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SMOOTH ARCS ON ALGEBRAIC VARIETIES

DAVID BOURQUI AND JULIEN SEBAG

Abstract. Let k be a field and V be a k-variety. We say that a rational arc γ ∈ L∞(V )(k)
is smooth if its formal neighborhood L∞(V )γ is an infinite-dimensional formal disk. In this
article, we prove that every rational arc γ ∈ (L∞(V ) \ L∞(Vsing))(k) is smooth if and only
if the formal branch containing γ is smooth.

1. Introduction

1.1. The present article is partly motivated by the exegesis of the following statement with
respect to singularity theory. This result was obtained by M. Grinberg and D. Kazhdan in
case the base field k is contained in C, and by V. Drinfeld for an arbitrary field k (see [8, 6],
or [4] for a generalization of such a statement in the context of formal geometry).

Theorem 1.2. Let k be a field. Let V be a k-variety, and v ∈ V (k) be a rational point of
V . We assume that dimv(V ) ≥ 1. Let γ ∈ L∞(V )(k) be a rational point of the associated
arc scheme, not contained in L∞(Vsing) such that γ(0) = v. If L∞(V )γ denotes the formal
neighborhood of the k-scheme L∞(V ) at the point γ, there exists an affine k-scheme S of finite
type, with s ∈ S(k), and an isomorphism of formal k-schemes:

L∞(V )γ ∼= Ss×̂k Spf(k[[(Ti)i∈N]]). (1.1)

1.3. Since the work of J. Nash, which introduced the so-called Nash problem, one knows that
the geometry of L∞(V ) is deeply related to the geometry of the singularities of V . As an
illustration of this general principle at the level of formal neighborhoods, let us mention the
following easy and well-known fact: for every rational arc γ ∈ L∞(V )(k), with origin v := γ(0)
contained in the smooth locus of V , the formal neighborhood L∞(V )γ is isomorphic to the
infinite-dimensional k-formal disk DN

k := Spf(k[[(Ti)i∈N]]). If we translate this remark in the
terms of theorem 1.2, it means that, in this case, S can be chosen equal to Spec(k). In fact,
we observe that, in this case, the corresponding algebra OL∞(V ),γ is formally smooth over k for
the discrete topology. Indeed, one may assume that V is affine and smooth and that there is an
étale map V → Ad. By [14, Lemme 3.3.6] one then has L∞(V ) ∼= V ×Ad

k
L∞(Ad

k) thus by [9,
Chapter 0, 19.3.3, 19.3.5 (ii)] the k-algebra O(L∞(V )) ∼= O(V )[(Ti)i∈N] is formally smooth for
the discrete topology. By [9, Chapter 0, 19.3.5 (iv)], this is also the case for OL∞(V ),γ . In this
general context, we address the following natural question:

Question 1.4. Does the converse property hold true? In other words, if S = Spec(k) in theo-
rem 1.2, is it true that γ(0) is a smooth point of V ?

With respect to theorem 1.2, a positive answer in the direction of question 1.4 clearly indicates
that the formal k-scheme Ss in the Drinfeld-Grinberg-Kazhdan theorem would be a measure of
the singularities of V at the origin γ(0) of the involved arc γ. Since the authors proved in [3] that,
in general, theorem 1.2 does not hold if the involved arc γ belongs to L∞(Vsing), it seems natural
to us, in this perspective, to restrict ourselves to the case of arcs not contained in L∞(Vsing),
that we call non-degenerate.
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1.5. In the present paper, we provide a complete answer to question 1.4 for non-degenerate
arcs (which are in particular contained in a unique irreducible component of Spec(ÔV,γ(0)), by
proposition 3.6). Precisely we obtain the following statement:

Theorem 1.6. Let V be a k-variety and v ∈ V (k) such that OV,v is reduced and dimv(V ) ≥ 1.
Let γ ∈ L∞(V )(k) be a non-degenerate rational arc, such that γ(0) = v. Then, the following
conditions are equivalent:

(1) The unique formal branch containing γ is smooth.
(2) The formal neighborhood L∞(V )γ is isomorphic to DN

k .

Let us note that by [9, Chapter 0, 19.3.6, 19.5.4] the second condition in the statement of
theorem 1.6 characterizes those non-degenerate rational arcs γ whose local ring OL∞(V ),γ is
formally smooth over k for the m-adic topology. In the case of curves, we are able to interpret
the above result in terms of a notion of rigidity for deformations of arcs (see corollary 4.14). We
also obtain analogs of theorem 1.6 in the case of constant arcs (in particular degenerate) and in
the context of jet schemes (see proposition 5.2 and theorem 5.4).

1.7. Conventions, notation. In this article, k is a field of arbitrary characteristic (unless
explicitly stated otherwise); k[[T ]] is the ring of power series over the field k. The category of k-
schemes is denoted by Schk. The local k-algebra k[[(Ti)i∈N]] is the completion of k[(Ti)i∈N] with
respect to the maximal ideal 〈(Ti)i∈N〉. It is a topological complete k-algebra when we endow it
with the projective limit topology. We denote by DN

k := Spf(k[[(Ti)i∈N]]) the associated formal
k-scheme. A k-variety is a k-scheme of finite type. The singular locus Vsing of V is defined as
the (unique) reduced closed subscheme associated with the non-smooth locus of V . An arc of V ,
i.e., a point of the arc scheme L∞(V ) associated with V , which is not contained in the singular
locus Vsing of V , is called a non-degenerate arc. In other words, the subset L∞(V )\L∞(Vsing) is
the set of non-degenerate arcs. In this article, by slightly abusing the standard conventions, we
introduce the terminology of smooth rational arcs on V to designate those arcs γ ∈ L∞(V )(k)
such that L∞(V )γ ∼= DN

k (assuming that the dimension at the origin γ(0) of the arc is positive).

2. Arc schemes and arc deformations: recollection

2.1. If V is a k-variety and n ∈ N, the restriction à la Weil of the k[T ]/〈Tn+1〉-scheme
V ×k Spec(k[T ]/〈Tn+1〉)

with respect to the morphism of k-algebras k ↪→ k[T ]/〈Tn+1〉 exists; it is a k-scheme of fi-
nite type which is called the n-jet scheme of V and that we denote by Ln(V ). The projec-
tive limit lim←−n(Ln(V )) exists in the category of k-schemes; it is the arc scheme associated
with V and we denote it by L∞(V ). For every integer n ∈ N, the canonical morphism of k-
schemes π∞n : L∞(V ) → Ln(V ) is called the truncation morphism of level n. Let A be a k-
algebra. As proved in [1], there exists a natural bijection

HomSchk
(Spec(A),L∞(V )) ∼= HomSchk

(Spec(A[[T ]]), V ). (2.1)
Let us note that in case V is affine or A is local, such a property directly follows from the mere
definitions.

2.2. We denote by Lacp the following category. The objects are the topological local k-algebras,
which are topologically isomorphic to m-adic completions of local k-algebras and whose residue
field are k-algebras isomorphic to k. The morphisms in Lacp are the continuous morphisms of
local k-algebras. We denote by Tes the full subcategory of Lacp whose objects are test-rings, i.e.,
local k-algebras in Lacp with nilpotent maximal ideal and residue field isomorpic to k. If T̂es is
the category of pre-cosheaves on the category Tes (i.e., covariant functors from the category Tes
to the category of sets), we define the functor

F : Lacp −→ T̂es

Ô 7−→ HomLacp(Ô, ·).
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One has the following seemingly standard observation (see [6]):

Observation 2.3. The functor F is fully faithful.

One will use the following trivial consequence of the observation: let S and S′ be k-schemes,
let s ∈ S(k) and s ∈ S′(k), let Ss and S′s′ be the associated formal neighborhoods and
let fA : Ss(A)→ S′s′(A) be a natural map defined for every test-ring (A,mA); then there exists a
unique morphism of formal k-schemes f : Ss → S′s′ inducing fA for every test-ring A; moreover, f
is an isomorphism if and only if fA is bijective for every A.

2.4. Let V be a k-variety. Let γ ∈ L∞(V )(k). Then, in the sense of observation 2.3, the
formal k-scheme L∞(V )γ is uniquely determined by the functor F ( ̂OL∞(V ),γ). Let A be a test-
ring. Let γA ∈ L∞(V )γ(A). The datum of γA corresponds to one of the following (equivalent)
commutative diagram:

OL∞(V ),γ
γA //

��

A

��
k k

OV,v
γA //

γ

��

A[[T ]]

pA

��
k[[T ]] k[[T ]],

ÔV,v
γA //

γ

��

A[[T ]]

pA

��
k[[T ]] k[[T ]],

(2.2)

where we denote by pA : A[[T ]] → k[[T ]] the unique local morphism which extends the projec-
tion A → A/mA ∼= k. The set L∞(V )γ(A) parametrizes the elements γA ∈ V (A[[T ]]) whose
reduction modulo mA coincides with γ.

Definition 2.5. Every morphism γA ∈ L∞(V )γ(A) is called an A-deformation of γ.

3. Reduction to formal branches

Definition 3.1. Let V be a k-variety. Let γ ∈ L∞(V )(k) be a rational arc, viewed as a local
morphism γ : ÔV,γ(0) → k[[T ]]. A formal branch (or formal component) at γ(0) which contains γ
is a minimal prime ideal p of ÔV,γ(0) such that p ⊂ Ker(γ).

In particular, if p is such a branch, this definition implies that γ factorizes through the quotient
morphism ÔV,γ(0) → ÔV,γ(0)/p. A classical fact on arc geometry is that every arc on a reduced
variety factorizes through the irreducible components of the involved variety which contain the
origin of the arc. In the same spirit, the following lemma shows in particular that the formal
neighborhood of a given arc contained in a unique formal branch of a reduced variety carries a
part of the information on the mere singularities of the formal branch containing the arc.

Proposition 3.2. Let V be a k-variety. Let γ ∈ L∞(V )(k) be a rational arc contained in a
unique formal branch p. We assume that OV,γ(0) is reduced. Then, for every test-ring (A,mA),
for every A-deformation γA ∈ L∞(V )γ(A) of γ, the induced morphism of admissible local k-
algebras γA : ÔV,γ(0) → A[[T ]] factorizes through ÔV,γ(0) → ÔV,γ(0)/p. Besides, the ideal p is the
only minimal prime ideal with this property.

In other words, if the arc γ is contained in a unique formal branch at γ(0), then every A-
deformation of γ is contained in the same branch (and only in this one).

Proof. Let (A,mA) be a test-ring and γA ∈ L∞(V )γ(A), corresponding to a diagram of mor-
phisms of complete local k-algebras:

ÔV,γ(0)
γA //

γ
$$

A[[T ]]

��
k[[T ]].

(3.1)
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Then, we have Ker(γ) = γ−1
A (mA[[T ]]). Let p, q1, . . . , qn be the minimal prime ideals of the

ring ÔV,γ(0). By assumptions, Ker(γ) contains p and does not contain qi for every i ∈ {1, . . . , n}.
Let us prove that p ⊂ Ker(γA).

Let x ∈ p. Since the ring ÔV,γ(0) is reduced, we have p ∩ (∩ni=1qi) = 〈0〉. By assumption, for
every integer i ∈ {1, . . . , n}, there exists an element yi ∈ qi such that yi 6∈ Ker(γ). Then, we
deduce that xy1 . . . yn = 0 and that

γA(xy1 . . . yn) = 0
γA(x) · γA(y1) . . . γA(yn) = 0. (3.2)

Since, by construction, yi 6∈ γ−1
A (mA[[T ]]) for every integer i ∈ {1, . . . , n}, we conclude that

the element γA(yi) does not reduce to zero modulo mA[[T ]]. In particular (see lemma 3.3),
the element γA(yi) is not a zero-divisor in the ring A[[T ]]; hence, by equation (3.2), we have
γA(x) = 0, i.e., x ∈ Ker(γA).

In the end, if there exists i ∈ {1, . . . , n} such that qi ⊂ γ−1
A (0) = Ker(γA), then we

have qi ⊂ γ−1
A (mA[[T ]]) = Ker(γ), which contradicts our assumption. It concludes the proof

of our statement. �

Lemma 3.3. Let (A,mA) be a test-ring, let rA(T ) ∈ A[[T ]] whose reduction modulo mA[[T ]] is
a non-zero element of k[[T ]]. Then, the power series rA(T ) is not a zero-divisor in A[[T ]].

Proof. By the Weierstrass preparation theorem (see [12, Chapter IV, Theorem 9.2]), there is a
decompostion rA(T ) = qA(T )uA(T ) where qA(T ) is a distinguished polynomial and uA(T ) is
invertible in A[[T ]]. By the uniqueness in the Weierstrass division theorem, (see [12, Chapter
IV, Theorems 9.1 and 9.2]) a distinguished polynomial is not a zero-divisor in A[[T ]]. �

Remark 3.4. In particular, under the assumptions of proposition 3.2 with V reduced, the arc γ
is contained in a unique irreducible component passing through γ(0), and every A-deformation
of γ is contained in this irreducible component.

Remark 3.5. If one does not assume that the arc γ belongs to a unique formal branch, and
dim(OV,v) ≥ 2, it is important to keep in mind that the situation is much more complicated and
proposition 3.2 does not hold anymore. Let us consider the example of the affine k-surface

V = Spec(k[X,Y, Z]/〈Y 2 −X3 −X〉).

It is an integral k-variety and ÔV,o ' k[[U, V,W ]]/〈UV 〉, where we denote by o the origin of A3
k.

Let A = k[S]/〈S2〉 and s := S̄. We observe that the arc γ, defined by U 7→ 0, V 7→ 0,W 7→ T ,
admits the A-deformation γA(T ) = (s, s, T ), which is not contained in any formal branch of V
at the origin o.

Proposition 3.6. Let V be a k-variety. Let γ ∈ L∞(V )(k) be a rational arc. If the arc γ is
non-degenerate, then the arc γ is contained in a unique formal branch.

Proof. In Spec(k[[T ]]), we denote by 0 the closed point, and η the generic point. Let us note
that the arc γ is non-degenerate if and only if the point γ(η) does not belong to Vsing. Up to
shrinking V , we may assume that the k-variety V is affine and reduced. We also may assume
that dim(OV,γ(0)) ≥ 1. The arc γ corresponds a morphism of local k-algebras γ : OV,γ(0) → k[[T ]]
which extends to a morphism of local k-algebras γ̂ : ÔV,γ(0) → k[[T ]]. We denote by M the
maximal ideal of O(V ) corresponding to γ(0). First assume that Ker(γ) contains at least two
distinct minimal prime ideals of OV,γ(0); in more geometric terms, that γ lies on at least two
distinct irreducible components passing through γ(0). Then (OV,γ(0))Ker(γ) ∼= OV,γ(η) is not a
domain, thus γ(η) is not a smooth point of V and γ ∈ L∞(Vsing).

Now consider the general case. Let OhV,γ(0) be the henselization of OV,γ(0). One has

OhV,γ(0) = lim−→ Bq,
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where the limit is taken over all étale O(V )-algebras B localized at a prime q such that

q ∩ O(V ) = M and κ(q) = κ(M).

By [16, Tag 0CB3], one may find such a (B, q) such that the morphism Bq → OhV,γ(0) induces
a bijection on the level of minimal prime ideals. On the other hand, by [16, Tag 0C2E], the
morphism OhV,γ(0) → ÔV,γ(0) also induces a bijection on the level of minimal prime ideals.
Let γB : B → k[[T ]] (resp. γBq

: Bq → k[[T ]]) be the morphism induced by γ̂. Assuming
that Ker(γ̂) contains at least two distinct minimal prime ideals, we deduce that the same holds
for Ker(γBq

). By the particular case treated above, one infers that BKer(γB) is not a domain, in
particular Ker(γB) = γB(η) is not a smooth point of Spec(B). Since Spec(B)→ V is étale and
maps γB(η) to γ(η), the point γ(η) is not a smooth point of V by [10, Chapitre 4, 17.11.1]. �

4. The proof of theorem 1.6

Let p be the unique formal branch containing γ, v := γ(0) and Ôp,v := ÔV,v/p be the
corresponding local ring.

4.1. Let us show first 1⇒ 2. This implication is a direct consequence of the following proposi-
tion, which is a corollary of proposition 3.2, and of proposition 3.6.

Proposition 4.2. Let V be a k-variety and γ ∈ L∞(V )(k) be an arc with v = γ(0) which
is assumed to be contained in a unique formal branch. We assume that OV,v is reduced and
dimv(V ) ≥ 1. Assume that the formal branch p containing γ is smooth. Then the formal k-
scheme L∞(V )γ is isomorphic to DN

k .

Proof. Let (A,mA) be a test-ring. By assumption, there exists an integer d ≥ 1 such that

Ôp,v
∼→ k[[S1, . . . , Sd]].

By proposition 3.2, the A-deformations of γ are in natural bijection with the set of local mor-
phisms Ôp,v → A[[T ]]. This set is itself in natural bijection with mN

A . By observation 2.3,
the k-formal schemes L∞(V )γ and DN

k are isomorphic. �

4.3. We prove now 2 ⇒ 1. We have to show that the k-algebra Ôp,v is isomorphic (in Lacp)
to a k-algebra of power series in a finite number of variables. Our proof is based on different
ingredients which are established in subsections 4.4, 4.6; the main arguments are presented in
subsection 4.9.

4.4. Let us start by establishing a basic result. Keep the notation of theorem 1.2.

Lemma 4.5. Let V be a k-variety and v ∈ V (k) such that OV,v is reduced and dimv(V ) ≥ 1.
Let γ ∈ L∞(V )(k) be a non-degenerate rational arc with γ(0) = v. Assume that the formal
neighborhood L∞(V )γ is isomorphic to DN

k and that the minimal prime ideal p of ÔV,v corre-
sponds to the formal branch containing γ. Let (B,mB) be a local ring. Then, every morphism
of local k-algebras Ôp,v → (B/m2

B)[[T ]] lifts to a morphism of local k-algebras Ôp,v → B̂[[T ]].

Proof. First, since we have L∞(V )γ ∼= DN
k , we observe that, for every surjective morphism of

test-rings f : A′ → A, the natural map

mN
A′
∼=HomLacp(Ôp,v, A

′[[T ]]) f◦· // HomLacp(Ôp,v, A[[T ]])∼= mN
A

is surjective. Hence, starting from a morphism ϕ2 : Ôp,v → B/m2
B [[T ]], we may construct, by

induction, a family of morphisms ϕn : Ôp,v → B/mn+2
B [[T ]], for every integer n ∈ N, which
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makes, for every pair (m,n) ∈ N2 of integers with m ≥ n, the following diagram of morphisms
in Lacp commute

Ôp,v
ϕm // B/m2+m

B

π
����

Ôp,v ϕn

// B/m2+n
B ,

where we denote by π the canonical projection. By the very definition, we have constructed a
morphism ϕ : Ôp,v → B̂[[T ]] lifting ϕ2. �

For every noetherian local k-algebra B, we have B/mnB ∼= B̂/m̂nB for every integer n ≥ 1 by
[13, §8]. Under this assumption, the arguments developed in the proof of lemma 4.5 imply in
particular that the set of liftings of ϕ2 can be identified with k[[(Ti)i∈N]].

4.6. Using the following lemma, we shall, in some sense, reduce the proof of the theorem 1.6 to
the case of a complete intersection. This kind of reduction is a classical “trick” in the construction
of motivic measures (see [5] or, e.g., [14]).

Lemma 4.7. Let V be an affine k-variety, defined by the datum of an ideal IV of the poly-
nomial ring k[X1, . . . , XN ] and γ ∈ L∞(V )(k) be a non-degenerate arc. Then, there exist an
integer M ∈ {0, . . . , N} and elements F1, . . . , FM ∈ IV , such that:

(1) There exists an (M ×M)-minor of the jacobian matrix (∂Xj
Fi)i,j which does not vanish

at γ.
(2) Setting

V ′ := Spec(k[X]/〈F1, . . . , FM 〉),
the morphism of formal k-schemes L∞(V )γ ∼= L∞(V ′)γ induced by the closed immer-
sion V ↪→ V ′ is an isomorphism.

Proof. Let us denote by JV the ideal generated by the elements hδ ∈ k[X1, . . . , XN ], where δ is
an (M ×M)-minor of the jacobian matrix of aM -tuple (F1, . . . , FM ) of elements of IV , for some
integerM ∈ N, and h ∈ (〈F1, . . . , FM 〉 : IV ). Using the jacobian criterion, one may show (see [7,
§0.2], [17, §4]) that the singular locus Vsing of V , i.e., the reduced closed subscheme associated
with the non-smooth locus, is the support of the closed subscheme of V associated with the
datum of the ideal IV + JV . Since γ 6∈ L∞(Vsing)(k), we obtain all the desired properties, using
lemma 4.8 below for the last one. �

Lemma 4.8. Let V ′ be an affine k-variety, V be a closed k-subscheme of V ′ and
h ∈ (0 : IV ) ⊂ O(V ′).

Let γ ∈ L∞(V )(k) such that h(γ) 6= 0. Then, still denoting by γ the image of γ in V ′, the natural
morphism of formal schemes L∞(V )γ → L∞(V ′)γ is an isomorphism of formal k-schemes.

Proof. It suffices to show that for every test-ring A the induced map L∞(V )γ(A)→ L∞(V ′)γ(A)
is bijective. Injectivity is clear; so let us show surjectivity. We pick out γA ∈ L∞(V ′)γ(A)
and G ∈ IV . We have to show that G(γA) = 0. By hypothesis, one has h(γA)G(γA) = 0.
Since h(γ) 6= 0, the reduction of h(γA) modulo mA is not zero. By lemma 3.3, one infers
that G(γA) = 0. �

4.9. We are ready to complete the proof of theorem 1.6, by proving implication 2 ⇒ 1. We
may assume that V ↪→ AN

k is affine and, thanks to proposition 3.2 and remark 3.4, irreducible.
LetM , F1, F2, . . . , FM , δ and h be the elements provided by lemma 4.7 and set d := N−M . Up
to renumbering, we may assume that δ is the determinant of the matrix (∂Xd+j

(Fi))i,j∈{1,...,M}
and that ordT (δ(γ(T )) is minimal among the T -orders of the evaluation at γ(T ) of the (M×M)-
minors of the jacobian matrix (∂Xj (Fi))i∈{1,...,M}

j∈{1,...,N}
. Moreover, up to a translation, we may assume
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that v is the origin of Ad+M
k . For every integer i ∈ {1, . . . , d + M}, we will denote by x̂i the

image of Xi in Ôp,v. Note that, since hδ does not vanish at γ, the element hδ does not vanish
identically on V ; hence,we have dim(V ) = d.

We shall identify γ(T ) with a tuple (xj(T ))i∈{1,...,N} ∈ k[[T ]]d+M which satisfies, for every
integer i ∈ {1, . . . ,M}, the equation

Fi((xj(T ))j∈{1,...,d+M}) = 0.
Using the second property of lemma 4.7, for every test-ring (A,mA), an element of L∞(V )γ(A)
may and shall be identified with a tuple (x1,A(T ), . . . , xd+M,A(T )) of elements of mA[[T ]]d+M

such that, for every integer i ∈ {1, . . . ,M},
Fi((xj(T ) + xj,A(T ))j∈{1,...,d+M}) = 0.

We denote by Ad,2 the test-ring k[S1, . . . , Sd]/〈S1, . . . , Sd〉2 and by si the image of Si in Ad,2. By
lemma 4.11, there exists an element (x1,Ad,2(T ), . . . , xd+M,Ad,2(T )) ∈ L∞(V )γ(Ad,2) such that,
for every integer i ∈ {1, . . . , d},

xi,Ad,2(T ) = si.

By proposition 3.2, there exists a morphism Ôp,v → Ad,2[[T ]] which maps x̂i to si for every
integer i ∈ {1, . . . , d}. Since the formal k-scheme L∞(V )γ is isomorphic to DN

k , by lemma 4.5,
there exists a morphism Ôp,v → k[[S1, . . . , Sd]][[T ]] which maps, for every integer i ∈ {1, . . . , d},
the element x̂i to an element of Si + 〈S1, . . . , Sd〉2[[T ]]. Specializing to T = 0, we deduce from
lemma 4.10 that the induced morphism Ôp,v → k[[S1, . . . , Sd]] is surjective. Its kernel is a prime
ideal of Ôp,v. Since Ôp,v is an integral domain of dimension d, this prime ideal is necessarily
zero, by the Hauptidealsatz. We deduce the existence of a continuous isomorphism

Ôp,v
∼→ k[[S1, . . . , Sd]]

of admissible local k-algebras, which shows the desired result by [10, 17.5.3].

For the convenience of the reader, we state and prove the following version of the inverse
function theorem for formal power series, probably well-known among the specialists.

Lemma 4.10. Let d ≥ 1 be an integer. Let m be the maximal ideal of the local k-algebra
k[[S1, . . . , Sd]]. Let ϕ : k[[S1, . . . , Sd]] → k[[S1, . . . , Sd]] be a morphism of local k-algebras which
induces an isomorphism of k-vector spaces ϕ1 : m/m2 → m/m2. Then, the morphism ϕ is an
isomorphism.

Proof. For every integer n ≥ 1, we deduce from the assumption a k-linear map
ϕn : mn/mn+1 → mn/mn+1

defined by ϕn(P̄ ) = ϕ(P ) for every power series P ∈ k[[S1, . . . , Sd]]. For every integer n ≥ 1,
the map ϕn is surjective. Indeed, for every y1, . . . , yn ∈ m, there exists x1, . . . , xn ∈ m such
that ϕ2(x̄i) := ϕ(xi) = ȳi for every integer i ∈ {1, . . . , n}. The element x := x1 . . . xn is a
preimage of y := y1 . . . yn by ϕn which concludes the proof of our claim.

Since, for every integer n ∈ N, the k-vector space mn/mn+1 is finite dimensional, we conclude
that the map ϕn are bijective. We deduce the assertion from [2, III/§2/Corollaire 3]. �

Let us recall a convention of subsection 4.9. If a rational arc γ(T ) is identified with a tu-
ple (xj(T ))i∈{1,...,N} ∈ k[[T ]]d+M which satisfies, for every integer i ∈ {1, . . . ,M}, the equation

Fi((xj(T ))j∈{1,...,d+M}) = 0,
then, for every test-ring (A,mA), an element of L∞(V )γ(A) may be identified with a tuple

(x1,A(T ), . . . , xd+M,A(T ))
of elements of mA[[T ]]d+M such that, for every integer i ∈ {1, . . . ,M},

Fi((xj(T ) + xj,A(T ))j∈{1,...,d+M}) = 0.
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Lemma 4.11. Keep the notation and convention of subsection 4.9. Let (A,mA) be a test-ring
such that m2

A = 0. Then, the natural application

L∞(V )γ(A) −→ (mA[[T ]])d
(x1,A(T ), . . . , xd+M,A(T )) 7−→ (x1,A(T ), . . . , xd,A(T ))

is bijective.

Proof. We denote by J the jacobian matrix [∂Xj
Fi] i∈{1,...,M}

j∈{1,...,d+M}
. Recall that

det
([
∂XjFi

]
i∈{1,...,M}

j∈{d+1,...,d+M}

)
does not vanish at γ(T ). Using the Taylor expansion and the fact that m2

A = 0, we observe that,
for every tuple (x1,A(T ), . . . , xd+M,A(T )) ∈ mA[[T ]]d+M , the conditions

∀i ∈ {1, . . . ,M} Fi(xj(T ) + xj,A(T ))j∈{1,...,d+M} = 0
are equivalent to the condition

J (γ(T )) ·

 x1,A(T )
...

xd+M,A(T )

 =

0
...
0

 .

Using lemmas 3.3 and 4.12, we deduce that there exist elements (bi,j(T ))i∈{1,...,M}
j∈{1,...,d}

in k[[T ]] such

that latter condition is equivalent to the system

xd+i,A(T ) =
d∑
j=1

bi,j(T ) · xj,A(T ), i ∈ {1, . . . ,M}.

That concludes the proof. �

Lemma 4.12. Let k be a field, and d, M be positive integers. Let

M =
[
(Mi,j) 1≤i≤M

1≤j≤d+M

]
be a (M × (d+M)) matrix with coefficients in k[[T ]]. Assume that

µ := ordT
(

det
[
(Mi,j) 1≤i≤M

d+1≤j≤d+M

])
is an integer, minimal among the orders of the (M ×M)-minors of the matrix M. Then there
exists an (M ×M) matrix N with coefficients in k[[T ]], whose determinant is not zero, such that

N ·M =


a1,1 . . . a1,d Tµ 0 . . . 0
a2,1 . . . a2,d 0 Tµ . . . 0
... . . .

... 0 0
. . . 0

aM,1 . . . aM,d 0 0 . . . Tµ

 (4.1)

∀(i, j) ∈ {1, . . . ,M} × {1, . . . , d} ordT (ai,j) ≥ µ. (4.2)

Proof. This obvious remark was originally made in [5, p. 216]. Write

det
([

(Mi,j) 1≤i≤M
d+1≤j≤d+M

])
= Tµ u(T )

with u(T ) ∈ k[[T ]]× and set

N = u(T )−1ad
([

(Mi,j) 1≤i≤M
d+1≤j≤d+M

])
.
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Clearly equation (4.1) holds. Moreover for (i, j) ∈ {1, . . . ,M} × {1, . . . , d} the coefficient ai,j
is a linear combination of (M ×M)-minors of the matrixM with coefficients in k[[T ]]. Hence,
formula (4.2) also holds. �

4.13. Let k be a field. Let (C , c) be an integral k-curve, geometrically unibranch at c ∈ C (k).
Let γ ∈ L∞(C )(k) be a primitive k-parametrization of C at c1. We say that γ is a rigid arc2

if, for every test-ring (A,mA), for every A-deformation γA ∈ L∞(V )γ(A), there exists a unique
power series rA(T ) ∈ mA[[T ]] such that γA(T ) = γ(T + rA(T )). In the particular case of curves,
we may interpret theorem 1.6 as follows.

Corollary 4.14. Let k be a field. Let C be an integral k-curve and c ∈ C (k). We assume
that (C , c) is geometrically unibranch. Let γ be a primitive k-parametrization at c. Then the
following conditions are equivalent:

(1) The germ (C , c) is smooth.
(2) The formal neighborhood L∞(C )γ is isomorphic to DN

k .
(3) The arc γ is rigid.
(4) Let π : C̄ → C be the normalization of C and γ̄ the unique lifting of γ to C̄ ; then the

morphism of formal k-schemes L∞(C̄ )γ̄ → L∞(C )γ induced by π is an isomorphism.

Proof. By theorem 1.6 and standard remarks, we only have to show implication 4⇒ 3. Let
us assume that γ is a primitive k-parametrization at c such that the morphism of formal k-
schemes L∞(C̄ )γ̄ → L∞(C )γ induced by the normalization π : C̄ → C is an isomorphism,
and let us show that γ is rigid. Note that γ̄ is the unique isomorphism ÔC̄ ,c̄

∼→ k[[T ]] such
that γ = π̂ ◦ γ̄. Let (A,mA) be a test-ring. For every power series rA ∈ mA[[T ]], one has

γ(rA(T ) + T ) = π̂(γ̄(rA(T ) + T ))

By assumption, γ̄A(T ) 7→ π̂(γ̄A(T )) is a natural bijection from L∞(C̄ )γ̄(A) onto L∞(C )γ(A).
Since γ̄ is rigid, we conclude that γ is rigid too, which concludes the proof of the implication. �

5. Related problems

5.1. A slight variation on an argument of [11, proof of Proposition 1.1] also allows to describe
the constant arcs whose formal neighborhood is isomorphic to DN

k (in arbitrary dimensions),
i.e., smooth constant arcs. We denote by σ the canonical section of the projection

π∞0 : L∞(V )→ L0(V ) ∼= V.

Thus, for every v ∈ V , the point σ(v) of L∞(V ) is the associated constant arc.

Proposition 5.2. Let V be a k-variety and v ∈ V (k) such that dimv(V ) ≥ 1. Then the following
conditions are equivalent:

(1) The k-variety V is smooth at v.
(2) The formal neighborhood L∞(V )σ(v) is isomorphic to DN

k .

In other words, smooth constant arcs on V correspond to smooth points of V .

Proof. We only have to show implication 2⇒ 1. By [10, 17.5.1, 17.5.3], it suffices to show that
the local k-algebra ÔV,v is formally smooth for the mv-adic topology (which coincides here with
the projective limit topology). By [9, 19.3.3,19.3.6] and the hypothesis, the k-algebra ̂OL∞(V ),σ(v)
is formally smooth for the projective limit topology. Since the continuous morphism

ÔV,v → ̂OL∞(V ),σ(v)

induced by the projection L∞(V ) → V admits a continuous retraction (induced by σ) we may
conclude the proof by the very definition of formal smoothness. �

1If k is assumed to be perfect, the assumption that c is geometrically unibranch guarantees the existence of
primitive k-parametrizations at c.

2An analogous notion has been originally introduced in [15] for constant arcs.
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5.3. For non-degenerate arcs centered at a unibranch point, we have an analog of theorem 1.6
with regards to the smoothness of the truncations of the involved arc.

Theorem 5.4. Let V be a k-variety and v ∈ V (k). We assume that ÔV,v is a domain. Let
γ ∈ L∞(V )(k) be a rational non-degenerate arc with γ(0) = v. Then the following conditions
are equivalent:

(1) The k-variety V is smooth at v.
(2) There exists an integer n ∈ N such that γn := π∞n (γ) is a smooth point of the jet

scheme Ln(V ).
(3) For every n ∈ N, the point γn is a smooth point of Ln(V ).

Implication 1 ⇒ 3 is well-kown (e.g., see [14, Lemme 3.4.2]); 3 ⇒ 2 is formal. In the end,
the proof of implication 2 ⇒ 1 is very similar to the proof of theorem 1.6. Indeed, we have
to mimick the original proof and replace the use of lemma 4.5 by that of the following lemma,
whose proof is completely similar to that of lemma 4.5.

Lemma 5.5. Let V be a k-variety and v ∈ V (k) such that OV,v is reduced and dimv(V ) ≥ 1.
Let γ ∈ L∞(V )(k) be a non-degenerate rational arc with γ(0) = v. Let n ∈ N be an integer.
Assume that the formal neighborhood Ln(V )γn

is isomorphic to Dr
k and that the minimal prime

ideal p of ÔV,v corresponds to the formal branch containing γ. Let (B,mB) be a local ring.
Then, every morphism of local k-algebras Ôp,v → (B/m2

B)[T ]/〈Tn+1〉 lifts to a morphism of
local k-algebras Ôp,v → B̂[T ]/〈Tn+1〉.

Remark 5.6. This completes in particular a result of [11]. In loc. cit., S. Ishii shows that the
jet scheme Ln(V ) is not smooth at any constant jet centered at a non-smooth point of V (see
the proof of proposition 1.1 in op.cit.). Theorem 5.4 shows that Ln(V ) is not smooth at any jet
which is the truncation of a non-degenerate arc centered at a non-smooth unibranch point of V .

Remark 5.7. If the reduced germ (V, v) is no longer assumed analytically irreducible, even if
the formal branch containing γ is smooth, the truncations γn can be non-smooth points of the
corresponding jet scheme in general. This is already clear for n = 0 but this may fail more
generally for every n. For example let V = Spec(k[X,Y ]/〈X Y 〉) and γ(T ) = (T, 0); then one
may check that for every non-negative integer n one has

̂OLn(V ),γn
∼= k[[X0, . . . , Xn, Y ]]/〈Xn+1

0 Y 〉.
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