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A REMARK ON THE IRREGULARITY COMPLEX

CLAUDE SABBAH

Abstract. We prove that, for a good meromorphic flat bundle with poles along a divisor
with normal crossings, the restriction of the irregularity complex to each natural stratum of
this divisor only depends on the formal flat bundle along this stratum. This answers a question
raised by J.-B.Teyssier.

1. Statement of the results

Let X be a complex manifold of dimension n and let D =
⋃
i∈J Di be a divisor with normal

crossings. We assume that each irreducible component Di of D is smooth. For any subset I ⊂ J ,
we set DI =

⋂
i∈I Di and D◦I = DI r

⋃
j /∈I Dj . We denote the codimension of D◦I by `, that we

regard as a locally constant function on D◦I (which can have many connected components), and
by ιI : D◦I ↪→ D the inclusion. Let M be a holonomic DX -module such that

(1) M = M (∗D),
(2) MXrD is locally OX -free of finite rank.

We then say that M is a meromorphic flat bundle with poles along D. In this note, we assume
that M has a good formal structure along D (we simply say that M is a good D-meromorphic flat
bundle, or a good meromorphic flat bundle on (X,D)). This notion, together with the Riemann-
Hilbert correspondence, will be recalled in Section 2. Recall also that, given any meromorphic flat
bundle on (X ′, D′) (where D′ is an arbitrary reduced divisor in X ′), there exists, locally on X ′,
a projective modification X → X ′ such that the pullback of D′ by this modification is a divisor
with simple normal crossings D and the pullback meromorphic flat bundle is a D-meromorphic
flat bundle having a good formal structure along D (see [Ked10, Ked11], and [Moc09, Moc11a]
in the algebraic case; see also [Sab00] for special cases when dimX = 2).

For every I ⊂ J , we consider the sheaf O
X̂|D◦I

on D◦I , also denoted by O
D̂◦I

, defined as the
formalization of OX along D◦I . We also regard it as a sheaf on X by extending it by zero. We
then set D

D̂◦I
= O

D̂◦I
⊗OX DX , and M

D̂◦I
:= D

D̂◦I
⊗DX M .

For any holonomic DX -module N , the irregularity complexes IrrD N and Irr∗D N , as defined
by Mebkhout [Meb90], are constructible complexes supported onD, and only depend on N (∗D).
For a good D-meromorphic flat bundle M as above, the cohomology of IrrD M and Irr∗D M is
locally constant along each stratum D◦I : this follows from [Tey13, Th. 12.2.7] if #I = 1 and from
Corollary 3.4 together with the case #I = 1 otherwise. On the other hand, Mebkhout has shown
that the complexes IrrD M [dimX], Irr∗D M [dimX] are a perverse sheaves (see loc. cit.).

Our aim in this note is to compare the irregularity complexes of M restricted to D◦I and those
of the formalized module M

D̂◦I
. However, the irregularity complexes of M

D̂◦I
are not defined by
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the procedure of [Meb90]. To give a meaning to the question, we start by proving in Section 2.f
the following proposition.

Proposition 1.1. For every I ⊂ J , there exists a unique good D-meromorphic flat bundle M ◦
I

in the neighbourhood of D◦I which satisfies the following two properties.
(1) D

D̂◦I
⊗DX M ◦

I 'M
D̂◦I

.
(2) At each point of D◦I , the local formal decomposition of M ◦

I (after a local ramification
around D) into elementary formal D-meromorphic flat bundles already holds without
taking formalization.

The main result of this note can now be stated.

Theorem 1.2. For every I ⊂ J , we have

ι−1
I IrrD M ' ι−1

I IrrD(M ◦
I ), and ι−1

I Irr∗D M ' ι−1
I Irr∗D(M ◦

I ).

In other words, the complexes ι−1
I IrrD M , ι−1

I Irr∗D M only depend (up to isomorphism) on
the formalization M

D̂◦I
of M along D◦I .

Acknowledgements. The statement of Theorem 1.2 has been suggested, in a numerical variant,
by Jean-Baptiste Teyssier, against my first expectation. He was motivated by a nice application
to moduli of Stokes torsors obtained in [Tey16]. I thank him for having led me to a better
understanding of the irregularity complex, and for suggesting a simpler proof of Proposition 1.1.
I thank the referee for interesting comments.

2. Good formal structure and the Riemann-Hilbert correspondence

2.a. Notation. We keep the notation of the introduction. If Z is any locally closed analytic
subspace of the complex analytic manifold X, we denote by OẐ , the formal completion of OX
with respect to the ideal sheaf IZ . We regard OẐ as a sheaf on Z.

Given xo ∈ D, there exists a unique I ⊂ J such that xo ∈ D◦I , and we will be mostly interested
in the case where Z is the point xo ∈ D and the case where Z is equal to D◦I . We will denote
by OẐ(∗D) the sheaf OX|Z(∗D)⊗OX|Z OẐ , where as usual OX|Z (resp. OX|Z(∗D)) denotes the
sheaf-theoretic restriction to Z of the sheaf OX of holomorphic functions on X (resp. the sheaf
OX(∗D) of meromorphic functions on X with poles at most on D).

If ϕ (resp. ϕ̂) is a section of OX(∗D) (resp. of OẐ(∗D)), we denote by E ϕ (resp. E ϕ̂) the
module with connection (OX(∗D),d+dϕ) (resp. (OẐ(∗D),d+ ϕ̂)). It only depends on the class,
also denoted by ϕ (resp. ϕ̂), of ϕ (resp. ϕ̂) modulo OX (resp. OẐ).

2.b. Good formal structure. We say that the D-meromorphic flat bundle M has a good
formal structure if, for any xo ∈ D, there exists a local ramification ρdI of multi-degree dI
around the branches (Di)i∈I passing through xo (hence inducing an isomorphism aboveD◦I in the
neighbourhood of xo) such that the pullback of the formal flat bundle Mx̂o := Ox̂o⊗OX,xo Mxo by
this ramification decomposes as the direct sum of formal elementary D-meromorphic connections
E ϕ̂ ⊗ R̂ϕ̂, as defined below.

We denote by nb(xo) a small open neighbourhood of xo in X above which the ramification
is defined, and we denote by x′o the pre-image of xo, so the ramification is a finite morphism
ρdI : nb(x′o)→ nb(xo). It induces a one-to-one map above D◦I ∩ nb(xo). We also set

D′ = ρ−1
dI

(D ∩ nb(xo)),

so that D′I maps isomorphically to DI ∩ nb(xo) = D◦I ∩ nb(xo).



A REMARK ON THE IRREGULARITY COMPLEX 103

In the above decomposition, ϕ̂ varies in a good finite subset Φ̂xo ⊂ O
x̂′o

(∗D′)/O
x̂′o

and R̂ϕ̂ is
a free O

D̂′I
(∗D′)-module with an integrable connection having a regular singularity along D′. In

other words, we do not distinguish between ϕ̂ and ψ̂ in O
x̂′o

(∗D′) if their difference has no poles

along D′. Goodness means here that for any pair ϕ̂ 6= ψ̂ ∈ Φ̂xo ∪ {0}, the difference ϕ̂ − ψ̂ can
be written as x−mη̂(x), with m ∈ N#I and η̂ ∈ O

x̂′o
satisfying η̂(0) 6= 0 (see [Sab00, §I.2.1].1 By

[Ked11, Prop. 4.4.1&Def. 5.1.1] (see also [Sab00, §I.2.4] and [Moc11b, Prop. 2.19]), the ϕ̂’s are
convergent, i.e., the set Φ̂xo is the formalization at xo of a finite subset

Φxo ⊂ Γ(nb(x′o),Onb(x′o)(∗D′)/Onb(x′o)),

and the decomposition extends in a neighbourhood of x′o, that is, it holds for the pullback by
ρdI of M

D̂◦I ,xo
and induces the original one after taking formalization at x′o.

2

2.c. Stratified I-covering. The set
⊔
xo∈D◦I

(Φxo ∪{0}) has a natural structure of a finite non-
ramified covering of D◦I (in particular, it is a Hausdorff topological space), that we denote by
Σ◦I → D◦I . Locally, it is described as follows. Given a germ ϕx′o ∈ Φxo ∪{0}, it extends locally as
a section of Onb(x′o)(∗D′)/Onb(x′o) and thus defines a germ in Φyo ∪{0} for any yo ∈ D◦I ∩nb(xo).
This defines the local branch of Σ◦I passing through ϕx′o . (This construction is nothing but that
of the sheaf space, or étalé space, of a sheaf.)

By a similar procedure, the set Σ(M ) :=
⊔
I ΣI can be endowed with a natural topology as

a sheaf space, but the topology can be non-Hausdorff: this occurs if some difference ϕx′o − ψx′o
does not have poles along all the components of D′ passing through x′o.

In order to state the Riemann-Hilbert correspondence, we will lift these objects to the real
oriented blowing-up $ : X̃ := X̃(Di∈J) → X along the components Di of D in X. We set
∂X̃ := $−1(D) and ∂X̃◦I := $−1(D◦I ). The fibre of $ over a point in D◦I is diffeomorphic
to (S1)`, making ∂X̃◦I a (S1)`-bundle on D◦I . We consider the sheaf I on ∂X̃ as constructed in
[Sab13, §9.3].

By considering the fiber product

Σ̃◦I
//

��

Σ◦I

��

∂X̃◦I
$ // D◦I

we obtain a finite covering Σ̃◦I of ∂X̃◦I which is naturally contained in the étalé space Iét of I.
By a similar procedure, we get a good stratified I-covering

⊔
I Σ̃◦I =: Σ̃(M )→ ∂X̃ of ∂X̃, in the

sense of [Sab13, Rem. 11.12]. As before, Σ̃(M ) can be non-Hausdorff.

2.d. The Riemann-Hilbert correspondence (local theory). Let us fix a good stratified
I-covering Σ̃. Let xo ∈ D◦I . The local Riemann-Hilbert correspondence ([Moc11a, Moc11b],
[Sab13]) is an equivalence between the category of germs at xo of good D-meromorphic flat
bundles Mxo with stratified I-covering Σ̃(M ) contained in Σ̃, and that of germs at $−1(xo)

of good Stokes-filtered local systems (L ◦I ,L
◦
I,•) on ∂X̃◦I (see e.g. [Sab13, §9.5]) with I-covering

contained in Σ̃◦I (see [Moc11b, Th. 4.11] and [Sab13, Th. 12.16]).

1 Note that, here, the goodness condition is assumed for Φ̂ ∪ {0} and not only for Φ̂, because of [Sab13,
Cor. 12.7]. This is unfortunately not made precise in [Sab13, Th. 12.16] and should be corrected.

2I thank J.-B.Teyssier for pointing this out to me. In [Moc11a, Moc11b] (see also [Sab13, §11.3]), this is
shown to hold only if one assumes the good formal structure at all points of D◦

I ∩ nb(xo).
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More precisely, we have a commutative diagram of functors

(2.1)

Mxo_

��

� ∼ // (L ◦I ,L
◦
I,•)$−1(xo)

_
gr
��

M
D̂◦I ,xo

� ∼ // (gr L ◦I , gr L ◦I,•)$−1(xo)

similar to that of [Mal91, p. 58], where gr means grading with respect to the Stokes filtration and
the horizontal functors are equivalences of categories. Recall that grading a Stokes-filtered local
system is well-defined only when one restricts to Σ̃◦I , which is Hausdorff (see [Sab13, Chap. 1]).
In order to give a meaning to grading in general, one needs to control the extension from D◦I to
a small neighbourhood nb(D◦I ). Locally, this is provided by the following equivalence.

Proposition 2.2 (see [Moc11b, Lem. 3.17]). The restriction functor to ∂X̃◦I induces an equiva-
lence between the category of germs at $−1(xo) of Stokes-filtered local systems (L ,L•) on ∂X̃
with associated stratified I-covering contained in Σ̃ and the category of germs at $−1(xo) of
Stokes-filtered local systems (L ◦I ,L

◦
I,•) on ∂X̃◦I with associated I-covering contained in Σ̃◦I .

2.e. The Riemann-Hilbert correspondence (global theory). We now consider the previ-
ous correspondence all along D◦I . We consider a covering U of D◦I by open subsets Uα which
are the intersection of D◦I with a local chart on X. Any germ M of D-meromorphic flat bundle
along D◦I gives rise to gluing data ((Mα), (σαβ)), where

Mα = M|Uα , σαβ : Mα|Uα∩Uβ −→Mβ|Uα∩Uβ

is an isomorphism, and the family (σαβ) satisfies the cocycle property. Any germ M of good
D-meromorphic flat bundle along D◦I admits a covering U such that one can apply the local
Riemann-Hilbert correspondence of Section 2.d to its restriction Mα to every Uα. Given such
a covering U , we can consider the category of such good gluing data

(
(Mα), (σαβ)

)
. The local

Riemann-Hilbert correspondence gives rise to a commutative diagram of functors between gluing
data

(2.3)

(
(Mα), (σαβ)

)
_

��

� //
(
(L ◦I ,L

◦
I,•)α, (ηαβ)

)
_

gr
��(

(Mα,D̂◦I
), (σ̂αβ)

) � //
(
(gr L ◦I , gr L ◦I,•)α, (gr ηαβ)

)
and the horizontal functors remain equivalences, due to the full faithfulness of the horizontal
functors in (2.1).

Arguing similarly with the equivalence of Proposition 2.2, we obtain the Riemann-Hilbert
correspondence.

Theorem 2.4. The category Modhol

(
(X,D◦I ), D, Σ̃

)
of germs along D◦I of good D-meromorphic

flat bundles with stratified I-covering contained in Σ̃ is equivalent to that of germs along ∂X̃◦I of
Stokes-filtered local systems (L ,L•) on ∂X̃ with associated stratified I-covering contained in Σ̃

and, by restriction, to that of Stokes-filtered local systems (L ◦I ,L
◦
I,•) on ∂X̃◦I with associated

I-covering contained in Σ̃◦I . �
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2.f. Proof of Proposition 1.1. By Theorem 2.4, there exists a germ M ◦
I along D◦I of good

D-meromorphic flat bundle whose associated Stokes-filtered local system is (gr L ◦I , gr L ◦I,•),
and it is unique up to isomorphism with respect to this property. A covering U adapted
to M is also adapted to M ◦

I , and the diagram (2.3) shows that the gluing data of MD̂◦I
and of M ◦

I,D̂◦I
are isomorphic, since they correspond to the same Stokes-filtered gluing data(

(gr L ◦I , gr L ◦I,•)α, (gr ηαβ)
)
. The uniqueness of M ◦

I is proved similarly. �

Remark 2.5. The construction of M ◦
I is functorial with respect to M|D◦I .

2.g. An equivalence of categories. Let A be a category and let G be a group. The category
G-A is the category whose objects are G-objects of A, that is, pairs (M,ρ) where M is an object
of A and ρ is a morphism G→ Aut(M), and for which

HomG-A((M,ρM ), (N, ρN )) ⊂ HomA(M,N)

is the subset consisting of morphisms ϕ : M → N such that, for every g ∈ G, ϕ◦ρM (g) = ρN (g).
Let Σ̃→ ∂X̃ be a good stratified I-covering and let Modhol(X,D, Σ̃) denote the full subcate-

gory of that of holonomic DX -modules whose objects consist of good meromorphic flat bundles
on (X,D) with associated stratified I-covering contained in Σ̃.

Let us fix a nonempty subset I ⊂ J , let D◦I the corresponding stratum of D, let xo ∈ D◦I
and let D◦I (xo) the connected component of D◦I containing xo. Let us fix a local holomorphic
decomposition (

nb(xo, X),nb(xo, D)
)

= (Ω, DΩ)× nb(xo, D
◦
I ),

where Ω is an open neighbourhood of 0 in C` and DΩ is the union of the coordinate hyperplanes
in C`. The category Modhol

(
(X,D◦I (xo)), D, Σ̃

)
has been defined in Section 2, and we have the

similar category Modhol((Ω, 0), DΩ, Σ̃xo), where Σ̃xo is the restriction of Σ̃ above

∂Ω̃ := $−1(DΩ).

Theorem 2.6. Set G = π1

(
D◦I (xo), xo

)
. There is a natural equivalence of categories:

Modhol

(
(X,D◦I (xo)), D, Σ̃

)
' G-Modhol

(
(Ω, 0), DΩ, Σ̃xo

)
.

Proof. We set ∂X̃◦I (xo) := $−1(D◦I (xo)) and we denote similarly by Σ̃◦I(xo) the restriction of Σ̃
above this set.

(1) By the Riemann-Hilbert correspondence (Theorem 2.4), we can replace the category on
the left-hand side with that of Stokes-filtered local systems on ∂X̃◦I (xo) with associated
I-covering contained in Σ̃◦I(xo).

(2) Let π : (E◦I (xo), yo) → (D◦I (xo), xo) be a universal covering of D◦I (xo) with base-point
yo above xo and let G = Gal(π) be the corresponding Galois group. We consider the
fibre-product diagram

∂Ỹ ◦I (xo)

��

// ∂X̃◦I (xo)

$
��

(E◦I (xo), yo)
π // (D◦I (xo), xo)

and we denote by π−1Σ̃◦I(xo) the corresponding pullback π
−1I-covering of ∂Ỹ ◦I (xo). Then

the category considered in (1) is equivalent to the category of G-Stokes-filtered local
systems (L ◦I ,L

◦
I,•) on ∂Ỹ ◦I (xo) with associated π−1I-covering contained in π−1Σ̃◦I(xo).

This is a standard argument.
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(3) (See [Moc11b, Th. 4.13] and Remark A.11) The sheaf-theoretic restriction functor is an
equivalence from the latter category to the category of G-Stokes-filtered local systems
(L ,L•) on (∂Ω̃)0 ' (S1)` with associated Ixo-covering contained in Σ̃xo (we identify
here (π−1I)yo with Ixo and π−1Σ̃◦I(xo)yo with Σ̃xo). This proof will be reviewed in the
appendix.

(4) By applying now the G-Riemann-Hilbert correspondence of Theorem 2.4 in the reverse
direction to ((Ω, 0), DΩ, Σ̃xo), one ends the proof of the theorem. �

3. The irregularity complex

Our aim in this section is to show that, under the goodness assumption as above, the irregu-
larity complex is determined by its restriction to the smooth part of D. More precisely, for every
I ⊂ J , and for every connected component of D◦I , we show that there exists a component Dk

of D (k ∈ I) such that ι−1
I IrrD M (on this connected component) is determined by ι−1

k IrrD M .
Let (L ,L•) be the Stokes-filtered local system corresponding to a (germ of) good

D-meromorphic flat bundle M . We have L = ı̃−1R̃∗DR M|XrD, where

ı̃ : ∂X̃ ↪−→ X̃ and ̃ : X rD ↪−→ X̃

are the natural closed and open inclusions. Let us denote by A modD
X̃

(resp. A rdD
X̃

) the
sheaf on X̃ of holomorphic functions on X r D having moderate growth (resp. rapid decay)
along ∂X̃. One can then define the moderate (resp. rapidly decaying) de Rham complex
DRmodD M (resp. DRrdD M ) on ∂X̃. With the goodness assumption, it is known that both
have cohomology in degree zero at most. More precisely, the Riemann-Hilbert correspondence
recalled in Section 2.e gives

L60 = H 0 DRmodD M and H j DRmodD M = 0 for j 6= 0.

We set L >0 := L /L60, and similarly DR>modD M is defined as the cone of

DRmodD M −→ ı̃−1R̃∗DR M|XrD,

so that L >0 = H 0 DR>modD M (and H k DR>modD M = 0 for k 6= 0).

Proposition 3.1. We have IrrD M [1] = R$∗L >0.

Proof. We have

R$∗DRmodD M = DR M (∗D) and R$∗R̃∗DR M|XrD = Rj∗DR M|XrD,

where j : X rD ↪→ X is the inclusion. We then apply [Meb04, Def. 3.4-1]. �

Remark 3.2 (The irregularity complex Irr∗D M ). Recall that Mebkhout also defined the irregular-
ity complex Irr∗D M in [Meb90] (see also [Meb04, Def. 3.4-2]), which is non-canonically isomorphic
to the complexRHomDX|D (M ,QD)[−1], where QD = OD̂/OX|D (see [Meb04, Cor. 3.4-4]). Let
us set L≺0 := H 0 DRrdD M . We then have

(3.2 ∗) R$∗L≺0 ' Irr∗D M ∨,

where M ∨ is the holonomic DX -module dual to M . Indeed, According to [Kas03, (3.13)] we
have

DR(QD

L
⊗M )[−1] ' RHomDX|D (M ∨,QD)[−1] ' Irr∗D M ∨.
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On the other hand, as QD is flat over OX|D (because O
X̂|D is faithfully flat over OX|D) and as

R$∗A rdD
X̃

' QD[−1], we have

DR(QD ⊗M )[−1] ' DR(QD

L
⊗M )[−1] ' R$∗DRrdD M .

We also notice that Irr∗D M ∨ = Irr∗D M ∨(∗D) and M ∨(∗D) is also a good D-meromorphic flat
bundle, which is identified with the dual D-meromorphic flat bundle HomOX(∗D)(M ,OX(∗D)).

Let us fix I ⊂ J . Near each point xo of D◦I , there exists a local ramification

ρ : nb(xo)dI −→ nb(xo)

along D such that the pullback of M has a good formal decomposition at each point in nb(xo)dI .
By the goodness assumption, there exists an index k(xo) ∈ I such that each nonzero ϕ ∈ Φxo
has a pole along Dk(xo): indeed, the set Φxo ∪ {0} is good, so in particular the pole divisors of
each of its nonzero elements are totally ordered; the smallest such divisor is nonzero, and we can
choose k(xo) to be the index of a component of this divisor. One can choose this index constant
along any connected component of D◦I . For simplicity, we denote by k(I) the locally constant
function xo 7→ k(xo) on D◦I .

For every subset I ⊂ J , we have a natural inclusion lifting ιI :

ι̃I : ∂X̃◦I = $−1(D◦I ) ↪−→ $−1(D) = ∂X̃.

Proposition 3.3. Let us fix I ⊂ J and let us set k = k(I) for simplicity. Then the natural
morphism ι̃−1

I L >0 → ι̃−1
I Rι̃k∗ ι̃

−1
k L >0 is an isomorphism. The same property holds for L≺0.

By applying R$∗ and using Proposition 3.1, we obtain:

Corollary 3.4. With the notation as in Proposition 3.3, the natural morphism ι−1
I IrrD(M )→

ι−1
I Rιk∗ ι

−1
k IrrD(M ) is an isomorphism. The same property holds for Irr∗D(M ). �

Proof of Proposition 3.3. Since the morphism is globally defined, the proof that it is an isomor-
phism is a local question. We thus fix xo ∈ D◦I and work in some neighbourhood nb(xo) of xo
that we may shrink if needed.

Let us first assume that M = E ϕ (see Section 2.a) for some ϕ ∈ OX,xo(∗D).
– If ϕ = 0 in OX,xo(∗D)/OX,xo , then L >0 = 0 and there is nothing to prove.
– If ϕ 6= 0 in OX,xo(∗D)/OX,xo , we set ϕ(x) = u(x)/xm, where u ∈ OX,xo satisfies u(xo) 6= 0,

and mi ∈ N for i ∈ I. In particular, mk(I) 6= 0. We choose polar coordinates on $−1(nb(xo))
of the form (ρ1, . . . , ρ`, θ1, . . . , θ`, (xj)j /∈I) with ρi ∈ [0, ε). We can assume that, in these coor-
dinates, mi 6= 0 for i = 1, . . . , p, mi = 0 for i = p + 1, . . . , `, and that k(I) = 1. Then, in these
coordinates, $−1(D ∩ nb(xo)) =

∏`
i=1 ρi = 0 and L >0 is the constant sheaf of rank one on the

closed subset of $−1(D ∩ nb(xo)) defined by

(3.5)

{∑p
i=1miθi ∈ arg u(x) + [−π/2, π/2],∏p
i=1 ρi = 0,

and it is zero outside this closed subset. Let us describe this closed subset. We set

x′ := (xj)j /∈I ∈ ∆n−`
ε

(with 0 < ε � 1) and (ρ, ei θ) ∈ [0, ε)` × (S1)`. We can write u(x) = u(ρ, θ, x′) = u(xo)e
g(x)

with g holomorphic and g(0) = 0 and we set ei θo := u(xo)/|u(xo)|. A simple computation shows
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that, if ε > 0 is small enough, the map

[0, ε)` × (S1)` ×∆n−`
ε

(F, ρ, x′)
−−−−−−−−→ S1 × [0, ε)` ×∆n−`

ε

(ρ, θ, x′) 7−→
(∏p

i=1 e
imiθi · e− i(θo+im g(ρ,θ,x′)), ρ, x′

)
has everywhere maximal rank (in fact, we have ∂F/∂θ1(0, θ, 0) 6= 0 on (S1)`). By Ehresmann’s
theorem, the map (F, ρ, x′) is a C∞ fibration, which can be trivialized on contractible sets like

[−π/2, π/2]× [0, ε)` ×∆n−`
ε .

For our topological computation, we can thus as well consider the situation where u(x) is constant
and replace u(x) with u(xo) in (3.5).

Each connected component of (3.5) is then homeomorphic to a product

∂[0, ε)p × [a, b]× (S1)p−1 × [0, ε)`−p × (S1)`−p ×∆n−`
ε

for suitable a, b. The trace of this set on $−1(D◦k(I)) is the set defined by
∏`
j=2 ρj 6= 0. This is

the subset

(3.6) {ρ1 = 0} × (0, ε)p−1 × [a, b]× (S1)p−1 × [0, ε)`−p × (S1)`−p ×∆n−`
ε .

Its closure is the subset

(3.7) {ρ1 = 0} × [0, ε)p−1 × [a, b]× (S1)p−1 × [0, ε)`−p × (S1)`−p ×∆n−`
ε .

The ordinary pushforward of the constant sheaf on (3.6) by the open inclusion (3.6) ↪→ (3.7) is
the constant sheaf on (3.7) and the higher pushforwards vanish. Since $−1(DI) is the subset
of (3.7) defined by ρi = 0 for i = 2, . . . , `, the restriction of the latter sheaf to $−1(DI) is the
constant sheaf on $−1(DI), and the morphism ι̃−1

I L >0 → ι̃−1
I Rι̃k∗ ι̃

−1
k L >0 is nothing but the

identity C$−1(DI) → C$−1(DI), proving the proposition in this case.
Let us now consider the general case. As already said, the question is local, and we argue

now locally on ∂X̃. One can then reduce the question to the non-ramified case and apply the
higher dimensional Hukuhara-Turrittin theorem (see e.g. [Sab13, Th. 12.5]). Let AX̃ denote the
sheaf of C∞ functions on X̃ which are holomorphic on X∗ in some neighbourhood of x̃o. We can
thus assume that AX̃ ⊗ $

−1M decomposes as the direct sum of terms AX̃ ⊗$
−1(E ϕ ⊗Rϕ).

By induction on the rank, we can also assume that Rϕ has rank one, and locally on $−1(D◦I )
the corresponding local system is trivial, so we can finally assume that M = E ϕ, a case which
was treated above.

The case of L≺0 is treated similarly. If we regard all sheaves considered above as external
products of constant sheaves of rank one with respect to the product decomposition in (3.6)
and (3.7), the case of L≺0 is obtained by replacing [−π/2, π/2] with the complementary open
interval in (3.5), and the corresponding sheaf C[a,b] with the sheaf C(a′,b′) for suitable a′, b′ (i.e.,
the extension by zero of the constant sheaf on (a′, b′)). Then the same argument as above applies
to this case. �

4. Proof of Theorem 1.2

The case ` = 1. We first assume that I = {i}. The transversal slice Ω has dimension one and
DΩ = {0}. Let us first prove a statement in dimension one. Let (L ,L•) be a Stokes-filtered
local system on S1 and let (gr L , (gr L )•) be the associated graded Stokes-filtered local system.
We denote by N resp. N ′ the corresponding meromorphic flat bundles on (Ω, 0).

It is well-known that H k IrrDΩ
(N ) and H k IrrDΩ

(N ′) have the same rank for any k,
and vanish except for k = 1, and similarly for Irr∗D N ∨ and Irr∗D N ′∨. They correspond to
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H0(S1,L >0) and H0(S1, gr L >0) on the one hand, H1(S1,L≺0) and H1(S1, gr L≺0) on the
other hand (this is of course a particular case of Proposition 3.1 and Remark 3.2).

Lemma 4.1. There exists an isomorphism between the vector spaces H1(S1,L≺0) and
H1(S1, gr L≺0) such that, for any automorphism λ of (L ,L•), the induced automorphism
of H1(S1,L≺0) corresponds, via this isomorphism, to the automorphism induced by grλ on
H1(S1, gr L≺0). The same assertion holds for H0(S1,L >0) and H0(S1, gr L >0) respectively.

Proof. We start with L≺0. Let us cover S1 with open intervals (Uα)α=1,...,N such that

• every open interval which contains at most one Stokes direction for every pair of distinct
exponential factors (see e.g. Example 1.4 in [Sab13]),

• the intersection of two intervals of the covering is an interval not containing any Stokes
direction,

• there are no triple intersections of intervals of the covering.

Then this covering is a Leray covering for L≺0 (see e.g. the proof of Lemma3.12 in loc. cit.),
and moreover the only nonzero term of the associated Čech complex is the term in degree one.
It follows that

H1(S1,L≺0) =
⊕

α=1,...,N

H0(Uα ∩ Uα+1,L≺0),

if we set UN+1 = U1.
Recall that, on each interval Uα, the Stokes-filtered local system (L ,L•) is graded, i.e., the

Stokes filtration splits (see e.g. Lemma3.12 in loc. cit.). Let us choose a splitting on Uα ∩Uα+1.
Then Theorem 3.5 (and its proof) in loc. cit. shows that any automorphism λ is graded with
respect to the chosen splitting on Uα ∩ Uα+1. It follows that the action of the automorphism
on H0(Uα ∩ Uα+1,L≺0) is the same as the action of the associated graded automorphism on
H0(Uα ∩ Uα+1, (gr L )≺0), so we have found a model where both actions are equal.

For L >0 we argue by duality. Recall that the dual local system L ∨ is naturally endowed with
a Stokes-filtration L ∨

• (so that (L ∨,L ∨
• ) RH-corresponds to the dual meromorphic flat bundle),

that L >0 ' HomC(L ∨
≺0,C) (this is similar to [Sab13, Lem. 2.16]), and this isomorphism is

compatible with grading. In particular, it induces isomorphisms

H0(S1,L >0) ' H1(S1,L ∨
≺0)∨ and H0(S1, gr L >0) ' H1(S1, gr L ∨

≺0)∨,

and by the first point applied to (L ∨,L ∨
• ) we obtain a distinguished isomorphism between

H0(S1,L >0) and H0(S1, gr L >0). Let λ be an automorphism of (L ,L•), and let λ∨ be its
dual. Then the first point applied to λ∨ gives the desired property for λ. �

End of the proof of Theorem 1.2 in the case ` = 1. We set I = {i}, G = π1(D◦i , xo). By Lemma
4.1, given a Stokes-filtered local system (L ,L•) endowed with a G-action (i.e., a representation
G → Aut(L ,L•)), there exists an isomorphism between H0(S1,L >0) and H0(S1, gr L >0),
resp. H1(S1,L≺0) and H1(S1, gr L≺0), so that the induced G-action on H0(S1,L >0) is trans-
formed into the induced graded G-action on H0(S1, gr L >0), and the induced G-action on
H1(S1,L≺0) into the induced graded G-action on H1(S1, gr L≺0).

Recall now that IrrD M is a complex whose cohomology is locally constant on each D◦I .
On D◦i it reduces to the local system H 1 IrrD◦i M . If we consider the G-Stokes-filtered local
system (L ,L•) on S1 corresponding to M|D◦i by (the proof of) Theorem 2.6, then H 1 IrrD◦i M

is the local system corresponding to G-vector spaceH0(S1,L >0) that this G-Stokes-filtered local
system defines. We argue similarly with M ◦

i and (gr L , gr L•), so that the desired isomorphism
follows from Lemma 4.1, as explained above. The argument for Irr∗Doi M is identical. �
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The case ` > 2. When ` = #I > 2, the structure of a Stokes-filtered local system on (S1)` is more
difficult to analyze, although it shares many properties with the case ` = 1 (see e.g. [Sab13, §9.e]).
This is why we use another argument. Namely, Proposition 3.1 enables us to deduce the case
where ` > 2 from the case where ` = 1.

We set k = k(I) as defined after Proposition 3.1. Let nb(D◦I ) be an open neighbourhood
of D◦I in X on which M ◦

I is defined. We claim that

ι−1
k M ◦

I = M ◦
k |nb(D◦I ).

Indeed, this follows from the uniqueness of M ◦
k , and from the fact that M ◦

I also decomposes
after ramification along D at each point of nb(D◦I ) ∩D◦i if this neighbourhood is chosen small
enough. We then have

IrrD(ι−1
k M ◦

I ) ' IrrD(M ◦
k )|nb(D◦I )

' IrrD(ι−1
k M )|nb(D◦I ) (case ` = 1),

and therefore, by applying ι−1
I Rιk∗,

ι−1
I Rιk∗ι

−1
k IrrD(M ◦

I ) ' ι−1
I Rιk∗ι

−1
k IrrD(M ).

The assertion of Theorem 1.2 for IrrD now follows from Corollary 3.4, applied both to M
and M ◦

I . The case of Irr∗D is completely similar. �

Appendix. Some properties of Stokes-filtered local systems

In this appendix we keep the setting of Section 3. We review in Proposition A.10 the proof
of [Moc11b, Th. 4.13]: by choosing the projection to D◦I of a tubular neighbourhood of D◦I in X
and its fibre product over D◦I with a universal covering of D◦I , we are in the situation of loc. cit.
except that we do not assume that the C∞ fibration is topologically trivial. Remark A.11 will
then provide the main result used in Step 3 of the proof of Theorem 2.6. We will also review
some other essential results which are proved in loc. cit.

A.a. Grading of a Stokes-filtered local system. The result in this subsection is local with
respect to D, hence we allow a ramification around the components of D. We fix a nonempty
subset I ⊂ J . We fix a simply connected open set U◦I ⊂ D◦I .

We assume that (L ,L•) is non-ramified in the neighbourhood of U◦I . The covering Σ̃◦I can
then be trivialized on U◦I × (S1)` = $−1(U◦I ), and we set

Σ̃◦I = Φ× U◦I × (S1)`,

where Φ is a finite subset of Γ
(
U◦I , (OX(∗D)/OX)|U◦I

)
. Moreover, by the goodness assumption

on Σ̃, Φ is a good set, namely, for every pair ϕ 6= ψ, the divisor of ϕ − ψ is negative. The set
St(ϕ,ψ) ⊂ U◦I × (S1)` of Stokes directions is smooth over U◦I with fibers equal to a union of
translated codimension-one subtori

(A.1) St(ϕ,ψ)x =
{

(θ1, . . . , θ`) ∈ (S1)` |
∑
jmjθj − arg c(x) = ±π/2 mod 2π

}
,

where c(x) is an invertible holomorphic function on U◦I and (m1, . . . ,m`) ∈ N`r{0}. We denote
by St(Φ) the union of the subsets St(ϕ,ψ) for all pairs ϕ 6= ψ ∈ Φ.

Let us fix
θo = (θo,1, . . . , θo,`) ∈ (S1)` and α1, . . . , α` ∈ N∗

such that gcd(α1, . . . , α`) = 1. The map θ 7→ (α1θ+ θo,1, . . . , α`θ+ θo,`) embeds S1 in (S1)`. In
the following, S1

α,θo
denotes this circle.
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Proposition A.2. Let A◦ be an open interval of length < 2π in S1
α,θo

and let A be its closure.
Assume that A satisfies the following property.

• For every x ∈ U◦I and every pair ϕ 6= ψ ∈ Φ,

#
(
A ∩ St(ϕ,ψ)

)
= #

(
A◦ ∩ St(ϕ,ψ)

)
6 1.

If moreover U◦I is contractible, then (L ,L•) is graded when restricted to a sufficiently
small neighbourhood U◦I × nb(A) in U◦I × (S1)`.

Proof. We first prove that, for every ϕ ∈ Φ, we have Hk(U◦I × A,L<ϕ) = 0 for k > 1. Note
that, since $ : U◦I × A→ U◦I is proper, Rk$∗L<ϕ|U◦I×A is compatible with base change, hence
its germ at x is equal to Hk(A,L<ϕ|{x}×A). By our assumption on A, this is also equal to
Hk(A◦,L<ϕ|{x}×A◦), and by the proof of [Sab13, Lem. 9.26], this is zero for k > 1. As a
consequence, Rk$∗L<ϕ|U◦I×A = 0 for k 6= 0.

We argue as in loc. cit. to obtain that (L ,L•) is graded in the neighbourhood of {x} × A
for every x ∈ U◦I . In particular, it is easy to check that $∗L<ϕ|U◦I×A is locally constant, hence
constant, on U◦I . Since U

◦
I is assumed contractible, we obtain the vanishing of Hk(U◦I ×A,L<ϕ)

(k > 1). Using once more the argument of loc. cit., we obtain the grading property all over
U◦I ×A, hence in some open neighbourhood of it. �

By mimicking the proof of [Sab13, Th. 3.5&Prop. 9.21], we also obtain the following proposi-
tion.

Proposition A.3. Let λ : (L ,L•) → (L ′,L ′•) between Stokes-filtered local systems as con-
sidered in the beginning of this subsection with the same set Φ. For A as in Proposition A.2,
there exist gradings of both Stokes-filtered local systems on UoI × nb(A) with respect to which λ
is graded. �

A.b. Closedness. Let U◦I be an open subset of D◦I with closure U◦I in D◦I and boundary ∂U◦I ,
and let j : U◦I ↪→ U◦I and ̃ : $−1(U◦I ) → $−1(U◦I ) be the open inclusions. Let (L ,L•) be a
Stokes-filtered local system on $−1(U◦I ) with associated covering contained in Σ̃◦I |U◦I . Assume
that

(∗) any point x ∈ ∂U◦I has a fundamental system of open neighbourhoods V in D◦I such that
V ∩ U◦I and V ∩ U◦I are contractible.

Proposition A.4. Under this assumption, the functor ̃∗ induces an equivalence between the
category of Stokes-filtered local systems (L ,L•) on $−1(U◦I ) with associated I-covering contained
in Σ̃◦I |U◦I , and the category of Stokes-filtered local systems on $−1(U◦I ) with associated I-covering
contained in Σ̃◦I |U◦I

, a quasi-inverse functor being the restriction ̃−1.

Proof. Since the functor is globally defined, the question is local near a point xo ∈ ∂U◦I . More-
over, as in SectionA.a, we can assume that Σ̃◦I is a trivial covering on some neighbourhood
of xo. It is enough to prove the statement in the non-ramified case since, by uniqueness the
construction, it will descend by means of the Galois action of the ramification. We will work
with the corresponding set Φ of exponential factors.

Firstly, we note that Assumption (∗) also holds for $−1(U◦I ), since any point in $−1(x) has
a fundamental systems of neighbourhoods of the form of the product of neighbourhoods V with
a product of ` open intervals. It follows that the local system L extends in a unique way as a
local system on $−1(U◦I ), and the latter is ̃∗L . Similarly, a morphism between local systems
extends in a unique way by the functor ̃∗. The same property holds for the local systems grψ L
for ψ ∈ Φ.
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Let us first show that the functor ̃∗ takes values in the category of Stokes-filtered local
systems. For a pair ϕ 6= ψ ∈ Φ, we denote by βψ6ϕ the functor composed of the restriction
to the open subset where ϕ 6 ψ (i.e., Re(ϕ − ψ) < 0) and the extension by zero to the whole
space. The point is to check that every ̃∗L6ϕ decomposes as

⊕
ψ∈Φ βψ6ϕ̃∗ grψ L in the

neighbourhood of every point (xo, θo) of $−1(xo). If we fix a small interval A◦ containing this
point as in Proposition A.2, we find that, according to this proposition and Assumption (∗),

(A.5) L6ϕ|(V ∩U◦I )×nb(A◦) '
⊕
ψ∈Φ

βψ6ϕ(grψ L )|(V ∩U◦I )×nb(A◦).

We are thus reduced to checking that, for a local system L, the natural morphism

βψ6ϕL −→ ̃∗βψ6ϕ̃
−1L

is an isomorphism: we will apply this to the local system L = ̃∗(grψ L )|(V ∩U◦I )×nb(A◦) for any ψ.
The question is then local, and we can work in the neighbourhood of (xo, θo), with the constant
sheaf of rank one as the given local system.

If (xo, θo) /∈ St(ϕ,ψ)xo , the result is easy. We will thus focus on the case where

(xo, θo) ∈ St(ϕ,ψ)xo .

This can be written as
∑
mjθo,j − arg c(xo) = ±π/2. We will consider the case +π/2, the other

one being similar. We need to check that the germ at (xo, θo) of ̃∗̃−1βψ6ϕC is zero for any
such (xo, θo). For that purpose, it is enough to prove that, for small enough closed neighbour-
hoods V of xo and nb(θo) of θo, the cohomology of the sheaf on

(A.6) (V × nb(θo)) ∩
{∑

mjθj − arg c(x) ∈ [π/2− ε, π/2]
}

which is zero on
(V × nb(θo)) ∩

{∑
mjθj − arg c(x) = π/2

}
and constant on the complementary set, is zero for 0 < ε � 1 and V small enough. We can
regard

∑
mjθj − arg c(xo)− π/2 as a coordinate θ′ near θo vanishing at θo, and we can choose

the neighbourhood nb(θo) of the form [−2ε, 2ε]× [−2ε, 2ε]`−1 accordingly. For V small enough,
the set (A.6) is a topological fibration above V , and the fiber over x ∈ V is the product of
[−2ε, 2ε]`−1 with the interval

θ′ ∈ arg c(x)− arg c(xo) + [−ε, 0].

Since the projection to V is proper, the base change formula shows that the pushforward to V of
this sheaf is identically zero, as the cohomology with compact support of a semi-closed interval
is zero. Hence its global cohomology on (A.6) is also zero.

The next step is to show that the extension by ̃∗ of a morphism λ between Stokes-filtered
local systems is compatible with the Stokes filtration. The question is local, and we can assume
that the morphism λ is graded on (V ∩U◦I )×nb(A◦), according to Proposition A.3. Then ̃∗λ is
also graded on this open set with respect to the Stokes filtration constructed above, and is thus
also Stokes-filtered.

Once the functor ̃∗ is defined, that it is essentially surjective is proven similarly, since in the
neighbourhood of any point (xo, θo) the sheaves L6ϕ are given by a formula like (A.5).

The full faithfulness follows from the full faithfulness for the underlying local systems. �

A.c. Openness. We keep the notation as above.

Proposition A.7. Let xo ∈ D◦I and let (L ,L•)xo be a Stokes-filtered local system on

$−1(xo) ' (S1)`
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with associated I-covering contained in Σ̃◦I,xo . Then there exists an open neighbourhood nb(xo)

in D◦I such that (L ,L•)xo extends in a unique way as a Stokes-filtered local system on
$−1(nb(xo)) ' nb(xo)× (S1)` with associated I-covering contained in Σ̃◦I |nb(xo). Any morphism
(L ,L•)xo → (L ′,L ′•)xo between such objects also extends locally in a unique way.

Proof. The problem is local on D◦I and, by the uniqueness of the extension of morphisms, one
can reduce the proof to the non-ramified case. We can therefore assume that Σ◦I = Φ× nb(xo).
Moreover, the unique extension of local systems and morphisms between them is clear, so the
question reduces to checking that Stokes filtrations extend as well, and that the extended mor-
phism between the extended local systems is compatible with the extended Stokes filtrations.

By Proposition A.2, we can cover (S1)` = $−1(xo) by simply connected open sets Uα such
that, for every α, there exists a neighbourhood Vα of the compact subset Uα and an isomorphism

(A.8) Lxo|Vα '
⊕
ϕ∈Φ

grϕ Lxo|Vα ,

and the Stokes filtration on Vα is given by

(A.9) Lxo,6ϕ|Vα '
⊕
ψ∈Φ

βψ6ϕ grψ Lxo|Vα .

The transition maps λαβ for (A.8) on Vαβ := Vα ∩ Vβ satisfy the cocycle condition and are
compatible with the Stokes filtration, that is, λψ,ϕαβ : grψ Lxo|Vαβ → grϕ Lxo|Vαβ is zero unless
ψ 6 ϕ on Vαβ .

Let us shrink nb(xo) to a contractible open neighbourhood such that, for all ψ 6= ϕ ∈ Φ, ψ < ϕ
on Vαβ implies ψ < ϕ on nb(xo) × Uαβ . The local system grϕ Lxo|Uα extends in a unique way
to a local system grϕ L|nb(xo)×Uα on nb(xo)× Uα, and so do the morphisms λψϕαβ , which satisfy
thus the cocycle condition. In particular, if such an extension λψϕαβ is non-zero at one point of
nb(xo)×Uαβ , it is nonzero everywhere on this open set and we have ψ < ϕ on this open set. Let
us set L|nb(xo)×Uα :=

⊕
ϕ∈Φ grϕ L|nb(xo)×Uα , that we equip with the Stokes filtration given by a

formula similar to (A.9). It follows that λαβ is compatible with the Stokes filtrations. We regard
now λαβ as gluing data. The cocycle condition shows that they define a local system L on
$−1(nb(xo)) whose restriction to $−1(xo) is isomorphic to L . It is thus uniquely isomorphic to
the unique extension of Lxo . Moreover, due to the compatibility with the Stokes filtrations, the
latter also glue correspondingly as a Stokes filtration L• of this local system, and its restriction
to $−1(xo) is equal to Lxo•.

Let µxo : (L ,L•)xo → (L ′,L ′•)xo be a morphism. We can choose the covering (Uα) and the
decomposition (A.8) so that each µxo,α is graded (see [Sab13, Prop. 9.21]). It extends uniquely as
a morphism µ : L|nb(xo)×Uα → L ′|nb(xo)×Uα , and it is graded with respect to the corresponding
decompositions (A.8). It follows that µ is strictly compatible with the Stokes filtrations L•
and L ′• , where these Stokes-filtered local systems (L ,L•) and (L ′,L ′•) are obtained as in the
first part.

We can now prove the uniqueness (i.e., up to unique isomorphism) of (L ,L•) constructed in
the first part: the identity automorphism (L ,L•)xo extends in a unique way as an isomorphism
between two such extensions. �

A.d. An equivalence of categories. We will use the notation as in Section 2.g. Let

π : (E◦I (xo), yo) −→ (D◦I (xo), xo)

be a universal covering of D◦I (xo) with base point yo above xo, and let ∂Ỹ ◦I (xo) be the pullback
of ∂X̃◦I (xo) by π.
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Proposition A.10. The restriction functor
• from the category of Stokes-filtered local systems on ∂Ỹ ◦I (xo) with associated π−1I-
covering contained in π−1Σ̃◦I(xo)

• to the category of Stokes-filtered local systems on (∂Ω̃)0 ' (S1)` with associated Ixo-
covering contained in Σ̃xo

is an equivalence.

Proof. Let Γ : [0, 1]2 → E◦I (xo) be a continuous map sending (0, 0) to yo. We pullback by Γ the
data from the first item of the proposition. Let us consider the subset of [0, 1] consisting of ε’s
such that the equivalence of the proposition holds with respect to the restriction corresponding
to the inclusion (0, 0) ∈ [0, ε]2. Propositions A.4 and A.7 imply that this set is open and closed,
and contains 0, hence it is equal to [0, 1]. This shows that one can uniquely extend an object in
the second category to an object in the first category along paths starting from yo and that this
extension does not depend on the choice of the path. A similar assertion holds for morphisms. �

Remark A.11. The uniqueness of the extension of morphisms enables one to obtain the equiva-
lence between the corresponding G-equivariant categories, and this gives the implication (2)⇒
(3) in the proof of Theorem 2.6.
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