E

S2
+

∼=
Dh+ ∪S3 Dh−

S2
+

∼= D4 ∪S3 Dh− = CP2.

The cohomology ring of CP2 is the truncated polynomial ring Q[x]/(x3 = 0) generated by

x ∈ H2(CP2) ∼= H̃2(Q≥2E) ∼= H̃n−1−2(Q≥1E).

The square x2 generates H4(CP2), so by the injectivity of C∗≥1 = C∗≥2,

C∗≥1(x) ∪ C∗≥2(x) = C∗≥1(x2) ∈ H4(E)

is not zero. Thus the duality obstruction O2(π, 2, 1) does not vanish.
It follows from Proposition 6.11 that π : E → S2 is in fact a nontrivial bundle, which can here

of course also be seen directly. Note that the Serre spectral sequence of any S2-bundle over S2

collapses at E2. Thus the obstructions O∗(π, k, l) are able to detect twisting that is not detected
by the differentials of the Serre spectral sequence.

7. Flat Bundles

We have shown that the local duality obstructions vanish for product bundles. We prove here
that they also vanish for flat bundles, at least when the fundamental group of the base is finite.
The latter assumption can probably be relaxed, but we shall not pursue this further here. A
fiber bundle π : E → B with structure group G is flat if its G-valued transition functions are
locally constant.

Theorem 7.1. Let π : E → B be a fiber bundle of topological manifolds with structure group G,
compact connected base B and compact fiber L, dimE = n − 1, b = dimB, c = n − b − 1. For
complementary perversities p̄, q̄, let k = c− p̄(c+ 1), l = c− q̄(c+ 1). If

(1) L possesses G-equivariant Moore approximations of degree k and of degree l,
(2) π is flat with respect to G, and
(3) the fundamental group π1(B) of the base is finite,

then Oi(π, k, l) = 0 for all i.
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Proof. Let B̃ be the (compact) universal cover of B and π1 = π1(B) the fundamental group. By
the G-flatness of E, there exists a monodromy representation π1 → G such that

E = (B̃ × L)/π1,

where B̃ × L is equipped with the diagonal action of π1, which is free. If M is any compact
space on which a finite group π1 acts freely, then transfer arguments (using the finiteness of π1)
show that the orbit projection ρ : M →M/π1 induces an isomorphism on rational cohomology,

ρ∗ : H∗(M/π1)
∼=−→ H∗(M)π1 ,

where H∗(M)π1 denotes the π1-invariant cohomology classes. Applying this to M = B̃ × L, we
get an isomorphism

ρ∗ : H∗(E)
∼=−→ H∗(B̃ × L)π1 .

Using the monodromy representation, the G-cotruncation L≥k becomes a π1-space with

ft≥kE = (B̃ × L≥k)/π1.

The closed subspace B̃ × ? ⊂ B̃ ×L≥k, where ? ∈ L≥k is the cone point, is π1-invariant, since ?

is a fixed point of L≥k. Then a relative transfer argument applied to the pair (B̃ × L≥k, B × ?)
yields an isomorphism

ρ∗ : H̃∗(Q≥kE) = H∗(ft≥k E,B)
∼=−→ H∗(B̃ × L≥k, B̃ × ?)π1 .

Using the structural map f≥k : L→ L≥k, we define a map

p≥k = id×f≥k : B̃ × L −→ B̃ × L≥k.
Since f≥k is equivariant, the map p≥k is π1-equivariant with respect to the diagonal action. The
diagram

B̃ × L
ρ //

p≥k

��

E

c≥k

��
B̃ × L≥k

ρ // ft≥kE

commutes and induces on cohomology the commutative diagram

(7.1) H∗(E)
ρ∗

∼=
// H∗(B̃ × L)π1

H∗(ft≥kE)
ρ∗

∼=
//

c∗≥k

OO

H∗(B̃ × L≥k)π1

p∗≥k

OO

as we shall now verify: If a ∈ H∗(B̃×L≥k) satisfies g∗(a) = a for all g ∈ π1, then the equivariance
of p≥k implies that

g∗p∗≥k(a) = p∗≥k(g∗a) = p∗≥k(a),

which shows that indeed p∗≥k(a) ∈ H∗(B̃ × L)π1 . Similarly, there is a commutative diagram

(7.2) H∗(ft≥kE)
ρ∗

∼=
// H∗(B̃ × L≥k)π1

H̃∗(Q≥kE)
ρ∗

∼=
//

ξ∗≥k

OO

H∗(B̃ × (L≥k, ?))
π1 .

OO
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Concatenating diagrams (7.1) and (7.2), we obtain the commutative diagram

H∗(E)
ρ∗

∼=
// H∗(B̃ × L)π1

H̃∗(Q≥kE)
ρ∗

∼=
//

C∗≥k

OO

H∗(B̃ × (L≥k, ?))
π1 .

P∗≥k

OO

By the Künneth theorem, the cross product × is an isomorphism

× : H∗(B̃)⊗H∗(L)
∼=−→ H∗(B̃ × L)

whose inverse is given by the Eilenberg-Zilber map EZ. Define a π1-action on the tensor product

H∗(B̃)⊗H∗(L) by

g∗(a) := (EZ ◦g∗ ◦ ×)(a), g ∈ π1.

This makes the cross-product π1-equivariant:

× ◦ g∗(a) = × ◦ EZ ◦g∗ ◦ ×(a) = g∗ ◦ ×(a).

Therefore, the cross-product restricts to a map

(7.3) × : (H∗B̃ ⊗H∗L)π1 −→ H∗(B̃ × L)π1 .

The Eilenberg-Zilber map is equivariant as well, since

g∗ EZ(b) = EZ ◦g∗ ◦ × ◦ EZ(b) = EZ ◦g∗(b).

Consequently, the Eilenberg-Zilber map restricts to a map

(7.4) EZ : H∗(B̃ × L)π1 −→ (H∗B̃ ⊗H∗L)π1 .

Since × and EZ are inverse to each other, this shows in particular that the restricted cross-
product (7.3) and the restricted Eilenberg-Zilber map (7.4) are isomorphisms. All of these
constructions apply just as well to (L≥k, ?) instead of L. By the naturality of the cross product,
the square

H∗(B̃ × L) H∗B̃ ⊗H∗L×
∼=

oo

H∗(B̃ × (L≥k, ?))

P∗≥k

OO

H∗B̃ ⊗H∗(L≥k, ?)
×
∼=

oo

id⊗f∗≥k

OO

commutes. As we have seen, this diagram restricts to the various π1-invariant subspaces. In
summary then, we have constructed a commutative diagram

H∗(E)
ρ∗

∼=
// H∗(B̃ × L)π1 (H∗B̃ ⊗H∗L)π1

×
∼=

oo

H̃∗(Q≥kE)
ρ∗

∼=
//

C∗≥k

OO

H∗(B̃ × (L≥k, ?))
π1

P∗≥k

OO

(H∗B̃ ⊗H∗(L≥k, ?))π1
×
∼=

oo

id⊗f∗≥k

OO

An analogous diagram is, of course, available for Q≥lE.

Let x ∈ Hi(B̃ × (L≥k, ?))
π1 , y ∈ Hn−1−i(B̃ × (L≥l, ?))

π1 . Their images under the Eilenberg-
Zilber map are of the form

EZ(x) =
∑
r

br ⊗ e≥kr , br ∈ H∗(B̃), e≥kr ∈ H∗(L≥k, ?),
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EZ(y) =
∑
s

b′s ⊗ e≥ls , b′s ∈ H∗(B̃), e≥ls ∈ H∗(L≥l, ?),

deg br + deg e≥kr = i, deg b′s + deg e≥ls = n− 1− i. Thus

(id⊗f∗≥k) EZ(x) ∪ (id⊗f∗≥l) EZ(y) =

(∑
r

br ⊗ f∗≥k(e≥kr )

)
∪

(∑
s

b′s ⊗ f∗≥l(e≥ls )

)
and

P ∗≥k(x) ∪ P ∗≥l(y) = × ◦ (id⊗f∗≥k) EZ(x) ∪ × ◦ (id⊗f∗≥l) EZ(y)

=

(∑
r

br × f∗≥k(e≥kr )

)
∪

(∑
s

b′s × f∗≥l(e≥ls )

)
=
∑
r,s

±(br ∪ b′s)× (f∗≥k(e≥kr ) ∪ f∗≥l(e≥ls )).

If deg f∗≥k(e≥kr ) + deg f∗≥l(e
≥l
s ) < dimL, then deg br + deg b′s > dimB and thus br ∪ b′s = 0.

If deg f∗≥k(e≥kr ) + deg f∗≥l(e
≥l
s ) > dimL, then trivially f∗≥k(e≥kr ) ∪ f∗≥l(e≥ls ) = 0. Finally, if

deg f∗≥k(e≥kr ) + deg f∗≥l(e
≥l
s ) = dimL, then f∗≥k(e≥kr )∪ f∗≥l(e≥ls ) = 0 by the defining properties of

cotruncation and the fact that k and l are complementary. This shows that

P ∗≥k(x) ∪ P ∗≥l(y) = 0.

For ξ ∈ H̃i(Q≥kE), η ∈ H̃n−1−i(Q≥lE), we find

ρ∗(C∗≥k(ξ) ∪ C∗≥l(η)) = ρ∗C∗≥k(ξ) ∪ ρ∗C∗≥l(η) = P ∗≥k(ρ∗ξ) ∪ P ∗≥l(ρ∗η) = 0.

As ρ∗ is an isomorphism,

C∗≥k(ξ) ∪ C∗≥l(η) = 0.

�

8. Thom-Mather Stratified Spaces

In the present paper, intersection spaces will be constructed for closed topological pseudoman-
ifolds that possess a topological stratification of depth 1 such that every connected component
of every singular stratum has a closed neighborhood whose boundary is the total space of a fiber
bundle, the link bundle, while the neighborhood itself is described by the corresponding cone
bundle. A large and well-studied class of stratified spaces that have such link bundle structures
are the Thom-Mather stratified spaces, which we shall briefly review with particular emphasis on
depth 1. Such spaces are locally compact, second countable Hausdorff spaces X together with
a Thom-Mather C∞-stratification, [30]. We are concerned with two-strata pseudomanifolds,
which, in more detail, are understood to be pairs (X,Σ), where Σ ⊂ X is a closed subspace
and a connected smooth manifold, and X \ Σ is a smooth manifold which is dense in X. The
singular stratum Σ must have codimension at least 2 in X. Furthermore, Σ possesses control
data consisting of an open neighborhood T ⊂ X of Σ, a continuous retraction π : T → Σ, and
a continuous distance function ρ : T → [0,∞) such that ρ−1 (0) = Σ. The restriction of π
and ρ to T \ Σ are required to be smooth and (π, ρ) : T \ Σ → Σ × (0,∞) is required to be a
submersion. (Mather’s axioms do not require (π, ρ) to be proper.) Without appealing to the
method of controlled vector fields required by Thom and Mather for general stratified spaces, we
shall prove directly that for two-strata spaces, the bottom stratum Σ possesses a locally trivial
link bundle whose projection is induced by π.
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Lemma 8.1. Let f : M → N be a smooth submersion between smooth manifolds and let Q ⊂ N
be a smooth submanifold. Then P = f−1(Q) ⊂M is a smooth submanifold and f | : P → Q is a
submersion.

Proof. A submersion is transverse to any submanifold. Thus, f is transverse to Q and
P = f−1(Q) is a smooth submanifold of M . The differential f∗ : TxM → Tf(x)N at any
point x ∈ P maps TxP into Tf(x)Q and thus induces a map TM/TP → TN/TQ of normal bun-
dles. This map is a bundle isomorphism (cf. [13, Satz (5.12)]). An application of the four-lemma
to the commutative diagram with exact rows

0 // TxP

f |∗
��

// TxM

f∗
����

// TxM/TxP

∼=
��

// 0

0 // Tf(x)Q // Tf(x)N // Tf(x)N/Tf(x)Q // 0

shows that f |∗ : TxP → Tf(x)Q is surjective for every x ∈ P . �

Proposition 8.2. Let (X,Σ) be a Thom-Mather C∞-stratified pseudomanifold with two strata
and control data (T, π, ρ). Then there exists a smooth function ε : Σ → (0,∞) such that the
restriction π : E → Σ to

E = {x ∈ T | ρ(x) = ε(π(x))}
is a smooth locally trivial fiber bundle with structure group G = Diff(L), the diffeomorphisms of
L = π−1(s) ∩ E, where s ∈ Σ.

Proof. If ε : Σ→ (0,∞) is any function, we write

Tε = {x ∈ T | ρ(x) < ε(π(x))}

and

Σ× [0, ε) = {(s, t) ∈ Σ× [0,∞) | 0 ≤ t < ε(s)}.
By [33, Lemma 3.1.2(2)], there exists a smooth ε such that (π, ρ) : Tε → Σ× [0, ε) is proper and
surjective (and still a submersion on Tε \Σ because Tε \Σ is open in T \Σ). (This involves only
arguments of a point-set topological nature, but no controlled vector fields. Pflaum’s lemma
provides only for a continuous ε, but it is clear that on a smooth Σ, one may take ε to be
smooth.) Setting

E = {x ∈ T | ρ(x) = 1
2ε(π(x))} ⊂ Tε \ Σ,

we claim first that π : E → Σ is proper. Let Gr ⊂ Σ× [0,∞) be the graph of 1
2ε. The continuity

of ε implies that Gr is closed in Σ× [0,∞) and the smoothness of ε implies that Gr is a smooth
submanifold. From the description E = (π, ρ)−1(Gr) we deduce that E is closed in Tε. The
inclusion of a closed subspace is a proper map, and the composition of proper maps is again
proper. Hence the restriction of a proper map to a closed subspace is proper. It follows that
(π, ρ) : E → Σ × [0,∞) is proper and then that (π, ρ) : E → Gr is proper. The first factor
projection π1 : Σ× [0,∞)→ Σ restricts to a diffeomorphism π1 : Gr→ Σ, which is in particular
a proper map. The commutative diagram

(8.1) E

π
  

(π,ρ) // Gr

∼= π1

��
Σ

shows that π : E → Σ is proper.
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We prove next that π : E → Σ is surjective: Given s ∈ Σ, the surjectivity of

(π, ρ) : Tε → Σ× [0, ε)

implies that there is a point x ∈ Tε such that (π(x), ρ(x)) = (s, 1
2ε(s)), that is, ρ(x) = 1

2ε(π(x)).
This means that x ∈ E and π(x) = s.

By Lemma 8.1, applied to the smooth map (π, ρ) : T \ Σ → Σ × (0,∞) and Q = Gr,
E = (π, ρ)−1(Gr) is a smooth submanifold and (π, ρ) : E → Gr is a submersion. Using the
diagram (8.1), π : E → Σ is a submersion.

Applying Ehresmann’s fibration theorem (for a modern exposition see [20]) to the proper,
surjective, smooth submersion π : E → Σ yields the desired conclusion. �

We call the bundle given by Proposition 8.2 the link bundle of Σ in X. The fiber is the link
of Σ. In this manner, Σ becomes the base space B of a bundle and thus we will also use the
notation Σ = B. More generally, this construction evidently applies to the following class of
spaces:

Definition 8.3. A stratified pseudomanifold of depth 1 is a tuple (X,Σ1, · · · ,Σr) such that

the Σi are mutually disjoint subspaces of X such that
(
X \

(⋃
j 6=i Σj

)
,Σi

)
is a two strata

pseudomanifold for every i = 1, . . . , r.

In a depth 1 space, every Σi possesses its own link bundle.

Definition 8.4. A stratified pseudomanifold of depth 1, (X,Σ1, · · · ,Σr), is a Witt space if the
top stratum X \

⋃
Σi is oriented and the following condition is satisfied:

• For each 1 ≤ i ≤ r such that Σi has odd codimension ci in X, the middle dimensional
homology of the link Li vanishes:

H ci−1

2
(Li) = 0.

Witt spaces were introduced by P. Siegel in [35]. He assumed them to be endowed with a
piecewise linear structure, as PL methods allowed him to compute the bordism groups of Witt
spaces. We do not use these computations in the present paper.

9. Intersection Spaces and Poincaré Duality

Let (X,B) be an n-dimensional two strata topological pseudomanifold such that B 6= ∅ is
a b-dimensional manifold that has a good open cover, e.g. B PL or even smooth. We assume
furthermore that B has a link bundle π : E → X in X so that a tubular neighborhood of B is
the associated cone bundle and the complement of the open tube is a manifold M with boundary
∂M = E. This is the case if (X,B) is a Thom-Mather C∞-stratification: The Thom-Mather
control data provide a tubular neighborhood T of B in X and a distance function ρ : T → [0,∞).
Let ε : Σ = B → (0,∞) be the smooth function provided by Proposition 8.2 such that π : E → B
is a fiber bundle, where E = {x ∈ T | ρ(x) = ε(π(x))}. Let M be the complement in X of
Tε = {x ∈ T | ρ(x) < ε(π(x))} and let L be the fiber of π : E → B. By the surjectivity of π, L
is not empty. The space M is a smooth n-dimensional manifold with boundary ∂M = E. Let
c = dimL = n− 1− b. Fix a perversity p satisfying the Goresky-MacPherson growth conditions
p(2) = 0, p(s) ≤ p(s + 1) ≤ p(s) + 1 for all s ∈ {2, 3, . . .}. Set k = c − p (c+ 1). The growth
conditions ensure that k > 0. Let q be the dual perversity to p. The integer l = c− q (c+ 1) is
positive. Assume that there exist G-equivariant Moore approximations of degree k and l,

f<k : L<k → L and f<l : L<l → L

for some choice of structure group G for the bundle π : E → B.
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We perform the fiberwise truncation and cotruncation of Section 6 on the link bundle

π : E = ∂M → B,

use these constructions to define two incarnations of intersection spaces, IpX and JpX associated
to X, and show that they are homotopy equivalent. The first, IpX, agrees with the original
definition given by the first author in [3] in all cases where they can be compared, the second
JpX has not been given before. It is introduced here to facilitate certain computations.

Definition 9.1. Define the map τ<k : ft<kE →M to be the composition

τ<k : ft<kE
F<k // E = ∂M

� � i // M,

where i is the canonical inclusion of ∂M as the boundary. Define IpX to be the homotopy
cofiber of τ<k, i.e. the homotopy pushout of the pair of maps

? ft<kEoo τ<k // M.

This is called the p-intersection space for X defined via truncation. If E ∼= B × L is a product
bundle, then this agrees with [3, Definition 2.41].

Definition 9.2. In Section 6, we obtained the map C≥k : E → Q≥kE. Define the p-intersection
space for X via cotruncation, JpX, to be the space obtained as the homotopy pushout of

Q≥k E
C≥koo � � i // M.

We have the following diagram of topological spaces, commutative up to homotopy, in which
every square is a homotopy pushout square:

ft<kE
F<k //

π<k

��

E

c≥k

��

i // M

η≥k

��

B
σ //

��

ft≥kE

ξ≥k

��
?

[c] // Q≥kE
ν≥k // JpX,

where η≥k and ν≥k are defined to be the maps coming from the definition of JpX as a homotopy
pushout.

Lemma 9.3. The canonical collapse map JpX → IpX is a homotopy equivalence.

Proof. By construction, the space JpX contains the cone on B, cB, as a subspace and (JpX, cB)
is an NDR-pair. Since cB is contractible, the collapse map JpX → JpX/cB is a homotopy
equivalence. The quotient JpX/cB is homeomorphic to IpX. �

The sequence

ft<k E
τ<k−→M −→ cone(τ<k) = IpX

induces a long exact sequence

(9.1) // Hr−1(ft<kE)
δp,r // H̃r

(
IpX

) ηr≥k // Hr(M)
τr<k // Hr(ft<kE) // .

Furthermore, we can define M̂ to be the homotopy pushout of the pair of maps

? ∂M = Eoo i // M.
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This is nothing but the space M with a cone attached to the boundary. Define J−1X to be the
homotopy pushout obtained from the pair of maps

? Q≥kEoo ν≥k // JpX.

Lemma 9.4. The canonical collapse map J−1X → M̂ is a homotopy equivalence.

Proof. The space J−1X contains the cone cQ≥kE as a subspace and (J−1X, cQ≥kE) is an NDR-
pair. Thus the collapse map J−1X → J−1X/cQ≥kE is a homotopy equivalence. The quotient

J−1X/cQ≥kE is homeomorphic to M̂ . �

By the lemma, using l and q instead of k and p, we have the long exact sequence (2.2)
associated to J−1X:

(9.2) // H̃r (Q≥lE)
ν≥l,r // H̃r

(
JqX

) ζ≥l,r // Hr (M,∂M)
δqr // H̃r−1 (Q≥lE) // ,

where ζ≥l is the composition of the map JqX → J−1X, defined by J−1X as a homotopy pushout,

with the collapse map J−1X
'−→ M̂ . In the sequence, we have identified H̃r(M̂) ∼= Hr (M,∂M).

Theorem 9.5. Let (X,B) be a compact, oriented, two strata pseudomanifold of dimension n.
Let p and q be complementary perversities, and k = c − p (c+ 1), l = c − q (c+ 1), where
c = n− 1− dimB. Assume that equivariant Moore approximations to L of degree k and degree
l exist. If the local duality obstructions O∗(π, k, l) of the link bundle π vanish, then there is a
global Poincaré duality isomorphism

(9.3) H̃r
(
IpX

) ∼= H̃n−r
(
IqX

)
.

Proof. We achieve this by pairing the sequence (9.1) with the sequence (9.2) (observing
Lemma 9.3) and using the five lemma. Consider the following diagram of solid arrows whose
rows are exact:

(9.4) // Hr−1(ft<kE)
δp,∗ //

Dr−1
k,l

∼=
��

H̃r
(
IpX

)
DrIX
��

η∗≥k // Hr(M)
τ∗<k //

DrM∼=
��

Hr(ft<kE)

Drk,l∼=
��

// H̃n−r (Q≥lE)
ν≥l,∗ // H̃n−r

(
IqX

) ζ≥l,∗// Hn−r (M,∂M)
δq∗ // H̃n−r−1 (Q≥lE)

Here Dr
k,l comes from Proposition 6.7, and Dr

M comes from the classical Lefschetz duality for
manifolds with boundary. The solid arrow square on the right can be written as

Hr(M)
i∗ //

DrM∼=
��

Hr(∂M)
F∗<k //

Dr∂M∼=
��

Hr(ft<kE)

Drk,l∼=
��

Hn−r (M,∂M)
δM,∂M∗ // Hn−r−1(∂M)

C≥l,∗// H̃n−r−1 (Q≥lE)

The left square commutes by classical Poincaré-Lefschetz duality, and the right square commutes
by Proposition 6.9 and Proposition 6.10, since O∗(π, k, l) = 0. Thus diagram (9.4) commutes.
By e.g. [3, Lemma 2.46], we may find a map Dr

IX to fill in the dotted arrow so that the diagram
commutes. By the five lemma, Dr

IX is an isomorphism. �

It does not follow from this proof that for a 4d-dimensional Witt space X the associated

intersection form H̃2d(IX) × H̃2d(IX) → Q is symmetric, where IX = Im̄X = I n̄X. In
Section 11, however, we shall prove that the isomorphism (9.3) can always be constructed so as
to yield a symmetric intersection form (cf. Proposition 11.11).
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10. Moore Approximations and the Intersection Homology Signature

Assume that (X,B) is a two-strata Witt space with dimX = n = 4d, d > 0, and dimB = b,
then c = 4d − 1 − b = dimL. If we use the upper-middle perversity n and the lower-middle
perversity m, which are complementary, we get the associated pair of integers k = b c+1

2 c and

l = d c+1
2 e. When c is odd then k = l = c+1

2 , and when c is even then k = c/2 and l = k + 1.
Notice that the codimension of B in X is c+ 1. So the Witt condition says that when c is even
then H c

2
(L) = 0. In this case if an equivariant Moore approximation of degree k exists, then so

does one of degree k + 1 = l and they can be chosen to be equal. Therefore, when X satisfies
the Witt condition and an equivariant Moore approximation to L of degree k exists, we can
construct ImX = InX and JmX = JnX. We denote the former space IX and the latter JX
and call this homotopy type the intersection space associated to the Witt space X.

The cone bundle DE is nothing but ft≥c+1E with L<c+1 = L. Note that when E = ∂M
as above, then DE is a two strata space with boundary ∂DE = ∂M , and we can realize X as

the pushout of the pair of maps M ∂M
ioo c≥c+1 // DE . Thus ∂M is bi-collared in X and by

Novikov additivity, Prop. II,3.1 [35], we have that the intersection homology Witt element wIH ,
defined in I,4.1 [35], is additive over these parts,

(10.1) wIH (X) = wIH(M̂) + wIH (TE) ∈W (Q) ,

where the Thom space TE is DE with a cone attached to its boundary, and W (Q) is the Witt
group of Q. When X is Witt, we write IH∗(X) for Im̄H∗(X) = I n̄H∗(X).

Proposition 10.1. If an equivariant Moore approximation to L of degree k = b 1
2 (dimL + 1)c

exists, then the middle degree, middle perversity intersection homology of the n = 4d-dimensional
Witt space TE vanishes,

IH2d (TE) = 0.

Proof. In this proof we use the notation ċE and ḊE to mean the open cone on E and the open
cone bundle associated to E. According to (5.3),

IpHr(ḊE) ∼= IpHr (DE) , and IpHr (ċE) ∼= IpHr (cE)

for all r ≥ 0. Hence, as in the proof of Proposition 5.3, we can identify the long exact sequence
of intersection homology groups associated to the pair (ḊE, ḊE \ B) with the same sequence
associated to the ∂-stratified pseudomanifold (DE,E) from (5.2).

Define open subsets U, V of TE by U = TE \ B = ċE and V = TE \ c = ḊE, where c is
the cone point. Then TE = U ∪ V and U ∩ V = E × (−1, 1). The Mayer-Vietoris sequence
associated to the pair (U, V ) gives

(10.2) // Hr (E)
iTEr // IHr(ḊE)⊕ IHr (ċE)

jTEr // IHr (TE)
δTEr // Hr−1 (E) //

Here we have identified IHr (E × (−1, 1)) ∼= Hr (E). After making the identifications as decribed
in the previous paragraph, the map iTEr = iDEr ⊕ icEr is identified as the sum of the maps coming
from the sequences associated to the pairs (DE,E) and (cE,E) respectively. In degrees r < 2d
we know from Proposition 5.3 that icEr is an isomorphism Hr (E) = IHr (cE). Thus iTEr is
injective for r < 2d. Consequently, when r = 2d, we have an exact sequence

· · · // H2d (E) // IH2d (DE)⊕ IH2d(cE) // IH2d (TE) // 0.

By the cone formula for intersection homology, IH2d(cE) = 0, since 2d = dimE−m(dimE+1).
Now by Proposition 6.5, the map H2d(E)→ IH2d(DE) is surjective. �
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Corollary 10.2. Let X be a compact, oriented, n = 4d-dimensional stratified pseudomanifold
of depth 1 which satisfies the Witt condition. If equivariant Moore approximations of degree
k = b 1

2 (dimL+ 1)c to the links of the singular set exist, then

wIH (X) = wIH(M̂) ∈W (Q) .

In particular, the signature of the intersection form on intersection homology satisfies

σIH (X) = σIH(M̂).

Proof. If IH2n (TE) = 0, then wIH (TE) = 0. The assertion follows from Novikov additivity
(10.1). �

Example 10.3. Let X = CP2 be complex projective space with B = CP1 ⊂ X as the bottom
stratum, so that the link bundle is the Hopf bundle over B. Then

σIH(X) = σ(CP2) = 1,

but

σ(M,∂M) = σ(D4, S3) = 0.

Indeed, the link S1 in the Hopf bundle has no middle-perversity equivariant Moore-approximation
because the Hopf bundle has no section.

11. The Signature of Intersection Spaces

Theorem 2.28 in [3] states that for a closed, oriented, 4d-dimensional Witt space X with only
isolated singularities, the signature of the symmetric nondegenerate intersection form

H̃2d(IX)× H̃2d(IX)→ Q

equals the signature of the Goresky-MacPherson-Siegel intersection form

IH2d(X)× IH2d(X)→ Q

on middle-perversity intersection homology. In fact, both are equal to the Novikov signature of
the top stratum. We shall here generalize that theorem to spaces with twisted link bundles that
allow for equivariant Moore approximation.

Definition 11.1. Define the signature of a 4d-dimensional manifold-with-boundary (M,∂M)
to be

σ (M,∂M) = σ (β) ,

where β is the bilinear form

β : im j∗ × im j∗ → Q, (j∗v, j∗w) 7→ (dM (v))(j∗w),

the homomorphism

j∗ : H2d(M) −→ H2d(M,∂M)

is induced by the inclusion, and

dM : H2d(M) −→ H2d(M,∂M)

is Lefschetz duality. This is frequently referred to as the Novikov signature of (M,∂M). It is

well-known ([35]) that σ(M,∂M) = σIH(M̂).
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Let (X,B) be a two strata Witt space with dimX = n = 4d, dimB = b. We assume
that an equivariant Moore approximation of degree k = 4d − b − 1 −m (4d− b) exists for the
link L of B in X, and that the local duality obstruction O∗(π, k, k) vanishes. As discussed
in the previous section, this implies that the intersection space IX exists and is well-defined.
Theorem 9.5 asserts that IX satisfies Poincaré duality

dIX : H̃2d(IX)
∼=−→ H̃2d(IX).

We shall show (Proposition 11.11) that dIX can in fact be so constructed that the associated
intersection form on the middle-dimensional homology is symmetric. One may then consider its
signature:

Definition 11.2. The signature of the space IX,

σ (IX) = σ (β) ,

is defined to be the signature of the symmetric bilinear form

β : H̃m(IX)× H̃m(IX)→ Q,

with m = 2d, defined by

β(v, w) = dIX(v)(w)

for any v, w ∈ H̃m(IX). Here we have identified H̃m(IX) ∼= H̃m(IX)† via the universal coeffi-
cient theorem.

Theorem 11.3. The signature of IX is supported away from the singular set B, that is,

σ (IX) = σ (M,∂M) .

Before we prove this theorem, we note that in view of Corollary 10.2, we immediately obtain:

Corollary 11.4. If a two-strata Witt space (X,B) allows for middle-perversity equivariant
Moore-approximation of its link and has vanishing local duality obstruction, then

σIH(X) = σ(IX).

The rest of this section is devoted to the proof of Theorem 11.3. We build on the method
of Spiegel [37], which in turn is partially based on the methods introduced in the proof of
[3, Theorem 2.28]. Regarding notation, we caution that the letters i and j will both denote
certain inclusion maps and appear as indices. This cannot possibly lead to any confusion.

Let {e1, . . . , er} be any basis for j∗Hm(M), where

j∗ : Hm(M) −→ Hm(M,∂M)

is induced by the inclusion. For every i = 1, . . . , r, pick a lift ei ∈ Hm(M), j∗(ei) = ei. Then
{e1, . . . , er} is a linearly independent set in Hm(M) and

(11.1) Q〈e1, . . . , er〉 ∩ ker j∗ = {0}.

Let

dM : Hm(M)
∼=−→ Hm(M,∂M) = Hm(M,∂M)†

be the Lefschetz duality isomorphism, i.e. the inverse of

D′M : Hm(M,∂M)
∼=−→ Hm(M),

given by capping with the fundamental class [M,∂M ] ∈ H2m(M,∂M). Let

d′M : Hm(M,∂M)
∼=−→ Hm(M)
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be the inverse of
DM : Hm(M)

∼=−→ Hm(M,∂M),

given by capping with the fundamental class. We shall make frequent use of the symmetry
identity

dM (v)(w) = d′M (w)(v),

v ∈ Hm(M), w ∈ Hm(M,∂M), which holds since the cup product of m-dimensional cohomology
classes commutes as m = 2d is even. The commutative diagram

Hm(M)
j∗ //

dM

��

Hm(M,∂M)

d′M
��

Hm(M,∂M)
j∗

// Hm(M)

implies that the symmetry equation

dM (ei)(ej) = dM (ej)(ei)

holds, as the calculation

dM (ei)(ej) = dM (ei)(j∗ej) = j∗dM (ei)(ej) = d′M (j∗ei)(ej)

= d′M (ei)(ej) = dM (ej)(ei)

shows.
In the proof of [3, Theorem 2.28], the first author introduced the annihilation subspace

Q ⊂ Hm(M,∂M),
Q = {q ∈ Hm(M,∂M) | dM (ei)(q) = 0 for all i}.

It is shown on p. 138 of loc. cit. that one obtains an internal direct sum decomposition

Hm(M,∂M) = im j∗ ⊕Q.

Let L ⊂ H̃m(IX) be the kernel of the map

ζ≥k∗ : H̃m(IX) −→ Hm(M,∂M).

Once we have completed the construction of a symmetric intersection form, L will eventually be

shown to be a Lagrangian subspace of an appropriate subspace of H̃m(IX). Let {u1, . . . ul} be
any basis for L.

We consider the commutative diagram

(11.2) Hm(M,∂M) Hm(M,∂M)

Hm(ft<k E)
τ<k∗ // Hm(M)

j∗

OO

η≥k∗ // H̃m(IX)

ζ≥k∗

OO

δ∗ // Hm−1(ft<k E)

Hm(ft<k E) �
� F<k∗ // Hm(∂M)

i∗

OO

C≥k∗ // // H̃m(Q≥kE)

ν≥k∗

OO

δ∗=0 // Hm−1(ft<k E)

The rows and columns are exact and we have used Lemma 6.6. By exactness of the right

hand column, the basis elements uj can be lifted to H̃m(Q≥kE), and by the surjectivity of C≥k∗,
these lifts can be further lifted to Hm(∂M). In this way, we obtain linearly independent elements
u1, . . . , ul in Hm(∂M) such that

η≥k∗i∗(uj) = ν≥k∗C≥k∗(uj) = uj
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for all j. Setting

wj = dM (i∗(uj))

yields a linearly independent set {w1, . . . , wl} ⊂ Hm(M,∂M). From now on, let us briefly write
η∗, ζ∗, etc., for η≥k∗, ζ≥k∗, etc. Since η∗i∗(uj) = uj , we have

Q〈i∗(u1), . . . , i∗(ul)〉 ∩ ker η∗ = {0}.
Together with (11.1), and noting ker η∗ ⊂ ker j∗, this shows that there exists a linear subspace
A ⊂ Hm(M) yielding an internal direct sum decomposition

(11.3) Hm(M) = Q〈i∗(u1), . . . , i∗(ul)〉 ⊕ ker η∗ ⊕Q〈e1, . . . , er〉 ⊕A.
Setting

Z = ker η∗ ⊕Q〈e1, . . . , er〉 ⊕A,
we have

Hm(M) = Q〈i∗(u1), . . . , i∗(ul)〉 ⊕ Z,
such that

(11.4) ker η∗ ⊂ Z and Q〈e1, . . . , er〉 ⊂ Z.
Choose a basis {z̃1, . . . , z̃s} of Z and put zj = dM (z̃j) ∈ Hm(M,∂M). Then {z1, . . . zs} is a
basis for dM (Z) and

Hm(M,∂M) = Q〈w1, . . . , wl〉 ⊕Q〈z1, . . . , zs〉.
Let

{w1, . . . , wl, z1, . . . , zs} ⊂ Hm(M,∂M)

be the dual basis of {w1, . . . , wl, z1, . . . , zs}, that is,

(11.5) wi(wj) = δij , z
i(zj) = δij , w

i(zj) = 0, zi(wj) = 0.

Lemma 11.5. The set {w1, . . . , wl} is contained in the image of ζ∗.

Proof. In view of the commutative diagram

H̃m(IX)
ζ∗ // Hm(M,∂M)

δ∗ //

d′M
∼=
��

H̃m−1(Q≥kE)

Hm(M)
τ∗ // Hm(ft<k E),

Dk,k∼=

OO

it suffices to show that δ∗(wj) = 0, since the top row is exact. Let x ∈ Hm(ft<k E) be any
element. Then τ∗x ∈ ker η∗ ⊂ Z, so dM (τ∗x)(wj) = 0 by (11.5). Consequently,

(τ∗d′M (wj))(x) = d′M (wj)(τ∗x) = dM (τ∗x)(wj) = 0.

It follows that τ∗d′M (wj) = 0 and in particular

δ∗(wj) = Dk,kτ
∗d′M (wj) = 0.

�

Suppose that v ∈ ker ζ∗ ∩ η∗〈e1, . . . , er〉. Then v is a linear combination v = η∗
∑
λiei and

0 = ζ∗(v) = ζ∗η∗
∑

λiei =
∑

λij∗(ei) =
∑

λiei.

Thus λi = 0 for all i by the linear independence of the ei. This shows that

L ∩ η∗〈e1, . . . , er〉 = {0}.
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Therefore, it is possible to choose a direct sum complement W ⊂ H̃m(IX) of L = ker ζ∗,

(11.6) H̃m(IX) = L⊕W,

such that

(11.7) η∗〈e1, . . . , er〉 ⊂W.

The restriction

ζ∗|W : W −→ im ζ∗

is then an isomorphism and thus by Lemma 11.5, we may define

wj = (ζ∗|W )−1(wj).

We define subspaces V,L′ ⊂W by

V = (ζ∗|W )−1(im j∗), L
′ = (ζ∗|W )−1(Q ∩ im ζ∗).

Recall that {e1, . . . , er} is a basis of im j∗. Setting

vj = (ζ∗|W )−1(ej),

yields a basis {v1, . . . , vr} for V . From

ζ∗(vi) = ei = j∗(ei) = ζ∗η∗(ei)

it follows that

vi = η∗(ei),

since both vi and η∗(ei) are in W and ζ∗ is injective on W .
The decomposition Hm(M,∂M) = im j∗ ⊕Q induces a decomposition

im ζ∗ = (im j∗ ⊕Q) ∩ im ζ∗ = im j∗ ⊕ (Q ∩ im ζ∗).

Applying the isomorphism (ζ∗|W )−1, we receive a decomposition

W = (ζ∗|W )−1(im j∗)⊕ (ζ∗|W )−1(Q ∩ im ζ∗) = V ⊕ L′.

By (11.6), we arrive at a decomposition

H̃m(IX) = L⊕ V ⊕ L′.

Lemma 11.6. The set {w1, . . . , wl} ⊂W is contained in L′.

Proof. By construction of L′, we have to show that ζ∗(wj) ∈ Q for all j. Now ζ∗(wj) = wj ,
so by construction of Q, we need to demonstrate that dM (ei)(wj) = 0 for all i. By (11.4),
dM (ei) ∈ dM (Z), whence the result follows from (11.5). �

Lemma 11.7. The set {w1, . . . , wl} ⊂W is a basis for L′.

Proof. The preimages wj = (ζ∗|W )−1(wj) under the isomorphism ζ∗|W are linearly independent
since {w1, . . . , wl} is a linearly independent set. In particular, dimL′ ≥ l. It remains to be
shown that dimL′ ≤ l. Standard linear algebra provides the inequality

rk η∗ ≤ dim ker ζ∗ + rk(ζ∗η∗),

valid for the composition of any two linear maps. As ζ∗η∗ = j∗, we may rewrite this as

(11.8) rk η∗ ≤ l + rk j∗.
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By Theorem 9.5, there exists some isomorphism H̃m(IX)→ H̃m(IX) such that

(11.9) H̃m(IX)
η∗ //

∼=
��

Hm(M)

∼= DM

��
H̃m(IX)

ζ∗ // Hm(M,∂M)

commutes. Therefore,

rk ζ∗ = rk η∗ = rk η∗,

and by (11.8),

rk ζ∗ ≤ l + rk j∗.

The decomposition (11.6) implies that

dim H̃m(IX) = l + dimW = l + rk ζ∗ ≤ 2l + rk j∗.

On the other hand, the decomposition H̃m(IX) = L⊕ V ⊕ L′ implies

dim H̃m(IX) = l + dimV + dimL′ = l + rk j∗ + dimL′.

It follows that

l + rk j∗ + dimL′ ≤ 2l + rk j∗

and thus

dimL′ ≤ l.
�

In summary then, we have constructed a certain basis

(11.10) {u1, . . . , ul, v1, . . . , vr, w1, . . . , wl}

for H̃m(IX) = L⊕ V ⊕ L′.

Remark 11.8. The above proof shows that rk η∗ ≤ l + rk j∗ = l + r. Thus the restriction of η∗
to the subspace A ⊂ Hm(M) in the decomposition (11.3) is zero, which implies that A ⊂ ker η∗
and so A = {0}. The decomposition of Hm(M) is thus seen to be

(11.11) Hm(M) = Q〈i∗(u1), . . . , i∗(ul)〉 ⊕ ker η∗ ⊕Q〈e1, . . . , er〉.

In particular,

Z = ker η∗ ⊕Q〈e1, . . . , er〉.

Let

{u1, . . . , ul, v1, . . . , vr, w1, . . . , wl}

be the dual basis for H̃m(IX). Setting

L† = Q〈u1, . . . , ul〉, V † = Q〈v1, . . . , vr〉, (L′)† = Q〈w1, . . . , wl〉,

we get a dual decomposition

H̃m(IX) = L† ⊕ V † ⊕ (L′)†.

We define the duality map

dIX : H̃m(IX) −→ H̃m(IX)
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on basis elements to be

dIX(uj) := wj ,

dIX(wj) := uj ,

dIX(vj) := ζ∗dM (ej).

We shall now prove that dIX is an isomorphism.

Lemma 11.9. The image dIX(V ) is contained in V †.

Proof. In terms of the dual basis, dIX(vj) can be expressed as a linear combination

dIX(vj) =
∑
p

πpu
p +

∑
q

εqv
q +

∑
i

λiw
i.

The coefficients πp are

πp = (ζ∗dM (ej)) (up) = dM (ej)(ζ∗up) = 0,

since up ∈ L = ker ζ∗. Using (11.5) and dM (ej) ∈ dM (Z) = Q〈z1, . . . , zs〉, we find

λi = (ζ∗dM (ej)) (wi) = dM (ej)(wi) = 0.

�

Lemma 11.10. The restriction dIX | : V → V † is injective.

Proof. Suppose that v =
∑
q εqvq is any vector v ∈ V with dIX(v) = 0. Then

0 = η∗dIX(v) = η∗
∑

εqdIX(vq) = η∗
∑

εqζ
∗dM (eq)

= j∗dM
∑

εqeq = d′M
∑

εqj∗(eq)

= d′M
∑

εqeq.

Since d′M is an isomorphism,
∑
εqeq = 0 and by the linear independence of the eq, the coefficients

εq all vanish. This shows that v = 0. �

By definition, dIX maps L isomorphically onto (L′)† and L′ isomorphically onto L†. Since by
Lemma 11.10, dIX | : V → V † is an isomorphism, we conclude that the duality map

dIX : H̃m(IX)→ H̃m(IX)

is an isomorphism.

Proposition 11.11. The intersection form

β : H̃m(IX)× H̃m(IX)→ Q

given by β(v, w) = dIX(v)(w) is symmetric. In fact it is given in terms of the basis (11.10) by
the matrix 0 0 I

0 S 0
I 0 0

 ,

where I is the l× l-identity matrix and S is a symmetric r× r-matrix, representing the classical
intersection form on im j∗ whose signature is the Novikov signature σ(M,∂M).
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Proof. On V , we have

dIX(vi)(vj) = ζ∗dM (ei)(vj) = ζ∗dM (ei)(η∗ej)

= dM (ei)(j∗ej) = dM (ei)(ej) = dM (ej)(ei)

= dM (ej)(j∗ei) = ζ∗dM (ej)(η∗ei)

= ζ∗dM (ej)(vi) = dIX(vj)(vi).

These are the symmetric entries of S. Between V and L we find

dIX(vi)(uj) = ζ∗dM (ei)(uj) = dM (ei)(ζ∗uj) = 0,

as uj ∈ L = ker ζ∗. This agrees with

dIX(uj)(vi) = wj(vi) = 0,

by definition of the dual basis. The intersection pairing between V and L′ is trivial as well:

dIX(vi)(wj) = ζ∗dM (ei)(wj) = dM (ej)(ζ∗wj) = dM (ei)(wj) = 0,

since dM (ei) ⊂ dM (Z). This agrees with

dIX(wj)(vi) = uj(vi) = 0,

again by definition of the dual basis. On L,

dIX(ui)(uj) = wi(uj) = 0

and on L′,
dIX(wi)(wj) = ui(wj) = 0.

Finally, the intersection pairing between L and L′ is given by

dIX(ui)(wj) = wi(wj) = δij = uj(ui) = dIX(wj)(ui).

�

Theorem 11.3 follows readily from this proposition because

σ(IX) = σ(S) + σ

(
0 I
I 0

)
= σ(S) = σ(M,∂M).

It remains to prove that both

(11.12) H̃m(IX)
ζ∗ //

dIX
��

Hm(M,∂M)

d′M

��
H̃m(IX)

η∗
// Hm(M)

and

(11.13) H̃m(Q≥kE)
ν∗ // H̃m(IX)

dIX
��

Hm−1(ft<k E)

Dk,k

OO

δ∗ // H̃m(IX)

commute. We begin with diagram (11.12) and check the commutativity on basis elements.

1. We verify that η∗dIX(uj) = d′Mζ∗(uj) for all j. By exactness, ζ∗η∗i∗ = j∗i∗ = 0 and hence

d′Mζ∗(uj) = d′Mζ∗η∗i∗(uj) = 0.
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So it remains to show that η∗dIX(uj) = 0. We break this into three steps according to the
decomposition (11.11). Evaluating on elements of the form i∗ui yields

η∗dIX(uj)(i∗ui) = (η∗wj)(i∗ui) = wj(η∗i∗ui) = wj(ui) = 0.

If a is any element in ker η∗, then

(η∗wj)(a) = wj(η∗a) = 0.

Before evaluating on elements ei, we observe that since η∗ei ∈W (by (11.7)) and

ζ∗(η∗ei) = j∗ei ∈ im j∗,

we have

η∗ei ∈W ∩ ζ−1
∗ (im j∗) = V.

It follows that

(η∗wj)(ei) = wj(η∗ei) = 0.

Thus η∗dIX(uj) = 0 as claimed.

2. On basis elements vj , the commutativity is demonstrated by the calculation

η∗dIX(vj) = η∗ζ∗dM (ej) = j∗dM (ej) = d′M j∗(ej)

= d′Mζ∗η∗(ej) = d′Mζ∗(vj).

3. We prove that η∗dIX(wj) = d′Mζ∗(wj) for all j. Again it is necessary to break this into
three steps according to the decomposition (11.11). Evaluating on elements of the form i∗ui
yields

η∗dIX(wj)(i∗ui) = η∗(uj)(i∗ui) = uj(η∗i∗ui) = uj(ui) = δij

and

d′Mζ∗(wj)(i∗ui) = d′M (wj)(i∗ui) = dM (i∗ui)(wj) = wi(wj) = δij .

If a is any element in ker η∗, then

η∗(uj)(a) = uj(η∗a) = 0 = dM (a)(wj) = d′M (wj)(a),

using (11.5) and dM (a) ∈ dM (Z). Finally, on elements ei we find

η∗(uj)(ei) = uj(η∗ei) = uj(vi) = 0 = dM (ei)(wj) = d′M (wj)(ei),

using (11.5) and dM (ei) ∈ dM (Z). The commutativity of (11.12) is now established.

If a ∈ Hm(M) and b ∈ H̃m(IX) are any elements, then using (11.12),

ζ∗dM (a)(b) = dM (a)(ζ∗b) = d′M (ζ∗b)(a) = (η∗dIXb)(a)

= dIX(b)(η∗a) = dIX(η∗a)(b),

where the last equation uses the symmetry of dIX , Proposition 11.11. Hence the diagram

(11.14) Hm(M)
η∗ //

dM

��

H̃m(IX)

dIX
��

Hm(M,∂M)
ζ∗ // H̃m(IX)
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commutes as well. The cohomology braid of the triple

ft<k E
F<k //

τ
##

∂M

i

��
M

contains the commutative square

(11.15) Hm−1(∂M)
δ∗ //

F∗<k
��

Hm(M,∂M)

ζ∗

��
Hm−1(ft<k E)

δ∗ // H̃m(IX).

We are now in a position to prove the commutativity of (11.13).
Let a ∈ Hm−1(ft<k E) be any element. We must show that dIXν∗Dk,k(a) = δ∗(a). As

F ∗<k : Hm−1(∂M) → Hm−1(ft<k E) is surjective (Lemma 6.6), there exists an a ∈ Hm−1(∂M)
with a = F ∗<k(a). By Propositions 6.9, 6.10, Dk,k is the unique isomorphism such that

Hm−1 (∂M)
F∗<k //

D∂M ∼=
��

Hm−1 (ft<kE)

Dk,k∼=
��

Hm (∂M)
C≥k∗ // H̃m (Q≥kE)

commutes. Therefore,

Dk,k(a) = Dk,kF
∗
<k(a) = C≥k∗D∂M (a).

Then, by the lower middle square in Diagram (11.2),

ν∗Dk,k(a) = ν∗C≥k∗D∂M (a) = η∗i∗D∂M (a).

Applying dIX and using the commutative diagram (11.14), we arrive at

dIXν∗Dk,k(a) = dIXη∗i∗D∂M (a) = ζ∗dM i∗D∂M (a).

Now the commutative diagram

Hm(∂M)
i∗ // Hm(M)

dM

��
Hm−1(∂M)

D∂M

OO

δ∗ // Hm(M,∂M)

shows that

dIXν∗Dk,k(a) = ζ∗δ∗(a),

which by Diagram (11.15) equals δ∗F ∗<k(a) = δ∗(a), as was to be shown.

12. Sphere Bundles, Symplectic Toric Manifolds

We discuss equivariant Moore approximations for linear sphere bundles and for symplectic
toric manifolds.
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Proposition 12.1. Let ξ = (E, π,B) be an oriented real n-plane vector bundle over a closed,
oriented, connected, n-dimensional base manifold B. Let S(ξ) be the associated sphere bundle
and let eξ ∈ Hn(B;Z) be the Euler class of ξ. Then S(ξ) can be given a structure group which
allows for a degree k equivariant Moore approximation, for some 0 < k < n, if and only if eξ = 0.

Proof. Assume that S(ξ) can be given a structure group which allows for a degree k equivariant
Moore approximation for some 0 < k < n. If the fiber dimension n of the vector bundle is odd,
then the Euler class has order two. Since Hn(B;Z) ∼= Z is torsion free, eξ = 0. Thus we may
assume that n = 2d is even. We form the double

X4d = DE ∪SE DE,

where DE is the total space of the disk bundle of ξ, and SE = ∂DE. Then X is a manifold,
but we may view it as a 2-strata pseudomanifold (X,B) by taking B ⊂ X to be the zero section
in one of the two copies of DE in X. For this stratified space, M = DE, ∂M = SE, and

M̂ = TE, the Thom-space of ξ. Since the double of any manifold with boundary is nullbordant,
the signature of X vanishes, σIH(X) = σ(X) = 0. Note that a degree k equivariant Moore
approximation to Sn−1, some 0 < k < n, is in particular an equivariant Moore approximation
of degree b 1

2 (dimSn−1 + 1)c = bn2 c. Thus by Corollary 10.2,

σIH(TE) = σIH(X) = 0.

The middle intersection homology of the Thom space of a vector bundle is given by

IHn(TE) ∼= im (Hn(DE)→ Hn(DE,SE)),

[29, p. 77, Example 5.2.5.3]. By homotopy invariance Hn(DE) ∼= Hn(B) ∼= Q[B], and by the
Thom isomorphism Hn(DE,SE) ∼= H0(B) ∼= Q. The intersection form on the, at most one-
dimensional, image is determined by the self-intersection number [B] · [B] of the fundamental
class of B, which is precisely the Euler number. Since σIH(TE) = 0, this self-intersection
number, and thus eξ, must vanish. (Note that in this case, the map Hn(DE) → Hn(DE,SE)
is the zero map and IHn(TE) = 0, for IHn(TE) ∼= Q and [B] · [B] = 0 would contradict the
nondegeneracy of the intersection pairing.)

Conversely, if eξ = 0, then [24, Thm. 2.10, p. 137] asserts that ξ has a nowhere vanishing

section. This section induces a splitting ξ ∼= ξ′⊕R1, where ξ′ is an (n− 1)-plane bundle and R1

denotes the trivial line bundle over B. This splitting reduces the structure group from SO(n) to
SO(1)×SO(n−1) = {1}×SO(n−1). The action of this reduced structure group on Sn−1 has two
fixed points; let p ∈ Sn−1 be one of them. Then {p} ↪→ Sn−1 is an {1} × SO(n− 1)-equivariant
Moore approximation for every degree 0 < k < n. �

Example 12.2. A symplectic toric manifold is a quadruple (M,ω, Tn, µ), where M is a 2n-
dimensional, compact, symplectic manifold with non-degenerate closed 2-form ω, there is an
effective Hamiltonian action of the n-torus Tn on M , and µ : M → Rn is a choice of moment map
for this action. There is a one-to-one correspondence between such 2n-dimensional symplectic
toric manifolds and so-called Delzant polytopes in Rn, [19], given by the assignment

(M,ω, Tn, µ) 7→ ∆M := µ (M) .

Recall that a polytope in Rn is the convex hull of a finite number of points in Rn. Delzant
polytopes in Rn have the property that each vertex has exactly n edges adjacent to it and for
each vertex p, every edge adjacent to p has the form {p + tui | Ti ≥ t ≥ 0} with ui ∈ Zn, and
u1, . . . , un constitute a Z-basis of Zn.

Section 3.3 of [18] uses the Delzant polytope ∆M to construct Morse functions on M as
follows: Let X ∈ Rn be a vector whose components are independent over Q. Then X is not
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parallel to any facet of ∆M and the orthogonal projection πX : Rn → R onto the line spanned
by X, πX(Y ) = 〈Y,X〉, is injective on the vertices of ∆M . By composing the moment map µ
with the projection πX , one obtains a Morse function fX = πX ◦µ : M → R, fX(q) = 〈µ(q), X〉,
whose critical points are precisely the fixed points of the Tn action. The images of the fixed
points under the moment map are the vertices of ∆M . Since the coadjoint action is trivial on a
torus, Tn acts trivially on Rn, and as µ is equivariant, it is thus constant on orbits. Hence the
level sets of πX ◦ µ are Tn-invariant. The index of a critical point p is twice the number of edge
vectors ui of ∆M at µ(p) whose inner product with X is negative, 〈ui, X〉 < 0. In particular,
the index is always even. For a ∈ R, we set Ma = f−1

X (−∞, a] ⊂M .
Suppose that one can choose X in such a way that the critical points satisfy:

(C) For any two critical points p, q of fX , if the index of p is larger than the index of q, then
fX(p) > fX(q).

Then, since fX is Morse, for each critical value a of fX the set Ma+ε is homotopy equivalent
to a CW-complex with one cell attached for each critical point p with fX(p) < a+ ε. (Here ε > 0
has been chosen so small that there are no critical values of fX in (a, a+ ε].) The dimension of
the cell associated to p is the index of fX at p. Let 2i be the index of any critical point p ∈Ma+ε

with fX(p) = a. If q ∈ Ma+ε is an arbitrary critical point of fX , then fX(q) ≤ fX(p) = a
and thus the index of q is at most 2i by condition (C). Thus Ma+ε contains all cells of M that
have dimension at most 2i and no other cells. Since M has only cells in even dimensions, the
cellular chain complex of M has zero differentials in all degrees. Thus, since fX is equivariant,
Ma+ε ↪→ M is a Tn-equivariant Moore approximation of degree 2i + 1 (and of degree 2i + 2),
and is a smooth manifold with boundary.

A particular case of this is the complex projective space (CPn, ωFS, T
n, µ), where ωFS is the

Fubini-Study symplectic form and Tn acts on CPn by

(eit1 , . . . , eitn) · (z0 : z1 : · · · : zn) = (z0 : eit1z1 : · · · : eitnzn).

On page 26 of [31], an equivariant Morse function with n+1 critical points is constructed, the i-th
one having index 2i and critical value i. Using this we obtain equivariant Moore approximations
to CPn of every degree with respect to the torus action.

In the case that M is 4-dimensional, condition (C) is satisfied. The Delzant polytope µ(M)
associated to a 4-dimensional symplectic toric manifold (M,ω, T 2, µ) is a 2-dimensional polytope
in R2. As M is compact, fX attains its minimum m and its maximum m′ on M . Let pmin ∈M
be a critical point with fX(pmin) = m and let pmax ∈M be a critical point with fX(pmax) = m′.
Suppose that p ∈M is any critical point such that fX(p) = m. Then πXµ(p) = m = πXµ(pmin).
The moment images v = µ(p) and vmin = µ(pmin) are vertices of ∆M . Since the projection πX
is injective on vertices, we have v = vmin. Now as µ maps the fixed points (which are precisely
the critical points) bijectively onto the vertices, it follows that p = pmin. This shows that pmin is
unique and similarly pmax is unique. The index of pmin is 0, while the index of pmax is 4. Thus
〈u1, X〉 ≥ 0 and 〈u2, X〉 ≥ 0 at vmin and 〈u1, X〉 < 0 and 〈u2, X〉 < 0 at vmax.

Geometrically, this means that the two edges that go out from vmin point in the same half-
plane as X, while the outgoing edges at vmax point in the half-plane complementary to the one
of X. If v is any vertex of the moment polytope different from vmin, vmax, then by the convexity
of ∆M , one of the two outgoing edges must point in X’s half-plane, while the other outgoing
edge points into the complementary half-plane, yielding an index of 2. If p ∈ M is a critical
point different from pmin, pmax, then µ(p) is a vertex different from vmin, vmax and thus must have
index 2. From this, it follows that condition (C) is indeed satisfied: If p, q are critical points
such that p has larger index than q, then there are two cases: p has index 4 and q has index in
{0, 2}, or p has index 2 and q has index 0. In the first case, p = pmax and in the second case
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q = pmin. In both cases it is then clear, using the uniqueness of pmin, pmax, that fX(p) > fX(q).
We have thus shown:

Proposition 12.3. Every 4-dimensional symplectic toric manifold (M,ω, Tn, µ) has an equi-
variant Moore approximation M<k of degree k for every k ∈ Z. Furthermore, the space M<k

can be chosen to be a smooth compact codimension 0 submanifold-with-boundary of M .
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