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ABOUT THE ALGEBRAIC CLOSURE OF THE FIELD OF POWER SERIES
IN SEVERAL VARIABLES IN CHARACTERISTIC ZERO

GUILLAUME ROND

ABsTrRACT. We begin this paper by constructing different algebraically closed fields containing
an algebraic closure of the field of power series in several variables over a characteristic zero
field. Each of these fields depends on the choice of an Abhyankar valuation and is constructed
via a generalization of the Newton-Puiseux method for this valuation.

Then we study the Galois group of a polynomial with power series coefficients. In particular
by examining more carefully the case of monomial valuations we are able to give several results
concerning the Galois group of a polynomial whose discriminant is a weighted homogeneous
polynomial times a unit. One of our main results is a generalization of Abhyankar-Jung The-
orem for such polynomials, classical Abhyankar-Jung Theorem being devoted to polynomials
whose discriminant is a monomial times a unit.
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1. INTRODUCTION

When k is an algebraically closed field of characteristic zero, we can always express the roots
of a polynomial with coefficients in the field of power series over k, denoted by k((¢)), as formal
Laurent series in t* for some positive integer k. This result was known by Newton (at least
formally see [BK] p. 372) and had been rediscovered by Puiseux in the complex analytic case
[Pul], [Pu2] (see [BK]| or [Cu] for a presentation of this result). A modern way to reformulate
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this fact is to say that an algebraic closure of k((t)) is the field of Puiseux power series P defined
in the following way:
Pi= Jk((1)).
keN

The proof of this result, called the Newton-Puiseux method, consists essentially in constructing
the roots of a polynomial P(Z) € k[t][Z] by successive approximations in a similar way to New-

ton method in numerical analysis. These approximations converge since k ((t%» is a complete

field with respect to the Krull topology.

This result, applied to a polynomial with coefficients in k[¢] defining a germ of algebroid plane
curve (X,0), provides an uniformization of this germ, i.e., a parametrization of this germ.

On the other hand this description of the algebraic closure of k((t)) describes very easily
the Galois group of k((¢)) — P, since this one is generated by the multiplication of the k-th
roots of unity by t+ for any positive integer k. In particular if an irreducible monic polynomial
P(Z) € C[t][Z] has a root which is a convergent power series in ¢+, i.e., an element of C{t#},
then its other roots are also in C{t#} and the coefficients of P(Z) are convergent power series.

When k is a characteristic zero field (but not necessarily algebraically closed), we can prove
in the same way that an algebraic closure of k((t)) is

(1) P=J K ((ﬁ)) .
K keN
where the first union runs over all finite field extensions k — k'.

The aim of this work is double: the first one consists in finding representations of the roots of a
polynomial whose coefficients are power series in several variables over a characteristic zero field.
Our main results regarding these representations are Theorem 4.2 for Abhyankar valuations and
its stronger version for monomial valuations (see Theorem 5.12). The second goal is to describe
the Galois group of such polynomials. In particular we concentrate our study to irreducible
polynomials that remain irreducible as polynomials with coefficients in the completion of the
valuation ring associated to a monomial valuation. Our main result regarding this problem is
a generalization of Abhyankar-Jung Theorem to polynomials whose discriminant is weighted
homogeneous (see Theorems 7.5 and 7.7).

But let us present in more details the situation, the problems and the results given in this
paper. It is tempting to find such a similar expression to (1) for the algebraic closure of the field
of power series in n variables, k((z1,...,2,)), for n > 2. But it appears easily that the algebraic
closure of this field agimits a Jlreally more complicated description and considering only power
series depending on =, ..., =% is not sufficient. For instance it is easy to see that a square root
of ©1 4+ x5 can not be expressed as such a power series.

Nevertheless there exist positive results in some specific cases, the most famous one being the
Abhyankar-Jung theorem:

Theorem (Abhyankar-Jung Theorem). If k is an algebraically closed field of characteristic

zero, then any polynomial with coefficients in K[x1,...,x,], whose discriminant has the form

uzit . xfn where w € K[z1,...,x,] is a unit and a1, ..., an € Z>o, has its roots in
1 1

klzf,...,xk] for some positive integer k.

Such a polynomial is called a quasi-ordinary polynomial and this theorem asserts that the
roots of quasi-ordinary polynomials are Puiseux power series in several variables. It provides
not only a description of the roots of a quasi-ordinary polynomial but also a description of its
Galois group. This result has first being proven by Jung in the complex analytic case, then by
Abhyankar in the general case ([Ju], [Ab]).
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In the general case, a naive approach involves the use of Newton-Puiseux theorem n times
(i.e., the formula (1) for the algebraic closure of k((t))). For example in the case where n = 2
and k is an algebraically closed field of characteristic zero, this means that the algebraic closure

of k((z1,22)) is included in
- WU ()

But this field, which is algebraically closed, is very much larger than the algebraic closure of
k((z1,22)) (see [Sa] for some thoughts about this). Moreover the action of the ki-th and ks-th
roots of unity are not sufficient to generate the Galois group of the algebraic closure since there
exist elements of k((x1))(z2)) which are algebraic over k((«1,x2)) but are not in k((z1, z3)). For

instance consider
o142 = 3 ity € Q@) (@2)\Q(n, 2)

i€Zsy 1
for some well chosen rational numbers a; € Q, ¢ € Z>o.
Nevertheless a deeper analysis of the Newton-Puiseux method leads to the fact that it is
enough to consider the field of fractions of the ring of elements
Lo Iz
f= Z alhllekl a:2k2 €L
(ll,l2)€Z2

for some k;, ko € N whose support is included in a rational strongly convex cone of R2. Here
the support of f is the set

Supp(f) := {(l1,12) € Z* / ay, 4, # O}
This result has been proven by MacDonald [McD] (see also [Go], [Aro], [AT], [SV]). But once
more, for any rational strongly convex cone of R?, denoted by o, RQZO C o, there exist elements
whose support is in o but that are not algebraic over k((z1, x2)).
One of the main difficulties comes from the fact that k((z1,...,2,)) is not a complete field
with respect to the topology induced by the maximal ideal of k[x1,...,z,] (called the Krull
topology; it is induced by the following norm ‘g‘ = e d@)=ord(f) for any f, g € k[z1,...,x.],

g # 0, where ord(f) is the order of the series f in the usual sense). Indeed, in order to apply the
Newton-Puiseux method we have to work with a complete field since the roots are constructed

by successive approximations. A very natural idea is to replace k((x1, ..., z,)) by its completion.
But the completion of k((z1,...,2,)) is not algebraic over k((z1,...,z,)), thus the fields we
construct in this way are bigger than the algebraic closure of k((z1,...,z,)). In fact we need to
replace the completion of k((«1, ..., z,)) by its henselization in the completion. The problem is

that there is no general criterion to distinguish elements of the henselization from other elements
of the completion. In some sense this problem is analogous to the fact that there is no general
criterion to determine if a real number is algebraic or not over the rationals. One more issue
is that choosing the Krull topology is arbitrary and we may replace this one by any topology
induced by an other norm (or valuation) on this field.

In this paper, we first investigate the use of the Newton-Puiseux method with respect to
"tame" valuations (i.e., replace k((x1, ..., x,)) by its completion for this valuation). By a "tame"
valuation we mean a rank one (or real valued) valuation that satisfies the equality in the Ab-
hyankar inequality (see Definition 2.1). These valuations are called Abhyankar valuations (cf.
[ELS]) or quasi-monomial valuations (cf. [FJ]) and, essentially, these are monomial valuations
after some sequence of blowing-ups. This is the first part of this work.
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If v is such a valuation, we denote by K, the completion of k((z1,...,z,)) for the topology
induced by this valuation. This field will play the role of k((¢)) in the classical Newton-Puiseux
method. Then we have to define the elements that will play the role of ¢%. This is where the
first difficulty appears, since instead of working over ]IA(,,, we need to work over the graded ring
associated to v. Both are isomorphic but there is no canonical isomorphism between them. In
the case of k((t)) where ¢ is a single variable, such an isomorphism is defined by identifying the
k-vector space of homogeneous elements of degree i of the graded ring with the k-vector space
of homogeneous polynomials of degree i, i.e., k.t*. But this identification depends on the choice
of an uniformizer of k[t]. In the case of k((z1,...,2,)) an isomorphism will be determined by
the choice of "coordinates" such that the valuation v is monomial in these coordinates since
Abhyankar valuations are monomial valuations after a sequence of blow-ups (cf. Remark 3.6).
This is the reason why we restrict our study to these valuations.

Nevertheless when such an isomorphism is chosen, we are able to define the elements that
will play the role of t%, this the aim of Section 3. These elements are called homogeneous
elements with respect to v (cf. Definitions 3.15 and 3.17). These are defined as being the roots
of weighted homogeneous polynomials with coefficients in the graded ring of k[x1, ..., z,] for
the valuation v. If k is the field of complex numbers and the weights of the monomial valuation
are positive integers, we can think about these homogeneous elements as weighted homogeneous
algebraic (multivalued) functions. In fact we can replace KV by a smaller field, the subfield of
]KV whose elements have support included in a finitely generated sub-semigroup of R>y. Let us
remark that this field is similar to the field of generalized power series UrC((t")) where the sum
runs over all finitely generated semigroups I' of R>¢ (see [Ri] for instance). Our first result is
that the inductive limit of the extensions of H/{y by homogeneous elements with respect to v is
algebraically closed (see Theorem 4.2). This field is hgl K, [v1, - .,7s) where the limit runs over

RERIEEE s

all subsets {71,...,7s} of homogeneous elements with respect to v and is denoted by K,. The
field extension k((z1,...,z,)) — K, factors through the field extension k((z1,...,z,)) — K,.
While the Galois group of the field extension ]K,, — K, is easily described by the Galois group of
weighted homogeneous polynomials, the Galois group of the algebraic closure of k((x1, ..., 2,)) in
K, is more complicated. So it is very natural to study irreducible polynomials over k((z1, ..., zy))
which remain irreducible over ]K,,, since their Galois groups are described by the Galois groups
of weighted homogeneous polynomials. Proposition 4.14 shows that this property is an open
property with respect to the topology induced by the chosen valuation. Let us mention that
these polynomials are called v-analytically irreducible polynomials in [Te] and their study is
motivated by the construction of key polynomials for Abhyankar valuations (not necessarily of
rank 1) in order to prove local uniformization.

Then we investigate more deeply the particular case of monomial valuations. In Section 5,
using an idea of Tougeron [To] based on a work of Gabrielov [Gal, for any monomial valuation
v we construct a field, smaller than the ones constructed previously using the Newton-Puiseux
method, and containing an algebraic closure of k((z1,...,2,)). The main result (see Theorem
5.12) is a non-archimedean version of Eisenstein Theorem (classical Eisenstein Theorem concerns
algebraic power series over Q). The tool we use here is an effective version of the Implicit Function
Theorem (see Proposition 5.10). The elements we need to consider are of the form

(2) > s

€A

where the a; and § are weighted homogeneous polynomials for the weights corresponding to the
given monomial valuation, A is a finitely sub-semigroup of R>q, v (%) = for all 4 € A and



THE ALGEBRAIC CLOSURE OF THE FIELD OF POWER SERIES 5

i — m(i) is bounded by a an affine function. In the particular case where the weights are
Q-linearly independent this corresponds to the result of MacDonald (see Theorem 6.9).

In Section 7, we use this description of the roots of polynomials with coefficients in
C{z1,...,z,} to make a topological and complex analytical study of such polynomials whose
discriminant is a weighted homogeneous polynomial multiplied by a unit. This study has been
inspired by the work of Tougeron in [To| and more particularly by Remarque 2.7 of [To| where
it is noticed that the elements of the form (2) define analytic functions on an open domain of
C™ which is the complement of some hornshaped neighborhood of {§ = 0} (see Definition 7.1).
This study is possible in the case of monomial valuations whose weights are positive integers.
To obtain the same results in the case of general monomial valuations we need to approximate
general monomial valuations by divisorial monomial valuations, i.e., monomial valuations whose
weights are positive integers. This is the subject of Section 6.

One of the main results we obtain in Section 7 is the following theorem which gives a criterion
for an irreducible polynomial over k((x1, ..., %y,)) to remain irreducible over K,:

Theorem. 7.5 Let k be a field of characteristic zero and o« € RZ,. Let x denotes the set

of variables (x1,...,x,) and let v, be the monomial valuation given by the weights o;. Let
P(Z) € K[x][Z] be a monic polynomial whose discriminant is equal to du where § € k[x] is a
weighted homogeneous polynomial for the weights oy, ..., o, and u € K[x] is a unit. If P(Z)

factors as P(Z) = P1(Z)...Ps(Z) where Pi(Z) is an irreducible monic polynomial of k[x][Z],
then P;(Z) is irreducible in Vo [Z] where V,, denotes the completion of the valuation ring of v, .

Then we show that Abhyankar-Jung Theorem is in fact a generalization of this result when the
a; are Q-linearly independent (see Corollary 7.9) and we give the following generalization of
Abhyankar-Jung Theorem for polynomials whose discriminant is weighted homogeneous with
respect to weights aq, ..., a, € Ryg:

Theorem. 7.7 We assume that the hypothesis of Theorem 7.5 are satisfied. Let us set
N :=dimg(Qaq + - - - + Qo).

Then there exist 1, ..., YN integral homogeneous elements with respect to v, and a weighted
homogeneous polynomial for the weights ay, ..., o, denoted by c(x) € k[x| such that the roots
of P(Z) are in C(lx)]k’[[x]] [Y1s--.,YN] where k — K is a finite field extension.

Indeed in the case N = n, i.e., a1, ..., a, are Q-linearly independent, the only weighted ho-
mogeneous polynomials are the monomials and the integral homogeneous elements with respect
to v, are of the form x” where 8 € Q2 (see Remark 3.18). Abhyankar-Jung Theorem simply
asserts that we may choose ¢(x) = 1, a fact that we are able to prove in this case (see Corollary

7.9).

We remark that this result (along with Theorem 7.5) shows that the Galois group of an
irreducible monic polynomial with coefficients in k[z1,...,z,] whose discriminant is weighted
homogeneous is generated by the Galois group of one weighted homogeneous polynomial (see
Remark 7.8).

Finally in Section 8 we give a result of Diophantine approximation (it is just an direct gener-
alization of [Rol] and [II]) that gives a necessary condition for an element of K, to be algebraic
over k(x1,...,2n)).

At the end we give a list of notations for the convenience of the reader.

Let us mention that this work has been motivated by the understanding of the paper [To|
of Tougeron where the study we make for monomial valuations is made in the case of the
(21, ...,2n)-adic valuation of k((x1, ..., z,)).
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I would like to thank Guy Casale and Adam Parusinski for their answers to my questions
regarding the proofs of Lemma 7.4 and Lemma 7.2 respectively. I also thank H. Mourtada for
the valuable discussions we had on these problems and his comments that helped to improve the
presentation fo this paper. I also thank the referees for their valuable suggestions.

2. NOTATIONS AND ABHYANKAR VALUATIONS

Let N denote the set of positive integers and Z>, the set of non-negative integers. Let x
denote the multi-variable (z1,...,2,) where n > 2. Let k denote a characteristic zero field.
Then k[x] = k[z1,...,2,] denotes the ring of formal power series in n variables over k and we
denote by K, its fraction field and by m its maximal ideal.

When (A, m) is a local domain, a valuation on A is a function v : A\{0} — I'"", where T is
an ordered subgroup of R and I'" :=I' N R, such that

v(fg) =v(f) +v(g) and v(f +g) = min{v(f),v(g9)} Vf, g€ A

We will also impose that v(f) > 0 if and only if f € m. We set v(0) = co where oo > i for any
1€l
Such valuation v extends to K 4, the fraction field of A, by

V(f>;:yq)—u@>

g
for any f, g € A, g # 0. We will always assume that v : K4 — T is surjective. In this case I is
called the value group of v. The image of A\{0} by v is called the semigroup of v and we denote
it by 3. Then I is the group generated by . Let us denote by V,, the valuation ring of v:

Vo= {L/fgea nnzvaf.

This is a local ring whose maximal ideal, denoted by my, is the set of elements f/g such that
v(f/g) > 0. Tts residue field Y= is denoted by k,,.

my

Let us denote by I7V the completion of V,, which is defined as follows: For any A € T" let us
set Iy :={v €V, /v(v) > A}. The family of ideals {Ix}rcr as a system of neighbourhoods of
0 makes V,, into a topological ring. Then ‘2/ is the completion of V,, for this topology. We can
also remark that the family {V,,/I,}, is an inverse system and its inverse limit is exactly ‘A/l,.

Then IA/V is an equicharacteristic complete valuation ring and its residue field is isomorphic to
k, .
In this paper we will only consider a particular case of valuations, called Abhyankar valuations:

Definition 2.1. A valuation v is called an Abhyankar valuation if the following equality holds:

tr.deg, k, + dimgI' ®7 Q = n.
This equality is called the Abhyankar’s Equality.

Remark 2.2. If dimgI' ® Q =1, then I' ~ Z. Otherwise I is a dense subgroup of R.

Example 2.3. The first example is the m-adic valuation denoted by ord on the ring A = k[z],
and defined by
ord(f) :=max{n e N/ fem"} V[ ek[x]\{0}.
In this case its value group I' is equal to Z and its semigroup X is equal to Zxg.
Example 2.4. Let a := (ay,...,a,) € (Rs9)™. Let us denote by v, the monomial valuation

on A = k[z] defined by v, (z;) := a; for 1 <4 < n. For instance vy,
Here we have I' = Zo; @ -+ - @ Zay, and ¥ = Z>oa1 @ -+ @ Zi>o0u,.
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Example 2.5. If ' is isomorphic to Z and v is an Abhyankar valuation, then v is a divisorial val-
uation. For such valuation there exists a proper birational dominant map 7 : X — Spec(k[x])
and E an irreducible component of the exceptional locus of 7 such that v is the composition of
m* with the mg-adic valuation of the ring Ox g.

Remark 2.6. Geometrically, an Abhyankar valuation is a monomial valuation at a point lying
on the exceptional divisor F of some proper birational map (Y, F) — (k™,0). More precisely
we have the following:

The restriction of v to k[x] is an Abhyankar valuation with the same value group as v. We
denote it by 7. By Proposition 2.8 [ELS] there exists a regular local domain (A, m4), an injective
morphism

7w k[x] — A
inducing an isomorphism between the fields of fractions and a regular system of parameter z1,
.., zr of A such that ¥(z1), ..., U(z,) freely generate the value group of ¥ (or the value group
of v since both are equal). Let us denote by u the restriction of 7 to A. Then 7 induces
an isomorphism between V, and V). Thus it induces an isomorphism between Vi and V.

Moreover the completion of A is isomorphic to L[z1,..., 2] where k — L is a field extension
of transcendence degree n —r (here L = %) and p extends to a valuation on A which is exactly

the monomial valuation that sends z; onto v(z;) for all 4.

Remark 2.7. If n = 2, in fact any discrete valuation (i.e., I' = Z) is an Abhyankar valuation
[HOV].

Definition 2.8. Let o € RZ,. A polynomial f € k[x] is called (a)-homogeneous of degree ¢ is
every nonzero monomial ¢x? of f satisfies

n
Z apfy =1
k=0

or equivalently v, (cx?) = i. This means that f is weighted homogeneous of degree i where z;
has weight «; for every j.

Example 2.9. Let v, be a monomial valuation as before. Any power series g € k[x] can be
written g = >y, gi where g; is a (a)-homogeneous polynomial of degree i € 3. Let us denote
by ig the least i € ¥ such that g; # 0. Then we can write formally

9= Yio <1 + g)
i>io Yio

and this equality is satisfied in Vya. Now if f € k[x], g # 0 and v(f) > v(g) we can write

-1
f_ i i
- (=) (o zi)

where f =) . f; where f; is (a)-homogeneous of degree i € ¥.

Thus any element of V,,_ is of the form Z a:(x) for some iy € X, where a;(x) and
i>0,itig€L i(x)

b;(x) are (a)-homogeneous and v, (Zig) = for any i € R.



8 GUILLAUME ROND

ai(x)
bi (X)
countable subset of I't with no accumulation point, where a;(x) and b;(x) are («)-homogeneous

and v, (Z’((:g) =4 for any 7 € R.

where A is a finite or

On the other hand ‘7,,a is the set of elements of the form Z

Let us denote by ]KV the fraction field of IA/V. The valuation v defines an ultrametric norm on
K,, denoted by | |, defined by

=e?@v) v fek[x], g € k[x]\{0}.

Then ]IA{,, is the completion of K,, for the topology induced by this norm and this norm (thus the

valuation v) extends canonically on HA{,,. We shall also denote by v the extension of v to K,,.
Let us denote by K& the algebraic closure of K,, in Kl,. We also denote by V22 the ring of

elements of ‘A/l, which are algebraic over K,,: Valg = Kalg N ‘7,,. We have the following lemma:

Lemma 2.10. The ring V28 is a valuation ring (associated to the valuation v) and K2 is its
fraction field. Moreover V,, — V218 is the henselization of V,, in V,.

Proof. If f, g € V8 and v(f) > v(g), then i € Kals n V, = = V2le 50 V318 is a valuation ring.

For f € K2 there exists N € N such that z? f e Kden V, = Vale since v(z) > 0. Thus K2
is the fraction field of V1&.
By construction the elements of the henselization of V,, are algebraic over V,,. On the other

hand every element of V, which is algebraic over V, is in the Henselization of V,, (see Corollary
1.2.1 [M-B]). O

Thus we can summarize the situation with the following commutative diagram, where the
bottom part corresponds to the quotient fields of the rings of the upper part:

<
N

k[x]

alg
Vl/

%><— )

al
Ka's

3. HOMOGENEOUS ELEMENTS WITH RESPECT TO AN ABHYANKAR VALUATION

3.1. Graded ring of an Abhyankar valuation and support. Let A be an integral domain
and let v : A — I'" be a valuation where I is a subgroup of R. We define Gr, A = @, .+ % Pui

Pl
where p,; :={f € A/ v(f) > i} and pm- ={feA/v(f)>i}

Definition 3.1. Let I'" be a sub-semigroup of R>g. A I't-graded ring is a ring A that has a
direct sum of abelian groups, A = @, .+ Ay, such that A;A; C A;y; for any i, j € Tt.
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For any j € T't, @iel”r,iZj A; is an ideal of A. This family of ideals as a system of neigh-

borhoods of 0 makes A into a topological whose completion is denoted by A or PD,cr+ Ai. The
completion of A is the set of elements that are written as a series ), \ a; where A C I'" is
either a finite set, either a countable subset of R+ with no accumulation point, and a; € A; for
any i € A.

A complete (I't-)graded ring is the completion of a (I'*-)graded ring.

Remark 3.2. Let A be a complete graded ring. If Aq is a field then A is a local ring and its

maximal ideal is m := ®z>0

For any a € A we can erte a = ) ,cpa; where a; € A; for any i. If a # 0 let us set
v(a) :=min{i € I't /a; # 0}. Set v(0) = co. Then v is an order function, i.e., v(ab) > v(a)+v(b)
and v(a+b) > min{v(a),v(b)}. Moreover v is a valuation if and only if A is an integral domain.
The order function v is called the order function of A.

Example 3.3. For a glven Abhyankar valuation v on k[x] the rings Gr, k[x] and Gr,V, are
I'*-graded rings and Gr,,]k[[x]] and Grl,V are complete I'"-graded rings.

Remark 3.4. The ring m is isomorphic to the ring of generalized power series k, ﬂtr+ﬂ
where t is a single variable.

Remark 3.5. The elements of @, are the elements of the form ), a; where a; € ’;Zﬁ for

all 7 € A where A is either a finite set, either a countable subset of R>¢ with no accumulation
point.

Remark 3.6. Let us consider a monomial valuation v on k[x], let us say v := v, where o € RZ,.
Pr.i s isomorphic to the k-vector space of rational fractions Z((jg where a(x) and

b(x) are (a)—homogeneous polynomials and v, (%) = 4. Thus, by Example 2.9 m and V,

In this case

are k-isomorphic.
Let us now consider a general Abhyankar valuation v on k[x]. By Remark 2.6 there exist a
regular local domain (A, m4), an injective morphism

m:k[x] — A

inducing an isomorphism between the fields of fractions and such that, if we denote by u the
restriction of v to A, the following properties hold:

The extension of x to A is a monomial valuation (denoted by 11) and 7 induces isomorphisms
V, ~V, and Vl, ~ V

We have Vu = V}L and Gr,V, ~ Gr,V, = Gruf/“. Thus m and YA/I, are k-isomorphic by
the monomial case.

We can summarize this in the following proposition:

Proposition 3.7. The choice of a proper birational map © and parameters zy, ..., z, as in
Remark 2.6 yields an isomorphism

Gr,V, =V,
Remark 3.8. A different choice of 7 and 21, ..., 2z, would give an other isomorphism between

these two rings.

Definition 3.9. Let A = @ieFJrAi be a complete I't-graded ring. Let a € A, a = Y ier+ @i
a; € A; for any i. The support of a is the subset I of I't defined by ¢ € I if and only if a; # 0.
We denote this set I by Supp(a).
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Definition 3.10. Let v be an Abhyankar valuation defined on k[x]. Let us fix a k-isomorphism
¢ between Gr,V, and V, as in Proposition 3.7. Let a € V,, and let us write ¢(a) = Ziem a;

with a; € zii. The v-support with respect to ¢ of a is the subset of I'" defined as

Supp, ,(a) ;= {i e T+ / a; # 0}.
When the isomorphism is clear from the context we will skip the mention of ¢ and denote the
v-support of a by Supp, (a).

Proposition 3.11. Let v be an Abhyankar valuation on K[x] and let ¢ be a k-isomorphism

between W, and ‘A/,, as in Proposition 3.7. Then there exists a finitely generated sub-semigroup
of R>g, denoted by A, such that the v-support of any element of k[x] with respect to ¢ is included
mn A.

Proof. By Remark 2.6, we may assume that v is a monomial valuation. Thus the proposition

comes from the following lemma applied to ¥ = Z%: (]

Lemma 3.12. Let ¥ be a strongly convex rational cone of R™. Let o € RY such that (o, 3) >0
for any € X,  # 0. Then there exists a finitely generated subgroup of R>q, denoted by A,
such that Supp,, (f) C A for any f € k[z,8 € £ NZ"] where k[z”, 3 € £ NZ"] denotes the
ring of formal Laurent series whose support is included in X N Z".

Proof. By Gordan Lemma, XNZ" is a finitely generated semigroup, let us say XNZ" is generated

by w1, ..., ug. Let us set r; := (a,u;), 1 < i < k. Since any element of ¥ NZ" is a Z>o-
linear combination of w1, ..., ug, then (o, ) is a Z>¢-linear combination of ry, ..., 7y for
any 3 € ¥ NZ". Let us denote by A the semigroup of R>( generated by ri, ..., 7. Then
Supp,, (f) C A. O

Remark 3.13. Proposition 3.11 does not imply that the semigroup X of v is finitely generated,
which is not true in general for Abhyankar valuations which are not monomial valuations.

3.2. Homogeneous elements. From now on we fix an Abhyankar valuation v on k[x] and
a k-isomorphism ¢ between m and IA/Z, induced by an injective birational morphism 7 as
in Remark 3.6 and we will skip to mention it in the following. There are several reasons for
that. The first one is that we are interested in effective results on the algebraic elements over
k[x], thus we are interested by valuations which are given effectively and this will be the case
essentially through a map 7 as in Remark 2.6. In particular we will investigate more deeply
the case of monomial valuations and, in this case, the set of variables xq, ..., x, will be fixed
from the beginning, thus ¢ is quite natural in this case. The last reason is that we will give
properties on the v-support of algebraic elements, and Proposition 3.11 will allow us to consider
only elements whose v-support is included in a finitely generated sub-semigroup of R+, and this
fact does not depend on .

Definition 3.14. Let v be an Abhyankar valuation defined on k[x]. We will denote by V@
the subset of IA/Z, of elements whose v-support is included in a finitely generated sub-semigroup
of R>o (when we identify ‘A/,, and m via ). It is straightforward to check that V¢ is a
valuation ring. We denote by K its fraction field.

Definition 3.15. Let A be a complete I'-graded domain and let v be its order function (which
is a valuation since A is a domain). A homogeneous element with respect to v is an element « of
a finite extension of A such that its minimal polynomial Q(Z) is irreducible in A[Z] and has the
following form:

294 29 g,
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where gr € A;) with i(k) € T for 1 < k < ¢ such that k.i(l) = [.i(k) for all k and [. In this case
d:= % € %I‘ is called the order of ~.

Example 3.16. Let o € RZ; such that dimg(Qa; + - - - 4+ Qay,) = n i.e., the oy are Q-linearly
independent. Then the value group of v, is the following group:

I'=%Zay+ -+ Za,
and for any ¢ € I' there exists a unique (8;1,...,8in) € Z" such that
i=Bi1a1 4+ Binan.

Thus if i € Tt this means that £2¢ is isomorphic to the one dimensional k, -vector space
generated by x| - - wT’BL” Let us remark here that k,, is equal to k since the «; are Q-linearly
independent. Thus if g3 € pi‘*"’”“ for 1 < k < ¢ we have that

va,dk

Zq—l—ngq_l—l—----i-gq :qud,l '.'{L‘qu,n (Tq+giTq_1+~-~+g;)

where Z = :Cf‘“ Pt T and g1 - gy €k If gy # 0 then Boq 5 € Z for any j but B4 ; = %
may not be an integer. Then the roots of T9 + ¢{T97 % + -+ + g, are algebraic over k. Thus
homogeneous elements with respect to v, are of the form ¢x? where ¢ is algebraic over k and

B € Q" with (o, 8) i= 181+ -+ anBr > 0.

Definition 3.17. Let v be an Abhyankar valuation on k[x]. Let A = G/r,,?y and v be a
homogeneous element with respect to v. Let Q(Z) be its minimal polynomial:

Q2Z) =21+ qZ" + -+ gy
with g, € 222 for 1 < k < q. We say that v is an integral homogeneous element with respect to

v,dk
v if gi is the image of an element of k[x] N p, i for all k.

Example 3.18. Let a € R%; such that dimg(Qo; + --- + Qa,) = n and let us keep the
notations of Example 3.16. Then ~ is an integral homogeneous element with respect to v, if

gr € W for 1 <k < g. Since g4 # 0 this means that 84q,; € Z>¢ for all j. Thus integral

Ve, dk
homogeneous elements with respect to v, are of the form ¢x? where ¢ is algebraic over k and

8 € QL.

Example 3.19. Let v be an Abhyankar valuation on k[x] and let us assume that k is not
algebraically closed. Let ¢ be in the algebraic closure of k, ¢ ¢ k. Then ¢ is a root of a
polynomial equation with coefficients in k and since k is a subfield of k,,, this shows that ¢ is an
integral homogeneous element of order 0 with respect to v.

Remark 3.20. Let v be an Abhyankar valuation on k[x] and let v be a homogeneous element
of order d with respect to v. Let us denote by Q(Z) its minimal polynomial, say

QZ)=2"4+gZ7 "+ +g,

where g, € redt for 1 < k < q. Each g is the image in G/ryvy of some fraction g—’; where fy,
ve,dk

hi € k[x]. Set h := hy ... hg, let hy be the image of h in m and set v’ := hgy. Then ' is a
homogeneous element annihilating Z9+ g4 2971 +- - “+g, where g;, is the image of }{—’;hkfl € k[x]

in Gr,V,,, thus it is an integral homogeneous element with respect to v. Moreover we have

Frac(Gr, V;)[1] = Frac(Gr, V,)[7/].
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Definition 3.21. Let v be an Abhyankar valuation on k[x],
P(Zy,....Zm) € V| Z1,..., 2

and d := (di,...,dn) € RZ,. One says that P(Zi,...,Z,,) is (v,d)-homogeneous of degree
d € R if for every nonzero monomial ngl ... ZPm of P(Z) one has g € ’;1’" with

v,k

Remark 3.22. Let v be an Abhyankar valuation on k[x]. Let v be a homogeneous element of
order d with respect to v. Let us denote by P(Z) its minimal monic polynomial. Then P(Z) is
(v, d)-homogeneous.

Conversely if P(Z) € v, [Z] satisfies P(y) = 0 for some element v algebraic over V,, and if
P(Z) is a nonzero (v, d)-homogeneous, then the divisors of P in V, [Z] are also (v, d)-homogeneous,
thus the minimal polynomial of v is (v, d)-homogeneous. Hence v is a homogeneous element of
order d with respect to v.

Lemma 3.23. Let v; and 2 be two homogeneous elements of order di and dy respectively with
respect to the valuation v and let k € Z. Then

i) v¥ is homogeneous of order kdy,
ii) if e1dy = eads with eq,ea € N, then 7' + 52 is homogeneous of order dyeq,
iii) 172 is homogeneous of order di + ds.

Proof. If  is homogeneous of order d € Q, then *, k € N, is homogeneous of order kd. Indeed
a polynomial having v* as a root is Q(Z) :=Resx(P(X),Z — X*) where P is the minimal
monic polynomial of v over k(x). But P(X) is (v,d)-homogeneous and Z — X* is (v, d, kd)-
homogeneous. Thus Q(Z) is (v, d, kd)-homogeneous, hence (v, kd)-homogeneous since it does
not depend on X. This proves that v* is homogeneous of order kd.

In order to show ii) we may assume, by i), that v; and 75 are homogeneous of same order
d = e1dy; = eady. Let us denote by Pi(Z) and P>(Z) the minimal monic polynomials of v; and
v respectively. Then Q(Z) :=Resx(P1(Z — X), P,(X)) is (v,d, d)-homogeneous, thus (v,d)-
homogeneous since it does not depend on X. Since Q(71 + v2) = 0, 71 + 72 is homogeneous of
order d.

In order to show iii) let us denote by P;(X) the minimal monic polynomial of 4, (this is
a (v, dy)-homogeneous polynomial) and P»(Z) the minimal monic polynomial of v2 ((v,dz)-
homogeneous). Let us denote by k the degree in Z of Pi(Z) and set R(X,Y) := X*P,(Y/X).
Then 712 is a root of Q(Z) :=Resx(R(X,Z), P,(X)). Moreover R(X,Z) is (v,dz,d; + da)-
homogeneous. Thus Q(Z) is (v,d; + da)-homogeneous, which proves that 4172 is homogeneous
of order d; + ds. O

Lemma 3.24. Let P(T, Z) be a nonzero (v, dy, dy)-homogeneous polynomial of V[T, Z] and let
v1 be a homogeneous element of order di with respect to v. If an element v belonging to a finite
extension of k(x) satisfies P(vy1,72) = 0, then ~yo is a homogeneous element of order ds with
respect to v.

Proof. Let Q(T) € V,,|[T] be a nonzero (v, d;)-homogeneous polynomial such that Q(v1) = 0.

Let us denote R(Z) =Resp(P(T,Z),Q(T)). Then R(Z) is a (v, ds)-homogeneous polynomial
such that R(y2) = 0. This proves the result. O

Remark 3.25. Let A be a complete I'"-graded integral domain, let say A is the completion
of A" := @,cp+ Ai, and let v be its order valuation. Let Q(Z) be an irreducible polynomial of
A[Z] having the following form:

Z9+ 27 4+ g,
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where g, € Agx for 1 <k <qgandd € %F*. The ring B := (S([g])) is an integral domain and v

extends to a valuation of this ring by defining v(Z) := d and

v (Z aiZi> = irilf{z/(ai) + di}.
=0

Let us set B’ := A'[Z]/(Q(Z)). Then B is a complete %F-graded domain since B is the com-

pletion of
B = @ @ Ai_ g4 27,
i€l 0<j<min{| Z],q}
jE€HTT
Definition 3.26. Let v be an algebraic element over A whose minimal polynomial is the
polynomial Q(Z) as in the previous remark. Then the integral domain B constructed in the
previous remark is denoted by A[v].

By induction, we can define A[y1,...,7s], where 7,11 is a homogeneous element over
Alv, ..., 7] for 1 <i < s. When v is an Abhyankar valuation on k[x] and A = V,, Ve or Vg,
the valuation v extends to A[yy,...,7;] as in Remark 3.25. Then we denote by A[(y1,...,7s)]
the valuation ring associated to the order valuation of A[yi,...,7s]. In this case the elements
of A[{m1,...,7s)] are the elements which are finite sums of terms of the form bv{l...vgs where

b € Frac(A) and v(b) > —(jiv(y1) + - + Jsv(7s))-
Definition 3.27. If v is an Abhyankar valuation we denote by
V= hj} VV[<’)/1, s a’YS”
the direct limit over all subsets {71,.-.,7s} of homogeneous elements with respect to v and
by K, its fraction field. By Remark 3.20 we may restrict the limit over the subsets of integral

homogeneous elements.
In the same way we define

v

—f .
vVe._ h_r)n V,jfg[<’71,---7’78>]’

alg

V,% = lim VA[(y,...,7)],
—
24 REREN] Ts
the limits being taken over all subsets {71,....,7s} of (integral) homogeneous elements with

=i —al . . .
respect to v, and we denote by K,* and K, ° their respective fraction fields.

The following result provides an upper bound on the number of homogeneous elements we
need to consider:

Proposition 3.28. Let v be an Abhyankar valuation on K[x] and let T' denote its value group.
Set N :=dimg'®zQ and let y1, ..., s be homogeneous elements with respect to v. Then there
exist integral homogeneous elements v, ..., ¥y with respect to v such that

~

Vol{ras -9l = Vol - )l
This equality remains true if we replace ‘2/ by V2le or Vie.

Proof. We will prove this proposition by induction on s. Let 71, ..., yy+1 be nonzero homoge-
neous elements with respect to v. Let d; be the order of ;, for 1 <7 < N+ 1. By assumption on
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N the d; are Q-linearly dependent. Thus, after a permutation of the g; , there exists an integer
1 <1< N and integers p; € Z>o, ¢; € N for all 1 <¢ < N + 1, such that

(3) @d1+...+&dl:midl+1+...+pN+1dN+l_
q1 q1 qi+1 qN+1

Set 7; 1= pl”'pﬂ for 1 <4 < N + 1. Let us denote 7, := ~,"* . Then we have

7

Volin, o)) € Vol v

By (3) and Lemma 3.23, v ---7; and v/, --- 7y, are homogeneous elements of same order.
By the Primitive Element Theorem there exists ¢ € k such that

k()91 Wvga) =KD+ e vl
Moreover «y := 71 -+ + ¢y 1 V41 15 @ homogeneous element with respect to v of same
order as ] ---7; and 7, -+ Yy, by Lemma 3.23. Since

k()5 =kE) - 1Yl
and
k(x) [’Yl/+1a e 773\74»1] = k(x)[’h’ﬂ, YN ’Yl/+1 e "Y§v+1]a
we have
k()[4 Vgl =R, - Ve YVigas - YN0 )
Thus ~; is a finite sum of products of elements a;(x) € k(x) and powers of vi, ..., v/_1, V41,
..y Yh» v and by homogeneity we may assume that a;(x) are (v)-homogeneous. Thus

VVK’YL e 77§V+1>] = VVK’%? e 77{—177{+1a e »75\[77”'
By Remark 3.20 we may assume that the +] are integral homogeneous elements.

The proof is the same if we replace ‘A/l, by V& or Ve,
O

4. NEWTON METHOD AND ALGEBRAIC CLOSURE OF ]k[[Xﬂ WITH RESPECT TO AN ABHYANKAR
VALUATION

4.1. Newton method.

Lemma 4.1. Let (A,m) be a complete graded local ring. Let B be the set of the elements of A
whose support is included in a finitely generated sub-semigroup of R>o. Then B is a Henselian
local domain.

Proof. Let us prove that B is a ring: let b; and by be two elements of B whose supports are
included in Ay and Aj respectively. Thus we can write b; = > Jen, b; ; where b; ; is a homogeneous
element of degree j for any ¢ = 1, 2 and j € Ay or As. Let A be the finitely generated sub-
semigroup of R>( generated by Ay and Ay. Then Supp(by + b2) and Supp(byb2) are included in
A. This proves that B is a ring. Since B C A, B is a domain.

It is clear that m N B is an ideal of B. If b € B\(m N B), then there exists a € A such
that ab = 1. Let us write b = ), b; where b; is homogeneous of degree i and A is a finitely
generated sub-semigroup of R>¢. Since b ¢ m, then by # 0. In this case we have

-1 k

1 b; 1 & b;

_ _]__ K3 _ k; 1

SLE 7 EASD i vl e D D U Vi
i k=1 ieA\{0}

Thus Supp(a) C A. This proves that B is a local ring with maximal ideal m N B.
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Now let P(Z) € B[Z], such that P(0) € m N B and P'(0) ¢ m. We denote by v the
order function of A, ie., if a € A, a # 0, a = >, a; where a; is homogeneous of degree i,
v(a) := inf{i / a; # 0} and the initial term of a is in(a) := a,(,). Since A is a complete local
ring it is a Henselian local ring and there exists a € m such that P(a) = 0. We can construct a
by using the fact that
(4) P(Z) = P(0) + P'(0)Z + Q(%) 2
where Q(Z) € B[Z]. Indeed, let A denote a finitely generated sub-semigroup of R>( containing
the supports of all the coefficients of P(Z). In this case a; :=in(a) = — if((g((%))))
element of degree dy € A, d; > 0. If we set P(Z) := P(Z + a1), we see that

v(P1(0)) = v(P(a1)) > di,

P{(0) = P'(0) = 0 and a — a; is the solution of P;(Z) = 0 given by the Hensel Lemma. Then
we replace P by P; in Equation (4) and repeat the same argument, using the fact that the
coefficients of P;(Z) have support included in A. Thus we see that in(a — a;) = *EEE?ESQ is a

homogeneous element of degree dy € A, dy > d;. We repeat this operation a countable number
of times (since A is countable) in order to construct a and we see that Supp(a) C A.

is a homogeneous

O
Now we can prove the following theorem:

Theorem 4.2. Letk be a field of characteristic zero and v be an Abhyankar valuation of K[x].
Let N :=dimg ' ®7 Q. Let
P(Z) € VE[(1, - w)[Z]

(resp. ‘2,[(71, ., YN)][Z]) be a monic polynomial of degree d where y; is a homogeneous element
with respect to v for 1 < i < N. Then there exist integral homogeneous elements vy, ..., Yy

such that the roots of P(Z) are in VB[(v},...,v\)] (resp. V(... YN
Proof. Let us prove the case P(Z) € V2[(v1,...,vn)][Z]. We write
P(Z)=2Z%+a, 2% + -+ aq.
By replacing Z by Z — éal we can assume that a; = 0. Let igp be an integer such that

) _ vie)

, forevery 2 <i<d.

Let v be a igth root of in,(a,,), i.e., 7 is a homogeneous element such that 4% = in,(a;,). By
the definition of ig, for every 2 < i < d we can write
a; =v'a;
with a} € V#[(v1,...,7n,7)]. Then we have
P(yZ) =420+ 20,292 + -t ag =" (2% + ab 2 + -+ dl)
Let S(Z) :=Z%+ a4Z% 2 +--- + a/, and let S(Z) be the image of S(Z) in the residue field

L=VE{(n,...,77)]/m

where k, — L is finite and m is the maximal ideal of V.8[(yy,...,7s,7)]. If S(Z) = (Z + a)¢
where @ € L, since a; = 0 and char(LL) = 0, this would imply @ = 0. But S(Z) # Z¢ since
its coefficient of Z¢~% is nonzero . Thus we can factor S(Z) = 51(Z)S2(Z) such that S1(Z)
and Sy(Z) are coprime monic polynomials in L[y'][Z] where 4’ is algebraic over L, i.e., 7/ is a
homogeneous element of degree 0 with respect to v. Since V.2[(y1,...,vn,7,7')] is a Henselian
local ring by Lemma 4.1, by Hensel Lemma the polynomial S(Z) factors as S(Z) = 51(Z2)S2(2)
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where the images of S1(Z) and So(Z) in V#[(y1,...,vn,7,7")] are S1(Z) and S3(Z) and the v-
support of the coefficients of S;(Z) and S2(Z) are contained in a finitely generated sub-semigroup
of Rzo.

Since deg;(S1(2)), deg,(52(2)) < d = deg,(P(Z)), the theorem is proven by induction on
d by using Proposition 3.28 and Remark 3.20.

The case P(Z) € V,[(71,...,7n)][Z] is proven in a similar way by using the fact that

Vol{v,---s7n,7,7')] is a complete local ring, thus a Henselian local ring.
([

Remark 4.3. The proof of this theorem is what we call the Newton-Puiseux method. Usually
the term of Newton-Puiseux method is used when one compute the roots of a monic polynomial
with coeflicients in the ring of power series in one variable: one root is constructed by computing
step by step its coefficients. The fact that the ring of formal power series is a complete local ring
allows to conclude that this process converges. But when we want to find roots of a polynomial
in a local ring that is not complete but only Henselian, it is more convenient to use the Hensel
Lemma as we have done here. The proof we used here appeared for the first time in [BM] (to
the knowledge of the author). Of course if v is a divisorial valuation ‘7,, is isomorphic to the ring
of formal power series in one variable over the residue field k,, and the previous theorem may be
proven by using the classical Newton-Puiseux method.

Corollary 4.4. The field K,f,g (resp. K, ) is algebraically closed and it is the algebraic closure of
K (resp. K, ).

Proof. Let P(Z) € Kfyg[Z] be an irreducible polynomial. By multiplying P(Z) by an element of
V!8 we may assume that

P(Z) € V,E[{m,.... )2

for some homogeneous elements v, ..., vy with respect to v. We write P(Z) = agZ%+- -+ ay,
a; € VB[(y,...,)], 0 < i < d We set Q(Z) := a4 'P(Z/as). Then Q(Z) is a monic
polynomial of V8[(v1,...,vn)][Z] and if z is a root of Q(Z), then Z is aroot of P(Z). Hence
the result comes from Theorem 4.2.

The assertion concerning K, is proven similarly. O

—ale
We have the similar result for K

Lemma 4.5. The algebraic closure of K,, in K, is equal to Kilg. In particular Kilg is alge-
braically closed.

Proof. Let ~1, ..., s be homogeneous elements with respect to v. Let us denote by ¢; 41 the
degree of the minimal polynomial of ;41 over K, [v1,...,7v;] for 0 <i < s—1. Thus any element
2 of Ky [y1,...,7s] can be uniquely written as z = Sier iy iyl where A K
forallie I and I ={0,...,q1 — 1} x --- x {0,...,¢s — 1}.
In order to prove the lemma we need to show that A;, ., € Kglg for any i1, ..., is when
gs—1
2 is algebraic over k[x]. In this case let L := K, [y, ...,7s_1] and let us write z := Z Byt
i=0

..........

where B; € LL for all . Let us set ¢; := s and let (3, ..., (,, be the conjugates of (; over
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gs—1
K, [y1,..+,7s—1]. Let us define z; = Z BZ-C; for 1 < j < gs. Then we have
i=0
1 G e Clrl
( : ) (ENCRRe BoBy
FEZe, ) [0 : : ‘B, 1 '
1 Cqs 35_1
1 G e gls—i
N B C R C L e : : . :
The matrix ] . ) is invertible and its entries are algebraic over k(x), z; is
1 Cqs Cg::*l
algebraic over k[x] for all j, hence B, is algebraic over k[x] for all j. By induction on s we see
that A;, .. ;. € Kﬁlg for any i1, ..., is. O

We can summarize the situation with the following commutative diagram where the bottom
part corresponds to the quotient fields of the rings of the upper part and all the morphisms are
injective:

k[x] C V, Vals Ve v,
N\ AN \
vos Ve v,
| | |
K, Kele Kfs K,
\ AN \
K8 K K,

Example 4.6. Let g(T) = > .2, ¢;T" € Q[T be a formal power series which is not algebraic
over Q[T]. Let a:= (a1, 2) € N™. Let us set

r=a (%) - ix € k(@) (@),

X x

But f ¢ K, : let P(Z) = ag(x)Z% + - - + aq(x) € V,,_[Z] be a polynomial such that P(f) = 0.
Let us write a;(x) = > 5o ai,k(x) where a; (%) is a (o1, az)-homogeneous rational fraction of
degree k. By homogeneity we have

aokft+arpfT 4+ +agr =0 VkeN.
This implies that
ao (1, T)g(T*) + a1 1, (1, T)g(T) 1 + -+ agp(1,T) =0 VkeN.
Thus a; (x) =0 for all 0 <i < d and 0 < k. Hence P(Z) =0 and f ¢ K,_.

m20{2 o0 x2o¢2i N
On the other hand, h := g( L ) = Zcili € K,, but h is not algebraic over

k(1) (x2))-

1=1 2
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4.2. Analytically irreducible polynomials.

Proposition 4.7. Let P(Z) € V'8[Z] (resp. V;2'8[Z]) be an irreducible monic polynomial. Then
P(Z) is irreducible in V,[Z].

Proof. By Corollary 4.4, P(Z) splits in V[(y1,...,7,)] for some homogeneous elements
1, --., ¥s With respect to v. Since

~

Ve[, )NV, = VE
the result follows.
The proof is the same for V22 O

Lemma 4.8. Let o be a K, -automorphism of K,,. For any z € K, we have v(o(z)) =v(z).

Proof. Let z € JKV [v1,--.,7s] where 71, ..., 75 are homogeneous elements with respect to v. Let
us write z := )., z; where z; is homogeneous of degree i for every i and A is a countable subset
of R with no accumulation point (see Remark 3.5). If ig = v(2), then z;, # 0 and v(z;) = 0 for

all i < ip. Since o acts only on the homogeneous elements v, ..., 75, we have o(z) = >, 0(2;).
For all 4, 0(z;) is homogeneous of degree i and o(z;) = 0 if and only if z; = 0. This proves that
i0 =v(o(z)). O

Definition 4.9. Let P(Z) € A[Z] where A is an integral domain. We write
P(Z)=apZ%+ a1 27 + -+ aq.
Let v : A — R>( be a valuation. The Newton polygon of P is the convex hull of the set
{(w(ai),d—i) eR:y /i=0,...,d} + RZ,.

Corollary 4.10. Let P(Z) € V,|Z] be an irreducible monic polynomial. Then the Newton
polygon of P(Z) has only one edge. The result remains valid if we replace V,, by V& or V'8,

Proof. Let z be a root of P(Z) in V. Let o be a K,-automorphism of K,. Then v(a(z)) = v(2)
by Lemma 4.8. The finite product of the distinct linear forms Z — o(z) obtained in this way is

a monic polynomial with coefficients in K, and divides P(Z). Since P(Z) is irreducible, both
polynomials are equal. This proves that all the roots of P(Z) have same valuation, hence the
Newton polygon of P(Z) has only one edge.

The cases V8 and V'8 are deduced from Lemma 4.7. (]

Example 4.11. Let P(Z) := Z3 + 3z122Z — 22} € k[x1,22][Z]. We see that P(Z) has one
root of order 2 and two roots of order 1 in V(f)grd. By Corollary 4.10, P(Z) has at least one root
in V& of order 2.

Let V14+U :=1+ Dois1 a;U?, a; € Q for all 7, the formal powers series whose square is equal

tol+U,andlet v/1+U =1+ 2221 b;U' , b; € Q for all i, the formal power series whose cube
is equal to 1 + U. Then the roots of P(Z) are

a€/q+\/q2+p3+bf/q—\/q2+p?’

with (a,b) = (1,1), (4,72) or (j2,7) and p = x122 and ¢ = z{. But

Vg+eva +pd= i/x‘{ +ey/x3ad + af = Vey/rima + 1

where € = 1 or —1 and ord(n) > 1. Both order 1 roots of P(Z) have initial term of the form

a/T122 where a € C*. Thus P(Z) has only one root in V;lg and even in Kf)grd.
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Let z be the only root of P(Z) in Voarlf. If z € K,, since P(Z) is monic and k[x] is an integral
domain, then z € k[x]. But in(z) = %g ¢ k[x]. Thus z ¢ K, hence P(Z) is irreducible in

K, [Z]. This shows that K,, — K2 is not a normal extension in general.

Corollary 4.12. Let P(Z) := Z%ay(x) 2%+ - -+aq(x) € k[x][Z] be an irreducible polynomial
1

1 1
having its roots in k[xf,...,z5] for some positive integer e. Then the Newton polyhedron of

P(Z) is the convex hull of the cone of N* 1 centered in (0,...,0,d) and generated by the convex
hull of the Newton polyhedra of agz(x) in N™.

A

Proof. Let a € N™. Let
1 1
21y, 2q €EK[zs, . 2]

~ 1 1 1
be the roots of P(Z). Then z; € V,, [zf,...,x5] for any ¢, the ¢ being homogeneous elements
with respect to v,. Let G ~ (Z/eZ)" be the Galois group of the extension

.

The z; are conjugated under the action of G, thus P(Z) := H?Zl(Z — z;) is irreducible in ‘2,@ [Z].

This being true for any o € N, the result follows from Corollary 4.10.

~

~ 1
Vo, — Vi lzs,... 2

3ol

O

We finish this section by giving two results relating the roots of a polynomial P(Z) to the
roots of polynomials approximating P(Z). First of all we give the following definition:

Definition 4.13. Let P(Z) € A[Z] where A is an integral domain and let v be a valuation on
A. We define
v(P(Z)) := minv(a)

where a runs over all the coefficients of P(Z).

The following proposition is the analogue of Proposition 2.6 of [To]:

Proposition 4.14. Let P(Z) € V8[Z] be a monic polynomial with no multiple factor. Let us
write P(Z) = P\(Z)...P.(Z) where P;(Z) € V!8[Z], 1 < i < r, are irreducible monic polynomials.
Let Q(Z) € V'8[Z] be a monic polynomial and let z1, ..., zq be the roots of P(Z). If

deg(Q(Z)) = deg(P(Z))
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and
v(Q(Z) — P(Z)) > drggx{V(zi - z)}

then we may factor Q(Z) = Q1(2)...Q,(Z) such that Q;(Z) € V[8[Z] is an irreducible monic
polynomial, 1 <1 <r, and

n@Qu(2) - P(z) 2 MOELE)
The result is still valid if we replace V'8 by V218 or 17,,.

Proof. Since P(Z) has no multiple factor and since char(k) = 0, we have z; # z; for all i # j. Let
us set r := max;2;{v(z;—z;)}. Let z{, 1 < i <d, be the roots of Q(Z). Let z be aroot of P(Z) in
VE[(y1,...,vn)]. Let us write P(Z) = Z%+a, Z%9 1 +-- - 4agand Q(Z) = Z1+b, Z 1+ - -4 by.
Then
d .
I -2 = Q) = Q) — P(=) = 3 (b — @)=,
1<i<d i=1
Thus there exists at least one 7 such that
mini<i<a{v(a; — b))} _ v(Q(Z) — P(2))

v(z) —z) > y = y > 7

Let ¢ be another root of P(Z). Then
v(izi—t)=v(zi—z+z2—t)=v(z—t)<r

since v(z] — z) > minlg"gd;{i”(ai_bi)} > 1 > v(z —t). Thus for any root of P(Z) denoted by z,
there is only one ¢ such that
minlgigd{l/(ai — bz)}
d
Let 01(2), ..., 0.(2) be the conjugates of z over K&. Set

vz —2z) >

R(Z):=(Z — 2) H(z —oj(2)) € V2[Z].

Then R(Z) is an irreducible factor of P(Z). Moreover o1(2}), ..., 0.(2}) are conjugates of z;

over K. Let o be a K&-automorphism of Kf . Then o(z) is a conjugate of z thus there exists j
such that o(z) = 0;(2). Moreover o(z) is a root of P(Z) and v(o(2]) —o(z)) > mlnlsigd;{iu(a"’_b"’)}

by Lemma 4.8. Thus we have Z
v(o(z) — 0j(2)) = v(o(z) — 0(2)) = v(z — 2) =

) ming <i<a{v(ai — b))}
v(oj(z;) —o4(2)) = p

and since there is only one root of Q(Z) whose difference with o;(z) has valuation greater than
minlSiSd{y(ai—bi)}

7 , we necessarily have o(z) = 0;(2;). Thus 01(2}), ..., oc(2]) are the conjugates
of z! over K!8. Thus the polynomial
$(2) =2 - 2) [[(Z = o;(=])

j=1

is irreducible in V,'8[Z] and

v(S(Z) — R(Z)) > min1§i§d{cll/(ai — bi)}.
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The proof for 171, is the same and the case V2!# is proven with the help of Lemma 4.7.
O

Remark 4.15. Let us remark that v(Q(Z) — P(Z)) > v(Ap), where Ap is the discriminant
of P(Z), implies that
vQ(Z) = P(2)) > dmax{v(zi — z)}
i#]

Remark 4.16. This result is not true if P(Z) has multiple factors. For example, let v be a
divisorial valuation and let us consider P(Z) = Z? and let Q(Z) = X? + a where v(a) = 2k + 1

and k € N. Since v(a) is odd and since the value group of v is Z, then it is not a square in V,,
and Q(Z) is irreducible but P(Z) is not irreducible.

Proposition 4.17. Let v be an Abhyankar valuation and let
N :=dimgI' ®z Q.

Let P(Z) € 171,[<'71,...,'7N>][Z] be a monic polynomial where v1, ..., YN are homogeneous
elements with respect to v. Then there exist integral homogeneous elementAs with respect to v,
denoted by 1, ..., Yy, and ¢ € Rsg such that the roots of P(Z) are in V,[(7],...,¥N)] and
for any monic polynomial Q(Z) € V,[{(71,...,Yn)][Z] such that deg(Q(Z)) = deg(P(Z)) and
v(P(Z) — Q(Z)) > ¢, the roots of Q(Z) are in V,[(V,---, V)]
Proof. The proof of this proposition is based on the proof of Theorem 4.2. So let us use the
notations of that proof. Let us write Q(Z) = Z% + b, 2% + ... 4 by and let us define
R(Z):=Z4+0, 27 + ... 40
where b} := ,l;— for 1 <i < d. We have Q(vZ) = v?R(Z). Let us assume that v(b; — a’) > 0 for
all 1 <i<d (ie., if v(b; — a;) > v(v?) for all i, thus we assume here that ¢ > dv(y)).
Then R(Z) = S(Z) (R(Z) denotes the image of R(Z) in L[Z]) and the factorization

R(Z) = S1(2)S2(Z) lifts to a factorization R(Z) = Ri(Z)Ry(Z) of R(Z) as the product of
two monic polynomials as in the proof of Theorem 4.2.

Lemma 4.18. In the previous situation there exist two constants a > 0, b > 0 depending only
on S1(Z) and S3(Z) such that for any ¢ > max{b,v(v%)}, we have v(R;(Z) — S;(Z)) > <2 for
i=1,2.

Proof of Lemma 4.18. Let us denote by 7;  the coefficient of Z* of the polynomial R;(Z), for
i=1,2and 0 < k < deg,(R;(Z)), and let us denote by r the vector whose coordinates are
the r; x. The coefficient of Z* of Ri(Z)R2(Z) — 51(Z)S2(Z), for 0 < k < d, is a polynomial
() whose coefficients are in V,[(y1,...,vn5,7,7')] and depend themselves on the coefficients
of S(Z). By Theorem 1.2 [M-B], there exist a > 0, b > 0 such that

Ve > b, Yr € Vo[(v, .. w7, Y042 such that v(fy(r)) > ¢ Vk

3 e Vo[, w7702 such that fi.(r') =0 Vk
and V(rg’j — 1) > %b Vi, 5.
Let us denote by R}(Z) the polynomial whose coefficients are the r; ; where 0 < j < deg(R;).
Then R (Z)R4Y(Z) = S1(Z)S2(Z). Moreover EQ(Z) = R;(Z) = 5;(Z) if =t > 0. Since the
roots of S1(Z) and S5(Z) are different, and since V,[(y1,...,vn,7,7)][Z] is a GCD domain,
then R}(Z) = S;(Z) for i = 1,2. This proves the lemma. d
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Here we remark that, the constants a, b, () depend only on P(Z). Thus the result is proven
by induction on the degree of P(Z) (since deg(S;(Z)) < deg(P(Z)) for i = 1,2) and using
Proposition 3.28 and Remark 3.20.

O
5. MONOMIAL VALUATION CASE: EISENSTEIN THEOREM

We will first construct a subring of V% containing V'8 when v is a monomial valuation.

Definition 5.1. Let a € RZ; and let 6 be a (a)-homogeneous polynomial of degree d. We
define

Vas = {A € ‘71,& / A a finitely generated sub-semigroup of R,

Vi € A Ja; € k[x] («)-homogeneous,
Ja>0,beRVie A Im(i) € Ns.t. m(i) < ai+b,

o (i) =t 4= 3 gt |

With this notation we say that i — ai + b is a bounding function for Z 5m(1

i€EA
By Lemma 3.12 we have k[x] C V.5 C V)8, by identifying a formal power series Z cpa”
ez,
to EZ 5(&;)(2)(1,) with a;(z) = , +¥ , .Cglﬁ et m(i) = 0 for all : € A. We extend in an
i a1 B+t o Br=i

obvious way the addition and multiplication of k[z] to V. s: this defines a k-algebra structure
over V, 5. We have easily the following lemma:

Lemma 5.2. Ifi+—— ai+b is a bounding function of A and B € V, 5 then it is also a bounding
function of A+ B and the function i — ai + 2b is a bounding function of AB.

Proof. Let us write

b;
A= Z 6az+b’ B = Z 6ai+b

i€A i€A
where A is a semigroup and the a; and b; are («)-homogeneous polynomials and

a(&gib)zanWZb):i Vi € A.

a; + bl
A+B= Z Saith
i€A

and AB = Z Z 6aj+cl,;]5az(z]j)+b Z Z aiz:—Qi

€N JEAN,5<i €N jENj<i

Then we have

This proves the lemma. U

Remark 5.3. If A € V, s satisfies v, (A) > 0 then A admits a bounding function which is linear.
Indeed let i — ai + b be a bounding function of A and let iy := v, (A). Then i — (a + %) )
is a bounding function of A.
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Definition 5.4. Let A := Z % € Va5, A#0. Let ig be the least element of A such that
€A
a;, 7 0. We say that yif?o) is the nitial term of A with respect to v, or its («)-initial term.

We denote it by in, (A).

Lemma 5.5. Let § and &' be two (a)-homogeneous polynomials. We have the following proper-
ties:
i) The ((a)-homogeneous) irreducible divisors of § divide &' if and only if Va0 C Va,5. We
denote by V, the inductive limit of the V5.
ii) The valuation v is well defined on Vo 5 and extends to V,. Its valuation ring is exactly
Ve
Proof. 1t is clear that if the irreducible divisors of ¢ divide ¢’ then V4 5 C V4,6. On the other
hand if V45 C Va6, then % € V.67, thus there exist a ()-homogeneous polynomial a € k[z]
and an integer m € N such that % = 57w, hence ad = §’™. This proves i).
If A€V, s and B € V, o satisty vy (B) > v4(A4), let 6&’“)% denote the first nonzero term in
the expansion of A. Then we can check easily that % € Vu.55'a,- This proves ii). [l

Definition 5.6. For any a € RY, we denote by K, the fraction field of V,, and
Ko = lm Kulyi,---,7s)
—

04 EEERE) Ys
the limit being taken over all subsets {71, ...., 75} of (integral) homogeneous elements with respect
to v.
If 1, ..., 7s are homogeneous elements with respect to v, we denote by V, s5[(71,...,7s)]

the ring of elements Y, A;vE where the sum is finite, k := (k1, ..., k), Ay = Y ica sy Where
a; € k[z] is («)-homogeneous, there exist two constants a > 0, b € R such that m(i) < ai+ b for
all 7 and there exists ig € A such that v, ((sy‘fbﬁ) =i —ig and v(yE) > .

This means that V4 s[(71,...,7s)] is the subring of K4[y1,...,7s] whose elements have non
negative valuation v,. In the same way we denote by V,[(71,...,7s)] the ring of elements of
Kalv1,---,7s] having a non negative valuation v,. The field of fractions of V4 [{71,...,7s)] is

exactly Kao[v1,. .-, 7s)-

Remark 5.7. We will see later (see Remark 6.10) that these fields K, coincide with those
introduced in [AI] when dimg (a1 Q+- - -+, Q) = n where it is proven that they are algebraically
closed.

Remark 5.8. For any o € RY it is clear that V, C Vyfcgy but both rings are never equal if
dimg(a1Qq + - - - + @, Q) < n. For instance, let n =2 and o = (1, 1) and set

s ,
zy Y 2}
= Z e 1 +ize’
ieN 2 ieN 1 2
Then obviously z € V'8 but z ¢ V,.
Proposition 5.9. If ay, ..., a, are linearly independent over Q then V, = V,fg.

Proof. Let us denote by a* : Q" — R the Q-linear map defined by a*(u) = (a,u) for any
u € Q". Since the a; are Q-linearly independent then o* is injective.

If A is a finitely generated sub-semigroup of Zay + - - - + Zay, let By, ..., Bs be generators of
A. Then o* ~*(A) is a finitely generated semigroup whose generators are

by = 04*71(61), e b = Oé*il(ﬂs) ez".
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If the support of z € V,ff is in A, since a* is injective z can be written as

E akxklbl+“'+ksbs

kezs,

where a; € k for all k = (k1,--+,ks). Let us remark that the monomial ajxk101+Fksbs g
(a)-homogeneous of degree k151 + -+ + ksfs.

Let us write b; = b1,; — by ; where by 4, by ; € Z’ZLO. Then we have

xhkibiatFksbi s
kb1t tksbs
xkib2, 14 +ksba s
xck1b11++ksbr s +(max;{ki}—k1)ba 1+ +(maxi{ki} —ks )bz s

x(b2,1+ - +b2 s) max; {k; }

Moreover

max{k < max { 61]

hhm+ k).

This shows that 2z € V _bs,+--+bs,, and

z%max{ﬂj}

is a bounding function of z. O

Then we give the following version of the Implicit Function Theorem inspired by Lemma 1.2
[Gal (see also Lemma 2.2. [To]):

Proposition 5.10. Let o € RY and let P(Z) € Vas[(n,---.7s)][Z], P(Z) = ZZ:O VA
where y; is homogeneous for all i with respect to v, and d > 2.

Let u € Vo 5[(71, .-, 7s)] such that vo(P(u)) > 2vs(P'(u)). Let 53 denote the initial term of
P’(u) with respect to v,
Then there exists a unique solution @ in V, s[(71,...,7s)] of P(Z) =0 such that

Val@ — 1) > va(P(w)) — va(P'(1)).
Proof. e By replacing P(Z) by P(u+ Z) we can assume that v = 0. In this case we have that
P(u) = P(0) = ag and P'(u) = P'(0) = a3.
The valuation v, is defined on the ring V, s[(71,--.,7s)] and we denote by V its valuation

ring. We denote by V the completion of V. Let V& be the subring of V of all elements of V
whose v,-support is included in a ﬁnitely generated semigroup. Then V8 is a Henselian local

ring by Lemma 4.1. We set Z = 37 9 Y. Thus we are looking for solving the following equation:

. 62m ’5 §2m §m 2 gd—Q J
PY):= P<6MY>_aOg +a1gY+a2Y "‘radmy =0.
From now on we denote by @y the coefficients of P(Y):
e
ag ::akm k:(),,d

Since

<2
Va(ao) = VQ(P(O)) > 2VQ(P/(O)) = 2ya(a1) = V4 <552m>
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we have that @y € V. By assumption we have that v, (a;) = 0 thus a; € V. Since v, ( (5) >0
we have that @, € V' for all k£ > 2. Moreover we have
Vo (P(0)) > 0 and v4(P'(0)) = 0.

Thus by Hensel Lemma this equation has a unique solution y € V8 such that
52m

VoY) = Vo <a052) = 14(P(0)) — 2v4(P'(0)) > 0.

Hence there exists a unique solution z := %y € V' of the equation P(Z) = 0 such that
Va(2) = va(P(u)) — va(P'(u).

Now we have to show that z or y € V_ s5[(71,...,7s)]-

e We can write y = Goy where y € V'8 and v, (%) = 0. Then ¥ is a root of the polynomial

P(aoY) = @ + a1aoY + a2az¥? + - + agagy?
=ao (L+ @Y +adeaoY? + -+ +aqag YY)

andy €V, 5l{y1,...,7)] ifand only if gy €V s5[(71,. .., 7s)]-

Since v, (@o) > 0, by replacing P (resp. y) by 1+ a1V + daaoY? + - - + agag Y4 (resp. 7),
we may assume that

va(a;) >0 for i > 2.

In this case we have agp = 1, in,(a1) = 1 and in,(y) = —1.

Let A be a finitely generated sub-semigroup of R>( containing the v,-supports of y and the
ay. We denote by A, | € Z>g, its elements ordered as follows:

>\0::O<)\1<)\2<"'<>\l<)\l+1<"‘~

Let us expand the coefficients of P(Y) as
A=Y G
l€Z>0

where @y », is homogeneous of degree A; with respect to v,. For every I € N let Y), be a
new variable and set Y* := 3, (Y),. We extend the valuation v, to V®[Yy,,...,Yy,,..] by
setting v (Yy,) := A for any I € N. We may write formally P(Y*) = >, Py,(Y*) where
Py, (Y™) € Z]ag »,][Y»,] is the homogeneous term of degree \; with respect to v,.

Since in,(a1) = 1 the equation

(5) P(Y)=Gdo+ @Y +aY?+ - +a3Y? =0,
where Y is replaced by Y*, yields the following equation, for every | € Zx>:

(6) PA(Y*) =Yy, +Qx (Y") =0.
where Q, (Y™*) € Z[ay,,][Y),] is a polynomial depending only on the variables ax x, (As < A;)
and Yy, (j <1). Since y is a solution of Equation (5), by replacing Y* by y we have ]BAL (y) =0,
hence
Yn = —Qxn (Y5 <) VIEN,
So by induction on [ we see that we may write
Cl

W= aymon
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for some ¢; € k[z][y1,...,7s] and m(N\;) € N for all [.
Let ¢ — ai+ b be a common bounding functions of the coefficients of ag, ai, as, ..., aq seen
as elements of V s<[(71,...,7s)]. By Remark 5.3 we may assume that b = 0 since vq(ax) > 0
for k > 2 and in,(ag) = in,(a1) = 1.
Thus we have
(68) NGk, € k[2][y1,---57s] Vi

Let m();) be the least integer such that (60)™*)yy, € k[2][v1,. . .,7s]. We will show by induction
on [ that

(7) m()\l) S a)\l.

This inequality is satisfied for I = 0 since in,(y) = —1 implies that m(Ao) = 0.
We fix an integer [ > 0 and we assume that (7) is satisfied for any integer less than .
Let @ be a monomial of Q;(Y™*). We may write
Q = ar . Yn;, " Yns,
where k < d, j1 <--- <jp <land \j+ Aj, +---+ X5, = A
Then
((5(5)a)\i+a(>\jl +...+)\jk)Q _ (55)(1)\LQ c k[[l‘ﬂ [717 . ’,ys].

This proves (7). So y € V%(;g[(%, e Y- H

We deduce from this proposition the main result of this part (Theorem 5.12) which is a
general version of Eisenstein Theorem for algebraic power series over Q. First we recall the
classical Eisenstein Theorem:

Theorem 5.11. [Ei| Let Z ar,T" € Q[T] be a power series algebraic over Q[T). Then there
keZZO
exists an integers a € N such that

ak+1ak €7

for every integer k.

Theorem 5.12 (Eisenstein Theorem). Let k be a field of characteristic zero. Let a € R and
let us set N = dimg(Qay + -+ + Qo). Let

P(Z) € Valin,---7s)]1Z]

be a monic polynomial where v1, ..., vs are homogeneous elements with respect to v,. Then
there exist integral homogeneous elements with respect to v,, denoted by vi,... ¥, such that
P(Z) has all its roots in Vo [(¥1, - YN)]-

Proof. By replacing P(Z) by one of its irreducible factors we may assume that P(Z) is irre-
ducible. Let

2 € VB[, )]
be a root of P(Z) where 7/ is an integral homogeneous with respect to v, (by Theorem 4.2 such
a z exists). Since P(Z) is irreducible, then P’(z) # 0. Let us set ig := max{v,(z—2')} where the

maximum is taken over all the roots z’ of P different from z. Let us take z € V,[(71, .-, Vy)]
such that

(8) Ve (Z — 2) > max{2v4(P'(2)),i0 + va(P'(2))}.
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For instance if we expand z = ), , 2; where A is a finitely generated sub-semigroup of R and
z; is a homogeneous element of degree ¢ with respect to v, we can choose

i<max{2vq (P’ (2)),i0+va (P’ (2))}
By replacing P(Z) by P(Z + Z) we may assume that Z = 0. In this case P'(2) = P'(0) = aq—1
if we write
P(Z)=2"+a1Z% 4+t ag 1 Z + aq.

Now in,, (ag—1) € k(x)[71,...,7N] so if we denote by a the product of the conjugates of
in,_ (aq—1) over k(x) different from in,_(aq—1) we have in, (aaq—1) € k(x) and a is a homo-
geneous element with respect to v, by Lemma 4.8. Let b be a homogeneous element such that
b1 = a. By Proposition 3.28 we may assume that b € V,8[(v],...,~vy)]. We have that

Z 1 a ad—
d d Zd 1 Zd 1 d—1
=274 b2 v ag 1 Z 4 bay.

By replacing P(Z) by b%P (%) we may assume that in,, (P'(2)) = in,, (aq—1) € k(x).
Since P(Z) — P(z) € (Z — z) then by Inequality (8)

va(P(2)) > 2va(P'(2))

and
va(P(2)) > io + va(P'(2)).
In the same way, since P'(Z) — P'(z) € (Z — z), Inequality (8) yields
Vol P (3) = va(P'(2))
Then we apply Proposition 5.10 (with w := Z = 0), and we get a root Z € Vu[{¥],...,Yn)] of
P(Z) such that
Val(Z = %) 2 va(P(3)) — val(P'(2)) > io.

Thus
Va2 —Z2)=Va(z—Z+2Z—2) >ig = ,r;?ax {va(z — 2')}.
P(z')=0
Hence z =Z € Vo [(V1, -+, V) - O

Corollary 5.13. The field Kﬁlag s a subfield of K.

Proof. Let z € K¢ and let P(Z) = agZ%+- - -+aq € k[x][Z] be a polynomial such that P(z) = 0.
Then agz € K2 is a root of the polynomial al™'P(Z/ap) = Z% a1 Z* Hagag 242+ - +agal?
which is a monic polynomial. Hence agz € V,, by Theorem 5.12 and z € IC,,.

O

Example 5.14. Let us assume that Discz(P(Z)) is normal crossing after a formal change of

coordinates and let us assume that k is algebraically closed. This means that there exist power

series z;(y) € (Y)k[y] (y = (y1,--.,Yn)), for 1 < i < n, such that the morphism of k-algebras

¢ : k[x] — k[y] defined by o(f(x)) = f(21(y),...,2,(y)) is an isomorphism, and such that
p(Discz(P(2)))kly] = v1* - -y kly], m <n.

By Abhyankar-Jung Theorem [Ab] (or [KV], [PR], [MS]), the roots of P(Z) can be written as

d
ty = Z k1 (}’)Wl
1=0
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where w = y” for some 8 € QT x {0}"~™, d € Z>( and the t;,(y) are power series with

coefficients in k. Let us write:
b b
B = (1,...,’”,0,...,0)
e e

for some non negative integers by, ..., b, and e € N. Let us denote by f;(x), 1 < i < n, the
power series satisfying o(f;(x)) = y;.
Let o € N™ and write fi(x) = l;o(X) + €;,a(x) where [; o(x) is (a)-homogeneous and

Vo (€4(x)) > va(li,o(x)) for any i. Thus we have for 1 <i <m:

1
.:li’a(x)%u?,a(x)):mxz 1+l z

E>1 lia

<
ol

Hence

by o m ‘axk »laxk
lla( )T ma b H 1+Z cn s ( )me7é] P, ( )
. =1"pP

We remark that Discz(P(Z)) = [[1, lp,a (%) + £(x) with

b
Let v:= [T, lj.o(X)* be a root of the polynomial

Jj=1"7
m
— [l
j=1

(in particular it is an integral homogeneous element with respect to v, ), and set

§:=[]ljax)
j=1

Here ¢ is the («)-initial term of the discriminant of P(Z). Hence we obtain the following three
cases:

i) If ¢ is a linear change of coordinates (i.e., « = (1,...,1) and €; o, = 0 Vi), then the roots
of P(Z) are in k[x][v] (since in this case w = 7).
ii) If ¢ is a quasi-linear change of variables (i.e., « € N and ¢; , = 0 Vi), then the roots of
P(Z) are still in k[x][v] (since in this case we also have w = 7).
iii) If (at least) one of the ¢; o is not zero, then the roots of P(Z) are in V, s[(7)]-

This example will be generalized later (see Theorem 7.7).

Example 5.15. Let P(Z) = Z? + 2aZ + b where a and b are power series over k and let
a € Q. Let ¢ denote the (a)-initial term of the discriminant of P(Z), i.e., the («)-initial term
of a®> — b. Then the roots of P(Z) are of the form —a + Va2 —b € V, 5[(7)] where 7 is a root
square of §.
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Example 5.16. Let P(Z) = Z3 + 3237 — 2(a} + ) where ¢ is a homogeneous polynomial of
degree greater or equal to 4. Its discriminant is D := 29 + 2§ + 223e + ¢? whose initial term is
28 + 5. The roots of P are

a/ed+e+VD+bi/at+e— VD
with (a,b) = (1,1), (4,72) or (52,7). But we have

203¢e + €2
\S/x%+€+@:71§/1+8+x3f7 L+ = —xgvjv
2 1 2

1
with 75 = 2§ + 28, 73 = 23 + 2 and § = 2% + 2§ is the initial term of D. Thus

5
Vi +e+ VD eVan, K’h”mwﬂ .

o} + 72

By doing the same remark for {/z3 + ¢ — VD, we see that there exist 71, ..., 75 homogeneous
elements with respect to ord such that the roots of P(Z) are in V(1 1)s[(71,-.,75)]. But there is
no reason that the roots of P(Z) are in V, s[(y)] where + is one (integral) homogeneous element
with respect to v,.

6. APPROXIMATION OF MONOMIAL VALUATIONS BY DIVISORIAL MONOMIAL VALUATIONS

In several cases, it will be easier to work with a monomial valuation v, which is divisorial,
i.e., such that dimg(Qay + - - -+ Qay,) = 1. In order to extend some results which are proven for
divisorial monomial valuations to general monomial valuations, we will approximate monomial
valuations by divisorial monomial valuations. The aim of this section is to explain how this can
be done.

Definition 6.1. Let @ € RZ,. Let a* : Q" — R be the Q-linear morphism defined by
a*(q1,...,qn) =), @;q;. We denote by Rel, the kernel of this morphism.
For any ¢ > 0 and g € N, we define the following set:
< qs} .

Example 6.2. If n =4, and oy = ﬂ, g = \/g, as = 13v2+ \/5, as =2+ 757\/3, then any
o’ of the form (n1,ng,13ny + na,ny + 757ny), where nq, ny € Ny, will satisfy Rel, C Rely.

!

-

3

Rel(a, g,¢) == {o/ € N" / Rel, C Rel, and max

Remark 6.3. For o and 3 € RY; we have
Rel, CRelg <= eV ®gR

where V := (Kera*)t C Q". By definition we have that @ € V ®g R. Since V is dense in
V ®qg R there exists 3 € V such that
Bi

1-2
Q;

max < €.

1<i<n

Let us write 8; = %; where the o/ and ¢ are positive integers. This implies that

’
_

%)

max

< ge.
1<i<n

Since 8 € V' we have that o’ € V' thus Rel, C Rel,/. This shows that for any given a € RZ,
and € > 0 there always exists ¢ € N such that Rel(, g, €) # 0.
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Moreover if & € N™ then Rel(a, ¢, &) = {qa} if 0 <e <
o/ € N" satisfying max |qa; — o] < qaue is o = qa.
K3

— L Indeed in this case the only
gmax{a;}

Lemma 6.4. Let o, o € R%,. Then Rel, C Rely if and only if every (a)-homogeneous
polynomial is a (a’)-homogeneous polynomial.
Moreover if o' € Rel(a, q,¢€) and if a(x) is a («)-homogeneous polynomial then

(1 = e)rvala(x)) < var(a(x)) < q(1 +&)vala(x)).

Proof. First let us assume that Rel, C Rely and let a(x) be a (a)-homogeneous polynomial.
This means that for any p, ¢ € N, if xP and x? are two nonzero monomials of a(x), then
Yo ipi = Y, a;q;. In particular p — ¢ € Ker(a*), thus ), afp; = >, fg;. Thus a(x) is a
(a’)-homogeneous.

On the other hand let us assume that every («)-homogeneous polynomial is a (o’)-homogeneous
polynomial. Let r € Rel,. We can write r = p— ¢ where p, ¢ € Q%,. By multiplying r by a posi-
tive integer m, we may assume that mp, mq € N”. By assumption on r, the polynomial x"P x4
is (a)-homogeneous. Thus it is (o’)-homogeneous. This means that ). oimp; = ), aimg;.
Hence ), o(p; —¢;) =0 and 7 = p — ¢ € Rely.

Now let xP be a monomial. Then

Vo' (Xp) = Z O[;pl
i
But ¢(1 —e)a; < of < ¢q(1 +¢)a; for any 1 <4 < n. This proves both inequalities.
O

Example 6.5. Let o € N” and o/ € R%,. Then Rel, C Rely if and only if there exists A € R
such that o/ = Aa. Indeed we have dimg(Rel,) = n — 1 hence either dimg(Rely) = n and
o/ =0, either dimg(Rely’) = n — 1 and there exists A € R* such that o/ = Aa.

Lemma 6.6. Let « € RY;, and let A € V,. Let us write
a;(x)

A=y Gt

e 000

where A is a finitely generated sub-semigroup of R>o and i — m(i) is bounded by an affine
function. Then there exists €4 > 0 such that for all 0 < ¢ < g4, for all ¢ € N, for all

o' € Rel(a, q,€), the element Z M is in the fraction field of V.
e )
Moreover if A €V, is not invertible, i.e., v, (A) > 0, then we may even choose €4 > 0 such
that for all 0 < e < ey, for all ¢ € N, for all o/ € Rel(a, q,¢), Z& € Vo and this
2 g

element is not invertible in V.

Proof. Let a, b > 0 such that m(i) < ai+ b for any ¢ € A. By Lemma 6.4 we have

o (5t ) = vora(0) = ) (6 2 (1 = £ (a3 = a1+ EJm ()00
=q(1 — &)i — 2gem (i) (6(x)).

Let €4 be a positive real number such that €4 < ) and set

1
14+2avq (6(
n:=1—ea(l+ 2av,(6(x))) > 0.
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Then for any 0 < e < ey, any ¢ € N and any o’ € Rel(a, ¢,&) we have

v ((5(6;)(2)(0 > ngi — 2qbeva(5(x)) Vi€ A.

This proves that Z 5(x (X) is in the fraction field of V.

i€EA
If vo(A) > 0, then ao(x) = 0. Let 49 :== v4(A). Let € > 0 be such that ¢ <e4 and
i0 > € (14 2av4(0(x)))ig + 2bv4(6(x))) .

a;(x)
§(x)™m (D)

In this case vy ( ) > 0 for any i € A, i > 4. This proves the second assertion. ([l

Definition 6.7. Let a € RZ; and o’ € Rel, "N™. Then every («)-homogeneous polynomial
p(x) is (¢/)-homogenous by Lemma 6.4. In particular if §(x) is an other («)-homogeneous
polynomial and s € N then

P(z16(x)°1%, ..., 2,8(x) %) = p(x)d(x) e PE))

is also a («)- homogeneous polynomial.
If A= ZleA 6(x)m( s € Va5 and o' € Rel, NN, we will set

a/l Ot/ S (X/ S
Par s (A) ;:ZW(:@&(X) 15 (X)),
ieA O
Then ¢q,s : Va,s — Va,s is a ring morphism. We also define
wa/75(14) = 58@0/,8(14) VA (S Va,(;.

Lemma 6.8. Let o € R%, and A € V, 5. For any € > 0 small enough there exists s(¢) € N
such that for every q € N, o € Rel(a, q,€) and s > s(e):

Yo s(A) € k[x].
If vo(A) > 0 we may even assume that por s(A) € k[x] for every ¢ € N, o € Rel(e, q,¢) and
s> s(e).
Proof. Let a(x), d(x) € k[x] be («)-homogeneous polynomials and let m € N be such that

Vg, (5‘(1)(:)‘,),1) =14. Let s € N and @’ € N” such that Rel, C Rel,. By Lemma 6.4 we have

a(z16(X)™15, ..., 2, 0(x) %) _ _
9 . — 5 slvgr(a(x))—vyr (6(x))m]—m
©) 5(x15(x)a15, ey )

Now let A = Z 5 € Va5 with m(i) < ai + b for any ¢ € A, A being a finitely generated
€A

sub-semigroup of RZO. Set do := Vo(0). Thus ve(a;) = dom(i) + i for any ¢ € A. Hence by

Lemma 6.4 we have that

Vo (a;) = m(0)ve (8) = q(1 =€) [dam(i) + 1] — q(1 + &)m(i)d,

(10) Vor(a;) — m(i)ve (6) > q(1 — )i — 2gqedom(7).

Since (1 — )i — 2edom(i) > (1 — )i — 2ed,(ai +b), for every e small enough there exists a. > 0
such that

Dé'(a’i) - m(i)ya’ (5) > qagt
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for all ¢ € N, all o € Rel(w,q,¢) and all i € A, 4 > 0. Thus for s € N and i € A\{0} we have
that

(v (a5) = m(i)ver (8)) —m(i) > sqazi —m(i) > (sqa —a)i —b > (q —e m/l\)\{O}>

In particular if s > (a + /a. then

b
min A\{O})
s(Var (a;) — m(i)ve (0)) —m(i) >0

and %(mlé(x)ais,...,xné(x)o‘;s) € k[x] for all ¢ > 0. Thus if v,(4) > 0, ap = 0 and

Yo s(A) € k[x] for s > (a + m) /ac.
In the general case where ag # 0, if we assume moreover that s > b, we have that

5@)8%@15(@&35, 28 (%)) € K[x].

0

This proves the lemma.
O

When the components of o are Q-linearly independent, by using Lemma 6.8, Theorem 5.12
gives the following generalization of the main result of [McD]:

Theorem 6.9. [McD| Let k be a field of characteristic zero and o € RZ such that
dimg(Qa; + - - - + Qay,) = n.

Then
K c |k (=, 8 € onZ™))

where the first union runs over all rational strongly convex cones o such that {«,7) > 0 for any
T €0, T #0. Moreover we have:

& c YUK ((ﬂ ean 1zn>)
o k' geN q

where the first union runs over all rational strongly convex cones o such that (a, ) > 0 for any
T €0, T#0, and the second union runs over all the fields k' finite over k.

Proof. In order to prove the first inclusion, by Corollary 5.13 it is enough to prove that

Ko C | k(2?8 € onZ™)

or Vo CU, k[27,8€0nZ"].
Since the «; are Q-linearly independent the only (a)-homogeneous polynomials are the mono-

mials. Let w € N” and A be an element of Vy v : A = Zie/\ ):ff% where A is a finitely
generated sub-semigroup of R>o. We have to prove that A € (J, k [[x'B ,B0€0 ﬂZ”]]. Since
1A € U,k [2%,8 € onZ"] implies that A € |J,k[+”,8 € 0NZ"] we may assume that
Vo (A) > 0.

By Lemma 6.8, we see that the monomial map ¢,/ s defined by z; — aijsa;'“’ maps A onto
an element of k[x] for o’ € Rel(«, q,¢), € > 0 small enough and s large enough. Such a monomial
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map is induced by a linear map on the set of monomials and its matrix is

14 swia)  swiah Swi o - swia,
Swa) 14 swoa,  Swaalh - Swaat),
M, = Swaa Sw3ah 1+ swgaf -+ swaa,
!/ !/ !/ /
SWn O S0ty S0z oo 1+ swpa,
Set
—swie  —swiah  —swiah o0 —swial,
—Swa)  —swaah  —swaad -+ —swaal,
My = —Sw3a)  —swsah —swsah - —swsal,
/ / / /
—SWn Q) —SWnQlh  —SwpQly e —Swpl,
and let x(t) be the characteristic polynomial of My. Then x(1) = det(M;). If x(1) = 0, then
the vector w := (w1,...,wy,) is an eigenvector of My with eigenvalue 1 since the image of My is

generated by w. Thus —s(wia) + -+ +wpal,) = 1 which is not possible since w; > 0 and o} > 0

for any i. Thus det(M;) # 0 and M, is invertible. In particular o := Mfl(RQO) is a rational

strongly convex cone. Moreover, since A € V, 5, we have (a, 7) > 0 for any 7 € o, 7 # 0. Hence

Aek[[zﬁ,ﬁ €eonz".

By Example 3.18 integral homogeneous elements with respect to v, are either finite over k,
ny nn n

either of the form cz,* ---x,* for some integers nq, ..., n, € Z>g, ¢ € Nsuch that Z ajng > 0.
j=1

Using Theorem 5.12 and since K, = h_n>1 K&8[yy,...,7s] where the v; are homogeneous with

RS REEET) Ts
respect to v,, we have the second inclusion by replacing ¢ by the rational strongly convex
cone generated by o and the n-uples (ng,...,n,) corresponding to the homogeneous elements

71""773'
(]

Remark 6.10. In fact the proof shows that the field K, as soon as
dimg(Qay + -+ + Qo) = n,

is the field of Puiseux power series with support in rational strongly convex cones o such that
(a,y) > 0 for all v € 0. Thus K, is the field of a-positive Puiseuz series according to [AI].

Lemma 6.11. Let a € RY; and o/ € Rel, AN". Then

'l/}o/,t o %w,s = wa’,ua/(é)st-i-s—&-t Vs, t € ZZO~

Proof. Let A= Z % € Va.s. Then we have (see Equation (9) in the proof of Lemma 6.8):
ieA
(53(,00/ s(A) — Zai(X>(5(X)S(1+VU/(ai(x))_y‘*’(6(x))m(i))_m(i).

€A
If t € Z>o and | € Z>g, and a(x) and §(x) are (o’)-homogeneous, we have that
par,i(a(x)8(x)") = a(x)§(x) o (e O,
Thus by denoting
Pa (1) = Vo (@i (X)) — Vor (8(x))m(i) and dy := vor (6(x))
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we obtain
8" @ar 1(07par s(A))
= 603 en @i(@1890t, L 2, 0%nt) X §(210Y, L 2, 000t )PV (@i () =vr ()m(D) =m (i)
= 3 p @idtHVar @)+ (st opar (D=m(@))(tdor +1)

=>ica ;6% t5Par (D +tpar ()+spas (1) —m(i)+darts+its
1€ .

In particular we have
(11) 8 Qo t(0° Par,s(A)) = 84T g0 4 stasii(A) VE € Lo,

O

Lemma 6.12. Let o € R%, and o’ € Rel, "\N"™. For all s1, sy € N there exist t1, to € N such
that

wa’,tl o ’L/)a’,sl = ’L/)a’,tg o '(/)a’,sz .

Proof. Let d denote v4/(5). Let p be a prime number and k € N such that p* divides ds; + 1
and dsy + 1. Then ged(p,d) = 1 and p* divides ds; — dsy. Thus p¥ divides s; — so. This
proves that ged(ds; + 1,dss + 1) divides s1 — s3. Thus there exist t; € Z and to € Z such that
(ds1 4+ 1)t1 — (dsy + 1)ta = so — s1. If t1te < 0, let say ¢; > 0 and ¢5 < 0, then

(d51 + ].)tl — (d82 + 1)t2 > 81+ 89 > |81 — 82‘

which is not possible. Thus we have that t1¢2 > 0. If t; < 0 and t2 < 0, we can replace t; (resp.
to) by t1 + k(dss + 1) (resp. by to + k(dsy + 1)) for some positive integer k large enough. This
will allows to assume that ¢; and ¢o are positive integers. Hence

E'tl,tg € N, dsit1 + s1 +t1 = dsoty + s9 + to.

This proves the lemma by Lemma 6.11.
O

Definition 6.13. Now we consider a subring R of k[x] that is an excellent Henselian local ring
with maximal ideal mpg and satisfying the following properties:

(A) k[ml, . ,xn](x) C R,

(B) mg = (x)R and R = k[x],
(C) if p(x) € k[x] is (a)-homogeneous for some o € RZ then

fx)e R = f(p(x)21,...,p(x)zn) € R.

Remark 6.14. If k is a field, the ring of algebraic power series k(x) is an excellent Henselian
local ring satisfying Properties (A), (B) and (C). If k is a valued field, then the field of convergent
power series k{x} does also.

For a field k, the ring k[z1,..., 2. J{®r41,...,2,) for formal power series algebraic over
k[z1,..., 2z ][®r41,...,2,] is also an excellent Henselian local ring satisfying Properties (A),
(B) and (C).
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Definition 6.15. Let o € RZ; and let § be a (a)-homogeneous polynomial. Let R be a ring
satisfying Definition 6.13. We set

Vﬁ 5= {A € ‘A/Va / 3A a finitely generated sub-semigroup of R,

Vi € A Ja; € k[x] («)-homogeneous, Ja,b >0 Vi € A Im(i) € N s.t.
Qi

m(i) < ai+ b, vg (%) =1, A= z{; §m(i)
ie

and Je > 0Vg e NVa' € Rel(a, ¢,e) Is € N such that ¢, s(A) € R} .

Then VZ is the union of the sets Vf’ 5 When 0 runs over all the (a)-homogeneous polynomials.

Lemma 6.16. The sets Voli(; and Vf are subrings of Vo5 and V,.

Q; - b; R .

Proof. Let A = ; 0] and B = g 0] € V, 5. Then there exists € > 0 such that Vg € N,
K3 7

Vo € Rel(a, ¢, ¢), there exist s1,s2 € N such that

¢a',81 (A)7 wal752 (B) € R.

Then by Lemma 6.11, Lemma 6.12 and condition (C) of Definition 6.13 there exists s € N such
that

wa',s(A)v wa’7s(B) S R
This shows that o/ <(A + B) = Y «(A) + o s(B) € Rand A+ B € V.

Now by Lemma 6.8 we can assume that there exists s(¢) € N such that ¢, ;(AB) € k[x] for
all s > s(¢), forallg € Nand all &’ € Rel(e, ¢, €). On the other hand since ¥y s(A), Yo s(B) € R
then Yoy, (8)st4s+t(A); Yar v, (5)st+s+¢(B) € R for all t € N by Lemma 6.11 and Condition (C)
of Definition 6.13. Thus there exists s € N such that

Var,s(A), Yo ,s(B) € R and Yo s(AB) € k[x].
But we have that
%/,S(A)%/,S(B) = 5S¢a/,s(AB) €R.
Hence by Artin Approximation Theorem (cf. [Po|, [Sp2]|) ¥a s(AB) € R.
Thus AB € V(ﬁ&. This proves that Vf’é is a ring.
Since VI is the direct limit of the Volzé it is also a ring. (]

Example 6.17. If o € N® and R = C{x} is the ring of convergent power series over C, we
claim that

PCix} _ Z % / Vi a; € C[x] is («)-homogeneous,

a,d
iEZZO

a;

vo (Fativm) = @ €22

and 3C,r > 0 such that |a;(z)] < Cri|z||%=(%) Vz e cr}

1

o

J
Z.

;7| for any z € C".

where ||z||o := max
j=1,....,n

First of all every element A of V, s is of the form

a;
A= Z sm()

i€ZL>0




36 GUILLAUME ROND

where v, (%) = ¢ and m(z) < ai + b for some a, b € Z>¢. By multiplying the numerator

and the denominator of by §%4t0=m(1) and replacing al by a;04tb=m()  we may assume

Sy
that m(i) = ai +b. If a > b, we may replace 55 by % 5m+a , if @ < b we may replace 7
by ai?f}%;’ Thus any element of V, s is of the form Z 5a ’L+1) where v, (50(‘17“)) =1 for all

1€Z>0
i € Z>p. In this case vy (a;) = (ava(d) + 1)i + av,(6) for any i € N.
By Remark 6.3 Rel(a, q,¢) = {qa} for £ > 0 small enough since &« € N". Then we have (with
s = a in Lemma 6.8):

F(X) = Ya.a(4) = 3(x)" Y 5 H—l) (210(x)1%, . 2,0(x)) = Y a(x)
1€L>0 1€2L>0
and f(x) € C[x]. Moreover we have for every q € N
Fo(%) = Yaa(4) = 6(x)" Y 5a(z+1 P18 e d(x) 1) = Y a(x)8(x) T
1€ZL>0 1€L>0

Thus f € C{x} if and only if this power series is convergent on a neighborhood of the origin.
This neighborhood may be chosen of the form:

Bo(0,r) :=={2€C" / |z]| <r%, j=1,...,n}.
For any z € B,(0,r) set t?j =zjfor j=1,...,n and b;(t) = a;(2) for any ¢ € N. Then f is
convergent on B, (0,r) if and only Z b;(t) is convergent on
€30
BO,r):={teC" /|t;|<r, j=1,...,n}.

But this series is convergent if and only if there exist ¢ > 0 and p < 1 such that |b;(¢)| < cp® for
all i € Z>¢ and all t € B(0,r). Since b;(t) is a homogeneous polynomial of degree

vo(a;) = (ad+1)i+ ad
where d := v,(0), we have

sup |bi(t)| = plodtbitad sup |b: (t)]-

[tj|<r.j=1,...n [t|<1,j=1,...,n
We see that f is convergent if and only if there exist C' > 0 and R > 0 such that
sup la;(z)] = sup |bi(t)] < CR'.

|2j|<1,4=1,....n It;|<1,5=1,...n
This is equivalent to the following inequality for any z € C™:
(12) a(2)| = (0] < max |6 swp [b(t)] < ORIz,
J=Los [tj1<1,5=1,....n
On the other hand if f € C{x} we have seen that there exist C > 0 and R > 0 such that
sup lai(2)| < CR".
lzj1<1,j=1,....n

Thus 4 .
sup  Jai(2)6(2)207 V1| < C(RS)
|2;|<1,5=1,...,n
where S 1= max|, <1 j-1,..n 6(2)|*@@~1). Hence f, € C{x} for every ¢ € N. This proves the
claim.

We have the following analogue of Theorem 5.12 in the Henselian case:
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Theorem 6.18. Let k be a field of characteristic zero and let R be a subring of K[x] satisfying
Definition 6.13. Let o € R% and let us set N = dimg(Qai + - - - + Qo).

Let P(Z) € VE[(y1,...,7:)][Z] be a distinguished polynomial of degree d where the v; are
homogeneous elements with respect to v,. Then the roots of P(Z) are in VE[(vi,...,v\)] for
some integral homogeneous elements vy, ..., Y with respect to vy.

Proof. Let P(Z) = Z+ a1 Z4 '+ - +aq with a; € VE[(y1,...,7,)] for 1 < j < d. By Theorem
5.12 we may assume that P(Z) has a root z € V, s[(71,-..,vn)]. We denote

_ i1 IN
a; = E Aiiy et o with Ai iy € Vaos,
i1 iN

z = Z Zi,..., iN’}/ltil e ’Y;\jy with Zit,...in € Vaﬁ.
11,0 yiN
Let usfixe > 0, ¢ € N, o € Rel(w, q,¢) and s satisfying Lemma 6.8 for the A, ;, . ;, and for the
Ziy,....in+ For convenience we denote by ¢ the morphism ¢, s defined in Definition 6.7. Then if
A denotes one of the A;;, ;. or the Z; ;. we have ¢(A) € V, s by Lemma 6.8. We set

R:=VosN¢ ' Vars)

and R’ denotes the subring of V4 [(71,...,7s)] of elements Zil Aih___Jnyil 'y]’\’,V whose
coefficients A4;,, . ;. arein R.

Of course ¢ induces a morphism R — V. s but we have the following lemma:

s N

Lemma 6.19. Let y; be homogeneous elements with respect to v, for 1 < i < N. Then there
exist homogeneous element . with respect to vor, 1 < i < N, such that, for any finite number
of elements Ay, ... in € Vass

¥ Z Ail,.A.,iN'Ylil""YNiN = Z P(Aiy, i) N

i1yein W15y
defines an extension of ¢ from R’ to Vo s[(V1,- - 7N

Proof of Lemma 6.19. Let us assume that 7; is a homogeneous element of degree e; with respect
to v,. Let

Qi(Z) = gi0(x)Z% + gin (X) 2T + - + gi g, (%)
be a polynomial such that Q;(;) = 0 and such that g; ;(x) is a («)-homogeneous polynomial of
degree d; + je; for some d;.

Then g; ;(x) is a (o/)-homogeneous polynomial of degree d; + je; for some constants d; and e;.
Indeed, if a, b and ¢ are (a)-homogeneous polynomials and v4(a) — 4 (b) = v4(b) — v4(c), then
ac and b? are two (a)-homogeneous polynomials of same degree, i.e., ac—b? is (a)-homogeneous.
Then, by Lemma 6.4, ac — b? is (o/)-homogeneous, thus v, (a) — var (b) = var (b) — vor(c).

Set Q,(Z) = 6°¢i:Q; (5%) We have

Qil2) 1= 90X 2% + 93 (R)5(x)" 257 + -+ 4 95, (x)3() .

For any i let 7/ denote a root of Q;(Z). So 7/ is a homogeneous element of degree e’ (141, (5(x))s)
with respect to v,/. Then it is straightforward to check that

defines an extension of ¢ from R’ to Var 5[(71,-- - Yn)]- O
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By Lemmas 6.19, 6.11 and 6.12, and Property (C) we can assume that s is large enough for
having that

§°0(Aj) € RV, ..., 7]

for 1 < j <d. Again by applying Lemmas 6.19, 6.11 and 6.12 we may even assume that
5°p(z) € k[x][1,-- -, 7w
by taking s large enough. Thus 2z’ := 6°¢(2) € k[x][V],...,¥n] is a root of the polynomial
P(Z) =2+ 6°0(A) 27 + .-+ 6%p(Ag) € R[Z].

Let us write

. / AT A 2
Z = Zi1,in N1 N

with z; ;€ k[z] for any iy, ..., in. Let us set

.....

L ) WA / iN
Z:= E Ziy,inV1 T IN
D1, 00N

where Z;, ;. are new variables. Solving P(Z) = 0 is equivalent to solve a finite system (S)
of polynomial equations in the variables Z;, . ;, with coeflicients in R, just by replacing Z by
Zil,-uﬂ;N Ziy. i1 - yn'™ and replacing the high powers of the v; by smaller ones using the
division by the Q;(Z;). By Artin Approximation Theorem (cf. [Po|, [Sp2]), the set of solutions
of (§) in R is dense in the set of solutions in k[x], but since P(Z) = 0 has a finite number of
solutions, then (S) has a finite number of solutions and they are in R. Thus z;, ;€ R for all
i1, ..., in, hence 2’ € R[y1,...,7y]. This proves that z € VI s[(v1,..., 7). O

7. A GENERALIZATION OF ABHYANKAR-JUNG THEOREM

Definition 7.1. Let a € N” and let § € C[x] be a (a)-homogeneous polynomial. Let a > 0,
C >0andn>0. Set :

Docani=| U Cxe|[)BOmM)
K>0,e>0
e<K*C

where B(0,7) is the open ball centered in 0 and of radius 7 and
Cre:={z€C" /do(x,07'(0)) > K|z|s and ||z, <}

where ||.||o is defined in Example 6.17 and d,, is defined as follows: for any z, y € C" let us

denote by m{r (resp. y[T) a complex o;-th root of z; (resp. y;) and let U; be the set of a;-roots of

1 1

x; =&y ’ and do(2,07(0)) := inf  du(x,2).
z’€0-1(0)

unity. Then we define d, (z,y) := max gié% v
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Then Dy, c,q,, is the complement of a hornshaped neighborhood of {# = 0} as we can see on
the following picture (here n =2 and «a = (1,1)):

T2

Lemma 7.2. Leta € N" and A € Vf{gx}. Then there exist constants a > 0 and C' > 0 such that
A is analytic on Do c,a,y for every n > 0.

Proof. We write A =}, sty where a; is (a)-homogeneous for every i € N. By multiplying a;
by a convenient power of § we may even assume that there exist positive constants a and b such
that m(i) = ai + b for every i.

If vy (a;) = d; there exist C > 0 and r > 0 such that

(13) lai(z)| < Cri||z||% Vo eCm

by Theorem 6.18, Example 6.17 and Inequality (12) of Example 6.17. On the other hand we
claim that there exists a constant C’ > 0 such that

(14) 10(x)| > C'do(x,071(0))7>@ vz ecCn.
Indeed if we embed C{x} in C{y} by sending z; onto y;"*, we have

0(x) =0y, ..., yn") =7(Y1,- - ¥n)
and 7 is a homogeneous polynomial of degree v, (). After a linear change of coordinates, we
may assume that 7 is a monic polynomial in y,, of degree v, (#) multiplied by a constant. Then,
for all y1,...,y, € C™, we have
Vo (9)
1Ty, yn)| = C H (Yn = @i(y1, -, Yn—1))
i=1
where ¢; is a homogeneous function which is locally analytic outside the discriminant locus of
7, for some constant C’ > 0. Thus
. (0
7 y)| = € minfyn = @i(yr, - yu)
o 1 val(0) v -1 Ve (0)
>C"  inf  max|yr — vl = C'd(y, 777(0))
y'er—1(0) k

since (Y1, -+ s Yn-1,9i(Y1, - Yn—1)) € 7-1(0) for any i. This proves (14).
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Hence we have (for positive constants €, K and z € Ck .):

aif@) |__C ey € i
gm(i) (37) - ¢'m(i) da(x79—1(0))ua(9)m(i) - C'm(i) da(x’e—l(o))l/a(e)m(i)
Cri||z|?, < C(re)’ B C re )Z
— O'm() Kva(@)m(i) — Orm(i) [va(0)m(i) - C'b Kva(0)b (ClaKVa(G)a

Then if ¢ < Ko=) (<~ , A defines an analytic function on the domain Ck .. Thus A defines

i
an analytic function on the domain Dy cra /r au, (6),y for every n > 0. O

This following proposition has been proven by Tougeron in the case a = (1,...,1) (see
Proposition 2.8 [To]):

Proposition 7.3. Let o € N and let P(Z) € C{x}[Z] be a monic polynomial whose discrim-
inant is equal to du where § € Clx] is («)-homogeneous and v € C{x} is invertible. If P(Z)
factors as P(Z) = Pi(Z)--- P.(Z) where P,(Z) € C{x}[Z] is an irreducible monic polynomial
of C{x}[Z] for all i, then P;(Z) is irreducible in ye b [Z].

Proof. Let Q(Z) be an irreducible monic factor of P(Z) in V,[Z]. By Theorem 5.12 there exists
a (a)-homogeneous polynomial § € C[z] such that the coefficients of Q(Z) are in V, 9. Let us
denote by A one of these coefficients.

Since V4,0 C V4,05 We may assume that ¢ divides 6, thus

6~ 10)N B(0,¢) c 671(0) N B(0,¢)

for every € > 0.
Let 7 > 0 small enough such that the roots of P(Z) are locally analytic on the domain

D,y := B(0,7)\07"(0) € B(0,n)\d~*(0).

Since A is a polynomial depending on the roots of P(Z) it is locally analytic on Dy .

On the other hand by Lemma 7.2 A defines an analytic function on a domain Dy ¢ q,z-

Thus by Lemma 7.4 given below A is global analytic on Dy ,. Since the roots of P(Z) are
bounded near the origin, A is bounded near the origin, thus A extends to an analytic function near
the origin. This proves that A is analytic on a neighborhood of the origin and Q(Z) € C{x}[Z].

O

Lemma 7.4. Set C >0, a >0 and n > 0 and let 6 € C[x]| be a (a)-homogeneous polynomial.
Let A : Dy, — C be a multivalued function. Let us assume that A is analytic on Dy .cqr and
locally analytic on Dy . Then A is analytic on Dy .

Proof. Since A is locally analytic on Dg ,, then A extends to an analytic function on a small
neighborhood of every path in Dg,. If A is not analytic on Dy ,, then there exists a loop
based at a point p of Dy, denoted by ¢ : [0,1] — Dy, with ¢(0) = ¢(1) = p, such that A
extends to an analytic function on a neighborhood of ¢ but A o ¢(0) # A o ¢(1). Let us write
o(t) = (p1(t), ..., pn(t)) and let us define ® : [0,1] x S — C™ by

O(t,5) == (s"@1(t),..., s pu(t))
where S :={2€ C / |2| <1,R(z) > 0}.
Then we have that
3(2(t,s)) = 8"~ D5(p(t)) # 0
for any (t,s) € [0,1] x S since Im(yp) C Dy, and s # 0. Thus the image of ® is included in Dy ,,.
Moreover, for any ¢ € [0, 1], let ®; : S — Dy, be the function defined by ®;(s) := ®(t,s). Its
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image is simply connected since S is simply connected and ®; is analytic. Thus A o ®;, which is
locally analytic, extends to an analytic function on S by the Monodromy Theorem.
Let us denote by h the holomorphic function on S defined by

h(s) == Ao ®(0,s) — Ao ®(1,s)

for any s € S.
For any s € S and any ¢ € [0, 1] we have

1 (2, 8)llo = [3[l1(E) o

and
do (B(t,5),071(0)) = |s|da (¢(t),071(0)) -
Let us set
L da(2(65),0700) 1 da (9(0.071(0)
T 2w 2 9)]a 2¢e01]  [lo(®)]la '

Thus for any s belonging to the domain S N {|s| < K*C}, we have ®(t,s) € Dy c,q,. Since
O(t,s) € Dy,c,a,n, and A is analytic on Dy ¢ 4., then Ao ®(0,s) = Ao ®(1,s), thus h(s) =0 on
SN{s < K*C}. Since h is holomorphic on the connected domain S, then h = 0 on S. This
contradicts the assumption. Hence A is analytic on D ,,. [l

Then we can extend Proposition 7.3 to the formal setting over any field of characteristic zero:

Theorem 7.5. Let k be a field of characteristic zero and o € RZ,. Let P(Z) € k[x][Z] be
a monic polynomial whose discriminant is equal to du where § € k[x] is (o)-homogeneous and
u € k[x] is a unit. If P(Z) factors as P(Z) = Pi(Z)--- Ps(Z) where the P;(Z) are irreducible
monic polynomials of kK[x][Z], then the P;(Z) remain irreducible in V,[Z].

Proof. Let us prove this theorem when P(Z) € C{x}[Z]. If a € N, this is exactly Proposition
7.3. If o ¢ N, then by Lemma 6.6, any decomposition P(Z) = Q1(Z) --- Q,(Z) in V,[Z] is also
a decomposition in V,/[Z] for o’ € Rel(a, ¢,e) where ¢ is small enough. Then every irreducible
monic factor of Q;(Z) in V,[Z] is in C{x}[Z] by Proposition 7.3, thus Q;(Z) € C{x}[Z] for every
i. In particular since the @Q;(Z) are irreducible in V,[Z] then they are irreducible polynomials
of C{x}[Z].

Now let us consider the general case. Let
P(Z)=2%+aq_1(x) 21 + -+ ag(x)

be a polynomial satisfying the hypothesis of the theorem with ax(x) € k[x] for 0 < k < d — 1.
Since P(Z) is defined over a field extension of Q generated by countably many elements and
since such a field extension embeds in C, we may assume that C is a field extension of k and
P(Z) € C[x].

The discriminant of P(Z) is a polynomial depending on the coefficients ag(x), ..., ag—1(x)
that we denote by D(ag(x),...,aq-1(x)). Let

R(AO, B Ad—lv U) = ‘D(AO, B Ad—l) - 5(X)U € C[X][Ao, R Ad—la U]

Then R(ag(x),...,aq4—1(x),u(x)) = 0.
On the other hand, saying that P(Z) factors as P = P; --- Ps is equivalent to

by (x), ..., br(x) such that a;(x) = R;(b1(x),...,br(x)) Vi

for some polynomials R;(By,...,B,) € Q[B1,...,B;],0 < i< d—1 (these R; are the coefficients
of Z% in the product Py(Z)--- Ps(Z) and the b; are the coefficients of the Py(Z)).
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By Artin Approximation Theorem [Art], for any integer ¢ > 0 there exist convergent power
series

G0,c(X);s -+, Tg—1,e(X), Ue(X), b1 o(X), . .. ,Bnc(x) e C{x}

such that

(15) R(Go,c(%), ..., 04-1,¢(X),Tc(x)) =0,

(16) @i o(x) — Ri(b1,e(X), ... bre(x)) =0for 0<i<d—1
and

Tk.e(X) — ap(x), Ue(x) — u(x), bro(x) — b(x) € (x)°
for0<k<d1<I<r. Set

Poy(2) = 2%+ Ga-1,(x) 2"+ + T e(x).
Then P.y(Z) factors as

P(c)(Z) = Pl,(c)(Z) o Ps,(c)(Z)
in C{x}[Z] because of Equation (16) (the coefficients of the P; .(Z) are the b, ) , and

P (0)(Z2) = Pi(Z) € (x)k[x][Z]

for 1 < i < s. Moreover the discriminant of P(.)(Z) is of the form §(x)u) where u, is a
unit in C{x} if ¢ > 1 by Equation (15). Since P;(Z) is irreducible in k[x][Z], then P; )(Z) is
irreducible in k[x][Z] for all i for ¢ large enough (let us say for ¢ > ¢y). Moreover we can remark
that v4(a) > min;{a;} ord(a) for any a € k[x], thus v, (bg .(x) — bg(x)) > min;{a; }c .

Let ¢ > ¢ and let us assume that P; (.y(Z) is not irreducible in V,[Z]. Thus it is the product
of two monic polynomials: let us say

P ()(Z) = Pi()1(Z2) Py () 2(Z)
with P (0)1(Z), P (c),2(Z) € Va[Z] and degz(P; (¢),x(Z)) > 0 for k = 1,2. In fact by Theorem
6.18 we may assume that P ) 1(Z), P () 2(Z) € VES{"} [Z]. By Proposition 7.3 we see that

P;()1(Z), P; () 2(Z) € C{z}[Z], and by Proposition 7.6 P; (;y1(Z), P; ()2(Z) € L{x}[Z] where
L is a subfield of C which is finite over k. Thus L. = k[y] by the Primitive Element Theorem
where 7 is a homogeneous element of degree 0 with respect to v, by Example 3.19. But we
have Vo k[ = k. Thus P, (0)1(Z), P (0),2(Z) € k{x}[Z] C k[x][Z] which contradicts the
assumption that P; () is irreducible in k[x][Z]. Thus P; (.)(Z) is irreducible in V,[Z]. Hence, by
Corollary 4.14, P;(Z) is irreducible in V,[Z] since v, (b (x) — bx(x)) increases at least linearly
with c.

O

The next proposition is a generalization of a result of S. Cutkosky and O. Kashcheyeva [CK]
(see also Proposition 1 [AM]) and we will use it to prove Theorem 7.7. It is again an application
of Theorem 5.12.

Proposition 7.6. Letk — k' be a characteristic zero field extension. Let f € kK'[x] be algebraic
over k[x] and let L be the field extension of k generated by all the coefficients of f. Thenk — L
is a finite field extension.

Proof. Let oo € RZ such that dimg(Qa; + - - - + Qo) = n. By Theorem 5.12 the roots of the
minimal polynomial of f are in V,[(71,...,7Vs)] for some homogeneous elements 71, ..., ¥, with
respect to v,. Let us denote by V!, the ring defined in Definition 5.1 and Lemma 5.5 where k is
replaced by k’. Then k'[x] and V,[(71,. .., Vn)] are subrings of V/,[{(v1, ..., ¥s)]. Thus by unicity
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of the roots of the minimal polynomial of f we have that f € V,[(71,-..,7n)]. By Example 3.16
the homogeneous elements ; may be written as v; = ¢;x% where ¢; is algebraic over k’ (and so
over k) and 8; € Q" for 1 < i < n.

By expanding f either as a formal power series of k'[x], f = 3, b;j(x) where b;(x) € k'[x] is
a (a)-homogeneous polynomial for any 4, either as an element of Vo [{71,...,Vn)],

_ M k(i) kn(4)
f - Z 6<X)7n(i) M I )

and by identifying the homogeneous terms of same valuation (which are monomials by Example
3.16), we obtain a countable number of relations of the following form:

(17) b(x)™ (%) = Y g oo, ()

where b(x) (corresponding to the b;(x)), an, .. n.(x) (corresponding to the a;(x)) and J§ are
monomials, b(x) € K'[x], an,,...n,(x) € k[x], m € N, and the sum is finite. By dividing Equality
(17) by x? for B well chosen, we see that the coefficient of b(x) is in k[cy,...,c,] and L is a
subfield of k[c1, ..., ¢y O

We can strengthen Theorem 7.5 as follows:

Theorem 7.7. Let o € RZ, and let P(Z) € k[x][Z] be a monic polynomial such that its
discriminant A = du where § € k[x] is (a)-homogeneous and u € K[x] is a unit. Let us set
N :=dimg(Qay + - - - + Qo). Then there exist y1, ..., YN integral homogeneous elements with
respect to v, and a («)-homogeneous polynomial c(x) € K[x] such that the roots of P(Z) are in
LK [x][y1,---,vn] where k — K is finite.

c(x)

Remark 7.8. This result shows that for a given root z of the polynomial P(Z) the other roots
of P(Z) are obtained from z by the action of the elements of the Galois groups of the elements
Y1, ..., yn on z. For instance if « € N™ (so N =1 — we can always assume this by Lemma 6.4),
then the Galois group of P(Z) is a quotient of the Galois group of the minimal polynomial of
v1, i.e., the Galois group of one weighted homogeneous polynomial.

Proof of Theorem 7.7. If Q(Z) is a monic polynomial dividing P(Z) in k[x][Z], then the discrim-
inant of Q(Z) divides the discriminant of P(Z). Thus we may assume that P(Z) is irreducible.
We will consider three cases: first the case where the coefficients of P(Z) are complex analytic

with oo € N”, then with o € RZ, and finally the general case.
e Let us assume that o € N and that P(Z) € C{x}[Z]. By Theorem 5.12 the roots of P(Z)

are of the form
i1 i
E Ail,m,isfyl s
i1y

where 71, ..., 75 are integral homogeneous elements with respect to v, and A;, . ;. € ICS{X} for
any 41, ..., ts. We may even choose s = 1 by Proposition 3.28, but we treat here the general
case s > 1 that will be used in the sequel.

We replace 71, ..., s by other integral homogeneous elements with respect to v, as follows:
let us denote by v1,1 := 71, ..., 71,¢, the conjugates of y1 over K,,. If vo € Ky [y1,1,...,71,4,] We
denote by v2.1 := Y2, ..., V2,4, its conjugates over K, [y1,1,...,71,4,] and so on. So for 1 <1 <s,
q; denotes the degree of the minimal polynomial of ; over K,, ['Yi,j]lgi<l,1§j§qi7 and for 1 <[ < s,
Vi1, - -5 V,q denote the conjugates of v; = ;1 over K, [vi jli<i<i,1<j<q;- Then we may assume
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that the roots of P(Z) are of the form
Do Ani it s,
OSi.ln<¢h
0<is<qs
where A4;, ;. € ICS{X}, Vo (Aiy..., is’yifjl ’y;]s) >0 for any iy, ..., is, and 1 < j; < g; for any
1.
Let us assume that P(Z) factors into a product of monic irreducible polynomials as

P(Z) = Py(Z) - P.(2)

qs—1
in K£SE [Vijli<i<s,1<j<q; [Z]. We write the roots of Pi(Z) as z; = Z Bi’y;j where
i=0
B; € K§™ i jhi<ics1<j<a;
gs—1
for all 4. Then the roots of the other P,(Z) are Z Bhé,j where (Bj, ..., By _;) is the image

=0
(Bo,...,Bq,—1) by a K5t automorphism of A5 [Vi,jl1<i<s,0<j<q- If the roots of P;(Z) sat-
isfy the theorem, then we see that the roots of the other P,(Z) will also satisfy the theorem since
they are conjugates of the roots of P(Z) by Kg{x}—automorphisms of ICS{X} Vi jl1<i<s,0<j<qi-
Thus it is enough to prove the result for the roots of P;(Z). We have

o1
Toyen - oy X
( _ ) I L T vy Bo By
et Do Bo-1 )
1 Yeq o0 v
D oyer e Al
qs—1
Vs,2 e /73,2 . .
Let us set M := ) ) ] . The determinant of M is a homogeneous element
O
c with respect to v, where vq(c) = 2qs(gs — 1)Va(7s). Thus we have
1
B; = - (Rin(Vs,15- 5 ¥sia )21+ 4 Ris (V5,15 - -+, Vs,0.) 24, )
where the R; ; are polynomials with coefficients in Q and the element R; ;(Vs.1,.--,%s,q,) 1S

homogeneous with respect to v,. By multiplying ¢ and

Rin(Vs,15- 5 ¥s,g )21 + 00+ Ris(Ys,15 -+, Vs,00) 240

by the conjugates of ¢ over k[x] we may assume that ¢ = ¢(x) € k[x] is a («)-homogeneous
polynomial. The z; and the 75 ; are locally analytic on Dy, = B(0,17)\0~'(0) and bounded
near the origin, where {6 = 0} contains the discriminant locus of P(Z) and of the minimal
polynomials of the v; and 7 is small enough. Thus ¢(x)B; is locally analytic on Dy ,, for 1 < < g,
and is bounded near the origin. Moreover c¢(x)B; is algebraic over k[x] since the g, ; and the
z), are algebraic over k[x]. By induction on s (we replace z1, ..., 24, by ¢(x)Bo, ..., ¢(x)Bg,—1
- here we just used the fact that the roots of P(Z) are algebraic over k[x] and locally analytic
over a domain of the form Dy ,) we see that there exists a («)-homogeneous polynomial ¢(x)
such that ¢(x)A, is locally analytic on Dy, and bounded near the origin for any i := (i1, ..., 1s).
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Since c(x)A; € KSP and it is bounded near the origin, we see that c(x)4; € VY Thus it
is analytic on Dy ¢ 4,y for C, a and n well chosen (see Lemma 7.2). Hence by Lemma 7.4 it is
analytic on Dy, and since it is bounded near the origin, ¢(x)A; € C{x} for any i.

e Now let us consider any a € R%, and P(Z) € C{x}[Z]. Then the roots of P(Z) are in
Val(71,--.,7s)] for some integral homogeneous elements with respect to v, which we denote by
Y1, ..., Vs. Let us denote these roots by z1, ..., z4. For any o/ € N” such that Rel, C Rel,,
Y1, ..., Vs are integral homogeneous elements with respect to v,/. Thus, for any € > 0 small
enough (say € < ¢g), for any ¢ € N and any o/ € Rel(a, q,€), 21, ..., 24 € Vor[(71,-.-,7s)] by
Proposition 6.6. Moreover, by the previous case, we see that

Ve €]0,e0[, Vg € N, Vo' € Rel(a, q,¢),
Jeqr (x) an (a’)-homogeneous polynomial such that

Cor(X)21, ..., Car(X)24 € C{x}[71,..., 7]

Moreover we see that that ¢, (x) may be chosen as being the product of the determinants of
Vandermonde matrices as M depending only on 71, ..., 7s, thus ¢,/ (x) does not depend on «’.
Let us denote ¢(x) := co/(%). Since ¢(x) is a (o’)-homogeneous polynomial for all o/ € Rel(a, ¢, €)
then c¢(x) is a (a)-homogeneous polynomial. This proves the result.

e Now let us consider the general case, « € R%; and P(Z) € k[x][Z] where k is a field of
characteristic zero.

Let us write P(Z) = Z%4aq_1(x)Z4 1 + -+ + ap(x). Exactly as in the proof of Theorem 7.5
we may assume that C is a field extension of k. Let us use the notations of the proof of Theorem
7.5. Let

R(AOa ceey Ad—17 U) = D(Ao, ceey Ad—l) - 5(X)U € C[X][Ao, s 7Ad—17 U]
where D is the universal discriminant of a monic polynomial of degree d. Then
R(agp(x),...,aq-1(x),u(x)) = 0.

By Artin Approximation Theorem [Art], for any integer ¢ > 0, there exist convergent power

series Gg,c(X), ..., Gd—1,c(X), TUc(x) € C{x} such that
(18) R(@p,c(X), ..., G4—1,¢(X),Uc(x)) =0,
and

Tp.o(x) — ap(x), Te(x) —u(x) € (x)¢ for 0 <k <d.

Let Poy(Z) == Z% + Gg_1,(x)Z% " + -+ + @ c(x). Then Py(Z) is irreducible for ¢ large
enough (say ¢ > cp). Moreover the discriminant of P (Z) is of the form §(x)u(,) where u
is a unit in C{x} if ¢ > 1 by Equation (18). By the previous case, the roots of P (Z) are in
ﬁ@{x}[’yl’c, .. oyYN,c) where v ¢, ..., YN, are integral homogeneous elements with respect
to v, and c.(x) is a (a)-homogeneous polynomial. By Proposition 4.17 and the previous cases,
we may assume that the 7; . does not depend on ¢, thus let us denote v; . by ;. Moreover
¢(x) may be chosen as being the product of the determinants of Vandermonde matrices as M
depending only on 71, ..., vs, thus ¢.(x) does not depend on ¢. Let us denote by c(x) this
common («)-homogeneous polynomial.

Thus, when ¢ goes to infinity, we see that the roots of P(Z) are in ﬁ@[{x]] [v1,---,7n]. Such

a root has the form Zil N Ail,...,m’ﬁl 7]’\§V where i runs from 0 to g — 1. In this case
c(x)A;, . in € C[x] is algebraic over k[x], thus c(x)A;, ... iy € K'[x] where k — K’ is finite by
Proposition 7.6. Thus the roots of P(Z) are in ﬁk’ [xv1s---syn]-

U
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In the case where the «; are linearly independent over QQ, we can choose ¢(x) = 1. This is
exactly the Abhyankar-Jung Theorem:

Corollary 7.9 (Abhyankar-Jung Theorem). Let P(Z) € k[x]|[Z] be a monic polynomial whose
discriminant has the form xPu(x) where f € N* and u(0) # 0. Then there ea;zst an mtege'r g€eN

and a finite field extension k — k' such that the roots of P(Z) are in ]k’[[a;1 Yo xn]]

Proof. By the previous theorem apphed to any o € RZ satistying dimg(Qa1 + - - - + Qo) = n,

the roots of P(Z) are in x—k’[[xl . xn]} for some g € N, ¢ € N and k — k' a finite field
extension. Since the discriminant of any monic factor of P(Z) in kK'[z1,...,z,][Z] divides the
discriminant of P(Z), we may assume that P(Z) is irreducible in k’[[a:l, .o, 2, ][Z], thus we
assume that k' = k.

Let z be a root of P(Z) and let us denote by NP(z) its Newton polyhedron. Then

NP(z) C =y + RZ,.
Let us assume that NP(z) ¢ R%,. This means that there exists 7' € NP(2) such that one its
coordinates, let us say v/, is negative. But since z is a root of P(Z) that is a monic polynomial

with coefficients in k[x] then v,(z) > 0 for any a € RZ. But in this case there exists o € RZ,
such that (o, ') < 0 which is a contradiction. Thus NP( ) C RL, which proves the corollary. D

Let us finish this part by giving a few results which are analogous to the fact that if z € (C{t%}
for some k € N, ¢ being a single variable, then its minimal polynomial over C[t] is a polynomial
with convergent power series. The next result can also be seen as the converse of Theorem 6.18:

Corollary 7.10. Let P(Z) € k[x][Z] be an irreducible monic polynomial whose discriminant
has the form 6(x)u(x), where §(x) is a (o)-homogeneous polynomial, o € R, and u(x) € k[x]
is invertible. Let us assume that P(Z) has a root in VE[(vy1,...,7s)] where R is an excellent

Henselian local ring satisfying Properties (A), (B) and (C) and 1, ..., s are homogeneous
elements with respect to v,. Then the coefficients of P(Z) are in R.

Proof. By Theorem 7.5, P(Z) is irreducible in V,[Z]. Let
2 €V, 7))

be a root of P(Z) as given in the statement. We can write z = 3> A;, ;. 7i' --- % where the
sum is finite and A4;, . ;. € Vf. Then the others roots of P(Z) are of the form

Z Aiy,i '71 T 0'('78)%

where o is a ]Kf}lag—automorphism of KV . Thus all the roots of P(Z) are in Vf. Hence the
coefficients of P(Z) are in ij Nk[x] = R. O
Definition 7.11. Let k be a valued field and let o be a strongly convex rational cone of R"
containing R%,. There exists an invertible n x n matrix M = (my,j)1<i,j<n such that M~ € R%,
for any v € . We denote by k{x”?, 3 € 0 NZ"} the subring of k[x”, 3 € 0 N Z"] of power series
f(x) such that f(7(x)) € k{x} where 7 is the map defined by

(T(z1)y .y T(wp) = (2™ ogmm g g men),

By Example 6.17 k{x?, 3 € 0 N Z"} is a subring of Va,{a} for any « such that («,v) > 0 for all
~v € o\{0}.

Let us mention the following theorem proven by A. Gabrielov and J.-Cl. Tougeron by using
transcendental methods (they use in a crucial way the maximum principle for analytic functions):
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Theorem 7.12. [Gal|[To| Let P(Z) € C[x][Z] be an irreducible monic polynomial. If one root
of P(Z) is in C{x",8 € o N %Z”} where o is a strongly convex rational cone and ¢ € N, then
P(Z) e C{x}[Z].

Using what we have done we extend this theorem to any algebraically closed valued field of
characteristic zero under the assumption that the discriminant of P(Z) is close to be weighted
homogeneous. First we need the following lemma:

Lemma 7.13. Let P(Z) € k[x][Z] be an irreducible monic polynomial wherek is a characteristic
zero algebraically closed valued field. Let o € RZ such that dimg(Qoq + --- 4+ Qa,) = n and
P(Z) is irreducible in V,[Z]. By Theorem 6.9, the roots of P(Z) are ink[x?,3 € oN %Z”]] where
o s a strongly convex rational cone such that («,7) > 0 for any vy € o, v #0, and ¢ € N. If one
root of P(Z) is in k{x®,3 € o N %Z”}, then the others roots of P(Z) are ink{x” 5 € an %Z”}
and P(Z) € k{x}[Z].

Proof. Let z € k{x?, 8 € o N %Z"} be a root of P(Z). For any & = (&1, ...,&,) vector of g-th
roots of unity let us denote by z¢ the element of k{x? Beon %Z"} obtain from z by replacing

(mlé, e ,xé) by (amf,...,gnxﬁ). In particular z¢ € k{x?,8 € 0N %Z"}. Then for any &, z¢ is
a root of P(Z). Let I be a subset of Uy, where U, is the group of g-th root of unity, such that
ze # zg forany £, & €1, #¢E,
and V¢ € Uy, 3¢" € 1, zer = ze.

Let us set Q(Z) = [[¢c;(Z — z¢). Then Q(Z) is a monic polynomial of V,[Z] whose roots are

roots of P(Z). Thus it divides P(Z) in V,[Z] hence, since P(Z) is irreducible, Q(Z) = P(Z).
Thus the other roots of P(Z) are in k{x”,3 € 0N %Z”} and P(Z) € k{x}[Z]. O

Corollary 7.14. Let P(Z) € k[x][Z] be an irreducible monic polynomial of degree d where k is
a characteristic zero algebraically closed valued field. Let o € RY such that

dimg(Qay + - - - + Qay,) = n.

Let us assume that there exists an irreducible monic polynomial Q(Z) € K[x]|[Z] of degree d
whose discriminant Ag is a monomial times a unit and such that

valPZ) - QZ)) 2 §ralBa),

Let us assume moreover that one of the roots of P(Z) is ink{x? 5 € an %Z"} for some strongly

convez rational cone o, where {«,v) > 0 for any v € o\{0}, and ¢ € N. Then the coefficients of
P(Z) are in k{x}.

Proof. By Remark 4.15 and Proposition 4.14, the polynomial P(Z) is irreducible in V4 [Z]. Thus
we can apply the previous Lemma. O

8. DIOPHANTINE APPROXIMATION
Here we give a necessary condition for an element of K, to be algebraic over K,,:

Theorem 8.1. [Rol|[ll] Let v be an Abhyankar valuation and let = € K8, Then there exist
two constants C > 0 and a > 1 such that

f
.

> Clgly Vf,g €k[x].

v
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Proof. Let P(Z) := agZ% + a1 Z91 + --- + a4 € K,,[Z] be an irreducible polynomial such that
P(z) =0. Let h € k[x] and set
_ Z
Pu(Z) = h%ad™tP <}m0) .
Then Py (Z) = Z% + a1hZ% ' + agagh®? 292 4 - - + adag_lhd and zhag is a root of Pp(Z). It
is straightforward to check that z satisfies the theorem if and only if zhay does. Thus we may
assume that P(Z) is a monic polynomial and v(z) > 0 by choosing h such that v(h) is large

enough. Let us set Q(Z1, Zy) := Z{P(Z5/Z1). By Theorem 3.1 [Rol] there exist two constants
a > d and b > 0 such that

ord(Q(f,9)) < amin{ord(f),ord(g)} +b Vf,g € k[x].

Moreover, by Izumi’s Theorem ([Iz], [Re], [ELS]), there exists a constant ¢ > 1 such that for all
fek[x], ord(f) < v(f) < cord(f). Thus

v(Q(f,9)) < acmin{v(f),v(g)} +bc Vf,g € k[x].
Since P(Z) is irreducible in K,[Z] and K,, is a characteristic zero field, P(Z) has no multiple

~

roots in V,, and we may write

P(Z) = R(Z)(Z - 2)
where R(Z) € V,[Z] and R(z) # 0. Set r := v(z). Let f,g € k[x] with g # 0. Two cases may
occur: either

(19)

either v (z - g) > r. In the last case we have v (5) = v(z) > 0. In particular v (R (5)) >0
and v(f) > v(g). Thus

(ac — dyw(g) + be > v (p <£>> >y (g _ z) .
Thus we have

(20) Au(g)+Bzu<£z) or ‘25

with A = ac — d and B = be. Then (19) and (20) prove the theorem.

> eiB|g|v

v

O

Example 8.2. Let 0 := (—1,1)R>¢ + (1,0)R>o C R2. This is a rational strongly convex cone
of R2. Let f(z1,x2) be a power series, f(z1,x2) € k[z1,z2]. Let us set

g(w1,w2) 1= Z <x2> v+ f(a1,23) € k[a”, 8 € 0 NZ].

T
i=0 N1

Then g € V, for any a € R2>0 such that ag > . Moreover

Vo, (g— f- Z <fj> ) =nm+ 1Dl ag—aq) = ozz; o (n 4+ Dy (7).
=0

1

Thus there do not exist constants A and B such that

Ava(z1) + B > v, (g—f—zn: <fj>l> Vn € N.

=0
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Hence g(x1,22) is not algebraic over Fy by Theorem 8.1.

NOTATIONS

Vo is the monomial valuation defined by v, (x;) := a; for any i (cf. Example 2.4).
V, is the valuation ring associated to v.

‘7,, is the completion of V.

K,, is the fraction field of k[x] and V.

KV is the fraction field of ‘A/l,.

Gr,V,, is the graded ring associated to V,, (cf. Part 3).

V218 is the algebraic closure (or the Henselization) of V,, in V,, (see Lemma 2.10).
K28 is the fraction field of V8.

V1% is the subring of V,, whose elements have v-support included in a finitely generated
sub-semigroup of R>¢ (cf. Definition 3.14).

K'8 is the fraction field of V8.

e For any o € RZ;, a (a)-homogeneous polynomial is a weighted homogeneous polynomial

for the weights a1, ..., a, (see Definition 2.8).

A[(y1,...,7s)] is the valuation ring associated to A[y1,...,7s] when A = V,,, V& or V2l
(cf. Definition 3.26).

V., is the direct limit of the rings V,, [{(71,.-.,7s)] where the 7; are homogeneous elements
with respect to v (cf. Definition 3.27).

K, is the fraction field of V,,.

leg is the direct limit of the rings V28[(y1,...,7s)] where the ; are homogeneous
elements with respect to v.

K™*® is the fraction field of Vilg.

14
—f
V2 is the direct limit of the rings V/'8[(v1, . .., v,)] where the ; are homogeneous elements

with respect to v.
—f . —f
K,? is the fraction field of V,’.

Va,s is the subring of Vl,ff of elements of the form Z % where A C R is a finitely
ieA

generated semigroup, v, (5247 ) = i and i — m(i) is bounded by an affine function (see

Definition 5.1).

Ve is the direct limit of the V, s over all the (a)-homogeneous polynomials §. It is a

valuation ring (cf. Proposition 5.5).

o [, is the fraction field of V, (cf. Definition 5.6).

o [Cq is the direct limit of the fields K[{7y1, . ..,7s)] where the ; are homogeneous elements

with respect to v (cf. Definition 5.6).
Vﬁ s is the subring V., s whose elements are in the Henselian ring R after a suitable

transform (cf. Definition 6.15).
VE is the direct limit of the V5 over all the («)-homogeneous polynomials 4.
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THEOREME DE COMPARAISON POUR LES CYCLES PROCHES PAR UN
MORPHISME SANS PENTE

MATTHIEU KOCHERSPERGER

REsUME. Le but de cet article est de démontrer le théoréme de comparaison entre les cycles
proches algébriques et topologiques associés & un morphisme sans pente. Nous obtenons en
particulier que dans le cas d’une famille de fonctions holomorphes sans pente, l'itération
des isomorphismes de comparaison des cycles proches associés & chacune de ces fonctions ne
dépend pas de 'ordre d’itération.

ABSTRACT. The goal of this article is to prove the comparison theorem between algebraic
and topological nearby cycles of a morphism whitout slopes. We prove in particular that for
a family of holomorphic functions whitout slopes, if we iterate comparison isomorphisms for
nearby cycles of each function the result is independent of the order of iteration.

1. INTRODUCTION

1.1. Théoréme de comparaison pour une fonction. Soit X une variété analytique complexe
et f: X — C une fonction holomorphe. Soit (F, M) la donnée d’un faisceau pervers sur X et
d’un Dx-module holonome régulier associés par la correspondance de Riemann-Hilbert, c’est-a-
dire 7 = DRx(M). Le foncteur cycles proches topologiques Wy de P. Deligne associe & F un
faisceau pervers a support f~*(0) muni d’un automorphisme de monodromie. Prolongeant une
construction de B. Malgrange [Mal83], M. Kashiwara introduit dans [Kas83] le foncteur cycles
proches algébriques \I/jllg (voir aussi [MMO04]) qui associe & M un Dx-module holonome régulier
a support f~1(0) muni d’un automorphisme de monodromie. Ces deux foncteurs sont reliés par
un isomorphisme de comparaison qui commute & la monodromie :

(1) Up(F) ~ DRy U} E(M).

1.2. Théoréme de comparaison pour plusieurs fonctions. Soit maintenant p > 2 et
fi, ..., fp des fonctions holomorphes sur X. Notons f = (fi,...,fp) : X — C? le morphisme
associé. En général, les foncteurs ¥y, (¢ = 1,...,p) ne commutent pas entre eux, de méme que les
foncteurs \I/jcig .

Dans [Mail3] Ph. Maisonobe montre que sous la condition sans pente pour le couple
(f,car(F)) on peut définir les foncteurs cycles proches topologiques et algébriques associés a
f. Il montre alors 'existence d’isomorphismes

\I’ffz \ijg(l)"-\pfa F

(»)
et

alg ~ ale alg
\I/f M~ \I/fﬂ(l)'”qua'(p)M

pour toute permutation o de {1, ..., p}. Ceci assure la commutativité des foncteurs cycles proches
associés aux fonctions f; pour 1 < ¢ < p. Dans l'introduction Ph. Maisonobe mentionne que, par

1991 Mathematics Subject Classification. 32540.
Key words and phrases. Monodromie, cycles proches, modules multispécialisables, morphismes sans pente,
V-multifiltration, théoréme de comparaison.
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itération de Iisomorphisme (1), ses résultats permettent d’obtenir pour tout o des isomorphismes
de comparaison

~ ~ alg alg
(2) UpF =Wy Uy (F) ~ DRxUYE 04

(M) ~ DRxW3EM.

Dans cet article, nous montrerons (corollaire 3.7) que cet isomorphisme ne dépend pas de
la permutation o. Pour ce faire, nous exhibons un morphisme de comparaison entre W¥;F et
DRy \I/jclg/\/l et nous montrons qu’il coincide avec les isomorphismes de comparaison itérés (2)

pour toute permutation o.

1.3. Un exemples de morphisme sans pente. On appelle singularité quasi-ordinaire un
germe d’espace analytique réduit admettant une projection finie sur C? dont le lieu de ramifi-
cation est contenu dans un diviseur & croisements normaux. Si S est une hypersurface de C”
a singularité quasi-ordinaire définie par une fonction holomorphe f, il existe une projection
7 : C" — C"! quasi-ordinaire pour S. Le faisceau W ;Cg.. est pervers et dans cette situation le
couple (7, car(¥;Cr.)) est sans pente.

Les singularités quasi-ordinaires apparaissent en particulier dans la méthode de Jung de ré-
solution des surfaces singuliéres (voir [Lip75]).

Remerciements. Cet article a été écrit dans le cadre de ma thése sous la direction de Claude
Sabbah que je remercie vivement pour ses nombreux conseils durant 1’élaboration de ce travail.
Je remercie Philippe Maisonobe pour l'intérét qu’il a porté & ce travail. Je remercie également
le rapporteur pour ses remarques constructives.

2. V-MULTIFILTRATION CANONIQUE ET FONCTEURS CYCLES PROCHES

Dans cette section on définit les cycles proches algébriques a l'aide de la V-multifiltration
canonique d’'un Dx-module sans pente. On démontre des propriétés de cette multifiltration
ainsi que de ses gradués. On définit ensuite les cycles proches topologiques associés a plusieurs
fonctions. Enfin on introduit les fonctions de classe de Nilsson & plusieurs variables et on en
montre des propriétés utilisées dans la section suivante pour établir un lien entre cycles proches
algébriques et cycles proches topologiques.

2.1. V-multifiltration canonique d’un Dx-module sans pente. On notera dans la suite

dy = dimc X
& = 8251.
Ei = tiﬁi

= (T1, ..., Ty —p)

1;:=(0,...,0,1,0,...,0) ou le 1 est en position i.

a = (ai, .., op)

ag = (a;)er pour I < {1,...,p}

t:= tl...tp

5=t

Dx[s] = Dx[sl, veey Sp]

H = {H,,...,H,} ou les H; sont des hypersurfaces lisses dont la réunion définit un
diviseur & croisements normaux. On se place ici dans le cas ou il existe localement des
coordonnées (x,t1,..., t,) telles que

f: X — cr
("B’tlvu'vtp) = (t17'-'7tp)

et H; = f;71(0).

(3
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Définition 2.1. Notons, pour tout 1 < i < p, Z; I'idéal de ’hypersurface H; et Z% := lel'f"’.
Pour tout k € ZP et pour tout x € X on définit :

(VkDx), := {P € Dx,, | Ym e ZP, P(ZF*™) c TF+™},

ceci permet de définir une filtration croissante de Dy indexée par ZP.

Soit M un Dx-module cohérent. Une V-multifiltration U, M de M est une filtration croissante
indexée par ZP satisfaisant a VyDx - Uy M < Uy v M pour tout k et k' dans ZP. Une telle V-
multifiltration est bonne si elle est engendrée localement par un nombre fini de sections (m;) e,
c’est-a-dire que pour tout j € J il existe k; € Z? tel que pour tout k € Z?

UkM = Z Vk;JrijX cMmy.
jedJ
Lorsque des inégalités entre nombres complexes apparaitront, ’ordre considéré sera toujours
Pordre lexicographique sur C, c’est-a-dire

r4+iy<a+ib < zr<aou(r=aety<bh).

En suivant [Mail3] on commence par donner les conditions pour quun couple (H, M) soit
sans pente puis on définit la V-multifiltration de Malgrange-Kashiwara.

Définition 2.2. Soit M un Dx-module cohérent.

(1) On dit que le couple (H, M) est multispécialisable sans pente si au voisinage de tout point
de X, il existe une bonne V-multifiltration U, (M) de M et des polynomes b;(s) € C[s]
pour tout 1 < i < p tels que pour tout k € ZP, b;(E; + k;)UpM < U1, M.

(2) On dit que le couple (H, M) est multispécialisable sans pente par section si, pour toute
section locale m de M, il existe des polynomes b;(s) € C[s] pour tout 1 < i < p tels que
bZ(El)m S VfliDX -m.

Rappelons la proposition 1 de [Mail3] :

Proposition 2.3. Les deuzx définitions précédentes sont équivalentes et si la premiére est sa-
tisfaite pour une bonne V-multifiltration de M, elle ’est pour toute. On dit alors que le couple
(H, M) est sans pente.

On fixe M un Dx-module cohérent tel que le couple (H, M) soit sans pente.

Définition 2.4. Le polyndéme unitaire de plus bas degré vérifiant la propriété 1. de la définition
pour Uindice i est appelé polynéme de Bernstein-Sato d’indice i de la V-multifiltration Uy (M),
on le note b; 7, (m)-

Le polyndéme unitaire de plus bas degré vérifiant la propriété 2. de la définition pour I’indice
i est appelé polynéme de Bernstein-Sato d’indice i de la section m, on le note b; ,.

Proposition 2.5. Soient, pour 1 < i < p, des sections o; : C/Z — C de la projection naturelle
C — C/Z. I existe une unique bonne V-multifiltration VZ (M) de M telle que pour tout i les
racines de b; yo(a) soient dans l'image de 0.

La démonstration de cette proposition et de la proposition 2.7 est identique a celle du théoréme
1. de [Mail3].

Définition 2.6. On définit la multifiltration V, (M) indexée par CP et vérifiant :
Vee X, Vo(M)p :={meMy; s, =2 —a;—1, Vs; € b;;l(O) et 1 <i<pl.

Cette V-multifiltration est appelée V -multifiltration canonique ou V -multifiltration de Malgrange-
Kashiwara.
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Si on considére 'ordre partiel standard sur CP
a<f < q; <f;pourtout 1 <i<p

on peut définir
Vea(M) = ) Va(M)
B<ax
et
gra (M) = Va(M)/Vea(M).
Soit I < {1,...,p} et I¢ son complémentaire, on définit
V<aI7OLIC (M) = Z VﬁI:O‘IC (M)

Br<ar

Proposition 2.7. On a l’égalité des V-multifiltrations Vica, a,e)+k(M) = V,:ml’a” (M) ou
O<ay,oe €8t la section dont 'image est [’ensemble

acCP telque —oa; —1<a;<-—q;Viel®
et —a;—1l<a; < —a; Viel
Il exziste un ensemble fini A < [—1,0[P tel que la V-multifiltration canonique soit indexée par
A+ 7ZP. Ainsi la V-multifiltration canonique est cohérente.

Soit I < {1,...,p} et J < I°. Comme pour les Dx-modules cohérents, on a une notion de
VOPIII D x-module multispécialisable sans pente le long des hypersurfaces Hjy := (H;);c .

Définition 2.8. Soit M un VOPII’DX—module cohérent et J < I¢, on note ¢ := #.J.
(1) On dit que le couple (H j, M) est multispécialisable sans pente (ou spécialisable si ¢ = 1)
si au voisinage de tout point de X, il existe une bonne V-multifiltration U, (M) de M
et des polynomes b;(s) € C[s] pour tout i € J tels que pour tout k € Z9,

bi(E; + ki) UM < Up—1, M.

(2) On dit que le couple (H j, M) est multispécialisable sans pente par section (ou spéciali-
sable par section si ¢ = 1) si, pour toute section locale m de M, il existe des polynomes
bi(s) € C[s] pour tout i € J tels que b;(E;)m € VE‘Z(VOPII’DX) -m =V_1,Dx -m.

Remarque 2.9. Comme pour les Dx-modules (proposition 2.3) les deux définitions sont équi-
valentes et si elle sont satisfaites on dira que le couple (H ;, M) est sans pente (ou spécialisable
si ¢ = 1). Les analogues des propositions 2.5 et 2.7 sont vraies pour les VOI;IID x-modules sans
pente.

Proposition 2.10. Soit I < {1,...,p} et M un Dx-module cohérent tel que le couple (H, M)
soit sans pente. Alors le couple (H y, M) est sans pente et pour tout ay le couple (H pe, VOIL{IIM)
est sans pente. De plus, pour I,J < {1,...,p} disjoints, les V-multifiltrations de Malgrange-
Kashiwara satisfont a :

(3) VIS H (M) = V(M) n VIS (M) = VITE (VI (M)
On a également 'analogue de [MMO04, corollaire 4.2-7]

Proposition 2.11. Pour tout a € C et tout j € I¢, l'application M — VaHj (M) définit un
foncteur exact de la catégorie des VOIjIDX -modules spécialisables le long de H; vers la catégorie

des Vi (Vo) Dx -modules.
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Sachant que la V-multifiltration canonique est indexée par A + ZP avec A < [—1,0[? fini,
quitte & renuméroter ces indices on peut la supposer indexée par ZP et appliquer la définition
B.3 de 'appendice B aux V-filtrations canoniques de M.

La condition sans pente s’interpréte de maniére naturelle comme une condition de compati-
bilité des V-filtrations relatives aux différentes hypersurfaces considérées.

Proposition 2.12. Si le couple (H, M) est sans pente alors les filtrations V1 (M), ..., Ve " (M)
de M sont compatibles au sens de la définition B.3.

Démonstration. Soit o < 3 € CP et notons I, := {1,...,¢}. On va construire par récurrence sur
I’entier p le p-hypercomplexe X, correspondant a la compatibilité des sous-objets

H Hr, H, Hr, Hr,
VI (Vg M), o VI (Vg1 M) € Vg M,

D’aprés la remarque B.2, deux filtrations sont toujours compatibles. Supposons construit le
g-hypercomplexe X,. D’aprés la proposition 2.10 la propriété sans pente assure que les objets qui

H
apparaissent dans X, sont des Vj, "“Dx-modules cohérents spécialisables le long de Hgtq. On
q

déduit alors de la proposition 2.11 que 'application de V(gﬂf{l () et Vﬁfifl () & de tels objets sont
deux foncteurs exacts munis d’'un monomorphisme de foncteurs donné par l’inclusion naturelle
déduite de I'inégalité ag+1 < Bg+1. On applique alors ces deux foncteurs a X, la fonctorialité
fournit un (g + 1)-hypercomplexe
0 ——= Va, 15 (X ) V7" (X 4) — Coker(i) —— 0.

C’est le (g + 1)-hypercomplexe X 11 voulu. L'exactitude des différentes suites courtes provient
de Pexactitude des suite courtes de X9, de I'exactitude des foncteurs VHa+1-filtration ainsi que
de l'exactitude du foncteur Coker(.) appliqué a des inclusions (lemme du serpent). On utilise
également ici les identifications (3). Ceci nous donne par récurrence le p-hypercomplexe X,,.
En prenant alors la limite inductive des p-hypercomplexes X, sur 3 € CP on obtient le p-
hypercomplexe correspondant & la compatibilité des sous-objets

H H
Vit (M), ...7Vap”(/\/l) c M.
Ceci étant vérifié pour tout e € CP la proposition est démontrée. O
La proposition B.5 fournit le corollaire suivant

Corollaire 2.13. Si le couple (H, M) est sans pente alors ’objet obtenu en appliquant succes-
stvement les gradués grf: par rapport auzx V -filtrations canoniques Vi ne dépend pas de l’ordre
dans lequel on applique ces foncteurs et est égal a gro,(M).

Proposition 2.14. Soit M un Dx-module cohérent tel que (H, M) soit sans pente et soit
1 < i < p. Alors le Dx-module M(xH;) est cohérent et le couple (H, M(xH;)) est sans pente.
De plus, pour tout o vérifiant c; < 0, le morphisme naturel de VoD x-modules :

Va(M) = Vo (M(xH;))
est un isomorphisme.
Démonstration. Comme (H, M) est sans pente, M est spécialisable le long de H; et on peut
appliquer [MMO04, proposition 4.4-3] qui assure que M (xH;) est cohérent, spécialisable le long
de H; et que pour «; < 0,
Vol (M) — VT (M(+H;))

est un isomorphisme.
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Montrons que le couple (H, M (xH;)) est sans pente. C’est un probléme local, on peut supposer
que H; = {t; = 0}. Soit m’ une section de M(xH;), on a m’ = m/t;* ott m est dans l'image de
M — M[1/t;] et k € N. Le couple (H, M) étant sans pente, pour tout 1 < j < p il existe un
polyndome non nul b;(s;) satisfaisant a

bj(Ej)m € V_l (DX)m

j
On a alors
bj(Ej)tfm’ € V—lj (Dx)tfm/
tfbj (Ej + 6,‘jk)m/ € th_lj (Dx)m/.
En divisant par t¥ on obtient, b;(E; + ;;k;)m’ € V_q,(Dx)m/, ce qui permet de conclure que
(H, M(xH;)) est sans pente.

D’aprés la proposition 2.10 V(M) et Vi (M(xH;)) sont des Vy"*Dy-modules sans pente
le long de H (;;- donc, si a satisfait & a; < 0, on a un isomorphisme

Hyiye Hyiye

Va(M) > Va {2 (VT (M) = Va8 (VT (M(3Hy))) = Va(M(+Hy))

ce qui conclut la démonstration de la proposition.
d

Corollaire 2.15. Soit M un Dx-module cohérent tel que (H, M) soit sans pente. Alors le Dx -
module M(x(Hy ... H,)) est cohérent et le couple (H, M (x(Hyu...uH,))) est sans pente. De
plus pour tout v vérifiant o; < 0 pour tout 1 < i < p, le morphisme naturel de VoD x -modules :

Va (M) = Va(M((Hy U ... U H,))
est un isomorphisme.

Démonstration. On effectue une récurrence sur le nombre d’hypersurfaces par rapport auxquelles
on localise M et le corollaire est une conséquence immédiate de la proposition précédente.
O

2.2. Gradués d’un Dx-module sans pente et cycles proches algébriques. Ici on dé-
montre des propriétés des gradués de la V-multifiltration de Malgrange-Kashiwara et on définit
les cycles proches algébriques.

Proposition 2.16. Soit M un Dx-module tel que (H, M) soit sans pente. Pour tout € C et
tout 1 < i < p, ’endomorphisme (E; + 5+ 1) de

Vﬁ,a{i}c (M)/V<ﬁ,a{i}c (M)
est nilpotent.

Démonstration. Notons o := 04 a,. et bi(s) le polynome de Bernstein-Sato d’indice i de la
multifiltration correspondant & la section o. Les racines de b; sont donc dans 'intervalle [—3 —
1, —p[. Soit £ la multiplicité de la racine —3 — 1 de b;. On pose b;(s) = bi(s)(s + 8 + 1)*. On
considére comme dans la preuve de [Kas83, Théoréme 1] la V-multifiltration de M suivante :

Ur(M) 1= ViZ_y, (M) + (B; + ki + B+ 1) Vg (M).

On peut montrer que c¢’est une bonne V-multifiltration, que ses polynémes de Bernstein-Sato
d’indice j # i divisent ceux de V7 et que son polynéome de Bernstein-Sato d’indice i divise
v'(s)(s + B)¢. Les racines de ¥'(s)(s + 8)¢ sont dans | — 8 — 1, —f], par unicité la multifiltration
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U.(M) est égale a la multifiltration V7 (M) ott & = T<Bapyye- Onadone Ug(M) = Vg oy, (M)
et on en déduit que (E; + 8 + 1)¢ annule

Vﬁ,a(q,}c (M)/V<5,a(q,}c (M)
(I

Etant donnée la définition de gr, (M) on déduit immédiatement de cette proposition le co-
rollaire suivant :

Corollaire 2.17. Soit M un Dx-module tel que (H, M) soit sans pente. Pour tout o € CP et
tout 1 < ¢ < p, endomorphisme (E; + o; + 1) de gr,, (M) est nilpotent.

Définition 2.18. Etant donné un couple (H, M) sans pente, on définit les cycles proches algé-
brigues de M relatifs a la famille d’hypersurfaces H de la maniére suivante

UgM:= P gro(M).

ae[—1,0[P
C’est un ngDX—modules cohérent. Or, si 'on note X := mléiép H;, on a
gry Dx =~ Dx,[Fu, ..., E,].

Le corollaire 2.17 implique ainsi que WM est un Dx,-module cohérent. Les cycles proches
algébriques sont munis d’endomorphismes de monodromie pour 1 <7 < p

T; := exp(—2inE;).
La proposition suivante est une conséquence du corollaire 2.13

Proposition 2.19. Soit I < {1,...,p}, on a alors un morphisme naturel, fonctoriel en M, de
gry Dx -modules

UM — Uy, (Vg,. M)

qui est un isomorphisme si le couple (H, M) est sans pente.

Dans le cas général f : X — CP, l'inclusion du graphe de f permet de définir les cycles
proches algébriques.

Définition 2.20. Considérons le diagramme

X L)X x CP
x J/W(Tr17.--17rp)
Cr.

ol iy est le graphe de f. Soit H; := 7T;1(0). D’aprés ce qui précede, si le couple (H, iy, M) est
sans pente, alors Wiy M est un Dx xo-module cohérent & support {(x,0)[f(x) = 0}. On peut

le voir comme un Dx-module cohérent a support £~ '(0), on le note alors \I/?g/\/l.
On déduit de la proposition 2.19 I'isomorphisme

alg alg alg
\I/f M — \IJfI (\IJfIc ).
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2.3. Cycles proches topologiques. Ici on définit le foncteur cycles proches topologiques asso-
cié a une fonction f : X — CP et appliqué a la catégorie des complexes de faisceaux & cohomologie
C-constructible.

Définition 2.21. Considérons le diagramme suivant ou les carrés sont cartésiens :

J P

f7H0) =X X+

R

p

{0} ——CP < (C*)P <—— (C*).

Iei X* = X — F71(0) avec F = fy...f, et @?’ est le revétement universel de (C*)P.
Si F est un complexe de faisceaux & cohomologie C-constructible, on définit :

U F =i 'Rjupep '3 ' F

c’est le foncteur cycles proches. On peut identifier le morphisme @’ — (C*)P a

exp : cr — (C*)p
(Zlv~”7zp) = (€2i7rz1,...762iﬂ-zp),

Pour 1 < i < p les translations

(21, s Ziy e Zp) > (2150020 + 1,00, 2p).
permettent d’induire des endomorphismes de monodromie 75 : W F — W F.

Supposons que les f; définissent un diviseur a croisements normaux H ou H; = {f; = 0} et
que F = DR(M). Dans [Mail3] Ph. Maisonobe démontre la proposition suivante

Proposition 2.22. Soit I  {1,...,p}, il existe un morphisme naturel
(4) \I/f}_ - \I/fl (\Ilflc]:)'
De plus si le couple (H, M) est sans pente alors ce morphisme est un isomorphisme.

2.4. Fonctions de classe de Nilsson. On se place ici dans le cas d’une famille d’hypersurfaces
qui forment un diviseur & croisements normaux, quitte & diminuer X, on suppose qu’il existe
un systéme de coordonnées (z,t1, ..., tp) tel que pour tout 1 <4 < p, 'hypersurface H; ait pour
équation t; = 0. On note
T X — cr
(.’B,tl,...,tp) [and (tl,...,tp).

Définition 2.23. Soit a € [—1,0[” et k € NP. On note N4k la connexion méromorphe sur C? :

1
Na,k= (—D O(cp[

o<t<k Z21---Zp

]ea,ﬁ

avec la structure de D-module donnée par la formule
zi0z,eae = (0 + 1)ea.e + €a,e—1;-
On définit T; le morphisme de monodromie d’indice ¢ par la formule
. 24m)™
Tiea,e = exp(2im(a; + 1)) Z %eal_m,li.

os<m<;
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Remarque 2.24. Pour se souvenir de la structure de D-module et de la monodromie il faut

a+t1logh z;  log'? z,
T T

Définition 2.25. Soit M un Dx-module tel que le couple (H, M) soit sans pente. On définit :

1
titp

remarquer que la section eq ¢ se comporte comme la fonction multiforme z

Ma7k = M ®71'71(9Cp 7T_1 (Naak) = M[ ] ®7‘r’locp 7T_1 (Na7k) .

D’autre part on a
Mok =M®o, " (Nak)
ou 7 est 'image inverse dans la catégorie des D-modules. Ceci permet de munir Mg g d’une

structure naturelle de Dx-module. Notons Y := ﬂ H;. La restriction de Mg & Y est munie
1<i<p
d’endomorphismes T; induits par les morphismes de monodromie de Ny et définis par :

Ti(m®ear) =mQTieq..

Proposition 2.26. Soit a € [—-1,0[" et k € NP et M un Dx-module tel que le couple (H, M)
soit sans pente. Alors le couple (H, Mq 1) est sans pente. De plus, pour tout B € CP, on a :

VaMar) = @D Varsia (M[ ! ]) ot

o<t<k ty...1p
On commence par un lemme qui sera utile dans la démonstration de cette proposition.

Définition 2.27. Soit (x, 1, ..., t,) un systéme de coordonnées locales o ¢; = 0 est une équation
de H;. Soit M[1/t, s]t® le Ox[s]-module isomorphe & M[1/t, s] par lapplication m — mt*. Il
est muni d’une structure naturelle de Dx [s]-module par la formule :

sim)ts

0;(mt®) := (0;m)t® + (

i
Lemme 2.28. Soit m une section locale de M[1/t] et b(s) € C[s]. Les conditions suivantes sont
équivalentes :

(1) b(E;)m e V_1,(Dx)m
(2) b(—s; — 1)mt® € Dx|[s]t;mt®

Démonstration. Montrons que I implique 2. Dans M[1/¢t, s]t® on a l’égalité
(t;0;m)t° = (—s; — 1)ymt® + 9;(t;mt®).
On montre alors par récurrence que pour tout k
((t:0:)Fm)t® — (—s; — 1)*mt® € Dx[s]|t;mt®.
On a donc pour tout polyndme b(s) € C[s]
(b(E;)m)t® — b(—s; — 1)mt® € Dx[s]t;mt>.

D’autre part, si b(E;)m € V_1,(Dx)m une récurrence permet de montrer que (b(E;)m)t® €
Dx|[s]t;mt® et on en déduit 2.

Montrons que 2 implique 1. D’une part, on peut montrer par récurrence que pour tout k € N
et tout 1 < £ < k, il existe my o € M[1/t] satisfaisant a :

k
(5) skmt® = ((—0st:)"m)t* + ) of (my ot*).
=1
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D’autre part, en faisant opérer les 0% = 9{"...0," et en annulant les coefficients du polynome en
les s; que I'on obtient, on peut montrer le résultat suivant :

(6) lz 0% (mat®) = 01 = [ma =0 Va]

pour une somme finie sur les «. Enfin, si 'on regarde plus précisément la récurrence faite dans
la premiére partie de la démonstration on obtient

(b(Ez)m)ts — b(757 — l)mts S (9,DX [s]t,mts
L’hypothése 2 implique
b(—Si — l)mts = Z 80‘3'“Aa,ktimts
ok
ot Aar est un opérateur différentiel indépendant des 0; pour tout 1 < 7 < p. En utilisant
légalité (5) on peut substituer les s; et on obtient

(b(E;)m)t® — Z [(—t181 - l)kl...(—tpap — 1)k1’A0,ktim] t? = Z 0% (mat®)

k a>0
avec meo € M[1/t]. En utilisant (6) et le fait que (—t10; — 1)*1...(—t,0p — 1)kr Ag gt; € V_1,(Dx)
on conclut que b(E;)m € V_q1,(Dx)m.

O
Démonstration de la proposition 2.26. On commence par montrer que le couple (H, Mq k) est
sans pente. Quelque soit 1 < i < p, le Dep-module Ny /N k—1, s'identifie & Ny g—r,.1, On a
donc la suite exacte :
0 — Neak—1, = Nak = Nok—k;.1;, — 0.

Pour tout k € NP le 7~ 'Ocr-module 77 N i est & fibres plates car libres, il est donc acyclique
pour le foncteur de produit tensoriel par M| ] et on a la suite exacte :

1
o
(7) 0 - Mak-1, > Makr = Mar—k.1, = 0.

Le module central est sans pente si et seulement si les deux autres modules le sont. En effet,
comme dans le cas des bonnes V-filtration pour p = 1 (cf [MMO04]), une bonne V-multifiltration
du terme central induit des bonnes V-multifiltration des termes extrémes. On considére alors la
suite exacte

00— UMar-1, = UMapr = UMar—r;1, =0
et on observe que la condition multispécialisable sans pente de la définition 2.2 est satisfaite pour
le module central si et seuleument si elle 'est pour les deux autres modules. Par récurrence on est
alors ramené a montrer que (H, My o) est sans pente. Soit m une section locale de M|

1
)
D’aprés la proposition 2.15 le couple (H, M[ﬁ]) est sans pente et par conséquent le lemme

iy
2.28 fournit localement, pour 1 < i < p, des polynémes b; non nuls vérifiant :

bi(si)mts e Dx [s]timts.
Par définition du Dx[s]-module M[1/t, s|t®, on obtient les équations :
(8) bi(S,’ + o; + 1)(m ® €a,0)ts e Dx [s]ti(m ® €a70)ts.

Soit ko € NP tel que pour tout k; € N vérifiant k; > ko ; + 1, 'entier —k; n’est pas racine de
bi(s; +a;+1) € C[s;]. En remplagant les s; par les entiers k; dans la relation (8) et en multipliant
éventuellement par des t; on obtient que pour tout k € ZP

(m® ea7o)tk eDx(mM® ea,o)t_ko).
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De plus pour tout 1 < i < p, I'égalité (0;(m ® eq.0))t® = 0:(M ® eq,0)tF) + ki(m @ eq0)t* L
montre que (0;(M ® €q,0))t* € Dx((M ® eq0)t *°) pour tout k € ZP. Comme M est engendré
par un nombre fini de sections, en utilisant des extensions successives on peut supposer que m
engendre M. On a donc My, o = Dx((m ® eq0)t *0). La filtration Dx (1)((m ® ea.0)t %))
étant une bonne filtration du Dx-module Mg g, celui-ci est cohérent. Les équations (8) ainsi
que le lemme 2.28 permettent alors de conclure que (H, Mg, 0) est sans pente et donc par ce
qui précede que (H, Mg k) Dest.
Pour démontrer la deuxiéme partie de la proposition on commence par noter

1
U,B(Ma,k) = C—B Va+g+1 <M[]> Ca,l
o<t<k t1...ty
et on va montrer que c’est une bonne V-multifiltration qui satisfait & toutes les propriétés
caractéristiques de la multifiltration de Malgrange-Kashiwara. Soit m € M, £ € NP, g € C et
1 <i < p. On a localement

9) (ti0i + B)(m®@eae) = ((tidi + B+ ai + 1)m) @ eae+ M@ eae—1,
et pour tout n € ZP
t"(m@eqyr) = (t"M) Q@ eqe.
Ceci permet de montrer que U, (Mg k) est une V-multifiltration de My i (c’est-a-dire que cette
multifiltration vérifie VoDx.Ug(Mak) < Ugse(Ma k) pour tout 3 € CP et pour tout £ € ZP).

Pour montrer que c’est une bonne V-multifiltration on fixe 8 € CP et on montre que la V-
multifiltration indexée par ZP, Ugye(Ma k), est une bonne V-multifiltration de Mg . Comme

la V-multifiltration indexée par Z”, Vo1 g1e+1 <M[ﬁ]>, est une bonne V-multifiltration elle
evp

est engendrée localement par un nombre fini de sections {m;},c;. Si k = 0 I'égalité (9) permet
de montrer que les sections {m; ® eq,0}jes engendrent la V-multifiltration Ugje(Ma,0). On
peut alors montrer par récurrence, en considérant la suite exacte (7) et 1’égalité (9), que pour
tout k € NP les sections m; ® eq, pour j € J et 0 < £ < k, engendrent la V-multifiltration
Ugte(Ma,k). Cest donc une bonne V-multifiltration de Mg .

On fixe maintenant 3 € CP et on va construire, pour tout 1 < ¢ < p, un polyndme b;(s) qui
satisfait a

bi(t:0;)Us(Ma,k) < Us—1,(Mak).

Par définition de la multifiltration de Malgrange-Kashiwara on peut choisir, pour tout 1 < i < p,
un polyndme c¢;(s) vérifiant

1 1
ci(ti0s + oy + Bi + 1)Vaypgia <M[t1 ; ]> C Vaiprii, <M[t1 r ])
ity oty

et ayant ses racines dans l'intervalle [—1,0[. Soit m € Vo1g4+1 (M[ﬁ]), Pégalité (9) permet

T
de montrer que

ci(ti0; + Bi)(m®eqe) = (¢i(ti0i + Bi + o + 1)m) R eq e + M

ou m € Ug(Maq,k—1,) si on pose Ug(Mq,e) = 0 pour I; < 0. On peut donc construire par
récurrence un polynéme b; ,,,(s) ayant ses racines dans U'intervalle [—1, 0] et vérifiant

bim (ti0; + Bi)(m @ ea.e) € Ug—1,( Mak)-

Comme Ug(Mq k) est localement engendré par un nombre fini de sections de la forme m® eq ¢
pour 0 < £ < k on peut construire b;(s) ayant ses racines dans [—1,0[ tel que

bi(t:i0; + Bi)Ug(Mak) € Ug—1,(Ma,k)-
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Les racines du polynome de Bernstein-Sato de la V-multifiltration Us (Mg k—1,) sont donc dans
I'intervalle [—1,0[, ce qui permet de conclure que c’est bien la V-multifiltration de Malgrange-
Kashiwara :

VeMak) = @D Varpiz (M[ ! ]) Cat.

o<t<k ty..tp

3. MORPHISME DE COMPARAISON

On va construire un morphisme de comparaison entre les cycles proches algébriques de M et
les cycles proches topologiques de DR (M) relativement & Papplication

g X — (O
(.’B,tl,...,tp) = (tl,...,tp).

On établira le lien avec la composition du morphisme de comparaison relatif aux r premiéres
coordonnées t; et de celui relatif aux p — r coordonnées t; suivantes pour 1 < r < p.

3.1. Comparaison avec les gradués. Commengons par donner deux définitions.

Définition 3.1. Soit M un Dx-module tel que le couple (H, M) soit sans pente. On consi-
déere la famille {gry, (M), 0;}kefo,1}7,1<i<p cOmposée des objets gry (M) pour k € {0,1}? et des
morphismes 0; : gry, (M) — gry_ ;. (M). On définit

itM = s(Cube(gr,(./\/l)))\XD
ott s(.) et Cube(.) sont les foncteurs définis dans 'appendice A.2 et A.5 et Xy = 7 1(0).

Par exemple pour p =2 on a
iTM= 00— gro M)y, = gro M)y DerioM)|y, — srooM)y, —0

m — (ym, —dam)

(m1,ma) = Jamq + O1m

Définition 3.2. De la méme maniére que pour la définition précédente on considére la famille
{Vk(M), 0i} kefo,13r 1<i<p composée des objets Vi (M) pour k € {0,1}” et des morphismes

0; : Vie(M) = Viy1,(M).

On définit
it M = s(Cube(Ve(M)))|x,
ol X() = 7T_1(0).
Remarque 3.3. (1) Notons que si on considére la famille . := {M, 0;}kefo,1}»,1<i<p ON @

s(Cube(A))| x, ~ DRx/x,(M) 1%,
ot ’on considére la projection
T X — X()
(T,t1,... 1) — (x,0,..,0).

(2) On étend ces définitions aux complexes en commencgant par appliquer Cube(.) en chaque
degré puis en prenant le complexe simple associé a 'hypercomplexe obtenu. On note
encore i¥ et it ces foncteurs appliqués aux complexes.
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D’aprés la remarque précédente les morphismes naturels pour tout k € {0, 1}?
grg(M) < Ve(M) = M

induisent les morphismes de complexes

(10) i'M — i* M — DRy, x, (M)

ott I'on omet de noter la restriction de DR x/x,(M) & Xo. Soit I = {1,...,7} = {1,...,p} les r
premiers entiers pour r < p, on note

T X — cr
(watla'“atp) = (tla"'atr)

et X! = 71';1(0). On note VJ la V-multifiltration par rapport aux fonctions ti,...,t,. La V-

multifiltration de Malgrange-Kashiwara de M induit une V!“-multifiltration du Dxé—module

grl, (M) pour tout a; € C". Pour tout a € CP on a le diagramme commutatif suivant

(11) groM VoM
8. (g6, M) =—— V. (grh, M) =— V. (Vd,M).

On définit les foncteurs Z} et z?& en considérant respectivement les familles

{grkI (M/)a ai}kue{o,l}r,lsigr

et {Vi, (M’), 0i}k,e00,137 1<i<r- On définit de maniére analogue les foncteurs z'L et ﬁfc appliqués
a la catégorie des D Xé—modules en considérant la projection
Tre|x! * Xé — cr—r
(@ tper,ntp) = (Epery s tp).

Les propriétés des hypercomplexes, du foncteur s(.) et le diagramme commutatif (11) pour
a € {0,1}? fournissent le diagramme commutatif suivant

(12)
itM i* M DRx/x,M

i (i(fM) =< (iTM) <7 (iT M) —>11C(DRX/X1M) ——> DRy /x, (DR x; M).

3.2. Le morphisme «Nils». D’aprés la proposition 2.26 on a

1
gr_q( @ Bl ( tl...tp]> €a,L-

0<¢<k

La proposition 2.15 assure que pour a € [—1,0[P on a I'isomorphisme

(M) > g1 (M)

titp
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On définit alors le morphisme suivant

o: gr, M) — gr_1(Mak)
m — D [0 (0 + an 4 1) (b0 + ap + 1) M) @ eane

0<t<k

qui induit un morphisme de complexes

Nils : gr,, (M) — i' Mg,

ou lon identifie gr, (M) avec un complexe concentré en degré zéro et o M, est la limite
inductive des Mgy i, prise sur k € NP,

Remarque 3.4. Remarquons ici que M, n’est pas un Dx-module de type fini. Mais le fait
qu'il soit limite des Mg et que les couples (H, Mq ) soient sans pente suffit pour le reste de
la construction et pour le théoréme de comparaison.

En utilisant la définition 2.23 on obtient
Ox Rr—10cp 771(/\/&7k) ~ (OX ®7rf1(9@« Wfl(Naz,k1)> (o (OX ®Tr;clocp—r Wl_cl(Nalc,kzc)) .
On déduit de cet isomorphisme et de la définition du morphisme ® le diagramme commutatif

suivant

Nils

i"Mea

|

i ((TMa)

grle,. (erh, M) —=grll, (ilMa, ) —= i [ (1 Ma,)ase |

(13) graM

3.3. Le morphisme «Topox». Rappelons le diagramme commutatif utilisé pour définir les
cycles proches topologiques :

77__1(0)7; )\[ J )1* p )\f
{0} ——Cr <L (C*pr <2 (T

Lemme 3.5. Soit a € CP, il existe un morphisme naturel

]Topo :DRx(Mq) — U, DRy (M). \

Démonstration. Par définition, Mo = M®g-10,, 7 "Ng, or on a une inclusion No < jspsp™ ' O(ciyp
dans le faisceau des fonctions holomorphes multiformes. Par fonctorialité on a donc le mor-
phisme :

DRx(Mq) = DRx (M @7 jupsp™ Ocye).

L’adjonction des foncteurs image inverse et image directe fournit un morphisme de foncteurs
7 (jop)s — (jop)«7® L. Ceci donne le morphisme :
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DRy (M ® Wﬁlj*P*pilo) i DRx (M ®j*p*7~1'71p710)
= DRx (M ® jupsp~ 'mixs ' O).
Par adjonction on a le morphisme :
DRx (M ® jups«p 'mix+'0) — Rjuj 'DRx(M® jupsp 'mx+10)
Rj.DRx(j'M®j upsp 71 O)
= Rj:DRx(j-'M®@psp 77 10).
On applique ensuite le morphisme (2.3.21) de [KS94] (formule de projection) a la fonction p, en
considérant le fait que py est un foncteur exact car p est a fibres discrétes. Par fonctorialité on
a alors le morphisme suivant :
Rj,DRx(j "M ®@pp~'7710) — Rj,DRx(pup (M @710))
= Rj.DRx(psp~'j~'M).

L
Sachant que DRx M = Q" ®p, M, on peut appliquer le morphisme (2.6.21) de [KS94| a p
(formule de projection) et on obtient le morphisme :

Rj.DRx(psp~'j M) — Rjp«DRx(p~'j~'M)
=  Rj.p«p ' 'DRx(M).

Si 'on compose tous les morphismes naturels que ’on vient de construire on obtient bien le
morphisme naturel attendu :

DRy (Mgy) — ¥ DR (M).

La naturalité de ce morphisme ainsi que la définition du morphisme (4)
U, DRx (M) > ¥, .. (¥, DRx(M))

permettent de montrer que le diagramme suivant est commutatif

Topo

v, DRxM

(14) DRy M,

DR x [(MC!I)C!IC] - \II‘ITIC (DRXMO!I) - \IITFIC (\IJTFIDRXM>'

3.4. Le morphisme de comparaison. En combinant les morphismes (10), Nils et Topo on
obtient la suite de morphismes suivante

(15) DRy, Un (M) 25 P DRy,i'Ma— @@ DRy,i* Mg —

acg[—1,0[ ac[—1,0[?
@ DRx(Ma) 2% ¥, DRx(M).
ae[—1,0[P

On a appliqué les morphisme (10) & Mg, on a ensuite appliqué le foncteur DR x, et on a pris
la somme sur a €] — 1,0]P en utilisant la définition

TuM)= D graM).

ae[—1,0[?
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Théoréme 3.6. Sile couple (H, M) est sans pente alors les morphismes (15) sont des isomor-
phismes qui commutent auxr endomorphismes de monodromie T;, on obtient ’isomorphisme de
comparaison

DRx, ¥y (M) ~ U, DR x(M).

De plus si I = {1,....,7} < {1,...,p} et si l'on applique successivement cet isomorphisme de com-
paraison par rapport aux familles d’hypersurfaces Hy et Hye le résultat ne dépend pas de l’ordre
dans lequel on applique ’isomorphisme. Autrement dit le diagramme suivant est commutatif

DRXO\IIHIC (\I/HIM) -~ DRXO\IJH (M) % DRXO\I/HI(\IJHIuM)

~ ~ ~

U, . (U, DRx(M))<—— ¥, DRx (M) —— ¥, (¥, .DRx(M)).

Démonstration. On raisonne par récurrence sur le nombre p d’hypersurfaces dans H, le cas p = 1
est traité par Ph. Maisonobe et Z. Mebkhout dans [MMO04, théoréme 5.3-2] ou par Morihiko Saito
dans [Sai88, lemmes 3.4.4 et 3.4.5].

Pour p > 1, soit I = {1,...,r} < {1,...,p} avec 1 < r < p, on va considérer les diagrammes
commutatifs (12), (13) et (14). L’hypothése sans pente permet d’appliquer la proposition 2.19
(resp. 2.22) qui assure que les fléches verticales des diagrammes (12) et (13) (resp. (14)) sont
des isomorphismes. La commutativité de ces diagrammes permet de se ramener aux cas de
r et p — r hypersurfaces en appliquant successivement les deux isomorphismes de comparaison
obtenus par récurrence. La commutativité donne alors également directement la deuxiéme partie
du théoréme.

O

Pour un morphisme f : X — CP, I'inclusion du graphe de f permet de donner une version
générale de ce théoréme :

Corollaire 3.7. Soit f : X — CP un morphisme d’espaces analytiques complexes réduits et
M un Dx-module holonome régulier tel que le couple (H,z'f+/\/l) soit sans pente. On a un
isomorphisme de comparaison

DR x 0% (M) ~ DRy (M).

De plus si I = {1,....,7} < {1,...,p} et si l'on applique successivement cet isomorphisme de
comparaison par rapport aux fonctions f; et f. le résultat ne dépend pas de lordre dans lequel
on applique lisomorphisme. Autrement dit le diagramme suivant est commutatif

1 1 ~ al ~ 1 1
DRX\II;i (\I/;Ig/\/l) -~ DRX\I!fg M) —— DRX\IIZ}Ig(\IIaiM)

~ ~ ~

\Il,flc (\I/fIDRx(M)) <~7 \I/fDRx(M) *~> \I/fI (\I’fICDRx(M)).
Démonstration. On applique le théoréme 3.6 & iy M, on obtient I'isomorphisme
DR, Yy (if, M) ~ U DRy cr(if , M).

oum: X xCP — CP est la projection. On applique le foncteur if_l A cette isomorphisme.
On observe qu’un théoréme de changement de base propre donne l'isomorphisme de foncteur
\I'fiffl o~ iffllllﬂ. On en déduit I'isomorphisme

if 'DRx, Vg (if , M) ~ Vpiz 'DRxxcr(iy , M).
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On déduit enfin de I’équivalence de Kashiwara appliquée a I'injection du graphe de f dans X x CP
I’isomorphisme attendu

DR U%® (M) ~ ¥ ;DR (M).

La suite du corollaire se démontre de la méme maniére.
O

n déduit en particulier rollaire qu n; S san n il’on ique l'isomor-

On déduit en particulier de ce corollaire que, dans le cas sans pente, si 'on applique I'isomo
. . < . s N : .
hisme de comparaison par rapport aux fonctions fi, ..., f, 'une aprés l'autre I'isomorphisme

(wis, (i M) =g, (W, (U, DRx (M)

ne dépend pas de la permutation ¢ de {1,...,p}.

alg
DRy (\IJ e

ANNEXE A. HYPERCOMPLEXES

uple

On définit ici les n-hypercomplexes qui correspondent aux complexes n naifs introduits

par P. Deligne au paragraphe 0.4 de [Del73].
Définition A.1. Soit C une catégorie abélienne, on définit par induction la catégorie abélienne
des n-hypercomplexes de la fagon suivante :

e Les 1-hypercomplexes sont les complexes d’objets de C.
e Les n-hypercomplexes sont les complexes de (n-1)-hypercomplexes.

On notera C™(C) la catégorie abélienne des n-hypercomplexes d’objets de C. Par exemple les
2-hypercomplexes sont les complexes doubles. Un n-hypercomplexe est donc la donnée pour tout
k € Z" d’un objet X* de C et, pour tout 1 < i < n de morphismes d(V* : X¥ — X*+1i verifiant
les propriétés suivantes :

d® od® =0 pour tout 4
d® od) =dU) od® pour tout (4,7)

pour les exposants k convenables.

Soit X un m-hypercomplexe, pour tout 1 < ¢ < n et tout m € Z on note X" le (n — 1)-
hypercomplexe composé des X* avec k; = m et des différentielles correspondantes. Les différen-
tielles d(W* avec k; = m définissent un morphisme :

dr: X" — Xt

qui vérifie d;”“ od® = 0 par définition d’un n-hypercomplexe. On a donc pour tout 1 <i < n
un foncteur :
F: c"(€) — cc" V()
X = X 7 ez

de la catégorie des n-hypercomplexes dans la catégorie des complexes de (n—1)-hypercomplexes.
On introduit alors le (n — 1)-hypercomplexe :

H}(X) = HP(Fi(X)),
et le n-hypercomplexe :
Hi(X) = ... > H(X) > HFPY(X) - ...

ol toutes les fleches horizontales sont nulles.
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Définition A.2. Si un n-hypercomplexe X vérifie la propriété de finitude suivante :
(16) pour tout m € Z Pensemble {(k1,...,k,) € Z" | k1 + ... + ky, = m, X* # 0} est fini,

alors on peut associer & X un complexe simple s(X). On pose

s(X)m= P xk
ki+...+kn=m
Soit k € Z" tel que ky + ... + k, = m. On note i : X® — s(X)™ et pg : s(X)™ — XF
les morphismes naturels. On peut alors définir la différentielle dify) : s(X)™ — s(X )™ du
complexe s(X) par :

[ (m1)tetRicagDR s L Ry #£ 1} =1 ou j vérifie k; # I
b OdS(X) Ot = { 0 sinon ’ ’

pour tout k et I vérifiant ky + ... + k, = met l; + ... + [, = m + 1. On peut alors vérifier que

d;?}% odjix) = 0et (s(X),ds(x)) est donc bien un complexe. On a défini un foncteur

st Cie) —  C)
X — (S(X)vds(X))

oit C'f(C) est la catégorie des n-hypercomplexes vérifiant la propriété (16). De plus on observe
facilement que s(.) est un foncteur exact.

Théoréme A.3. Soit f : X — Y un morphisme de n-hypercomplexes ot X et Y vérifient la
propriété (16) et supposons que f induise un isomorphisme :

f:Hi(Ho(..Hpy(X)...)) ~ Hy(Ha(...H,(Y)...)).
Alors s(f) : s(X) — s(Y) est un quasi-isomorphisme.

Démonstration. On raisonne par récurrence sur l'entier n. Pour n = 1 c’est la définition d’un
quasi-isomorphisme, pour n = 2 c’est le théoréme 1.9.3 de [KS94]. On suppose que n > 3. Pour
tout p € Z, on a deux (n — 1)-hypercomplexes, HP(X) et HE(Y), qui vérifient les hypothéses du
théoréme et donc par hypothése de récurrence f induit un quasi-isomorphisme entre s (HE(X))
et s(HE(Y)). Or HE(X) = HP(F,(X)) et HP(.) est un foncteur additif, il commute donc avec
le foncteur s(.) et f induit un quasi-isomorphisme entre

HP({s(X7"), s(dy' Vhmez) et HP({s(Y;"), s(dy') }mez)

pour tout p € Z. Mais ce quasi-isomorphisme correspond aux conditions du théoréme pour les
complexes doubles {s(X™), s(d")}mez et {s(Y;™), s(d") }mez, les complexes simples associés a ces
deux complexes doubles sont donc quasi-isomorphes par hypothése de récurrence pour n = 2. En
appliquant la définition du foncteur s on montre alors que ces deux derniers complexes simples
sont en fait les complexes simples associés & X et & Y ce qui conclut la démonstration du
théoréme.

O

Corollaire A.4. Soit X un n-hypercomplexe tel qu’il existe un indice i pour lequel le complexe
F;(X) soit exact, alors s(X) est quasi-isomorphe au compleze nul.

Démonstration. Le théoréme précédent est évidemment vérifié si 'on permute les indices des H;.
Si le complexe F;(X) est exact alors H;(X) ~ H;(0,) ou 0, est le n-hypercomplexe nul. On a
donc

Hy(..Hi—1 (Hip1 (o Hy(Hy(X))...) = Hy (. Hi—1 (Hi1 (.. Hp (H;(0))-..)
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et on peut appliquer le théoréme précédent, s(X) ~ s(0,), s(X) est quasi-isomorphe au complexe
nul.

O
Définition A.5. Soit {X* fF1 7. 1 <ic, une famille d’objets de C et de morphismes f("*
Xk — X*+1i on appelle hypercube associé¢ ¢ X le n-hypercomplexe noté Cube(X)® vérifiant
Xhki=lookn =1 g ke{0,1}"
0 sinon

Cube(X)kl"“’k“ = {

les morphismes étant ceux donnés par les f(¥*. On vérifie facilement que Cube(.) définit un
foncteur exact.

Par exemple, pour n = 3 on a

X —1,0,0 x0,0,0
/ /
x—1,-1,0 X0,-1,0
Cube(X) =
x-1.0,-1 X0,0,—1
/ /
x-1-1,-1 X0,—1,—1

ott le reste de I'hypercomplexe est nul et X ~5~5~1 est en degré (0,0, 0).

ANNEXE B. FILTRATIONS COMPATIBLES

Les définitions qui suivent ont été introduites par Morihiko Saito dans [Sai88]

Définition B.1. Soit A un objet de la catégorie abélienne C et Ay, ..., A, € A des sous-objets
de A. On dit que Ay, ..., A, sont des sous-objets compatibles de A si il existe un n-hypercomplexe
X satisfaisant a :

(1) Xk = 0 sik¢{—1,0,1}".

(2 X
(3) XO 11 = Az pour 1 <i < n.
(4) Pour tout 1 <i<n et tout k € {—1,0,1}™ tel que k; = 0, la suite

0— Xk1i _, xk _, xk+li _,
est une suite exacte courte.

Remarque B.2. e En utilisant les propriétés universelles fournies par les suites exactes
courtes on observe que si les sous-objets A1, ..., A,, sont compatibles, alors le n-hypercom-
plexe X est déterminé de maniére unique. Par exemple si k € {—1,0}" et si

I={i;k;=-1}c{l,...,n}

= (A

el

alors
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e Sin =1, le complexe X est la suite exacte courte
0->A > A— A/A — 0.

e Si n = 2 deux sous-objets A; et As sont toujours compatibles et X est le complexe
double suivant

Al/(Al M Ag) HA/AQ —— A/(Al + Az)

T | |

A, /f AJA
A1 N A2 AQ AQ/(Al M Ag)

e Sin > 3 des sous-objets Ay, ..., A, ne sont pas compatibles en général.

e Par définition si A;,...,A, € A sont compatibles alors pour tout I < {1,...,n} les
sous-objets (A;)ier € A sont compatibles et ’hypercomplexe correspondant est le #1-
hypercomplexe X; dont les objets sont les X* tels que k; = 0 pour tout i € I°.

Définition B.3. Soient F},..., F? des filtrations croissantes indexées par Z d’un objet A, on
dit que ces filtrations sont compatibles si pour tout £ € Z™ les sous-objets Fell, -, Fy de A sont
compatibles.

Remarque B.4. e D’aprés la remarque précédente toute sous famille d’une famille de
filtrations compatibles est compatible.
e On peut montrer que si F}, ..., F" sont compatibles alors pour tout £ € Z les filtrations
induites par F},..., F?~! sur grf" sont compatibles.
e Si F},...,F} sont compatibles alors les filtrations induites sur F}, n ... F}* sont com-
patibles.

La proposition suivante correspond a [Sai88, corollaire 1.2.13]

Proposition B.5. Soit F}, ..., F des filtrations compatibles d’un objet A. L’objet obtenu en ap-
5o par rapport aua filtrations F, 5y induit Foa-n  gyle
o) P pport auz filtrations Fy(j) induites surgr, "~ "...gr,
pour 1 < j < n ne dépend pas de la permutation o de {1,...,n} et est égal a
FellA Nn..nkrA
i FLAN L AFL_JAn nFRA

(I)A

pliquant successivement les gradués gr 0
o

o(j—
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FLAT SURFACES ALONG CUSPIDAL EDGES

SHYUICHI IZUMIYA, KENTARO SAJI, AND NOBUKO TAKEUCHI

ABSTRACT. We consider developable surfaces along the singular set of a cuspidal edge surface
which are regarded as flat approximations of the cuspidal edge surface. For the study of
singularities of such developable surfaces, we introduce the notion of Darboux frames along
cuspidal edges, and introduce invariants. As a by-product, we introduce the notion of higher-
order helices which are generalizations of previous notions of generalized helices (i.e., slant
helices and clad helices). We use this notion to characterize special cuspidal edges.

1. INTRODUCTION

In recent decades, there have appeared several articles concerning the differential geometry of
singular surfaces in Euclidean 3-space [5, 6, 19, 20, 21, 25, 27, 28, 32]. Wave fronts are particularly
interesting singular surfaces which always have normal directions, even along singularities. A
cuspidal edge surface is one of the generic wave fronts in Euclidean 3-space. In this paper, we
consider developable surfaces along the singular curve of a cuspidal edge surface in Euclidean
3-space. Such a developable surface is called a developable surface along the cuspidal edge.
Actually there are infinitely many developable surfaces along a cuspidal edge. Since a cuspidal
edge surface has the normal direction at any point (even at a singular point), we focus on two
typical developable surfaces along the cuspidal edge. One of them is a developable surface which
is tangent to the cuspidal edge surface and the other is normal to the cuspidal edge surface.
These two developable surfaces are considered to be flat approximations of the cuspidal edge
surface along the cuspidal edge. We investigate the singularities of these developable surfaces
along the cuspidal edge and introduce new invariants for the cuspidal edge.

For this purpose, we introduce the notion of Darboux frames along cuspidal edges, which
is analogous to the notion of Darboux frames along curves on regular surfaces (cf. [7, 8, 14]).
Since the Darboux frame along a cuspidal edge is an orthonormal frame along the cuspidal edge,
we can obtain structure equations and invariants (cf. Proposition 3.1). We show that these
invariants are equal to the invariants which are known as basic invariants of a cuspidal edge in
[20, 21, 27], in which the normal form of the cuspidal edge was used for the study of geometric
properties. The normal form of the cuspidal edge is a very strong tool from a singularity theory
viewpoint. However, it is rather difficult to understand the geometric meanings intuitively. Here,
we emphasize that we use the Darboux frame instead of the normal form of the cuspidal edge.
By using the Darboux frame, we can directly and intuitively understand geometric properties of
the cuspidal edge.

The precise definition of the cuspidal edge (surface) is given as follows: The unit cotangent
bundle T} R? of R? has a canonical contact structure and can be identified with the unit tangent
bundle T3R3. Let o denote that canonical contact form. Let M be a 2-dimensional manifold.
A map i : M — T1R? is said to be isotropic if the pull-back i*a vanishes identically. We call

2010 Mathematics Subject Classification. Primary 57R45; Secondary 58Kxx.
Key words and phrases. cuspidal edges, flat approximations, curves on surfaces, Darboux frame, developable
surfaces, slant helices, clad helices, kth-order helices, contour edges, isophotic edges.
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the image of 7 o i the wave front set of i, where 7 : T{R?® — R? is the canonical projection and
we denote it by W(i). Moreover, i is called the Legendrian lift of W (i). With this framework,
we define the notion of fronts as follows: A map-germ f : (R?,0) — (R3,0) is called a frontal if
there exists a unit vector field v (called a unit normal of f) of R® along f such that

L= (fv):(R%0)— (T1R?,0)

is an isotropic map by an identification T1R? = R3 x S2, where S? is the unit sphere in R3 (cf.
[1], see also [18]). A frontal f is a front if the above L can be taken as an immersion. A point
q € (R%,0) is a singular point if f is not an immersion at ¢. A map f : M — N between M
and a 3-dimensional manifold N is called a frontal (respectively, a front) if for every p € M, the
map-germ f at p is a frontal (respectively, a front). A singular point p of a map f is called a
cuspidal edge if the map-germ f at p is A-equivalent to (u,v) — (u,v?,v3) at 0. (Two map-germs
fi, fa : R™,0) — (R™,0) are A-equivalent if there exist diffeomorphisms S : (R™,0) — (R™,0)
and T : (R™,0) — (R™,0) such that fo 0 S =T o f;.) Therefore if the singular point p of f lies
on a cuspidal edge, then f is a front at p, and furthermore, they are one of two possible types
of generic singularities of fronts (the other one is a swallowtail which is a singular point p of f
satisfying that f at p is A-equivalent to (u,v) — (u, u?v + 3u*, 2uv + 4u3) at 0).

On the other hand, a developable surface is known to be a frontal, so that the normal direction
is well-defined at any point. We say that a developable surface is an osculating developable surface
along the cuspidal edge if it contains the singular set of the cuspidal edge such that the normal
direction of the developable surface coincides with the normal direction of the cuspidal edge at
any point of the singular set. We also say that a developable surface is a normal developable
surface along the cuspidal edge if it contains the singular set of the cuspidal edge such that the
normal direction of the developable surface belongs to the tangent plane of the cuspidal edge
at any point of the singular set. In this paper, we study the geometric properties of cuspidal
edges using these two developable surfaces along cuspidal edges. In particular, we show that
the singular values of those developable surfaces characterize some cuspidal edges with special
geometric properties. As a by-product, we introduce the notion of higher order helices which is
a generalization of previous notions of generalized helices (i.e., slant helices and clad helices) in
[13, 30, 31].

This paper is organized as follows: We describe basic properties of cuspidal edges in §2.
The Darboux frame along a cuspidal edge is introduced in §3. Associated to the Darboux
frame, we introduce three basic invariants, which are the same as those of cuspidal edges, as in
[20, 21, 27]. We also introduce two vector fields along a cuspidal edge which will play critical
roles in this paper. In §4, definitions and basic properties of (general) developable surfaces are
described. Moreover, the notion of higher order helices is introduced and characterizations of
those generalized helices by the curvature and the torsion are given (cf. Proposition 4.4, the
Lancret type theorem). We also consider a tangent developable surface of a curve such that
the curve is a kth-order helix. We give a characterization of such tangent developable surfaces
as a corollary of Proposition 4.4 (cf. Theorem 4.6). Returning to the study of cuspidal edges,
we introduce two developable surfaces along a cuspidal edge in §5. In order to classify the
singularities of those two developable surfaces, we introduce four new invariants represented by
the three basic invariants of a cuspidal edge. The classifications are give by those four invariants
(cf. Theorems 5.1 and 5.3). Moreover, if one of the three basic invariants is identically equal
to zero, we have special developable surfaces alone the cuspidal edge, whose singularities are
classified in Corollaries 5.2 and 5.4. If two of these three basic invariants are identically equal
to zero, the cuspidal edge is a subset of a plane (cf. §5.3). If the all three basic invariants
are identically equal to zero, the cuspidal edge is a line. In §6 we investigate cuspidal edges
with special properties. We compare the properties of cuspidal edges with those of curves on
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regular surfaces in §7. In particular, we give a geometric interpretation of the cuspidal torsion.
Finally we briefly describe definitions and properties of support functions of a cuspidal edge
in the appendix. By using support functions, we give geometric interpretations of singularities
from the contact viewpoint.

2. CUSPIDAL EDGES

Let f: (R2,0) — (R3,0) be a frontal with a unit normal vector field v. For a coordinate system
(u,v) on (R%,0), we define a function A by A\ = det(fy, f,,v) and call it the signed area density
of f. We say that a singular point 0 € (R?,0) is a non-degenerate singular point if dA(0) # 0.
Let 0 be a non-degenerate singular point. Then there exists a vector field germ 1 on (R?,0) such
that (n(p))r = kerdf, for any p € S(f), where S(f) is the set germ of the singular points of f.
We call  a null vector field. We say that 0 € (R?,0) is a singular point of the first kind if it is
non-degenerate and 7(0) is transversal to S(f) at 0. The following lemma is well-known.

Lemma 2.1. ([28, Corollary 2.5, p.735], see also [18]) Let 0 be a singular point of a front
f:(R2,0) — (R3,0). Then 0 is a cuspidal edge (respectively, swallowtail) if and only if n\ # 0
(respectively, n\ = 0 nmmX # 0 and d\ # 0) at 0, where n\ stands for the directional derivative
of X by n.

By this lemma, if f is a front, then the singular point of the first kind is a cuspidal edge.
The cuspidal cross cap ((u,v) — (u,v?, uv?)) is a singular point of the first kind, which is not a
front. For details see [27].

On the other hand, it is known [20, 21, 27] that there exist several geometric invariants for
cuspidal edges in R?. In [21], these invariants are defined and studied for cuspidal edges in any
Riemannian 3-manifold. See [21] for details.

Let f: (R?,0) — (R3,0) be a frontal and v the unit normal vector field. Suppose that 0 is
a singular point of the first kind. Then one can easily see that there exists a coordinate system
(u,v) of (R?,0) with the following properties:

(1) S(f) = {v =0},

(2) w is an arc-length parameter of the curve given by f(u,0),
(3) kerdf(,,0) is generated by 9/0v,

(4) (u,v) is compatible with the orientation of R?.

We call a coordinate system satisfying these properties an adapted coordinate system centered at
(u,v) = (0,0). On an adapted coordinate system, since 0/0u is tangent to S(f), it holds that
Ay = 0. Thus dA(0) # 0 implies A, # 0. Since f,,(0) = 0, we see that

det(fu, fuou, ¥)(0) = Ay (0) # 0.

Hence one can choose the direction of v such that det(f,, fur, 7)(0) > 0. We always choose the
unit normal vector v of f on an adapted coordinate system centered at a singular point of the
first kind so that it satisfies det(fy, fuv,v)(0) > 0.

We define three invariants for f as follows on an adapted coordinate system (u,v):

ks(u) = det (’y’(u),’yﬂ(u)7 v(u, 0))7 ky(u) = (" (u),v(u,0)),
_ det (’7/7 fvva fuvv) _ det (’y/a f'Uva fuu) <’yl7 fvv>

Ri(u) = )
N Iy WP <l |

where y(u) = f(u,0) and (, ) is the canonical inner product of R3. We call k4(u) the singular
curvature, k,(u) the normal curvature and k. (u) the cuspidal torsion of f at (u,0), respectively.
The singular curvature measures convexity or concavity of a cuspidal edge and the cuspidal
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torsion measures the rate of revolution of the direction of incidence of a cusp along a cuspidal
edge. See [20, 27] for details. See [9, 24, 21] for other studies of geometric invariants of cuspidal
edges.

3. DARBOUX FRAMES ALONG CUSPIDAL EDGES

Let f: I x (—¢,e) — R? be a frontal with a unit normal vector v, where I is an open interval
or a circle, and £ > 0. Assume that I x {0} consists of singular points of the first kind, and we
take a coordinate system (u,v) of I x (—¢,¢) satisfying that

(1) w is an arc-length parameter of the curve given by f(u,0),
(2) kerdf(,,o) is generated by 9/0dwv,
(3) (u,v) is compatible with the orientation of R2.

We also call this coordinate system adapted. In this paper we always choose the unit normal
vector v of f on an adapted coordinate system so that it satisfies det(fy, fov, v)(u,0) > 0.

We now set vy(u) = f(u,0) and consider unit vector fields e(u) = f,(u,0) = ~'(u),
v(u) = v(u,0) and b(u) = —e(u) x v(u) along . Here, a; X ag is the exterior product of
ai,az in R3. Then {e, b, v} is a orthonormal frame along . We call {e, b, v} the Darboux frame
along the cuspidal edge . As the structure equations for the Darboux frame along the cuspidal
edge, we have the following proposition.

Proposition 3.1 (Frenet-Serret type formulae).

€'(u) = Ks(u)b(u) + ry(w)r(u),
(3.1) b (u) = —ks(u)e(u) + re(u)v(u),
V(u) = —ky(u)e(u) — ke(u)bu).

By using the matriz representation, we have

e 0 Ks Ky e
/

b | = | —ks 0 Kt b

v —K, —k¢ O v

Proof. Since {e,b,v} is an orthonormal frame along «, we have

e 0 a p e
b]|l=-a 0 4 b|,
v -3 =6 0 v
where oo = (€, b), = (€/,v) and § = — (v, b) . By a straightforward calculation, we have

= (e/,b) = — (e, e x V) = det(e, &', v) = det(v',~",v).

Since det(fy, fov, ) > 0, we have o = k5. It follows from 8 = (e’,v) that 8 = k,,.. Since f has a
singular point of the first kind at 0 € (R?,0), fu., f. are linearly independent. We set

(av ’6) = ¢<ua U) = (u + a(u)vz, ’U)v a(u) = <fu<u’ O)a fvv(ua O>> /2'

Then we see that
Ug Up\ 1 1 —2a(u)v 1~ -
<’Uﬂ, U’f}) - 1 + a’(u)v2 <0 1 + a’(u)vQ) o d) (Uy'U)

fa = fu. Moreover, since

—2a(u)v

fo = fuva + fo = fum

+f’Ua
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it holds that
_ —2a(u)v —2a(u)
o0 70 = 0] aO = (
fo5(4,0) fou(u,0) fuvl+a’(u)v2 +fu1+a,(u)vg
= *2a(u)fu(ua 0) + fou (ua 0)
By the definition of a(u), it holds that (fz, fs5) (4,0) = 0. Therefore we can choose an adapted
coordinate system (u, v) such that fy, f,, are orthogonal, namely v = f,, X fyu/|fu X fou| on the

—da(u)a’ (u)v?
(1 +a'(u)v?)?

+fu + fou ) (u,0)

u-axis. Moreover, we have —b =e X v = fi, X (fu X fou)/|fu X fou| = = fou/|fu X foul, sO that
_5 — <V/ b> — <fu X fuvvaf1)v> — det(fu»fuvvafmz) — _det(fuafvvafuvv) — —Kt
’ ‘fuva’l)‘2 |fu><f'l)’l)|2 ‘qufU’U|2 ’

on the u-axis. O

We define a vector field D,(u) along v by
Do (s) = ri(u)e(u) =k (u)b(u),

which is called an osculating Darboux vector field along ~. If k2 + k2 # 0, we can define the unit
osculating Darbouz vector field by

ke(u)e(u) — Ky (u)b(u)
ko (W)? + Re(u)?
We also define a vector field D,.(u) along v by
Dy (s) = ri(u)e(u) + ks(uv(u),
which is called a normal Darboux vector field along ~. If k? + k2 # 0, we can also define the
unit normal Darboux vector field by
- ri(u)e(u) + rg(u)v(u)
(3.3) D, (u) = = 2 .
Ke(u)? + ks(u)

(3.2) Dy(u) =

We now define the notion of contour edges of cuspidal edges. For a unit vector k € S2, we
say that the cuspidal edge S(f) is the tangential contour edge of the orthogonal projection with
direction k if

S(f) = {(u,0) € (R*,0) | (v(u),k) = 0}.
We also say that the cuspidal edge S(f) is the normal contour edge of the orthogonal projection
with direction k if

S(f) = {(u,0) € (R*,0) | (b(u), k) = 0}.
Moreover, for a point ¢ € R3, say that the cuspidal edge S(f) is the tangential contour edge of
the central projection (respectively, normal contour edge of the central projection) with center ¢

if

S() = {(u,0) € (B2,0) | ((u,0) - e.v(u)) =0 }.

(respectively, S(f) = {(u,0) € (R%,0) | (f(u,0) —¢,b(u)) =0 }.)
For a regular surface, the notion of contour edges corresponds to the notion of contour generators
On the other hand, there is a notion of isophotic curves on a regular surfaces. An isophotic
curve of a surface is a curve consisting of points which have the same light intensity from a
given light source. If the light source is infinitely far from the surface, the light rays might be
considered as parallel lines. In this case, an isophotic curve is a curve on a regular surface such
that the normal of the surface along the curve makes a constant angle with a fixed direction.
Therefore, we can define the notion of isophotic curves on the cuspidal edge exactly the same
way as the definition for curves on a regular surface. In particular, the cuspidal edge S(f) is said



78 SHYUICHI IZUMIYA, KENTARO SAJI, AND NOBUKO TAKEUCHI

to be a normally isophotic edge if there exists a unit vector d such that (d,v(u)) is constant.
We also say that S(f) is a tangential isophotic edge if there exists a unit vector d such that
(d, b(u)) is constant.

We emphasize that notions of contour generators and isophotic curves on regular surfaces
play important roles in the vision theory and visual psychophysics (cf. [3, 15, 16, 17]).

4. DEVELOPABLE SURFACES AND GENERALIZATIONS OF HELICES

We briefly review the notions and basic properties of ruled surfaces and developable surfaces.
Let v: 1 — R3 and & : I — R3?\ {0} be C*°-maps, where I is an open interval or a circle.
Then we define a map Fiy¢) : I x R — R? by

Firy,e)(u,t) = y(u) + t&(u).
We call the image of F~ ¢) a ruled surface, the map v a base curve and the map § a director
curve. The line defined by ~(u) + t&€(u) for a fixed u € I is called a ruling. If the direction
of the director curve £ is constant, we call Fi~ ¢) a (generalized) cylinder. Using the notation
E(u) = &(uw)/[|€(u)l, we have Fl (I x R) = Fyg (I x R). In this case F(~ ) is a cylinder

if and only if £(u) = 0, where = means that equality holds identically. We say that Fly.e)

is non-cylindrical if £(u) # 0 for any u € I. Suppose that Fl~ ¢ is non-cylindrical. Then a
striction curve is defined to be

F(u), €(w)) £
(a.1) s(w) = y(u) - T E D)

(€(u),€(u))
It is known that a singular point of the non-cylindrical ruled surface is located on the striction
curve. We call the ruled surface with vanishing Gaussian curvature on the regular part a de-
velopable surface. 1t is known that a ruled surface Fi~ ¢) is a developable surface if and only
if
(4:2) det (Y(u), €(w). €(w)) =0,

where 4(u) = (dv/du)(u)(ct., [12]). The set of singular points of a non-cylindrical developable
surface coincides with the striction curve[11]. A non-cylindrical ruled surface F(~ ¢) is a cone if
the striction curve s is constant. It is known (cf., [12]) that a non-cylindrical developable surface
Fl~.¢) is a wave front if and only if

(4.3) lu) = det (£(u), €(u), E(w)) #0.

In this case we call F(~¢) a (non-cylindrical) developable front. Let F(~ ¢ (u,t) be a non-
cylindrical developable surface. Then by (4.2), there exist a(u) and S(u) such that 4(u) =
a(u)é(u) + B(u)é(u). The striction curve of Fly ¢ is written as s(u) = y(u) — B(u)€(u), and we
see that the signed area density of Fi ¢) is proportional to A = ¢ + (u). Thus a singular point

of F~¢) is always non-degenerate. By Lemma 2.1, we have the following:

Proposition 4.1. With the above notations, a singular point (u,—B(u)) of F(~.¢) is a cuspidal
edge (respectively, a swallowtail) if and only if ¥(u) # 0 and B'(u) — a(u) # 0 (respectively,
$(u) £ 0, B'(u) — afu) = 0 and 5" (u) — o (u) £ 0).

On the other hand, by [4, Corollary 1.5], we have the following:

Proposition 4.2. With the same notations as in Proposition 4.1, a singular point (u, —B(u))
of F(~.¢) is a cuspidal cross cap if and only if B'(u) — a(u) # 0, P(u) =0 and ' (u) # 0.
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See [23] for other investigations of developable surfaces with singularities.

Remarkable generalizations of helices in R? were introduced and investigated in [13, 30, 31].
Let v : I — R? be a space curve with an arc-length parameter v. We call v a Frenet curve if
k(u) = ||¥"(u)|| # 0. For a Frenet curve =, let {t, n-, b} be the Frenet frame along v, and &, 7
the curvature and torsion, respectively. Then - is said to be a cylindrical heliz (or, a generalized
heliz) if there exists a constant vector v such that ¢(u) makes a constant angle with v. By the
Frenet-Serret formulae, this condition is equivalent to the condition that 7 (u) is orthogonal to
v. Moreover, v is called a slant heliz if there exists a constant vector v such that n.(u) makes a
constant angle with v [13]. By definition, = is a slant helix if and only if n- () is a circle in the
unit sphere. Recently, the notion of clad helices have been introduced in [30, 31]. We say that
v is a clad heliz if n(u) is a cylindrical helix. Since n-(u) is a curve in the unit sphere, it is a
spherical cylindrical helix. It is classically known that « is cylindrical helix if and only if 7/k is
constant (i.e., the Lancret theorem). If both of 7 and k are constant, « is a circular helix (i.e.,
an ordinary helix). Therefore, a cylindrical helix is a generalization of circular helix. A curve v

is a slant helix if and only if
2

0) = oy sy (£) @

is constant [13]. Moreover, ~ is a clad helix if and only if
0/
U(U) = (KQ + 7_2)1/2(1 + 02)3/2 ('LL)
is constant [30, 31]. See [13, 30, 31] for details. Motivated by the results in [13, 30, 31], we
consider generalizations of these notions of helices. For a Frenet curve v : I — R3, we say that
~ is a Oth-order heliz if it is a cylindrical helix, « is a 1st-order heliz if it is a slant helix and ~

is a 2nd-order heliz if it is a clad helix, respectively. For k > 1, we inductively define the notion
of kth-order helices. We say that ~ is a kth-order heliz if t is a (k — 1)th-order helix.

Proposition 4.3. A Frenet curve v is a kth-order heliz if and only if ny is a (k — 2)th-order
helix.

Proof. For k = 2, v is a 2nd-order helix if and only if 7 is a clad helix. Therefore, ny is a
cylindrical helix. By definition, it means that n. is a Oth-order helix. The assertion holds for
k = 2. For k > 2, v is a kth-order helix if and only if ¢ is a (k — 1)th-order helix. This means
that n, =t'/||t’|| is a (k — 2)th-order helix. This completes the proof. m|

We remark that a cylindrical helix is also called a constant slope curve because its tangent
vector has a constant angle with a constant direction. We can interpret a constant slope as a
Oth-order slope. In this sense, we also call a kth-order helix a kth-order slope curve.

On the other hand, we now give a characterization of kth-order helices by the curvature and
the torsion (i.e., the Lancret-type theorem). We define J#[v],(u) = 7(u)/k(u), which is called
a Oth-order helical curvature of ~v. We have

K2 (T) a1l () 1 A,

=iy s

37 (U
"1+ (3)7) / " (1+ )

We set H[y], (u) = 0(u), which is called a 1st-order helical curvature. Moreover, the 2nd-order
helical curvature of ~ is defined to be

2)3/2 (u).

H ) = n(u) =
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For r > 2, we inductively define

1 ‘%ﬂ[’ﬂ/ZT—Q
14 (H#],,._4)2)1/2 o\ 3/2
( ( [7]27 3) ) (1 + (%[,\/]27,72) )

AV g1 (u) = (u),

which is called a (2r — 1)st-order helical curvature, and

1 %[’7]/27”71
14+ (# C2(1 + (# ~)2)1/2 o\ 3/2
(14 (e —5)*) 2 (1 + (V]2 —2)?) (1+(%[V]2r71) )

]y, (u) = (u),

which is called a 2rth-order helical curvature. On the other hand, let k,(u) and 7,(u) be the
curvature and the torsion of the principal normal n(u), respectively. Then we can calculate that

) =1+ P P, 70 = (e )

By using these formulae, we can show that the above inductive definitions are well-defined. Then
we have the following characterization of higher-order helices.

Proposition 4.4. Let v : I — R3 be a Frenet curve. Then the following conditions are
equivalent:

(1) v is a kth-order helix,

(2) A7), (u) is constant,

(3) H[V]jy1(u) is identically equal to zero.

Proof. By definition (2) and (3) are equivalent. It follows from [12, 30, 31] that conditions (1)
and (2) are equivalent for k < 2. Let us write ' [n], (u) as the kth-order helical curvature of the
principal normal curve n(u) of y(u). By Proposition 4.3, v(u) is a 3rd-order helix if and only if
n(u) is a Ist-order helix. By the result in [12], this is equivalent to

Al ) = -
" (14 (#),)?)

being constant. If we substitute k,(u) = /14 (H[v],)*(u) and Hn], = 7,/kn = H[Y],,
we have J[v];(u) = H[n],(u), so that conditions (1) and (2) are equivalent for k = 3. By
Proposition 4.3, v(u) is a 4th-order helix if and only if n(u) is a 2nd-order helix. This condition
is equivalent to the condition that

) 1 o)y
Hnly(u) = Fin(L+ ([n]y)2)' 72 (1 N (%[n]l)z)g/z( )

is constant. If we substitute x,(u) = \/1+ (J[v],)*(u), #[n|, = H[y], and H[n], = 7],
into the above formulae, then the above condition is equivalent to the condition that

1 Al
A+ () A+ ()2 (1 + (H#]],)2)*
is constant. Therefore, conditions (1) and (2) are equivalent for k = 4. We can show that
condition (1) and (2) are equivalent by inductive arguments similar to the above cases. O

H]4(w) =

We now consider the tangent surface Fi. 4)(u,t) = vy(u) + tt(u) for a Frenet curve ~y(u). We
remark that a tangent surface is a developable surface. Here, we consider tangent surfaces of
special curves in R3. We also remark that F(4t) is non-cylindrical if and only if « is a Frenet
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curve. We assume that 7 is a Frenet curve and F{, ;) is said to be a developable surface with
kth-order slope if ~ is a kth-order helix. In particular, a developable surface with Oth-order
slope is called a constant angle surface [22] (or, a developable surface of constant slope [26, 6.3]).
By Proposition 4.3, F(, ) is a developable surface with kth-order slope if and only if 7 (u) is
a (k — 2)th-order helix. By the Frenet-Serret formula b, = —7n., this implies that b, is a
(k — 1)th-order helix. If 7 # 0, then the converse holds. Let v : I — S? C R3 be a smooth
unit vector field. For a unit constant vector ¢, we say that v(u) has a lst-order angle with ¢ if
(v(u), ) is constant. For k > 2, we say that v(u) has a kth-order angle with ¢ if v'(u)/||v' (u)]|
has a (k — 1)th-order angle with ¢. We have the following lemma.

Lemma 4.5. Let v : I — S? C R? be a smooth unit vector field. For k > 2, there exists

a unit constant vector ¢ such that v(u) has a kth-order angle with c if and only if v(u) is a
(k — 2)th-order helix.

Proof. 'We prove this by induction. Since a Oth-order helix is a cylindrical helix, which is
equivalent to the condition that (v'(u)/||v’'(u)|],¢) is constant for a unit vector ¢. This means
that v(u) has a 1lst-order angle with ¢. This completes the proof for k = 2. Suppose that the
assertion holds for k — 1. If v(u) has a kth-order angle with ¢ for a unit vector ¢. By definition,
v'(u)/||v'(w)] has a (k—1)th-order angle with ¢ for a unit vector ¢, by the inductive assumption,
v'(u)/||v' (w)]] is a (k — 3)th-order helix. By definition, v is a (k — 2)th-order helix. The converse
also holds. a

We have the following theorem.

Theorem 4.6. Let v : I — R? be a Frenet curve. Then the following conditions are equivalent:
1) F(41) is a developable surface with kth-order slope,

) [y, (u) is constant,

) A (1) = 0,

) tis a (k — 1)th-order heliz,

)

If 7(u) # 0, then the following condition is equivalent to the above:
(6) The restriction of the unit normal vector field of F 4 on the striction curve v has a
(k — 1)th-order angle with a constant unit vector.

Proof. By Propositions 4.3 and 4.4, conditions (1), (2), (3), (4) and (5) are equivalent. Suppose
7(u) # 0. By a straightforward calculation, the restriction of the unit normal vector field of
F(4 ) on the striction curve y(u) is the binormal vector field b (u) of v(u). Suppose that k = 2.
Since S|, (u) is constant, «y(u) is a clad helix (i.e., 2nd-order helix), which is equivalent to the
condition that n(u) is a cylindrical helix. Since b], = —7n., this condition is equivalent to the
condition that bl (u)/||bL (u)|| is a cylindrical helix. By definition, b, (u) has a Ist-order angle
with a unit vector ¢. For k > 2, by Lemma 4.5, condition (5) is equivalent to the condition that
ny(u) has a kth-order angle with a unit vector c. By the relation bfy = —7n and definition,
by (u) has a (k — 1)th-order angle with c. O

In the above theorem, we do not consider condition (4) for £ = 0 and condition (5) for k = 0,1

respectively.

5. DEVELOPABLE SURFACES ALONG CUSPIDAL EDGES

In this section we introduce two kinds of flat surfaces along a cuspidal edge. Let
f:1Ix(—e,e) = R3 be a frontal with a unit normal vector v, where I is an open interval
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or a circle, and € > 0. Assume that I x {0} consists of singular points of the first kind, and we
take an adapted coordinate system (u,v) on I X (—¢,¢).

5.1. Osculating developable surfaces along cuspidal edges. If (k,(u), kt(u)) # (0,0) on
u € I, we define a map ODy : I x R — R3 by

rr(w)e(u) — ky (u)b(u)

rr(w)? + o (u)?

ODj(u,t) = f(u,0) 4+ tDo(u) = f(u,0) +t

This is a ruled surface. Setting
(5.1) 8o = Ks(K2 + K2) — Kekl, + KK},
where ' = d/du, by (3.1), we have

—t o
o R ET

b2

Kpe + K:b).

Here and in what follows, we omit “(u)” if it does not create misunderstandings. By (5.2), we
have det (v, Do, E/) = 0. This means that OD¢(I x R) is a developable surface. We call OD;
an osculating developable surface of f along S(f). By (5.2), ODy is non-cylindrical if and only
if , # 0. The osculating developable surface of f approximates f along S(f) as a developable
surface, and it has common tangent planes with f along S(f) (see Figure 1). Let sop be the

FIGURE 1. A cuspidal edge (green) with its osculating developable surface (purple)

striction curve of ODy, which is defined by sop(u) = ODy (u, — /Ky (u)? + k¢ (u)2k, (1) /06 ().
By a straightforward calculation, we see that
0o
(5.3) Sop = ﬁ(me — k,b),
where we set
0o = KuOL+ (Kske — 2K),)00
= ke(K2 4 K7)R2 4 3k(— kel + Kuk))Ks

+rLES + kY RZ 4 (K2R — 2K KL — Kok Ky + 264 (K1)

By Propositions 4.1 and 4.2, we have the following theorem:

Theorem 5.1. Suppose that ODjy is non-cylindrical. Then a singular point (u, —k,(u)/0,(u))
of ODy is

(1) a cuspidal edge if and only if d,(u) # 0 and o,(u) # 0,

(2) a swallowtail if and only if d,(u) # 0, oo(u) =0 and ol (u) # 0.
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Moreover, cuspidal cross caps never appear.

Proof. Since D! = (kyks + K})e + (kske — K,,)b, and D! = xe + xb + Sov, we see that 1) = 62,
where * stands for some function. On the other hand, since

1
e=5 ((ﬁsmt —#1)D, + /i,,Df,),
«, B in Proposition 4.1 can be taken as (a,8) = (kskt — K.,,ku)/0o. Thus we see that
B’ —a = o/§2. By Proposition 4.1, we see assertions (1) and (2). Since ¢ = 62, if 1)(u) = 0 then
¥'(u) = 0 for u € I. This proves the last assertion. O

Since O Dy is a developable surface, the striction curve sop coincides with ODy|sop,), and
is a curve in R3. By (5.3), sop is regular if o, # 0. We denote by kop (respectively, Top)
the curvature (respectively, the torsion) of sop the torsions of OD¢[sop,) and ND¢|soop;),
respectively. By (5.3) and

s// —
OD

1

5 [(50(0(’)/-% + 0ok} + Ooksky) — 2/{,5006;)6 + (50(—0(’)/@,, — 0okl + Opkskt) + 2/@,,005('))4 ,
sip =xe+*b+ %(/@S(fi?, + K2) — KLk + H,,/@Q)V, if o, # 0, then it holds that

‘5O|3 52

5.4 = — 2o
( ) ROD (/{3 + H%)3/2|O—o| TOD oo

Therefore, spp is a Frenet curve if o, # 0 and d, # 0. If k, = 0, then spp is equal to f(S(f)).
Moreover, if the cuspidal edge f is a tangent developable surface F(, ¢, then e = ¢, b = n,, and

D,(u) = +e(u)
) = Fb(u). We

v = by. By the Frenet-Serret formulae, we have x, = 0, ks = s and x; = 7. Then
and the image of spp coincides with f(S(f)). If k; = 0 and &, # 0, then D,(u
have the following corollary of Theorem 5.1.

Corollary 5.2. Let f be a cuspidal edge. Then we have the following:

(A) Suppose that k, = 0 and k, # 0. Then sop(I) = f(S(f)) (i.e., ODy is the tangent
developable of S(f)) and a singular point (u,0) € S(f) of ODy is a cuspidal edge if and only if
ks(u) # 0. Moreover, swallowtails never appear.

(B) Suppose that k; = 0 and k, # 0. Then ODs(u,t) = f(u,0) + tb(u). If ks(uo) = 0, then
ODy is cylindrical at ug. If ODy is non-cylindrical ( i.e., ks # 0), then

sop(u) = ODy(u, =k (u)| /iy (u)ks(u))
and a singular point (u, —|k, (u)|/k,(u)ks(w)) of ODy is
(1) a cuspidal edge if and only if k. (u) # 0,
(2) a swallowtail if and only if k. (u) =0 and K!(u) # 0.

Proof. (A) Since k, =0, §, = ksk? and 0, = k7k2, and then the results follow from Theorem

5.1.

(B) Since x¢ = 0 and k, # 0, 6, = Kk and 0, = K2k, so that o) = 3k2k, k. + k2K, and

v'vsy v 'v'os v'vso

then the results follow from Theorem 5.1. O

Let f be a cuspidal edge with x, = 0. Then by Corollary 5.2, S(f) = S(ODy). If ks > 0
(respectively, ks < 0), then S(ODy) locates the opposite side across the f(S(f)) (respectively,
the same side with f with respect to f(S(f))). See Figure 2. For a cuspidal edge f with
Ky # 0, this is investigated in [24], and a cuspidal edge f which is isometric to f and satisfies

F(S(F)) = F(S(F)). See [24] for detail.
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FIGURE 2. Left(respectively, right): Cuspidal edge f with x, = 0 and ks > 0
(respectively, ks < 0) (green), and ODy (purple).

5.2. Normal developable surfaces along cuspidal edges. If (k:(u),xs(u)) # (0,0), we
define a map NDy : [ x R — R3 by

re(u)e(u) + ks(uv(u)
rp(w)? + rs(u)?

NDy(u,t) = f(u,0) +tD,(u) = f(u,0) +¢

Since
— On
(55) ‘D'r‘ = W(_Hse + K?tV),
where
(5.6) On = Ky (K2 + K2) — Kgh) + Kkl

we can also show that ND;(I x R) is a developable surface (See Figure 3). By (5.5), NDy is

FIGURE 3. A cuspidal edge (green) with its normal developable surface (purple)

non-cylindrical if and only if 6, # 0. Let syp be the striction curve of N Dy, which is defined
by snp(u) = NDj(u, —/ks(u)? + k¢ (u)?ks(u) /6, (u)). Again by a straightforward calculation,
we have
(5.7) syp = g—;(nte + KsV),
n
where we set
On = —KsOh + (Kuke + 2K,)0n
= k(K2 + KI)K2 + 3k (KKl — KoKy Ky
—kgkl k2 + (262 — kek Ry + ks(—K2K!, — 26K} + KkY).

Similar to Section 5.1, by Propositions 4.1 and 4.2, we have the following theorem:
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Theorem 5.3. Suppose that NDy is non-cylindrical. Then a singular point (u, —ks(uw)/6,(u))
of NDy is

(1) a cuspidal edge if and only if d,(u) # 0 and o, (u) # 0,

(2) a swallowtail if and only if 0,(u) #0, op(u) =0 and o), (u) # 0.

Moreover, cuspidal cross caps never appear.

If ks = 0, then D, (u) = £e(u) and the image of syp coincides with f(S(f)). If x; = 0 and
ks # 0, then Dy, (u) = v (u).
Therefore we have the following corollary of Theorem 5.3.

Corollary 5.4. Let f be a cuspidal edge. Then we have the following:

(A) Suppose that ks = 0 and Ky # 0. Then syp(I) = f(S(f)) (i.e., NDy is the tangent
developable of S(f)) and a singular point (u,0) € S(f) of NDy is a cuspidal edge if and only
if ku(u) # 0. Moreover, swallowtails never appear.

(B) Suppose that k; = 0 and ks # 0. Then NDy(u,t) = f(u,0) + tv(u). If k,(uo) =0, then
NDy is cylindrical at uwy. If NDjy is non-cylindrical (i.e., k, # 0), then

snp(u) = NDy(u, =k ()] /£ (u) ks (u))
and a singular point (u, —|k, (uw)|/ku(u)ks(w)) of NDy is
(1) a cuspidal edge if and only if K, (u) # 0,
(2) a swallowtail if and only if K, #0, K, =0 and Kl (u) # 0.

Proof. (A) Since ks =0, 6, = K kK7 and on = k3K2. Then the results follow from Theorem 5.1.

(B) If k; = 0, then we have 6,, = k.2 and 0,, = —k3k],, so that o], = —3k2k.k], — k3Kl DO

On the other hand, also similar to Section 5.1, if 0,, # 0, then the curvature xxyp and the
torsion 7y p of syp are given by

[0n* S
(k2 + 52)* 2] o

We close this subsection giving examples of OD; and ND; having cuspidal edges and swallow-
tails.

(5.8) KND =

Example 5.5. Let us consider a space curve

(5.9) ¥y(u) = (cos \f \/ \[)

Let e, n~, by be the Frenet frame of . We set

(5.10) fu,v) =~ + 02 ( cos 0(u)n — sin G(u)bw) + 03 ( sin 0(u)n~ — cos O(u)b.y),

for a function #(u). Then we see that S(f) = {v = 0} and it consists of cuspidal edges. If
O(u) = w/4, then

s0p(0) = 0D (0,-2+/2/3), snp(0) = ND(0,21/2/3), and 0,(0) = 7,,(0) = 3/128.

Thus singular points of OD; near (0,—24/2/3) and ND; near (0,2+/2/3) consist of a cuspidal
edge. See Figures 4 and 5. In these pictures, f is colored in green, and ODy and NDy are
colored in purple.

Example 5.6. Let us consider the case § = /4 + u/4 in (5.10) of Example 5.5. We see that
sop(0) = OD(0,-2v3), snp(0) = ND;(0,2/3), 0,(0) = 0,(0) = 0, and o,(0) = —1/256,
0/(0) = 1/256. Thus each singular point of OD; at (0,—2v/3) and ND; at (0,2V/3) is a
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FIGURE 4. Left to right: Cuspidal edge f of § = 7/4, ODy and combined
picture of f and ODy

FIGURE 5. Left to right: Cuspidal edge f of 6§ = n/4, ND; and combined
picture of f and NDy

FIGURE 6. Left to right: Cuspidal edge f of § = 7/4+u/4, OD; and combined
picture of f and ODy

FIGURE 7. Left to right: Cuspidal edge f of @ = 7/44u/4, ND; and combined
picture of f and NDy

swallowtail. See Figures 6 and 7. In these pictures, f is colored in green, and OD; and NDy
are colored in purple.

5.3. Planer cuspidal edges. In the previous subsections we investigated the singularities of
ODy and NDy with the condition (k,(u),k:(u)) # (0,0) and (ki(u), ks(u)) # (0,0) for any
u € I. Moreover, we also investigated the case when one of ks, K, and k; is identically equal
to zero as special cases (cf. Corollaries 5.2 and 5.4). Here, we study cuspidal edges with
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(Ky(u), ke(u)) = (0,0) and (k¢(u), ks(u)) = (0,0) for any v € I. With the same setting to the
above subsections, let us assume (k, (u), k¢(v)) = (0,0) and ks # 0 for any u € I. Since the
curvature s and the torsion 7 of the curve f(u,0) as a curve in R? satisfy

KskKl, — Kykh
(511) K/2:K,§+I{3, T = W+Ht7
(see [20]) and v/ (u) = 0, we see that f(u,0) lies on a plane which is perpendicular to the constant
vector v. In this case, ODy can be considered as a subset of this plane and

NDg¢(u,t) = f(u,0) +tv

is a cylinder. By the same argument as the above, we see that if (k:(u),ks(u)) = (0,0) and
Ky # 0, then f(u,0) lies on a plane which is perpendicular to the constant vector b. In this case,
NDy¢ can be considered as a subset of this plane and NDy(u,t) = f(u,0) + tb is a cylinder.
Moreover, if we assume (ks(u), £y, (u), ke(u)) = (0,0,0), then f(u,0) is a straight line, and
v =b = 0. In this case, ODy should be defined as the plane perpendicular to v and NDy
as the plane perpendicular to b. Since OD; and ND; intersect orthogonally, the cuspidal edge
S(f) is a line in this case.

5.4. Normalized derivate director curves and derivate striction curves. We set
— (ﬁo)/ B Kype + kb ﬁ_ (ET)/ —Kgs€ + Kib

o —

R e A (A VR

and call them the normalized D, and normalized D.., respectively. They are curves in the unit
sphere in R3. Here, we calculate their geodesic curvatures. Since

—\’ 5o b v
Do N n§+nf(_nt6+ﬂ”)+ /k2 + K2

"
1
<D0/> _ ,{ — [(nins + K2R} + Kk (Ksky — 3K1) — 25?&2)50

/2 2°
Ky + Ky

+(K2 4+ k2) (KD + 263 K2 + Ky K}f + Htég)} e
- |:(/{§’K)5 — K2KL, + Kk (Kuks + 3K}) + 2/{?,&,@)50
+(k2 + K52 (KERe + 26265 + KD — KV(S(’))} b

+(K2 + K7)* (KK, + m;)v}

we obtain the geodesic curvature of ﬁo/ as follows:

(52 1 3/2
<Hzo_|_+,€2> ( — (K2 + K3)0, + 3(kukl, + ntﬁg)éo),
v t

. o . . =
and in a similar manner, we obtain the geodesic curvature D,. as follows:

52 +1\*?
<Hg mg) (= 2+ K2, + Bk, + rer})on ).
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Next we consider normalized striction curves. By (3.2), (5.3), and (3.3), (5.7), we see that

/ /
7 Sop _ 7 g _ SnD -D,.

Sop = SNp =

sopl Is'vpl

Thus the normalized derivate striction curves coincide with the normalized director curves.
Moreover, since D D, and v (respectively, D, and b) are dual to each other as curves in the unit
sphere in R3 , Sop and v (respectively, s’y and b) are dual to each other.

6. SPECIAL CUSPIDAL EDGES

In this section we consider the case when the singular values of ODy and ND; are special
curves in R3. Let f: (R%,0) — (R?,0) be a cuspidal edge and {e, b, v} Darboux frame along the
cuspidal edge ~, where v = f|s(y)

6.1. Contour edges. In this subsection we give characterizations of contour edges by using the
invariants of cuspidal edges. We have the following theorem.

Theorem 6.1. With the same notations as the previous sections, we have the following:
(A) Suppose that k2 + k7 # 0. Then the following properties are equivalent:
(1) ODf is a cylinder,
(2) 4, =0,
(3) v is a part of a great circle in S2.
(4) S(f) is a tangential contour edge with respect to an orthogonal projection.
(5) D, is a constant vector.
(B) Suppose that k2 + k7 # 0. Then the following properties are equivalent:
NDy is a cylinder,
dn(u) =0,
b is a part of a great circle in S?,
S(f) is a normal contour edge with respect to an orthogonal projection.

Proof. We show the assertion (A). By (5.2), we see the equivalency of (1) and (2). The condition
k7 + K2 # 0 means that v is a non-singular spherical curve. Moreover, since

V' = (kskr — K)e + (—kyks — Ky)b,

we see that det(v, v/, v") = §,. This implies that the geodesic curvature of v is 6,(k7 + x2)~3/2,

and it shows that the equivalency of (2) and (3). We assume (2). Then D,(u) is a constant
vector D,. Thus (v(u), D,) = 0 for any u. This implies that S(f) is a tangential contour edge
with respect to D,. This implies (4). Conversely, we assume (4). Then there exists a vector k
such that (v(u), k) = 0 holds for any w. This implies that v(u) belongs to the normal plane of k
passing through the origin, and it implies (3). Since v and D,, are dual each other as spherical
curves by (3.2) and (5.2), we see that the equivalency of (3) and (5). Thus the assertion (A)
holds. One can show the assertion (B) by the same method as in the proof of (A), using (3.3)
and (5.5) instead of (3.2) and (5.2). O

Theorem 6.2. With the same notations as above, we have the following:
(A) Suppose that k? + k2 # 0 and 5, # 0 for any uw € I. Then the following properties are
equivalent:

(1) ODy is a cone,

(2) 0, =0,
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F1cUre 9. Cuspidal edge whose normal developable surface is a cylinder

(3) S(f) is a tangential contour edge with respect to a central projection.

(4) sop is a constant vector.
(B) Suppose that k? + k2 # 0 and 6, # 0 for any u € I. Then the following properties are
equivalent:

(1) NDy is a cone,

(2) 0, =0,

(3) S(f) is a normal contour edge with respect to a central projection.

(4) syp 1is a constant vector.

Proof. By (5.3), we see that the equivalency of (1) and (2). We assume (2). Then sop(u)
is a constant vector for any u. We set ¢ = sop(u). Then by (4.1), f(u,0) — ¢ is parallel
to Do(u). Thus (f(u,0) —c,v(u)) = (Do(u),v(u)) = 0 holds for any u. This implies (3).
Conversely, we assume (3). Then there exists a vector ¢ such that (f(u,0) —c,v(u)) = 0.
By (4.1), sop(u) — f(u,0) is parallel to D,(u), (sop(u) —¢,v(u)) = 0. Differentiating this
equation by u, and noticing (s, ,(u), v(u)) = 0 by (5.3), we have (sop(u),v'(u)) =0. By (5.3)
and (3.1), we see that (s{p(u),v'(u)) = 0. Thus, differentiating (sop(u),v’(u)) = 0 by u, we
have (sop(u),v”(u)) = 0. On the other hand, by (3.1), the three vectors v(u),v’'(u), v (u) are
linearly independent if and only if §,(u) # 0. Hence

(sop(u) — e,v(u)) = (sop(u) — ¢,V (u)) = (sop(u) — c,v"(u)) =0

implies sop(u) — ¢ = 0, and this implies (1). Thus the assertion (A) holds. One can show the
assertion (B) by the same method as in the proof of (A) using (5.7) instead of (5.3). O

6.2. Isophotic edges. Recall that the curve 7 is called the (normal) isophotic edge (respectively,
the tangent isophotic edge) if there exists a constant vector v such that v (respectively, b) makes
a constant angle with v.
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FiGure 11. Cuspidal edge whose normal developable surface is a cone

Let us turn to our setting. With the same notations as those of Section 5, by a straightforward
calculation, we have

(6.1) Top ’ = (K‘% + K%)S and TND i = (Hg + K%)S
' RoD (Sg KND (57% '

These are squares of the geodesic curvatures of v and b, respectively. Thus we obtain:

Theorem 6.3. With the same notations as those of Section 5, we have the following:
(A) Suppose that k? + k2 # 0, 6, # 0 and o, # 0 for any u € I. Then the following properties
are equivalent:
(1) ODy is a constant angle surface,
v is a part of a small circle,

(2)

(3) S(f) is a normal isophotic edge,
(4) ﬁo is a part of a small circle,
(5) spp is a part of a small circle,
(6) 0,/(K2 + K2)3/2 is constant,

(7) sop is a cylindrical heliz.

(B) Suppose that k2 + k2 # 0, 6, # 0 and o, # 0 for any u € I. Then the following properties
are equivalent:
(1) NDf is a constant angle surface,

(2) b is a part of a small circle,
(3) v is a tangent isophotic edge,
(4) D, is a part of a small circle,
(5) s'yp is a part of a small circle,
(6)

)

6) 0,/ (k2 + K?)3/2 is constant,
sSND 1S a cylindrical helix.

(7

Proof. By the definition and (6.1), the equivalency of (1) and (6) is obvious. By the proof of
Theorem 5.3, 6,/ (r2 + £2)3/2 is the geodesic curvature of v, so that (2) and (6) are equivalent.
Since v is a curve on the unit sphere, we see the equivalency of (2) and (3). By (5.2), v and D,
are spherical dual each other. Hence we see equivalency of (2) and (4). Equivalency of (2) and
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(5) is obvious since D, and s, , are parallel. By definition, (5) and (7) are equivalent. Thus the
assertion (A) holds.
One can show the assertion (B) by arguments similar to those for (A). |

6.3. General order sloped edges. In this subsection we consider cuspidal edges such that the
osculating or the normal developables of cuspidal edges are general order sloped, where we say
that S(f) is a k-th order sloped edge with respect to D, (respectively, D,.) if D, (respectively,
D,) is a (k — 1)th-order (spherical) helix. We denote the kth-order helical curvature of sop(u)
(respectively, snp(u)) by 5 [sop),(u) (respectively, 5 [snp],(u)). By (6.1), we have

K2 + Kk2)3/2
H[soply(u) = (J|r5t>7
K K 3/2
H[snply(u) = (J:Mt),

N
Hlsop)y (u) _ VR TR

2 2
W) = (T gy (Bl + 3, — (5] k)0)).

%[S ] ( _ KE+K% 3 ! 3 I 2 2 5/
(1) = g e s (S B = (2 4 D)

and oo(K2 +Ht)3/290D
Hsoply(u) = = =
8or/02 + (k2 + k3)3 (1 + 03 )%/
3/20/
Hlsnly(u) = ""(“ R PO

+ (K2 + /7P (L+ 0%p)2/2

Higher order helical curvatures of spp(u) and syp(u) are inductively defined. However, these
are very complicated, so we omit explanations by using basic invariants for the cuspidal edge.
Then we have the following theorem as a simple corollary of Theorem 4.6.

Theorem 6.4. With the same notations as those of Sections 4 and 5, we have the following:
(A) Suppose that k? + k2 # 0, 6, # 0 and o, # 0 for any u € I. Then the following properties
are equivalent:
(1) ODy is a developable surface with kth-order slope,
sop 1s a kth-order helix,
o/ is a (k — 2)th-order (spherical) heliz,

)
3) D
) sop is a (k— 1)th-order (spherical) heliz,
)
)

H[soD)), is constam‘

[SOD]kJrl L
(7) S(f) is a k-th order sloped edge with respect to D,.

(B) Suppose that k? + k2 # 0, 6, # 0 and o, # 0 for any u € I. Then the following properties
are equivalent:

(2
(
(4
(5
(6

(1) NDy is a developable surface with kth-order slope,
SND is a kth-order heliz,




92 SHYUICHI IZUMIYA, KENTARO SAJI, AND NOBUKO TAKEUCHI

(8) S(f) is a k-th order sloped edge with respect to D,..
Proof. (A) With assumptions k? + k2 # 0 and 6, # 0, sop is a Frenet curve. By definition,

ﬁo/ is the unit principal normal vector field of sop. Since spp is the striation curve of ODy,
the director curve of ODy is equal to sy, so that we can apply Theorem 4.6 to sop. By
definition, (4) and (8) are equivalent. For (B), we have arguments similar to the case (A) and
apply Theorem 4.6 to syp. |

If we consider the case when one of k,,, k¢, K is identically equal to zero, we have the following
representations of helical curvatures of spp and syp, respectively:
(1) Suppose that x, = 0 and k; # 0. Then 6, = kski and o, = k}k2. If ks # 0, then
D,(u) = +e(u) and sop(I) = f(S(f)). If we denote by x and 7 the curvature and the tor-
sion of S(f) respectively, then x(u) = |ks(u)| and 7(u) = k¢(u). Therefore we have

Hsoply(w) = HS(Hlg(u) = ke(uw)/|ks (u)].

Moreover, we have

A
HC)S u) = .

SN = T I ST (5 (1S, ()77
Higher order helical curvatures of S(f) are inductively defined. Moreover, OD; is the tangent
developable of f(S(f)).
(2) Suppose that x; = 0 and , # 0. Then §,(u) = rs(u)k, (u)? and o,(u) = K, (u)3K%(u). If
ks # 0 and K}, # 0, then D,(u) = £b(u) and sop(u) = OD(u, —|k, (u)|/Ky (u)ks(u)). Moreover,

we have
Rg 3 Rylu 8
ISJOD( ) —| (|)|O(| )|( )‘ and 70D<u) =

ws(u) 2k, (u)?

oo(u)
so that 7 [soply(u) = Top(u)/kop(u) = |ke(u)|/ks(u). We can define kth-order helical curva-
ture S [sop),(u) inductively. In this case NDy(u,t) = f(u,0) + tb(u).

(3) Suppose that ks = 0 and x; # 0. Then &, = k,x? and o, = k}r2. If ks # 0, then
D.(u) = *e(u), syp(I) = f(S(f)) and k(u) = |k,(u)| and 7(u) = r¢(u). Therefore we
have J[syply(u) = H[S(f)]y(v) = Ke(u)/|ky(u)|. We can define kth-order helical curvature
JC[S(f)],(u) inductively. In this case NDy is the tangent developable of f(S(f))-

(4) Suppose that x; = 0 and ks # 0. Then 6,, = k,x2 and 0, = —k2k!,. If K, # 0 and !, # 0,
then D,(u) = +n(u) and syp(u) = NDy(u, —|k, (u)] /Ky (u)ks(u)). Moreover we have

knp(u) = KV(|;|3(|I€)S(U)|3 and Tnp(u) = ro ()1 ()

)

it (u)
on(u)
so that J[syply(u) = |ks(u)|/ky(u). We can define kth-order helical curvature J#[syp], (u)
inductively. In this case ND(u,t) = f(u,0) + tv(u).

)

Corollary 6.5. With the same notations as those in the above theorem, we have the following:
(A) Suppose that k, =0, Ky # 0, and ks # 0. Then ODy is the tangent developable of S(f)
and the following properties are equivalent:

) ODy is a developable surface with kth-order slope,
2) S(f) is a kth-order heliz,
3) bis a (k — 2)th-order (spherical) heliz,
4) e is a (k — 1)th-order (spherical) heliz,
5) J[S(f)], is constant,

(1
(
(
(
(
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(6) ALS(f)lgy1 =0
Suppose that Kk = 0, k, # 0, ks # 0 and &, # 0. Then ODy is the tangent developable of

(B
S(f) and the following properties are equivalent:

)
f
) ODy is a developable surface with kth-order slope,
) sop is a kth-order heliz,

) e is a (k—2)th-order (spherical) heliz,

) b is a (k— 1)th-order (spherical) heliz,
)

)

)

spp s a (k — 1)th-order (spherical) heliz,

H[sop),, is constant,

H[soplj1 = 0.
) S(f) is a k-th order sloped edge with respect to b.
(C) Suppose that ks =0, Kkt # 0, and k, # 0. Then NDjy is the tangent developable of S(f)
and the following properties are equivalent:

) NDy is a developable surface with kth-order slope,
2) S(f) is a kth-order heliz,
3) v is a (k — 2)th-order (spherical) heliz,
4) e is a (k — 1)th-order (spherical) heliz,
5) HIS(f)], is constant,
(6) %[S(f)]kﬂ =0.
(D) Suppose that ky =0, ks # 0, k, # 0 and k], # 0. Then NDs(u,t) = f(u,0)+tv(u) and the
following properties are equivalent:

(1
(
(
(
(

2) snyp is a kth-order heliz,

3) e is a (k — 2)th-order (spherical) heliz,

4) v is a (k — 1)th-order (spherical) heliz,

5) 8y p is a (k — 1)th-order (spherical) heliz,

6) €[snp), is constant,

7 - [SND}k-&-l =0.

8) S(f) is a k-th order sloped edge with respect to v.

7. CURVES ON REGULAR SURFACES AND RELATIONSHIPS WITH CUSPIDAL EDGES

In this section we consider curves on regular surfaces and investigate the relationship with
the previous results on cuspidal edges. In [8, 14], developable surfaces along a curve on a
regular surface are investigated. We consider a regular surface M parametrized by an embedding
X : U — R?® with a unit normal vector field n (i.e., M = X (U)). For a curve ¢ : [ — U, we
define v = X oc as a curve on M. We assume that « is parametrized by the arc-length parameter
s. The Darboux frame {t,d,n} along -« is defined to be the unit tangent vector ¢ of v, n = no~,
and d = —t x n. Then we have

t = Kyd+Em
d = —kgt+71m
n' = —kpt—T1,d.

The invariants rg, <, and 74 are called the geodesic curvature, the normal curvature and the
geodesic torsion respectively. It is known that « is a geodesic of M if and only if K, = 0, v is an
asymptotic curve of M if and only if x,, = 0 and -y is a principal curve of M if and only if 74 = 0.
Here, ~ is said to be a geodesic if the curvature vector ¢'(s) has only a normal component of the
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surface M, an asymptotic curve if t'(s) has only a tangential component of the surface M and
a line of curvature if V/(s) is parallel to t(s), respectively.

In [14], an invariant 6, = kg + (kn7) — K,7g) (K2 +72) 71 is introduced! and it is shown that

b0 = 0 if and only if (Tgt — Knd)(K2 + 75)_1/2 is a constant vector. Moreover, it is shown that

0o = 0 if and only if v is a contour generator (i.e., singular set) with respect to an orthogonal
projection such that its kernel is generated by 7, — k,d. Furthermore, in [7], it is shown that
50(/1% + 7'92)71/2 is constant if and only if v is an isophotic curve (i.e., n o v makes a constant
angle with a constant vector (4t + rgn) (k2 + Tg)’l/z.).

On the other hand, in [7], an invariant 6, = r,, + (KT — kgTy) (K2 +72)~ " is introduced® and
it is shown that &, = 0 if and only if (74t + rgn) (k2 + 72) /2 is a constant.

Actually, (tgt—rnd)(k2+72) /2 (respectively, (rgt+rgn)(k2+72)~1/?) is called a normalized
osculating Darboux vector (respectively, a normalized rectifying Darboux vector) along -~ in
[7, 14]. Therefore, the osculating Darboux vector and the rectifying Darboux vector along a
cuspidal edge are the notions analogous to those of the case for a regular curve on a regular
surface. In this section we compare their properties along regular curves on regular surfaces
with those along cuspidal edges.

On the other hand, with the same setting as in Section 5, S(f) is not only a curve on f
but also a curve on ODy and ND;. In particular, if k, # 0, then S(f) is a regular curve on
the regular part of OD;. Moreover, S(f) is always a regular curve on the regular part of NDy.
Therefore, we consider the invariants of S(f) as a regular curve on ODy and N Dy, respectively.
Let kg, R, and 7, be the geodesic curvature, normal curvature and geodesic torsion of

S(f) = {f(u,0) = ODy(u,0) |u € I}

as a curve on ODy, respectively. Also let Ky, %, and T, denote the geodesic curvature, normal
curvature and geodesic torsion of S(f) = {f(v,0) = NDy(u,0)| u € I} as a curve on NDy,
respectively.

Since v is a unit normal vector of ODy, we see that iy = ks, Ry, = K, and T4 = K. Also,

since b is a unit normal~vector~0f NDy¢, we see that kK, = —k,, B, = ks and T, = k;. Hence we
see that the invariants d, and 0, of f(u,0) = OD#(u,0) as a curve on ODy are
S S
K2+ kK2 T K24 KD

respectively. On the other hand, the invariants 6, and 6, of f(u,0) = ND(u,0) as a curve on
NDy are
S _ 6n N 60
e A

For the invariants sy, K, 74 of a curve v on a regular surface, v is an asymptotic curve of f
if and only if x, = 0, ~ is a geodesic of f if and only if k;, = 0, and ~ is a line of curvature of f
if and only if 7, = 0. It is natural to expect this type of explanation about invariants ks, k., K¢
of cuspidal edge. The singular curvature ks (respectively, the limiting normal curvature ,) is
defined as a limit of the geodesic curvatures with sign (respectively, the normal curvatures) of
curves approaching the singular set of the cuspidal edge, and one can see the same explanation
about ks and s, [27, 20]. Here, we study k; from this point of view. For a regular curve
c: I — U, it is classically known that v = X o c¢ is a line of curvature if and only if the ruled
surface with the normal director curve ~(s) + tn(s) is a developable surface (i.e., Theorem of

1n [14], b, is denoted by 4.
2n [7], or is denoted by 6.
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Bonnet [29, Page 295]). On the other hand, let f : I x R — R3 be a frontal, and suppose
S(f) = I x {0} consists of singular points of the first kind. Assume that x, = 0 on I. Then
D,(u) = tv(u), so that NDy is a ruled surface with base curve f|g(s) and director curve v,
and it is, by definition, developable. Thus it is natural to expect that S(f) of a frontal with
vanishing x; can be considered as a line of curvature.

Let f : (R%,0) — (R3,0) be a map-germ and 0 a cuspidal edge. Suppose that (u,v) is

an adapted coordinate system. Since f,(u,0) = 0, there exists a vector h(u,v) such that
fo (u v) = vh(u, v) Set

= {furfu), F={fush), G=(hh), L=~ (furru), M=~ (), N=—(hw).
Then
(7.1) E=FE, F=vF, G=v*G, L=L, M=vM, N=uN

holds, where F, F,G (respectively, L, M, N) are the coefficients of the first fundamental form
(respectively, the second fundamental form). Consider the equation

(7.2) (EM — FL)du® + (EN — GL) dudv + (FN — GM) dv* = 0

for a tangent vector a(u,v)dy, +b(u,v)d, € T(y,,)R?. It is known that if u/(¢)d, +v'(t)9, satisfies
(7.2), then the curve (u(t),v(t)) is a principal curve of f. Substituting (7.1) to (7.2) and factoring
v out, we obtain the equation

(EM — FL)du® + (EN — vGL) dudv + (vFN — v>GM) dv? = 0.
Thus if (EM — ﬁf)(u,O) = 0, then we can regard the curve (u,0) as a line of curvature. By

(5.1) of [20], k(u) is proportional to (EM — FL)(u,0). Summarizing the above arguments, S(f)
can be regarded as a line of curvature if k; = 0 holds.

APPENDIX A. SUPPORT FUNCTIONS

In this appendix we study invariants of a cuspidal edge using a family of functions on a
curve. It is well-known that this method is useful for studying singular curves on singular
surfaces. Although the results are the same as we have obtained above, we believe that it is
worth mentioning that one can get the same result as Theorems 5.1 and 5.3 by this method.

For a unit speed curve v : I — M C R3 and a vector field k : I — TM along v, we define
a function G : I x R? — R by Gg(u,z) = (z — v(u), k(u)). We call Gy, a support function on
~ with respect to k. We denote that g z,(u) = Gi(u,xo) for any xo € R3.

Let f: I x (—&,e) — R3 be a frontal with a unit normal vector v, where I is an open interval
or a circle, and € > 0. Assume that I x {0} consists of singular points of the first kind, and
we take an adapted coordinate system (u,v) of I x (—¢,¢). Let e, b, v be the Darboux frame of
S(f). We consider

Gu(uv ZE), 9v,x, (u)a Gb(uv 513), 9b,xg (’LL)

We have the following propositions.

Proposition A.1. Under the above setting, we have the following:
(A) Suppose that k,(u)? + ki(u)? # 0. Then
(A1) gu.m,(u) =0 if and only if there exist a(u) and B(u) such that
xo — f(u,0) = ae(u) + Fb(u).
(A2) gu (W) = gu 2o (w) = 0 if and only if there exists I(u) such that
xo — f(u,0) = —1(u)Do(u).
(AI) Suppose that 6,(u) # 0. Then
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(AS) Guv,xq (’LL) = Jv,xg (U)/ = v,z (U)/ =0 ’tf and OTLly ’Lf
(A1) wo — f(u,0) = —%Di(u).

(A1) Gu.ao (W) = Gu 2o (W) = Gu.2o (W) = Gu.ao(w)” =0 if and only if (A1) and o, = 0.
(AB) gu.mo (W) = Gu.zo (W) = Gu.zo (W) = Gu.zo (W) = gu my(w)” = 0 if and only if (A.1)
and o, =0, = 0.
(AII) Suppose that d,(u) =0. Then
(A3") Gv.ao (W) = Gu,zo (W) = Gu.awy (W)’ = 0 if and only if k, =0. We remark that under
this condition, 6, = Kskt — K.,
AII-1) Set 6,1 = kKl + 254K, — k! and suppose that 6,(u) = 0,0 0. Then
s t v
(A1) Goao(U) = Goao(W) = Guay(w) = oz, (W) = f and only if ks = 0 and
To — f(u,O) = _ﬁsﬁte(u)/(sul-
(A57) gu,mo(u) = gu@o(u)/ = gmwo(u)n = gu,mo(u)m = gu,mo(u)/m =0 Zf and only Zf
ks =0, zo — f(u,0) = —k,Kke(u)/d,1 and
—2k2K7 — (2kk, —3K!) (ke Kl — K1) =3K2(2(K}) 2 ke k) ) — ks (KK, =94 K! — ki (—10KL K, +K)) = 0.
(AIL-2) Suppose that d,(u) = 0,d,1(u) = 0. Then
(A1) Guao (W) = Guao(W) = Goae(W)” = Guao(w)” = 0 if and only if ks = kK, = 0
and there exists l(u) such that o — f(u,0) = l(u)e(u). We remark that under this
condition, 0,1 = —Htlﬁl —I— KL
(AII-2-1) Set 6,0 = 3K.K; + Kekl) — K], and suppose that d,(u) = 0,d,1(u) = 0,0,2(u) # 0. Then
(A5) gu,wo(u) = gu,wo(u)/ = gu,wo(u)” = gu,mo(u)m = gu,wo(u)ml = 0 if and only if
ks =Ky, =0 and 20 — f(u,0) = —kirle(u)/dys.
(AII-2-2) Suppose that §,(u) = 0,d,1(u) = 0,0,2(u) = 0. Then
(A5777) gy,wo(u) — gy7w0(u)/ — gy7w0(u)// — gy,wo(u)/ﬂ — gy,wo(u)/”/ — O f
ks = Ky = K, = 0 and there exists l(u) such that zo — f(u,0) = I(u

"
v

and only zf
Je(u). W
remark that under this condition, 8,2 = Kkl — K
(B) Suppose that ks(u)? + r¢(u)? # 0. Then
(B1) gb,ao(u) =0 if and only if there exist a(u) and S(u) such that
xo — f(u,0) = ae(u) + fr(u).
(B2) gb,ao (1) = gb,m, (w) = 0 if and only if there exists l(u) such that

xo — f(u,0) = l(u) Dy (u).
(BI) Suppose that op(u) # 0. Then
(B3) gb,ao (1) = gb,zo (W) = b,z (u)” = 0 if and only if

(A.2) o — f(u,0) = %’“Dr(u).
(B4) gb.ao(u) = gbao (1) = by (w)" = gbao(w)” = 0 if and only if (A.2)
and op(u) = 0.

(B5) s (}t)(; g)b,mo EiU)’ T)gb,moflz)'; = Gbao (W) = Goao (W) = 0 if and

only 1 .2) and o,(u) = o, (u) = 0.
(BII) Supposeythat On(u) =0. Then

(B3) gb,zo (U) = Gb,ae (W) = Gbae(w)” =0 if and only if ks = 0. We remark

that under this condition, 6, = K, K7 + KiK.
(BII-1) Set dp1 = kekl, + 26, K} + K2 and suppose that 6, (u) = 0,8p1(u) # 0. Then

() (1) = 00 = G (0" = (0" =0 ard ol s, =0

and xrog— f(u,0) = —K,kie/0p1.
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(B5’) 9o,z (u) = gb,zg (u)l = 9b,zo (u)// = 9b,z (u)/// = 9b,z (u)//” =0 Zf and
only if ks =0, z¢g — f(u,0) = —k,Kkee/dp1 and

26y 155+ (Kekl, + K0 ) (2645, + 3K ) +3K5 (2(k4) 2+ kel )+ ko (kY + k7K — ke (108, K, — K1) = 0.

(BII-2) Suppose that 6,(u) = 0,0p1(u) =0. Then
(B47) oo (1) = Gbmo(w) = Gbmy(W)" = gbay(w)” = 0 if and only if
ks(u) = Ky (u) = 0. We remark that under this condition,
Op1 = Kkl + K.
(BII-2-1) Set dp2 = 3Kk} + kel + K2, and suppose that §,(u) = 0,1 (u) = 0,
Op2(u) #0. Then
(B5”) gb.ao (1) = gbao(w) = gbao(w)" = Gbao(w)” = gba,(u)™ = 0 if and
only if ks =k, =0 and o — f(u,0) = —k, kre(u)/op2.
(BII-2-2) Suppose that 6,(u) =0, p1(u) = 0,0p2(w) = 0. Then
(B5”) 0.0 (0) = (1) = Gy (0)” = Gy (1) = G ()" = 0 if amd
only if ks =k, = k], =0 and, there exists l(u) such that

zo — f(u,0) = l(u)e(u).
We remark that under this condition, dp2 = Kekl + K2'.
If oo () = gbao (4) = g,z (W) =0, go,z,(u)” #0 or
Ib,z0 (W) = Gb,ao (1) = Gbzo (1) = gba, (w)” =0,
b,z (W) =0 hold, then Gy is a K-versal unfolding of gv.a, at (u,xo).
If 9u2o(u) = G20 (W) = Gu 2o (0)" =0, Guazo(w)” #0 or
Gu w0 (1) = Gu o (u)/ = Gv,z, (u)” = Gv,x, (u)”/ =0,
oz (W) # 0 hold, then G, is a K-versal unfoldings of gu o, at (u,xo).

See [1] or [10, Appendix] for K-versal unfolding (written as K-versal deformations). Using
Proposition A.1, and by some general results for the singularity theory for families of function
germs, one can also show Theorems 5.1 and 5.3. Detailed descriptions on general results in the
singularity theory are found in the book[2].

On the other hand, the calculations by using support functions are rather complicated com-
paring with the direct use of the criteria for frontals in the proof of Theorems 5.1 and 5.3.
However, one of the advantages of the method using the support functions is that we can clarify
the geometric meanings of the singularities from the contact viewpoint. Let T' : I — R3 x S2 be
aregular curve and F : R3x S? — R a submersion. We say that I" and F~1(0) have contact of at
least order k for t = tg if the function g(t) = FoT'(t) satisfies g(tg) = ¢'(tg) = -+ = g (to) = 0.
If v and F~1(0) have contact of at least order k for ¢t = ¢, and satisfy the condition that
gt () # 0, then we say that T' and F~'(0) have contact of order k for t = to. For any
x € R3, we define a function gy : R3 x S? — R by g (u,v) = (z — u,v). Then we have

gz (0) = {(u,v) € R’ x §% [(u,v) = (z,v)}.
If we fix v € S?, then g, (0)|R® x {v} is an affine plane defined by (u,v) = ¢, where ¢ = (z,v).
Since this plane is orthogonal to v, it is parallel to the tangent plane T, S? at v. Here we have
a representation of the tangent bundle of S? as follows:
T5? = {(u,v) € R® x §? |(u,v) = 1}.
We consider the canonical projection ma|g;(0) : gz1(0) — 52, where mp : R? x $? — S2.
Then 72|g;1(0) : g;1(0) — S? is a plane bundle over S?. Moreover, we define a map

gl (0) — TS?
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by ®(u,v) = (u/{x,v),v). Then ® is a bundle isomorphism. Therefore, we write
TS?(x) = g;(0) and call it an affine tangent bundle over S? through x. With the same nota-
tions as above, we distinguish two cases.

(A) Suppose that (k,(u), xe(u)) # (0,0) and §,(u) # 0. We consider

sop(u) = f(u,0) — g:((z))po(u).

y (5.3), we have

() = F2 (se(whe(u) — i (u)b(w).

If we assume that o,(u) = 0, then spp is a constant vector xg. Then

F0.0) - @ = 549D, )

Therefore
9ao (f (1, 0), V(1)) = Gu,20(5)

If there exists o € R? such that g, (f ( ), v(u)

f(u,0),v(u)) = 0.

o —
0, then we have
Fu,0) — 2o = WD

5,(5) D)
and 0,(u) = 0. We consider a regular curve (f|s(s),v) : I — R? x 52

(B) Suppose that (ks(u), £:(u)) # (0,0) and §,,(u) # 0. Then we have similar results to case
(A), so that we have the following proposition.

(@

Proposition A.2. With the same notations as above, we have the following:

(A) Suppose that (k,(u),ki(u) # (0,0) and d,(u) # 0. Then there exists g € R® such that
(flscp),v)T) € TS*(xo) if and only if o, = 0.

(B) Suppose that (ks(u),ke(u) # (0,0) and §,(u) # 0. Then there exists o € R® such that
(flscp),b)(I) € T'S*(xo) if and only if o, = 0.

The results of Proposition A.1 can be interpreted from the contact viewpoint as follows.

Proposition A.3. With the same notations as above, we have the following:

(A) Suppose that (k,(u),ki(u) # (0,0) and 6,(v) # 0. For @y = ODy(ug,ty), we have the
following:

(1) The order of contact of (f|s(s),v) with T'S*(x) at u = ug is two if and only if

Ky (o)
(A.3) to 5.(t0)
and o,(up) # 0. In this case ODy is a cuspidal edge at (ug,to).
(2) The order of contact of (f|s(s),v) with TS*(xq) at u = uq is three if and only if (A.3) and
0o(ug) =0 and o) (up) # 0. In this case ODy is a swallowtail at (ug,to).
(B) Suppose that (ks(u),ke(u) # (0,0) and §,(u) # 0. For xy = NDj(uo,ty), we have the
following:
(1) The order of contact of (f|s(s),b) with TS*(xq) at u = ug is two if and only if

ks(ug)
(A4) fo 671(“0)
and o, (up) # 0. In this case NDy is a cuspidal edge at (uo,to).
(2) The order of contact of (f|s(s),b) with T'S*(xo) at u = ug is three if and only if (A.4) and
on(uo) =0 and o), (ug) # 0. In this case NDy is a swallowtail at (uo,to).
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A REMARK ON THE IRREGULARITY COMPLEX

CLAUDE SABBAH

ABsTrACT. We prove that, for a good meromorphic flat bundle with poles along a divisor
with normal crossings, the restriction of the irregularity complex to each natural stratum of
this divisor only depends on the formal flat bundle along this stratum. This answers a question
raised by J.-B. Teyssier.

1. STATEMENT OF THE RESULTS

Let X be a complex manifold of dimension n and let D = |J;.; D; be a divisor with normal
crossings. We assume that each irreducible component D; of D is smooth. For any subset I C J,
we set Dr = (,c; D; and D} = Dy ~\ Ujéf D;. We denote the codimension of D} by ¢, that we
regard as a locally constant function on D$ (which can have many connected components), and
by ¢y : D§ < D the inclusion. Let .# be a holonomic Zx-module such that

(1) A = .4(+D),
(2) Mxp is locally Ox-free of finite rank.

We then say that .# is a meromorphic flat bundle with poles along D. In this note, we assume
that A has a good formal structure along D (we simply say that . is a good D-meromorphic flat
bundle, or a good meromorphic flat bundle on (X, D)). This notion, together with the Riemann-
Hilbert correspondence, will be recalled in Section 2. Recall also that, given any meromorphic flat
bundle on (X', D’) (where D’ is an arbitrary reduced divisor in X”), there exists, locally on X',
a projective modification X — X’ such that the pullback of D’ by this modification is a divisor
with simple normal crossings D and the pullback meromorphic flat bundle is a D-meromorphic
flat bundle having a good formal structure along D (see [Ked10, Ked11], and [Moc09, Mocl1a]
in the algebraic case; see also [Sab00] for special cases when dim X = 2).

For every I C J, we consider the sheaf ﬁx/w\;’ on D3, also denoted by & Do defined as the
formalization of Ox along Dj. We also regard it as a sheaf on X by extending it by zero. We
then set ‘@ff? = ﬁ[’)\;’ ®eyx Px, and ‘//115\? = ‘@fﬁ’ Raqy M.

For any holonomic Zx-module .47, the irregularity complexes Irrp 4" and Irr}, .4, as defined
by Mebkhout [Meb90], are constructible complexes supported on D, and only depend on 4 (D).
For a good D-meromorphic flat bundle .Z as above, the cohomology of Irrp .# and Irry, A is
locally constant along each stratum D$: this follows from [Tey13, Th.12.2.7] if #I = 1 and from
Corollary 3.4 together with the case #I = 1 otherwise. On the other hand, Mebkhout has shown
that the complexes Irrp . [dim X], Irr, .#[dim X | are a perverse sheaves (see loc. cit.).

Our aim in this note is to compare the irregularity complexes of .# restricted to D$ and those
of the formalized module .# b However, the irregularity complexes of .# pe are not defined by
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the procedure of [Meb90]. To give a meaning to the question, we start by proving in Section 2.f
the following proposition.

Proposition 1.1. For every I C J, there exists a unique good D-meromorphic flat bundle 47
in the neighbourhood of D} which satisfies the following two properties.

(1) @5}) Qgy M[ =~ ///13\?.
(2) At each point of DY, the local formal decomposition of M7 (after a local ramification
around D) into elementary formal D-meromorphic flat bundles already holds without

taking formalization.
The main result of this note can now be stated.

Theorem 1.2. For every I C J, we have
ey M i e (A7), and o7t Tee A g Ten ().

In other words, the complexes LI_1 Irrp A, Ll_l Irr}, A only depend (up to isomorphism) on
the formalization .#5: of .4 along Dj.
I

Acknowledgements. The statement of Theorem 1.2 has been suggested, in a numerical variant,
by Jean-Baptiste Teyssier, against my first expectation. He was motivated by a nice application
to moduli of Stokes torsors obtained in [Teyl6]. I thank him for having led me to a better
understanding of the irregularity complex, and for suggesting a simpler proof of Proposition 1.1.
I thank the referee for interesting comments.

2. GOOD FORMAL STRUCTURE AND THE RIEMANN-HILBERT CORRESPONDENCE

2.a. Notation. We keep the notation of the introduction. If Z is any locally closed analytic
subspace of the complex analytic manifold X, we denote by &5, the formal completion of Ox
with respect to the ideal sheaf .. We regard & > as a sheaf on Z.

Given z, € D, there exists a unique I C J such that z, € D}, and we will be mostly interested
in the case where Z is the point z, € D and the case where Z is equal to D7. We will denote
by 0% (D) the sheaf Ox|z(xD) ®¢,, , Oz, where as usual Ox|z (resp. Ox|z(*D)) denotes the
sheaf-theoretic restriction to Z of the sheaf &x of holomorphic functions on X (resp. the sheaf
Ox (D) of meromorphic functions on X with poles at most on D).

If ¢ (resp. §) is a section of Ox(xD) (resp. of O4(xD)), we denote by &% (resp. &%) the
module with connection (Ox (*D),d+dyp) (resp. (05(xD),d+®)). It only depends on the class,
also denoted by ¢ (resp. §), of ¢ (resp. ¥) modulo Ox (resp. 0).

2.b. Good formal structure. We say that the D-meromorphic flat bundle .#Z has a good
formal structure if, for any x, € D, there exists a local ramification pq, of multi-degree dr
around the branches (D;);ecr passing through x, (hence inducing an isomorphism above D5 in the
neighbourhood of x,) such that the pullback of the formal flat bundle .#Zz; := 03, ®oy, AMx, by
this ramification decomposes as the direct sum of formal elementary D-meromorphic connections
E°® @@, as defined below.

We denote by nb(z,) a small open neighbourhood of z, in X above which the ramification
is defined, and we denote by z/ the pre-image of z,, so the ramification is a finite morphism
pd, : nb(z)) — nb(x,). It induces a one-to-one map above D¢ Nnb(z,). We also set

D' = p;}(D Nnb(z,)),
so that D7 maps isomorphically to Dy Nnb(x,) = D Nnb(z,).
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In the above decomposition, @ varies in a good finite subset &3% C 05 (xD')/ 0 and Q@ is
a free 0'p; (*D')-module with an integrable connection having a regular singularity along D’. In
I

other words, we do not distinguish between @ and 1Z in ﬁ’;;(*D’ ) if their difference has no poles

along D’. Goodness means here that for any pair $ # Ve 5% U {0}, the difference @ — ¥ can
be written as z~™7(x), with m € N#! and ;) € O satisfying 7)(0) # 0 (see [Sab00, §1.2.1].! By
[Ked11, Prop.4.4.1 & Def. 5.1.1] (see also [Sab00, §(i.2.4] and [Mocllb, Prop.2.19]), the ¢’s are
convergent, i.e., the set CTD% is the formalization at x, of a finite subset

(I);EU C F(Ilb(l‘:)), ﬁnb(zg)(*Dl)/ﬁnb(zg)),

and the decomposition extends in a neighbourhood of z/, that is, it holds for the pullback by
pd; of M5 . and induces the original one after taking formalization at z! 2
1%o

2.c. Stratified J-covering. The set I—lmOGD? (®,, U{0}) has a natural structure of a finite non-
ramified covering of DY (in particular, it is a Hausdorfl topological space), that we denote by
¢ — Dj3. Locally, it is described as follows. Given a germ ¢, € ®, U{0}, it extends locally as
a section of Oy ) (¥D")/ Onp(er) and thus defines a germ in ®,, U{0} for any y, € D7 Nnb(z,).
This defines the local branch of X7 passing through ¢, . (This construction is nothing but that
of the sheaf space, or étalé space, of a sheaf.)

By a similar procedure, the set 3(.#) := | |; £; can be endowed with a natural topology as
a sheaf space, but the topology can be non-Hausdorff: this occurs if some difference ¢,/ — 1,/
does not have poles along all the components of D’ passing through /.

In order to state the Riemann-Hilbert correspondence, we will lift these objects to the real
oriented blowing-up w : X = X(D;cy) — X along the components D; of D in X. We set
X = w (D) and 0X? := w (D). The fibre of @ over a point in Dj is diffeomorphic
to (S')¢, making 8)2}’ a (S')*-bundle on D9. We consider the sheaf J on dX as constructed in
[Sab13, §9.3].

By considering the fiber product

5 —— 59

L]

X9 — D3

we obtain a finite covering ij’- of 85(}’ which is naturally contained in the étalé space J° of J.
By a similar procedure, we get a good stratified IJ-covering | |; X9 =: 3(#) — 0X of 0X, in the
sense of [Sab13, Rem. 11.12]. As before, ¥ (.#) can be non-Hausdorff.

2.d. The Riemann-Hilbert correspondence (local theory). Let us fix a good stratified
J-covering Y. Let 2, € D9. The local Riemann-Hilbert correspondence ([Moclla, Mocllb],
[Sabl13]) is an equivalence between the category of germs at z, of good D-meromorphic flat
bundles .#,, with stratified J-covering (.#) contained in ¥, and that of germs at @ !(z,)
of good Stokes-filtered local systems (£7, £7,) on 8)?}’ (see e.g. [Sab13, §9.5]) with J-covering

contained in i? (see [Mocllb, Th.4.11] and [Sab13, Th. 12.16]).

1 Note that, here, the goodness condition is assumed for DU {0} and not only for </I\’, because of [Sabl3,
Cor. 12.7]. This is unfortunately not made precise in [Sab13, Th. 12.16] and should be corrected.

2I thank J.-B. Teyssier for pointing this out to me. In [Moclla, Mocllb] (see also [Sab13, §11.3]), this is
shown to hold only if one assumes the good formal structure at all points of D$ N nb(z,).



104 C. SABBAH
More precisely, we have a commutative diagram of functors

///ro *;) (Jlow’glo )w_l(ro)

e

(2.1) I Igr

%E\;,@O  E— (grﬂf,grﬁfﬁ.)wfl(%)
similar to that of [Mal91, p. 58], where gr means grading with respect to the Stokes filtration and
the horizontal functors are equivalences of categories. Recall that grading a Stokes-filtered local
system is well-defined only when one restricts to £9, which is Hausdorff (see [Sab13, Chap. 1]).
In order to give a meaning to grading in general, one needs to control the extension from D} to
a small neighbourhood nb(D3). Locally, this is provided by the following equivalence.

Proposition 2.2 (see [Mocllb, Lem.3.17]). The restriction functor to 8)?}’ induces an equiva-
lence between the category of germs at w='(x,) of Stokes-filtered local systems (£, .%L,) on 0X
with associated stratified J-covering contained in Y and the category of germs at w ‘(z,) of
Stokes-filtered local systems (<7, 27,) on 8)?}’ with associated J-covering contained in i?

2.e. The Riemann-Hilbert correspondence (global theory). We now consider the previ-
ous correspondence all along Dj. We consider a covering % of D} by open subsets U, which
are the intersection of D} with a local chart on X. Any germ .# of D-meromorphic flat bundle
along DY gives rise to gluing data ((.#,), (0as)), where

Mo = My, Oap: ///a\UumUB — %B\UamUﬁ

is an isomorphism, and the family (o,p) satisfies the cocycle property. Any germ .# of good
D-meromorphic flat bundle along D} admits a covering % such that one can apply the local
Riemann-Hilbert correspondence of Section 2.d to its restriction .#, to every U,. Given such
a covering %, we can consider the category of such good gluing data ((.#,), (0ag)). The local
Riemann-Hilbert correspondence gives rise to a commutative diagram of functors between gluing
data

((<//a), (Uaﬁ)) — ((XIO’ZIO,.)OM (naﬁ))

(2.3) I Igr

((//la,f)‘;)’ (8aﬁ)) L ((grff,grfﬁ.)a, (er Waﬁ))

and the horizontal functors remain equivalences, due to the full faithfulness of the horizontal
functors in (2.1).

Arguing similarly with the equivalence of Proposition 2.2, we obtain the Riemann-Hilbert
correspondence.

Theorem 2.4. The category Modhol((X, DY), D, f]) of germs along D} of good D-meromorphic
flat bundles with stratified J-covering contained in Y is equivalent to that of germs along 8)?}” of
Stokes-filtered local systems ((£,.%,) on OX with associated stratified J-covering contained in )
and, by restriction, to that of Stokes-filtered local systems (.i”f,.ff’.) on 8)?‘; with associated

J-covering contained in 5. g
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2.f. Proof of Proposition 1.1. By Theorem 2.4, there exists a germ .#; along D} of good
D-meromorphic flat bundle whose associated Stokes-filtered local system is (gr 27, gr Z7,),
and it is unique up to isomorphism with respect to this property. A covering % adapted
to . is also adapted to .7, and the diagram (2.3) shows that the gluing data of .Z3 o

and of /// are isomorphic, since they correspond to the same Stokes-filtered gluing data

o

((gr 7 ,grf Jas (g1 Waﬁ))- The uniqueness of .#7 is proved similarly. O
Remark 2.5. The construction of .Z7 is functorial with respect to .#|pe.

2.g. An equivalence of categories. Let A be a category and let G be a group. The category
G-A is the category whose objects are G-objects of A, that is, pairs (M, p) where M is an object
of A and p is a morphism G — Aut(M), and for which

Home a((M, par), (N, pn)) C Homa (M, N)

is the subset consisting of morphisms ¢ : M — N such that, for every g € G, popn(g) = pn(9).

Let ¥ — 90X be a good stratified J-covering and let Mody,1 (X, D, E) denote the full subcate-
gory of that of holonomic Zx-modules whose objects consist of good meromorphic flat bundles
on (X, D) with associated stratified J-covering contained in 3.

Let us fix a nonempty subset I C J, let D} the corresponding stratum of D, let z, € D}
and let D9(z,) the connected component of D¢ containing z,. Let us fix a local holomorphic
decomposition

(nb(z0, X),nb(z,, D)) = (2, Dg) x nb(z,, D),
where € is an open neighbourhood of 0 in C* and Dy, is the union of the coordinate hyperplanes
in C*. The category Modhol((X7 D5(z,)), D, END) has been defined in Section 2, and we have the

similar category Modyoi((€2,0), Do, %5, ), where 3, is the restriction of 3 above
o0 = w*l(DQ).

Theorem 2.6. Set G =m; (D;(;vo),xa), There is a natural equivalence of categories:

Modnoi (X, D§(2,)), D, £) =~ G-Modyei ((2,0), D, £y, ).

-1

Proof. We set 8)?‘;(3:0) =w
above this set.

(D%(z,)) and we denote similarly by i?(xo) the restriction of %

(1) By the Riemann-Hilbert correspondence (Theorem 2.4), we can replace the category on
the left-hand side with that of Stokes-filtered local systems on 8)?? (z,) with associated
J-covering contained in i?(xo)

(2) Let 7 : (EF(%0),Yo) — (D%(z0), ) be a universal covering of DY (z,) with base-point
Yo above z, and let G = Gal(w) be the corresponding Galois group. We consider the
fibre-product diagram

Y P (o) —— 0X 3 ()

| |

(E7(%0),Y0) — (D7 (o), 7o)

and we denote by 7 i?(mo) the corresponding pullback 7~ !J-covering of 8}7}0 (z,). Then
the category considered in (1) is equivalent to the category of G-Stokes-filtered local
systems (£7, £7,) on dY? (x,) with associated 7w~ 1J-covering contained in 7~ E%(z,).
This is a standard argument.
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(3) (See [Mocllb, Th.4.13] and Remark A.11) The sheaf-theoretic restriction functor is an
equivalence from the latter category to the category of G-Stokes-filtered local systems
(&, 2.) on (0Q)y ~ (S1)! with associated Jz,-covering contained in ixo (we identify
here (719),, with J,, and 7~ '%9(z,),, with 3, ). This proof will be reviewed in the

appendix.
(4) By applying now the G-Riemann-Hilbert correspondence of Theorem 2.4 in the reverse
direction to ((£2,0), Dq, X5, ), one ends the proof of the theorem. O

3. THE IRREGULARITY COMPLEX

Our aim in this section is to show that, under the goodness assumption as above, the irregu-
larity complex is determined by its restriction to the smooth part of D. More precisely, for every
I C J, and for every connected component of D7, we show that there exists a component Dy,
of D (k € I) such that ¢; ' Trrp .# (on this connected component) is determined by ¢}, ' Irrp ..

Let (%,.%,) be the Stokes-filtered local system corresponding to a (germ of) good
D-meromorphic flat bundle .#. We have . =7 ! Rj, DR M\ x p, where

7:0X <X and J: XD X
are the natural closed and open inclusions. Let us denote by szf)l(n"dD (resp. d)%dD ) the

sheaf on X of holomorphic functions on X ~ D having moderate growth (resp. rapid decay)
along dX. One can then define the moderate (resp. rapidly decaying) de Rham complex
DR™4P (resp. DR .z ) on dX. With the goodness assumption, it is known that both
have cohomology in degree zero at most. More precisely, the Riemann-Hilbert correspondence
recalled in Section 2.e gives

Lo = A DR g and #7DR™P 4 =0 for j #0.
We set £>0 .= £/ Zcp, and similarly DR™™°4? 7 is defined as the cone of
DR™P # — 7' Rj. DR M| x p,
so that .Z>0 = #9DR>™°P # (and % DR™™P . = 0 for k # 0).
Proposition 3.1. We have Irrp #[1] = Rw,.£>°.
Proof. We have
Rw.DR™P ./ =DR.#(xD) and Rw.Rj.DR.# x p = Rj.DR.4|x p,
where j : X N\ D < X is the inclusion. We then apply [Meb04, Def. 3.4-1]. O

Remark 3.2 (The irregularity complex Irr}, .#). Recall that Mebkhout also defined the irregular-
ity complex Irry, . in [Meb90] (see also [Meb04, Def. 3.4-2]), which is non-canonically isomorphic
to the complex R #omg, (A, 2p)[-1], where 2p = 05/0x|p (see [Meb04, Cor. 3.4-4]). Let

us set Lo := #° DR P #. We then have
(3.2%) Rw. %o ~ It A7,

where .#" is the holonomic Zx-module dual to .#. Indeed, According to [Kas03, (3.13)] we
have

DR(Z2p & 4)[~1] ~ R Homa,,, (A", 2p)[~1] ~ Terly 4",
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On the other hand, as 2p is flat over Ox|p (because ﬁm is faithfully flat over Ox|p) and as

Rw*ng)%dD ~ 2p[—1], we have

DR(Zp @ 4)[~1] =~ DR(Zp & .4)[~1] ~ R, DR™P 4.

We also notice that Irr}, 4~ = Irr}, A4V (xD) and 4 (D) is also a good D-meromorphic flat
bundle, which is identified with the dual D-meromorphic flat bundle #om g (.p) (A, Ox (xD)).

Let us fix I C J. Near each point z, of D}, there exists a local ramification
p:nb(x,)q, — nb(z,)

along D such that the pullback of .#Z has a good formal decomposition at each point in nb(z,)4, -
By the goodness assumption, there exists an index k(x,) € I such that each nonzero ¢ € ®,,
has a pole along Dy, ): indeed, the set ®,, U {0} is good, so in particular the pole divisors of
each of its nonzero elements are totally ordered; the smallest such divisor is nonzero, and we can
choose k(z,) to be the index of a component of this divisor. One can choose this index constant
along any connected component of DS. For simplicity, we denote by k(I) the locally constant
function x, — k(x,) on DY.
For every subset I C J, we have a natural inclusion lifting ¢;:

70X = w Y(DS) — w }(D) = X.

Proposition 3.3. Let us fir I C J and let us set k = k(I) for simplicity. Then the natural
morphism T;1$>0 — Tl_lRfk*Zzlfw is an isomorphism. The same property holds for £q.

By applying Rw, and using Proposition 3.1, we obtain:

Corollary 3.4. With the notation as in Proposition 3.3, the natural morphism L;l Irrp (M) —
17 ' Rup 1y, ' Trrp () is an isomorphism. The same property holds for Trr} (). O

Proof of Proposition 3.3. Since the morphism is globally defined, the proof that it is an isomor-
phism is a local question. We thus fix z, € D$ and work in some neighbourhood nb(z,) of z,
that we may shrink if needed.

Let us first assume that .# = &% (see Section 2.a) for some ¢ € Ox 4 (xD).

~If p=0in Ox ., (xD)/Ox z,, then > =0 and there is nothing to prove.

~Ifp#0in Ox 4, (*D)/0Ox 4, we set p(x) = u(x)/z"™, where u € Ox ,, satisfies u(x,) # 0,
and m; € N for ¢ € I. In particular, myy) # 0. We choose polar coordinates on w1 (nb(z,))
of the form (p1,...,pe,01,...,00 (2;);¢1) With p; € [0,€). We can assume that, in these coor-
dinates, m; Z0 for i =1,...,p, m;y =0 for i =p+1,...,¢, and that k(I) = 1. Then, in these
coordinates, w~!(D Nnb(z,)) = Hle pi = 0 and £~ is the constant sheaf of rank one on the
closed subset of ™1 (D Nnb(z,)) defined by

(3.5) {Zf_l mib; € argu(x) + [~m/2,7/2],
[[}-1pi =0,
and it is zero outside this closed subset. Let us describe this closed subset. We set
ol = (15)jer € AT

(with 0 < e < 1) and (p,e'?) € [0,¢)" x (Sl_)e. We can write u(z) = u(p,0,2") = u(x,)ed®
with g holomorphic and ¢(0) = 0 and we set e'% := u(x,)/|u(x,)|- A simple computation shows
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that, if ¢ > 0 is small enough, the map

F !
[0,)¢ x (81)% x Ar—* M St x[0,e)f x AP¢

(p’ 0, x/) — ( D . eimibi . e—i(90+img(p,9,x’)), P, x/)

has everywhere maximal rank (in fact, we have 9F/06,(0,6,0) # 0 on (S')?). By Ehresmann’s
theorem, the map (F, p, ') is a C*° fibration, which can be trivialized on contractible sets like
[—7/2,7/2] x [0,€)" x AP,

For our topological computation, we can thus as well consider the situation where u(z) is constant
and replace u(z) with u(z,) in (3.5).
Each connected component of (3.5) is then homeomorphic to a product

d[0,€)P x [a,b] x (SHPL x [0,£) 7P x (S1)F7P x AP*

for suitable a,b. The trace of this set on w‘l(D,‘;(I)) is the set defined by H§:2 p; # 0. This is
the subset

(3.6) {p1 =0} x (0,6)P"1 x [a,b] x (SH)P™! x [0,6)7P x (S1)F7P x APE,
Its closure is the subset
(3.7) {p1 =0} x[0,6)P71 x [a,b] x (SH)P71 x [0,6)7P x (S1)*7P x AP,

The ordinary pushforward of the constant sheaf on (3.6) by the open inclusion (3.6) < (3.7) is
the constant sheaf on (3.7) and the higher pushforwards vanish. Since w=1(Dy) is the subset
of (3.7) defined by p; = 0 for i = 2,...,¢, the restriction of the latter sheaf to @=1(Dy) is the
constant sheaf on @ ~!(D;), and the morphism 7; ' #>° — 7' Riy. 7;, ' -#>° is nothing but the
identity C5-1(p,) = C5-1(p,), proving the proposition in this case.

Let us now consider the general case. As already said, the question is local, and we argue
now locally on 0X. One can then reduce the question to the non-ramified case and apply the
higher dimensional Hukuhara-Turrittin theorem (see e.g. [Sab13, Th. 12.5]). Let /% denote the

sheaf of C™ functions on X which are holomorphic on X* in some neighbourhood of z,. We can
thus assume that &5 ® @~ '.# decomposes as the direct sum of terms @/ @ @ (¥ ® Z,).
By induction on the rank, we can also assume that %, has rank one, and locally on wY(D3)
the corresponding local system is trivial, so we can finally assume that .# = &%, a case which
was treated above.

The case of £ is treated similarly. If we regard all sheaves considered above as external
products of constant sheaves of rank one with respect to the product decomposition in (3.6)
and (3.7), the case of £ is obtained by replacing [—7 /2,7 /2] with the complementary open
interval in (3.5), and the corresponding sheaf Cy, j with the sheaf C(,/ 3/ for suitable a’,b" (i.e.,
the extension by zero of the constant sheaf on (a’,b)). Then the same argument as above applies
to this case. O

4. PROOF OF THEOREM 1.2

The case £ = 1. We first assume that I = {i}. The transversal slice 2 has dimension one and
Dq = {0}. Let us first prove a statement in dimension one. Let (.Z,.%,) be a Stokes-filtered
local system on S! and let (gr.Z, (gr-%).) be the associated graded Stokes-filtered local system.
We denote by .4 resp. 4" the corresponding meromorphic flat bundles on (£, 0).

It is well-known that % Irrp,(.4") and % Irrp,(.#") have the same rank for any k,
and vanish except for k = 1, and similarly for Irrp, 4" and Irrp, AY. They correspond to
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HO(SY, £>%) and HY(S', gr.#>°) on the one hand, H'(S!, %.o) and H'(S!, gr %.0) on the
other hand (this is of course a particular case of Proposition 3.1 and Remark 3.2).

Lemma 4.1. There exists an isomorphism between the wvector spaces H(SY, Z.o) and
HY(SY, gr £~0) such that, for any automorphism X of (£,.%.), the induced automorphism
of HY(S, Z.o) corresponds, via this isomorphism, to the automorphism induced by gr A on
HY(SY, gr %-0). The same assertion holds for H°(S', £>°) and HO(S,gr £>°) respectively.

Proof. We start with .Z~¢. Let us cover S! with open intervals (U, )a=1,.. n such that

. every open interval which contains at most one Stokes direction for every pair of distinct
exponential factors (see e.g. Example 1.4 in [Sab13]),

. the intersection of two intervals of the covering is an interval not containing any Stokes
direction,

. there are no triple intersections of intervals of the covering.

Then this covering is a Leray covering for £~ (see e.g. the proof of Lemma3.12 in loc. cit.),
and moreover the only nonzero term of the associated Cech complex is the term in degree one.
It follows that
HY (S, Z20)= @ H(UsNUat1,%0),
a=1,....N
if we set Un41 = Us.

Recall that, on each interval U,, the Stokes-filtered local system (£, .%,) is graded, i.e., the
Stokes filtration splits (see e.g. Lemma3.12 in loc. cit.). Let us choose a splitting on Uy N Uq41-
Then Theorem 3.5 (and its proof) in loc. cit. shows that any automorphism A is graded with
respect to the chosen splitting on U, N Uyy1. It follows that the action of the automorphism
on H(U, N Ugqy1,Z<0) is the same as the action of the associated graded automorphism on
H(Uy NUy41, (g1 %) <0), so we have found a model where both actions are equal.

For .#>° we argue by duality. Recall that the dual local system .#" is naturally endowed with
a Stokes-filtration .Z,)” (so that (£, .%,") RH-corresponds to the dual meromorphic flat bundle),
that £>% ~ Homc (L, C) (this is similar to [Sabl3, Lem.2.16]), and this isomorphism is
compatible with grading. In particular, it induces isomorphisms

HO(SY, £7%) ~ HY(S', %)Y and HO(S',gr 7% ~ H' (S, er £%)",

and by the first point applied to (£V,.%)) we obtain a distinguished isomorphism between
HO(S1, #>9%) and HO(S!, gr £>°). Let A be an automorphism of (Z,.%,), and let A" be its
dual. Then the first point applied to AV gives the desired property for A. ([l

End of the proof of Theorem 1.2 in the case { =1. We set I = {i}, G = m (D}, z,). By Lemma
4.1, given a Stokes-filtered local system (£, .%,) endowed with a G-action (i.e., a representation
G — Aut(Z,.%,)), there exists an isomorphism between H?(S!, #>%) and H°(S!, gr.£>9),
resp. H(SY, Z.0) and H' (S, gr £-0), so that the induced G-action on H°(S!, #>Y) is trans-
formed into the induced graded G-action on H(S', gr.#>?), and the induced G-action on
H1(S', Z.0) into the induced graded G-action on H'(S1, gr £-¢).

Recall now that Irrp .# is a complex whose cohomology is locally constant on each Dj.
On Dy it reduces to the local system ¢ 1 IHD? A . If we consider the G-Stokes-filtered local
system (£, .%,) on S* corresponding to A\ pe by (the proof of) Theorem 2.6, then 1 Irrpe A
is the local system corresponding to G-vector space H°(S!, #>9) that this G-Stokes-filtered local
system defines. We argue similarly with .#° and (gr %, gr .%,), so that the desired isomorphism
follows from Lemma 4.1, as explained above. The argument for IrrBs A is identical. O
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The case £ > 2. When £ = #1 > 2, the structure of a Stokes-filtered local system on (Sl)é is more
difficult to analyze, although it shares many properties with the case £ = 1 (see e.g. [Sab13, §9.¢]).
This is why we use another argument. Namely, Proposition 3.1 enables us to deduce the case
where ¢ > 2 from the case where ¢/ = 1.

We set k = k(I) as defined after Proposition 3.1. Let nb(D?) be an open neighbourhood
of D7 in X on which .#7 is defined. We claim that

lel///; = '///I:\nb(D‘})~
Indeed, this follows from the uniqueness of .Z;, and from the fact that .#7 also decomposes

after ramification along D at each point of nb(D¢) N Dy if this neighbourhood is chosen small
enough. We then have

Ier(L,Zl///IO) ~ IHD(///IS)Inb(D%
o~ Ier(Lgl///)Mb(D}:) (case £ =1),
and therefore, by applying L;lRLk*,
v P Rupty, ' Tevp (A7) =~ 1 Rugry, ' Teep ().

The assertion of Theorem 1.2 for Irrp now follows from Corollary 3.4, applied both to .#
and 7. The case of Irr}, is completely similar. (]

APPENDIX. SOME PROPERTIES OF STOKES-FILTERED LOCAL SYSTEMS

In this appendix we keep the setting of Section3. We review in Proposition A.10 the proof
of [Mocl1b, Th.4.13]: by choosing the projection to D¢ of a tubular neighbourhood of D¢ in X
and its fibre product over D} with a universal covering of D, we are in the situation of loc. cit.
except that we do not assume that the C'°° fibration is topologically trivial. Remark A.11 will
then provide the main result used in Step 3 of the proof of Theorem 2.6. We will also review
some other essential results which are proved in loc. cit.

A.a. Grading of a Stokes-filtered local system. The result in this subsection is local with
respect to D, hence we allow a ramification around the components of D. We fix a nonempty
subset I C J. We fix a simply connected open set Uy C Dj.

We assume that (£, .%,) is non-ramified in the neighbourhood of U7. The covering i? can
then be trivialized on U? x (S1)f = w~1(U?), and we set

0= x Up x (81,
where ® is a finite subset of F(U}’7 (ﬁx(*D)/ﬁx)‘U?). Moreover, by the goodness assumption

on i, ® is a good set, namely, for every pair ¢ # 1, the divisor of ¢ — 1) is negative. The set
St(p, 1) C UP x (SY)¢ of Stokes directions is smooth over U§ with fibers equal to a union of
translated codimension-one subtori

(A.1) St(p, 1) = {(91, c100) € (S| X, my6; — arge(x) = /2 mod 271'},

where ¢(z) is an invertible holomorphic function on U? and (my, ..., m) € N*~\ {0}. We denote
by St(®) the union of the subsets St(y, 1) for all pairs ¢ # ¢ € .
Let us fix
0o = (0o1,---,000) € (SH)" and ay,...,ap € N*

such that ged(ay,...,ar) = 1. The map 0 — (10 + 60,1, ..., + 0, ) embeds S* in (S1H. In

the following, S;,go denotes this circle.
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Proposition A.2. Let A° be an open interval of length < 2w in 53790 and let A be its closure.
Assume that A satisfies the following property.

« For every x € U} and every pair ¢ #9 € ®,

#(ANSt(p,¥)) = #(A° N St(p,¥)) < 1.

If moreover Uy is contractible, then (£,.%,) is graded when restricted to a sufficiently
small neighbourhood Ug x nb(A) in U x (S1)°.

Proof. We first prove that, for every ¢ € ®, we have H*(Uy x A, Z.,) = 0 for k > 1. Note
that, since w : U7 x A — U} is proper, Rkw*$<¢w?x 4 1s compatible with base change, hence
its germ at x is equal to Hk(A,,ZQOHx}XA). By our assumption on A, this is also equal to
Hk(A°,$<W|{w}XAo), and by the proof of [Sabl3, Lem.9.26], this is zero for k¥ > 1. As a
consequence, Rkw*$<¢|U?XA =0 for k # 0.

We argue as in loc. cit. to obtain that (%Z,.%,) is graded in the neighbourhood of {z} x A
for every x € Uy. In particular, it is easy to check that w*i@ﬂy}ax 4 is locally constant, hence
constant, on Uy. Since Uy is assumed contractible, we obtain the vanishing of H*(Uy x A, Z.,,)
(k > 1). Using once more the argument of loc. cit., we obtain the grading property all over
Uy x A, hence in some open neighbourhood of it. O

By mimicking the proof of [Sab13, Th. 3.5 & Prop. 9.21], we also obtain the following proposi-
tion.

Proposition A.3. Let )\ : (£, Z,) — (£, L)) between Stokes-filtered local systems as con-
sidered in the beginning of this subsection with the same set ®. For A as in Proposition A.2,
there exist gradings of both Stokes-filtered local systems on U x nb(A) with respect to which A
s graded. [l

A.b. Closedness. Let U} be an open subset of D} with closure U? in D$ and boundary 9U7,
and let j : Up — Uy and J: w ' (U7) — @w }(U7) be the open inclusions. Let (£, .Z,) be a
Stokes-filtered local system on w1 (U7) with associated covering contained in Y7 jve. Assume
that

(%) any point z € OU; has a fundamental system of open neighbourhoods V' in D¢ such that
V NU;p and V N U} are contractible.

Proposition A.4. Under this assumption, the functor 7. induces an equivalence between the
category of Stokes-filtered local systems (£, £,) on w1 (Us) with associated I-covering contained
n iﬁ‘U?, and the category of Stokes-filtered local systems on (U7 ) with associated I-covering
contained in i?w*;’f a quasi-inverse functor being the restriction 7 1.
Proof. Since the functor is globally defined, the question is local near a point x, € OU}. More-
over, as in Section A.a, we can assume that f]? is a trivial covering on some neighbourhood
of z,. It is enough to prove the statement in the non-ramified case since, by uniqueness the
construction, it will descend by means of the Galois action of the ramification. We will work
with the corresponding set ® of exponential factors.

Firstly, we note that Assumption (*) also holds for w=!(U?), since any point in w~!(z) has
a fundamental systems of neighbourhoods of the form of the product of neighbourhoods V' with
a product of ¢ open intervals. It follows that the local system £ extends in a unique way as a
local system on wil(Uif), and the latter is 7,.%. Similarly, a morphism between local systems
extends in a unique way by the functor j.. The same property holds for the local systems gr,, %
for ¢ € ®.
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Let us first show that the functor 7. takes values in the category of Stokes-filtered local
systems. For a pair ¢ # ¥ € ®, we denote by B,<, the functor composed of the restriction
to the open subset where p < ¥ (i.e., Re(p — ¥) < 0) and the extension by zero to the whole
space. The point is to check that every 7..Z<, decomposes as @w@, By<plx gy £ in the
neighbourhood of every point (z,,6,) of @™ 1(x,). If we fix a small interval A° containing this
point as in Proposition A.2, we find that, according to this proposition and Assumption (x),

(A.5) Lo (VAU?) xnb(A0) = w@é By<o(8ry L) |(vaue)xab(a)-
S

We are thus reduced to checking that, for a local system L, the natural morphism

By<ol — TuBy<el 'L

is an isomorphism: we will apply this to the local system L = j.(gr,, X)KVQU?) xnb(Ae) for any 1.
The question is then local, and we can work in the neighbourhood of (x,,0,), with the constant
sheaf of rank one as the given local system.

If (z0,0,) & St(w, 1), , the result is easy. We will thus focus on the case where

(xm 00) € St(@v 77[])960

This can be written as ) m;0, ; — argc(z,) = £m/2. We will consider the case +7/2, the other
one being similar. We need to check that the germ at (z,,0,) of 7.7 ' By<,C is zero for any
such (z,,0,). For that purpose, it is enough to prove that, for small enough closed neighbour-
hoods V of z, and nb(0,) of ,, the cohomology of the sheaf on

(A.6) (V xnb(8,)) N {>m;0; —argc(x) € [7/2 —,7/2]}
which is zero on

(V xnb(8,)) N {>m;0; — argc(x) = 7/2}
and constant on the complementary set, is zero for 0 < ¢ < 1 and V small enough. We can
regard ) m;0; — argc(x,) — m/2 as a coordinate ¢’ near 6, vanishing at 6,, and we can choose
the neighbourhood nb(f,) of the form [—2¢,2¢] x [—2¢, 2¢]*~! accordingly. For V small enough,

the set (A.6) is a topological fibration above V', and the fiber over € V is the product of
[—2¢,2¢]~! with the interval

0’ € argc(x) — arg c(x,) + [—¢, 0].

Since the projection to V is proper, the base change formula shows that the pushforward to V' of
this sheaf is identically zero, as the cohomology with compact support of a semi-closed interval
is zero. Hence its global cohomology on (A.6) is also zero.

The next step is to show that the extension by 7, of a morphism A between Stokes-filtered
local systems is compatible with the Stokes filtration. The question is local, and we can assume
that the morphism A is graded on (V NU7) x nb(A°), according to Proposition A.3. Then 7.\ is
also graded on this open set with respect to the Stokes filtration constructed above, and is thus
also Stokes-filtered.

Once the functor 7, is defined, that it is essentially surjective is proven similarly, since in the
neighbourhood of any point (z,,0,) the sheaves L, are given by a formula like (A.5).

The full faithfulness follows from the full faithfulness for the underlying local systems. O

A.c. Openness. We keep the notation as above.
Proposition A.7. Let x, € D} and let (L,.Z,),, be a Stokes-filtered local system on
@ (2,) = (1)
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with associated J-covering contained in i?mn Then there exists an open neighbourhood nb(zx,)
in DY such that (£, 2,)s, extends in a unique way as a Stokes-filtered local system on
@ (nb(z,)) ~ nb(z,) x (S1)* with associated I-covering contained in 33|z, ). Any morphism
(L, L), = (L', L))z, between such objects also extends locally in a unique way.

Proof. The problem is local on D} and, by the uniqueness of the extension of morphisms, one
can reduce the proof to the non-ramified case. We can therefore assume that 39 = ® x nb(z,).
Moreover, the unique extension of local systems and morphisms between them is clear, so the
question reduces to checking that Stokes filtrations extend as well, and that the extended mor-
phism between the extended local systems is compatible with the extended Stokes filtrations.
By Proposition A.2, we can cover (S')¢ = w~!(z,) by simply connected open sets U, such
that, for every «, there exists a neighbourhood V,, of the compact subset U, and an isomorphism

(A.8) Ll = D gy, Loy
ped

and the Stokes filtration on V,, is given by
(A.9) Lo <olVa = D By<p 8y LoV
YpeP

The transition maps Aqg for (A.8) on V.5 := V, N V3 satisfy the cocycle condition and are
compatible with the Stokes filtration, that is, )\f}f D 8Ly Ly Vay — 8Ly L, |Vap 1S z€T0 unless
Y < pon Vyg.

Let us shrink nb(z,) to a contractible open neighbourhood such that, for all ¢ # ¢ € &, 1) < ¢
on V,p implies ¢ < ¢ on nb(z,) x Uyp. The local system gr, ZLe, v, extends in a unique way
to a local system gr,, Lnb(z,)xU, o0 Nb(x,) X Uy, and so do the morphisms )\?f“p, which satisfy

thus the cocycle condition. In particular, if such an extension )\zg is non-zero at one point of
nb(z,) X Uy, it is nonzero everywhere on this open set and we have ¢ < ¢ on this open set. Let
us set L (z,)xU, = ®w€<1> gr, Lnb(z,)xU., » that we equip with the Stokes filtration given by a
formula similar to (A.9). It follows that \yg is compatible with the Stokes filtrations. We regard
now A,g as gluing data. The cocycle condition shows that they define a local system £ on
@~ (nb(z,)) whose restriction to @1 (z,) is isomorphic to .Z. It is thus uniquely isomorphic to
the unique extension of .%, . Moreover, due to the compatibility with the Stokes filtrations, the
latter also glue correspondingly as a Stokes filtration %, of this local system, and its restriction
to w1(z,) is equal to %,,.

Let py, : (L, L)s, = (L', L)), be a morphism. We can choose the covering (U,) and the
decomposition (A.8) so that each i, o is graded (see [Sabl3, Prop. 9.21]). It extends uniquely as
a morphism u : Lnpz,)xv. — Dﬁ;b(mo)xUQ, and it is graded with respect to the corresponding
decompositions (A.8). It follows that p is strictly compatible with the Stokes filtrations %,
and ./, where these Stokes-filtered local systems (.Z,.%Z,) and (.£’,.Z!) are obtained as in the
first part.

We can now prove the uniqueness (i.e., up to unique isomorphism) of (.%,.%,) constructed in
the first part: the identity automorphism (£, .%,).. extends in a unique way as an isomorphism
between two such extensions. O

A.d. An equivalence of categories. We will use the notation as in Section 2.g. Let
T2 (E7(20),¥0) — (D7(20), o)

be a universal covering of D$(x,) with base point y, above x,, and let 85710 (z,) be the pullback
of 0X?¢(x,) by 7.
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Proposition A.10. The restriction functor

« from the category of Stokes-filtered local systems on G?Io(xo) with associated w1J-
covering contained in w59 (x,)
. to the category of Stokes-filtered local systems on (8?2)0 ~ (81 with associated I, -
covering contained in ixo
is an equivalence.

Proof. Let I : [0,1]*> — E9(z,) be a continuous map sending (0, 0) to y,. We pullback by I the
data from the first item of the proposition. Let us consider the subset of [0, 1] consisting of &’s
such that the equivalence of the proposition holds with respect to the restriction corresponding
to the inclusion (0,0) € [0,¢]?. Propositions A.4 and A.7 imply that this set is open and closed,
and contains 0, hence it is equal to [0, 1]. This shows that one can uniquely extend an object in
the second category to an object in the first category along paths starting from y, and that this
extension does not depend on the choice of the path. A similar assertion holds for morphisms. [J

Remark A.11. The uniqueness of the extension of morphisms enables one to obtain the equiva-
lence between the corresponding G-equivariant categories, and this gives the implication (2) =
(3) in the proof of Theorem 2.6.
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PAIRS OF MORSE FUNCTIONS

OLIVIER THOM

ABsTrRACT. The goal of this paper is to classify pairs of Morse functions in general position
modulo the action of different groups. In particular, we obtain the classification of generic
pairs of Morse functions, with or without target diffeomorphisms, and that of quotients of
Morse functions.

We will also present a lemma which gives a sufficient condition for two pairs of functions
to be conjugated.

1. INTRODUCTION

Throughout this paper, we will denote by O o) the set of germs at 0 of holomorphic functions
on C" and by m(cn ) its maximal ideal. We will also use the notation X - f = dx f to mean the
derivative of f in the direction given by the holomorphic vector field X.

Following the works of Mather ([Mat]), we will consider the problem of knowing when two
objects are diffeomorphic as a problem about group actions. More precisely, for a group .
acting on pairs of functions f,g € Ocn ), we will say that two pairs p; and ps are /-
conjugated or .#-equivalent if there exists ¢ € . such that ¢ - p1 = py. In this paper we
will consider the groups %, «7,.%, 2 which follows: # = Diff (C",0) acting by composition at
the source, ./ = Diff(C",0) x Diff(C?,0) acting by composition at the source and at the tar-
get, F = Diff(C",0) x (Diff(C,0))? acting by (¢, %1,%2) - (f,9) = (1 0 f,p209g) o1, and
2 = Diff(C™,0) x Olcn o) acting by (p,U) -p =Upo gt Classification of pairs of functions
up to F-equivalence corresponds to the classification of pairs of foliations up to diffeomorphism
at the source; classification of pairs of functions (f,g) up to 2-equivalence corresponds to the
classification of meromorphic functions f/g up to diffeomorphism at the source.

For a more complete bibliography about .#-equivalence of applications, the reader is referred
to [AVG1], [AVG2| and the references therein.

Let f and g be two Morse functions on (C",0) whith quadratic parts ¢y and ¢,. Denote by
F and G the foliations given by the level sets of f and g. Denote also by I(f,g) the tangency
ideal between f and g, that is the ideal of O(cn ¢y spanned by (9x, fOr,;9 — Oz; f0r,9)s,; for a set
of coordinates (z;) and by Tang(f,g) = Tang(F,G) the set of zeroes of I(f,g), which we will
name the tangency locus between f and g.

We will begin by giving the classification up to Z-equivalence of pairs of Morse functions, but
first, let us recall the well-known classification of pairs of quadratic forms on C™ (cf [HP]). Seen
as matrices, two nondegenerate forms ¢; and g, can be simultaneously diagonalized by blocks
with blocks

(0) 1 (0) A
1

and
1 (0) A 1 (0)

As an example, take the quadratic forms given by the matrices

(o) = (1)
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f =2xy and g = 2xy + y>. We see that this pair cannot be simultaneously diagonalized.
Nevertheless, counting the parameters in the diagonalization by blocks we see that a generic
(outside a set of codimension 1) pair of quadratic forms (g¢, g4) can be simultaneously diagonal-
ized.
Morse theorem ([Mor]) allows us to assume without loss of generality that f = >~ 2%. Moreover
we suppose that gy and g4 are in generic position:

ar(x) =)ot gp(w) =) Niaf

with A; # A; # 0 if ¢ # j up to a linear change of coordinate.

Next, look at the tangency locus between the foliations F and G: if f and g were diagonal
quadratic forms, this would be the reunion of the coordinate axes. In general, if ¢y and g, are
diagonal, it is diffeomorphic and tangent to the reunion of the axes so we can suppose that it is
exactly the reunion of the axes; this will be detailed further.

For example, in the case n = 2 the functions f = 2% + 32 and g = 22 + 2y? give the following
real phase portrait:

1>

T

If we name the axes T} as in the picture, we can look at the restriction of each function to
each tangency curve, which gives couples (f|r;,g|r;) for each j. If ® is a diffeomorphism of
(C™,0) stabilizing the T;’s, we have ((f o ®)|r;,(g o ®)|r;) = (fl1;,9|r;) © (®|1;) so that each
couple (flr;, glr;) up to diffeomorphism on the right gives an invariant for the %-equivalence of
pairs of functions.

Hence, if Cy and C; are smooth curves, we will say that two couples (ug,vg) and (uq,v1)
with u;,v; € O(Cj,0) are conjugated under the action of Diff (Cy, C7) on the right if there exists
’(/) S DiH(CO, Cl) such that (Uo, 1]0) = (ul,vl) 0.

The use of tangency curves and functions defined on them as invariants for classification
problems has already been considered, for example in [ORV]. In our case, these invariants are
enough to classify the pairs of Morse functions up to Z-equivalence, as stated in the theorem :

Theorem. Let (fo,g0) and (f1,91) be two pairs of Morse functions on (C™,0) with quadratic
parts (qy,,4qq,) in generic position.

Suppose that we can number the tangency curves Tj (j =1,...,n and i = 0,1) in such
a manner that the pairs of Morse functions (fi|T7;,gi|T7¢) are conjugated under the action of

Diff(T}),T}) on the right. Then (fo,g0) and (f1,91) are Z-equivalent.

As a consequence, if two pairs of Morse functions with quadratic parts in generic position are
topologically conjugated, they are analytically conjugated.

A part of the proof of this theorem is in fact quite general and is expressed as a separate
lemma (the key lemma in what follows); Section 2 is devoted to the statement and proof of this
lemma. The next section (Section 3) handles the %-classification of pairs of Morse functions.
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After the #Z-classification of pairs of Morse functions, the @7-classification and the % -classifi-
cation are just a matter of rewriting as it will be shown later; these are done in Sections 4 and
5. The Z-classification of pairs of Morse functions is not a straightforward consequence of the
former theorem; the main result is that a generic pair (f,g) of Morse functions is determined
up to the action of 2 by the 3-jets of f and g, so that a generic quotient of Morse functions is
diffeomorphic to an explicit rational function of degree 3. This will be detailed in Section 6.

We will also show that the restriction of a generic Morse function to a quadratic cone (the
set of zeroes of a Morse function) is determined up to diffeomorphism by its quadratic part (in
section 7).

In the last section, we will show that the key lemma can be applied in a general setting, by
rediscovering classical results like the classification of folds, or giving finite determinacy results.
As an example, we will give the classification of some special pairs of cusps.

Some of these problems can be restated in terms of diagrams in the sense of Dufour (cf. [D]):
the Z-classification of pairs of Morse functions corresponds to the classification of divergent

diagrams of Morse functions
C,0
/ (C,0)

(C",0) p

(C,0).

We should also mention the work of J. Vey about a similar problem: the simultaneous reduc-
tion of a Morse function and a volume form (cf. [Vey]).

2. PROOF OF THE KEY LEMMA

Recall that two pairs (fo,go) and (f1,91) of functions of (C",0) are called %Z-equivalent if
there exists a diffeomorphism ¢ € Diff (C™,0) such that (fo o, goo¢) = (f1,91). In this section
we want to prove the following:

Lemma 1 (Key Lemma). Let f, go and g1 be three functions on (C™,0) where f has a singular
point at 0. Suppose that the tangency ideals I(f,go) and I(f,g1) are equal and that

91— g0 € I(f, 90)-
Then (f,90) and (f,g1) are #-conjugated.

The proof of this lemma is based on Moser’s path method: we will construct a path (f,g:)
between (f, go) and (f, g1) and show that every (f, g:) are diffeomorphic. Put g: = go+t(91 —go)
and g¢(t,) = g:(-) € O(U) for a neighborhood U of [0,1] x {0} in C; x C™. Introduce also
I'=1(f,g) (which is an ideal of O(U)) and for each t, I; = I(f, g;) (which is an ideal of O(c» o))
Write finally d, f Ad,g = ZKj hijdz; A dz; for a system of coordinates (z;) on C”, J = (hij)i<;
and note that Iy = (h;(t,))i<;-

We will first study these ideals to show that J = Iy ®p, O(U) where O, denotes the set of
germs of holomorphic functions in the variables x4, ..., x,.

Proposition 1. Suppose Iy = I, then Iy = I} fort generic.

Proof. The tangency ideal I; is spanned by the components of df Adg; = tdf Adg, + (1 —1t)df Adgo
so it is contained in Iy. But Iy/I; is null for ¢ = 0 so the support of Iy/I; can only consist of
finitely many points, hence the result. O

In what follows, we will use the additional hypothesis that I; is constant along the interval
[0,1]. If this is not the case, we could find a point ¢ty € C such that I; = I for each ¢ in
both segments [0, ¢9] and [to, 1] (thanks to the previous proposition) and use what will follow on
these segments to show that (f,go) ~ (f, 9t,) =~ (f, 91) so we can indeed suppose without loss of
generality that I; is constant along [0, 1].
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Proposition 2. For each ty, the localization Jg,y of J at tg satisfies Ji,) = Io @0, C{t —to, x}.

Proof. It is enough to prove that Ji; ) = Iy, ® C{t — 1o, z} because Iy, = Io.

Note first that the h;; are affine in ¢ so that h;;(t) = hy;(to) + i:—tt‘;(h”(l) — hij(to)) (we
supposed that tg # 1, the case tg = 1 can be done similarly). Denote by H(t) the vector
(hij(t))i<j; the hypothesis that Iy = I, then gives a matrix A with constant coefficients such
that H(1) = AH (to). Hence the existence of a matrix B satisfying H (t) = (id+ (t — to)B)H (to).

For ¢ near tg, the matrix id 4+ (¢t — to)B is invertible so the components of the vectors H(t)
and H(ty) span the same germ of ideal around the point 3. Note finally that the germ of ideal

spanned by the components of H () is Iy ® C{t — to, x}. O
As a corollary, for each point pg = (to,z0) € U C C, x C", we have the relation
Jo) = (10) (20) Oc{z—zo} C{t —to, 2 — 0}
Proposition 3. J = Iy ®0, O(U).

Proof. We can suppose that the neighborhood U is Stein. The ideal J (resp., Io ® O(U)) defines
a sheaf of ideals # (resp., ) defined by Z,,) = J(p,) for po € U (resp.,

‘%/(Po) = (IO)(mg) by (C{t —to,x —xo}

for pg = (to,x0) € U). These sheaves are locally of finite type; if a1, ..., ax are local sections of
F (resp., X'), the sheaf of relations R(ai, ..., ar) may be viewed as the relations of the sections
a; of the sheaf O. Hence by Oka’s theorem (see, for example, [Hor|), R(a,...,ar) is locally of
finite type and _# and % are coherent.

Take a € In ® O(U), then a(,y € () = Z(, for each p € U; since U is Stein and since the
global sections h;; span _# locally, there exists holomorphic r;; € O(U) such that a = 3 r;jhij,
ie., ae€ J (cf. [Hor]).

The converse works in the same way with h;;(0, -) as global sections spanning %" locally. O

Moreover, if g1 — go € Iy as in the hypotheses of the lemma, g1 — go € J by the former
proposition, so J is also equal to I because df Adg = d.f Nd.g+ (g1 — go)df A dt.
Now we can prove the key lemma:

Proof of the key lemma. As noted above, the hypothesis g1 — gg € Iy together with Proposition
3 means that there exists holomorphic r;(¢,z) (for i < j) such that g1 —go = 32, 7ijhij-

To use the path method, we need to find a vector field X = Z?zl X0y, + O defined in a
neighborhood of {0} x [0,1] € C™ x [0,1] such that X - f = X - g = 0. We also want to have
X(0,t) = 9 so that the flow p;(z,t) of X will be defined on a neighborhood of {0} x [0, 1]. The
diffeomorphism ¢ : & — @1 (x,0) will then verify (f o ¢, g0 0 ¢) = (f,g1) on (C",0).

Remember that .

X-f:ZXi(‘)mf and

i=1

X-g=> X0+ (01— 90)-

i=1
Note that it is enough to find for each j = 2,...,n a vector field X/ satisfying X7 - f = 0 and
n j—1
Z Xﬁ@wigt + Z T‘ijhij =0
i=1 i=1
because the vector field X =37, X7 + 9; would then be as sought.
On U; = {0, f # 0}, we may impose

pop—

il DOICEER

i#]
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so that
8xjf <ZX 6%975"‘27“2] z]) :Z(awjfambgt 6a:lf8%gt)X + ax]f (ZT” u)
i
72 —hi; X} + (0, f) <Zr” ”>.
i#£j

So we can choose Xij =150, fifi < jand Xij = 0 for ¢ > j which gives X]j =— ZKJ. 750z, f -
We see that every component X j is holomorphic around {d,, f = 0} which means that the vector
field X7 is defined on (C",0) x [0, 1]. Moreover, since f is singular at 0, every 9, f cancels at 0
so that each X7 cancels on {0} x [0, 1].

The vector field X =3, X7 4 9, is the one we wanted. g

Remark 1. The hypothesis "f has a singular point at 0" is only used to show that the vector
field X — 0, cancels along the t-axis, which is also true if all the r;; cancel on {0} x [0,1]. It is
also the case if g1 — go cancels at a high enough order at the origin (the exact order depends on
the coefficients h;;).

3. Z-CLASSIFICATION OF PAIRS OF MORSE FUNCTIONS

A pair of Morse functions (f, g) is called Z-generic if (up to linear isomorphism) the quadratic
parts g5 and g, are diagonal : q¢(z) = Y 27 and gq,(x) = > \a? with \; # )\ if i # j.

Let (f,g) be an Z-generic pair of Morse functions. Let us first study the tangency loci: if
qr and ¢4 are diagonal, Tang(qy, qq) is the union of the coordinate axes; in general, we have the
following:

Proposition 4. The sets Tang(f, g) and Tang(qys,q,) are diffeomorphic and tangent.

Proof. We can suppose f quadratic and ¢, diagonal. Blow up the origin to get that (recycling
the coordinates x; as coordinates in the blow-up) the transforms of f and ¢ are given by

f=22Q+22+ .. 4+22) and G=a2O + X+ ) +23(.).
We will simultaneously compute the tangency locuses Tang(f, g) and Tang(gys,q,) in the blow-
up to show this proposmon (since we already know Tang(qy,qy), this will help understand
Tang(f, g)). Write f=f= gr and § = g, + 23e withe =0 or e = ] 35— dg)-

Note that the genericity hypothesis on the n-uple (A1, ..., \,) implies that ¢; and g, are not
tangent near a point of the surface {f = 0} (except at 0). In the blow-up, put

S:={14+z3+...4+22 =0}
and F := {x; = 0}. The remark above tells that the components of the tangency locus between
gy and ¢, which are different from E do not intersect £ N.S. So this is the case for f and g

independently of e. The change of coordinate x; — \/} is allowed near each point of E far away

from the hypersurface S and every component of Tang( f ,§) different from E is far away from
this hypersurface (note also that this change of coordinate does not depend on ).
In these new local coordinates,

f=22 and §=a?u=2%(ug+ 21¢)

with ug not depending on z; and ¢’ holomorphic far from S (¢/ = 0 in case € = 0). The
tangency locus is the union of the varieties given by the equations x1 = 0 and dx; Adu = 0. But
dxy A du = dxq A (dug + x1de’) so on the exceptional divisor, the solutions of dzy A du = 0 are
the same as the solutions of dzi A dug = 0. So the solutions of dz1 Adu = 0 on E do not depend
on g, thus they are n simple points corresponding to the axes.

Finally, remark that dz1 Adu = 0 is given by n — 1 equations so its solution set is of dimension
at least 1. Each point p solution of these equations on £ then gives rise to a set 7}, of dimension
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at least 1, but T, N E' = {p} so that dim(7},) = 1. The fact that p is a simple point means that
T, is a simple smooth curve intersecting £ transversally. Hence, before blowing up, there were n
simple smooth tangency curves tangent to the ones between gy and g4, which in addition implies
that Tang(f, g) is diffeomorphic to Tang(qy, g4)-

O

Even better :

Proposition 5. There exists a diffeomorphism ¢ which conjugates Tang(f, g) with Tang(qy, q4)
and f with qr.

Proof. 1f we suppose that f is quadratic and g, diagonal, it is enough to find ¢ which conjugates
Tang(f,g) with Tang(qs,qs) and preserves f: fo¢ = f. Call D, the x,-axis and T}, the
tangency curve tangent to D,,. It is sufficient to find a diffeomorphism ¢ preserving f and fixing
the points of {x,, = 0} such that ¢(D,,) = T,,. Indeed, applying such a ¢ transforms T,, into D,,
but if ¢ is a similar diffeomorphism obtained by exchanging the roles of x,, and x,_1, applying
¢~> transforms (the new) T,,_; into D,_; and stabilizes D,. We can repeat this for each T} to
obtain a diffeomorphism preserving the fibers of f and conjugating the tangency loci.

The curve T;, is tangent to D,, so that it has equations z; = #2a;(x,) (i =1,...,n —1). We
can then search ¢ in the form

A1, xn) = (21 — 2201 (x0), .o, Tt — T2 a1 (), (1 4 w)xy,)

where u is an unknown holomorphic function. The condition that ¢ preserve f can be written

S oaf—222) mioi(zn) > ailwn)? + 2aiu+aiu® =) af,

i<n i<n i<n i<n
that is
2 2 2
2u+tu :25 xiai—xng o;.
i<n i<n

The implicit function theorem then gives a holomorphic solution u € m(cn gy which in turn gives
the desired diffeomorphism ¢ (note that ¢(z1,...,2,-1,0) = (z1,...,2,-1,0)). O

Proposition 6. If (f, g) is an Z-generic pair of Morse functions then the tangency ideal I(f, g)
is radical.

Proof. Suppose that f =3 2%, g, = > \z? and that T := Tang(f, g) is the union of the axes.
Write df Adg = >, hijda; A daj with hy; = 4(\j—=Xi)zizj+0(m(cn 0)*). The ideal of functions
vanishing on T is (z;z;) so (h;j) C (x;x;) and we need to show that (h;;) = (z;x;).

Introduce N = 21

5— and the vectors

H = (hij)i<j S (O((Cn,o))N and X = (Jﬁil‘j)i<j S (O(Cn,o))N.

Note that h;; —4(X; — \i)ziz; € men g)(zi2;) so that there is a matrix A with coefficients in
O(cn 0y such that H = AX. Note also that A = A 4+ B where A = diag(4(\; — A;)) is invertible
and B has coefficients in mcn o). Hence, A is invertible and the coefficients of the vectors H
and X span the same ideal. O

With these propositions, we can use the key lemma to conclude the Z-classification of pairs
of Morse functions:

Theorem 1. Let (fo,90) and (f1,91) be two Z-generic pairs of Morse functions on (C",0).

Suppose that we can number the tangency curves T} (G=1,...,nandi=0,1) in such a manner

that the pairs of Morse functions (f; i) are conjugated under the action of Diff(TJQ,le)
J

T3 9i
J
on the right. Then there is a diffeomorphism ¢ such that (fo o @, g0 0 @) = (f1,91).
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Proof. By Proposition 5, we can suppose that fo = fi = ¢y and that the tangency loci for both
couples are the same. Then, by hypothesis, (f, go) = (f, ¢1) in restriction to each tangency curve.
Since the ideals I(f, go) and I(f,g1) are radical by Proposition 6, this means that

I(f,90) = I(f,g1) and g1 —go € I(f,90)-

The proof is then completed by Lemma 1. O

In particular, we obtain:

Corollary 1. An Z-generic pair of Morse functions (f, g) is Z-conjugated to its quadratic parts
if and only if f and g are C-proportional on each tangency curve.

Remark 2. Given n smooth curves T; whose tangents at 0 span C™ and n couples (u;,v;) of
Morse functions on Tj, there exists a pair of Morse functions having T as tangency curves
and equal to (uj,v;) on Tj. Indeed, we can suppose that T; is the x;j-axis so that we can take
flx1, .. zn) = > uj(x;) and g = > vi(z;).

Hence, since f can be normalized, the moduli space for generic couples of Morse functions is
given by the set of generic non-ordered n-uples (v, ...,v,) of germs of Morse functions on (C,0)
modulo the relation (vi,...,v,) ~ (v o (£id), ..., v, o (£id)), the signs £+ being independent.

Note also the corollary:

Corollary 2. Let (fo,90) and (f1,91) be two Z-generic pairs of Morse functions on (C™,0). If
these pairs are topologically conjugated, they are analytically conjugated.

Proof. First, note that the tangency points between f; and gy are given by the points where
the Milnor number of gy restricted to a leaf of fj is greater or equal to 1. This characterization
of the tangency points shows that a topological conjugacy between both couples respects the
tangency curves.

As a consequence the restrictions of the couples (f;, g;) to each tangency curve are topologically
conjugated, and for each tangency curve C there exists an homeomorphism ¢ of C such that
loo¢g =1y for I = f,g on C. For coordinates z,w of C such that fy(z) = 22 and f(w) = w?,
this equation writes ¢(z)? = w? so that ¢(z) = +w. This shows that ¢ is holomorphic and each
couples (fi, i) T are conjugated under the action of Diff (T]-O, le) on the right.

Theorem 1 can then be applied. O

Remark 3. There is also a link between formal and analytical conjugacy: Artin’s approzimation
theorem shows that if two pairs of germs of Morse functions are formally conjugated, they are
also analytically conjugated.

4. PAIRS OF MORSE FOLIATIONS

As stated in the introduction, two pairs of Morse foliations (F;,G;) given by the level set of
pairs of functions (f;,g;) are diffeomorphic if and only if the pairs of Morse functions (f;, ;)
are .Z-equivalent. Recall that these pairs are .%-equivalent if there exist diffeomorphisms
¢ € Diff(C",0), ¥, € Diff(C,0) such that (1 o fo o p,12 0990 ¢) = (f1,91). We say
that a pair of Morse foliations (F,G) is % -generic if it has a pair of first integrals (f, g) which
is Z-generic.

The invariants (f;

Ti5 i TJ) modulo conjugacy on the right are now only defined modulo
conjugacy on the right and on the left. First, these new invariants can be re-written in terms of
involutions: on (C,0), the data of a Morse function modulo conjugacy on the left is equivalent
to the data of an involution via f — iy where iy is the function which associates to x the other

solution of f(if(x)) = f(x).
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if(z) T

But some information is lost in the process of considering the invariants modulo conjugacy on
the left : for every pair of curves C7,Csy transverse to F and G and passing through the origin
we can consider the holonomy transports 75, gp(fQ from C to Cs following the leaves of F or G :

Cy

Cy

90({2(35)

o1a(x)

More precisely, we will consider the holonomy transport <p£» and wigj between the tangency
curves T; and T;. We see on the picture that there are two possible ways to define cpfj and
cp,gw-, so we have to make a choice (which is equivalent to choosing a local determination of the
square root). Put then ¢, = (cpgj)*l o Sij € Diff(T,,); this function allows us to recover the
pair (f|z;,glr,) from (f|z,,g|r,). Indeed, take two parametrizations c;(t) and a,(t) of T; and
T, such that a; = cpfj o a,. We want to compute g o o, but g(;(t)) = g((cpzj)*l(aj (t))) and
a;(t) = @7 (an(t)) so g(a;(t) = g(¢njn(an(?)))-

Note also that the invariant A; /A, can be found by taking the linear part of ¢, ;,; hence the
following definition:

Definition 1. Define the invariant of (F,G) to be Inv(F,G) = ((i},iy), (¥njn)j<n). Two
invariants Invy, Invy are equivalent if there exists a diffeomorphism v € Diff(T?, T}) such that
Pl oInv, o = Invg.

Theorem 2. Let (Fo,Go) and (F1,G1) be two F -generic pairs of Morse foliations on (C™,0).
Suppose that we can number their tangency curves T; (j=1,...,n and i =0,1) such that their
invariants Inv(f, g) are equivalent. Then (Fo,Go) and (F1,G1) are analytically conjugated.

Proof. Let (f;, g:) be first integrals for (F;,G;); we can suppose that their invariants
((l?a Z:]L)v (Qpn]n)j<n)

are exactly the same and that fo = f; = > 2. We can also compose g; with a diffeomorphism

on the left in such a manner that go|T3 = gl\T% because the involutions ¢ are the same. Then,

as shown above, gg and g; are equal on each tangency curve because the ¢, ;, are the same.
Hence Theorem 1 can be applied and the pairs (f;, g;) are indeed conjugated.

g

Note that for each invariant ((i1,%2), (¢njn)j<n) there is a pair of Morse foliations having
this invariant. Indeed, we can suppose that i; = —id, f = fo and that Tj is the xzj-axis.
Choose g a Morse function on T, invariant by iz and for p; = (0,...,0,z,,0,...,0) € T} put
9(pj) = 9(¢njn(pn)) for p, = (0,...,0,z,) with z, = z;. We thus have for each curve T a pair
of Morse functions which can be extended to (C™,0) as seen before (in Remark 2).
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In order to better understand these invariants, one can find the classification of pairs of
involutions in [Vor| or [CM]. In particular, we see that the formal and the analytic classification
of pairs of Morse foliations are not the same, because there are some pairs of involutions that
are formally but not analytically conjugated.

5. &7/-CLASSIFICATION OF PAIRS OF MORSE FUNCTIONS

Recall that two couples ®; = (fi, g;) are called &7-equivalent if there exists two diffeomor-
phisms ¢ € Diff(C",0) and ¢ € Diff(C2,0) such that 1po®yop = ®;. We say that an application
® : (C",0) — (C?,0) whose components (f,g) are Morse functions is .«7-generic if the pair (f,g)
is #-generic.

Note that the set of such applications ® is not stable under target diffeomorphisms (for exam-
ple, the diffeomorphism (y1,y2) — (y1,y2 —A1y1) transforms (3" 27, 5" \;z2) into (3 22, wix?)
with p; = 0). Nevertheless, a pair of functions obtained by a target diffeomorphism from an
Z-generic pair of Morse functions still has the same tangency locus and is still classified by its
values on the tangency locus.

Throughout this section, we will carry on considering pairs of Morse functions to avoid un-
necessary notations, but the results extend to pairs «/-equivalent to an %-generic pair of Morse
functions.

Definition 2. Let I' C (C2,0) be an irreducible curve and 01,03 : (C,0) — T two parametriza-
tions of T'. We say that the parametrized curves (I';o1) and (T, 02) are o-equivalent if there is
a diffeomorphism ¢ € Diff (C,0) such that o1 0 ¢ = 02. An equivalence class [(T',0)] is called a
o-curve; we define its o-multiplicity to be the integer n such that o(t) = (at™ +...,0t" + ...)
with (a,b) # (0,0).

If the parametrization is clear from the context, we may omit to mention it.

Remark 4. A o-curve [(T',0)] is entirely determined by T’ and its o-multiplicity.

A o-curve [(T',0)] is of o-multiplicity 2 in exactly two cases: either T is diffeomorphic to a
curve y? — %+ (k> 1) and o is a bijection or T is smooth and o is a double cover. The last
case happens for example when o(t) = (t2,b(t?)).

We saw that pairs of Morse functions are classified modulo the action of diffeomorphisms
at the source only by the restrictions of ® = (f,g) on the tangency curves T; between f and
g, i.e., on the critical set of ®. Said another way, the classification is given by the functions
®|7, with diffeomorphisms at the source acting as reparametrization, that is by the o-curves
®(T;) C (C2,0).

Each of these o-curves has o-multiplicity 2 at the origin and has the line (t2, \;#?) as tangent
cone if fir,(t) =t* +... and g1, (t) = Nit® + ...

Thus the result is the following:

Theorem 3. Two o7 -generic pairs of Morse functions ®1 and P, are o7 -conjugated if and
only if the set of o-curves {®1(T}) }i<n and {®o(T?)}i<n are conjugated by a diffeomorphism of
(C2,0).

Moreover, for each set of n o-curves {C;} in (C2,0) with o-multiplicity 2 and distinct tangent
cones, there exists an application ® : (C",0) — (C?,0) whose components are Morse functions
for which C; = ®(T;).

Remark 5. A diffeomorphism 1 of (C2,0) conjugates two families of o-curves ([C},o}]) and

([C2%,02]) if and only if for each i, the o-curves C} and C? have the same multiplicity and

conjugates the families of curves (C}) and (C?).

Proof. Clearly, if two pairs are conjugated by source and target diffeomorphisms, their critical

sets are conjugated at the source, so the images of the critical sets are conjugated at the target.
Conversely, suppose that for two generic pairs ®; = (f;,g;) there exists a diffeomorphism

¥ € Diff(C?,0) conjugating the sets of o-curves {<I>j(Tij)}i§n. Then we can suppose these sets
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to be equal, which means that for the right numbering of the tangency curves, the o-curves
1 (T}) and ®(T?) are equal for each i. This gives for every i a diffeomorphism ¢, : T} — T?
such that @1 = $y72 0 @;.

We can then conclude with theorem 1.

For the realization part of the theorem, take n o-curves C; in (C%,0) with o-multiplicity 2
and distinct tangent cones. Note first that we can suppose that no curve has an axe as tangent
cone so that these o-curves can be parametrized by o;(t) = (2, \it2 + O(3)) =: (u;(t),vi(t))
with A; # 0. But these curves are the images of the critical locus of the pair (3 u;(x;), > vi(z;))
which is 7-generic because A; # A; if ¢ # j and this concludes the proof. O

6. QUOTIENTS OF MORSE FUNCTIONS

Next, consider meromorphic functions h = g/ f with f,g € O(cn o) Morse functions satisfying
the genericity condition. As pointed out in the introduction, two quotients h; = g;/f; are
diffeomorphic if and only if the pairs (f;, g;) are Z-equivalent, i.e., if there exist a diffeomorphism
¢ € Diff(C™,0) and a unity U € O (cn 0y such that (Ufoowr,Ugoo)=(f1,91)-

First, consider the critical IOCUb of h : it is given by the zeroes of w = gdf — fdg, which
contain the indeterminacy locus {f = 0} N {g = 0}. Note that when f =" 2% and g = Y \;22,
the critical locus contains not only {f = 0} N {g = 0} but also the union of the axes. We begin
by showing that after a generic perturbation, only the indeterminacy locus remains. Denote by
I(w) the ideal spanned by the components of w.

We say that a pair of Morse functions is 2-generic if it is diffeomorphic to

(Z a3, Z N} + o + O(m4))
with A; # A; and a; # 0; we say that a quotient g/ f is 2-generic if the pair (f, g) is 2-generic.
Lemma 2. For a 2-generic pair of Morse functions (f,g), the ideal I(w) contains (f, g) ~m‘(1(cn’0).
Proof. For simplicity, denote m = m(cn ). By theorem 1 we can suppose that f = > 2? and

g = Y ui(x;). The genericity hypothesis thus means that u;(z;) = \a? + a2 + O(x}) with
a; # 0. If we write w = > w;dz;, the coefficient w; is

wZ—QZ xix + O(m%)
J#i

so that w; = 2z;(g — \; f) + O(m*). Hence the equalities z;w; — z;w; = 2z,2;(\; — \;) f + O(m®)
and \jzjw; — \irjw; = 2z,25(\; — A\i)g + O(m®). As a consequence, for each monomlal m of
degree 4 except m = x} and each | = f, g, we have ml € I(w) + m. Furthermore,

—Zw w; —Z =2 (902, f — f0z,9)

7

SO IR TS SEN
=gf - %fzxﬂmg

=f (g -> ;miaxig>

%

—1 4
=f (2;(11‘33?—&—0(111 )> .
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Thus,
x; ijwj = Bizi f + Zﬁjffjng +0(m")
J#i
for some non-zero coefficients B¢, and z} f € I(w) +m”.

A similar computation shows that z}g € I(w) + m7; so for each monomial m of degree 4
and each [ = f, g, we have ml € I(w) +m". In fact, ml belongs to the ideal I(w) + (f,g) - m®
because I(w) is obviously a subset of (f,g). It immediately follows that for each index k > 4,
each monomial m of degree k and each | = f, g, ml € I(w) + (f, g) - m¥*1. This means that ml
formally belongs to the ideal I(w) hence by flatness, (f,g) - m* C I(w). O

Remark 6. Note that the proof is still valid for 1-parameter families (fi), (g¢) with fized 3-jets.
Indeed, we can show in the exact same way that ml € I(w) +m" for each monomial m in x
of degree 4 and | = f,g, the only difference is that f,g and w depend on t (here m is still
<$1,...,$n>).

Note also that for 1-parameter families (ft), (g¢) with fized 3-jets, being a 2-generic pair of
Morse functions for each t € C is equivalent to being a 2-generic pair of Morse functions for
t = 0 because the genericity only depends on the 3-jets.

We thus obtain the following:

Lemma 3. Consider two functions f,g € O(t,x1,...,x,) defined in a neighborhood of
C, x {0} cC, xC}

with 3-jets independent of t. Suppose that (f(t,-),g(t,-)) is a 2-generic pair of Morse functions
for each t. Consider w, = gd,f — fd,g and m = (x1,...,2,), then (f, g)m* C I(w,).

Theorem 4. Let hg and hy be 2-generic quotients of Morse functions with h; = g;/ f;. Suppose
that we have equalities between the 3-jets: j3fo = 73f1 and j3go = j3g1. Then there exists a
diffeomorphism ¢ € Diff(C",0) such that hg o ¢ = hy.

Proof. By Theorem 1, we can suppose that gr = >, u¥(x;) and f, = >, 2? with

k

uf(x) = Na® 4+ oy ¥

with a; # 0 and ¥ € m?w,oy Set for ¢ in a neighborhood of [0,1] in C f(¢,-) = f: = fo = f1,
g(t,)) =gt =go+tlg1 — go), h(t,") = he = g¢/ fr and w = gdf — fdg = w, + rdt.

Note that r = —fd;g € (f,g)m* and that by Lemma 3, this implies r € I(w,). We can then
find a vector field X = >, X;0,, + 0 such that w(X) = 0 (note that X; € (z1,...,z,) because
there is no linear relation with constant coefficients between the leading terms of the components
of w,). But this means that h is constant along the trajectories of X so that the flow ¢4 (z,t) of
X (which is defined on a neighborhood of {0} x [0,1]) gives a diffeomorphism ¢ : z +— ¢1(z,0)
such that hg o o = hy on (C",0). O

Corollary 3. Let h be a 2-generic quotient of Morse functions. There exists Ay, a; € C* such
that h is diffeomorphic to
> i} + aix}

Remark 7. Since the latter form is stable under homotecies, we can even suppose that a; = 1.

7. RESTRICTION OF A MORSE FUNCTION TO A QUADRATIC CONE

In this section, we want to study restrictions of Morse functions g to a "quadratic cone" (i.e.,
a hypersurface {f = 0} with f also a Morse function).

Remark 8. We can see by a cohomological argument that each function and each diffeomorphism
defined on a quadratic cone extends to (C™,0) (respectively to a function or a diffeomorphism of
(C™,0)). Thus, studying functions on a quadratic cone up to diffeomorphism of the cone is the
same as studying functions of (C™,0) in restriction to a quadratic cone up to diffeomorphisms

of (C™,0) fixzing the cone.
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Theorem 5. Let f, go and g1 be three Morse functions with (f, g;) Z-generic pairs and equalities
between the 2-jets j2go = j%g1. Then there is a diffeomorphism ¢ such that fo @ = f and
go © » = g1 in restriction to {f = 0}.

Proof. Let g+ = go + t(g1 — go). We want to find a diffeomorphism ¢ such that fop = f
and gg o v — g1 € (f); we will use Moser’s path method to find it as the flow of a vector field
X = > X0y, + 0y such that X - g € (f) and X - f = 0. Note that we can find X verifying
X-g=X-f =0 assoon as 0;g € I(f,g), so that we can find X as sought as soon as
Og € (f) +1(f,g9). Remark that the components of X — 9; will cancel on the t-axis because
there is no linear relation with constant coefficients between f and the components of df A dg.
We saw in the proof of Proposition 6 that I(f, g) = (z;z;+...), but ? is equal to z; f modulo
the ideal I(f,g) + m‘(‘@,yo) so that each monomial of degree 3 belongs to (f) + I(f,g) + m‘(*(cﬂ,,o).
Thus, the inclusion m?@b,o) C (f) + I(f,g) holds so that d,g € (f) + I(f,g) and the proof is
complete. O

Remark 9. Note also that g and g + \f represent the same function on {f = 0} so that we
obtain the following:

Corollary 4. Given a Morse function f, each Morse function g such that the pair (f,g) is
Z-generic is diffeomorphic in restriction to {f = 0} to a quadratic function Z?:_ll \iz?.

8. APPLICATIONS OF THE KEY LEMMA

The key lemma can be used in a very general setting for the Z-classification of pairs of
functions: although the hypotheses might seem strong, they are in fact necessary. For example,
it can be applied to rediscover the Z-classification of folds.

Definition 3. Define a fold to be a pair of functions f,g: (C™,0) — (C,0) such that f is regular
and Tang(f, g) is a simple smooth curve transverse to {f = 0}.

Theorem 6. Let (f,g) be a fold on (C™,0). There exists a unique function ¢ € O(C,0) and a
set of coordinates (x;) such that f = x1 and g = p(x1) + >0, @3-

Proof. We can suppose without loss of generality that f = x1 and that Tang(f, g) is the xz1-axis.
This means that I(f,g) = (9z,9)i>1 = (T2,...,%s) 50 g = p(x1) + q(z2,...,2,) + € with g a
nondegenerate quadratic form and ¢ € (xo, ... ,xn>2m(cn70). Since ¢ is nondegenerate, we can
suppose ¢ = Y, &7

We want to use the key lemma in (C",0) for f = x1, go = @(z1) + 2% + ... + 22 and
g1 = g. Let us check the hypotheses: first, g1 — go = € € (o, ... ,xn>2m((cn)0). Then, for each
a € (xa,... ,xn>2m(cn7o), the ideal I(f, go + a) writes (zo + 12, ..., &, + n,) with

n; € <1‘2, . ,;vn>m((cn70),

which means that Tang(f,go + a) is a simple curve and the ideal I(f, gy + a) is radical. So
the hypotheses I(f,g0) = I(f,g91) and g1 — go € I(f, go) are verified, hence the only hypothesis
missing is f having a singular point.

But g1 — go cancels at order 3 at the origin, which will allow us to use the remark 1. Indeed,
if we use the same notations, the fact that there is no C-linear relation between the generators
of I(f,go) implies that the coefficients r;; in the decomposition g1 — go = > 74;hi; cancel on
{0} x [0, 1]. The lemma can thus be applied and the couples (f, go) and (f, g1) are diffeomorphic.

Last, the function ¢ is entirely determined by the equality ¢ o f = g on Tang(f, g). O

A first corollary is the classification of regular folds as foliations (i.e., the #-classification):

Corollary 5. Let (F,G) be a pair of foliations on (C™,0) given by a fold (f,g) with g regular.
Then (F,G) is diffeomorphic to the pair of foliations given by the first integrals (x1, w1+, x?).
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Proof. We can suppose that (f,g) are as in the conclusion of the theorem 6. The hypothesis
that g be regular means that ¢ is a diffeomorphism. In the variables (¢(x1),z2, ..., z,) the pair
(F,G) is in the right form. O

We can also use this to obtain the Z#-classification of generic pairs (f, g) with f regular and
g a Morse function: this is exactly when ¢ is a Morse function. In the case of .F-equivalence,
we obtain the normal form (z1, ;5 ?).

We could also study pairs (f,g) of the form (2% + y? + 22, A% + uy? + vz +...), but in this
case the tangency ideal I(f, g) will again be radical and this case will be similar to the case of
pairs of Morse functions.

The lemma 1 can also be applied for more complicated cases, like for example when the
ideal I(f,g) is not radical. To illustrate this, note that if we take f = 23 + y? + 22 and
g = Ax® + py? + v2? with X\ # pu # v # 0, the tangency ideal is I(f,g) = (z%y,2%2,yz) and
corresponds to D, U 2D, U 2D, with D; the [-axis. Let us classify pairs of functions that "look
like" this pair. First, recall the following:

Proposition 7. Let f be a function on (C3,0) having a singular point with Milnor number 2 at
the origin; then in a right set of coordinates, f(x,y,z) = x> + y* + 22.

Proof. Since the Milnor number of f is 2, the hessian matrix of f at 0 is of rank 2 and in the
right set of coordinates, it can be written diag(0,2,2). Then f(x,y,2) = y*+ 22 +¢ with e € m?
and f can be seen as a deformation of f(0,,-) which has a non-degenerate singular point at 0.
By the parametrized Morse lemma, there exists a function ¢ and a set of coordinates such that
fla,y,2) = o(z) +y° + 22

Since the Milnor number of f is 2, ¢ is diffeomorphic to 2% and changing the coordinates once
more, we can write f(amy, z) = 3 + y2 + 22 O

So in fact we are interested in pairs (f, g) of functions with Milnor number 2, having hessians
H(f), H(g) which can be simultaneously diagonalized with the 0 in the same spot. For such
functions, we can then suppose that

(1) f=a34+y*+2% and g=X e +uy? +v22+¢
with ¢ € m® which has no component in z3.
The tangency locus might not be diffeomorphic to the union of one simple curve and two
double curves: the double curves might split. For example, for
f=a+y*+ 2% and g = 23 + py? + v2? + 22y,
the y-axis splits into two curves tangent respectively to the y-axis and to the line
{z=0=3(p— 1)z —2y}.

Let us assume the double curves don’t split. We will call such a pair (f, g) an exceptional pair of
3-dimensional cusps (or an exceptional pair of cusps because we only deal with the 3-dimensional
ones in this example).

Proposition 8. If (f,g) is an exceptional pair of cusps written as in (1), then Tang(f,g) is
tangent and diffeomorphic to the union of the axzes. Moreover, the tangency curve tangent to the
x-azis is tangent at order 2 with the x-axis.

The proof is very similar to that of Proposition 4 and is a bit tedious so it is skipped here,
but a proof can be found in [T].

Proposition 9. If (f,g) is an exceptional pair of cusps in the form (1), there exists a diffeo-
morphism ¢ preserving f such that Tang(f o ¢, g o @) is the union of the axes.
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Once again this proof can be found in [T].

Since the ideal is not radical, the tangency locus is not sufficient to characterize the ideal. The
following proposition gives a geometric description of the ideal; it might be interesting in other
contexts because it hints at something more general: the characterization of any ideal in terms
of cancellation of functions and cancellation of some differential operators on these functions.
But I couldn’t find mention of such a characterization anywhere, so we only give the following
special case:

Proposition 10. Let (f,g) be an exceptional pair of cusps in the form (1) with Tang(f, g) equal
to the union of the axes. Then there is a vector field X such that X(0) = 0, and

I(f,9) = {a € O ) such that a|r, = a|lr, = a|r, =0 and (X -a)|r, = (X - a)|7, =0} .
Such a vector field will be said to characterize the tangency ideal.

Proof. The ideal I(f,g) is spanned by the functions h1 = 22y + O(m?), hy = 222 + O(m?) and
hs = yz + O(m?) Note that the tangent cone at 0 of the variety {hs = 0} is the union of the
planes {y = 0} and {z = 0}. Moreover, we know by hypothesis that h3(T,) = hs(T.) = {0} so
for each z near 0, there is a unique plane tangent to {h3 = 0} at the point (0,0, z). This plane
contains the direction T, so it is defined by another direction X (z) which we can choose regular
in z with X (0) = 0,. Similarly, the tangent plane to {hs = 0} along T, is defined by a vector
field along T, which we can choose so that both vector fields can be extended to a vector field
X on (C3,0) with X(0) = 9,.
Now let

J ={a € Ocs ) such that a|r, = a|r, = a|r, =0 and (X -a)|r, = (X -a)|r, = 0}.

The set J is an ideal and we first need to show that I(f,g) C J, i.e., that (X - h;)|7, = 0 for
i=1,2,3 and | = y, 2. By construction, (X - h3)|r, and (X - h3)|r, are null. Next, we know that
hi € (zy,yz,zx) so up to changing hy by hy — Zi:2’3 Aihi with A; € m(cs gy, We can suppose
that h; = uz?y + ra(y) + xB(z) with u invertible, o and 3 in m?@,o)'

The condition that the tangency curves do not split implies that when cutting the curve T},
by a plane y = yo, we obtain a point with multiplicity 2. But if o # 0, then «(yo) is generically
invertible and hq (-, yo, -) is generically regular. The function hs(-, 3o, -) is also generically regular,
so if a # 0, we obtain a simple point; hence @ = 0. By the same reasons, § = 0 and

I(f’ g) = ($2y,h2,h3>.

Similarly, I(f,g) = (x?y, 22z, h3) and it is now clear that I(f,g) C J.

For the converse, we will show that (x2y,z2z, h3) generate J: suppose a € J and P is his
leading homogeneous polynomial (and let & 4+ 1 be his degree). Since J C (zy,yz,zx), P
has no term in I**! for | = x,y or z. The only terms that are not spanned by the leading
coefficients of 22y, 222 or hs are the zl* for | =y, 2. But if X = (1 +a1)9, + a20y + a30;, then
X - ay® = (1 +a1)y* + kazzy*~! is not nul on Ty: there can’t be such a term in P. Therefore
(22y, 222, h3) generate J and I(f,g) = J. O

Proposition 11. If (f,g) is an exceptional pair of cusps in the form (1), there exists a diffeo-
morphism o preserving f such that I(f o p,go0 ) = (xy,2%2,yz2).

Proof. By Proposition 9, we can suppose that the tangency locus is the union of the axes. By
Proposition 10, we can find a vector field X such that X (0) = 0, characterizing the tangency
ideal. We want to transform X into J, using a diffeomorphism ¢ preserving f and the coordinate
axes.

As before we will construct ¢ in two steps by transforming the vector field first on the y-axis
and then on the z-axis. We will search the first diffeomorphism in the form

e1(z,y,2) = (v + yza(y),y + yzb(y), z + yzc(y)),
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so that

010, = (1 +ya,yb, yc).
We see that for each vector field X tangent to 0, at 0, its restriction to the y-axis can be
obtained this way. Note that ¢ fixes {y = 0} and preserves the y-axis so that if we do the same
construction for the z-axis, the newly constructed diffeomorphism ys will preserve the vector
field along the y-axis. Hence ¢ = a1 will conjugate I(f,g) with (z2y, 2%2,yz). O

Theorem 7. Let (fo,90) and (f1,g1) be two exceptional pairs of cusps on (C3,0) with tangency

curves T; (i = 0,1, j = 1,2,3 and T} is the simple one). Suppose that there is a diffeomor-

phism ¥ conjugating the tangency curves and the restrictions (fi|pi, gi|pi). Then there exists a
J J

diffeomorphism ¢ such that (fo o ¢, g0 0 @) = (f1,91).

Proof. After what has been done before, we can suppose that each couple is in the form (1),
with tangency ideals I = (x2y,2%2,yz2), with fo = f1 everywhere and gy = g1 in restriction to
the tangency locus T'.

Let X be a vector field characterizing the ideal I. If Y is tangent to T, then AX + pY
also characterizes I for all A\,u € O(cs o) with A not vanishing on 7' so we can suppose that
X € Ker(dfp) at every point of T (note that Ker(dfy) is transverse to T' at each point different
from the origin). By definition of the tangency locus, X then also belongs to the kernel of dg;
for each ¢ on T', hence g1 — go € I.

The key lemma can then be applied to finish the proof of this theorem. O
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SMOOTH ARCS ON ALGEBRAIC VARIETIES

DAVID BOURQUI AND JULIEN SEBAG

ABSTRACT. Let k be a field and V be a k-variety. We say that a rational arc v € Zoo (V) (k)
is smooth if its formal neighborhood % (V) is an infinite-dimensional formal disk. In this
article, we prove that every rational arc v € (ZLoo(V) \ Zoo(Vsing))(k) is smooth if and only
if the formal branch containing v is smooth.

1. INTRODUCTION

1.1. The present article is partly motivated by the exegesis of the following statement with
respect to singularity theory. This result was obtained by M. GRINBERG and D. KAZHDAN in
case the base field k is contained in C, and by V. DRINFELD for an arbitrary field & (see [8, 6],
or [4] for a generalization of such a statement in the context of formal geometry).

Theorem 1.2. Let k be a field. Let V be a k-variety, and v € V (k) be a rational point of
V. We assume that dim,(V) > 1. Let v € L5 (V)(k) be a rational point of the associated
arc scheme, not contained in Lo (Vsing) such that v(0) = v. If £ (V) denotes the formal
neighborhood of the k-scheme Lo (V) at the point v, there exists an affine k-scheme S of finite
type, with s € S(k), and an isomorphism of formal k-schemes:

ZLoo(V)y = Sy xi SPE(R[[(T)ien]])- (L.1)

1.3. Since the work of J. NASH, which introduced the so-called Nash problem, one knows that
the geometry of £ (V) is deeply related to the geometry of the singularities of V. As an
illustration of this general principle at the level of formal neighborhoods, let us mention the
following easy and well-known fact: for every rational arc v € £ (V) (k), with origin v := ~(0)
contained in the smooth locus of V, the formal neighborhood Z(V'), is isomorphic to the
infinite-dimensional k-formal disk DY := Spf(k[[(T})ien]]). If we translate this remark in the
terms of theorem 1.2, it means that, in this case, S can be chosen equal to Spec(k). In fact,
we observe that, in this case, the corresponding algebra O«_ (v  is formally smooth over & for
the discrete topology. Indeed, one may assume that V is affine and smooth and that there is an
étale map V — A?. By [14, Lemme 3.3.6] one then has %, (V) =V X Ad Zo(AY) thus by [9,
Chapter 0, 19.3.3, 19.3.5 (ii)] the k-algebra O(Zw(V)) = O(V)[(T}):en] is formally smooth for
the discrete topology. By [9, Chapter 0, 19.3.5 (iv)], this is also the case for O g _(v),. In this
general context, we address the following natural question:

Question 1.4. Does the converse property hold true? In other words, if S = Spec(k) in theo-
rem 1.2, is it true that v(0) is a smooth point of V ¢

With respect to theorem 1.2, a positive answer in the direction of question 1.4 clearly indicates
that the formal k-scheme S in the Drinfeld-Grinberg-Kazhdan theorem would be a measure of
the singularities of V' at the origin v(0) of the involved arc . Since the authors proved in [3] that,
in general, theorem 1.2 does not hold if the involved arc v belongs to ,ZOO(VSmg), it seems natural
to us, in this perspective, to restrict ourselves to the case of arcs not contained in Zoo(Viing)s
that we call non-degenerate.

1991 Mathematics Subject Classification. 14E18, 14B20, 32S05.
Key words and phrases. Arc scheme, curve singularity, formal neighborhood.


http://dx.doi.org/10.5427/jsing.2017.16f

SMOOTH ARCS ON ALGEBRAIC VARIETIES 131

1.5. In the present paper, we provide a complete answer to question 1.4 for non-degenerate

arcs (which are in particular contained in a unique irreducible component of Spec(Oy, (o)), by
proposition 3.6). Precisely we obtain the following statement:

Theorem 1.6. Let V' be a k-variety and v € V (k) such that Oy, is reduced and dim, (V) > 1.
Let v € £ (V)(k) be a non-degenerate rational arc, such that v(0) = v. Then, the following
conditions are equivalent:

(1) The unique formal branch containing ~y is smooth.
(2) The formal neighborhood Zx, (V). is isomorphic to DY.

Let us note that by [9, Chapter 0, 19.3.6, 19.5.4] the second condition in the statement of
theorem 1.6 characterizes those non-degenerate rational arcs v whose local ring Og_ (v, is
formally smooth over k for the m-adic topology. In the case of curves, we are able to interpret
the above result in terms of a notion of rigidity for deformations of arcs (see corollary 4.14). We
also obtain analogs of theorem 1.6 in the case of constant arcs (in particular degenerate) and in
the context of jet schemes (see proposition 5.2 and theorem 5.4).

1.7. Conventions, notation. In this article, k is a field of arbitrary characteristic (unless
explicitly stated otherwise); k[[T]] is the ring of power series over the field k. The category of k-
schemes is denoted by Sch,. The local k-algebra k[[(T};);en]] is the completion of k[(T;);en] with
respect to the maximal ideal ((7;);en). It is a topological complete k-algebra when we endow it
with the projective limit topology. We denote by DY := Spf(k[[(T})ien]]) the associated formal
k-scheme. A k-variety is a k-scheme of finite type. The singular locus Vg of V' is defined as
the (unique) reduced closed subscheme associated with the non-smooth locus of V. An arc of V,
i.e., a point of the arc scheme £, (V') associated with V', which is not contained in the singular
locus Viing of V, is called a non-degenerate arc. In other words, the subset 2 (V) \ Lo (Vsing) is
the set of non-degenerate arcs. In this article, by slightly abusing the standard conventions, we
introduce the terminology of smooth rational arcs on V to designate those arcs v € Lo (V) (k)
such that £ (V). = DY (assuming that the dimension at the origin (0) of the arc is positive).

2. ARC SCHEMES AND ARC DEFORMATIONS: RECOLLECTION

2.1. If V is a k-variety and n € N, the restriction d la Weil of the k[T]/(T"*!)-scheme
V xy Spec(k[T]/{T"))

with respect to the morphism of k-algebras k — k[T]/(T™*1) exists; it is a k-scheme of fi-
nite type which is called the n-jet scheme of V and that we denote by %, (V). The projec-
tive limit mﬂ(.&fn(V)) exists in the category of k-schemes; it is the arc scheme associated
with V' and we denote it by Z. (V). For every integer n € N, the canonical morphism of k-
schemes 75°: Lo (V) — £, (V) is called the truncation morphism of level n. Let A be a k-
algebra. As proved in [1], there exists a natural bijection

Home.p, (Spec(A), Lo (V) = Home.p, (Spec(A[[TT]), V). (2.1)

Let us note that in case V is affine or A is local, such a property directly follows from the mere
definitions.

2.2.  We denote by Lacp the following category. The objects are the topological local k-algebras,
which are topologically isomorphic to m-adic completions of local k-algebras and whose residue
field are k-algebras isomorphic to k. The morphisms in Lacp are the continuous morphisms of
local k-algebras. We denote by Tes the full subcategory of Lacp whose objects are test-rings, i.e.,
local k-algebras in Lacp with nilpotent maximal ideal and residue field isomorpic to k. If Tes is
the category of pre-cosheaves on the category Tes (i.e., covariant functors from the category Tes
to the category of sets), we define the functor

F: Lacp — Tes
O +—— Homgu,(0, ).
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One has the following seemingly standard observation (see [6]):
Observation 2.3. The functor F is fully faithful.

One will use the following trivial consequence of the observation: let S and S’ be k-schemes,
let s € S(k) and s € S'(k), let Sy and S’ be the associated formal neighborhoods and
let fa: Ss(A) — S (A) be a natural map defined for every test-ring (A, m4); then there exists a
unique morphism of formal k-schemes f: S; — 5%, inducing f4 for every test-ring A; moreover, f
is an isomorphism if and only if f4 is bijective for every A.

2.4. Let V be a k-variety. Let v € % (V)(k). Then, in the sense of observation 2.3, the
formal k-scheme £ (V). is uniquely determined by the functor F (020-(?),7)- Let A be a test-
ring. Let y4 € Z(V)4(A). The datum of y4 corresponds to one of the following (equivalent)
commutative diagram:

O (v)y — 2 i OIU A A[iT]} T\v A, A[lT]} (2.2)
k=————=F k[[T]] == K[[T7], k[[T)] == k([T

where we denote by pa: A[[T]] — k[[T]] the unique local morphism which extends the projec-
tion A — A/my = k. The set £ (V),(A) parametrizes the elements y4 € V(A[[T]]) whose
reduction modulo my4 coincides with ~.

Definition 2.5. Every morphism y4 € L5 (V)~(A) is called an A-deformation of .

3. REDUCTION TO FORMAL BRANCHES

Definition 3.1. Let V be a k-variety. Let v € Lo (V) (k) be a rational are, viewed as a local
morphism v: Oy ) — k[[T]]. A formal branch (or formal component) at v(0) which contains v
is a minimal prime ideal p of m) such that p C Ker(vy).

In particular, if p is such a branch, this definition implies that - factorizes through the quotient
morphism m) — m) /p. A classical fact on arc geometry is that every arc on a reduced
variety factorizes through the irreducible components of the involved variety which contain the
origin of the arc. In the same spirit, the following lemma shows in particular that the formal
neighborhood of a given arc contained in a unique formal branch of a reduced variety carries a
part of the information on the mere singularities of the formal branch containing the arc.

Proposition 3.2. Let V be a k-variety. Let v € % (V) (k) be a rational arc contained in a
unique formal branch p. We assume that Oy (o) is reduced. Then, for every test-ring (A,mu),
for every A-deformation v4 € Lo(V)~y(A) of v, the induced morphism of admissible local k-
algebras v 4 : O/VZ"/\(O) — A[[T]] factorizes through O/V,«/\(o) — O/V,,Y\(O)/p, Besides, the ideal p is the
only minimal prime ideal with this property.

In other words, if the arc 7 is contained in a unique formal branch at +(0), then every A-
deformation of v is contained in the same branch (and only in this one).

Proof. Let (A,my4) be a test-ring and v4 € Z(V),(A), corresponding to a diagram of mor-
phisms of complete local k-algebras:

Ov o) —2= A[[T]] (3.1)
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Then, we have Ker(y) = v, (ma[[T]]). Let p,qi,...,q, be the minimal prime ideals of the
ring O/V,A/\(o). By assumptions, Ker(y) contains p and does not contain q; for every ¢ € {1,...,n}.
Let us prove that p C Ker(vya).

Let x € p. Since the ring O/V,n/\(o) is reduced, we have p N (NP, q;) = (0). By assumption, for
every integer i € {1,...,n}, there exists an element y; € q; such that y; ¢ Ker(v). Then, we
deduce that zy; ...y, = 0 and that

va(Tyi .. Yn) = 0 (3.2)
va(@)-valy) .. valyn) = 0.
Since, by construction, y; & v, (ma[[T]]) for every integer i € {1,...,n}, we conclude that

the element v4(y;) does not reduce to zero modulo mu4[[T]]. In particular (see lemma 3.3),
the element v4(y;) is not a zero-divisor in the ring A[[T]]; hence, by equation (3.2), we have
va(z) =0, ie., z € Ker(va).

In the end, if there exists i € {1,...,n} such that q; C 7,'(0) = Ker(ya), then we
have q; C v, ' (ma[[T]]) = Ker(y), which contradicts our assumption. It concludes the proof
of our statement. O

Lemma 3.3. Let (A, m4) be a test-ring, let r4(T) € A[[T]] whose reduction modulo ma[[T]] is
a non-zero element of k[[T']]. Then, the power series r4(T') is not a zero-divisor in A[[T].

Proof. By the Weierstrass preparation theorem (see [12, Chapter IV, Theorem 9.2]), there is a
decompostion 74(T) = qa(T)ua(T) where ga(T) is a distinguished polynomial and u(T) is
invertible in A[[T]]. By the uniqueness in the Weierstrass division theorem, (see [12, Chapter
IV, Theorems 9.1 and 9.2]) a distinguished polynomial is not a zero-divisor in A[[T]]. O

Remark 3.4. In particular, under the assumptions of proposition 3.2 with V' reduced, the arc ~
is contained in a unique irreducible component passing through ~(0), and every A-deformation
of v is contained in this irreducible component.

Remark 3.5. If one does not assume that the arc v belongs to a unique formal branch, and
dim(Oy,,,) > 2, it is important to keep in mind that the situation is much more complicated and
proposition 3.2 does not hold anymore. Let us consider the example of the affine k-surface

V = Spec(k[X,Y, Z] /(Y2 — X3 — X)).

It is an integral k-variety and 5\2 ~ k[[U,V,W]]/{UV), where we denote by o the origin of A3.
Let A = k[S]/(S?) and s := S. We observe that the arc v, defined by U + 0,V + 0,W s T,
admits the A-deformation v4(7T) = (s, s,T), which is not contained in any formal branch of V
at the origin o.

Proposition 3.6. Let V' be a k-variety. Let v € L (V)(k) be a rational arc. If the arc v is
non-degenerate, then the arc -y is contained in a unique formal branch.

Proof. In Spec(k[[T]]), we denote by 0 the closed point, and 5 the generic point. Let us note
that the arc v is non-degenerate if and only if the point v(n) does not belong to Viing. Up to
shrinking V', we may assume that the k-variety V is affine and reduced. We also may assume
that dim(Oy,,(g)) > 1. The arc y corresponds a morphism of local k-algebras v: Oy, () — k[[T]]

which extends to a morphism of local k-algebras 7: m) — k[[T]]. We denote by 9 the
maximal ideal of O(V) corresponding to «y(0). First assume that Ker(y) contains at least two
distinct minimal prime ideals of Oy ,(0y; in more geometric terms, that v lies on at least two
distinct irreducible components passing through 7(0). Then (Ov,(0))ker(y) = Ov,y(y) is not a
domain, thus v(n) is not a smooth point of V' and v € £ (Vsing)-

Now consider the general case. Let O"}N(O) be the henselization of Oy, (). One has

h .
Ov,w(o) :h_n% By,
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where the limit is taken over all étale O(V)-algebras B localized at a prime g such that
qNO(V) =M and k(q) = k(M).

By [16, Tag 0CB3], one may find such a (B, q) such that the morphism Bq — (’)‘h/ﬁ(o) induces
a bijection on the level of minimal prime ideals. On the other hand, by [16, Tag 0C2E], the
morphism O‘hfﬁ(o) — m) also induces a bijection on the level of minimal prime ideals.
Let yp: B — K[[T]] (resp. vB,: By — K[[T]]) be the morphism induced by 7. Assuming
that Ker(¥) contains at least two distinct minimal prime ideals, we deduce that the same holds
for Ker(yp,). By the particular case treated above, one infers that Bgey(y,) is not a domain, in
particular Ker(yg) = vp(7n) is not a smooth point of Spec(B). Since Spec(B) — V is étale and
maps yg(n) to v(n), the point v(n) is not a smooth point of V' by [10, Chapitre 4, 17.11.1]. O

4. THE PROOF OF THEOREM 1.6

Let p be the unique formal branch containing ~, v := (0) and 6;, = 5\/\1,/]3 be the
corresponding local ring.

4.1. Let us show first 1 = 2. This implication is a direct consequence of the following proposi-
tion, which is a corollary of proposition 3.2, and of proposition 3.6.

Proposition 4.2. Let V be a k-variety and v € Lo (V)(k) be an arc with v = v(0) which
is assumed to be contained in a unique formal branch. We assume that Oy, is reduced and
dim, (V) > 1. Assume that the formal branch p containing ~ is smooth. Then the formal k-
scheme Lo (V). is isomorphic to DY.

Proof. Let (A,m4) be a test-ring. By assumption, there exists an integer d > 1 such that
Op,v :> k[[51, ceey Sd]]

By proposition 3.2, the A-deformations of v are in natural bijection with the set of local mor-
phisms O, , — A[[T]]. This set is itself in natural bijection with mYY. By observation 2.3,
the k-formal schemes %5, (V). and DI are isomorphic. O

4.3. We prove now 2 = 1. We have to show that the k-algebra 6;, is isomorphic (in Lacp)
to a k-algebra of power series in a finite number of variables. Our proof is based on different
ingredients which are established in subsections 4.4, 4.6; the main arguments are presented in
subsection 4.9.

4.4. Let us start by establishing a basic result. Keep the notation of theorem 1.2.

Lemma 4.5. Let V be a k-variety and v € V (k) such that Oy, is reduced and dim, (V) > 1.
Let v € Z(V)(k) be a non-degenerate rational arc with v(0) = v. Assume that the formal

netghborhood L (V') is isomorphic to D}:I and that the minimal prime ideal p of (’7‘;, corre-
sponds to the formal branch containing v. Let (B,mp) be a local ring. Then, every morphism

of local k-algebras 6;” — (B/m%)[[T]] lifts to a morphism of local k-algebras 6;, — B[[T]].

Proof. First, since we have £ (V), = le\I, we observe that, for every surjective morphism of
test-rings f: A’ — A, the natural map

~ 2 fO- 2 ~
m, 2Homegep(Oy v, A'[[T]]) —— Homeacp (Op o, A[[T]])= mlY

is surjective. Hence, starting from a morphism s : (5; — B/m%][[T]], we may construct, by
induction, a family of morphisms ¢, : Op, — B/mp%E"[[T]], for every integer n € N, which
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makes, for every pair (m,n) € N? of integers with m > n, the following diagram of morphisms
in Lacp commute

o oim
Opy — B/my

iw

_— 2in
Opv =5 B/mp™,

where we denote by 7 the canonical projection. By the very definition, we have constructed a
morphism ¢: O, — B[[T]] lifting . O

For every noetherian local k-algebra B, we have B/m’, = B /m’, for every integer n > 1 by
[13, §8]. Under this assumption, the arguments developed in the proof of lemma 4.5 imply in
particular that the set of liftings of o can be identified with k[[(T;):en]]-

4.6. Using the following lemma, we shall, in some sense, reduce the proof of the theorem 1.6 to
the case of a complete intersection. This kind of reduction is a classical “trick” in the construction

of motivic measures (see [5] or, e.g., [14]).

Lemma 4.7. Let V be an affine k-variety, defined by the datum of an ideal Iy of the poly-
nomial ring k[X1,...,Xn] and v € L (V) (k) be a non-degenerate arc. Then, there exist an
integer M € {0,..., N} and elements Fi, ..., Fy € Iy, such that:

(1) There exists an (M x M)-minor of the jacobian matriz (Ox, F;)i ; which does not vanish
at .
(2) Setting
V' := Spec(k[X]/{Fy,..., Fx)),
the morphism of formal k-schemes Lo (V) = Lo (V') induced by the closed immer-
sion V. — V' is an isomorphism.

Proof. Let us denote by Jy the ideal generated by the elements hd € k[X,..., Xy]|, where § is
an (M x M)-minor of the jacobian matrix of a M-tuple (F1,..., Fis) of elements of Iy, for some
integer M € N, and h € ((F},..., Fa) : Iv). Using the jacobian criterion, one may show (see [7,
§0.2], [17, §4]) that the singular locus Viing of V, i.e., the reduced closed subscheme associated
with the non-smooth locus, is the support of the closed subscheme of V' associated with the
datum of the ideal Iy + Jy. Since v & Lo (Viing) (k), we obtain all the desired properties, using
lemma 4.8 below for the last one. O

Lemma 4.8. Let V' be an affine k-variety, V be a closed k-subscheme of V' and
he(0:Iy)c o).

Let v € 2o (V)(k) such that h(y) # 0. Then, still denoting by ~y the image of v in V', the natural
morphism of formal schemes Lo (V)y = Lo (V') is an isomorphism of formal k-schemes.

Proof. It suffices to show that for every test-ring A the induced map £, (V),(A) = Lo (V') (A)
is bijective. Injectivity is clear; so let us show surjectivity. We pick out y4 € Z(V'),(A)
and G € Iy. We have to show that G(y4) = 0. By hypothesis, one has h(y4)G(va) = 0.
Since h(y) # 0, the reduction of h(y4) modulo m4 is not zero. By lemma 3.3, one infers
that G(y4) = 0. O

4.9. We are ready to complete the proof of theorem 1.6, by proving implication 2 = 1. We

may assume that V — Aff is affine and, thanks to proposition 3.2 and remark 3.4, irreducible.

Let M, Fy, Fy, ..., Fy, § and h be the elements provided by lemma 4.7 and set d := N — M. Up

to renumbering, we may assume that 0 is the determinant of the matrix (9x,,,(F3))ije{1,...,m}

and that ordy(§(y(7)) is minimal among the T-orders of the evaluation at y(7T) of the (M x M)-

minors of the jacobian matrix (Ox; (Fi))ie{1,...,ar3- Moreover, up to a translation, we may assume
Je{l,....N}
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that v is the origin of Az+M. For every integer i € {1,...,d + M}, we will denote by Z; the
image of X; in 6;,. Note that, since hd does not vanish at =y, the element hd does not vanish
identically on V; hence,we have dim(V) = d.

We shall identify v(7') with a tuple (2;(T'))ieq1,...N} € E[[T])**M which satisfies, for every

integer i € {1,..., M}, the equation

Fi((x;(T))jeqn,....arnry) = 0.
Using the second property of lemma 4.7, for every test-ring (A4, m4), an element of 2, (V') (A)
may and shall be identified with a tuple (z1 4(T),...,Za+ar,a(T)) of elements of ma[[T]]+M
such that, for every integer i € {1,..., M},
Fi((2;(T) + 2j,a(T))jeqn,....a+m3) = 0.
We denote by A2 the test-ring k[S1, ..., S4]/{S1,...,S4)? and by s; the image of S; in A42. By
lemma 4.11, there exists an element (21,4, ,(T), ..., Tarr,4,,(T)) € Loo(V),(Ag,2) such that,
for every integer i € {1,...,d},
SL’Z',A(L2 (T) = S;.

By proposition 3.2, there exists a morphism 6,:1, — Ag2[[T]] which maps #; to s; for every
integer i € {1,...,d}. Since the formal k-scheme .. (V). is isomorphic to DY, by lemma 4.5,
there exists a morphism 5,:, — E[[S1, - - -, Sa]][[T]] which maps, for every integer i € {1,...,d},
the element Z; to an element of S; + (S, ..., Sq4)?[[T]]. Specializing to T = 0, we deduce from
lemma 4.10 that the irﬂmed morphism (5,:, — E[[S1, ..., Saq]] is surjective. Its kernel is a prime

ideal of (5,;,. Since Oy, is an integral domain of dimension d, this prime ideal is necessarily
zero, by the Hauptidealsatz. We deduce the existence of a continuous isomorphism

Opv 3 K[[S1,--, Sdl]
of admissible local k-algebras, which shows the desired result by [10, 17.5.3].

For the convenience of the reader, we state and prove the following version of the inverse
function theorem for formal power series, probably well-known among the specialists.

Lemma 4.10. Let d > 1 be an integer. Let m be the mazimal ideal of the local k-algebra
k[[S1,...,S4]]. Let v: k[[S1,...,S4]] = K[[S1,...,S4]] be a morphism of local k-algebras which
induces an isomorphism of k-vector spaces p1: m/m? — m/m2. Then, the morphism ¢ is an
isomorphism.

Proof. For every integer n > 1, we deduce from the assumption a k-linear map

On: mn/m71+1 — mn/mn+1

defined by ¢, (P) = ¢(P) for every power series P € k[[S1,...,Sq]]. For every integer n > 1,
the map ¢, is surjective. Indeed, for every yi,...,y, € m, there exists z1,...,x, € m such
that 2(Z;) = @(x;) = y; for every integer i € {1,...,n}. The element z := z;...2, is a
preimage of y := y1 ...y, by ¢, which concludes the proof of our claim.

Since, for every integer n € N, the k-vector space m™/m"*! is finite dimensional, we conclude
that the map ¢, are bijective. We deduce the assertion from [2, II1/§2/Corollaire 3]. O

Let us recall a convention of subsection 4.9. If a rational arc y(7T) is identified with a tu-
ple (x;(T))ieq1,...,n} € K[[T]]**M which satisfies, for every integer i € {1,..., M}, the equation

Fi((zi(T))jeqr,....a+ry) =0,
then, for every test-ring (A, m4), an element of £, (V) (A) may be identified with a tuple

(xl,A(T)v s 7xd+M7A(T))
such that, for every integer i € {1,..., M},

Fi((2;(T) +25,4(T))jeqr,....army) = 0.

of elements of m4[[T]]4+M
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Lemma 4.11. Keep the notation and convention of subsection 4.9. Let (A,my) be a test-ring
such that m% = 0. Then, the natural application

Loo(V)o(A) —  (ma[[T]])*
(@1,4(T)s - zarnma(T)) — (21,4(T), ..., 2q,4(T))
is bijective.
Proof. We denote by J the jacobian matrix [Ox; Fi] icq1,..,m}y - Recall that
je{1,...,d+M}

det([anFi] ie{1,..,M} )
je{d+1,....d+M}

does not vanish at v(T'). Using the Taylor expansion and the fact that m% = 0, we observe that,
for every tuple (z1,4(T),...,7Tarm.a(T)) € ma[[T]]4FM | the conditions

Vi € {1, . ,M} FZ(I'j(T) + xj,A(T))je{l,...,d-&-M} =0

are equivalent to the condition

QZ‘LA(T) 0

J((T)) - : =1:

xd+M7A(T) 0
Using lemmas 3.3 and 4.12, we deduce that there exist elements (b; ;(T'))ieq1,...,a} in k[[T]] such

Je{1,...,d}
that latter condition is equivalent to the system
d
Tayia(T) = bij(T)-z;a(T), i€{l,...,M}.
j=1

That concludes the proof. O

Lemma 4.12. Let k be a field, and d, M be positive integers. Let
M= {(Mi,j) 1<i<M ]
1<j<d+M
be a (M x (d+ M)) matriz with coefficients in k[[T]]. Assume that
1 = ordrp <det {(M”) 1<i<M })
d+1<j<d+M

is an integer, minimal among the orders of the (M x M)-minors of the matriz M. Then there
exists an (M x M) matriz N with coefficients in k[[T]], whose determinant is not zero, such that

a1,1 a1.d TH 0 0
a271 CLQ,d O TH O
N-M=]| . : (4.1)
: . : 0 0 w0
(2375 . ap,d 0 0 T+
V(i,5) € {1,...,M}y x {1,....d} ordp(a;;) > p. (4.2)

Proof. This obvious remark was originally made in [5, p. 216]. Write

(et |) =7
with u(T) € K[[T]]* and set o
N =u(T) "ad Q(Mm) 1<i<M ]) ,

d+1<5<d+ M
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Clearly equation (4.1) holds. Moreover for (4,j) € {1,...,M} x {1,...,d} the coefficient a; ;
is a linear combination of (M x M)-minors of the matrix M with coefficients in k[[T]]. Hence,
formula (4.2) also holds. O

4.13. Let k be a field. Let (¢, c) be an integral k-curve, geometrically unibranch at ¢ € €' (k).
Let v € £ (%€)(k) be a primitive k-parametrization of ¢ at c'. We say that v is a rigid arc?
if, for every test-ring (A4, my4), for every A-deformation v4 € Zo(V),(A), there exists a unique
power series 74 (T") € ma[[T]] such that y4(T) = v(T +ra(T)). In the particular case of curves,
we may interpret theorem 1.6 as follows.

Corollary 4.14. Let k be a field. Let € be an integral k-curve and ¢ € € (k). We assume
that (€, ¢) is geometrically unibranch. Let v be a primitive k-parametrization at c. Then the
following conditions are equivalent:

(1) The germ (€, c) is smooth.

(2) The formal neighborhood Zn. (%)~ is isomorphic to DN,

(3) The arc v is rigid.

(4) Let 7: € — € be the normalization of € and 7 the unique lifting of v to €; then the

morphism of formal k-schemes Lo (€)5 = Loo(€) induced by 7 is an isomorphism.

Proof. By theorem 1.6 and standard remarks, we only have to show implication 4= 3. Let
us assume that v is a primitive k-parametrization at c¢ such that the morphism of formal k-

schemes £, (€¢)y — Zo(€)~ induced by the normalization m: € — € is an isomorphism,

and let us show that + is rigid. Note that 7 is the unique isomorphism O, = k[[T]] such

that v =7 04. Let (A, my4) be a test-ring. For every power series 74 € m4[[T]], one has
Vra(M) +T) =7((ra(T)+T))

By assumption, y4(T') — 7(7a(T)) is a natural bijection from £ (€)5(A) onto L (€)~(A).
Since 7 is rigid, we conclude that - is rigid too, which concludes the proof of the implication. [

5. RELATED PROBLEMS

5.1. A slight variation on an argument of [11, proof of Proposition 1.1] also allows to describe
the constant arcs whose formal neighborhood is isomorphic to DY (in arbitrary dimensions),
i.e., smooth constant arcs. We denote by ¢ the canonical section of the projection
70 Lo (V) = L(V) 2 V.

Thus, for every v € V, the point o(v) of £ (V) is the associated constant arc.
Proposition 5.2. Let V be a k-variety and v € V (k) such that dim, (V') > 1. Then the following
conditions are equivalent:

(1) The k-variety V is smooth at v.

(2) The formal neighborhood £ (V') (v) is isomorphic to DN.

In other words, smooth constant arcs on V' correspond to smooth points of V.

Proof. We only have to show implication 2 = 1. By [10, 17.5.1, 17.5.3], it suffices to show that
the local k-algebra Oy, is formally smooth for the m,-adic topology (which coincides here with
the projective limit topology). By [9, 19.3.3,19.3.6] and the hypothesis, the k-algebra O »_ (v} o(v)
is formally smooth for the projective limit topology. Since the continuous morphism

Ovep = Oz (v),0(v)

induced by the projection £, (V) — V admits a continuous retraction (induced by o) we may
conclude the proof by the very definition of formal smoothness. O

1f k is assumed to be perfect, the assumption that c is geometrically unibranch guarantees the existence of
primitive k-parametrizations at c.
2An analogous notion has been originally introduced in [15] for constant arcs.
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5.3. For non-degenerate arcs centered at a unibranch point, we have an analog of theorem 1.6
with regards to the smoothness of the truncations of the involved arc.

Theorem 5.4. Let V be a k-variety and v € V (k). We assume that (’TVTU is a domain. Let
v € Z(V)(k) be a rational non-degenerate arc with v(0) = v. Then the following conditions
are equivalent:

(1) The k-variety V is smooth at v.

(2) There exists an integer n € N such that v, := w°(y) is a smooth point of the jet
scheme £, (V).

(3) For every n € N, the point 7, is a smooth point of £, (V).

Implication 1 = 3 is well-kown (e.g., see [14, Lemme 3.4.2]); 3 = 2 is formal. In the end,
the proof of implication 2 = 1 is very similar to the proof of theorem 1.6. Indeed, we have
to mimick the original proof and replace the use of lemma 4.5 by that of the following lemma,
whose proof is completely similar to that of lemma 4.5.

Lemma 5.5. Let V be a k-variety and v € V (k) such that Oy, is reduced and dim, (V) > 1.
Let v € L (V)(k) be a non-degenerate rational arc with v(0) = v. Let n € N be an integer.
Assume that the formal neighborhood £, (V'), is isomorphic to D}, and that the minimal prime

ideal p of (9/\/\,1, corresponds to the formal branch containing . Let (B,mp) be a local ring.
Then, every morphism of local k-algebras Oy, — (B/m%)[T]/(T™*) lifts to a morphism of
local k-algebras Oy, — B[T]/(T™"!).

Remark 5.6. This completes in particular a result of [11]. In loc. cit., S. ISHII shows that the
jet scheme %, (V') is not smooth at any constant jet centered at a non-smooth point of V' (see
the proof of proposition 1.1 in op.cit.). Theorem 5.4 shows that %, (V) is not smooth at any jet
which is the truncation of a non-degenerate arc centered at a non-smooth unibranch point of V.

Remark 5.7. If the reduced germ (V,v) is no longer assumed analytically irreducible, even if
the formal branch containing ~ is smooth, the truncations v, can be non-smooth points of the
corresponding jet scheme in general. This is already clear for n = 0 but this may fail more
generally for every n. For example let V = Spec(k[X,Y]/(XY)) and «(T) = (T,0); then one
may check that for every non-negative integer n one has

Oz, () = k[ Xo, -, X, Y]/ (XY,
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INTERSECTION SPACES, EQUIVARIANT MOORE APPROXIMATION
AND THE SIGNATURE

MARKUS BANAGL AND BRYCE CHRIESTENSON

ABSTRACT. We generalize the first author’s construction of intersection spaces to the case
of stratified pseudomanifolds of stratification depth 1 with twisted link bundles, assuming
that each link possesses an equivariant Moore approximation for a suitable choice of structure
group. As a by-product, we find new characteristic classes for fiber bundles admitting such
approximations. For trivial bundles and flat bundles whose base has finite fundamental group
these classes vanish. For oriented closed pseudomanifolds, we prove that the reduced rational
cohomology of the intersection spaces satisfies global Poincaré duality across complementary
perversities if the characteristic classes vanish. The signature of the intersection spaces agrees
with the Novikov signature of the top stratum. As an application, these methods yield new
results about the Goresky-MacPherson intersection homology signature of pseudomanifolds.
We discuss several nontrivial examples, such as the case of flat bundles and symplectic toric
manifolds.

1. INTRODUCTION

Classical approaches to Poincaré duality on singular spaces are Cheeger’s L? cohomology
with respect to suitable conical metrics on the regular part of the space ([16], [15], [17]), and
Goresky-MacPherson’s intersection homology [22], [23], depending on a perversity parameter p.
More recently, the first author has introduced and investigated a different, spatial perspective on
Poincaré duality for singular spaces ([3]). This approach associates to certain classes of singular
spaces X a cell complex IP X, which depends on a perversity p and is called an intersection space
of X. Intersection spaces are required to be generalized rational geometric Poincaré complexes
in the sense that when X is a closed oriented pseudomanifold, there is a Poincaré duality isomor-
phism H*(IPX;Q) & H,,_;(I7X;Q), where n is the dimension of X, p and ¢ are complementary
perversities in the sense of intersection homology theory, and H ) H, denote reduced singular
(or cellular) cohomology and homology.

The resulting homology and cohomology theories

HIE(X):H*(IﬁX;Q) and HI;(X):H*([FX;Q)

are not isomorphic to intersection (co)homology IPH.,(X;Q), I;H*(X;Q). Since its inception,
the theory HIZ has so far had applications in areas ranging from fiber bundle theory and com-
putation of equivariant cohomology ([4]), K-theory ([3, Chapter 2.8], [37]), algebraic geometry
(smooth deformation of singular varieties ([10], [11]), perverse sheaves [8], mirror symmetry
[3, Chapter 3.8]), to theoretical Physics ([3, Chapter 3], [8]). For example, the approach of in-
tersection spaces makes it straightforward to define intersection K-groups by K*(I?X). These
techniques are not accessible to classical intersection cohomology. There are applications to
L?-theory as well: In [9], for every perversity p a Hodge theoretic description of the theory
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PNIIE (X;R) is found; that is, a Riemannian metric on the top stratum (which is in fact a fiber-
wise scattering metric and thus very different from Cheeger’s class of metrics) and a suitable
space of L? harmonic forms with respect to this metric (the extended weighted L? harmonic forms
for suitable weights) which is isomorphic to H I;(X;R). A de Rham description of HI;(X;R)
has been given in [5] for two-strata spaces whose link bundle is flat with respect to the isometry
group of the link.

At present, intersection spaces have been constructed for isolated singularities and for spaces
with stratification depth 1 whose link bundles are a global product, [3]. Constructions of I?X
in some depth 2 situations have been provided in [7]. The fundamental idea in all of these
constructions is to replace singularity links by their Moore approximations, a concept from
homotopy theory Eckmann-Hilton dual to the concept of Postnikov approximations. In the
present paper, we undertake a systematic treatment of twisted link bundles. Our method is
to employ equivariant Moore approximations of links with respect to the action of a suitable
structure group for the link bundle.

Equivariant Moore approximations are introduced in Section 3. On the one hand, the exis-
tence of such approximations is obstructed and we give a discussion of some obstructions. For
instance, if S”~! is the fiber sphere of a linear oriented sphere bundle, then the structure group
can be reduced so as to allow for an equivariant Moore approximation to S”~! of degree k,
0 < k < n, if and only if the Euler class of the sphere bundle vanishes (Proposition 12.1).
If the action of a group G on a space X allows for a G-equivariant map X — G, then the
existence of a G-equivariant Moore approximation to X of positive degree k implies that the
rational homological dimension of G is at most &k — 1. On the other hand, we present geomet-
ric situations where equivariant Moore approximations exist. If the group acts trivially on a
simply connected CW complex X, then a Moore approximation of X exists. If the group acts
cellularly and the cellular boundary operator in degree k vanishes or is injective, then X has an
equivariant Moore approximation. Furthermore, equivariant Moore approximations exist often
for the effective Hamiltonian torus action of a symplectic toric manifold. For instance, we prove
(Proposition 12.3) that 4-dimensional symplectic toric manifolds always possess T2-equivariant
Moore approximations of any degree.

In Section 6, we use equivariant Moore approximations to construct fiberwise homology trun-
cation and cotruncation. Throughout, we use homotopy pushouts and review their properties
(universal mapping property, Mayer-Vietoris sequence) in Section 2. Proposition 6.5 relates the
homology of fiberwise (co)truncations to the intersection homology of the cone bundle of the
given bundle. Of fundamental importance for the later developments is Lemma 6.6, which shows
how the homology of the total space of a bundle is built up from the homology of the fiberwise
truncation and cotruncation. In order to prove these facts, we employ a notion of precosheaves
together with an associated local to global technique explained in Section 4. Proposition 6.7
establishes Poincaré duality between fiberwise truncations and complementary fiberwise cotrun-
cations.

At this point, we discover a new set of characteristic classes

Oi(m, k1) c HY(E;Q), d=dimE, i =0,1,2,...,

defined for fiber bundles 7 : E — B which possess degree k,! fiberwise truncations (Definition
6.8). We show that these characteristic classes vanish if the bundle is a global product (Propo-
sition 6.11). Furthermore, they vanish for flat bundles if the fundamental group of the base is
finite (Theorem 7.1). On the other hand, we construct in Example 6.13 a bundle 7 for which
Os(m,2,1) does not vanish. The example shows also that the characteristic classes O, seem to
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be rather subtle, since the bundle of the example is such that all the differentials of its Serre
spectral sequence do vanish.

Now the relevance of these characteristic classes vis-a-vis Poincaré duality is the following:
While, as mentioned above, there is always a Poincaré duality isomorphism between truncation
and complementary cotruncation, this isomorphism is not determined uniquely and may not
commute with Poincaré duality on the given total space E. Proposition 6.9 states that the
duality isomorphism in degree r between fiberwise truncation and cotruncation can be chosen to
commute with Poincaré duality on E if and only if O,(m, k,[) vanishes. In this case, the duality
isomorphism is uniquely determined by the commutation requirement. Thus, we refer to the
classes O, as local duality obstructions, since in the subsequent application to singular spaces,
these classes are localized at the singularities.

The above bundle-theoretic analysis is then applied in Section 9 in constructing intersection
spaces IPX for stratified pseudomanifolds X of stratification depth 1 such that every connected
component of every singular stratum has a closed neighborhood whose boundary is the total
space of a fiber bundle, the link bundle, while the neighborhood itself is described by the cor-
responding cone bundle. A large and well-studied class of stratified spaces that have such link
bundle structures are the Thom-Mather stratified spaces, which we review in Section 8 with par-
ticular emphasis on depth 1. We assume that the link bundles allow for structure groups with
equivariant Moore approximations. The central definition is 9.1; the main result here, Theorem
9.5, establishes generalized Poincaré duality

(1.1) H'(I"X;Q) = H,—_,(I"X; Q)

for complementary perversity intersection spaces, provided the local duality obstructions of the
link bundle vanish.

In the Sections 10, 11, we investigate the signature and Witt element of intersection forms.
We show first that if a Witt space allows for middle-degree equivariant Moore approximation,
then its intersection form on intersection homology agrees with the intersection form of the top
stratum as an element in the Witt group W(Q) of the rationals (Corollary 10.2). Section 11
shows that the duality isomorphism (1.1), where we now use the (lower) middle perversity, can
in fact be constructed so that the associated middle-degree intersection form is symmetric when
the dimension n is a multiple of 4. Let o(/X) denote the signature of this symmetric form.
Theorem 11.3 asserts that o(IX) = o(M,0M), where o(M,0M) denotes the signature of the
top stratum. In particular then, o(1X) agrees with the intersection homology signature. For the
rather involved proof of this theorem, we build on the method of Spiegel [37], which in turn is
partially based on the methods introduced in the proof of [3, Theorem 2.28]. It follows from all
of this that there are interesting global signature obstructions to fiberwise homology truncation
in bundles. For instance, viewing the complex projective space CP? as a stratified space with
bottom stratum CP' ¢ CP?, the signature of CP? is 1, whereas the signature of the top stratum
D* vanishes. Indeed, the normal circle bundle of CP!, i.e. the Hopf bundle, does not have a
degree 1 fiberwise homology truncation, as can of course be verified directly.

On notation: Throughout this paper, all homology and cohomology groups are taken with
rational coefficients. Reduced homology and cohomology will be denoted by H, and H*. The
linear dual of a K-vector space V is denoted by V1 = Hom(V, K).

2. PROPERTIES OF HoMOTOPY PUSHOUTS

This paper uses homotopy pushouts in many constructions. We recall here their definition,
as well as the two properties we will need: their universal mapping property and the associated
Mayer-Vietoris sequence.
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Definition 2.1. Given continuous maps Y} L X LI Y> between topological spaces we

define the homotopy pushout of f; and fs to be the topological space Y1 Ux Y3, the quotient of
the disjoint union X x [0,1] UY; UY5 by the smallest equivalence relation generated by

{(z,0)~ fi(@) |z e X}U{(z,1) ~ fa(z)| 2 € X}

We denote &; : Y; = Y1 Ux Yo, for i = 1,2, and & : X x I — Y7 Ux Y5, to be the inclusions into
the disjoint union followed by the quotient map, where I = [0, 1].

Remark 2.2. The homotopy pushout satisfies the following universal mapping property: Given
any topological space Z, continuous maps g; : Y; — Z, and homotopy h : X x I — Z satisfying
h(z,i) = git+1 0 fir1(x) for z € X, and 7 = 0,1, then there exists a unique continuous map
g:Y1Ux Yy — Z such that g; =go&; fori=1,2, and h = g o &.

From the data of a homotopy pushout we get a long exact sequence of homology groups

(fl*vf?*) E1x—&2x
E—

(2.1) > H, (X) H, (Y1) & H, (Y2) =5 H, (Y; Ux Ya) -

This is the usual Mayer-Vietoris sequence applied to Y7 Ux Y2 when it is decomposed into the
union of (Y7 Ux ¥2) \ Y; for i = 1,2, whose overlap is X crossed with the open interval. If X is
not empty, then there is also a version for reduced homology:

§1x—82x 75

i, () P, () © By (v) S, (1 Ux Vo) 2

(2.2) e H, (X)

3. EQUIVARIANT MOORE APPROXIMATION

Our method to construct intersection spaces for twisted link bundles rests on the concept of
an equivariant Moore approximation. The transformation group of the general abstract concept
will eventually be a suitable reduction of the structure group of a fiber bundle, which will enable
fiberwise truncation and cotruncation. The basic idea behind degree-k Moore approximations
of a space X is to find a space X, whose homology agrees with that of X below degree k,
and vanishes in all other degrees. It is well-known that Moore-approximations cannot be made
functorial on the category of all topological spaces and continuous maps, as explained in [3].
The equivariant Moore space problem was raised in 1960 by Steenrod, who asked whether given
a group G, a right Z[G]-module M and an integer k > 1, there exists a topological space X
such that m (X) = G, H;(X;Z) = 0, i # 0,k, Hy(X;Z) = Z, and Hy(X;Z) = M, where X
is the universal cover of X, equipped with the G-action by covering translations. The first
counterexample was due to Gunnar Carlsson, [14]. Further work on Steenrod’s problem has
been done by Douglas Anderson [1], James Arnold [2], Peter Kahn [26], [27], Frank Quinn [34],
and Justin Smith [36].

Definition 3.1. Let G be a topological group. A G-space is a pair (X, px), where X is a
topological space and px : G — Homeo (X) is a continuous group homomorphism. A morphism
between G-spaces f : (X, px) — (Y, py) is a continuous map f: X — Y that satisfies

py(9)o f = f o px(g), for every g € G.
We denote the set of morphisms by Homg (X, Y'). Morphisms are also called G-equivariant maps.
We will write g -2 = px(g9)(z), x € X, g € G.

Let ¢X be the closed cone X x [0,1]/X x {0}. If X is a G-space, then the cone ¢X becomes
a G-space in a natural way: the cone point is a fixed point and for t € (0,1], g € G acts
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by g (x,t) = (¢ - x,t). More generally, given G-equivariant maps Y Sox P Y5 , the

homotopy pushout Y; Ux Y5 is a G-space in a natural way.

Definition 3.2. Given a G-space X and an integer k > 0, a G-equivariant Moore approzimation
to X of degree k is a G-space X o together with a continuous G-equivariant map fop : X<p — X,
satisfying the following properties:

o H,.(f<r): Hr (X<i) — H, (X) is an isomorphism for all r < k, and
e H.(X.)=0for all r > k.

Definition 3.3. Let X be a nonempty topological space. The (Q-coefficient) homological di-
mension of X is the number

Hdim (X) =min{n € Z: H,, (X) =0 for all m > n},
if such an n exists. If no such n exists, then we say that X has infinite homological dimension.

Example 3.4. There are two extreme cases, in which equivariant Moore approximations are
trivial to construct. For k = 0, any Moore approximation must satisfy H; (X<o) = 0, for all
i > 0. This forces X<o = (), and f<¢ is the empty function. If X has Hdim (X) = n, then for
k>n+1set Xop = X and fop = idx. Hence, any space of homological dimension n has an
equivariant Moore approximation of degrees k < 0 and k > n.

Example 3.5. If G acts trivially on a simply connected CW complex X, then Moore approxi-
mations of X exist in every degree. For spatial homology truncation in the nonequivariant case,
see Chapter 1 of [3], which also contains a discussion of functoriality issues arising in connec-
tion with Moore approximations. The simple connectivity condition is sufficient, but far from
necessary.

Example 3.6. Let G be a compact Lie group acting smoothly on a smooth manifold X. Then,
according to [25], one can arrange a CW structure on X in such a way that G acts cellularly.
Now suppose that X is any G-space equipped with a CW structure such that G acts cellularly.
If the k-th boundary operator Oy : Ci(X) — Cr_1(X) in the cellular chain complex of X
vanishes, then the (k — 1)-skeleton of X, together with its inclusion into X and endowed with
the restricted G-action, is an equivariant Moore-approximation X, = X*~1. This condition is
for example satisfied for the standard minimal CW structure on complex projective spaces and
tori. However, in order to make a given action cellular, one may of course be forced to endow
spaces with larger, nonminimal, CW structures. Similarly, if 0y, is injective, then X_; = X% is
an equivariant Moore-approximation.

The following observation can sometimes be used to show that certain G-spaces and degrees
do not allow for an equivariant Moore approximation.

Proposition 3.7. Let G be a topological group and X a nonempty G-space. Let Gy be the
G-space G with the action by left translation. If

Homg (Xa G)\) ?é 0
and X has a G-equivariant Moore approximation of degree k > 0, then
k—1>Hdim (G).

Proof. Let fo : X< — X be a G-equivariant Moore approximation, k£ > 0. Precomposition
with fok induces a map

fik : HOIIlG (X, G)\> — HOIHG (X<k, G)\) .
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As k > 0 and X is not empty, we have Ho(X<g) = Ho(X) # 0. Thus X is not empty. For
each ¢ € Homg (X<k, Gy), we note that ¢ is surjective since X, is not empty, left translation
is transitive and ¢ is equivariant. Choose & € X< such that ¢ (x) = e. Define h, : G — X
by h. (9) = g -x. Then ¢ o h, = idg, since

¢ (ha (9)) = & (9-x) = g (x) = ge = g.
Therefore the map induced by ¢ on homology has a splitting induced by h,, so there is an
isomorphism
Hr (X<k) = Ar S Hr (G)

for some subgroup A, C H, (X<i) and every r. Since by definition H, (X.;) = 0 for r > k,
then if such a ¢ exists we must have Hdim (G) < k — 1. The condition Homg (X, Gy) # 0 is
sufficient to guarantee the existence of such a ¢. O

Example 3.8. By Proposition 3.7, the action of S' on itself by rotation does not have an
equivariant Moore space approximation of degree 1.

Consider S' acting on X = S! x S? by rotation in the first coordinate and trivially in
the second coordinate. Example 3.4 shows that for £ < 0 and k > 4, S'-equivariant Moore
approximations exist trivially. By Proposition 3.7, there is no such approximation for £ = 1. We
shall now construct an approximation for degree k = 2. Fix a point yg € S%. Let i : S — X,
0 — (6,90) , be the inclusion at yo. Let S* act on itself by rotation, then the map i is equivariant.
Furthermore, by the Kiinneth theorem we know that H; (X) = Q is generated by the class
[ST x yo], and Hi (i) : Hy (S*) — Hi(X) is an isomorphism taking [S'] to [S* X yo]. Thus
since both S' and X are connected, we have that the map i gives a S'-equivariant Moore space
approximation of degree 2.

Further positive results asserting the existence of Moore approximations in geometric situa-
tions such as symplectic toric manifolds are discussed in Section 12.

4. PRECOSHEAVES AND LOCAL TO GLOBAL TECHNIQUES

The material of this section is fairly standard ([12]); we include it in order to fix terminology
and notation. Let B be a topological space and let V.Sg denote the category of rational vector
spaces and linear maps.

Definition 4.1. A covariant functor F : 7B — V Sg from the category 7B of open sets on B,
with inclusions for morphisms, to the category V Sg, is called a precosheaf on B. For open sets
U C V C B, we denote the result of applying F to the inclusion map U C V' by

by FU) = F (V).
A morphism f : F — G of precosheaves on B is a natural transformation of functors.

Let U = {Ua},cp be an open cover of B, and let 7 be the category whose objects are unions
of finite intersections of open sets in ¢/ and whose morphisms are inclusions. There is a natural
inclusion functor v : 7Y — 7B, regarding an open set in 7Y as an object of 7B. This realizes
TU as a full subcategory of 7B.

Definition 4.2. A precosheaf F on B is U-locally constant if for any U, € U and any U which
is a finite intersection of elements of U and intersects U, nontrivially, the map

it v, t F(UaNU) = F (Uy)

is an isomorphism.
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Consider the product category 7U x 7U whose objects are pairs (U, V) with U,V € 7U, and
whose morphism are pairs of inclusions (U, V) — (U’, V') given by U C U’ and V' C V’. Define
the functors N, U : 7U x TU — 7U that take the object (U, V) to UNV and U UV, respectively,
and the morphism (U, V) — (U’,V’) to the inclusions UNV Cc U' NV and UUV Cc U' UV".
Similarly we have the projection functors p; : 7U x TUU — TU, for © = 1,2 where p; projects onto
the i-th factor. The inclusions U,V C UUV and U NV C U,V induce natural transformations
of functors j; : p; — U, and ¢; : N — p; for ¢ = 1,2. Applying a precosheaf F to the j;(U, V),
we obtain linear maps F(U) — F(UUV), F(V) - F(U UV), which we will again denote by
J1,jo (rather than F(j;(U,V))). Similarly for the ¢;. Thus for any precosheaf F on B we have
the morphisms

FUNV) L2 r 0y e FVY 2 FUUY)
for any object (U,V) in 7U x 7U. The functoriality of F implies that (j1 — j2) o (¢1,t2) = 0.
Any morphism of precosheaves f : F — G gives a commutative diagram

(Ll 7L2)

(4.1) FUNV) 227wy e F V)Y =2 FUUY)
if(UﬂV) Fef(v) lf(UUV)
GUNV) - wyegv) i gwuy).

Definition 4.3. Let F,. be a collection of precosheaves on B, for r > 0, and let U be an open
cover of B. We say that the sequence F, satisfies the U-Mayer-Vietoris property if there is a
natural transformation of functors on 74 x U,

52-]::.71'OU —>]—'Z-,100,
for each ¢, such that for every pair of open sets U,V € 7U/ the following sequence is exact:

i+l (Livbg) it—34 7

57, 5
—=Fin (UUV)—FUNV)—F{U)e F (V) —=F (UUV) —.

A collection of morphisms f,. : F. = G,., for r > 0, is called d-compatible if for each pair of open
sets U,V € 17U the following diagram commutes for all ¢ > 0:

67, (UV)
4.2 Fia(UUV FUNV
+
fz‘+1(UUV)l lff,(UﬁV)
88,1 (UV)
Gin (UUV) —2 G (UNV).

Proposition 4.4. Let B be a compact topological space and let U be an open cover of B. Let
fi + Fi — G; be a sequence of 6-compatible morphisms between U-locally constant precosheaves
on B that satisfy the U-Mayer-Vietoris property. If f; (U) : F; (U) — G; (U) is an isomorphism
for every U € U and for every i > 0, then f; (B) : F; (B) — G; (B) is an isomorphism for all
1> 0.

Proof. We shall prove the following statement by induction on n: For every U € 7/ which can be
written as a union U = U, U---UU, of n open sets U; € 7U, each of which is a finite intersection
of open sets in U, the map f;(U) : F;(U) — G;(U) is an isomorphism for all ¢ > 0. The base case
n = 1 follows from the fact that F;, G; are U-locally constant together with the assumption on
fi(U) for U € U. Denote U? = UyU---UU,U---UU,, and VI = (U, N U;) - --UU;U- - -U(U, N T;);
then U = U UU; and V7 = U7 NUj. Since the f; are §-compatible, by (4.2) and (4.1) we have
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the commutative diagram below, whose rows are the U/-Mayer-Vietoris sequences associated to
the pair U7 and U;:
i (VI) ——=F (U9) @ Fi (U)) —= F; (U) —2> Fiq (V) ——

lfb lﬁ(Uﬂ')@fﬁ(Uﬂ lmv) lfu(vf)
—— G, (V1) —= G, (U7) & G (U}) — Gi (U) —> G,y (Vi) —.

R

Each of V7,U7, and Uj is a union of less than n open sets, each of which is a finite intersection
of elements of &. Thus by induction hypothesis, f;(V7), f;(U?) and f;(U;) are isomorphisms for
all i. By the 5-lemma, f;(U) is an isomorphism for all ¢, which concludes the induction step.
Since B is compact, there is a finite number of open sets in & which cover B. Thus the induction
yields the desired result. O

5. EXAMPLES OF PRECOSHEAVES

Throughout this section we consider a topological fiber bundle 7 : E — B with fiber L and
topological structure group G. We assume that B, E, and L are compact oriented topological
manifolds such that E is compatibly oriented with respect to the orientation of B and L. Set
n =dmF, b = dimB and ¢ = dimL = n —b. We may form the fiberwise cone of this
bundle, DE, by defining DE to be the homotopy pushout, Definition 2.1, of the pair of maps

B<" p-.E By Remark 2.2, the map 7 induces a map np : DE — B, given by idp on
B and (z,t) — w(z) for (x,t) € E x I. This makes DFE into a fiber bundle whose fiber is c¢L, the
cone on L, and whose structure group is G. We point out, for U C B open, that ﬂBlU — U is

obtained as the homotopy pushout of the pair of maps U <|— 71U —%s 771U . One more
fact that will be needed is that the pair (DFE, E), where E is identified with Fx {1} C DE, along
with a stratification of DE given by B C DFE, is a compact Q-oriented O-stratified topological
pseudomanifold, in the sense of Friedman and McClure [21]. Here we have identified B with
the image o (B) of the “zero section” ¢ : B — DE, sending x € B to the cone point of cL
over z. Similarly for any open U C B, the pair (75'U,77'U) is a Q-oriented O-stratified
pseudomanifold, though it will not be compact unless U is compact. We write 67‘(‘51(] =7 U.

Example 5.1. For each r» > 0, there are precosheaves m,H, on B defined by
U H, (n7'(U)).

By the Eilenberg-Steenrod axioms, these are U-locally constant, and satisfy the U/-Mayer-Vietoris
property for any good open cover U of B. (An open cover U of a b-dimensional manifold is good,
if every nonempty finite intersection of sets in I is homeomorphic to R?. Such a cover exists if
the manifold is smooth or PL.)

Let 7’ : E/ — B be another fiber bundle, and f : E — E’ a morphism of fiber bundles. Then
f induces a morphism of precosheaves f, : mH, — 7. H,, given on any open set U C B by

£.U) = (floso). + He (x7'0)  H, (#'0).
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Furthermore, for any pair of open sets U,V C B, we have the following commutative diagram
whose rows are exact Mayer-Vietoris sequences:

(51)  —H, (71 (UNV)) —H, (x"'U) @ H, (x7'V) — H, (x" (U U V)) 2>
lfr(UﬂV) lfr(U)éBfr(v) ifT(UUV)
— H, (W”l(U N V)) — H, (w'ilU) @ H, (7r’71V) — H, (W’fl(U U V)) LN

Thus, for any good open cover U, the map f induces a d-compatible sequence of morphisms
between precosheaves which satisfy the U-Mayer-Vietoris property, and are U-locally constant.

Example 5.2. Define the precosheaf of intersection homology groups, mp.ZPH, for each r > 0,
and each perversity P, by assigning to the open set U C B the vector space, IPH, (ﬂ'BlU ) We
use the definition of intersection homology via finite singular chains as in [21]. This is a slightly
more general definition than that of King,[28], and Kirwan-Woolf [29]. For our situation the
definitions all agree with the exception that the former allows for more general perversities, see
the comment after Prop. 2.3 in [21] for more details. In Section 4.6 of Kirwan-Woolf [29] it
is shown that each wp,ZPH, is a precosheaf for each r > 0, and that this sequence satisfies
the U-Mayer-Vietoris property for any open cover U of B. Furthermore, these are all U-locally
constant for any good cover U of B.

Let f : E — E’ be a bundle morphism with dim E > dim E’. Using the levelwise map
ExI— E x1I, (et) — (f(e),t), and the identity map on B, f induces a bundle morphism
fp : DE — DE’. Recall that a continuous map between stratified spaces is called stratum-
preserving if the image of every pure stratum of the source is contained in a single pure stratum of
the target. A stratum-preserving map g is called placid if codim g=1(S) > codim S for every pure
stratum S of the target. Placid maps induce covariantly linear maps on intersection homology
(which is not true for arbitrary continuous maps). The map fp is indeed stratum-preserving
and, since dim F > dim E’, placid and thus induces maps

. 7P -1 5 ;-1
(folesr @) : IPHy (7' U) — IPH, (WD U)
for each open set U C B. This way, we obtain a sequence of §-compatible morphisms
fpw : TR TP M, — 7 TP M,

With IPC,(X) the singular rational intersection chain complex as in [21], we define in-
tersection cochains by I;C*(X) = Hom(IPC.(X),Q) and define intersection cohomology by
I;H*(X) = H*(IzC*(X)). Then the universal coefficient theorem

;H*(X) = Hom(I’H,(X),Q)

holds. Theorem 7.10 of [21] establishes Poincaré-Lefschetz duality for compact Q-oriented n-
dimensional J-stratified pseudomanifolds (X,9X). Some important facts are established there
in the proof:

(1) For complementary perversities p + g = ¢, there is a commutative diagram whose rows

are exact:
(5.2) — % LH(X)— > LH" (0X) —2> LH™! (X,0X) —>

X,0X) —">ITH,_,_1 (0X) "> ITH, . 4 (X) —

:lD; :ngx :\LfoTl
52 ( 5 i
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(2) The inclusion X \ 90X — X induces an isomorphism
(5.3) IH, . (X\0X)~=I1H,_,(X).

Consider the smooth oriented c-dimensional manifold L. The closed cone cL is a compact Q-
oriented (¢ + 1)-dimensional O-stratified pseudomanifold. Thus the long exact sequence coming
from the bottom row of diagram (5.2) gives

il

_ 80, 0 _
(5.4) ——IPH, 1 (cL,L) L IPH, (L) ——IPH, (cL) —— IPH, (¢cL,L) — .

Proposition 5.3. Let D be a perversity and let k = c—p(c+ 1). Then for the maps in the exact
sequence (5.4) we have an isomorphism

i%: H, (L) — IPH, (cL),

when r < k, and an isomorphism
62,1 : IPH, 1 (cL,L) — H, (L),
when r > k.

Proof. The standard cone formula for intersection homology asserts that for a closed c-dimensional
manifold L, the inclusion L < cL as the boundary induces an isomorphism

IPH, (L) = IPH, (cL) for r < c—p(c+ 1),
whereas IPH, (cL) =0 for r > ¢ — p(c + 1). (By (5.3) above, this holds both for the closed and

the open cone.) This already establishes the first claim. The second one follows from the cone
formula together with the exact sequence (5.4). O

6. FIBERWISE TRUNCATION AND COTRUNCATION

Let w : E — B be a fiber bundle of closed topological manifolds with fiber L and structure
group G such that B, E and L are compatibly oriented. Suppose that a G-equivariant Moore
approximation L. of degree k exists for the fiber L. The bundle E has an underlying principal
G-bundle Ep — B such that E = Ep X L. Using the G-action on L.j, we set

ft<x B = FEp Xg Lcg.

Then ft . F is the total space of a fiber bundle w, : ft ., £ — B with fiber L., structure group
G and underlying principal bundle EFp. The equivariant structure map fop : Lox — L defines
a morphism of bundles

Fop:ftepr B =FEp xXg Loy = EpxgL=E.
Definition 6.1. The pair (ft<xE, F<y) is called the fiberwise k-truncation of the bundle E.

Definition 6.2. The fiberwise k-cotruncation ft>pF is the homotopy pushout of the pair of
maps

B<"f_ B E .

Let c>; : E — ft>, /), and 0 : B — ft>,F be the maps & and &, respectively, appearing in
Definition 2.1.

Since F. satisfies m<, = m o F.; we have, by the universal property of Remark 2.2, using
the constant homotopy, a unique map >y, : ft>, £ — B satisfying 7 = n>p 0c>, m>, 00 =idp
and (m>x 0 &) (x,t) = mi(z) for all ¢ € I, where &y : ft<xF x I — ft>,F is induced by the
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inclusion (as in Definition 2.1). The map 7>y : ft>xF — B is a fiber bundle projection with
fiber the homotopy pushout of

. Lot r

i.e. the mapping cone of f.j. Note that this mapping cone is a G-space in a natural way (with
* as a fixed point), since f< is equivariant. The map ¢y : E — ft>,E is a morphism of fiber
bundles. Furthermore, the bundle 7> has a canonical section ¢, sending x € B to % over z.

Definition 6.3. Define the space Q> to be the homotopy pushout of the pair of maps
x<~—B—2% ft>p E .
This is the mapping cone of o and hence
H.(Q>1E) = H.(ft>E, B),
where we identified B with its image under the embedding o. Define the maps
Esp Ttk B — Q> E and [ 1 x — Q> F
to be the maps &, and &, respectively (Definition 2.1). Set
Csp=E&k0cs, E— QsiE.
For each open set U C B, the space ngU is the pushout of the pair of maps

Tk F
U <k|ﬂ_2}1U <k U
and the restrictions of >y induce a morphism of fiber bundles ¢34 (U) : 771U — 73, U. Define
the precosheaf 9K, by the assignment U Hr(ﬂ;,iU, U) (again identifying U with its image
under o). That this assignment is indeed a precosheaf follows from the functoriality of homology
applied to the commutative diagram of inclusions

(rSpUU) —— (75, V, V)

|

(T2 W, W)
associated to nested open sets U C V C W. The maps CF(U) : H,(z7'U) — Hr(ﬂ'gilﬁ U),

given by the composition

Hr(’iT_lU) CZk—(U>)*

H,(n53U) — Hi (72U, U),
define a morphism of precosheaves

Cf e H, — ’/T?Hr
for all » > 0. The following lemma justifies the terminology “cotruncation”.

Lemma 6.4. For U = R®, the map C¥(U) is an isomorphism for v > k, while H, (xS, U,U) =0
forr <k. B

Proof. Let L>j, denote the mapping cone of fcj : Ly — L. Since the bundles 7 and 7>j both
(compatibly) trivialize over U = R?, the map C*(U) can be identified with the composition

H,(R® x L) — H.(R® x Ls},) — H.(R® x (L>g, %)),
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which can further be identified with
H,(L) — H,(L>y).
This map fits into a long exact sequence
H(Ley) =5 H.(L) — H,(Lsk) — Hy—1(Lek).
The result then follows from the defining properties of the Moore approximation f.g. ([l

As in Example 5.1, the map Fcy, : H, (ft<xE) — H, (E) is F<j,, (B) for the morphism of
precosheaves Fep, @ T Hr — M,y given by Fegls : Hr(wz,iU) — H,. (7~ tU) for each r > 0.

For each open set U we have the long exact sequence of perversity p-intersection homology
groups

5 82U o) i2(U

(6.1) e [pHT_H (7T1_71Ua 37r1_)1U) AN }_]T (WﬁlU) % IPH, (ﬂ'BlU) Ll C.
(Recall that 7p : DE — B is the projection of the cone bundle.) When U varies, this exact
sequence forms a precosheaf of acyclic chain complexes. In particular the morphisms ¢ and
59 +1 are morphisms of precosheaves for every r > 0. From now on, in order to have good open
covers, we assume that B is either smooth or at least PL.

Proposition 6.5. Fiz a perversity p. Letn —1 = dimFE, b = dimB, ¢c =n —b—1, and
k=c—p(c+1). Assume that B is compact and that an equivariant Moore approrimation
f<k : Ler = L to L of degree k exists. Then the compositions

i% (B) o Fepy : Hy (ft<,F) — IPH, (DE)

T
and
C* 042, (B): IPH, 11 (DE, E) = H,(ft>4E, B) = H, (Q>4E)
are isomorphisms for all v > 0.

Proof. We use our local to global technique. Let U/ be a finite good open cover of B which
trivializes E. The map F-j induces (by restrictions to preimages of open subsets) a map of
precosheaves as demonstrated in Example 5.1. Both i and F. k% are sequences of §-compatible
morphisms of U-locally constant precosheaves that satisfy the U/-Mayer-Vietoris property. Let
U € U, then H, (ﬂ'in) = H, (L<i) and Fepyr = f<ks is an isomorphism in degrees r < k
and 0 in degrees r > k. Likewise by Proposition 5.3, the map ¢ induces an isomorphism
H, (L)~ IPH, (WBIU) in degrees r < k and 0 in degrees r > k, since

1t U2 U x L =R x cL,

IPH, (R® x cL) = IPH, (cL), and we can identify i? (U) with ¢ from (5.4). Thus, the composi-
tion is an isomorphism in every degree. We can now apply Proposition 4.4 to obtain the desired
result.

A analogous argument gives the desired result for the second statement, using Lemma 6.4 in
conjunction with Proposition 5.3 to establish the base case. ([l

It follows from Proposition 6.5 that i?(B) : H,.(E) — IPH,(DE) is surjective for all r,
Fop : Ho(ft<xE) — H,(E) is injective for all r, C* : H,(E) — H,(ft>,E, B) is surjective for all
r, and 62,,(B) : IPH, 1 (DE, F) — H,(E) is injective for all r. We may use the isomorphisms
in Proposition 6.5 to identify H, (ft-,E) with IPH, (DE) and H, (Q>kFE) with IPH, ., (DE, E).
In doing so, we may consider the exact sequence

2]

_ 89 i _ o
6.2 — ~I[PH,,, (DE,E) —*% H, (E) -~ [PH, (DE) 2>~
+

)
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and identify F.y, as a section of i, and C¥ as a section of 62, ;. Thus we see that jo = 0 for

every r > 0, and we have a split short exact sequence

5?+1 i2
(6.3) 0—=IPH, ., (DE,E) _H,(E)___ IPH,(DE)——>0.
ck Fegp,r
Lemma 6.6. The sequence
Fep C>p o«

0 — Ho(ft<1B) =% H.(BE) =% H(Qs1E) — 0
18 exact.
Proof. Only exactness in the middle remains to be shown. The standard sequence
ftep B v pe, cone(F)

induces an exact sequence

Fekr

(6.4) H,(fteE) =% H,(E) — H,(cone(F.)).
Collapsing appropriate cones yields homotopy equivalences
cone(Fy) — fts, E/B «— Qs E
such that the diagram
EC—— cone(F<,) — ft>, F/B

C>k£\
3

ft>p B> Qs E —— ft>,E/B

commutes. The induced diagram on homology,

H,(E) — H,(cone(F.},)) — H,(ft>xE/B)

C>k*i
E>kx

Hr(ftZkE) —_— ﬁr(QZkE) i- Itjr(ftZkE/B),

shows that the homology kernel of E — cone(Fcj) equals the kernel of &> pxc>ps = Cspa, but it
also equals the image of Fj , by the exactness of (6.4). O

Proposition 6.7. Let n — 1 = dimFE, b = dimB and ¢ = n — b — 1. For complementary
perversities p+q =1, letk =c—p(c+1) andl = c—q(c+1). Assume that an equivariant
Moore approximation to L exists of degree k and of degree I. Then there is a Poincaré duality
isomorphism _
Dy - Hr(ft<kE) = anrfl(QZlE).

Proof. We use the isomorphisms in Proposition 6.5 and the Poincaré-Lefschetz duality of [21],
as described here in (5.2), applied to the O-stratified pseudomanifold (DE, F). By definition,
Dy, ; is the unique isomorphism such that
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commutes. O

It need not be true, however, that the diagram

F2y,
(6.5) H" (E) ——* » H™ (ft 1 E)
DEJ/: :ka,L
C>ix

Hn—r—l (E) — ~n—r—1 (QZZE)

commutes, see Example 6.13 below. It turns out that there is an obstruction to the existence of

any isomorphism H" (ft<xE) = H,,_,_1(Q>;F) such that the diagram (6.5) commutes.
Definition 6.8. Let k,[ be two integers. Given G-equivariant Moore approximations
fewiLew > L, fa:La— L,
the local duality obstruction in degree ¢ is defined to be
Oi(m k1) = {C%(@) UCLy(y) | w € H(Q>1E), y € H" ' (@x1E)} C H"!(E).

Locality of this obstruction refers to the fact that in the context of stratified spaces, the
obstruction arises only near the singularities of the space. Clearly, the definition of O;(w, k,1)
does not require any smooth or PL structure on B and thus is available for topological base
manifolds. The obstruction set O;(w, k,1) is a cone: If z = C% () UC%,(y) is in O;(m, k, 1) then
for any A\ € Q, B -

Az = C%p (M) UCE,(y) € O(m, k, ).
If E is connected, then H"~!(FE) = Q is one-dimensional, so

either O;(m, k,1) =0 or O;(m, k1) =Q.

Proposition 6.9. There exists an isomorphism D : H" (ft<x E) = H,,_,_1(Q>E) such that

*

F<k
H" (B) —=% ~ H" (ft_xF)

DElu |0

Cxriv ~
Hy r 1 (E) £> n—r—1 (QZZE)
commutes if and only if the local duality obstruction O,.(m,k,l) vanishes. In this case, D is
uniquely determined by the diagram.

Proof. We have seen that both FZ, and C5,;. are surjective and their respective images have
equal rank. Thus by linear algebra D exists if and only if Dp(ker FZ,) = kerC>i.. By
Lemma 6.6, ker F'Z, = imC%,. Thus the condition translates to: For every = € I:V’(szE),
C>1+DC%,(x) = 0. Rewriting this entirely cohomologically using the universal coefficient the-
orem, this translates further to
CL(z) Ul (y) =0

for all x,y.

The uniqueness of D is standard: If © € H"(ft<xF)), then D(z) = C>uDg(z'), where
x' € H"(E) is any element with F%, (') = . By the condition on the kernels, this is independent
of the choice of ’. O

Proposition 6.10. If O;(m, k,l) = 0, then the unique D given by Proposition 6.9 equals the
Dy, constructed in Proposition 6.7.
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Proof. This follows from the diagram

s

e a
I;H"(DE) ——— H"(E) ——" > H"(ft-}, E)

DDEl: DE\L: :\LD

>l

_ C ~
I9H,_(DE,E) 2—>H, , 1(E) —= H,_,_1(QsE).

The left hand square is part of the commutative ladder (5.2). The right hand square commutes
by the construction of D. Since the horizontal compositions are isomorphisms, D = Dy ;. O

Although superficially simple, this proposition has rather interesting geometric ramifications:
Since Dy can always be defined, even when the duality obstruction is not zero, the proposition
implies that in such a case, diagram (6.5) cannot commute. This means that Dy ; is not always
a geometrically “correct” duality isomorphism, and the duality obstructions govern when it is
and when it is not.

It was already shown in [3, Section 2.9] that if the link bundle is a global product, then
Poincaré duality holds for the corresponding intersection spaces. This suggests that the duality
obstruction vanishes for a global product. We shall now verify this directly:

Proposition 6.11. For complementary perversities p+q =t, let
k=c—Dp(c+1) and l=c—G(c+1).
If 7: E =B x L — B is a global product, then O;(m,k,l) =0 for all i.

Proof. We have ft>, I/ = B x L>j; and by the Kiinneth theorem, the reduced cohomology of
Q> is given by

H*(QskxE) = H*(ft>, E, B) = H*(B X Lsj, B x ) = H*(B X (L>p, ))
~ H*(B) ® H*(L>g, %).

Let f>r : L = L>j be the structural map associated to the cotruncation. By the naturality of
the cross product, the square

H*(E) <~ H*(B) ® H*(L)

cng Tid@f%k

H*(Q1E) <;;H*(B) ® H*(L>k, %)

commutes. Let x € ﬁi(QZkE), Yy € ﬁ”fl’i(QzlE). Their images under the Eilenberg-Zilber
map are of the form

EZ(z) =Y b, @e7*, b € H'(B), ;% € H*(Lzg, %),

EZ(y) = Y b, @eg!, b € H*(B), €' € H*(Lx1,%),
degb, + degez* =i, degb, + degeZ! =n — 1 —i. Thus

(id®f%,) BZ(z) U (id @ f%)) BZ(y) = (Z by ® fgk(e?’“)> u (Z b, ® f;@?))
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and
CLp(x) UCE,(y) = x o (iId@fL,) BZ(z) U x o (id @ f%;) EZ(y)

(Zbr X f%(&”)) U (Z by x f§1(651)>
= 32 0 ) X U )

If deg %, (e2%) + deg f%;(e Zh < dimL, then degb, + degb’, > dim B and thus b, Ub, = 0.
If degfik( 7F) + deg f3)(ez!) > dim L, then trivially f%,(e7*) U f3,(ez!) = 0. Finally, if
deg f>k( k) + deg fZi(e ->!) = dim L, then fii(e =) Ufi(e 2!) = 0 by the defining properties of
cotruncation and the fact that k& and ! are complementary. This shows that
CLr(r) Ul (y) = 0.
(]

This result means that, as for other characteristic classes, the duality obstructions of a bundle
are a measure of how twisted a bundle is. An important special case is p(c+1) = G(c+1). Then
k=1, Q>rE =Q>F, and for z € H(Q>rE), y € H" '7(Q>1E),

C2(@) UCLi(y) = Co4(a Uy).
By the injectivity of C%,, this product vanishes if and only if z Uy = 0. So in the case k = [
the local duality obstruction O,(w,k, k) vanishes if and only complementary cup products in
H *(Q>rE) vanish. For a global product this is indeed always the case, by Proposition 6.11.

Example 6.12. Let B =52 L =5%and E = B x L = 5% x S3. Then ¢ = 3 and, taking p and
q to be lower and upper middle perversities,
k=3-m4)=2=3-14) =1
The degree 2 Moore approximation is L« = pt and the cotruncation is L>o >~ 53 = L. Thus
ftso B =B x Ly ~S5?*xS*=F

The reduced cohomology H(Q>2E) = H(S2 x (53, pt)) is isomorphic to Q for i = 3,5 and zero
for all other ¢. Thus all (and in particular, the complementary) cup products vanish and so the
local duality obstruction O,(m,2,2) vanishes.

Here is an example of a fiber bundle whose duality obstruction does not vanish.

Example 6.13. Let Dh be the disc bundle associated to the Hopf bundle h : S3 — S2, i.e. Dh
is the normal disc bundle of CP' in CP2. Now take two copies Dhy — ST and Dh_ — S% of
this disc bundle and define E as the double

E = Dhy Ugs Dh_.

Then E is the fiberwise suspension of h and so an L = S%-bundle over B = 52, with L the
suspension of a circle. Let 04,0_ € L be the two suspension points. The bundle E is the sphere
bundle of a real 3-plane vector bundle & over S? with & = n @ R*, where 7 is the real 2-plane
bundle whose circle bundle is the Hopf bundle and Kl is the trivial line bundle. The points o4
are fixed points under the action of the structure group on L. Let p be the lower, and g the
upper middle perversity. Here n = 5, b = 2 and ¢ = 2. Therefore, kK = 2 and [l = 1. Both
structural sequences

Lo 202
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and
L3031,
are given by
{0} 824 g2,
The identity map is of course equivariant, but the inclusion of the suspension point is equivariant
as well, since this is a fixed point. It follows that the fiberwise (co)truncations
ftair B — E — ft> B
and
ftcoF — E — ft>o B
are both given by
2 S R,
where s, is the section of 7 : E — S? given by sending a point to the suspension point o, over
it. Furthermore,

Q18 = Q>2E = EUg D3,

which is homotopy equivalent to complex projective space CP?. Indeed, a homotopy equivalence
is given by the quotient map

~ Qs1E _ E _ Dhy Ugs Dh_

Q=18 = =23 = = ~ D*Ugs Dh_ = CP%

The cohomology ring of CP? is the truncated polynomial ring Q[z]/(z® = 0) generated by
r € H*(CP?) = H*(Qx:E) = H" ' 2(Q>1 E).
The square 2 generates H*(CP?), so by the injectivity of 0%, = C%,,
C2,(2) UL, (@) = 02, (a?) € HY(B)

is not zero. Thus the duality obstruction Os(7,2,1) does not vanish.

It follows from Proposition 6.11 that 7 : E — S? is in fact a nontrivial bundle, which can here
of course also be seen directly. Note that the Serre spectral sequence of any S2-bundle over 52
collapses at F5. Thus the obstructions O, (m, k, 1) are able to detect twisting that is not detected
by the differentials of the Serre spectral sequence.

7. FLAT BUNDLES

We have shown that the local duality obstructions vanish for product bundles. We prove here
that they also vanish for flat bundles, at least when the fundamental group of the base is finite.
The latter assumption can probably be relaxed, but we shall not pursue this further here. A
fiber bundle 7 : E — B with structure group G is flat if its G-valued transition functions are
locally constant.

Theorem 7.1. Let m: E — B be a fiber bundle of topological manifolds with structure group G,
compact connected base B and compact fiber L, dimE =n —1,b=dim B, c=n—b—1. For
complementary perversities p,q, let k=c—p(c+ 1), l=c—qg(lc+1). If

(1) L possesses G-equivariant Moore approzimations of degree k and of degree ,

(2) 7 is flat with respect to G, and

(3) the fundamental group w1 (B) of the base is finite,
then O;(m, k,1) =0 for all i.
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Proof. Let B be the (compact) universal cover of B and 7; = 71(B) the fundamental group. By
the G-flatness of F, there exists a monodromy representation m; — G such that

E=(BxL)/m,

where B x L is equipped with the diagonal action of 71, which is free. If M is any compact
space on which a finite group m; acts freely, then transfer arguments (using the finiteness of )
show that the orbit projection p : M — M /m; induces an isomorphism on rational cohomology,

p*+ H*(M/my) — H*(M)™,

where H*(M)™ denotes the m-invariant cohomology classes. Applying this to M = B x L, we
get an isomorphism
p*: H*(E) —s H*(B x L)™.
Using the monodromy representation, the G-cotruncation Lx>j; becomes a m-space with
ftZkE = (E X LZk)/ﬂ'l-

The closed subspace BxxC Bx L>}, where x € L>y, is the cone point, is m-invariant, since %
is a fixed point of L>j. Then a relative transfer argument applied to the pair (B x L>j, B X %)
yields an isomorphism

p* H(QsiE) = H* (ft> E, B) —» H*(B X L, B x )™.
Using the structural map f>5 : L — L>j, we define a map
pzk:idxfzk:f?xL—>§><L2k.
Since f>j, is equivariant, the map p>y, is m-equivariant with respect to the diagonal action. The

diagram

BxL— s F

szl LCZk

E X sz L) ftZkE

commutes and induces on cohomology the commutative diagram

(7.1) H*E) —" > H*(Bx L)™

o

* *
Csz szk

s

H*(ft>1F) %) H*(E X L>p)™

as we shall now verify: If a € H* (E x L) satisfies g*(a) = a for all g € mq, then the equivariance
of p> implies that
9"p>x(a) = pir(ga) = pii(a),

which shows that indeed p%, (a) € H*(B x L)™. Similarly, there is a commutative diagram

*

b

(7.2) H*(ft>i E) H*(B x Lsp)™

o] |

Q1) —> H*(B % (Lsy, %)™,

1R
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Concatenating diagrams (7.1) and (7.2), we obtain the commutative diagram

*

b

H*(E) H*(B x L)™

o i

H*(Q=1E) % H*(B x (Lzp, %)™,

1R

By the Kiinneth theorem, the cross product x is an isomorphism
x : H*(B) ® H*(L) — H*(B x L)

whose inverse is given by the Eilenberg-Zilber map EZ. Define a 71-action on the tensor product

H*(B)® H*(L) by
g9*(a) == (EZog" o x)(a), g € m1.

This makes the cross-product mi-equivariant:

x 0 g*(a) = x 0o EZog* o x(a) = g* o x(a).
Therefore, the cross-product restricts to a map
(7.3) x: (H*B® H*L)™ — H*(B x L)™.
The Eilenberg-Zilber map is equivariant as well, since

g EZ(b) = EZog™ o x o EZ(b) = EZ og™(b).
Consequently, the Eilenberg-Zilber map restricts to a map
(7.4) EZ: H*(B x L)™ —s (H*B® H*L)™.

Since x and EZ are inverse to each other, this shows in particular that the restricted cross-
product (7.3) and the restricted Eilenberg-Zilber map (7.4) are isomorphisms. All of these
constructions apply just as well to (L, *) instead of L. By the naturality of the cross product,
the square

H*(BxL)<———  H*B® H*L

P;kT Tid@f;k

H*(B % (L, %) <=— H*B @ H*(L>y, %)

X

1R

commutes. As we have seen, this diagram restricts to the various mi-invariant subspaces. In
summary then, we have constructed a commutative diagram

H*(E) —~ > H*(Bx L) < (H*B® H*L)™

o

C;kT P;kT Tid@f;k

*

H*(Qs1E) ——= H*(B X (Lzk, %)™ <—— (H*B ® H*(Lzk, %)™

An analogous diagram is, of course, available for Q> E.
Let x € HY(B x (L>k,*))™, y € H" 17%(B x (L>;,*))™. Their images under the Eilenberg-
Zilber map are of the form

EZ(z) = b, ®e7*, b, € H(B), 7% € H*(Lzg,»),
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/ / >l
= E b ®€;, b, € H* (B) es EH*<L21,*),

degb, + degez¥ =i, degb’ + degeZ! =n — 1 —i. Thus

(id@fiy) EZ(x) U (id ©f2,) BZ(y (Zb ® fii(e )U (Z b;®f§l(e?l)>
and

P2y () U PS(y) = x o (i[d®f3,) BZ(x) U x o (ild®f%;) EZ(y)

= (Zbr X f;k(efk)> U (Z b, x fiz(eil)>

*Zi X (fi(er )Uf>z( ).

If deg %, (e TZk) + deg f3(e e2!) < dim L, then degb, + degb, > dim B and thus b, Ub, = 0.
If deg f>k( *) + deg f2,(ez') > dim L, then trivially f%,(eZ*) U f%,(ez') = 0. Finally, if

deg f>k( )+ deg fZi(e ez!) = dim L, then fi(e ezk)u fLi(e e2!) = 0 by the defining properties of
cotruncation and the fact that k& and ! are complementary. This shows that

P2y (x) U P%(y) = 0.
For £ € ﬁi(QZkE), N € fI"flfi(QzlE), we find
P (CLL(E) UCL () = p*CL(E) Up™CLy(n) = P(p™§) U PLy(p™n) = 0.

As p* is an isomorphism,
CLr (U CL(n) =0.

8. THOM-MATHER STRATIFIED SPACES

In the present paper, intersection spaces will be constructed for closed topological pseudoman-
ifolds that possess a topological stratification of depth 1 such that every connected component
of every singular stratum has a closed neighborhood whose boundary is the total space of a fiber
bundle, the link bundle, while the neighborhood itself is described by the corresponding cone
bundle. A large and well-studied class of stratified spaces that have such link bundle structures
are the Thom-Mather stratified spaces, which we shall briefly review with particular emphasis on
depth 1. Such spaces are locally compact, second countable Hausdorff spaces X together with
a Thom-Mather C*-stratification, [30]. We are concerned with two-strata pseudomanifolds,
which, in more detail, are understood to be pairs (X,X), where ¥ C X is a closed subspace
and a connected smooth manifold, and X \ ¥ is a smooth manifold which is dense in X. The
singular stratum Y must have codimension at least 2 in X. Furthermore, ¥ possesses control
data consisting of an open neighborhood T' C X of ¥, a continuous retraction 7 : T — X, and
a continuous distance function p : T — [0,00) such that p=! (0) = X. The restriction of 7
and p to T\ ¥ are required to be smooth and (m,p) : T\ X — X X (0,00) is required to be a
submersion. (Mather’s axioms do not require (m, p) to be proper.) Without appealing to the
method of controlled vector fields required by Thom and Mather for general stratified spaces, we
shall prove directly that for two-strata spaces, the bottom stratum X possesses a locally trivial
link bundle whose projection is induced by .
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Lemma 8.1. Let f: M — N be a smooth submersion between smooth manifolds and let Q C N
be a smooth submanifold. Then P = f~1(Q) C M is a smooth submanifold and f|: P — Q is a
submersion.

Proof. A submersion is transverse to any submanifold. Thus, f is transverse to @ and
P = f7%(Q) is a smooth submanifold of M. The differential f, : T,M — Ty, N at any
point € P maps T, P into T(,)@ and thus induces a map TM /TP — TN/TQ of normal bun-
dles. This map is a bundle isomorphism (cf. [13, Satz (5.12)]). An application of the four-lemma
to the commutative diagram with exact rows

0 T,P .M T,M/T,P ——0

fhl f*i |-

0 ——Tj()Q — Tje)N — Tj()N/Tj(@)@ —0
shows that f|. : T, P — T(;)Q is surjective for every z € P. O

Proposition 8.2. Let (X,X) be a Thom-Mather C*-stratified pseudomanifold with two strata
and control data (T,m,p). Then there exists a smooth function € : ¥ — (0,00) such that the
restriction w: E — X to

E={zel|pl)=cr(x))}
is a smooth locally trivial fiber bundle with structure group G = Diff (L), the diffeomorphisms of
L=n"Y(s)NE, where s € X.
Proof. If € : ¥ — (0,00) is any function, we write

T. = {z €T | p(a) < e(n(@))}
and

Y x[0,e) ={(s,t) € X x [0,00) | 0 <t <e(s)}.
By [33, Lemma 3.1.2(2)], there exists a smooth € such that (7, p) : T. — X x [0, €) is proper and
surjective (and still a submersion on T, \ ¥ because T, \ ¥ is open in T\ ¥). (This involves only
arguments of a point-set topological nature, but no controlled vector fields. Pflaum’s lemma
provides only for a continuous €, but it is clear that on a smooth X, one may take ¢ to be
smooth.) Setting
E={zeT|p(x)=1Le(r(2)} C T\,

we claim first that = : E — X is proper. Let Gr C X x [0, 00) be the graph of %e. The continuity
of € implies that Gr is closed in X X [0,00) and the smoothness of € implies that Gr is a smooth
submanifold. From the description E = (7, p)~1(Gr) we deduce that E is closed in T.. The
inclusion of a closed subspace is a proper map, and the composition of proper maps is again
proper. Hence the restriction of a proper map to a closed subspace is proper. It follows that
(m,p) : E — X x [0,00) is proper and then that (m,p) : E — Gr is proper. The first factor
projection m : ¥ X [0,00) — X restricts to a diffeomorphism m : Gr — X, which is in particular
a proper map. The commutative diagram

(8.1) BT Gy

shows that 7 : E — X is proper.
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We prove next that 7 : F — X is surjective: Given s € X, the surjectivity of
(myp) : Te = X x [0,€)
1

implies that there is a point « € T, such that (m(z), p(z)) = (s, 3€(s)), that is, p(z) = e(n(z)).
This means that z € F and m(x) = s.

By Lemma 8.1, applied to the smooth map (m,p) : T\ ¥ — X x (0,00) and @ = Gr,
E = (m,p)"*(Gr) is a smooth submanifold and (m,p) : E — Gr is a submersion. Using the
diagram (8.1), 7 : E — 3 is a submersion.

Applying Ehresmann’s fibration theorem (for a modern exposition see [20]) to the proper,
surjective, smooth submersion 7 : ¥ — ¥ yields the desired conclusion. ([

We call the bundle given by Proposition 8.2 the link bundle of ¥ in X. The fiber is the link
of . In this manner, ¥ becomes the base space B of a bundle and thus we will also use the
notation ¥ = B. More generally, this construction evidently applies to the following class of
spaces:

Definition 8.3. A stratified pseudomanifold of depth 1 is a tuple (X,%;,---,%,) such that
the X; are mutually disjoint subspaces of X such that (X\ (U#i Ej> ,ZZ) is a two strata

pseudomanifold for every i =1,...,r.
In a depth 1 space, every 3; possesses its own link bundle.

Definition 8.4. A stratified pseudomanifold of depth 1, (X, 3, -+ ,3,), is a Witt space if the
top stratum X \ |JX; is oriented and the following condition is satisfied:

e For each 1 <4 < r such that ¥; has odd codimension ¢; in X, the middle dimensional
homology of the link L; vanishes:

Hei—1 (L) = 0.
2

Witt spaces were introduced by P. Siegel in [35]. He assumed them to be endowed with a
piecewise linear structure, as PL methods allowed him to compute the bordism groups of Witt
spaces. We do not use these computations in the present paper.

9. INTERSECTION SPACES AND POINCARE DUALITY

Let (X, B) be an n-dimensional two strata topological pseudomanifold such that B # @ is
a b-dimensional manifold that has a good open cover, e.g. B PL or even smooth. We assume
furthermore that B has a link bundle 7 : F — X in X so that a tubular neighborhood of B is
the associated cone bundle and the complement of the open tube is a manifold M with boundary
OM = E. This is the case if (X, B) is a Thom-Mather C*-stratification: The Thom-Mather
control data provide a tubular neighborhood T of B in X and a distance function p : T' — [0, 00).
Let € : ¥ = B — (0, 00) be the smooth function provided by Proposition 8.2 such that 7 : E — B
is a fiber bundle, where E = {z € T | p(z) = e(n(z))}. Let M be the complement in X of
T.={z €T | p(z) < e(n(x))} and let L be the fiber of 7 : E — B. By the surjectivity of =, L
is not empty. The space M is a smooth n-dimensional manifold with boundary OM = E. Let
c=dim L =n—1-b. Fix a perversity p satisfying the Goresky-MacPherson growth conditions
P(2) =0,7(s) <p(s+1) <p(s)+1forall se{23...}. Set k =c—p(c+1). The growth
conditions ensure that k > 0. Let g be the dual perversity to p. The integer [ =c¢—gG(c+ 1) is
positive. Assume that there exist G-equivariant Moore approximations of degree k and I,

f<]€:L<k;—>Land f<l'L<l — L

for some choice of structure group G for the bundle 7 : £ — B.
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We perform the fiberwise truncation and cotruncation of Section 6 on the link bundle
m:FE=0M— B,

use these constructions to define two incarnations of intersection spaces, I X and JP X associated
to X, and show that they are homotopy equivalent. The first, IPX, agrees with the original
definition given by the first author in [3] in all cases where they can be compared, the second
JPX has not been given before. It is introduced here to facilitate certain computations.

Definition 9.1. Define the map 7— : ft-x £ — M to be the composition

F .
T<k ft<kE H<k E = 8MCH’L M,
where i is the canonical inclusion of M as the boundary. Define IPX to be the homotopy
cofiber of 7.1, i.e. the homotopy pushout of the pair of maps
x <~ ft o, B 5 M.

This is called the p-intersection space for X defined via truncation. If £ = B x L is a product
bundle, then this agrees with [3, Definition 2.41].

Definition 9.2. In Section 6, we obtained the map C>j, : F — @>;E. Define the p-intersection
space for X wvia cotruncation, JP X, to be the space obtained as the homotopy pushout of

C .

We have the following diagram of topological spaces, commutative up to homotopy, in which
every square is a homotopy pushout square:

F i
fteyE— > E M
J/Tr<k \Lc>k
B 4o>ft2kE N>k

‘/ \Lizk
[e] V>k

* — QZkE e JﬁX,

where 1>, and v, are defined to be the maps coming from the definition of J?X as a homotopy
pushout.

Lemma 9.3. The canonical collapse map JPX — IPX is a homotopy equivalence.

Proof. By construction, the space JPX contains the cone on B, ¢B, as a subspace and (JP X, cB)
is an NDR-pair. Since ¢B is contractible, the collapse map JPX — JPX/cB is a homotopy
equivalence. The quotient J?X/cB is homeomorphic to IPX. O

The sequence
ftop B =5 M — cone(r<;) = IPX
induces a long exact sequence

(9.1) s B V(e B) s B (1PX) 2 5 (M) — R H (o B) ——
Furthermore, we can define M to be the homotopy pushout of the pair of maps

x<—0OM=FE -5 M.
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This is nothing but the space M with a cone attached to the boundary. Define J~!X to be the
homotopy pushout obtained from the pair of maps

o~ QupE —ts JPX.

Lemma 9.4. The canonical collapse map J~'X — Misa homotopy equivalence.

Proof. The space J~!X contains the cone cQ>E as a subspace and (J !X, cQ>E) is an NDR-
pair. Thus the collapse map J~'X — J7!X/cQ>,E is a homotopy equivalence. The quotient

J71X/cQ>E is homeomorphic to M. O

By the lemma, using ! and g instead of k and P, we have the long exact sequence (2.2)
associated to J1X:

C>i,r

~ Vsie o~ 5T~
(9.2) — H, (Q>F) ——= H, (JqX) ——>H, (M,0M) —— H,_1 (Q>E) —,

where (>, is the composition of the map J9X — J~1X, defined by J~'X as a homotopy pushout,
with the collapse map J~'X —+ M. In the sequence, we have identified H, (M) = H, (M,0M).

Theorem 9.5. Let (X, B) be a compact, oriented, two strata pseudomanifold of dimension n.
Let D and G be complementary perversities, and k = ¢ —p(c+1), I = ¢ —g(c+1), where
c=n—1—dim B. Assume that equivariant Moore approximations to L of degree k and degree
1 exist. If the local duality obstructions Oy (m, k,l) of the link bundle m vanish, then there is a
global Poincaré duality isomorphism

(9.3) H" (I"X) = H,_, (I"X).
Proof. We achieve this by pairing the sequence (9.1) with the sequence (9.2) (observing
Lemma 9.3) and using the five lemma. Consider the following diagram of solid arrows whose

rows are exact:

*
N>k <

94) —> HY(ft o B) s H7 (IPX) — 25 HY(M) —— = H"(ft 1 E)

\
:\LD;,ZI I D7 x :lD}h 1iD};,L
Y _
~ Vsl i« o~ — (>, 0 ~
— Hn—r (QZZE) — Hn—r (IqX) — Hn—r (Ma aM) — > 1dp_r—1 (QZZE)
Here Dy ; comes from Proposition 6.7, and D}, comes from the classical Lefschetz duality for
manifolds with boundary. The solid arrow square on the right can be written as

*

Lk F ©
H (M) ——— H" (M) ——"— H"(ft . E)

&iDzru EngM ElD;,l
§M,0M

Coiv =~
Hy (Ma 8M) — nfrfl(aM) i> n—r—1 (QZIE)
The left square commutes by classical Poincaré-Lefschetz duality, and the right square commutes
by Proposition 6.9 and Proposition 6.10, since O, (m, k,l) = 0. Thus diagram (9.4) commutes.
By e.g. [3, Lemma 2.46], we may find a map D7 to fill in the dotted arrow so that the diagram
commutes. By the five lemma, D7y is an isomorphism. (I

It does not follow from this proof that for a 4d-dimensional Witt space X the associated
intersection form Hog(IX) x Hoq(IX) — Q is symmetric, where IX = [™X = ["X. In
Section 11, however, we shall prove that the isomorphism (9.3) can always be constructed so as
to yield a symmetric intersection form (cf. Proposition 11.11).
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10. MOORE APPROXIMATIONS AND THE INTERSECTION HOMOLOGY SIGNATURE

Assume that (X, B) is a two-strata Witt space with dim X =n = 4d, d > 0, and dim B = b,
then ¢ = 4d — 1 — b = dim L. If we use the upper-middle perversity 7 and the lower-middle
perversity m, which are complementary, we get the associated pair of integers k = L%lj and
I = [<1]. When c is odd then k = | = <}, and when c is even then k = ¢/2 and | = k + 1.
Notice that the codimension of B in X is ¢+ 1. So the Witt condition says that when c¢ is even
then He (L) = 0. In this case if an equivariant Moore approximation of degree k exists, then so
does one of degree k + 1 = [ and they can be chosen to be equal. Therefore, when X satisfies
the Witt condition and an equivariant Moore approximation to L of degree k exists, we can
construct I™X = "X and J™X = J"X. We denote the former space IX and the latter JX
and call this homotopy type the intersection space associated to the Witt space X.

The cone bundle DFE is nothing but ft>.(1F with L..11 = L. Note that when F = M

as above, then DFE is a two strata space with boundary 0DE = M, and we can realize X as
C>c+1

the pushout of the pair of maps M <1 9M =2 DE . Thus M is bi-collared in X and by
Novikov additivity, Prop. 11,3.1 [35], we have that the intersection homology Witt element wy s,
defined in I,4.1 [35], is additive over these parts,

(10.1) wrir (X) = wig(M) +wig (TE) € W (Q),

where the Thom space TFE is DE with a cone attached to its boundary, and W (Q) is the Witt
group of Q. When X is Witt, we write I H,.(X) for I"H,(X) = I"H,(X).

Proposition 10.1. If an equivariant Moore approzimation to L of degree k = L%(dimL +1)]
exists, then the middle degree, middle perversity intersection homology of the n = 4d-dimensional
Witt space TE vanishes,

IHsy (TE) = 0.

Proof. In this proof we use the notation ¢E and DE to mean the open cone on E and the open
cone bundle associated to E. According to (5.3),

IPH,(DE) = IPH, (DE), and IPH, (¢E) = IPH, (cE)

for all » > 0. Hence, as in the proof of Proposition 5.3, we can identify the long exact sequence
of intersection homology groups associated to the pair (DE, DE \ B) with the same sequence
associated to the J-stratified pseudomanifold (DE, E) from (5.2).

Define open subsets U,V of TE by U = TE\ B = ¢E and V = TE \ ¢ = DE, where c is
the cone point. Then TE = UUV and UNV = E x (—1,1). The Mayer-Vietoris sequence
associated to the pair (U, V) gives

TE TE TE
i

(102) —— H, (E) — [H.(DE) & [H, (¢E) —> [H, (TE) ~—> H,_, (E) ——

Here we have identified TH, (E x (—1,1)) & H, (E). After making the identifications as decribed
in the previous paragraph, the map il ¥ = i?¥ @i¢F is identified as the sum of the maps coming
from the sequences associated to the pairs (DE, E) and (cE, F) respectively. In degrees r < 2d
we know from Proposition 5.3 that i¢F is an isomorphism H, (E) = IH, (cE). Thus il ¥ is
injective for r < 2d. Consequently, when r = 2d, we have an exact sequence

- —— Hoy (E) —— [Hyy (DE) (&) IHQd(CE) —— [Hyy (TE) — 0.

By the cone formula for intersection homology, I Hog(cE) = 0, since 2d = dim E —m(dim E +1).
Now by Proposition 6.5, the map Hay(E) — [Ho4(DE) is surjective. O
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Corollary 10.2. Let X be a compact, oriented, n = 4d-dimensional stratified pseudomanifold
of depth 1 which satisfies the Witt condition. If equivariant Moore approximations of degree
k= |3(dim L + 1)] to the links of the singular set exist, then

—

wry (X) =wig(M) e W(Q).
In particular, the signature of the intersection form on intersection homology satisfies
OIH (X) = O’]H(Z/w\).
Proof. If IHs, (TE) = 0, then w;y (TE) = 0. The assertion follows from Novikov additivity
(10.1). 0
Example 10.3. Let X = CP? be complex projective space with B = CP' C X as the bottom
stratum, so that the link bundle is the Hopf bundle over B. Then
O'IH(X) = U((CP2) = 1,
but
o(M,0M) = o(D*,53) = 0.

Indeed, the link S! in the Hopf bundle has no middle-perversity equivariant Moore-approximation
because the Hopf bundle has no section.

11. THE SIGNATURE OF INTERSECTION SPACES

Theorem 2.28 in [3] states that for a closed, oriented, 4d-dimensional Witt space X with only
isolated singularities, the signature of the symmetric nondegenerate intersection form

Hog(IX) x Hog(IX) = Q
equals the signature of the Goresky-MacPherson-Siegel intersection form
THoq(X) x THoq(X) — Q

on middle-perversity intersection homology. In fact, both are equal to the Novikov signature of
the top stratum. We shall here generalize that theorem to spaces with twisted link bundles that
allow for equivariant Moore approximation.

Definition 11.1. Define the signature of a 4d-dimensional manifold-with-boundary (M, M)
to be

o (M,0M) =0 (B),
where [ is the bilinear form
Bimj, x imj. = Q, (jiv, juw) = (dar(v))(Jsw),
the homomorphism
Jx : Hog(M) — Hoq(M,0M)
is induced by the inclusion, and
dyg = Hog(M) — H*(M,0M)

is Lefschetz duality. This is frequently referred to as the Nowvikov signature of (M,0M). Tt is
well-known ([35]) that o(M,0M) = org(M).
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Let (X, B) be a two strata Witt space with dimX = n = 4d, dimB = b. We assume
that an equivariant Moore approximation of degree k = 4d — b — 1 — m (4d — b) exists for the
link L of B in X, and that the local duality obstruction O,(w,k,k) vanishes. As discussed
in the previous section, this implies that the intersection space IX exists and is well-defined.
Theorem 9.5 asserts that I X satisfies Poincaré duality

drx : Hyg(IX) = H*(IX).

We shall show (Proposition 11.11) that dyx can in fact be so constructed that the associated
intersection form on the middle-dimensional homology is symmetric. One may then consider its
signature:

Definition 11.2. The signature of the space I.X,
o(IX)=0(p),
is defined to be the signature of the symmetric bilinear form
B:Hpn(IX) x Hy(IX) = Q,
with m = 2d, defined by
Bv,w) = drx (v)(w)

for any v,w € H,,(IX). Here we have identified H™(IX) 2 H,,(IX)" via the universal coeffi-
cient theorem.

Theorem 11.3. The signature of I X is supported away from the singular set B, that is,
oc(IX)=0(M,0M).
Before we prove this theorem, we note that in view of Corollary 10.2, we immediately obtain:

Corollary 11.4. If a two-strata Witt space (X, B) allows for middle-perversity equivariant
Moore-approximation of its link and has vanishing local duality obstruction, then

O'IH(X) :G‘(IX)

The rest of this section is devoted to the proof of Theorem 11.3. We build on the method
of Spiegel [37], which in turn is partially based on the methods introduced in the proof of
[3, Theorem 2.28]. Regarding notation, we caution that the letters ¢ and j will both denote
certain inclusion maps and appear as indices. This cannot possibly lead to any confusion.

Let {e1,...,e.} be any basis for j.H,, (M), where

Ju s Hp (M) — H,,,(M,0M)
is induced by the inclusion. For every i = 1,...,r, pick a lift e; € H,,(M), j«(€;) = e;. Then
{€1,...,€,} is a linearly independent set in H,,(M) and
(11.1) Qey,...,e) Nkerj. = {0}.
Let
dyg 2 Hyp(M) — H™(M,0M) = H,,,(M,0M)T
be the Lefschetz duality isomorphism, i.e. the inverse of

Dy, - H™(M,dM) =5 H,,(M),
given by capping with the fundamental class [M,0M] € Ha,, (M,0M). Let

o

dyy + Hop(M,OM) = H™(M)
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be the inverse of N
Dy H"(M) — H,,(M,0M),

given by capping with the fundamental class. We shall make frequent use of the symmetry

identity

dar(v)(w) = dy (w)(v),
v € Hy (M), w € Hp,(M,0M), which holds since the cup product of m-dimensional cohomology
classes commutes as m = 2d is even. The commutative diagram

Hyy (M) — > H,,,(M,0M)

dMl idzw

H™(M,0M) — H™(M)
J

implies that the symmetry equation

dn(€:)(e;) = dar (€)(ei)
holds, as the calculation

A (€:)(ej) = dnr(€:)(5.€;) = 5 dur (@) () = diy (5i) ()
= dy(e:)(€5) = du(€5)(es)
shows.
In the proof of [3, Theorem 2.28], the first author introduced the annihilation subspace
Q C Hp(M,0M),
Q={q€ Hy,(M,0M) | dy(€;)(q) = 0 for all i}.

It is shown on p. 138 of loc. cit. that one obtains an internal direct sum decomposition

H,,(M,0M) =imj. ® Q.
Let L C H,,(IX) be the kernel of the map

Cobn : Hy(IX) — H,p, (M, 0M).

Once we have completed the construction of a symmetric intersection form, L will eventually be
shown to be a Lagrangian subspace of an appropriate subspace of ﬁ (IX). Let {uy,...u} be
any basis for L.

We consider the commutative diagram

(11.2) Hyn (M, OM) == H,,(M, M)
j*T Czk*T
Ho(ftop B) o Ho (M) — 22 o H(IX) — 2 Hy o (f62y, B)
T

Fepa Cspn  ~ —
H, (fte B)Y s H,, (OM) — =5 Hy(QurE) —=2 Hy_y (ft oy E)

The rows and columns are exact and we have used Lemma 6.6. By exactness of the right
hand column, the basis elements u; can be lifted to H,,(Q>,E), and by the surjectivity of Csp.,
these lifts can be further lifted to H,,,(OM). In this way, we obtain linearly independent elements
Uy, ..., u in Hy, (OM) such that

Nkein (Tg) = Vo Con (T5) = 1
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for all j. Setting
w’ = d (i (1;))
yields a linearly independent set {w?,... , w'} ¢ H™(M,dM). From now on, let us briefly write
My Coy €8C., TOT > i, (o 1x, €tC. Since 7414 (T;) = u;, we have
Qi (@), . .., ix(w)) Nkern, = {0}.

Together with (11.1), and noting ker 7, C ker j,, this shows that there exists a linear subspace
A C H,,(M) yielding an internal direct sum decomposition

(11.3) H,, (M) =Qix(u1),...,0.(W)) ®kern. ® Qey,...,e.) ® A.
Setting
Z =kern. ® Qey,...,e.) DA,
we have
Hp(M) = Q(ix (1), ..., ix(W)) & Z,
such that
(11.4) kern, C Z and Q(ey,...,€.) C Z.

Choose a basis {z1,...,2s} of Z and put 27 = dp(z;) € H™(M,0M). Then {z',...2°} is a
basis for dy;(Z) and

H™(M,0M) = Q(w',... . w") @ Q(z,...,2%.

Let
{wy,...,wy,21,..., 25} C Hp(M,0M)
be the dual basis of {w!,... ,w!, 2!, ... 2%}, that is,
(115) wi(wj) = 5ija ZZ(ZJ) = 5ij; w’(zj) = 0, Z’L(’w]) =0.
Lemma 11.5. The set {w1,...,w;} is contained in the image of Cy.

Proof. In view of the commutative diagram

H,,(IX) _ H,,(M,0M) LN H 1 (Q>1E)

H™(M) — > H™(ft o4 E),

it suffices to show that J.(w;) = 0, since the top row is exact. Let © € H,,(ft<; E) be any
element. Then 7.2 € kern, C Z, so da(mx)(w;) = 0 by (11.5). Consequently,

(7" das (w;)) (@) = diy(w))(722) = dpa (7o) (w;) = 0.
It follows that 7*d),;(w;) = 0 and in particular
5*(w]) = Dkwk’r*d/]\/[(wj) =0.
t

Suppose that v € ker (, N7 (€1,...,&-). Then v is a linear combination v = 1, > A\;€; and

0=Culv) = Cme DN = 3 Aiful@) = Y Nies.

Thus A; = 0 for all 7 by the linear independence of the e;. This shows that
Lnn.(e,...,e)={0}.
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Therefore, it is possible to choose a direct sum complement W C I;'m(I X) of L =ker(,,

(11.6) H,(IX)=LaoW,
such that
(11.7) Ne(€1,...,6r) CW.

The restriction

Colw = W — im ¢,
is then an isomorphism and thus by Lemma 11.5, we may define

W5 = (Celw) ™ (wy)-
We define subspaces V, L' C W by

Vo= (Celw) Him ), L' = (Glw) " H(@Nim ).

Recall that {e1,...,e,} is a basis of im j.. Setting

vj = (Gelw) 7 (ey),
yields a basis {v1,...,v,.} for V. From

Ge(vi) = e; = ji (@) = Gms (&)
it follows that
Ui = 77* (61)7

since both v; and 7.(€;) are in W and (, is injective on W.
The decomposition H,,(M,0M) = im j, ® @ induces a decomposition

im¢, = (Imj, ® Q) Nim ¢, = im j, & (Q Nim ).
Applying the isomorphism (¢, |w) ™!, we receive a decomposition
W = (Clw) ™ H(img) @ (Celw) ™ HQNim¢) =V @ L.

By (11.6), we arrive at a decomposition

H,(IX)=LoVal.
Lemma 11.6. The set {wy,...,w;} C W is contained in L'.

Proof. By construction of L', we have to show that (,(w;) € @ for all j. Now (. (w;) = wj,
so by construction of @), we need to demonstrate that das(€;)(w;) = 0 for all 7. By (11.4),
dpr(€;) € dp(Z), whence the result follows from (11.5). O

Lemma 11.7. The set {wy,...,w;} C W is a basis for L'.

Proof. The preimages W; = (C«|w) ™' (w;) under the isomorphism (,|w are linearly independent
since {w1,...,w;} is a linearly independent set. In particular, dim L’ > I. It remains to be
shown that dim L’ < [. Standard linear algebra provides the inequality

rkn. < dimker ¢, + rk({uns),
valid for the composition of any two linear maps. As (1. = j., we may rewrite this as

(11.8) rkn, <1+ rkj,.
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By Theorem 9.5, there exists some isomorphism H™(IX) — H,,(IX) such that

*

(11.9) H™(IX) —1—> H™(M)

ElD}u
~ Ca

H,,(IX) —=> H,,(M,dM)

IR

commutes. Therefore,
rk (. = rkn* = rkn,,
and by (11.8),
rk (e <14 rkj,.

The decomposition (11.6) implies that
dim Hy,(IX) =1+ dim W =1 + 1k, < 20 + rk j,.
On the other hand, the decomposition H,,(IX)= L& V & L’ implies
dim H,,(IX) =l +dimV + dim L' = [ 4 rk j, + dim L.
It follows that
l+r1kj, +dim L' <21+ rkj,
and thus
dim L’ < 1.

In summary then, we have constructed a certain basis
(11.10) {u1, ... U, 01,y Up, W, ..., W )

for Hyp(IX)=LaV & L.
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Remark 11.8. The above proof shows that rkn, <[+ rkj, = [+ r. Thus the restriction of 7,
to the subspace A C Hp, (M) in the decomposition (11.3) is zero, which implies that A C kern,

and so A = {0}. The decomposition of H,,(M) is thus seen to be
(11.11) H,, (M) =Q(i.(T1),...,ix(w)) ®kern. ® Qley,...,e.).

In particular,
Z =kern. ® Qley,...,e.).

Let

be the dual basis for H™(IX). Setting
Lt =Qt,...,u), VI =Q@t,...,v"), (LN =Q@,..., o),
we get a dual decomposition
H™IX) =L ovie )
We define the duality map
drx : Hp(IX) — H™(IX)
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on basis elements to be

drx (uj) =,

drx (W) ==,

drx (vj) := C"dar(€5).
We shall now prove that d;yx is an isomorphism.

Lemma 11.9. The image d;x (V) is contained in V1.

Proof. In terms of the dual basis, drx (v;) can be expressed as a linear combination
dIX(Uj) = pru" + Zeqvq + Z)\i@i.
P q i
The coefficients 7, are
mp = (' (€))) (up) = dar(€)(Ceup) =0,
since u, € L = ker (.. Using (11.5) and da(€;) € dy(Z2) = Q{21 ..., 2%), we find
Ai = (Cdn (5)) (i) = dar (€5)(w;) = 0.

Lemma 11.10. The restriction dyx|:V — Vs injective.

Proof. Suppose that v = Eq €404 is any vector v € V with drx (v) = 0. Then
0=n"dix(v) =n" Z €qdrx(vg) = 1" Z €q¢"dnr (€q)
=J"dum Z €qeq = d)y Z €qJx(€g)
=d)y Z €4€q-

Since d; is an isomorphism, > ¢,e, = 0 and by the linear independence of the e, the coefficients
€q all vanish. This shows that v = 0. O

By definition, d;x maps L isomorphically onto (L)' and L’ isomorphically onto L. Since by
Lemma 11.10, d;x|: V — VT is an isomorphism, we conclude that the duality map
dix : Hyp(IX) — H™(IX)
is an isomorphism.
Proposition 11.11. The intersection form
B Hy(IX) x Hp(IX) = Q

given by B(v,w) = drx (v)(w) is symmetric. In fact it is given in terms of the basis (11.10) by
the matriz
0 0 I
0 S 0
I 0 0
where I is the | X l-identity matriz and S is a symmetric r X r-matriz, representing the classical
intersection form on im j. whose signature is the Novikov signature o(M,0M).

)
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Proof. On V', we have

These are the symmetric entries of S. Between V and L we find
drx (vi)(u;) = Cdar (@) (uz) = dar (&) (Geuy) = 0,
as u; € L = ker (.. This agrees with
dix (uj)(vi) =@ (v;) = 0,

by definition of the dual basis. The intersection pairing between V and L’ is trivial as well:

drx (vi) (W;) = ¢"dur(€:)(W;) = dar(€;)(¢W;) = dar (€:)(w;) =0,
since dps(€;) C dpr(Z). This agrees with
dix (W;)(vi) = u? (v;) = 0,
again by definition of the dual basis. On L,
dix (ui)(u;) = @' (u;) = 0
and on L/, ‘
drx (w;)(w;) = u'(w;) = 0.
Finally, the intersection pairing between L and L’ is given by

drx (ui)(W;) = @' (W) = 65 = v’ (us) = dix (W) (us).

Theorem 11.3 follows readily from this proposition because

0 I) — o(S) = o (M,0M).

c(IX)=0c(S)+o <I 0

It remains to prove that both

(11.12) Hy(IX) —>

and

(11.13) Hpy (Qs1E) H,,(IX)

Dk,kT \Ldzx

H™\(ftop, B) = H™(IX)

Vs

commute. We begin with diagram (11.12) and check the commutativity on basis elements.
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1. We verify that n*d;x (u;) = d);((u; ) for all j. By exactness, (n.isx = j+i» = 0 and hence

/MC*(UJ) = d?wc*n*i*(ﬂj) =0.
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So it remains to show that n*drx(u;) = 0. We break this into three steps according to the
decomposition (11.11). Evaluating on elements of the form i,u; yields

0 drx (ug) (070:) = (0% ) (03;) = @ (16:3;) =@ (u;) = 0.

If @ is any element in ker 7, then

(n"®w’)(a) =@ (n.a) = 0.
Before evaluating on elements €;, we observe that since n.e; € W (by (11.7)) and

Ce(14€i) = ju€; € im ji,

we have

n.€ € WN¢ T (imyg.) = V.
It follows that

(@) (e:) =@ (n.e;) = 0.
Thus n*drx (u;) = 0 as claimed.

2. On basis elements v;, the commutativity is demonstrated by the calculation
ndrx (vi) = n°Cdu(€5) = 5 du (€5) = )y (€5)
= d?ow* (Ej) = d?wC* (Uj)'

3. We prove that n*d;x (wW;) = d};¢(W;) for all j. Again it is necessary to break this into
three steps according to the decomposition (11.11). Evaluating on elements of the form i.,%;
yields

n*drx (W)) (i) = 0" (W) (1) = o (n0.3;) = o (ui) = 6

and

G (W) (63) = diyg (w;) (i70) = diy (627:) (wy) = w'(w;) = 0y
If a is any element in ker 7., then

7 (W) (a) = v (n.a) = 0 = du(a)(w;) = djy (w))(a),

using (11.5) and dps(a) € dp(Z). Finally, on elements €; we find

7 (W) (&) = o (n&) = w (v;) = 0 = dar (&) (wy) = diyy (w;) (),
using (11.5) and dps(€;) € dpr(Z). The commutativity of (11.12) is now established.

If a € Hy, (M) and b € H,,(IX) are any elements, then using (11.12),

¢"dar(a)(b) = dar(a)(Ceb) = diy (D) (a) = (n*dixb)(a)
= drx (b)(n«a) = drx(n.a)(d),

where the last equation uses the symmetry of d;x, Proposition 11.11. Hence the diagram

(11.14) Hp (M) —2 H, (IX)
dMl drx
.

H™(M,0M) — H™(IX)
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commutes as well. The cohomology braid of the triple

foop B <o oM
\ li
M

contains the commutative square
(11.15) H™Y(OM) —>—~ H™(M,0M)
| -
H™(ft oy, B) > H™(IX).

We are now in a position to prove the commutativity of (11.13).

Let a € H™ !(ft< E) be any element. We must show that d;xv.Dy(a) = 6*(a). As
Fz, : H"YOM) — H™ *(ft< E) is surjective (Lemma 6.6), there exists an @ € H™(OM)
with a = F%,(@). By Propositions 6.9, 6.10, Dy, ;. is the unique isomorphism such that

*
F<Ic

H™ 1 (OM) —=5 H™=1 (ft )

DalMlE ngk,k

Cops =~
H,, (OM) ——— H,, (Q>1E)
commutes. Therefore,
Dkvk(a) = Dk’szk(a) = CZk*DaM(a).
Then, by the lower middle square in Diagram (11.2),
Vi Dy 1(a) = Cs i Don (@) = nutx Do ().
Applying drx and using the commutative diagram (11.14), we arrive at
drxviDy k(a) = drxnwisDon (@) = (" dari«Don ().

Now the commutative diagram
H,p (OM) —=— H,,(M)
TDBAI J/dM
H™ 1 (0M) —"= H™(M,0M)

shows that
d]Xy*Dch(a) = C*(S*(a),
which by Diagram (11.15) equals 0*FZ, (@) = 0*(a), as was to be shown.

12. SPHERE BUNDLES, SYMPLECTIC TORIC MANIFOLDS

We discuss equivariant Moore approximations for linear sphere bundles and for symplectic
toric manifolds.



176 MARKUS BANAGL AND BRYCE CHRIESTENSON

Proposition 12.1. Let £ = (E, 7, B) be an oriented real n-plane vector bundle over a closed,
oriented, connected, n-dimensional base manifold B. Let S(§) be the associated sphere bundle
and let ec € H"(B;Z) be the Euler class of . Then S(§) can be given a structure group which
allows for a degree k equivariant Moore approximation, for some 0 < k < n, if and only if e¢ = 0.

Proof. Assume that S(£) can be given a structure group which allows for a degree k equivariant
Moore approximation for some 0 < k < n. If the fiber dimension n of the vector bundle is odd,
then the Euler class has order two. Since H"(B;Z) = Z is torsion free, e, = 0. Thus we may
assume that n = 2d is even. We form the double

X% = DE Ugg DE,

where DF is the total space of the disk bundle of £, and SE = dDE. Then X is a manifold,
but we may view it as a 2-strata pseudomanifold (X, B) by taking B C X to be the zero section
in one of the two copies of DE in X. For this stratified space, M = DE, OM = SE, and
M=TE , the Thom-space of £. Since the double of any manifold with boundary is nullbordant,
the signature of X vanishes, org(X) = o(X) = 0. Note that a degree k equivariant Moore
approximation to S®~!, some 0 < k < n, is in particular an equivariant Moore approximation
of degree [%(dim S"~1 +1)] = [2]. Thus by Corollary 10.2,

J[H(TE) = OIH(X) = 0.
The middle intersection homology of the Thom space of a vector bundle is given by
IH,(TE) % im(H,(DE) — H,(DE,SE)),

[29, p. 77, Example 5.2.5.3]. By homotopy invariance H,(DFE) = H,(B) = Q|[B], and by the
Thom isomorphism H,(DE,SE) = Hy(B) = Q. The intersection form on the, at most one-
dimensional, image is determined by the self-intersection number [B] - [B] of the fundamental
class of B, which is precisely the Euler number. Since o;g(TE) = 0, this self-intersection
number, and thus eg, must vanish. (Note that in this case, the map H,(DFE) — H,(DE, SE)
is the zero map and IH,(TE) = 0, for IH,(TF) =2 Q and [B] - [B] = 0 would contradict the
nondegeneracy of the intersection pairing.)

Conversely, if e = 0, then [24, Thm. 2.10, p. 137] asserts that { has a nowhere vanishing
section. This section induces a splitting £ = ¢’ @ R?, where ¢ is an (n — 1)-plane bundle and R!
denotes the trivial line bundle over B. This splitting reduces the structure group from SO(n) to
SO(1)xSO(n—1) = {1} xSO(n—1). The action of this reduced structure group on S"~! has two
fixed points; let p € S~ be one of them. Then {p} < S" ! is an {1} x SO(n — 1)-equivariant
Moore approximation for every degree 0 < k < n. O

Example 12.2. A symplectic toric manifold is a quadruple (M,w,T™, u), where M is a 2n-
dimensional, compact, symplectic manifold with non-degenerate closed 2-form w, there is an
effective Hamiltonian action of the n-torus 7" on M, and u : M — R™ is a choice of moment map
for this action. There is a one-to-one correspondence between such 2n-dimensional symplectic
toric manifolds and so-called Delzant polytopes in R™, [19], given by the assignment

(Mavannu) AV, ::U‘(M)

Recall that a polytope in R™ is the convex hull of a finite number of points in R™. Delzant
polytopes in R™ have the property that each vertex has exactly n edges adjacent to it and for
each vertex p, every edge adjacent to p has the form {p + tu; | T; > t > 0} with w; € Z™, and
U, ..., U, constitute a Z-basis of Z".

Section 3.3 of [18] uses the Delzant polytope Ajs to construct Morse functions on M as
follows: Let X € R"™ be a vector whose components are independent over Q. Then X is not
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parallel to any facet of Ay, and the orthogonal projection mx : R™ — R onto the line spanned
by X, mx(Y) = (Y, X), is injective on the vertices of Ay;. By composing the moment map u
with the projection 7y, one obtains a Morse function fx =wxopu: M — R, fx(q) = (u(q), X),
whose critical points are precisely the fixed points of the T" action. The images of the fixed
points under the moment map are the vertices of Ajp;. Since the coadjoint action is trivial on a
torus, T™ acts trivially on R™, and as p is equivariant, it is thus constant on orbits. Hence the
level sets of mx o p are T™-invariant. The index of a critical point p is twice the number of edge
vectors u; of Ay at p(p) whose inner product with X is negative, (u;, X) < 0. In particular,
the index is always even. For a € R, we set M, = f)}l(—oo7 al C M.
Suppose that one can choose X in such a way that the critical points satisfy:

(C) For any two critical points p, g of fx, if the index of p is larger than the index of ¢, then
fx(p) > fx(q).

Then, since fx is Morse, for each critical value a of fx the set M, . is homotopy equivalent
to a CW-complex with one cell attached for each critical point p with fx(p) < a+e. (Here e > 0
has been chosen so small that there are no critical values of fx in (a,a + €].) The dimension of
the cell associated to p is the index of fx at p. Let 2¢ be the index of any critical point p € My,
with fx(p) = a. If ¢ € Myse is an arbitrary critical point of fx, then fx(q) < fx(p) = a
and thus the index of ¢ is at most 2¢ by condition (C). Thus M,,. contains all cells of M that
have dimension at most 2i and no other cells. Since M has only cells in even dimensions, the
cellular chain complex of M has zero differentials in all degrees. Thus, since fx is equivariant,
Meate — M is a T™-equivariant Moore approximation of degree 2i + 1 (and of degree 2i + 2),
and is a smooth manifold with boundary.

A particular case of this is the complex projective space (CP", wgg, T, i), where wpg is the
Fubini-Study symplectic form and T acts on CP" by

(eitl,...,eit”) (2021 zn) = (20 etz i eit"zn).

On page 26 of [31], an equivariant Morse function with n+1 critical points is constructed, the i-th
one having index 2i and critical value i. Using this we obtain equivariant Moore approximations
to CP" of every degree with respect to the torus action.

In the case that M is 4-dimensional, condition (C) is satisfied. The Delzant polytope p(M)
associated to a 4-dimensional symplectic toric manifold (M, w, T?, i1) is a 2-dimensional polytope
in R%2. As M is compact, fx attains its minimum m and its maximum m’ on M. Let ppnin € M
be a critical point with fx (pmin) = m and let ppmax € M be a critical point with fx (pmax) = m/'.
Suppose that p € M is any critical point such that fx(p) = m. Then wxu(p) = m = 7x p(Pmin)-
The moment images v = p(p) and vmin = K(Pmin) are vertices of Ays. Since the projection mwx
is injective on vertices, we have v = vyi,. Now as p maps the fixed points (which are precisely
the critical points) bijectively onto the vertices, it follows that p = puin. This shows that pp, is
unique and similarly ppax is unique. The index of pyi, is 0, while the index of pyax is 4. Thus
(u1,X) >0 and (us, X) > 0 at vmin and (u1, X) < 0 and (ug, X) < 0 at vmax-

Geometrically, this means that the two edges that go out from vy, point in the same half-
plane as X, while the outgoing edges at vnmax point in the half-plane complementary to the one
of X. If v is any vertex of the moment polytope different from vin, Umax, then by the convexity
of Ajs, one of the two outgoing edges must point in X’s half-plane, while the other outgoing
edge points into the complementary half-plane, yielding an index of 2. If p € M is a critical
point different from ppin, Pmax, then p(p) is a vertex different from viin, Vmax and thus must have
index 2. From this, it follows that condition (C) is indeed satisfied: If p,q are critical points
such that p has larger index than ¢, then there are two cases: p has index 4 and ¢ has index in
{0,2}, or p has index 2 and ¢ has index 0. In the first case, p = pmax and in the second case
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Pmin- In both cases it is then clear, using the uniqueness of pmin, Pmax, that fx(p) > fx(q).

‘We have thus shown:

Proposition 12.3. Every 4-dimensional symplectic toric manifold (M,w,T™, 1) has an equi-
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ant Moore approzimation My of degree k for every k € Z. Furthermore, the space My
be chosen to be a smooth compact codimension 0 submanifold-with-boundary of M.
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HOROSPHERICAL AND HYPERBOLIC DUAL SURFACES OF SPACELIKE
CURVES IN DE SITTER SPACE

SHYUICHI IZUMIYA, ANA CLAUDIA NABARRO, AND ANDREA DE JESUS SACRAMENTO

ABSTRACT. We define two surfaces, the horospherical surface and the hyperbolic dual surface
of a spacelike curve in the de Sitter 3-space, in the Lorentzian-Minkowski 4-space. These
surfaces are, respectively, in the lightcone 3-space and in the hyperbolic 3-space (other pseudo-
spheres). We use techniques from singularity theory to obtain the generic shape of these
surfaces and of their singular point sets. Furthermore, we give a relation between these
surfaces from the viewpoint of the theory of Legendrian dualities between pseudo-spheres.

1. INTRODUCTION

Submanifolds in Lorentz-Minkowski space are investigated from various mathematical view-
points and are of interest also in relativity theory. In recent years, using singularity theory, very
important progress has been made and many investigations have been conducted to classify and
characterize the singularities of submanifolds in Euclidean spaces or in semi-Euclidean spaces
(see, for example, [1]-[9] and [11]). The first author introduced Legendrian dualities between
three kinds of pseudo-spheres in Lorentz-Minkowski space [5, 6]. Curves in the pseudo-spheres
and duality relations between the curves and some surfaces in pseudo-spheres are studied. For
example, in [3, 4, 8], curves in the hyperbolic space H?(—1) in R}, in the de Sitter dual surface
in S, and in the horospherical surface in the lightcone LC*, are investigated. The results in this
paper contribute to the study of the extrinsic geometry of curves in the above different ambient
spaces.

We use Legendrian duality to investigate spacelike curves in the de Sitter space S? C R}
and two special surfaces related by duality. For a curve v : I — S with nowhere vanishing
curvature, we define its associated horospherical surface in the lightcone LC™* and its hyperbolic
dual surface in the hyperbolic space H?(—1). For the study of the generic differential geometry of
these surfaces and of their singular sets, we use singularity theory techniques, and in particular,
classical deformation theory.

Our paper is organized as follows: Section 2 reviews basic definitions for the Minkowski 4-
space and introduces a moving frame along 7 together with Frenet-Serret type formulae. We
also review the definition of the Ag-singularities and their discriminant sets. We define the hy-
perbolic focal surface and the horospherical surface of v. In Sections 3 and 5, we define two
families of height functions on ~y, horospherical height functions and hyperbolic height func-
tions. These functions measure the contact of v with special hyperplanes. Differentiating these
functions yields invariants related to each surface. We show that the horospherical surface of v
is the discriminant set of the family of horospherical height functions (Corollary 3.2) and that
its hyperbolic dual surface is the discriminant set of the family of hyperbolic height functions
(Corollary 5.3).

The second author was supported by FAPESP grant 2013/02794-4. The third author was supported by
FAPESP grant 2010/20301-7.


http://dx.doi.org/10.5427/jsing.2017.16h

DUAL SURFACES OF SPACELIKE CURVES IN DE SITTER SPACE 181

Furthermore, using the theory of deformations, we give a classification and a characterization
of the diffeomorphism-type of these surfaces (Theorems 3.4 and 5.5). It is easy to show that
the discriminant sets of these families on timelike curves in Sj are empty. For this reason, we
consider only spacelike curves in S3.

In Section 4, we investigate the geometric meaning of the invariants discussed in the previous
sections. We prove results that give conditions (related to these invariants) for the curve « to be
on a parabolic de Sitter quadric and we give also conditions for 7 to be part of a T-horoparabola
or an S-horoparabola (Propositions 4.1 and 4.2). In Section 5, we give information about the
geometry of the hyperbolic dual surface and of its singular set. We separate the cases where
has spacelike normal vectors from those where v has timelike normal vectors. We prove that, if
the normal vector is timelike, then the hyperbolic dual surface of v has no singular points. For
this reason, in Section 5, we consider only the case when ~ has spacelike normal vectors.

In Section 6, we show that v can be part of an elliptic de Sitter quadric (Proposition 6.1)
by using an invariant of the curve. When -~ is not part of an elliptic de Sitter quadric, we
characterize the contact of v with an elliptic de Sitter quadric using the singularity types of the
hyperbolic dual surface of « (Proposition 6.2).

Finally, in Section 7, we recall the concepts of Legendrian dualities between pseudo-spheres
in Lorentz-Minkowski space, introduced in [6]. Several duality relationships are presented in
Theorem 7.1. These give a dual relation between the horospherical surface and the hyperbolic
dual surface of ~.

2. PRELIMINARIES

The Minkowski space R} is the vector space R* endowed with the pseudo-scalar product
(z,y) = —2oyo + T1y1 + Tays + x3y3, for any x = (x0, 21,22, 23) and y = (yo,y1, Y2, y3) in R}
(see, e.g., [10]). We say that a non-zero vector x € R} is spacelike if (z,z) > 0, lightlike if
(r,z) = 0 and timelike if (z,x) < 0. We call v : I — R}, with I C R an open interval, a
spacelike (rvesp. timelike) curve if ~/(t) is a spacelike (resp. timelike) vector for any ¢t € I. We
define, for x € R},

1 if = is spacelike,
sign (z) = 0 if z is lightlike,
—1 if z is timelike.

We call sign (z) the signature of x. The norm of a vector z € R} is defined by || z [|= /| (z, z) |.
We now consider the pseudo-spheres in R}. The hyperbolic 3-space is defined by

H?(-1) = {z € R} | (z,2) = ~1},
the de Sitter 3-space by
S3 ={z e R} | (z,2) =1},
and the lightcone by
LC* = {z e R} \ {0} | (z,z) = 0}.
For any r = (.T07$1,$2,I3), Yy = (yanl7y27y3)7 z = (Z07Z15227Z3) € Rél& the pSGU.dO-pI'OdUCt
of z, y and z is defined by:
—€p €1 €9 €3
i) r1 X9 I3

.’B/\y/\ZZ )
Yo Y1 Y2 Y3

20 21 k2 23

where {eg, 1, €2, e3} is the canonical basis of R*.
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For a non-zero vector v € R} and a real number ¢, a hyperplane with pseudo-normal vector v
is defined by

HP(v,c) = {x € R} | (z,v) = c}.

We call HP(v,c) a spacelike, a timelike, or a lightlike hyperplane if v is spacelike, timelike, or
lightlike, respectively.

We have three types of models of quadric surfaces in S}, which are given by intersections of
S3$ with hyperplanes in R}, determined by the type of the hyperplane. A surface S$NHP(v,c) is
called an elliptic de Sitter quadric, a hyperbolic de Sitter quadric or a parabolic de Sitter quadric
if HP(v,c) is spacelike, timelike, or lightlike, respectively. We denote the parabolic de Sitter
quadric by QDP(v,c) and the elliptic de Sitter quadric by QDE(v, ¢).

Let v : I — S} be a smooth and regular spacelike curve in S3. We can parametrise it by
arc length s, and write t(s) = 7/(s) for the unit tangent vector. In this case, we call v a unit
speed spacelike curve. If (t'(s),t'(s)) # 1, then || t/(s) +v(s) ||# 0, and we define the unit vector
I OESTO

[|(s) +~(s) |l
we obtain a pseudo-orthonormal frame {(s),t(s),n(s),e(s)} of R} along 7. The Frenet-Serret
type formulae for that frame are given by

We also define another unit vector by e(s) = y(s) A t(s) A n(s). Then

8)) kg(s) t(s) + 74(s) e(s),
€'(s) = y(s)n(s),

where §((s)) = sign (n(s)) (which we shall write as simply 0), ky(s) =|| t'(s) +~(s) || and

7o(s) = ey e, (8), 61, (5).

The invariant k, is called the geodesic curvature and 1, the geodesic torsion of ~y (see [7]).
Since (t'(s)+v(s),t'(s) +7(s)) = (t'(s),t'(s)) — 1, it follows that (t'(s),¢'(s)) # 1 is equivalent
to ky(s) # 0.
We define the following maps

HSF:IxJ— LC* and HDT :1x.J— H3(-1)
by
+ _ + —
HST (s, 1) = (s) + pun(s) + Ae(s) and HDZ(s,p) = pn(s) + Ae(s),
respectively, where A2 — 2 = §(7(s)).
In other words,
HSE (s, 1) = 1(5) + pn(s) £ /52 + 00 (5))e(s) and HDZ(s, 1) = pn(s) % v/aZ + 502 ())e(s),

with p? +38(y(s)) > 0, i.e., u € J = R for n(s) spacelike and p € J = (—o0, —1] U1, 00) for n(s)
timelike. We call HSiE the horospherical surface of ~v and HDvi the hyperbolic dual surface of
~. We can suppose that A and p are one of cosh and sinh, depending on §(v(s)).

Definition 2.1. Let F : R} — R be a submersion and v : I — S3 be a regular curve. We
say that v and F~1(0) (respectively F~1(0) N S} ) have contact of order k at s, if the function
g(s) = F o~y(s) satisfies g(so) = ¢'(s0) = --- = g®(s9) = 0 and g*+V(s9) # 0, i.e., g has an
Ap-singularity at sg.
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Let G : R x R",(s09,Z) — R be a family of germs of functions. We call G an r-parameter
deformation of f if f(s) = Gz(s). Suppose that f has an Ag-singularity (k > 1) at so. If we

write
n [0G i, .
joY <5rc¢(5’x)) (s0) = ;aﬁ(S - 50)7,

fori=1,...,r, then G is a versal deformation if the k x r matrix of coefficients («;;) has rank
kE (k <r) (see [2]).
The discriminant set of G is the set

Dg = {xe (R", ) ‘ G= aa—f =0 at (s,z) for some s € (R,so)}.

Theorem 2.2. [2] Let G : R X R", (s9,Z) — R be an r-parameter deformation of f, with f
having an Ay-singularity at so. Suppose that G is a versal deformation. Then Dg is locally
diffeomorphic to

(1) C xR"2, if k=2, and

(2) SW xR 3, ifk =3,

where C' = {(z1,%2) | 23 = 23} is the ordinary cusp and
SW = {(x1,72,23) | 1 = 3u* + v?v, 5 = 4u® + 2uv, 23 = v}
is the swallowtail surface.

We use families of height functions on curves in S to study the horospherical surface and the
hyperbolic dual surface. In fact, these surfaces are the discriminant sets of these families.

It is easy to show that the discriminant sets of the family of horospherical height functions
and family of hyperbolic height functions on timelike curves in S5 are empty. For this reason,
we only consider spacelike curves in S3.

3. HOROSPHERICAL HEIGHT FUNCTIONS

In this section, we introduce a family of height functions on a curve that is useful for the
study of the horospherical surface. We prove that the horospherical surface is the discriminant
set of this family.

For a spacelike curve 7 : I — S5, we define a function H : I x LC* — R by

H(s,v) = {v(s),v) — 1.

We call H a family of horospherical height functions on . We denote h,(s) = H(s,v) for any
fixed v € LC*. The family of horospherical height functions measures the contact of v with
lightlike hyperplanes in R. Generically, this contact can be of order k, where k = 1,2, 3.

We obtain equivalent conditions for each Ag-singularity, ¥ = 1,2,3 of h, by the following
result. For example, h, has an As-singularity at s if and only if

0= 9(5) + s £ VI FSOENEs), 1= i

Proposition 3.1. Let v : I — S3 be a unit speed spacelike curve such that k,(s) # 0. Then

and o(s) # 0.

(1) hy(s) =0 if and only if there exist real numbers p, A, n with

n? +0(y(s))u? = 6(7(s)A\* = —1
such that v =v(s) +nt(s) + un(s) + Ae(s).
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(2) hy(s) = hi(s) =0 if and only if there exist real numbers u, A such that
v =(s) + pn(s) + Ae(s)
with A2 — pu? = §(y(s)).

(3) hy(s) = hﬁi(s) = hY(s) = 0 if and only if v = v(s) + pn(s) £ /u? + 5(y(s))e(s) with

M k(967 (s))”
(4) ho(s) =1, 1(8):h”()fhff)’)(s):0ifandonlyifv:v(s)wn(s)i 12+ 5(7(s))e(s),

= ————— and o(s) =0, where
s)0(y(s

o(s) = (K, & kgry(—8)1 /1 + k26)(s).

(1) If n(s) is timelike with kq(s) = 1 then hy(s) = hi,(s) = =l )( ) =0 if and only if

2 - o(s) =0 and k' (s)+712(s) =
v =7(s)+pun(s) £/ 1?4+ 0(v(s))e(s), p = G0 (8) =0 and ky(s)+75(s) = 0.
(i) If n(s) is timelike with kq(s) # 1 or if n(s) is spacelike, then
hu(s) = Hi(s) =+ = B (5) = 0
if and only if
1 oo
v ="(8) + pun(s) £/ u2+0(y(s))e(s), mu= (50301 (5)” and o(s) =o0'(s) =0.
Proof. Since h,(s) = {(7(s),v) — 1, by using the Frenet-Serret type formulae, we have
(a) hy(s) = (t(s), ),
(b) hy(s) = (=7(s) + kg(s)n(s),v),
(c) b (s) = ((—1 = k2(s)d (7(8)))t(8)+k' (s)n(s) + ky(s)9(s)e(s), v), and
(d) AtV (s) = ((L+kg(s)d(v())7(s)~ ( () kg (s)kg(s)t(5) + (—kg(s)+ kg (s) +g(s)77(s) —
kg (s)3(7(5)))n(s) + (2kg(s)74(5) + k()75 (s))e(s), v).
The proof follows by simple calculations using (a)-(d). O

Corollary 3.2. The horospherical surface of v is the discriminant set Dy of the family of
horospherical height functions H.

Proof. The proof follows from the definition of the discriminant set given in Section 2 and by
Proposition 3.1 (2). O

Following Proposition 3.1, we define the invariant

o(s) = (k; + kyry(—0)1/1+ kga) (s)

of the curve . We will study the geometric meaning of this invariant in Section 4.
In the next result, we show that the family of horospherical height functions on a curve in S}
is a versal deformation of an Ag-singularity, k = 2,3, of its members.

Proposition 3.3. With the same assumptions as in Proposition 3.1, let H : I x LC* — R be
the family of horospherical height functions on ~y. If h, has an As-singularity at sg, then H is a
versal deformation of hy. If h, has an As-singularity at sy and n(so) is timelike with kq(so) # 1
(which is a generic condition) or if n(sg) is spacelike, then H is a versal deformation of h.,.
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Proof. The family of horospherical height functions is given by
H(s,v) = —vgzo(s) + v121(8) + vaza(s) + vszs(s) — 1,

where v = (vo,vl,vg,vg) 'y(s) = (xo( ), x21(8), x22(8), xg( )) is the curve parametrised by arc

length, vy = /07 +v3 + 02 and z¢(s) = /23(s) + 23(s) + 23(s) — 1.
Writing H(s,v) = H(s, Ul,’UQ,’Ug) we have

OH _ i(s) - Zao(s),

0 (% Vo

H
for ¢+ = 1,2, 3. Therefore, the 2-jet of g
v;

i(on) = Zaa(s0) + (o1(o0) = Za(s0) ) 5= s0) + 5 (alo0) = Zafon) ) s - so)”

We assume first that h, has an As-singularity at s = sg, and we show that the determinant
of the 3 x 3 matrix

at sg, is given by

V1 V2 U3
z1(s0) — %xo(so) r2(s0) — U*Offo(so) x3(s0) — %xo(SO)
U1 V2 U3
A= | #h(s0) = ablso) whlso) — ah(s) hs0) — wh(so)
0 0 0
U1 v2 U3
z7(s0) — —xg(s0) x5(s0) — —xg(s0) 25(s0) — —xg(s0)
o Vo Vo
is nonzero. Denote
7o(s0) i(50)
a= | wzp(s0) |, 0i=| i(s0) |,
25 (s0) 7/ (s0)

for i =1,2,3. Then

det A = 22 det(by by bs) — L det(a by bs) — -2 det(br a bs) — -2 det(by by a).
Vo Vo Vo Vo

On the other hand,

(Y AY Ay")(s0) = (—det(by by bg), —det(a by b3), —det(by a b3), —det(by b2 a)).

Therefore,

det A = <(”° oot U‘°’> (YA A v”)(30)>

Vo Vo Vo Yo

- U%(V(so) + un(so) £ /p2 + de(so), ky(so)e(so))
1

=t (=0) K (s0)0 + 1.

1
In the case where n(sp) is a spacelike vector, we have det A = F—, /kZ(so) + 1 # 0 and therefore
Vo
H is a versal deformation of h, at s = so. If n(sg) is a timelike vector, then we have
1
det A=+—,/1—k2
e " g(so)

and therefore det A # 0 under the condition that k,(sg) # 1, so H is a versal deformation of h,
at s = sg.



186 SHYUICHI IZUMIYA, ANA CLAUDIA NABARRO, AND ANDREA DE JESUS SACRAMENTO

When k = 2, we require the rank of B to equal 2, where B is the matrix

v v v
1‘1(50) — ;11‘0(80) 3?2(80) — 5330(80) .Tg(S()) — f&)‘o(So)

0 0 0

v v v
i (s0) — —h(s0) @h(s0) — —wh(s0) wh(s0) — —wp(s0)

Vo Vo Vo
Since B consists of the first and second lines of A, we have that if n(sg) is a spacelike vector, then
rank of B is 2 because det A # 0. If n(so) is a timelike vector, the rank of B is 2 if k,(sg) # 1.

9 _
For the case k4(sg) = 1, the rank of B is 2 if Hzo(s0) = v0) # 0. Then it is enough to show that
Ug
x0(S0) # vo. As kg(sg) =1, we have by Proposition 3.1 (2) that
v(so) = ¥(s0) — n(so).

Therefore vy = xo(s0) — no(s0), where n(sg) = (no(so),n1(s0), n2(s0),n3(s0)). Without loss of
generality, we can suppose ng(sp) # 0, so the rank of B is 2. O

Using Theorem 2.2 and Proposition 3.3, we can obtain the diffeomorphism type of the horo-
spherical surface.

Theorem 3.4. With the same assumptions as in Proposition 3.1, let HSiE be the horospherical
surface of v. Then we have the following:

(1) The singular values of HS,% are given by
1 1

hES(s) =~(s) + —————n(s) £ [ —— + 6(7(s))e(s).
(2) HSAYjE is, at (so, po), locally diffeomorphic to a cuspidal edge if and only if
1

1o = m and o(sg) # 0.

(3) HS’Wi is, at (so, po), locally diffeomorphic to a swallowtail surface if and only if
B 1

H0 = Ty (50)5(1(50))

for n(sg) timelike with ky(so) # 1, or for n(so) spacelike.

o(s9) =0, and o'(sg) #0,

Proof. Consider the horospherical surface given by HSF (s, 1) = v(s)+un(s)/u? + 0(7(s))e(s).
Then

OHS*

s (5 1) = (1= pd(7(s)kg(s))t(s) £ V2 + 6((5))7g(s)n(s) + p7y(s)e(s) and
OHS* B [

B (s, 1) = n(s) + NSO +5(7(s))e(é’)-

The vectors

+ +
{ag?(sovﬂo)’ 31;57 (507/10)}
are linearly dependent if and only if
_ 1
"0 kg (50)8(1(s0))

Then the singular values of HS?,E are given by hi} Sy (s0) = HSvi(sO, o) and assertion (1) follows.
By Corollary 3.2, the discriminant set Dy of the family of horospherical height functions H of
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«v is the horospherical surface of 7. It also follows from assertions (3) and (4) of Proposition 3.1
that h, has an As-singularity (respectively, an As-singularity) at s = s if and only if
1

M= oy 4 o) 20

(respectively,
1
g = —————————, 0(s9) =0, and o'(s9)#0).
A PATICE M (o) 70)
By Theorem 2.2 and Proposition 3.3, we have assertions (2) and (3). We observe that, in (3),
if n(sg) is timelike, it is necessary to suppose that k,(so) # 1 in order to obtain Proposition
3.3. O

4. INVARIANTS AND SPECIAL GEOMETRY OF THE HOROSPHE-RICAL SURFACE

We study the geometric meaning of the invariant o(s) defined in the previous section. Let
v be a lightlike vector, w be a spacelike vector, and z be a timelike vector. We call the de
Sitter space curve, given by the intersections of the parabolic de Sitter quadric QDP(v, 1) with
HP(w,0) (resp. HP(z,0)), T-horoparabolas (resp. S-horoparabolas).

Given a unit speed spacelike curve v in S, the unit normal vector n can be a timelike vector
or a spacelike vector. We prove the following results that give conditions depending on the
invariants, for the curve v to be in a parabolic de Sitter quadric. In addition, we also give
conditions for v to be part of a T-horoparabola or a S-horoparabola. These facts are related to
the invariants o(s) and 74(s). It is convenient to divide the discussion into two cases: n(s) is
timelike (Proposition 4.1) and n(s) is spacelike (Proposition 4.2).

We observe that for a curve in hyperbolic 3-space (see [8]), there is only one case because n(s)
is always spacelike.

Proposition 4.1. Let v : I — S} be a unit speed spacelike curve such that n(s) is a timelike
vector field along v, kq(s) < 1, and ky(s) # 0. Consider the singular values hffSn,(s) of the
horospherical surface.

(1) Suppose that ky(s) = 1. Then the following conditions are equivalent:
(a) hifS,(s) is a constant vector,
(b) 4(s) =0,
(¢) v is a part of a T-horoparabola.
(2) Suppose that the set {s € I | ky(s) = 1} consists of isolated points. The following
conditions are equivalent:
(a) hfS,y(s) is a constant vector vy € LC*,
(b) o(s) =0,
(c) v is located on a parabolic de Sitter quadric QDP(vg,1).

Proof. The proof is similar to that for a curve in hyperbolic space in [8]. Consider the singular
values h/“fS,y (s) of the surface that we denote by
1

kg(s)

Suppose that ky(s) = 1. Then v(s) = v(s) — n(s), and v'(s) = —74(s)e(s). Therefore, v(s)
is constant if and only if 7,(s) = 0, so statements (a) and (b) of (1) are equivalent. If v(s)
is constant, then 7,(s) = 0 and, as €/(s) = 74(s)n(s), this means that e(s) is constant. Thus,
the hyperplane HP(e(s),0) generated by «(s), t(s) and n(s), is constant. In this case, the
parabolic de Sitter quadric QDP(v(s), 1) is also constant. Thus, the image of «y is a part of a
horoparabola given by QDP(v(s),1) N HP(e(s),0). Therefore, (a) implies (c). If v is a part of a

v(s) = y(s) + pn(s) £ /u2 — le(s) with pu=—
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T-horoparabola, then it is a de Sitter plane curve and, hence, 74(s) = 0; so (c) implies (b). This
completes the proof of (1).

Suppose now that ky(s) # 1. Since p(s) = — , we have

S
kg(s)
v(s) = y(s) — kg(s)n(s) + ™0 e(s).

K, & kgTgy /1 — k2 J1— k2kgry £ K

v (S) = k,g (s)n(s) - kgm

Therefore, v'(s) = 0 if and only if o(s) = 0, so the statements (a) and (b) of (2) are equivalent
at any point s € I.

We now consider the family of horospherical height functions H(s,v) on ~. If v is located
on the parabolic de Sitter quadric QDP(vg, 1), then H(s,v9) = 0. By Proposition 3.1 (4), we
have (kj, + kg7y4/1 —k2)(s) = 0. Therefore, (c) implies (b). If v is a constant vector vy, then

(v(s),v0) =1 for all s € I and thus v(s) € QDP(uvo, 1) for all s € I. Therefore, + is located on
a parabolic de Sitter quadric. O

Thus

(s)e(s)-

Proposition 4.2. Let vy : I — S} be a unit speed spacelike curve such that n(s) is a spacelike
vector field along v and kq¢(s) # 0. Consider the singular values hlﬂfS,Y(S) of the horospherical
surface. The following conditions are equivalent:

(a) hlﬂfS.y(s) is a constant vector vg € LC*,
(b) o(s) =0,
(¢c) = is located on a parabolic de Sitter quadric QDP(vg, 1) for some vg.

Furthermore, if v C QDP (v, 1) and 74(s) =0, then v is part of a S-horoparabola.

Proof. The proof is analogous to that of Proposition 4.1 (2). O

5. HYPERBOLIC HEIGHT FUNCTIONS

We introduce here a family of functions on a curve which is useful to study the singularities
of the hyperbolic dual surface of a spacelike unit speed curve «. First, we explain why we
consider only spacelike curves with spacelike normal vector fields. Let v : I — S3 be a unit
speed spacelike curve. We suppose, as we did previously, (t'(s),t'(s)) # 1 (generic condition),

. . t'(s) + . .
equivalently ky(s) # 0, in order to define n(s) = m Then n(s) is a spacelike

s)+ (s
normal vector field or a timelike normal vector field along ~.

Proposition 5.1. Let v : I — S} be a unit speed spacelike curve such that ky(s) # 0 for all
sel.

(1) Suppose that n(s) is a spacelike normal vector field along . Then the hyperbolic dual
surface HD$ of v is singular at (so, o) if and only if po = 0. That is, the singular
values of the hyperbolic dual surface are given by hi’D,y(s) = HD,jyE (s,0) with s € I and
po = 0.

(2) If n(s) is a timelike normal vector field along ~y, then the hyperbolic dual surface HD,?
of v does not have singular points.



DUAL SURFACES OF SPACELIKE CURVES IN DE SITTER SPACE 189

Proof. Consider the hyperbolic dual surface of +,

HDZ(s, 1) = pn(s) & \/u® + 6(y

Then, we have

OHDZ
5 (5 1) = —0(v(s))uky(s)t(s) £ v u? +8(v(5))7g(s)n(s) + p7g(s)e(s) and
(‘3HD$ 1

s, 1) = n(s) £ ————=e€(s)
o T 3((s)) (

If n(s) is a spacelike normal vector field, the proof of (1) is similar to that of Theorem 3.4
(1). However, if n(s) is a timelike normal vector field, the hyperbolic dual surface is not defined
for 119 = 0. Therefore assertion (2) holds. O

Since we are interested in studying the singularities of the hyperbolic dual surface of a spacelike
curve, then it follows from Proposition 5.1 (2) that we need only to consider spacelike curves
with spacelike normal vector fields n(s).

We define a family of functions H : I x H3(—1) — R on v given by H(s,v) = (y(s),v). We
call H the family of hyperbolic height functions on v and denote h,(s) = H(s,v) for any fixed
v € H3(—1). By Definition 2.1, the hyperbolic height function measures the contact of v with
spacelike hyperplanes. Generically, the order of this contact can be k, k = 1,2, 3.

We have the following result about the singularities of h,,.

Proposition 5.2. Let v : [ — S} be a unit speed spacelike curve such that n(s) is a spacelike
vector field along v and kg(s) # 0 for all s € I. Then we have the following:
(1) hy(s) = 0 if and only if there exist real numbers p, A\, n with n* + u? — A2 = —1 such
that v = nt(s) + un(s) + Ae(s).
(2) hy(s) = hi(s) =0 if and only if there exist real numbers p, A such that v = un(s)+ Ae(s)
with A2 — p? = 1.
(3) hy(s) =hi(s)=hl(s) =0 if and only if v = Le(s).
(4) hy(s) =hl(s) = h;(s) = hq(jg)(s) =0 if and only if v = +e(s) and 74(s) = 0.

(5) hyo(s) =hi(s)=---= h5,4)(s) =0 if and only if v = +e(s) and T4(s) =7,(s) = 0.

Proof. Since h,(s) = (v(s),v), we have
(a) hy,(s) = (t(s),v),
(b) hJ(s) = (~(s) + ky(s)n(s),v),
(©) AP (s) = (=1 — K2(s))t(s) + K (5)n(s) + kg (5)7a (5)e(5), o),
(@) B (5) = ((1+K2(5))v(5) — 3K (3)kg (5)2(5) + (— iy () + 1 (5) + Ky (3)72(5) — K () (s) +
(2K (5)79(s) + 9(8)7/(8))6(8)7@-

The proof follows by simple calculations using (a)-(d). O

Corollary 5.3. The hyperbolic dual surface of v is the discriminant set Dy of the family of
hyperbolic height functions H.

Proof. The proof follows from the definition of the discriminant set given in Section 2 and
Proposition 5.2 (2). O

Proposition 5.4. Let v : I — S} be a unit speed spacelike curve such that n(s) is a spacelike
vector field along v, kg # 0. Then the family H of hyperbolic height functions on v is a versal
deformation of the Ay and As-singularities of h,,.

Proof. The method of the proof is similar to that of Proposition 3.3. O
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We can now obtain the diffeomorphism-type of the hyperbolic dual surface.

Theorem 5.5. Lety: I — S be a unit speed spacelike curve such that n(s) is a spacelike vector
field along v and ky(s) # 0 for all s € I. Consider the hyperbolic dual surface HDWi of .
(1) The singular values of Hfo are given by hfLDv(s) = +e(s).
(2) HD$ is, at (o, pto), locally diffeomorphic to a cuspidal edge if and only if 1o = 0 and
T4(s0) # 0.
(3) HDZY—L is, at (S0, o), locally diffeomorphic to a swallowtail surface if and only if po =0,
74(s0) = 0 and 7,(s0) # 0.

Proof. By Corollary 5.3, the discriminant set Dp of the family of hyperbolic height functions
H on ~ is the hyperbolic dual surface of . It follows from Proposition 5.2 (3) and (4) that h,
has an Ag-singularity (respectively, an As-singularity) at s if and only if gy = 0 and 74(sg) # 0
(respectively, g = 0, 74(s0) = 0 and 7,(so) # 0). By Theorem 2.2 and Proposition 5.4, this
completes the proof. O

6. INVARIANT AND SPECIAL GEOMETRY OF THE HYPERBOLIC DUAL SURFACE

In this section, we investigate the geometric properties of a hyperbolic dual surface H fo at
its singularities by using the invariant 7, of . The de Sitter focal surfaces of hyperbolic space

curves are studied in [3].

Proposition 6.1. Let v : [ — S} be a unit speed spacelike curve such that n(s) is a spacelike
vector field along v and kg(s) # 0 for all s € I. Consider the singular values thﬂ,(s) of the
hyperbolic dual surface. The following conditions are equivalent:

(a) hfva(s) is a constant vector vy € H3(—1),

(b) 14(s) =0,
(c) 7 is part of the elliptic de Sitter quadric QDE (v, 0).

Proof. If the hyperbolic dual surface is singular at (s, ), then p = 0. Therefore,

+ + OH D3 —
hi; D+ (s) = HDZ (s, p) = *e(s) and s (s,p) = £74(s)n(s) =0

if and only if 74(s) = 0. This means that assertion (a) is equivalent to assertion (b). Suppose
that 74(s) = 0 then hfwa(s) = =e(s) = =g is constant. Since (y(s),+e(s)) = 0, then
v(s) € S§ N HP(e(s),0), where vy = e(s) that is a timelike vector. Therefore, assertion (b)
implies assertion (c).

On the other hand, suppose that Imy C QDE(v,0) = S? N HP(v,0), where v is a timelike
fixed vector. Then we have h,(s) = (y(s),v) = 0 for all s € I. By Proposition 5.2, (4), 74(s) = 0.
This completes the proof. (I

Proposition 6.1 characterizes the case when ~ is contained in the elliptic de Sitter quadric:
T4(s) = 0. If 74(s) # 0 the result below shows that the degeneracy of the singularities of HD,f
characterize the contact of the v with elliptic de Sitter quadrics.

Theorem 6.2. Let~y: I — S be a unit speed spacelike curve such that n(s) is a spacelike vector
field along v, kg #0 and 7, Z0. For vy = HD,:\ﬁ:(So,Mo), we have the following:
(1) v has at least 2-point contact with QDFE(vg,0) at so if and only if uo = 0, equivalently,
the hyperbolic dual surface of v is singular at (so, fo).
(2) v has 2-point contact with QDE(vo,0) at so if and only if po = 0 and 74(sp) # 0,
equivalently, the hyperbolic dual surface of v is locally diffeomorphic to a cuspidal edge.
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(3) v has 3-point contact with QDE(vy,0) at so if and only if po = 0, 74(so) = 0 and

Té(So) # 0, equivalently, the hyperbolic dual surface of v is locally diffeomorphic to a

swallowtail surface.

Proof. For vy = HDZ (s, 1), we define a map oy : 53 = R by hy, () = (x,v0). Thus, we have

~ -1 ~
(hyy) (0) = QDE(vg,0). In this case, g(s) = hy, © ¥(s) = hy,(s) and then the proof follows
from Definition 2.1, Proposition 5.2 and Theorem 5.5.

O

7. DUAL RELATIONS ON HOROSPHERICAL AND HYPERBOLIC DUAL SURFACES

We require some properties of contact manifolds and Legendrian submanifolds for the duality
results in this section, and we now review these concepts (for more details see, for example, [1]).

Let N be a (2m + 1)-dimensional smooth manifold and K be a field of tangent hyperplanes
on N. Locally, K is defined as the kernel of a 1-form 6. We say that the tangent hyperplane
field K is non-degenerate if A (df)™ # 0 at any point on N. The pair (N, K) is called a contact
manifold if K is a non-degenerate hyperplane field. In this case, we call K a contact structure
and 6 a contact form. A submanifold i : L C N of a contact manifold (N, K) is Legendrian if
dim L = m and di, (T, L) C K;(;) at any 2 € L, where i is an immersion. A smooth fibre bundle
w: E — M is a Legendrian fibration if its total space E is furnished with a contact structure
and the fibers of 7w are Legendrian submanifolds. For a Legendrian submanifold i : L C F,
moi: L — M is called a Legendrian map. We call the image of the Legendrian map wo i a
wavefront set of ¢, which is denoted by W (7).

The duality concepts we use here are those introduced in [6] and [5] (the Legendrian dualities
between pseudo-spheres in Lorentz-Minkowski space), where five Legendrian double fibrations
are considered on the subsets A;, i = 1,...,5 of the product of two of the pseudo-spheres H"(—1),
S7 and LC*. Here we use only i = 1,2,3. We define one-forms (dv,w) = wodvg + Y., widv;,
(v,dw) = vodwoy + S5, vidw; on RIT x RIM and consider the following three Legendrian
double fibrations.

(1) (a) H*(=1) x ST > Ay = {(v,w) | (v,w) =0},
(b) m1: Ay — H"(-1), m2: Ay — ST,
(¢) 611 = {(dv,w) |a,, 012 = (v,dw) |a, -

(2) (@) H*(=1) x LC* > Ay = {(v,w) | (v, w) = —1},
(b) o1 AQ — Hn(—l), 29 Az — LO*,
(C) b1 = (dv,w> |A2a b2 = <v,dw> ‘A2 :

(3) (a) LC* x ST D Az ={(v,w) | (v,w) =1},
(b) T3] - A3 — LC*, 32 - A3 — 5?7
(¢) O51 = {dv,w) |as, 032 = (v,dw) |, -
Here, 71 (v, w) = v, m2(v,w) = w are the canonical projections. We remark that 6;;'(0) and
05" (0) define the same tangent hyperplane field over A; which is denoted by K;, (i = 1,2,3).
It has been shown in [6] that each (A;, K;) (¢ = 1,2,3) is a contact manifold and m;; and ;2

(1 =1,2,3) are Legendrian fibrations. Moreover, the contact manifolds (Aq, K7), (Ag, K3) and
(A3, K3) are contact-diffeomorphic to each other.
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For a given Legendrian embedding £; : U — A;, i = 1,2,3, we say that m;;(L£;(U)) is the A;-
dual of 2(L;(U)) and vice-versa (see [4]). In the next result, to show duality, we have to show
that the immersion £; : U — A;, ¢ = 1,2,3 is a Legendrian immersion , i.e., dimU = m and
(dLi)2(To(U)) C Kg,(a) for all x € L (see also [6]). Equivalently, £; is a Legendrian immersion
if dimU = m and £;"0;7 = 0 (see, e.g., [9]). Therefore, we can show that a submanifold is
Legendrian using the second definition.

We have the following relations on horospherical and hyperbolic dual surfaces. We observe
that here n = 3, m = 2 and dimA; = 5, i = 1,2,3. (For hyperbolic curves +, the are duality
results in [4] for hyperbolic focal surface and de Sitter focal surface of ).

Theorem 7.1. Let v : 1 — S} be a unit speed spacelike curve such that ky(s) # 0 for all s € I.
Then

(1) v is Aq-dual of HD,?.
(2) v is As-dual of HSZ.
(3) HD$ is Ag-dual of HSi':.

Proof. (1) Define the mapping £ : I x J — Ay by L41(s,p) = (HDi[(S,,u)ﬁ(s)), where
M = my (£4(I x J)) = HDE (s, ) = pn(s) + /62 + 5(2())e(s)

and
M* = 7T12(£1(I X J)) = ’Y(S)

Then (HDf(s,u)gy(s)) = 0, so the mapping is well-defined, i.e., £1(s, 1) € Ay. We have

%(S, p) = (=0(v(s))pkg(s)t(s) & /2 + 6(v(s))14(s)n(s) + pry(s)e(s), t(s))
oL 5,18) = (n(s) + ———t——e(s
au(”“‘) (n(s) £ 00 (5),0),

and so £ is an immersion. Since L3612 = (HDZ(s, 1), t(s))ds = 0, then, by definition, £1(I x .J)
is a Legendrian submanifold in A;.

(2) We also define the mapping L3 : I x J — Az by Ls(s, ) = (HSE(s,p1),7(s)), where
HSE(s, ) = ~(s) +pn(s) £ /p2 + 0(y(s))e(s). Thus, (HSE(s,1),~(s)) =1, i.e., L3(s, 1) € As
and the proof follows as in (1).

(3) We now define the mapping Lo : I x J — Ay by Lao(s,p) = (HDiE(s,u),HSvi(s,u)).
Then we have

(HD (s, 1), HS (5, 1)) = 18(3(s)) + (12 + 6(7(5)))(=0(7(5))) = ~1.

Thus, £o(s, 1) € As, so the mapping is well-defined. Since

%W) = (=0(y(5))uky (3)t(5) & /a2 + 0(y(5))7(5)n(5) + 7 (s)e(s),
(1= 6(y(8))pky (5))E(s) £ /12 +5(3(8))7y (s)n(s) + 7y (s)e(s))
L,

au(’“)_(()i u2+5(7(8))() (s) £ u2+5(v(s))())
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is an immersion, because —0(y(s))ukq(s) # 0 or 1 — §(y(s))pky(s) # 0. Moreover,
‘63921 = <d(HD$(S>M))’ HS’yi(Snu’)>
OHD* OHDZ
= (S s + T s S ) )
= (0 ()ky(1(5) v/ T Dy (s)n(s) + pros)e(s). 7(s) ) ds

<Tg(5)(ue(8) £ V12 +0(v(s)) n(s)) — ud((5))kg(s)t(s), pnls) £ v/ 12 + 5(7(8))6(5)> ds

H _
+ ( n(s) £ me(s)77(s) + pn(s) £/ p® +6((s))e(s) ) dp = 0.

Therefore, Lo(I x J) is a Legendrian submanifold in As.

O

Acknowledgments We would like to thank the referees and Farid Tari for useful suggestions.

REFERENCES

[1] ARNOLD, V. I., GUSEIN-ZADE, S. AND VARCHENKO, A. N. Singularities of Differentiable Maps-Vol. I: Clas-

sification of critical points caustics and wave fronts. Translated from the Russian by Ian Porteous based
on a previous translation by Mark Reynolds. Reprint of the 1985 edition. Modern Birkhuser Classics.
Birkhauser/Springer, New York, 2012.

[2] BRUCE, J. W. AND GIBLIN, P. J. Curves and Singularities: a geometrical introduction to singularity theory.

Cambridge University Press, Cambridge, 1992. DOI: 10.1017/CB0O9781139172615

| HavasHI, R., IzumIYA, S. AND SATO, T. Focal surfaces and evolutes of curves in hyperbolic space. Commun.

Korean Math. Soc. 82,1 (2017), 147-163. DOI: 10.4134/CKMS.c160024

[4] HavasHI, R., IzuMIvAa, S. AND SATO, T. Duals of curves in hyperbolic space. Note di Matematica 33, 2

(2013), 97-106.

[5] IzumivA, S. Time-like hypersurfaces in de Sitter space and Legendrian singularities. J. Math. Sci. (N.Y.)

144, 1 (2007), 3789-3803. DOI: 10.1007/s10958-007-0232-0

[6] IzumivyA, S. Legendrian dualities and spacelike hypersurfaces in the lightcone. Mosc. Math. J. 9, 2 (2009),

325-357.

[7] Tzumiva, S., JIANG, Y. AND SATO, T. Lightcone dualities for curves in the lightcone unit 3-sphere. J. Math.

Phys. 54, 6 (2013), 063511, 15 pp.

[8] IzumivA, S., PEL, D. AND SANO, T. Horospherical surfaces of curves in hyperbolic space. Publ. Math. Debrecen

64, 1-2 (2004), 1-13.

[9] OHNITA, Y. On deformation of 3-dimensional certain minimal Legendrian submanifolds. In Proceedings of

the 18th International Workshop on Differential Geometry and Related Fields [Vol. 13] (2009), Natl. Inst.
Math. Sci. (NIMS), Taejon, pp. 71-87.

[10] RATCLIFFE, J. G. Foundations of hyperbolic manifolds. Graduate texts in Mathematics, 149. Springer, New

York, 2006.

[11] TAr1i, F. Caustics of surfaces in the Minkowski 3-space. Q. J. Math. 63, 1 (2012), 189-209.

DE

DOI: 10.1093/gmath/haq030

SHYUICHI IZUMIYA, DEPARTMENT OF MATHEMATICS, HOKKAIDO UNIVERSITY, SAPPORO 060-0810, JAPAN
E-mail address: izumiya@math.sci.hokudai.ac.jp

ANA CLAUDIA NABARRO, DEPARTAMENTO DE MATEMATICA, ICMC UNIVERSIDADE DE SA0 PAULO, CAMPUS
SA0 CARrLOS, CAIXA PosTAL 668, CEP 13560-970, SA0 CARLOS-SP, BRAZIL
E-mail address: anaclana@icmc.usp.br

ANDREA DE JESUS SACRAMENTO, DEPARTAMENTO DE MATEMATICA, ICMC UNIVERSIDADE DE SAO PAULO,

CaMPUS DE SAO CARLOS, CAIXA POSTAL 668, CEP 13560-970, SA0 CARLOS-SP, BRAZIL

E-mail address: anddyunesp@yahoo.com.br


https://doi.org/10.1017/CBO9781139172615
https://doi.org/10.4134/CKMS.c160024
https://doi.org/10.1007/s10958-007-0232-0
https://doi.org/10.1093/qmath/haq030

Journal of Singularities received: 13 September 2017

- in revised form: 14 September 2017
Volume 16 (2017)’ 194-194 DOI: 10.5427/jsing.2017.16i

ERRATUM TO:
A REMARK ON THE IRREGULARITY COMPLEX

CLAUDE SABBAH

ABsTrRACT. We correct a wrong statement in [Sab17].

Proposition 3.3 and Corollary 3.4 of [Sab17] should be modified as follows.

Proposition 3.3. Let us fix I C J and let us set k = k(I) for simplicity. Then the natural
morphism T;1$>0 — ZTlRZk*Z;1$>O is an isomorphism. The same property holds for £+o
up to replacing k(I) with k'(I).

Corollary 3.4. 3. With the notation as in Proposition 3.3, the natural morphism
i Iep (M) = 1 R o, Tevp ()
is an isomorphism. The same property holds for Irr}, () up to replacing k(I) with k'(I). O

Here, the index k(1) is any index k' such that the following property is satisfied: any ¢ € @,
having a pole along Dy has a pole along all the components of D passing through z, (such a &’
exists, due to the goodness condition). Equivalently, the number of ¢ € ®,_ having no pole on
Dy is maximum (this maximum could be zero).

The last paragraph of the proof of Proposition 3.3 should be replaced with the following.

The case of £ is treated similarly by reducing to the case where .# = &%¥. Assume first
that ¢ has poles along all components of D passing through z, (i.e., p = £). If we regard all
sheaves considered above as external products of constant sheaves of rank one with respect to the
product decomposition in (3.6) and (3.7), the case of £ is obtained by replacing [—7/2, 7 /2]
with the complementary open interval in (3.5), and the corresponding sheaf Cy, ) with the sheaf
C(q,py for suitable a', b’ (i.e., the extension by zero of the constant sheaf on (a’,0’)). Then the
same argument as above applies to this case.

If the assumption on ¢ does not hold, then ¢ has no pole along Dy, so that L];/1$<0 =0. We
also have LI_1$<0 = 0 since e¥ is not of rapid decay all along D, so the statement is obvious in
this case.
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ON THE TOPOLOGY OF A RESOLUTION OF ISOLATED SINGULARITIES

VINCENZO DI GENNARO AND DAVIDE FRANCO

ABSTRACT. Let Y be a complex projective variety of dimension n with isolated singularities,
m: X — Y a resolution of singularities, G := 7~ 1Sing(Y) the exceptional locus. From the
Decomposition Theorem one knows that the map H*~1(G) — H*(Y,Y\Sing(Y)) vanishes
for k > n. Assuming this vanishing, we give a short proof of the Decomposition Theorem
for m. A consequence is a short proof of the Decomposition Theorem for 7 in all cases where
one can prove the vanishing directly. This happens when either Y is a normal surface, or
when 7 is the blowing-up of Y along Sing(Y) with smooth and connected fibres, or when
7 admits a natural Gysin morphism. We prove that this last condition is equivalent to
saying that the map H*~1(G) — H*(Y,Y\Sing(Y")) vanishes for all k, and that the pull-back
T H*(Y) — H*(X) is injective. This provides a relationship between the Decomposition
Theorem and Bivariant Theory.

1. INTRODUCTION

Consider an n-dimensional complex projective variety Y with isolated singularities. Fix a
desingularization m : X — Y of Y. This paper is addressed at the study of some topological
properties of the map 7. In a previous paper [14], we already observed that, even though = is
never a local complete intersection map, in some very special cases it may nonetheless admit a
natural Gysin morphism. By a natural Gysin morphism, we mean a topological bivariant class

[20, §7], [7]
0eTX 5Y):=Hompsy(Rm.Qx,Qy),

commuting with restrictions to the smooth locus of Y (here and in the following D®(Y") denotes
the bounded derived category of sheaves of Q-vector spaces on Y).

In this paper, we give a complete characterization of morphisms like 7 admitting a natural
Gysin morphism by means of the Decomposition Theorem (2], [6], [8], [9]. In some sense, what we
are going to prove is that m admits a natural Gysin morphism if and only if Y is a Q-intersection
cohomology manifold, i.e., ICY ~ Qy[n] in D*(Y) (ICy denotes the intersection cohomology
complez of Y [17, p. 156], [27]). Furthermore, in this case, there is a unique natural Gysin
morphism 6, and it arises from the Decomposition Theorem (compare with Theorem 1.2 below).

The Decomposition Theorem is a beautiful and very deep result about algebraic maps. In
the words of MacPherson, “it contains as special cases the deepest homological properties of
algebraic maps that we know”[26], [34]. As observed in [34, Remark 2.14], since the proof of the
Decomposition Theorem proceeds by induction on the dimension of the strata of the singular
locus, a key point is the case of varieties with isolated singularities:

2010 Mathematics Subject Classification. Primary 14B05; Secondary 14E15, 14F05, 14F43, 14F45, 32520,
32560, 58K15.

Key words and phrases. Projective variety, Isolated singularities, Resolution of singularities, Derived category,
Intersection cohomology, Decomposition Theorem, Bivariant Theory, Gysin morphism, Cohomology manifold.
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Theorem 1.1 (The Decomposition Theorem for varieties with isolated singularities). In D°(Y),
we have a decomposition
Rm.Qx 2 ICy[—n] ®H®,
where H® is quasi-isomorphic to a skyscraper complex on Sing(Y'). Furthermore, we have
(1) HE(H®) = HY(G), for all k > n,
(2) H¥(H®) = Hap 1 (Q), for all k < n,
where G := 71 (Sing(Y)), and H*(G) and Ha,,_1(G) have Q-coefficients.

The relationship between the Gysin morphism and the Decomposition Theorem is closely
related to an important topological property of the morphism 7. Specifically, in [22] and [32]
one proves that Theorem 1.1 implies the following vanishing

(1) H*Y(G) — H*(Y,U) vanishes for k > n,
where U = Y'\Sing(Y).

One of the main points we would like to stress in this paper (compare with Theorem 3.1) is
that

the vanishing (1) is equivalent to the Decomposition Theorem.

More precisely, what we are going to do in this paper is to prove that assuming (1), one can
prove Theorem 1.1 in few pages. Actually this equivalence is already implicit in the argument
developed by Navarro Aznar in order to prove [30, (6.3) Corollaire, p. 293]. In fact, after
proving (1) using Hodge Theory, Navarro Aznar proves the relative Hard Lefschetz Theorem
and observes that the Decomposition Theorem follows from Deligne’s results on degeneration of
spectral sequences. Instead, here we give a simpler and more direct proof, avoiding the use of
the relative Hard Lefschetz Theorem. In fact, we deduce the splitting in derived category from
a simple result concerning short exact sequences of complexes (compare with Lemma 4.7).

A byproduct of our result is a short proof of the Decomposition Theorem in all cases where one
can prove the vanishing (1) directly. This happens when either 2dim G < n (for trivial reasons),
or when Y is a normal surface in view of Mumford’s theorem [23], [29], or when 7 : X — Y is
the blowing-up of Y along Sing(Y') with smooth and connected fibres (see Remark 5.1). Tt is
worth remarking that if Y is a locally complete intersection variety, then Milnor’s theorem on the
connectivity of the link [16] implies (via Lemma 4.1 below) that the map H*~1(G) — H*(Y,U)
vanishes for all £k > n 4+ 2. Therefore, in this case the question reduces to check that the map
H"(G) — H"Y(Y,U) vanishes. This in turn is equivalent to require that H,(G), which is
contained in H,(X) via push-forward, is a nondegenerate subspace of H,(X) with respect to
the natural intersection form H, (X) x H,(X) — Ho(X) (see Remark 5.1, (i)). Another case
is when 7 admits a natural Gysin morphism. Indeed, in this case it is very easy to prove the
stronger property

H*"1(G) — H*(Y,U) vanishes for k > 0.
This is the real reason why in our approach the same argument leads to both Theorem 1.1

and the following:

Theorem 1.2. There exists a natural Gysin morphism for w if and only if Y is a Q-intersection
cohomology manifold. In this case, in D*(Y) we have a decomposition

Rm,Qx = ICY[—n] & H® = QY@@R’%*QX[—I@].

k>1
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Moreover, a natural Gysin morphism is unique, and, up to multiplication by a nonzero rational
number, it comes from the decomposition above via projection onto Qy .

For a more precise and complete statement see Theorem 3.2 and Remark 3.3 below. For
instance, from Theorem 3.2, (ix), we deduce that a natural Gysin morphism exists when Y is
nodal of even dimension n, or when Y is a cone over a smooth basis M with H®(M) = H*(P"~1).
We stress that the existence of a natural Gysin morphism forces the exceptional locus G to have
dimension 0 or n — 1 (see Remark 6.1).

Last but not least, we have been led to consider the issues addressed in this paper by our
previous work on Noether-Lefschetz Theory. We refer to the papers [10], [11], [12], [13] anyone
interested in the overlaps between the topological properties investigated here and the Noether-
Lefschetz Theorem (specifically, we made an heavy use of the Decomposition Theorem in [12,
Remark 3 and Theorem 6, (6.3), p. 169], and in [13, Theorem 2.1, proof of (a), p. 262]).

2. NOTATIONS

(i) Let Y be a complex irreducible projective variety of dimension n > 1, with isolated
singularities. Let 7 : X — Y be a resolution of the singularities of Y. For all y € Sing(Y), set
Gy :=7"1(y). Set G := Uyesing(vy Gy = 7~ 1(Sing(Y)). Let i : G < X be the inclusion.

(#4) All cohomology and homology groups are with Q-coefficients. For a function f: A — B
we denote by (f) the image of f, i.e., S(f) = f(A).

(#4i) Set U := Y'\Sing(Y) =2 X\G. Denote by a: U < Y and 8 : U < X the inclusions. For
all k we have the following natural commutative diagram:

HEY) TS HMX)
(2) AN L BE
H*(U)

where all the maps denote pull-back.

Remark 2.1. From the commutativity of (2) we deduce I(a}) C I(B;). Since H*(Y) = H*(X)
for £ < 0 or k > 2n, we have (o)) = S(B5) for £ < 0 or k > 2n. It may happen that
S(af) # S(Bf). We may interpret the condition S(aj) = I(5)) as follows. Combining the
Universal Coefficient Theorem with the Lefschetz Duality Theorem [31, p. 248 and p. 297] we
have H*(U) = Ho,_1(Y,Sing(Y)) for all k. Since Sing(Y) is finite, we also have

Hgn,k(y) =~ Hgn,k(Y, Smg(Y))

for k <2n —2, and H(Y) C H1(Y,Sing(Y)). Therefore, for k < 2n — 2, (2) identifies with the
diagram:
HE(Y) — Hyp—(X)
N\ v
Hyp—1(Y)

where the map H*(Y) — Ha,_1(X) is the composite of Poincaré Duality H*(X) = Ha, _1(X)
with the pull-back 7}, the map Hap_x(X) — Hap—i(Y) is the push-forward, and the map

HE(Y) 'Q—D;] Hy,—(Y) is the duality morphism, i.e., the cap-product with the fundamental class

[Y] € Hopn(Y) [28]. Tt follows that (o) = (B5) if and only if every cycle in Hop_1(Y) coming
from Hop, (X)) via push-forward is the cap-product of a cocycle in H*(Y) with the fundamental
class [Y]. This holds true also for k = 2n — 1 because H,(Y) C H;(Y,Sing(Y)) & H*"~1(U).
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(iv) Embed Y in some projective space PV. For all y € Sing(Y’) choose a small closed ball
S, € PV around y, and set B, := S,NY, D, := 7~ Y(By), B := Uyesing(v) By: and D = 7 1(B).
B, is homeomorphic to the cone over the link JB, of the singularity y € Y, with vertex at y
[16, p. 23]. B, is contractible, by excision we have

H*(Y,U) = H*(B, B\Sing(Y)) = H*(B,0B)
for all k, and from the cohomology long exact sequence of the pair (B,9B) we get
H*Y,U) = H*~(9B)
for all £k > 2. We have 9D = 0B via 7, and by excision we have
H*(X,U) = H*(D,D\G) = H*(D,dD)

for all k [17, p. 38]. Since G is homotopy equivalent to D, we have H*(G) = H*(D). Putting
everything together, from the cohomology long exact sequence of the pair (D,9D) we get the
following exact sequence

(3) H*(X,U) = H*(@Q) - H**' (Y, U) "3 BH*(X,U)
for all £ > 1, where ~;,; denotes the pull-back. Observe that since Sing(Y’) is finite, we have
H*G) = @yesmg(Y)Hk(Gy)» H*(B) = 69yeSing(Y)I_Ik(By)a H*(0B) = @yesmg(Y)Hk(aBy)-

Remark 2.2. Assume that Y is a locally complete intersection variety. From the connectivity
of the link [16, Milnor’s theorem p. 76, and Hamm’s theorem p. 80], it follows that the duality
morphism H*(Y) — Ha,_1(Y) is an isomorphism for all k ¢ {n — 1,n,n + 1}, is injective for
k=mn—1, and is surjective for k = n+ 1. In particular (o) = S(B5) for all k ¢ {n —1,n}.
In order to prove this property, we argue as follows. We may assume 0 < k < 2n and n > 2.
From the cohomology long exact sequence of the pair (Y, U) we have:

(4) .= HNY,U) —» HYY) —» H*U) - H*"Y(Y,U) — ...,

and by excision H*(Y,U) = H*(B,dB). Taking into account that each B, is contractible and
that 0B, is path connected [16, loc. cit.], from the cohomology long exact sequence of the pair
(B,0B) we get H'(B,0B) = 0 and H*(B,0B) = H*~1(dB) for k > 2. Since

H*(U) & Hap— (Y, Sing(Y)),

and Hop—;(Y) = Hap—i (Y, Sing(Y)) for k£ < 2n — 2, from (4) we get the exact sequence for
k ¢ {1,2n — 1} (compare with [15, p. 5]):

H*1(0B) = H*(Y) — Han_(Y) — H*(OB).

Each 0B, is (n — 2)-connected by Milnor’s theorem [16, loc. cit.], and it is a compact oriented
real manifold of dimension 2n — 1, in particular h*(0B,) = h?"~1=%(dB,) by Poincaré Duality
[16, p. 91]. Tt follows that the map H*(Y) — Ha,_x(Y) is an isomorphism for

k¢ {l,n—1,nn+12n—1}.
As for the case k =1 # n — 1, this follows from (4) because
HY(Y,U)= H'(B,dB) = 0,
HYU) = Hy,_1(Y,Sing(Y)) = Hs,_1(Y), and H?*(Y,U) = H?*(B,0B) = H'(0B) = 0 by
connectivity of the link. When k£ =2n — 1 # n + 1, we have
H* YY,U) = H* Y(B,0B) = H*?(0B) = 0.
Thus, H*"~Y(Y) < H?"~1(U). On the other hand H;(Y) < Hy(Y,Sing(Y)) & H*>"~}(U). It
follows that the duality morphism H?*"~}(Y) — H;(Y) is injective. Then it is an isomorphism



ON THE TOPOLOGY OF A RESOLUTION OF ISOLATED SINGULARITIES 199

because we have just seen, in the case k = 1, that h'(Y) = hg,,_1(Y). Finally notice that, when
n > 3, from previous analysis and (4) we get the exact sequence:
0— H" YY) = H,1(Y) = H" Y (0B) = H™(Y) — H,(Y)
— H™(0B) — H" ™ (Y) = H,_1(Y) — 0.
Therefore, the duality morphism
H™(Y) = oot (Y)

is injective, and the map H""(Y) — H,_1(Y) is onto. This holds true also when n = 2.
In fact, also in this case we have H'(B,0B) = 0, which implies that the duality morphism
HY(Y) — H3(Y) is injective. Moreover, a similar analysis as before shows that the image of
H3(Y) and H;(Y) have the same codimension in H3(U). Thus, they are equal. This concludes
the proof of the claim.

(v) By [31, Lemma 14, p. 351] we have H*(X,U) = Hs,_1(G). Therefore, from the coho-
mology long exact sequence of the pair (X,U) we get a long exact sequence:

(5) S HYYU) = Hop i(G) — HYX) 5 HR W) = ..

(vi) For all y € Sing(Y) set:

k._
HE =

H¥G,) ifk>n
Hgn,k(Gy) if £ < n.

Let HY be the skyscraper sheaf on Y with stalk at y given by HY. Set H* := &, cging(v)H, and
HE = @yGSing(Y)HZ- We consider H® as a complex of sheaves on Y with vanishing differentials
d5,e = 0.

Remark 2.3. From the Universal Coefficient Theorem [31, p. 248 | it follows that the Q-vector
spaces H" % and H"** are isomorphic for all k. This implies that H*[n] is self-dual, i.e., in
the bounded derived category D*(Y) of Y we have H*[n] = D(H*[n]). Taking into account that
in H*[n] all the differentials vanish, to prove that H®[n] is self-dual it suffices to prove that the
complexes H®[n] and D(H*[n]) have isomorphic sheaf cohomology. Since H*®[n] is supported on
a finite set, this amounts to prove that H*[n] and D(H®[n]) have isomorphic hypercohomology,
i.e., that

HF (1° [n]) 2 HF (D(H° [n]))
for all k. But by Poincaré-Verdier Duality [17, p. 69, Theorem 3.3.10] we have:

HY(D(H®[n])) = H™*(H®[n])¥ = H""(H®)Y = (H"7F)Y = B = HF (R [n)).

(vii) We say that a graded morphism 0, : H*(X) — H*(Y) is natural if for all k& one has
Or o = idgr(y), and the following diagram commutes [14]:

YY) & HRX)
RN, N
H*U),

ie., ajol, =S

Remark 2.4. The existence of a natural graded morphism 6, : H*(X) — H*(Y) is equivalent
to saying that, for all k, the pull-back 7} : H*(Y) — H*(X) is injective and () = I(B;)
(compare with the proof of (i) = (ii) in Theorem 3.2 below).
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(viii) We say that a (topological) bivariant class 6 € Hom ps(yy(Rm.Qx,Qy) is natural if the
induced graded morphism 6, : H*(X) — H*(Y) is natural [14], [20].

Remark 2.5. Fix a bivariant class

0 € H (X 5Y) = Hompey(Rm.Qx, Qy).
Let 0y : HY(X) — H°(Y) be the induced map. Let ¢ € Q be such that

bo(1x) =q-1y e H'(Y)=Q
[31, p. 238]. Put
degf :=gq.

For all k and all ¢ € H*(Y'), by the projection formula [20, (G4), (i), p. 26], and [31, 9, p. 251],
we have :
(6) Or(m5(c)) = 0 (1x Umi(c)) = Oo(lx)Uc=degh- (1y Uc) = degh - c.
It follows that for all k£ one has:

(7) HkOTFZ:dege'ide(y).
Next consider the independent square:
v &ox
I
U — Y

and set 0’ := a*(0) € Hompy(1)(Qu, Qu) [20, (G2), p- 26]. Applying [20, (Gz), (ii), p. 26] to
the square:
W) & moX)
%] b0
ag

HO(U) < HY)
we get
05(1v) = 66(85(1x)) = B3 (0o(1x)) = B (deg 0 - 1y) = deg8 - B;(1y) = deg8 - 1y
Since 7|, = idy, as in (6) we deduce for all k and all c € H¥(U):
0r(c) = 0r((mlv)i(e) = 0,(1y U ) = 6y (1y) Uc = deg 8 - (1y Uc) = degf - c,

i.e.,

(8) 0, = degf - idyr ).
From [20, (Gs), (ii), p. 26] it follows that

9) deg - 5 = 0}, o 5 = af. o by

for all k. By (7) and (9) we see that a bivariant class 0 is natural if and only if degf = 1, and
this is equivalent to saying that B} = aj o0y for all k. Observe that if 6 is a bivariant class with
deg # 0, then g50 is natural.

(ix) We say that Y is a Q-cohomology (or homology) manifold if for all y € Y and all k # 2n
one has H*(Y,Y\{y}) = 0, and H*(Y,Y\{y}) = Q [27], [28]. Recall that Y is a Q-intersection
cohomology manifold if ICy = Qy [n] in D*(Y'), where ICY denotes the intersection cohomology
complex of Y [17, p. 156], [27].
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Remark 2.6. By [20, 3.1.4, p. 34] we know that there is a mapping ¢ : X — R™ such that
(m,9) : X =Y x R™ is a closed imbedding. In this case one has

HY X 5Y)= H™(Y x R™,Y x R™\Xy),

where X is the image of X in Y x R™. If Y is a Q-cohomology manifold, then by Poincaré-
Alexander-Lefschetz Duality [1, Theorem 1.1] we have:

H™Y x R™Y x R™ X) = Hy, (X).
It follows that
(10) dimg H(X 5 Y) =1.
On the other hand, since U is smooth, we also have [19, Lemma 2 and (26), p. 217]:
HOU 'S U) = H™(U x R™, U x R™\U,) = HEM(U) =~ HO(U) = Q,
where HZM (U) denotes the Borel-Moore homology. Therefore, the pull-back
o HY(X 5Y) - H(U'Y v)
for bivariant classes identifies with the restriction in Borel-Moore homology:
Hyn(X) = Hy M (U).
Comparing with (8) and (10), this proves that if Y is a Q-cohomology manifold, then there is a

unique natural bivariant class.

(x) Let Z® be an injective resolution of Qx. Let J* := m.(Z°®) be the derived direct im-
age Rm,.Qx of Qx in D*(Y). When k > 1 the cohomology sheaves RFm,.Qx = HF(J*) are
supported on Sing(Y'), and for all y € Sing(Y") we have H*(7*), = H*(G,).

Remark 2.7. The complex J°[n] is self-dual. In fact, by [17, p. 69, Proposition 3.3.7, (ii)], we
have:

D(7*[n]) = D(Rm.Qx|n]) = Rr.(D(Qx[n])) = Rr.(Qx|[n]) = T°[n].

(xi) Since Y has only isolated singularities, we have [17, Proposition 5.4.4, p. 157]:

HFY) ifk>n
(11) THY(Y) =2 S(ar) ifk=n

HEU) ifk<n.

3. THE MAIN RESULTS

Theorem 3.1 below is essentially already known. Property (i) implies (ii) by [32, Theorem
1.11, p. 518]. That property (ii) implies (i) is implicit in the argument developed by Navarro
in order to prove [30, (6.3) Corollaire, p. 293] using a relative version of the Hard Lefschetz
Theorem. Here we give a simpler and more direct proof that (ii) implies (i), avoiding the use of
the relative Hard Lefschetz Theorem.

Theorem 3.1. The following properties are equivalent.

(i) In the derived category of Y there is an isomorphism:
Rm.Qx 2 ICy[—n] ®H®.
(ii) The map H*=Y(G) — H*(Y,U) vanishes for all k > n.
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The equivalences of properties (v), (vi) and (vii) in the next Theorem 3.2 are already known
[4], [28], [27]. We insert them in the claim for Reader’s convenience. We refer to [27] for other
equivalences concerning a QQ-cohomology manifold.

Theorem 3.2. The following properties are equivalent.

(i) The map H*=Y(G) — H*(Y,U) vanishes for all k > 0 and the pull-back 7} is injective.

(ii) There exists a natural graded morphism 0 : H*(X) — H*(Y).

(iii) There exists a natural bivariant class 6 € Hompsyy(Rm.Qx,Qy).

(iv) The natural map H*(Y) — IH®*(Y)is an isomorphism;

(v) Y is a Q-intersection cohomology manifold.

(vi) Y is a Q-cohomology manifold.

(vii) The duality morphism H*(Y) Al Hy,—o(Y) is an isomorphism (i.e., Y satisfies

Poincaré Duality).
(viii) In Db(Y') there exists a decomposition

(12) Rm.Qx = Qy & P RFm.Qx[~k].

k>1

Moreover, if m: X =Y is the blowing-up of Y along Sing(Y") with smooth and connected fibres,
then previous properties are equivalent to the following property:

(iz) For all y € Sing(Y) one has H*(G,) = H*(P"~1).
Remark 3.3. (i) Projecting onto Qy, from the decomposition (12), we obtain a bivariant class
ne Home(y)(Rﬂ'*Qx,Qy),

whose induced Gysin morphisms 7, : H*(X) — H*(Y) are surjective. In particular degn # 0.
By Remark 2.6 it follows that ng,ﬂ? is the unique natural bivariant class.

(ii) The natural morphism 6, : H*(X) — H*(Y) is unique and identifies with the push-
forward via Poincaré Duality:

H*(X) = Hopo(X) = Hon_o(Y) = H*(Y).

In fact, by Remark 2.1 we know that, for k < 2n — 1, the restriction map of : H*(Y)) — H*(U)
is nothing but the duality (iso)morphism because H*(U) = Ha, x(Y). Therefore, we have
O = (a;;)_l o 3. The case k = 2n — 1 is similar because H;(Y) C H?>"~1(U) (again compare
with Remark 2.1).

4. PRELIMINARIES

Lemma 4.1. The following sequences are exact:

0 BH*Y) ™ BH*X) 5 HY(G) =0 for allk > n,

* -

T ?

HM(Y) ™ H™(X) 3 H"(G) — 0,

*

0= Hon1(G) = H*(X) 5 H*(U) 5 0 for all k < n.
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Proof. By [18, p. 84, 6*] we know that H*(Y,Sing(Y)) = H*(X,G) for all k. Since Sing(Y) is
finite, we also have H*(Y,Sing(Y)) = H*(Y) for k > 1. Therefore, the long exact sequence of
the pair:

-

... = HYX,G) - H*(X) 3 H*G) —» H*'(X,G) — ...
identifies, when k£ > 1, with the long exact sequence:

-

(13) S HEY) T HR (X)) S BRNG) = HEYY) S

In order to prove that the first two sequences are exact, it suffices to prove that i} is surjective
for all k > n. To this purpose, let L be a general hyperplane section of Y, and put Yy := Y\ L,
and Xy := 7 1(Yp). As before, we have a long exact sequence:

o= HY(Yy) — HY(Xo) — HY(G) — H*1(Yo) — ...
and by Deligne’s theorem [33, Proposition 4.23], we know that the pull-back maps

-k

H*X) % H*G) and H(X,) — H*(G)

have the same image. Then we are done. In fact, since Yj is affine, we have H**1(Yy) = 0 for
all k > n by stratified Morse Theory [21, p. 23-24].

In order to examine the last sequence, assume k < n. Then 2n — k > n, and we just proved
that the pull-back H*"~*(X, G) = H?>"~*(Y') — H?"~*(X) is injective. Combining the Poincaré
Duality Theorem with the Lefschetz Duality Theorem [31, p. 297] we have H?"*(X) = H;(X)
and H?""*(X,G) = Hy(U). Therefore, the push-forward Hy(U) — Hy(X) is injective. Hence,
the restriction H*(X) — HF(U) is onto for all k < n. Now our assertion follows from (5). [

Lemma 4.2. Fiz an integer k, and let ~; : H*(Y,U) — H*(X,U) be the pull-back. Assume
that 5 : H*(Y) — H"®(X) is injective. Then the following properties are equivalent.

(1) v} is injective;
(1) S(ag_1) = S(B_1);
(i) H*=1(G) — H*(Y,U) is the zero map.

Proof. Consider the natural commutative diagram with exact rows:

oY) S ey s BN X)) — HEX)
i H it i
H=YY) 5 HRYU) — HEYL,U) — HR(Y).
If v} is injective, then
ker(H* Y (U) — H*(X,U)) = ker(H*Y(U) — H*(Y,U)).
It follows that S(af ) = S(B;_,) because S(af_;) = ker(H*"2(U) — H*(Y,U)) and
S(Bi_y) = ker(HEL(U) = HE(X,U)).
Conversely, assume that (o _;) = $(B}_,), and fix an element ¢ € ker ;. Since 7}, is injective,
there exists some ¢’ € H*~1(U) which maps to ¢ via H*~1(U) — H*(Y,U). Since c € ker~;, a

fortiori ¢’ belongs to (85_;). Hence, ¢’ € S(aj_;) and ¢ = 0. The equivalence of (i) with (iii)
follows from (3). O

Corollary 4.3. Let Hp(G) — H?"7%(G) be the map obtained by composing the map
Hi(G) — H?*"*(X) with the pull-back H*~*(X) — H™ k(G). Assume k > n and that
S(af) = S(Bg). Then the map Hi(G) — H*™F(G) is injective.
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Proof. By Lemma 4.1, Lemma 4.2, and (3), we deduce that the map H*(X,U) — H*(G) is
onto. Dualizing we get an injective map Hy(G) — Hy(X,U). We are done because, by excision
and the Lefschetz Duality Theorem [31, p. 298], we have

Hy(X,U) = Hy(D,0D) = H™*(D) = H™ *(Q).

Corollary 4.4. We have:

IHY(Y)® H*(G) if k>n,

k ~
B (X) = {IH’“(Y) ® Hop_1(G) if k< n.

Moreover, if (o) = S(5%), then
H'X)=ITH™"(Y)® H"(G).

Proof. In view of Lemma 4.1 we only have to examine the case k = n. Since 8} on} = o, there
exists a subspace P C (7)) € H™(X), which is mapped isomorphically to

S(6,) = S(ap) = TH"(Y)
via %, In particular P Nker 8% = {0}, and so H"(X) = ITH"(Y) @ ker 8. On the other hand
ker 8 = S(H™(X,U) - H™(X)). By Corollary 4.3 we know that the map H"(X,U) — H"(X)
is injective because so is the composite H"(X,U) = H,(G) — H™"(X) — H"(G). Therefore,
ker 8f = S(H™"(X,U) - H"(X)) = H"(X,U) = H,(G) = H"(G). O

Lemma 4.5. Assume that (o) = S(B)) for all k > n. Then there is an injective map of
complezes

0—=>H*—=JT°.
Proof. It is enough to prove that for all k£ there is a monomorphism of sheaves
HE < ker (T8 — JFH.

First, we examine the case k > n.

To this aim, set I'* := I'(J*) and denote by d* : T¥ — I'**! the differential. Then we have
H*(X) = H*('*). By Lemma 4.1 every element a of H* = H¥(G) can be lifted to an element
¢ € ker d*. We claim that every a € H*(G) can be lifted to an element b € ker d* C T'(J%)
which is supported on Sing(Y"). Proving this claim amounts to show that every a € H*(G) can
be lifted to an element b € ker d* C I'(J*) = I'(Z*) such that b |[y= 0 € I'(J* |y). But ¢ |y
projects to a cohomology class living in S(H*(X) — H*(U)). By our assumption we have

S(HM(X) 5 BN U)) = S(HFY) S HEU)).
Since
H"(Y) = H*(Y,Sing(Y)) = H*(X,G)
[18, p. 84, 6*], we find

o

S(HMY) =5 HRU)) = S(HM(X,G) — HFU)).
On the other hand we have
H*(X,G) = H*(X,5Qu)

[5, Theorem 12.1], [17, Remark 2.4.5, (ii)]. By definition of direct image with proper support
[24, §2.6], [17, Definition 2.3.21], the sheaf 5/Qp identifies with the subsheaf of Qx consisting
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of sections with support contained in U. It follows that there exists ey € T'(J*~! |7) and
g € T'(J%) supported in U such that

cly —d"Yev) =g v -
Moreover, there exists e € I'(J*~1) with e |y= ey, because J¥~1 is injective (hence flabby).
We conclude that the section
c—g—d=(e) eT(TY)
is supported on Sing(Y). Our claim is proved because g + d*~1(e) € ['(J*) vanishes in H*(G).
To conclude the proof in the case k > n, fix a basis a, € H* = H*(G) and lift every a, to a
b, € ker d* C T'(J*) as in the claim. We get an isomorphism between H*(G) and a subspace of
I'(J*) consisting of sections supported on Sing(Y'). We are done because such an isomorphism
projects to a monomorphism of sheaves H* — ker (J* — JF+1).
Now we assume k < n.
By Lemma 4.1 every element a of H¥ = Hs, 1(G) € H*(X) can be lifted to an element
¢ € ker d*. Since a restricts to 0 in H*(U), there exists e € T'(J*~! |1y) such that ¢ [y= di ' (e).
Since J*~! is flabby, we may assume e € I'(J*~1). Therefore, b := ¢ — d*"1(e) € T'(J¥)
represents a and is supported on Sing(Y). As in the case k > n, applying this argument to a
basis of H*¥ = Hy,_1(G), we define a monomorphism of sheaves H* < ker (7% — J*+1). O

With the same assumption as in Lemma 4.5, let K£® be the cokernel of the inclusion
0—=H*—=T*
0—-H*—>T*—=K*—0.

All the sheaves of these complexes are injective. Previous sequence gives rise to a long exact
sequence of sheaf cohomology:

o HE S HE(T) = HE(K) -
and for all £ > 1 these sheaves are supported on Sing(Y").

Proposition 4.6. For all k the sequence
0— H = HF(T®) = HF(K®) =0
15 exact.
Proof. 1t suffices to prove that the map Hfj — HF(T*), is injective for all y € Sing(Y) and all
k > 0. If k > n this is obvious because H*(J*), = H*(G,) = Hyf. When 1 < k < n we have

H} = Hyp 1(Gy). And the map Hy, (G,) = H*(J*), = H*(G,) is injective by Corollary
4.3. (]

Lemma 4.7. Let 0 — H* N TJ* L K* — 0 be an exact sequence of complexes of sheaves.
Assume that H® is a complex of injective sheaves with vanishing differential dl;{' =0 for all k.
The following properties are equivalent.

(i) The sequence coming from the cohomology long exact sequence:
(14) 0—=HF(H®) = HF(T®) — HF(K®) =0

is exact for all k.

(ii) There is a complex map s* : K* — J* such that g® o s* = idjce.
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Proof. We only have to prove that (i) implies (ii).

Since H' is injective, the exact sequence sequence 0—H" — J° — K% — 0 admits a section
s K% = 79 with ¢° 0 s® = idxo. Therefore, we may construct s® = {s'}i>0 using induction
on i. Assume i > 0 and that there are sections s°,...,s’, with s" : K" — J" ¢ o s" =idn,
and s" o dpt = d@‘.l osh=1 for all 0 < h < i. As before, since H'*! is injective and the
sequence 0—Ht!l — JiH1 5 KiFL 5 0 is exact, there exists a section o*t! : [Ci+1 — Fit1
with g't! o g™t = idjci+1. A priori it may happen that o't o dj. is different from d. o s, so
we have to modify o**t'. To this purpose set:

§:=0"odi. —dyeos’ € Hom(K', J"*).
Since
gl+105:gl+100’2+10d;’c.7gz+10df7.0511d;c.7 ;C.:()’

it follows that

(15) J(8) C H
Since (14) is exact, the map g' sends ker d’;. onto ker di., i.e.,
(16) g'(kerd'za) = ker dis.

In view of the exactness of the sequence 0 — H* EIR J* % K* — 0, and of the assumption
d3, = 0, we also have

(17) ker g' = S(f*) C kerd's..
Combining (16) and (17) we deduce that:
(18) kerd'ze = (g") " (ker djc. ).

In fact, by (16) we have kerd’;. C (g°)~*(kerdi.). On the other hand, if z € (¢9°)~*(ker dj.),
then g'(z) € kerdj., and by (16) we may write g'(xz) = g'(y) for some y € kerd’,.. Hence,
x —y € ker g%, and from (17) it follows that = € kerd’,.. From (18) we get:
(19) s'(kerdjc.) C kerd'z..
To prove this, recall that g° o s = idy:. Therefore, ¢*(s'(ker di-.)) = ker di-., and so, taking into
account (18), we have:
s'(kerdice) C (9%) ! (ker dice) = ker d';.
By (19) we deduce that:
(20) ker dice C ker 6,
and from (15) and (20) we get
§ € Hom(K'/ ker dica, H'™).

Since Hit! is injective, we may extend & to a map 6 € Hom(K+*, Hi+1) such that
(21) dodice =94
We have 3 ‘ .

§ € Hom(K™, g+
because Hi*! maps to Jt! via fiT!. Now we define:
i+1

s =gttt —§.

From (21) it follows that
s odjca = d'e 08,



ON THE TOPOLOGY OF A RESOLUTION OF ISOLATED SINGULARITIES 207

and since ¥(5) € H*+!, we also have

i+1

gttos'™t

1 == idK:i+1 .

5. PROOF OF THEOREM 3.1

As we have seen in Section 3, by [32, Theorem 1.11, p. 518] one knows that the Decomposition
Theorem implies (ii). Therefore, we only have to prove that (ii) implies (i).

In view of Lemma 4.1 and Lemma 4.2 we have (o) = S(85) for all £ > n. From Lemma
4.5, Proposition 4.6, and Lemma 4.7, we get:

(22) Rm.Qx =J*=K*pH".
Hence, we only have to prove that
K* = ICy[—n],

where ICy. = 103" [—n] denotes the intersection cohomology complex of Y [17, p. 156]. Observe
that the restriction a~1K* of K* to U is Qp, and that, by (22), we have K* € D2(Y) [17, p.
81-82]. Therefore, K*®[n] is an extension of Qu[n] [17, p. 134]. So to prove that K* = ICy[—n]
it suffices to prove that K®[n] = a.Qu|n], i.e., that I®[n] is the intermediary extension of Qg [n]
[17, p.156 and p.135]. By [17, Proposition 5.2.8, p. 135], this in turn reduces to prove that for
all y € Sing(Y) the following two conditions hold true (i, : {y} — Y denotes the inclusion):

(a) H i, ' K®[n] = 0 for all k > 0;
(b) H¥iyKC*[n] = 0 for all k < 0.
As for condition (a) we notice that [17, p.130]:
i Ko ] = HE (K [n])y = HET(K®),,

and H**"(K*), = 0 because J* = K* @ H°®, and HFT"(T*), = H*(G,) = HFF(H®), for
k> 0.

For the condition (b), first notice that combining (22) with Remarks 2.3 and 2.7, we deduce
that KC®[n] is self-dual. Therefore, condition (b) reduces to (a). In fact, we have [17, p. 130,
proof of Lemma 5.1.15]:

i, Ko [n] = HF (i, ' D(K*[n]))Y = HF (i, (K®[n]))Y = H " (K*)) =0
because k£ < 0.

Remark 5.1. (i) If n = 2, then the map H*1(G) — H*(Y,U) vanishes for all k& > n + 2 for
trivial reasons. In view of the connectivity of the link, combining Remark 2.2 with Lemma
4.1 and Lemma 4.2, we see that this holds true also when Y is locally complete intersection.
Therefore, either when n = 2 or when Y is locally complete intersection, in order to deduce the
decomposition (i) in Theorem 3.1, we need only check that the map H"(G) — H"TY(Y,U) is
the zero map. On the other hand, the vanishing of the map H"(G) — H"*1(Y,U) is equivalent
to require that the natural map H,,(G) — H"(G) = H,(G)" is onto (compare with (3), (5), and
Corollary 4.3). Since H, (G) is contained in H,,(X) via push-forward (Lemma 4.1), it follows that
the map H,(G) - H"(G) = H,(G)" is onto if and only if H,(G) is a nondegenerate subspace
of H,(X) with respect to the natural intersection form H, (X) x H,(X) — Ho(X) =2 Q. By
Mumford’s theorem [23], [29] we know this holds true when Y is a normal surface. Therefore,
in the case Y is a normal surface (or when 2dim G < n), our Theorem 3.1 gives a new and
simplified proof of the Decomposition Theorem for m: X — Y.
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(ii) Assume that 7 : X — Y is the blowing-up of Y along Sing(Y"), with smooth and connected
fibres. By Poincaré Duality we have Ha,_1(G,) & H*%(G,) for all y € Sing(Y). It follows
that H*(X,U) = Hop—i(G) = ®yesing(v)Hon—k(Gy) = Oyesing(v)H" 2(Gy). Hence, the map
H*(X,U) — H*(G) identifies with the map &y esing(v)H" 2(Gy) = Byesing(v)H"(Gy) given,
on each summand H*~2(G,) — H*(G,), by the self-intersection formula, i.e., by the cup-product
with the first Chern class ¢;(N,) € H*(G,) of the normal bundle N, of G,, in X. Since 7 is the
blowing-up along the finite set Sing(Y’), the dual normal bundle Nyv = Og, (1) is ample for all
y € Sing(Y). From the Hard Lefschetz Theorem it follows that the map H*=%(G,) — H*(G,) is
onto for all k > n, and so also the map H*(X,U) — H*(G) is. By (3), this implies the vanishing
of the map H*(G) — H**1(Y,U). Therefore, also in this case our Theorem 3.1 gives a new and
simplified proof of the Decomposition Theorem for 7.

(iii) More generally, assume only that the fibres of 7 : X — Y are smooth and connected,
so that 7 is not necessarily the blowing-up along Sing(Y). Using the extension of the Hard
Lefschetz Theorem to bundles of higher rank due to Bloch and Gieseker [3], [25], with a similar
argument as before one proves that if the dual normal bundle N;/ of Gy in X 1is ample for all

y € Sing(Y), then the map H*(G) — H*1(Y,U) vanishes for all k > n. In fact, set
hy == dim X — dim G,
for all y € Sing(Y). Now the map H*(X,U) — H*(G) identifies with the map
Byesing)H " (Gy) = Dyesingr)H" (Gy)

given, on each summand H*~2?"(G,) — H*(G,), by the cup-product with the top Chern class
ch, (Ny) = (=1)'wen, (N)) € H*'v(G,) of the normal bundle N, of G, in X. And such a map
is onto for k£ > n by the quoted extension of the Hard Lefschetz Theorem, because N;/ is ample.
We refer to [15, Proposition 2.12 and proof] for examples of resolution of singularities verifying
previous assumptions.

6. PROOF OF THEOREM 3.2

(i) == (ii) By Lemma 4.1 and Lemma 4.2 we have S(af) = $(B;) for all k. Let

Yy -y YasYatls-- - Yp be abasis of H¥(Y) such that afyi, . .., a}y, is a basis for S(a}) = 3(8;),
and Yo41,--.,Yp a basis for keraj. Since 7} (ker o) C ker 8}, we may extend m}ya+1, ..., TpYs
to a basis T Yat1, .- ThEYb, Tog1, - - -, Te Of ker 5. Then

ﬂ-zyla s 7723/113 ﬂ—zya+1; N aﬂ—zybvmlﬂrlv ceey Xe

is a basis for H*(X). Define 0y, : H*(X) — H*(Y) setting k(5 (v;)) := vi, and Oy (z;) = 0.
Then 6, is a natural morphism.

(i) == (i) The existence of a natural morphism implies that 7} is injective and
S(Bf) C X(ap) for all k. Since in general we have S(aj) C I(55), it follows that I(aj) = I(5;)
for all k. By Lemma 4.1 and Lemma 4.2 we get (i).

(i) = (iv) Since 7} is injective for all k, using (13) we get a short exact sequence:

0 H*Y) ™ HYX) % HYG) = 0
for all £ > 1. In particular, for £ > 1, we have
(23) H*(X) = H*Y)® H*G).
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On the other hand, since ) o 7, = id g« (y, the short exact sequence

0 — ker6p — H¥(X) % HE(Y) — 0
admits 7} as a section. It follows another decomposition:
(24) H*(X) = mp H*(Y) @ ker 0y,
Comparing (23) with (24) we see that
ker 0, = H*(Q)

for all kK > 1. On the other hand, since of o 8, = 5}, we have

(25) ker ), C ker(H"(X) B HYU)) = S(H*(X,U) — H*(X)).

Since H*(X,U) = Hoy,,_1(G), it follows that

(26) dim H*(G) < dim Ha,_1(G)

for all kK > 1. By the Universal-coefficient formula [31, p. 248 ] we deduce that, for 1 < k < 2n—1,
(27) ker ), = H*(G) = Ha,_1(G).

Taking into account that () = (87), combining (23), (27) and Corollary 4.4, it follows
that dim H*(Y) = dim TH*(Y') for all k. Therefore, by (11), it suffices to prove that

o HY(Y) — HY(U)
is surjective for all £ < n. To this purpose notice that, for k& < n, 8 is surjective by Lemma, 4.1.
This implies that also o is by (24) and (25) (compare with diagram (2)).
(iv) = (vii) Since intersection cohomology verifies Poincaré Duality [17, p. 158], we have:

HMY) = IHM(Y) = (LH*™ DY) = (Y)Y = By (V).

(vil) = (iv) This follows from (11) and Remark 2.1.

(v) < (vi) <= (vii) By [28, Theorem 2, Lemma 2, Lemma 3] we know that the duality
morphism is an isomorphism if and only if Y is a Q-cohomology manifold, which is equivalent
to saying that Y is a Q-intersection cohomology manifold by [27, Theorem 1.1] (compare also

with [4]).
(vil) = (ii) Denote by d} : H*(Y) — Ha,,—x(Y) the duality isomorphism, by
d¥ : H¥(X) = Hap_p(X)
the Poincaré Duality isomorphism, by m.; : Hap—k(X) — Hap—x(Y) the push-forward. Set
O, : H*(X) — H*(Y) with
gk = (d};)_l O Ty k © de
Then 6, is a natural morphism.

(iii) <= (ii) We only have to prove that (ii) implies (iii). This follows from Remark 2.6
because Y is a Q-cohomology manifold.

(ii) = (viii) Since Y is a Q-intersection cohomology manifold, combining (27) with Theorem
3.1, we get:
Rr.Qx =Z2Qy o H* =Qy @ @Rkﬂ'*QX [—E].

k>1



210 VINCENZO DI GENNARO AND DAVIDE FRANCO
(viii) == (ii) See Remark 3.3, (i).

(ii) <= (ix) By [27, Theorem 1.1] we deduce that Y is a Q-intersection cohomology manifold
if and only if for all y € Sing(Y") the link dB, has the same Q-homology type as a sphere S?"~1.
On the other hand, via deformation to the normal cone, we may identify 0B, with the link of
the vertex of the projective cone over G,, C PN ~1. Restricting the Hopf bundle $2V—1 — PN—1
to Gy, we obtain an S'-bundle 0B, — G, inducing the Thom-Gysin sequence [31, p. 260]

... — HG,) — H"(0B,) —» H*(G,) — H*''(G,) — H*"'(0B,) — ...

And this sequence implies that 9B, has the same Q-homology type as a sphere S?"~! if and
only if H*(G,) = H*(P"~1).

Remark 6.1. By (26) it follows that ha(G) < hop_2(G). Therefore, if Y is a Q-cohomology
manifold, then dimG =0 or dimG =n — 1.
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EULER CHARACTERISTIC RECIPROCITY FOR CHROMATIC, FLOW
AND ORDER POLYNOMIALS

TAKAHIRO HASEBE, TOSHINORI MIYATANI, AND MASAHIKO YOSHINAGA

ABSTRACT. The Euler characteristic of a semialgebraic set can be considered as a general-
ization of the cardinality of a finite set. An advantage of semialgebraic sets is that we can
define “negative sets” to be the sets with negative Euler characteristics. Applying this idea to
posets, we introduce the notion of semialgebraic posets. Using “negative posets”, we establish
Stanley’s reciprocity theorems for order polynomials at the level of Euler characteristics. We
also formulate the Euler characteristic reciprocities for chromatic and flow polynomials.

1. INTRODUCTION

Let P be a finite poset. The order polynomial O=(P,t) € Q[t] and the strict order polynomial
O<(P,t) € Q[t] are polynomials which satisfy

O=(P,n) = #Hom= (P, [n]),
O<(P7 n) = #H0m<(Pv [n]),
where [n] = {1,...,n} with the usual ordering and
Hom=() (P, [n]) = {f : P — [n] | & < y = f(2) < (<)f (1)}

is the set of increasing (resp. strictly increasing) maps.
These two polynomials are related to each other by the following reciprocity theorem proved
by Stanley ([10, 11], see also [1, 3, 4] for recent surveys).

(2) O(Pt) = (-1)*F- O%(P, ).
By putting ¢ = n, the formula (2) can be informally presented as follows.
(3) “ # Hom™ (P, [n]) = (~1)*" - 4 Hom=(P, [-n]). "

It is a natural problem to extend the above reciprocity to homomorphisms between arbitrary
(finite) posets P and . We may expect a formula of the following type.

(4) “ #Hom“(P,Q) = (-1)#" - # Hom™(P,—Q). "

Of course this is not a mathematically justified formula. In fact, we do not have the notion of a
“negative poset —Q.”

In [9], Schanuel discussed what “negative sets” should be. A possible answer is that a negative
set is nothing but a semialgebraic set which has a negative Euler characteristic (Table 1). For

Finite set H Semialgebraic set
Cardinality H Euler characteristic
TABLE 1. Negative sets
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example, the open simplex
ca={(x1,...,2) ER |0 <y < - <zq <1}

has the Euler characteristic e(o4) = (—1)%, and the closed simplex

ca={(x1,...,24) ERT|0< 2, <-- - <ag <1}
has e(o4) = 1. Thus we have the following “reciprocity”
(5) e(04) = (1) - e(oa).

This formula looks like Stanley’s reciprocity (2). This analogy would indicate that (2) could be
explained via the computations of Euler characteristic of certain semialgebraic sets.

In this paper, by introducing the notion of semialgebraic posets, we settle Euler characteristic
reciprocity theorems for poset homomorphisms. Semialgebraic posets also provide a rigorous
formulation for the reciprocity (4). A similar idea works also for reciprocities of chromatic and
flow polynomials.

Briefly, a semialgebraic poset P is a semialgebraic set with poset structure such that the
ordering is defined semialgebraically (see Definition 2.2). Finite posets and the open interval
(0,1) C R are examples of semialgebraic posets. A semialgebraic poset P has the Euler charac-
teristic e(P) € Z which is an invariant of semialgebraic structure of P (see §2.1). In particular,
if P is a finite poset, then e(P) = #P, and if P is the open interval (0, 1), then e((0,1)) = —1.

The philosophy presented in the literature [9] leads one to consider the “moduli space”
Hom§(<)(P, Q) of poset homomorphisms from a finite poset P to a semialgebraic poset @, and
then to compute the Euler characteristic of the moduli space instead of counting the number of
maps.

Considering the space Hom§(<)(P, Q) itself and its Euler characteristic is not a new idea for
the chromatic theory of finite graphs. For example, in [8], the Euler characteristic of the space
of colorings is explored, and in [14] the functorial aspects of colorings are studied. The essential
reasons why the Euler characteristic works well in these situations are its additivity properties
and its consistency with the inclusion-exclusion principle.

The point of the present paper is to introduce the negative of a poset () in the category
of semialgebraic posets. We define —Q := @ x (0,1) (See Definition 3.1). Then we have
e(—Q) = —e(Q). Furthermore, we have the following result.

Theorem 1.1 (Proposition 2.8 and Theorems 3.3, 3.7). Let P be a finite poset and @ be a
semialgebraic poset.
(i) Hom=(P,Q) and Hom=~(P, Q) possess the structure of semialgebraic sets.
(ii) The following reciprocity of Euler characteristics holds,
e(Hom= (P, £Q)) = (~1)* - e(Hom= (P, FQ)).
(iii) Let T be a semialgebraic totally ordered set. Then
e(Hom=(P,T)) = OS(P,e(T)),
e(Hom<(P,T)) = O<(P,e(T)).

The most important result is the second assertion (ii) which is a rigorous formulation of the
reciprocity (4). It should be emphasized that (ii) is a substantially new result since @ need not be
a totally ordered set. When we specialize to the totally ordered sets Q = [n] and T' = [n] x (0, 1),
our (ii) and (iii) recover Stanley’s reciprocity (2) for order polynomials (see §3.3).

Similar Euler characteristic reciprocities are obtained also for Stanley’s chromatic polynomials
reciprocity [12] and for Breuer and Sanyal’s flow polynomials reciprocity [6].
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This paper is organized as follows. In §2, we introduce semialgebraic posets, semialgebraic
abelian groups and Euler characteristics. In §3, we prove the main result, Theorem 1.1 (ii). The
proof is based on topological (cut and paste) arguments. We also deduce Stanley’s reciprocity (2)
from the main theorem. In §4, we describe other Euler characteristic reciprocities for chromatic
polynomials of simple graphs and flow polynomials of oriented graphs.

2. SEMIALGEBRAIC POSETS AND EULER CHARACTERISTICS

2.1. Semialgebraic sets. A subset X C R” is said to be a semialgebraic set if it is expressed
as a Boolean connection (i.e., a set expressed by a finite combination of U, N and complements)
of subsets of the form

{z e R" | p(x) > 0},
where p(z) € R[zy,...,2,] is a polynomial. Let f: X — Y be a map (not necessarily con-
tinuous) between semialgebraic sets X C R™ and Y C R™. It is called semialgebraic if the
graph
L(f) =A{(z, f(x)) | v € X} CR™™

is a semialgebraic set. If f is semialgebraic then the pull-back f~1(Y) and the image f(X) are
also semialgebraic sets (see [2, 5] for details).

Any semialgebraic set X has a finite partition into Nash cells (see [7] for details), namely, a
partition X = L]izl X, such that X, is Nash diffeomorphic (that is a semialgebraic analytic
diffeomorphism) to the open cell (0,1)% for some d, > 0. Then the Euler characteristic

(6) e(X) =) (~1)™

a=1
is independent of the partition [7]. Moreover, the Euler characteristic satisfies
e(XUY) =e(X)+eY),
e(X xY)=e(X) xe(Y).

Example 2.1. As mentioned in §1, the closed simplex o4 and the open simplex o4 have e(oq) =1
and e(oq) = (—1)<.

2.2. Semialgebraic posets.

Definition 2.2. (P, <) is called a semialgebraic poset if

(a) (P, <) is a partially ordered set, and
(b) there is an injection i: P < R™ (n > 0) such that the image ¢(P) is a semialgebraic set
and the image of
{(z,y) e Px P |z <y}

by the map ¢ x i: P x P — R™ x R"™, is also a semialgebraic subset of R™ x R™.

Let P and @ be semialgebraic posets. The set of homomorphisms (strict homomorphisms) of
semialgebraic posets is defined by

r<y= f(z) < (<)f(y)

Example 2.3. (a) A finite poset (P, <) admits the structure of a semialgebraic poset, since
any finite subset in R™ is a semialgebraic set. A finite poset has the Euler characteristic
e(P) = #P.

(7) Hom=(<)(P,Q) = {f: P—Q

f is a semialgebraic map s.t. }
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(b) The open interval (0, 1) and the closed interval [0, 1] are semialgebraic posets with respect
to the usual ordering induced from R. Their Euler characteristics are e((0,1)) = —1 and
e([0,1]) = 1, respectively.

In this paper, we always consider the following lexicographic ordering on the product P x Q.

Definition 2.4. Let P and @) be posets. Define an ordering on P x @ by

p1 < p2, Or

, < s <~
(pl Ch) (p2 q2) { P1 = P2 and q1 < q2,

for (p;,qi) € P x Q.

Remark 2.5. There are several ways to define poset structures on the product P x Q). However,
the lexicographic ordering in Definition 2.4 seems to be the only one that works for our purposes.
In particular, the decomposition (18) in §3.2 is crucial.

Proposition 2.6. Let P and @ be semialgebraic posets. Then the product poset P x Q (with
lexicographic ordering) admits the structure of a semialgebraic poset.

Proof. Suppose P C R™ and @ C R™. Then

{((p1,q1)s (p2,q2)) € (P x Q)* | (p1,q1) < (p2,42)}
={(p1.q1,p2,82) € (P x Q)* | (p1 <p2) or (p1 =p2 and ¢1 < ¢o)}
~ ({(p1,p2) € P* | pr <p2} x Q*) U (P x {(q1,42) € @* | &1 < 2})

is also semialgebraic since semialgebraicity is preserved by disjoint union, complement and Carte-
sian products. ([

Proposition 2.7. Let P and Q) be semialgebraic posets. Then the projection onto the first
factor w: P x Q — P is a homomorphism of semialgebraic posets.

Proof. This is straightforward from the definition of the lexicographic ordering. O

The next result shows that the “moduli space” of homomorphisms from a finite poset to a
semialgebraic poset has the structure of a semialgebraic set.

Proposition 2.8 (Theorem 1.1 (i)). Let P be a finite poset and Q be a semialgebraic poset.
Then Hom= (P, Q) and Hom~ (P, Q) have structures of semialgebraic sets.

Proof. Let us set P = {p1,...,pp} and £ = {(¢,5) | pi < p;}. Since each element
f € Hom=(P,Q) can be identified with the tuple (f(p1),...,f(pn)) € Q", we have the ex-
pression

HomS(P,Q) ~{(q1,..-,qn) €Q" | i < g for (i,j) € L}
= ) {0, ) €Q" 4 < g5}

(i.5)€L

Clearly, the right-hand side is a semialgebraic set.
The semialgebraicity of Hom< (P, Q) is proved similarly. d
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2.3. Semialgebraic abelian groups. An abelian group (A, +) is called a semialgebraic abelian
group if there exists an injection i: A < R™ (n > 0) such that the image i(.A) is a semialgebraic
set and the maps

+:i(A) x i(A) — i(A), (i(x),i(y)) — i(z +y)
(=1):i(A) — i(A), i(z) — i(—x)
are semialgebraic maps. Finite abelian groups and the set of all real numbers R are semialgebraic
abelian groups.
It is easy to see that if A; and As are semialgebraic abelian groups, then so is the product
.Al X .Ag.
3. EULER CHARACTERISTIC RECIPROCITY

3.1. The main result.

Definition 3.1. For a semialgebraic poset @), let us define the negative by —Q := Q x (0, 1).
(Recall that we consider the lexicographic ordering on —@Q.)

Remark 3.2. Note that since —(—Q) = (Q x (0,1)) x (0,1), —(—Q) is not equal to Q.
The main theorem of this paper is the following.
Theorem 3.3 (Theorem 1.1 (ii)). Let P be a finite poset and @ be a semialgebraic poset. Then
e(Hom=(P, +Q)) = (~1)#” . e(Hom=(P, 7Q)).

In other words,

(®) e(Hom*(P,Q)) = (=1)*" - e(Hom=(P,Q x (0,1)))
and
9) e(Hom=(P,Q x (0,1))) = (=1)#” - ¢(Hom=(P, Q))
hold.

Note that since —(—Q) # @ (Remark 3.2), two formulas (8) and (9) are not equivalent.
Before the proof of Theorem 3.3, we present an example which illustrates the main idea of
the proof.

Example 3.4. Let P =@ = {1,2} with 1 < 2. Clearly we have
Hom < (P, Q) = {id}.

(0,1)). Note that @ x (0,1) is isomorphic to the semialgebraic
2) by the isomorphism

Let us describe Hom

P,Q x
totally ordered set (1,3) U (2,

"

v: Q% (0,1) — (1,2)u(2,;>,(a,t)'ﬁa+;

A homomorphism f € Hom=(P,Q x (0,1)) is described by the two values f(1) = (a1,t;) and
f(2) = (ag,t2) € @ x (0,1). The condition imposed on aj,as,t; and ty (by the inequality
f) < f(2) s

(a1 < az), or (a; = ag and t; < to),
which is equivalent to a; + 4 < as + %. Therefore, the semialgebraic set Hom=(P,Q x (0, 1))
can be described as in Flgure 1. Each dlagonal triangle in Figure 1 has a stratification o5 U oy
Therefore the Euler characteristic is e(ds Ll 07) = e(d2) + e(a1) = (=1)2 + (=1)* = 0. On the
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a1 < as

| | |

1 1 } a1 =az =2,11 <ty
| | |

O----90

FIGUuRE 1. f(1) < f(2).

other hand, the square region corresponding to a; < as has the Euler characteristic (—1)? = 1.
Hence we have

e(Hom=(P,Q x (0,1))) = 1 = e(Hom<(P,Q)).
The following lemma will be used in the proof of Theorem 3.3.
Lemma 3.5. Let P C R™ be a d-dimensional polytope which has a hyperplane description
P={a; >20}Nn---Nn{ay >0}

of P where «; are affine maps from R™ to R (see [16]). For a given x¢ € P, define the associated
locally closed subset P, of P (see Figure 2) by

Popy= (] {z0tn () {e >0}
a;(z0)=0 a;i(x0)>0
Then the Euler characteristic is

€(Pw0) = (71)(17 'Lf Zo € }OD
0, otherwise (xo € OP),

Ficure 2. P,
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o

Proof. If mg € P, then P,, = P. The Euler characteristic is e(P) = (—1)%.
Suppose zg € OP. Then P,, can be expressed as

(10) Py= || F,
F>xo

where F' runs over the faces of P containing xg and F' denotes its relative interior. Then we
obtain the decomposition

o]
Pxo =PU |_| F.
F>zo,FCOP

[e]
We look at the structure of the second component Z := |_|F9m0 rcop - For any point y € Z,
the segment [zg,y] is contained in Z. Hence Z is contractible open subset of OP, which is
homeomorphic to the (d — 1)-dimensional open disk. The Euler characteristic is computed as

o

e(Pr,) = e(P) +e(Z)
= (-1 + ()
=0.
O
3.2. Proof of the main result. Now we prove Theorem 3.3. The strategy is to decompose
the space Hom= (P, —Q) into appropriate semialgebraic subsets, and then to apply Lemma 3.5
to compute the Euler characteristics.
We first prove (8). Let ¢ € Hom<(P,Q x (0,1)). Then ¢ is a pair of maps
e =(f9),
where f: P — @ and g: P — (0,1). Let m1: @ x (0,1) — @ be the projection onto
the first factor. Since m; is order-preserving (Proposition 2.7), so is f = 7 o ¢, and hence
f € Hom=(P, Q).
In order to compute the Euler characteristics, we consider the map
(11) 71.: Hom=(P,Q x (0,1)) — Hom=(P,Q), ¢ — m 0@ = f.
Let us set
M :=Hom=(P,Q) ~ Hom~ (P, Q)

={f¢€ HomS(P,Q) |3z <ye Pst. f(z)=f(y)}

Then obviously, we have

(12)

(13) Hom=(P, Q) = Hom~(P, Q) L M.

This decomposition induces that of Hom=(P,Q x (0,1)),

(14) Hom™=(P,Q x (0,1)) = ;! (Hom=(P,Q)) Uny,' (M).

By the additivity of the Euler characteristics, we obtain

(15) e (Hom=(P,Q x (0,1))) = e (73! (Hom=(P,Q))) + e(r,} (M)).
We claim the following two equalities which are sufficient for the proof of (8).
(16) (vt (Hom™(P.Q))) = (-1 e (Hom"(P.Q)).

(7) e (M) = o
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We first prove (16). Let ¢ € 7y,' (Hom™(P,Q)), that is ¢ = (f,g) with f € Hom™(P,Q). By
the definition of the ordering of @ x (0,1), for every g: P — (0, 1) the pair (f,g) is contained
in ;! (Hom=(P,Q)). This implies
(18) w1 (Hom™(P,Q)) = Hom™(P,Q) x (0, 1)*",
which yields (16).

The proof of (17) requires further stratification of M. Let

L(P) :={(p1,p2) € P X P|p1 <p2}.

For given f € M, consider the set of collapsing pairs,

K(f) :==A{(p1,p2) € L(P) | f(p1) = f(p2)}-
Note that f € M if and only if K(f) # 0. We decompose M according to K(f). Namely, for
any nonempty subset X C L(P) define a subset My C M by
Mx : ={feM|K(f)=X}.
Since L(P) is a finite set,
(19) M= || Mx

XCL(P)
X#0D

is a decomposition of M into finitely many semialgebraic sets. Therefore, we obtain
e(ni (M) = Y elni) (Mx)),

XcL(P)
X#D

Thus it is enough to show e(r,} (Mx)) = 0 for all X C L(P) as long as m;,' (Mx) # 0 (note
that 77, (Mx) = 0 can occur for a nonempty X e.g. when #Q = 1).

Now we fix X C £(P) such that 7.} (Mx) # 0. Then we can show that 7.} (Myx) — My is
a trivial fibration. Indeed, for any f € My, the condition imposed on g by

(f,9) € HomS(P, Q % (0,1))
is
(p1,p2) € X = g(p1) < g(p2)-
Hence the fiber 7r1_*1 (f) is independent of f € Mx and isomorphic to

(20) Fx = {(tp)per € (0,1)" | (p1,p2) € X == tp, <tp,},
and we have
(21) . (Mx) ~ Mx x Fx.

The fiber Fx is a locally closed polytope defined by the following inequalities.
0<t, <1ty <tp, for (pl,pg) e X.

The closure Fy is defined by

Fx ={(tp)pep € [0,1]" [ tp, < tp, for (p1,p2) € X}.
Then Fy is equal to the locally closed polytope (Fx )., associated to the point
11 1
555
Since X # (), x¢ is not contained in the interior of Fx. By Lemma 3.5, e(Fx) = 0. Together
with (21), we conclude e(n,'(Mx)) = 0. This completes the proof of (8) of Theorem 3.3.

zo = ( ) € OFx.
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The proof of the other formula (9) is similar to and actually simpler than that of (8) since we
do not need Lemma 3.5. Again the first projection m: Q x (0,1) — @ induces the map
T1.: Hom=(P,Q x (0,1)) — Hom=(P, Q).

We can prove that this map is surjective and each fiber of 77} (Mx) (now X = ) is allowed) is
isomorphic to

Fyx = {(tp)pep € (0, 1)P | tp, <tp, for all (p1,p2) € X}.
This fiber is an open polytope of dimension # P and hence is isomorphic to (0,1)#? whose Euler
characteristic is (—1)#%. Thus we obtain

e(Hom=(P,Q x (0,1)) = 3 e(ril(Mx)= 3 e(Mx x F)

XCL(P) XCL(P)
— Z e(Mx) - (=1)#P = (—1)#P . ¢ |_| My
XCL(P) XCL(P)

= (=1*" - e(Hom=(P,Q)).
This completes the proof.

3.3. Stanley’s reciprocity for order polynomials. In this section, we deduce Stanley’s reci-
procity (2) from Theorem 3.3. The idea is to take semialgebraic totally ordered posets as the
target posets.

Example 3.6. Any semialgebraic set X C R with the induced ordering is a semialgebraic
totally ordered set. Furthermore, since R™ is totally ordered by the lexicographic ordering, any
semialgebraic set X C R™ admits the structure of a semialgebraic totally ordered set.

The Euler characteristic of Hom= (P, T), with T a semialgebraic totally ordered set, can be
computed by using the order polynomial O=(<)(P,¢).

Theorem 3.7 (Theorem 1.1 (iii)). Let P be a finite poset and T be a semialgebraic totally
ordered set. Then

(22) e(Hom=(P,T)) = O=(P,e(T)),
(23) e(Hom<(P,T)) = O<(P,e(T)).

Before proving Theorem 3.7, we need several lemmas on the Euler characteristics of configu-
ration spaces.

Definition 3.8. Let X be a semialgebraic set. The ordered configuration space of n-points on
X, denoted by C,(X), is defined by

Co(X)={(z1,...,2n) € X" | m; £ xj if i #j}.
Lemma 3.9. ¢(C, (X)) =e(X) - (e(X)—1)---(e(X) —n+1).

Proof. 1t is proved by induction. When n = 1, it is obvious from C;(X) = X. Suppose n > 1.
Consider the projection

7w Cp(X) — Cro1 (X)), (1, .-y xp) — (X1, -+, Tp—1)-
Then the fiber of 7 at the point (x1,...,2,-1) € Cp—1(X) is
X~ {.’131, cee ,mn,l},
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which has the Euler characteristic
e(X ~{z1,...,zp_1}) =e(X)— (n—1).
Therefore, from the inductive assumption, we have
e(Cn(X)) = e(Crn-1(X)) - (e(X) —n+1)
=e(X) (e(X)—1)---(e(X)—n+1).

Remark 3.10. We will give a stronger result later (Theorem 4.2 and Corollary 4.3).

Lemma 3.11. Let T be a semialgebraic totally ordered set. Then
e(T) - (e(T)=1)---(e(T) —n+1)

(24) e(Hom=([n],T)) = ol

Proof. The set

Hom<([n],T) = {(z1,...,2n) €ET" |71 < -+ <z, }
is obviously a subset of the configuration space C,,(T). Moreover, using the natural action of
the symmetric group &,, on C,(T') and the fact that T is totally ordered, we have

Cu(T) = | | o(Hom=([n],T)).
cc6,
Since the group action preserves the Euler characteristic, we obtain the following.
e(Cn(T)) = n! - e(Hom=<([n], T)).
O
Proof of Theorem 3.7. We fix ¢ € {<,<}. Let f € Hom®(P,T). Since P is a finite poset,

the image f(P) C T is a finite totally ordered set. Suppose #f(P) = k. Then the map f is
decomposed as

fiP 5k

where a: P — [k] is surjective while 8: [k] — T is injective. Hence 8 can be considered as an
element of Hom=([k],T), and we have the following decomposition,
(25) Hom®(P,T) = | | Hom**"3(P, [k]) x Hom<([k], T),

k>1

where Hom® " (P, [k]) is the set of surjective maps in Hom® (P, [k]). By putting T' = [n] and
then extending n to real numbers ¢, we obtain the expression for the (strict) order polynomial,
tt—1)(t—k+1)

(26) O%(P.t) = 3 # Hom™*"I(P, k] - i :

k>1
which was already obtained by Stanley [10, Theorem 1]. Using (25), Lemma 3.11 and (26), we
have

e(Hom®(P,T)) = Z e(Hom® ™" (P, [k])) - e(Hom=([k], T))
k>1

= Z # Hom®s" (P, [k]) -

k>1
= O°(P,e(T)).
This completes the proof of Theorem 3.7. (]

e(T)(e(T)—=1)---(e(T) —k+1)
k!
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Corollary 3.12. (Stanley’s reciprocity [10]) Let P be a finite poset and n € N. Then
(27) # Hom (P, [n]) = (-1)*" - O=(P, —n).

Proof. Since Hom< (P, [n]) is a finite poset, the cardinality is equal to the Euler characteristic:
#Hom<(P, [n]) = e(Hom=<(P,[n])). We apply the Euler characteristic reciprocity (Theorem
3.3),
e(Hom™(P, [n])) = (—1)#T - e(Hom (P, ] x (0,1))).
Note that [n] x (0, 1) is a semialgebraic totally ordered set (with the lexicographic ordering) with
the Euler characteristic e([n] x (0,1)) = —n. Applying Theorem 3.7, we have
6(H0mg (P, [n] x (0,1))) = OS(Pa —n),
which implies (27). O

4. CHROMATIC AND FLOW POLYNOMIALS FOR FINITE GRAPHS

In this section, we formulate Euler characteristic reciprocities for chromatic polynomials of
finite simple graphs and for flow polynomials of finite oriented graphs.

4.1. Chromatic polynomials. Let G = (V| E) be a finite simple graph with vertex set V' and
(un-oriented) edge set E. The chromatic polynomial is a polynomial x (G, t) € Z[t] which satisfies
X(G,n) =#{c: V — [n] | vive € E = ¢(v1) # c(v2)},

for all n > 0. The chromatic polynomial is also characterized by the following properties:
e if £ = () then x(G,t) =t#V;
o if e € E, then x(G,t) = x(G —e,t) — x(G/e,t), where G — e and G/e are the deletion
and the contraction with respect to the edge e, respectively.
(See [15] for these terminologies and basic properties of chromatic polynomials.)

Definition 4.1. Given a set X, define the set of vertex coloring with X (or the graph configu-
ration space) by
(28) X(G,X)={c:V — X |vjv2 € E = c(v1) # c(v2)}.

The assignment X — x(G, X) can be considered as a functor [14]. The space x(G, X) is
also called the graph (generalized) configuration space [8]. B

The chromatic polynomial x(G,t) € Z][t] satisfies x(G,n) = #x(G, [n]) for all n € N.

In this section, we investigate the Euler characteristic aspects of the chromatic polynomial
for a finite simple graph.

When X is a semialgebraic set, x(G,X) is also a semialgebraic set. The following result
generalizes [8, Theorem 2|, where the result is proved when X is a complex projective space.

Theorem 4.2. Let G = (V, E) be a finite simple graph and X be a semialgebraic set. Then
(29) e(x(G, X)) = x(G, e(X)).
Proof. This result is proved by induction on #E. When E = (),
e(x(G, X)) = e(X7) = e(X)"" = x(G, e(X)).
Suppose e € E. Then we can prove
(30) X(G —e,X) ~x(G, X)Ux(G/e, X).

Using the additivity of the Euler characteristic and the recursive relation for the chromatic
polynomial, we obtain (29). O
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Note that for the complete graph G' = K,,, x(K,, X) is identical to the configuration space
C(X) of n-points. Applying Theorem 4.2 to the complete graph K,, (which has the chromatic
polynomial x(K,,t) =t(t—1)---(t —n+ 1)), we have the following.

Corollary 4.3. e(C, (X)) =e(X)(e(X) —1)---(e(X) —n+1).
To formulate the reciprocity for chromatic polynomials, we recall the notion of acyclic orien-

tations on a graph G. (See [3, 12] for details.)
Let G = (V, E) be a finite simple graph. The set of edges E can be considered as a subset of

(V x V" A)/Ss,

where A = {(v,v) | v € V'} is the diagonal subset and &3 acts on V x V by transposition. There
is a natural projection
T:VXVNA— (VXVNA)/G,.

An edge orientation on G is a subset E C V x V ~ A such that 7|5 E =5 Eisa bijec-
tion. An orientation E is said to contain an oriented cycle, if there exists a cyclic sequence
(v1,v2), (V2,03), -« (Vn—1,Vp), (Up,v1) € E for some n > 2. The orientation E is called acyclic
if it does not contain oriented cycles.

Definition 4.4. Let G = (V,E) be a finite simple graph. Fix an acyclic orientation
E CV xV ~A. Let T be a totally ordered set.

(a) A map ¢: V — T is said to be compatible with E if
(v,0) € E = ¢(v) < c(v).
(b) A map c: V — T is said to be strictly compatible with E if
(v,v") € E = ¢(v) < c(v').
We denote the sets of all pairs of an acyclic orientation with a compatible map, and with a

strictly compatible map, by

AOCS(G,T) = {(E,c)

E is an acyclic orientation, and ¢: V — T
is a map compatible with F ’

and

is a map strictly compatible with E

AOC (G, T) == {(E,c) E is an acyclic orientation, and c: V — T } ’

respectively.

If T is a semialgebraic totally ordered set, then these spaces possess the structure of semial-
gebraic sets. We will see a reciprocity between these two spaces from which Stanley’s reciprocity
for chromatic polynomials is deduced.

It is straightforward that AOC<(G,T) can be identified with x(G,T). In particular, we have

(31) e(AOC™(G,T)) = x(G, e(T)).
We formulate a reciprocity for chromatic polynomials in terms of Euler characteristics.

Theorem 4.5. Let G = (V, E) be a finite simple graph and T be a semialgebraic totally ordered
set. Then

(32) e(AOCS(G,T)) = (~1)*V - e(AOC<(G,T x (0,1)))
(33) e(AOC<(G,T)) = (=1)*V - e(AOCS (G, T x (0,1))).
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To prove Theorem 4.5, we give alternative descriptions of AOCSK)(G, T) in terms of poset
homomorphisms and graph configuration spaces. Let E be an acyclic orientation of G = (V, E).
Then E determines an ordering on V, called the transitive closure of F, defined by

v =19,V = v,, and

v<v = Fug,...,v, €V s.t. .
0 " { (vi_1,v;) € E for 1 <i < n.

This ordering defines a poset which we denote by P(V, E)
A map ¢: V — T is compatible with F if and only if ¢ is an increasing map from P(V, E)

to T. Hence the set of maps compatible with E is identified with Hom=(P(V, E),T). We have
the following decomposition.

(34) AOCS(G,T)~ || Hom“(P(V,E),T).
E: acyclic ori.

Similarly, AOC<(G,T) is decomposed as follows.

(35) AOCS(G,T)~ || Hom™(P(V,E),T).

E: acyclic ori.

Proof of Theorem 4.5. We prove (32). Using the above decompositions (34) and (35) together
with Theorem 3.3, we obtain

e(AOCS(G,T)) =e ||  Hom®(P(V.E),T)

E: acyclic ori.

- ¥ e(HomS(P(V,E),T))

E: acyclic ori.

=R Y e (Hom S (PV.E).T x (0,1)))

E: acyclic ori.

= (-)*V .e ||  Hom=(P(V,E),T x (0,1))
E: acyclic ori.

= (=1)#*V . e(AOC~(G, T x (0,1))).
This completes the proof. The second formula (33) is proved similarly. (|

We deduce Stanley’s reciprocity on chromatic polynomials ([12]). Applying Theorem 4.5 and
(31) shows that (note that T' x (0, 1) is also a semialgebraic totally ordered set)

e(AOCS(G,T)) = (—1)*V - e(AOC< (G, T x (0,1)))
= (=) X(G.e(T % (0,1)
= (=Y - x(G, —¢(T)).
Putting T = [n], we have the following Stanley’s reciprocity.
Corollary 4.6. Let G = (V, E) be a finite simple graph and n € N. Then
# AOC=(G, [n]) = (-1)*V - x(G, —n).



EULER CHARACTERISTIC RECIPROCITY FOR POLYNOMIALS 225

4.2. Flow polynomials. This section treats finite oriented graphs that are allowed to have
distinguished multiple edges and loops. Our object is a tuple G = (V, E, h,t) where V and F
are finite sets and h: E — V and t: E — V are maps. An element of V is called a vertex
and an element of F is called an edge. For an edge e € E, h(e) € V is called the head and
t(e) € V is called the tail. An edge e € E is aloop if h(e) = t(e). In Figure 3, the oriented graph
G has five edges ey, ...,e5 and their orientations are described by h(e1) = h(e2) = t(es) = =z,
t(e1) = t(ea) = h(es) = h(es) =y and t(es) = h(es) = t(es) = 2.

An oriented graph G can also be seen as a 1-dimensional CW-complex. The number of
connected components and the 1-st Betti numbers are denoted by by(G) and by (G), respectively.
Note that by(G) —b1(G) = #V —#E. An edge e € E is called a coloop if bo(G \ e) = bo(G) + 1.
The graph in Figure 3 has the unique coloop ey.

Let A be an abelian group. The map f: E — A is called an A-flow if f satisfies

(36) Y fle= Y [l

e:h(e)=v e:t(e)=v

for all v € V' (see [6, 15] more on the notion of flow and flow polynomials). Let f be an A-flow.
Denote Supp(f) = {e € E | f(e) # 0}. An A-flow is called nowhere zero if Supp(f) = E. The
set of all A-flows and nowhere zero A-flows are denoted by F(G,.A) and F°(G, A), respectively.
Let A be a semialgebraic abelian group. Then clearly F°(G,.A) possesses a structure of a
semialgebraic set.
The flow polynomial is a polynomial ¢¢(t) € Z[t] which satisfies

¢G(k) = #FO(Ga Z/k}Z),
for all £ > 0. The flow polynomial is also characterized by the following properties:
if E =0, then ¢g(t) = 1;
if e € FE is a loop, then ¢g(t) = (t — 1)pgc(t);
if e € F is a coloop, then ¢g(t) = 0;
if e € E is neither a loop nor a coloop, then ¢ (t) = ¢g/e(t) — dac(t).

Proposition 4.7. Let G be a finite oriented graph, and A be a semialgebraic abelian group.
(a) If e € E is a loop, then F°(G, A) ~ (A~ {0}) x FU(G N ¢, A).
(b) If e € E is a coloop, then F°(G, A) = 0.
(c) If e € E is neither a loop nor a coloop, then F9(G/e, A) ~ FO(G, A) UF°(G \ e, A).

Proof. Straightforward. (|

Theorem 4.8. Let G be a finite oriented graph and A be a semialgebraic abelian group. Then
e(FU(G, A)) = ¢ (e(A)).

Proof. Using Proposition 4.7, it is proved by induction on the number of edges. (See Theorem

4.2) O
€1
x ©2 Yy il @\D es
€3

FIGURE 3. An oriented graph.
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An oriented graph G is called totally cyclic if every edge is contained in an oriented cycle. Let
o C E be a subset of edges and denote by ,G the reorientation of G along o. A subset ¢ C E
is a totally cyclic reorientation if ,G is totally cyclic.

Let us denote by FTC(G, A) the set of all pairs (f,o) of the flow f and totally cyclic reori-
entation o C F \ Supp(f). Namely,

FTC(G,A) = {(f,g) f e F(G,A), and o C E \ Supp(f) is a }

totally cyclic reorientation for G gupp(y)

For each subset o C E, the set of all f with (f,o) € FTC(G, A) forms a semialgebraic subset of
F(G, A). Therefore FTC(G,.A) possesses a structure of semialgebraic set. Let us define —A by

-A:=AxR.

The following is proved along the same lines of the proof presented in [6, Appendix A], which
can be considered as a Breuer-Sanyal’s reciprocity at the level of Euler characteristic.

Theorem 4.9. Let G be a finite oriented graph and A be a semialgebraic abelian group. Then
e(FTC(G, +A)) = (1) De(FO(G, FA)).
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