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ABOUT THE ALGEBRAIC CLOSURE OF THE FIELD OF POWER SERIES
IN SEVERAL VARIABLES IN CHARACTERISTIC ZERO

GUILLAUME ROND

Abstract. We begin this paper by constructing different algebraically closed fields containing
an algebraic closure of the field of power series in several variables over a characteristic zero
field. Each of these fields depends on the choice of an Abhyankar valuation and is constructed
via a generalization of the Newton-Puiseux method for this valuation.

Then we study the Galois group of a polynomial with power series coefficients. In particular
by examining more carefully the case of monomial valuations we are able to give several results
concerning the Galois group of a polynomial whose discriminant is a weighted homogeneous
polynomial times a unit. One of our main results is a generalization of Abhyankar-Jung The-
orem for such polynomials, classical Abhyankar-Jung Theorem being devoted to polynomials
whose discriminant is a monomial times a unit.
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1. Introduction

When k is an algebraically closed field of characteristic zero, we can always express the roots
of a polynomial with coefficients in the field of power series over k, denoted by k((t)), as formal
Laurent series in t

1
k for some positive integer k. This result was known by Newton (at least

formally see [BK] p. 372) and had been rediscovered by Puiseux in the complex analytic case
[Pu1], [Pu2] (see [BK] or [Cu] for a presentation of this result). A modern way to reformulate
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2 GUILLAUME ROND

this fact is to say that an algebraic closure of k((t)) is the field of Puiseux power series P defined
in the following way:

P :=
⋃
k∈N

k
((
t

1
k

))
.

The proof of this result, called the Newton-Puiseux method, consists essentially in constructing
the roots of a polynomial P (Z) ∈ kJtK[Z] by successive approximations in a similar way to New-
ton method in numerical analysis. These approximations converge since k

((
t

1
k

))
is a complete

field with respect to the Krull topology.
This result, applied to a polynomial with coefficients in kJtK defining a germ of algebroid plane

curve (X, 0), provides an uniformization of this germ, i.e., a parametrization of this germ.
On the other hand this description of the algebraic closure of k((t)) describes very easily

the Galois group of k((t)) −→ P, since this one is generated by the multiplication of the k-th
roots of unity by t

1
k for any positive integer k. In particular if an irreducible monic polynomial

P (Z) ∈ CJtK[Z] has a root which is a convergent power series in t
1
k , i.e., an element of C{t 1

k },
then its other roots are also in C{t 1

k } and the coefficients of P (Z) are convergent power series.
When k is a characteristic zero field (but not necessarily algebraically closed), we can prove

in the same way that an algebraic closure of k((t)) is

(1) P :=
⋃
k′

⋃
k∈N

k′
((
t

1
k

))
.

where the first union runs over all finite field extensions k −→ k′.
The aim of this work is double: the first one consists in finding representations of the roots of a

polynomial whose coefficients are power series in several variables over a characteristic zero field.
Our main results regarding these representations are Theorem 4.2 for Abhyankar valuations and
its stronger version for monomial valuations (see Theorem 5.12). The second goal is to describe
the Galois group of such polynomials. In particular we concentrate our study to irreducible
polynomials that remain irreducible as polynomials with coefficients in the completion of the
valuation ring associated to a monomial valuation. Our main result regarding this problem is
a generalization of Abhyankar-Jung Theorem to polynomials whose discriminant is weighted
homogeneous (see Theorems 7.5 and 7.7).

But let us present in more details the situation, the problems and the results given in this
paper. It is tempting to find such a similar expression to (1) for the algebraic closure of the field
of power series in n variables, k((x1, . . . , xn)), for n ≥ 2. But it appears easily that the algebraic
closure of this field admits a really more complicated description and considering only power
series depending on x

1
k
1 , . . . , x

1
k
n is not sufficient. For instance it is easy to see that a square root

of x1 + x2 can not be expressed as such a power series.
Nevertheless there exist positive results in some specific cases, the most famous one being the

Abhyankar-Jung theorem:

Theorem (Abhyankar-Jung Theorem). If k is an algebraically closed field of characteristic
zero, then any polynomial with coefficients in kJx1, . . . , xnK, whose discriminant has the form
uxα1

1 . . . xαnn where u ∈ kJx1, . . . , xnK is a unit and α1, . . . , αn ∈ Z≥0, has its roots in
kJx

1
k
1 , . . . , x

1
k
n K for some positive integer k.

Such a polynomial is called a quasi-ordinary polynomial and this theorem asserts that the
roots of quasi-ordinary polynomials are Puiseux power series in several variables. It provides
not only a description of the roots of a quasi-ordinary polynomial but also a description of its
Galois group. This result has first being proven by Jung in the complex analytic case, then by
Abhyankar in the general case ([Ju], [Ab]).
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In the general case, a naive approach involves the use of Newton-Puiseux theorem n times
(i.e., the formula (1) for the algebraic closure of k((t))). For example in the case where n = 2
and k is an algebraically closed field of characteristic zero, this means that the algebraic closure
of k((x1, x2)) is included in

L :=
⋃
k2∈N

⋃
k1∈N

k
((

x
1
k1
1

))((
x

1
k2
2

))
.

But this field, which is algebraically closed, is very much larger than the algebraic closure of
k((x1, x2)) (see [Sa] for some thoughts about this). Moreover the action of the k1-th and k2-th
roots of unity are not sufficient to generate the Galois group of the algebraic closure since there
exist elements of k((x1))((x2)) which are algebraic over k((x1, x2)) but are not in k((x1, x2)). For
instance consider

x1

√
1 +

x2

x1
=
∑
i∈Z≥0

ai
1

xi−1
1

xi2 ∈ Q((x1))((x2))\Q((x1, x2))

for some well chosen rational numbers ai ∈ Q, i ∈ Z≥0.
Nevertheless a deeper analysis of the Newton-Puiseux method leads to the fact that it is

enough to consider the field of fractions of the ring of elements

f =
∑

(l1,l2)∈Z2

al1,l2x
l1
k1
1 x

l2
k2
2 ∈ L

for some k1, k2 ∈ N whose support is included in a rational strongly convex cone of R2. Here
the support of f is the set

Supp(f) := {(l1, l2) ∈ Z2 / al1,l2 6= 0}.
This result has been proven by MacDonald [McD] (see also [Go], [Aro], [AI], [SV]). But once
more, for any rational strongly convex cone of R2, denoted by σ, R2

≥0 ( σ, there exist elements
whose support is in σ but that are not algebraic over k((x1, x2)).

One of the main difficulties comes from the fact that k((x1, . . . , xn)) is not a complete field
with respect to the topology induced by the maximal ideal of kJx1, . . . , xnK (called the Krull
topology; it is induced by the following norm

∣∣∣ fg ∣∣∣ := eord(g)−ord(f) for any f , g ∈ kJx1, . . . , xnK,
g 6= 0, where ord(f) is the order of the series f in the usual sense). Indeed, in order to apply the
Newton-Puiseux method we have to work with a complete field since the roots are constructed
by successive approximations. A very natural idea is to replace k((x1, . . . , xn)) by its completion.
But the completion of k((x1, . . . , xn)) is not algebraic over k((x1, . . . , xn)), thus the fields we
construct in this way are bigger than the algebraic closure of k((x1, . . . , xn)). In fact we need to
replace the completion of k((x1, . . . , xn)) by its henselization in the completion. The problem is
that there is no general criterion to distinguish elements of the henselization from other elements
of the completion. In some sense this problem is analogous to the fact that there is no general
criterion to determine if a real number is algebraic or not over the rationals. One more issue
is that choosing the Krull topology is arbitrary and we may replace this one by any topology
induced by an other norm (or valuation) on this field.

In this paper, we first investigate the use of the Newton-Puiseux method with respect to
"tame" valuations (i.e., replace k((x1, . . . , xn)) by its completion for this valuation). By a "tame"
valuation we mean a rank one (or real valued) valuation that satisfies the equality in the Ab-
hyankar inequality (see Definition 2.1). These valuations are called Abhyankar valuations (cf.
[ELS]) or quasi-monomial valuations (cf. [FJ]) and, essentially, these are monomial valuations
after some sequence of blowing-ups. This is the first part of this work.
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If ν is such a valuation, we denote by K̂ν the completion of k((x1, . . . , xn)) for the topology
induced by this valuation. This field will play the role of k((t)) in the classical Newton-Puiseux
method. Then we have to define the elements that will play the role of t

1
k . This is where the

first difficulty appears, since instead of working over K̂ν , we need to work over the graded ring
associated to ν. Both are isomorphic but there is no canonical isomorphism between them. In
the case of k((t)) where t is a single variable, such an isomorphism is defined by identifying the
k-vector space of homogeneous elements of degree i of the graded ring with the k-vector space
of homogeneous polynomials of degree i, i.e., k.ti. But this identification depends on the choice
of an uniformizer of kJtK. In the case of k((x1, . . . , xn)) an isomorphism will be determined by
the choice of "coordinates" such that the valuation ν is monomial in these coordinates since
Abhyankar valuations are monomial valuations after a sequence of blow-ups (cf. Remark 3.6).
This is the reason why we restrict our study to these valuations.

Nevertheless when such an isomorphism is chosen, we are able to define the elements that
will play the role of t

1
k , this the aim of Section 3. These elements are called homogeneous

elements with respect to ν (cf. Definitions 3.15 and 3.17). These are defined as being the roots
of weighted homogeneous polynomials with coefficients in the graded ring of kJx1, . . . , xnK for
the valuation ν. If k is the field of complex numbers and the weights of the monomial valuation
are positive integers, we can think about these homogeneous elements as weighted homogeneous
algebraic (multivalued) functions. In fact we can replace K̂ν by a smaller field, the subfield of
K̂ν whose elements have support included in a finitely generated sub-semigroup of R≥0. Let us
remark that this field is similar to the field of generalized power series ∪ΓC((tΓ)) where the sum
runs over all finitely generated semigroups Γ of R≥0 (see [Ri] for instance). Our first result is
that the inductive limit of the extensions of K̂ν by homogeneous elements with respect to ν is
algebraically closed (see Theorem 4.2). This field is lim

−→
γ1,...,γs

K̂ν [γ1, . . . , γs] where the limit runs over

all subsets {γ1, . . . , γs} of homogeneous elements with respect to ν and is denoted by Kν . The
field extension k((x1, . . . , xn)) −→ Kν factors through the field extension k((x1, . . . , xn)) −→ K̂ν .
While the Galois group of the field extension K̂ν −→ Kν is easily described by the Galois group of
weighted homogeneous polynomials, the Galois group of the algebraic closure of k((x1, . . . , xn)) in
K̂ν is more complicated. So it is very natural to study irreducible polynomials over k((x1, . . . , xn))

which remain irreducible over K̂ν , since their Galois groups are described by the Galois groups
of weighted homogeneous polynomials. Proposition 4.14 shows that this property is an open
property with respect to the topology induced by the chosen valuation. Let us mention that
these polynomials are called ν-analytically irreducible polynomials in [Te] and their study is
motivated by the construction of key polynomials for Abhyankar valuations (not necessarily of
rank 1) in order to prove local uniformization.

Then we investigate more deeply the particular case of monomial valuations. In Section 5,
using an idea of Tougeron [To] based on a work of Gabrielov [Ga], for any monomial valuation
ν we construct a field, smaller than the ones constructed previously using the Newton-Puiseux
method, and containing an algebraic closure of k((x1, . . . , xn)). The main result (see Theorem
5.12) is a non-archimedean version of Eisenstein Theorem (classical Eisenstein Theorem concerns
algebraic power series overQ). The tool we use here is an effective version of the Implicit Function
Theorem (see Proposition 5.10). The elements we need to consider are of the form

(2)
∑
i∈Λ

ai
δm(i)

where the ai and δ are weighted homogeneous polynomials for the weights corresponding to the
given monomial valuation, Λ is a finitely sub-semigroup of R≥0, ν

(
ai

δm(i)

)
= i for all i ∈ Λ and



THE ALGEBRAIC CLOSURE OF THE FIELD OF POWER SERIES 5

i 7−→ m(i) is bounded by a an affine function. In the particular case where the weights are
Q-linearly independent this corresponds to the result of MacDonald (see Theorem 6.9).

In Section 7, we use this description of the roots of polynomials with coefficients in
C{x1, . . . , xn} to make a topological and complex analytical study of such polynomials whose
discriminant is a weighted homogeneous polynomial multiplied by a unit. This study has been
inspired by the work of Tougeron in [To] and more particularly by Remarque 2.7 of [To] where
it is noticed that the elements of the form (2) define analytic functions on an open domain of
Cn which is the complement of some hornshaped neighborhood of {δ = 0} (see Definition 7.1).
This study is possible in the case of monomial valuations whose weights are positive integers.
To obtain the same results in the case of general monomial valuations we need to approximate
general monomial valuations by divisorial monomial valuations, i.e., monomial valuations whose
weights are positive integers. This is the subject of Section 6.

One of the main results we obtain in Section 7 is the following theorem which gives a criterion
for an irreducible polynomial over k((x1, . . . , xn)) to remain irreducible over K̂ν :

Theorem. 7.5 Let k be a field of characteristic zero and α ∈ Rn>0. Let x denotes the set
of variables (x1, . . . , xn) and let να be the monomial valuation given by the weights αi. Let
P (Z) ∈ kJxK[Z] be a monic polynomial whose discriminant is equal to δu where δ ∈ k[x] is a
weighted homogeneous polynomial for the weights α1, . . . , αn and u ∈ kJxK is a unit. If P (Z)
factors as P (Z) = P1(Z) . . . Ps(Z) where Pi(Z) is an irreducible monic polynomial of kJxK[Z],
then Pi(Z) is irreducible in V̂α[Z] where V̂α denotes the completion of the valuation ring of να.

Then we show that Abhyankar-Jung Theorem is in fact a generalization of this result when the
αi are Q-linearly independent (see Corollary 7.9) and we give the following generalization of
Abhyankar-Jung Theorem for polynomials whose discriminant is weighted homogeneous with
respect to weights α1, . . . , αn ∈ R>0:

Theorem. 7.7 We assume that the hypothesis of Theorem 7.5 are satisfied. Let us set

N := dimQ(Qα1 + · · ·+ Qαn).

Then there exist γ1, . . . , γN integral homogeneous elements with respect to να and a weighted
homogeneous polynomial for the weights α1, . . . , αn denoted by c(x) ∈ k[x] such that the roots
of P (Z) are in 1

c(x)k
′JxK[γ1, . . . , γN ] where k −→ k′ is a finite field extension.

Indeed in the case N = n, i.e., α1, . . . , αn are Q-linearly independent, the only weighted ho-
mogeneous polynomials are the monomials and the integral homogeneous elements with respect
to να are of the form xβ where β ∈ Qn≥0 (see Remark 3.18). Abhyankar-Jung Theorem simply
asserts that we may choose c(x) = 1, a fact that we are able to prove in this case (see Corollary
7.9).

We remark that this result (along with Theorem 7.5) shows that the Galois group of an
irreducible monic polynomial with coefficients in kJx1, . . . , xnK whose discriminant is weighted
homogeneous is generated by the Galois group of one weighted homogeneous polynomial (see
Remark 7.8).

Finally in Section 8 we give a result of Diophantine approximation (it is just an direct gener-
alization of [Ro1] and [II]) that gives a necessary condition for an element of K̂ν to be algebraic
over k((x1, . . . , xn)).

At the end we give a list of notations for the convenience of the reader.
Let us mention that this work has been motivated by the understanding of the paper [To]

of Tougeron where the study we make for monomial valuations is made in the case of the
(x1, . . . , xn)-adic valuation of k((x1, . . . , xn)).
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I would like to thank Guy Casale and Adam Parusiński for their answers to my questions
regarding the proofs of Lemma 7.4 and Lemma 7.2 respectively. I also thank H. Mourtada for
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presentation fo this paper. I also thank the referees for their valuable suggestions.

2. Notations and Abhyankar valuations

Let N denote the set of positive integers and Z≥0 the set of non-negative integers. Let x
denote the multi-variable (x1, . . . , xn) where n ≥ 2. Let k denote a characteristic zero field.
Then kJxK = kJx1, . . . , xnK denotes the ring of formal power series in n variables over k and we
denote by Kn its fraction field and by m its maximal ideal.

When (A,m) is a local domain, a valuation on A is a function ν : A\{0} −→ Γ+, where Γ is
an ordered subgroup of R and Γ+ := Γ ∩ R≥0, such that

ν(fg) = ν(f) + ν(g) and ν(f + g) ≥ min{ν(f), ν(g)} ∀f, g ∈ A.
We will also impose that ν(f) > 0 if and only if f ∈ m. We set ν(0) =∞ where ∞ > i for any
i ∈ Γ.

Such valuation ν extends to KA, the fraction field of A, by

ν

(
f

g

)
:= ν(f)− ν(g)

for any f , g ∈ A, g 6= 0. We will always assume that ν : KA −→ Γ is surjective. In this case Γ is
called the value group of ν. The image of A\{0} by ν is called the semigroup of ν and we denote
it by Σ. Then Γ is the group generated by Σ. Let us denote by Vν the valuation ring of ν:

Vν :=

{
f

g
/ f, g ∈ A, ν(f) ≥ ν(g)

}
.

This is a local ring whose maximal ideal, denoted by mV , is the set of elements f/g such that
ν(f/g) > 0. Its residue field Vν

mV
is denoted by kν .

Let us denote by V̂ν the completion of Vν which is defined as follows: For any λ ∈ Γ let us
set Iλ := {v ∈ Vν / ν(v) ≥ λ}. The family of ideals {Iλ}λ∈Γ as a system of neighbourhoods of
0 makes Vν into a topological ring. Then V̂ν is the completion of Vν for this topology. We can
also remark that the family {Vν/Iλ}λ is an inverse system and its inverse limit is exactly V̂ν .

Then V̂ν is an equicharacteristic complete valuation ring and its residue field is isomorphic to
kν .

In this paper we will only consider a particular case of valuations, called Abhyankar valuations:

Definition 2.1. A valuation ν is called an Abhyankar valuation if the following equality holds:

tr.degk kν + dimQ Γ⊗Z Q = n.

This equality is called the Abhyankar’s Equality.

Remark 2.2. If dimQ Γ⊗Q = 1, then Γ ' Z. Otherwise Γ is a dense subgroup of R.

Example 2.3. The first example is the m-adic valuation denoted by ord on the ring A = kJxK,
and defined by

ord(f) := max{n ∈ N / f ∈ mn} ∀f ∈ kJxK\{0}.
In this case its value group Γ is equal to Z and its semigroup Σ is equal to Z≥0.

Example 2.4. Let α := (α1, . . . , αn) ∈ (R>0)n. Let us denote by να the monomial valuation
on A = kJxK defined by να(xi) := αi for 1 ≤ i ≤ n. For instance ν(1,...,1) = ord.

Here we have Γ = Zα1 ⊕ · · · ⊕ Zαn and Σ = Z≥0α1 ⊕ · · · ⊕ Z≥0αn.
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Example 2.5. If Γ is isomorphic to Z and ν is an Abhyankar valuation, then ν is a divisorial val-
uation. For such valuation there exists a proper birational dominant map π : X −→ Spec(kJxK)
and E an irreducible component of the exceptional locus of π such that ν is the composition of
π∗ with the mE-adic valuation of the ring OX,E .

Remark 2.6. Geometrically, an Abhyankar valuation is a monomial valuation at a point lying
on the exceptional divisor E of some proper birational map (Y,E) −→ (kn, 0). More precisely
we have the following:

The restriction of ν to k[x] is an Abhyankar valuation with the same value group as ν. We
denote it by ν̃. By Proposition 2.8 [ELS] there exists a regular local domain (A,mA), an injective
morphism

π : k[x] −→ A

inducing an isomorphism between the fields of fractions and a regular system of parameter z1,
. . . , zr of A such that ν̃(z1), . . . , ν̃(zr) freely generate the value group of ν̃ (or the value group
of ν since both are equal). Let us denote by µ the restriction of ν̃ to A. Then π induces
an isomorphism between Vν and Vµ. Thus it induces an isomorphism between V̂ν̃ and V̂µ.
Moreover the completion of A is isomorphic to LJz1, . . . , zrK where k −→ L is a field extension
of transcendence degree n− r (here L = A

mA
) and µ extends to a valuation on Â which is exactly

the monomial valuation that sends zi onto ν(zi) for all i.

Remark 2.7. If n = 2, in fact any discrete valuation (i.e., Γ = Z) is an Abhyankar valuation
[HOV].

Definition 2.8. Let α ∈ Rn>0. A polynomial f ∈ kJxK is called (α)-homogeneous of degree i is
every nonzero monomial cxβ of f satisfies

n∑
k=0

αkβk = i

or equivalently να(cxβ) = i. This means that f is weighted homogeneous of degree i where xj
has weight αj for every j.

Example 2.9. Let να be a monomial valuation as before. Any power series g ∈ kJxK can be
written g =

∑
i∈Σ gi where gi is a (α)-homogeneous polynomial of degree i ∈ Σ. Let us denote

by i0 the least i ∈ Σ such that gi 6= 0. Then we can write formally

g = gi0

(
1 +

∑
i>i0

gi
gi0

)

and this equality is satisfied in V̂να . Now if f ∈ kJxK, g 6= 0 and ν(f) ≥ ν(g) we can write

f

g
=

(∑
i

fi
gi0

)(
1 +

∑
i>i0

gi
gi0

)−1

where f =
∑
i fi where fi is (α)-homogeneous of degree i ∈ Σ.

Thus any element of Vνα is of the form
∑

i≥0,i+i0∈Σ

ai(x)

bi(x)
for some i0 ∈ Σ, where ai(x) and

bi(x) are (α)-homogeneous and να
(
ai(x)
bi(x)

)
= i for any i ∈ R.
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On the other hand V̂να is the set of elements of the form
∑
i∈Λ

ai(x)

bi(x)
where Λ is a finite or

countable subset of Γ+ with no accumulation point, where ai(x) and bi(x) are (α)-homogeneous
and να

(
ai(x)
bi(x)

)
= i for any i ∈ R.

Let us denote by K̂ν the fraction field of V̂ν . The valuation ν defines an ultrametric norm on
K̂ν , denoted by | |ν , defined by∣∣∣∣fg

∣∣∣∣
ν

= eν(g)−ν(f) ∀f ∈ kJxK, g ∈ kJxK\{0}.

Then K̂ν is the completion of Kn for the topology induced by this norm and this norm (thus the
valuation ν) extends canonically on K̂ν . We shall also denote by ν the extension of ν to Kν .

Let us denote by Kalg
ν the algebraic closure of Kn in K̂ν . We also denote by V alg

ν the ring of
elements of V̂ν which are algebraic over Kn: V alg

ν := Kalg
ν ∩ V̂ν . We have the following lemma:

Lemma 2.10. The ring V alg
ν is a valuation ring (associated to the valuation ν) and Kalg

ν is its
fraction field. Moreover Vν −→ V alg

ν is the henselization of Vν in V̂ν .

Proof. If f , g ∈ V alg
ν and ν(f) ≥ ν(g), then f

g ∈ Kalg
ν ∩ V̂ν = V alg

ν so V alg
ν is a valuation ring.

For f ∈ Kalg
ν there exists N ∈ N such that xN1 f ∈ Kalg

ν ∩ V̂ν = V alg
ν since ν(xN1 ) > 0. Thus Kalg

ν

is the fraction field of V alg
ν .

By construction the elements of the henselization of Vν are algebraic over Vν . On the other
hand every element of V̂ν which is algebraic over Vν is in the Henselization of Vν (see Corollary
1.2.1 [M-B]). �

Thus we can summarize the situation with the following commutative diagram, where the
bottom part corresponds to the quotient fields of the rings of the upper part:

kJxK // Vν //

!!

��

V̂ν

��

V alg
ν

>>

��

Kn //

!!

K̂ν

Kalg
ν

==

3. Homogeneous elements with respect to an Abhyankar valuation

3.1. Graded ring of an Abhyankar valuation and support. Let A be an integral domain
and let ν : A −→ Γ+ be a valuation where Γ is a subgroup of R. We define GrνA =

⊕
i∈Γ+

pν,i

p+
ν,i

where pν,i := {f ∈ A/ ν(f) ≥ i} and p+
ν,i := {f ∈ A / ν(f) > i}.

Definition 3.1. Let Γ+ be a sub-semigroup of R≥0. A Γ+-graded ring is a ring A that has a
direct sum of abelian groups, A =

⊕
i∈Γ+ Ai, such that AiAj ⊂ Ai+j for any i, j ∈ Γ+.
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For any j ∈ Γ+,
⊕

i∈Γ+,i≥j Ai is an ideal of A. This family of ideals as a system of neigh-

borhoods of 0 makes A into a topological whose completion is denoted by Â or
⊕̂

i∈Γ+Ai. The
completion of A is the set of elements that are written as a series

∑
i∈Λ ai where Λ ⊂ Γ+ is

either a finite set, either a countable subset of R>0 with no accumulation point, and ai ∈ Ai for
any i ∈ Λ.

A complete (Γ+-)graded ring is the completion of a (Γ+-)graded ring.

Remark 3.2. Let A be a complete graded ring. If A0 is a field then A is a local ring and its
maximal ideal is m :=

⊕̂
i>0Ai.

For any a ∈ A we can write a =
∑
i∈Λ ai where ai ∈ Ai for any i. If a 6= 0 let us set

ν(a) := min{i ∈ Γ+ / ai 6= 0}. Set ν(0) =∞. Then ν is an order function, i.e., ν(ab) ≥ ν(a)+ν(b)
and ν(a+ b) ≥ min{ν(a), ν(b)}. Moreover ν is a valuation if and only if A is an integral domain.
The order function ν is called the order function of A.

Example 3.3. For a given Abhyankar valuation ν on kJxK the rings GrνkJxK and GrνVν are
Γ+-graded rings and ĜrνkJxK and ĜrνVν are complete Γ+-graded rings.

Remark 3.4. The ring ĜrνVν is isomorphic to the ring of generalized power series kνJtΓ
+

K
where t is a single variable.

Remark 3.5. The elements of ĜrνVν are the elements of the form
∑
i∈Λ ai where ai ∈

pν,i

p+
ν,i

for

all i ∈ Λ where Λ is either a finite set, either a countable subset of R≥0 with no accumulation
point.

Remark 3.6. Let us consider a monomial valuation ν on kJxK, let us say ν := να where α ∈ Rn>0.
In this case pν,i

p+
ν,i

is isomorphic to the k-vector space of rational fractions a(x)
b(x) where a(x) and

b(x) are (α)-homogeneous polynomials and να
(
a(x)
b(x)

)
= i. Thus, by Example 2.9 ĜrνVν and V̂ν

are k-isomorphic.
Let us now consider a general Abhyankar valuation ν on kJxK. By Remark 2.6 there exist a

regular local domain (A,mA), an injective morphism

π : k[x] −→ A

inducing an isomorphism between the fields of fractions and such that, if we denote by µ the
restriction of ν to A, the following properties hold:

The extension of µ to Â is a monomial valuation (denoted by µ̂) and π induces isomorphisms
Vν ' Vµ and V̂ν ' V̂µ̂.

We have V̂µ = V̂µ̂ and GrνVν ' GrµVµ = GrµV̂µ. Thus ĜrνVν and V̂ν are k-isomorphic by
the monomial case.

We can summarize this in the following proposition:

Proposition 3.7. The choice of a proper birational map π and parameters z1, . . . , zr as in
Remark 2.6 yields an isomorphism

ĜrνVν ' V̂ν .

Remark 3.8. A different choice of π and z1, . . . , zr would give an other isomorphism between
these two rings.

Definition 3.9. Let A =
⊕̂

i∈Γ+Ai be a complete Γ+-graded ring. Let a ∈ A, a =
∑
i∈Γ+ ai,

ai ∈ Ai for any i. The support of a is the subset I of Γ+ defined by i ∈ I if and only if ai 6= 0.
We denote this set I by Supp(a).
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Definition 3.10. Let ν be an Abhyankar valuation defined on kJxK. Let us fix a k-isomorphism
ϕ between ĜrνVν and V̂ν as in Proposition 3.7. Let a ∈ V̂ν and let us write ϕ(a) =

∑
i∈Γ+ ai

with ai ∈ pν,i

p+
ν,i

. The ν-support with respect to ϕ of a is the subset of Γ+ defined as

Suppν,ϕ(a) := {i ∈ Γ+ / ai 6= 0}.
When the isomorphism is clear from the context we will skip the mention of ϕ and denote the
ν-support of a by Suppν(a).

Proposition 3.11. Let ν be an Abhyankar valuation on kJxK and let ϕ be a k-isomorphism
between ĜrνVν and V̂ν as in Proposition 3.7. Then there exists a finitely generated sub-semigroup
of R≥0, denoted by Λ, such that the ν-support of any element of kJxK with respect to ϕ is included
in Λ.

Proof. By Remark 2.6, we may assume that ν is a monomial valuation. Thus the proposition
comes from the following lemma applied to Σ = Zn≥0: �

Lemma 3.12. Let Σ be a strongly convex rational cone of Rn. Let α ∈ Rn>0 such that 〈α, β〉 > 0
for any β ∈ Σ, β 6= 0. Then there exists a finitely generated subgroup of R≥0, denoted by Λ,
such that Suppνα(f) ⊂ Λ for any f ∈ kJxβ , β ∈ Σ ∩ ZnK where kJxβ , β ∈ Σ ∩ ZnK denotes the
ring of formal Laurent series whose support is included in Σ ∩ Zn.

Proof. By Gordan Lemma, Σ∩Zn is a finitely generated semigroup, let us say Σ∩Zn is generated
by u1, . . . , uk. Let us set ri := 〈α, ui〉, 1 ≤ i ≤ k. Since any element of Σ ∩ Zn is a Z≥0-
linear combination of u1, . . . , uk, then 〈α, β〉 is a Z≥0-linear combination of r1, . . . , rk for
any β ∈ Σ ∩ Zn. Let us denote by Λ the semigroup of R≥0 generated by r1, . . . , rk. Then
Suppνα(f) ⊂ Λ. �

Remark 3.13. Proposition 3.11 does not imply that the semigroup Σ of ν is finitely generated,
which is not true in general for Abhyankar valuations which are not monomial valuations.

3.2. Homogeneous elements. From now on we fix an Abhyankar valuation ν on kJxK and
a k-isomorphism ϕ between ĜrνVν and V̂ν induced by an injective birational morphism π as
in Remark 3.6 and we will skip to mention it in the following. There are several reasons for
that. The first one is that we are interested in effective results on the algebraic elements over
kJxK, thus we are interested by valuations which are given effectively and this will be the case
essentially through a map π as in Remark 2.6. In particular we will investigate more deeply
the case of monomial valuations and, in this case, the set of variables x1, . . . , xn will be fixed
from the beginning, thus ϕ is quite natural in this case. The last reason is that we will give
properties on the ν-support of algebraic elements, and Proposition 3.11 will allow us to consider
only elements whose ν-support is included in a finitely generated sub-semigroup of R>0, and this
fact does not depend on ϕ.

Definition 3.14. Let ν be an Abhyankar valuation defined on kJxK. We will denote by V fg
ν

the subset of V̂ν of elements whose ν-support is included in a finitely generated sub-semigroup
of R≥0 (when we identify V̂ν and ĜrνVν via ϕ). It is straightforward to check that V fg

ν is a
valuation ring. We denote by Kfg

ν its fraction field.

Definition 3.15. Let A be a complete Γ+-graded domain and let ν be its order function (which
is a valuation since A is a domain). A homogeneous element with respect to ν is an element γ of
a finite extension of A such that its minimal polynomial Q(Z) is irreducible in A[Z] and has the
following form:

Zq + g1Z
q−1 + · · ·+ gq
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where gk ∈ Ai(k) with i(k) ∈ Γ for 1 ≤ k ≤ q such that k.i(l) = l.i(k) for all k and l. In this case
d := i(k)

k ∈
1
q!Γ is called the order of γ.

Example 3.16. Let α ∈ Rn>0 such that dimQ(Qα1 + · · ·+ Qαn) = n i.e., the αi are Q-linearly
independent. Then the value group of να is the following group:

Γ = Zα1 + · · ·+ Zαn
and for any i ∈ Γ there exists a unique (βi,1, . . . , βi,n) ∈ Zn such that

i = βi,1α1 + · · ·+ βi,nαn.

Thus if i ∈ Γ+ this means that pνα,i

p+
να,i

is isomorphic to the one dimensional kνα -vector space

generated by xβi,11 · · ·xβi,nn . Let us remark here that kνα is equal to k since the αi are Q-linearly
independent. Thus if gk ∈ pνα,dk

p+
να,dk

for 1 ≤ k ≤ q we have that

Zq + g1Z
q−1 + · · ·+ gq = x

βqd,1
1 · · ·xβqd,nn

(
T q + g′1T

q−1 + · · ·+ g′q
)

where Z = x
βd,1
1 · · ·xβd,nn T and g′1, . . . , g′q ∈ k. If gq 6= 0 then βqd,j ∈ Z for any j but βd,j =

βqd,j
d

may not be an integer. Then the roots of T q + g′1T
q−1 + · · · + g′q are algebraic over k. Thus

homogeneous elements with respect to να are of the form cxβ where c is algebraic over k and
β ∈ Qn with 〈α, β〉 := α1β1 + · · ·+ αnβn ≥ 0.

Definition 3.17. Let ν be an Abhyankar valuation on kJxK. Let A = ĜrνVν and γ be a
homogeneous element with respect to ν. Let Q(Z) be its minimal polynomial:

Q(Z) = Zq + g1Z
q−1 + · · ·+ gq

with gk ∈ pν,dk

p+
ν,dk

for 1 ≤ k ≤ q. We say that γ is an integral homogeneous element with respect to

ν if gk is the image of an element of kJxK ∩ pν,dk for all k.

Example 3.18. Let α ∈ Rn>0 such that dimQ(Qα1 + · · · + Qαn) = n and let us keep the
notations of Example 3.16. Then γ is an integral homogeneous element with respect to να if
gk ∈ kJxK∩pνα,dk

kJxK∩p+
να,dk

for 1 ≤ k ≤ q. Since gq 6= 0 this means that βqd,j ∈ Z≥0 for all j. Thus integral

homogeneous elements with respect to να are of the form cxβ where c is algebraic over k and
β ∈ Qn≥0.

Example 3.19. Let ν be an Abhyankar valuation on kJxK and let us assume that k is not
algebraically closed. Let c be in the algebraic closure of k, c /∈ k. Then c is a root of a
polynomial equation with coefficients in k and since k is a subfield of kν , this shows that c is an
integral homogeneous element of order 0 with respect to ν.

Remark 3.20. Let ν be an Abhyankar valuation on kJxK and let γ be a homogeneous element
of order d with respect to ν. Let us denote by Q(Z) its minimal polynomial, say

Q(Z) = Zq + g1Z
q−1 + · · ·+ gq

where gk ∈ pνα,dk

p+
να,dk

for 1 ≤ k ≤ q. Each gk is the image in ĜrνVν of some fraction fk
hk

where fk,

hk ∈ kJxK. Set h := h1 . . . hk, let h0 be the image of h in ĜrνVν and set γ′ := h0γ. Then γ′ is a
homogeneous element annihilating Zq+g′1Z

q−1 + · · ·+g′q where g′k is the image of fkhk h
k−1 ∈ kJxK

in ĜrνVν , thus it is an integral homogeneous element with respect to ν. Moreover we have

Frac(ĜrνVν)[γ] = Frac(ĜrνVν)[γ′].
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Definition 3.21. Let ν be an Abhyankar valuation on kJxK,

P (Z1, . . . , Zm) ∈ V̂ν [Z1, . . . , Zm]

and d := (d1, . . . , dm) ∈ Rm>0. One says that P (Z1, . . . , Zm) is (ν,d)-homogeneous of degree
d ∈ R if for every nonzero monomial gZβ1

1 . . . Zβmm of P (Z) one has g ∈ pν,k

p+
ν,k

with

k + β1d1 + · · ·+ βmdm = d.

Remark 3.22. Let ν be an Abhyankar valuation on kJxK. Let γ be a homogeneous element of
order d with respect to ν. Let us denote by P (Z) its minimal monic polynomial. Then P (Z) is
(ν, d)-homogeneous.

Conversely if P (Z) ∈ V̂ν [Z] satisfies P (γ) = 0 for some element γ algebraic over V̂ν , and if
P (Z) is a nonzero (ν, d)-homogeneous, then the divisors of P in V̂ν [Z] are also (ν, d)-homogeneous,
thus the minimal polynomial of γ is (ν, d)-homogeneous. Hence γ is a homogeneous element of
order d with respect to ν.

Lemma 3.23. Let γ1 and γ2 be two homogeneous elements of order d1 and d2 respectively with
respect to the valuation ν and let k ∈ Z. Then

i) γk1 is homogeneous of order kd1,
ii) if e1d1 = e2d2 with e1, e2 ∈ N, then γe11 + γe22 is homogeneous of order d1e1,
iii) γ1γ2 is homogeneous of order d1 + d2.

Proof. If γ is homogeneous of order d ∈ Q, then γk, k ∈ N, is homogeneous of order kd. Indeed
a polynomial having γk as a root is Q(Z) :=ResX(P (X), Z − Xk) where P is the minimal
monic polynomial of γ over k(x). But P (X) is (ν, d)-homogeneous and Z − Xk is (ν, d, kd)-
homogeneous. Thus Q(Z) is (ν, d, kd)-homogeneous, hence (ν, kd)-homogeneous since it does
not depend on X. This proves that γk is homogeneous of order kd.

In order to show ii) we may assume, by i), that γ1 and γ2 are homogeneous of same order
d = e1d1 = e2d2. Let us denote by P1(Z) and P2(Z) the minimal monic polynomials of γ1 and
γ2 respectively. Then Q(Z) :=ResX(P1(Z − X), P2(X)) is (ν, d, d)-homogeneous, thus (ν, d)-
homogeneous since it does not depend on X. Since Q(γ1 + γ2) = 0, γ1 + γ2 is homogeneous of
order d.

In order to show iii) let us denote by P1(X) the minimal monic polynomial of γ1 (this is
a (ν, d1)-homogeneous polynomial) and P2(Z) the minimal monic polynomial of γ2 ((ν, d2)-
homogeneous). Let us denote by k the degree in Z of P1(Z) and set R(X,Y ) := XkP1(Y/X).
Then γ1γ2 is a root of Q(Z) :=ResX(R(X,Z), P2(X)). Moreover R(X,Z) is (ν, d2, d1 + d2)-
homogeneous. Thus Q(Z) is (ν, d1 + d2)-homogeneous, which proves that γ1γ2 is homogeneous
of order d1 + d2. �

Lemma 3.24. Let P (T,Z) be a nonzero (ν, d1, d2)-homogeneous polynomial of V̂ν [T,Z] and let
γ1 be a homogeneous element of order d1 with respect to ν. If an element γ2 belonging to a finite
extension of k(x) satisfies P (γ1, γ2) = 0, then γ2 is a homogeneous element of order d2 with
respect to ν.

Proof. Let Q(T ) ∈ V̂ν [T ] be a nonzero (ν, d1)-homogeneous polynomial such that Q(γ1) = 0.
Let us denote R(Z) =ResT (P (T,Z), Q(T )). Then R(Z) is a (ν, d2)-homogeneous polynomial
such that R(γ2) = 0. This proves the result. �

Remark 3.25. Let A be a complete Γ+-graded integral domain, let say A is the completion
of A′ :=

⊕
i∈Γ+ Ai, and let ν be its order valuation. Let Q(Z) be an irreducible polynomial of

A[Z] having the following form:

Zq + g1Z
q−1 + · · ·+ gq
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where gk ∈ Adk for 1 ≤ k ≤ q and d ∈ 1
q!Γ

+. The ring B := A[Z]
(Q(Z)) is an integral domain and ν

extends to a valuation of this ring by defining ν(Z) := d and

ν

(
q−1∑
i=0

aiZ
i

)
:= inf

i
{ν(ai) + di}.

Let us set B′ := A′[Z]/(Q(Z)). Then B is a complete 1
q!Γ-graded domain since B is the com-

pletion of
B′ =

⊕
i∈Γ+

⊕
0≤j≤min{b id c,q}

j∈ 1
d! Γ

+

Ai−djZ
j .

Definition 3.26. Let γ be an algebraic element over A whose minimal polynomial is the
polynomial Q(Z) as in the previous remark. Then the integral domain B constructed in the
previous remark is denoted by A[γ].

By induction, we can define A[γ1, . . . , γs], where γi+1 is a homogeneous element over
A[γ1, . . . , γi] for 1 ≤ i < s. When ν is an Abhyankar valuation on kJxK and A = V̂ν , V alg

ν or V fg
ν ,

the valuation ν extends to A[γ1, . . . , γi] as in Remark 3.25. Then we denote by A[〈γ1, . . . , γs〉]
the valuation ring associated to the order valuation of A[γ1, . . . , γs]. In this case the elements
of A[〈γ1, . . . , γs〉] are the elements which are finite sums of terms of the form bγj11 ...γ

js
s where

b ∈ Frac(A) and ν(b) ≥ −(j1ν(γ1) + · · ·+ jsν(γs)).

Definition 3.27. If ν is an Abhyankar valuation we denote by

V ν := lim
−→

γ1,...,γs

V̂ν [〈γ1, . . . , γs〉]

the direct limit over all subsets {γ1, . . . , γs} of homogeneous elements with respect to ν and
by Kν its fraction field. By Remark 3.20 we may restrict the limit over the subsets of integral
homogeneous elements.

In the same way we define

V
fg

ν := lim
−→

γ1,...,γs

V fg
ν [〈γ1, . . . , γs〉],

V
alg

ν := lim
−→

γ1,...,γs

V alg
ν [〈γ1, . . . , γs〉],

the limits being taken over all subsets {γ1, ...., γs} of (integral) homogeneous elements with
respect to ν, and we denote by Kfg

ν and Kalg

ν their respective fraction fields.

The following result provides an upper bound on the number of homogeneous elements we
need to consider:

Proposition 3.28. Let ν be an Abhyankar valuation on kJxK and let Γ denote its value group.
Set N := dimQ Γ⊗ZQ and let γ1, . . . , γs be homogeneous elements with respect to ν. Then there
exist integral homogeneous elements γ′1, . . . , γ′N with respect to ν such that

V̂ν [〈γ1, . . . , γs〉] = V̂ν [〈γ′1, . . . , γ′N 〉].

This equality remains true if we replace V̂ν by V alg
ν or V fg

ν .

Proof. We will prove this proposition by induction on s. Let γ1, . . . , γN+1 be nonzero homoge-
neous elements with respect to ν. Let di be the order of γi, for 1 ≤ i ≤ N+1. By assumption on
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N the di are Q-linearly dependent. Thus, after a permutation of the gi , there exists an integer
1 ≤ l ≤ N and integers pi ∈ Z≥0, qi ∈ N for all 1 ≤ i ≤ N + 1, such that

(3)
p1

q1
d1 + · · ·+ pl

ql
dl =

pl+1

ql+1
dl+1 + · · ·+ pN+1

qN+1
dN+1.

Set ri := p1···pN+1

pi
for 1 ≤ i ≤ N + 1. Let us denote γ′i := γ

1
qiri
i . Then we have

V̂ν [〈γ1, . . . , γN+1〉] ⊂ V̂ν [〈γ′1, . . . , γ′N+1〉].
By (3) and Lemma 3.23, γ′1 · · · γ′l and γ′l+1 · · · γ′N+1 are homogeneous elements of same order.
By the Primitive Element Theorem there exists c ∈ k such that

k(x)[γ′1 · · · γ′l, γ′l+1 · · · γ′N+1] = k(x)[γ′1 · · · γ′l + cγ′l+1 · · · γ′N+1].

Moreover γ := γ′1 · · · γ′l + cγ′l+1 · · · γ′N+1 is a homogeneous element with respect to ν of same
order as γ′1 · · · γ′l and γ′l+1 · · · γ′N+1 by Lemma 3.23. Since

k(x)[γ′1, . . . , γ
′
l] = k(x)[γ′1, . . . , γ

′
l−1, γ

′
1 · · · γ′l]

and
k(x)[γ′l+1, . . . , γ

′
N+1] = k(x)[γ′l+1, . . . , γ

′
N , γ

′
l+1 · · · γ′N+1],

we have
k(x)[γ′1, . . . , γ

′
N+1] = k(x)[γ′1, . . . , γ

′
l−1, γ

′
l+1, . . . , γ

′
N , γ].

Thus γ′l is a finite sum of products of elements ai(x) ∈ k(x) and powers of γ′1, . . . , γ′l−1, γ
′
l+1,

. . . , γ′N , γ and by homogeneity we may assume that ai(x) are (ν)-homogeneous. Thus

V̂ν [〈γ′1, . . . , γ′N+1〉] = V̂ν [〈γ′1, . . . , γ′l−1, γ
′
l+1, . . . , γ

′
N , γ〉].

By Remark 3.20 we may assume that the γ′i are integral homogeneous elements.
The proof is the same if we replace V̂ν by V alg

ν or V fg
ν .

�

4. Newton method and algebraic closure of kJxK with respect to an Abhyankar
valuation

4.1. Newton method.

Lemma 4.1. Let (A,m) be a complete graded local ring. Let B be the set of the elements of A
whose support is included in a finitely generated sub-semigroup of R≥0. Then B is a Henselian
local domain.

Proof. Let us prove that B is a ring: let b1 and b2 be two elements of B whose supports are
included in Λ1 and Λ2 respectively. Thus we can write bi =

∑
j∈Λi

bi,j where bi,j is a homogeneous
element of degree j for any i = 1, 2 and j ∈ Λ1 or Λ2. Let Λ be the finitely generated sub-
semigroup of R≥0 generated by Λ1 and Λ2. Then Supp(b1 + b2) and Supp(b1b2) are included in
Λ. This proves that B is a ring. Since B ⊂ A, B is a domain.

It is clear that m ∩ B is an ideal of B. If b ∈ B\(m ∩ B), then there exists a ∈ A such
that ab = 1. Let us write b =

∑
i∈Λ bi where bi is homogeneous of degree i and Λ is a finitely

generated sub-semigroup of R≥0. Since b /∈ m, then b0 6= 0. In this case we have

a = b−1 =
1

b0

1 +
∑

i∈Λ\{0}

bi
b0

−1

=
1

b0

∞∑
k=1

(−1)k

 ∑
i∈Λ\{0}

bi
b0

k

.

Thus Supp(a) ⊂ Λ. This proves that B is a local ring with maximal ideal m ∩B.



THE ALGEBRAIC CLOSURE OF THE FIELD OF POWER SERIES 15

Now let P (Z) ∈ B[Z], such that P (0) ∈ m ∩ B and P ′(0) /∈ m. We denote by ν the
order function of A, i.e., if a ∈ A, a 6= 0, a =

∑
i ai where ai is homogeneous of degree i,

ν(a) := inf{i / ai 6= 0} and the initial term of a is in(a) := aν(a). Since A is a complete local
ring it is a Henselian local ring and there exists a ∈ m such that P (a) = 0. We can construct a
by using the fact that

(4) P (Z) = P (0) + P ′(0)Z +Q(Z)Z2

where Q(Z) ∈ B[Z]. Indeed, let Λ denote a finitely generated sub-semigroup of R≥0 containing
the supports of all the coefficients of P (Z). In this case a1 := in(a) = − in(P (0))

in(P ′(0)) is a homogeneous
element of degree d1 ∈ Λ, d1 > 0. If we set P1(Z) := P (Z + a1), we see that

ν(P1(0)) = ν(P (a1)) > d1,

P ′1(0) = P ′(0) = 0 and a − a1 is the solution of P1(Z) = 0 given by the Hensel Lemma. Then
we replace P by P1 in Equation (4) and repeat the same argument, using the fact that the
coefficients of P1(Z) have support included in Λ. Thus we see that in(a − a1) = − in(P1(0))

in(P ′(0)) is a
homogeneous element of degree d2 ∈ Λ, d2 > d1. We repeat this operation a countable number
of times (since Λ is countable) in order to construct a and we see that Supp(a) ⊂ Λ.

�

Now we can prove the following theorem:

Theorem 4.2. Let k be a field of characteristic zero and ν be an Abhyankar valuation of kJxK.
Let N := dimQ Γ⊗Z Q. Let

P (Z) ∈ V fg
ν [〈γ1, . . . , γN 〉][Z]

(resp. V̂ν [〈γ1, . . . , γN 〉][Z]) be a monic polynomial of degree d where γi is a homogeneous element
with respect to ν for 1 ≤ i ≤ N . Then there exist integral homogeneous elements γ′1, . . . , γ′N
such that the roots of P (Z) are in V fg

ν [〈γ′1, . . . , γ′N 〉] (resp. V̂ν [〈γ′1, . . . , γ′N 〉]).

Proof. Let us prove the case P (Z) ∈ V fg
ν [〈γ1, . . . , γN 〉][Z]. We write

P (Z) = Zd + a1Z
d−1 + · · ·+ ad.

By replacing Z by Z − 1
da1 we can assume that a1 = 0. Let i0 be an integer such that

ν(ai0)

i0
≤ ν(ai)

i
, for every 2 ≤ i ≤ d.

Let γ be a i0th root of inν(ai0), i.e., γ is a homogeneous element such that γi0 = inν(ai0). By
the definition of i0, for every 2 ≤ i ≤ d we can write

ai = γia′i

with a′i ∈ V fg
ν [〈γ1, . . . , γN , γ〉]. Then we have

P (γZ) = γdZd + γd−2a2Z
d−2 + · · ·+ ad = γd

(
Zd + a′2Z

d−2 + · · ·+ a′d
)

Let S(Z) := Zd + a′2Z
d−2 + · · ·+ a′d and let S(Z) be the image of S(Z) in the residue field

L = V fg
ν [〈γ1, . . . , γs, γ〉]/m

where kν −→ L is finite and m is the maximal ideal of V fg
ν [〈γ1, . . . , γs, γ〉]. If S(Z) = (Z + a)d

where a ∈ L, since a1 = 0 and char(L) = 0, this would imply a = 0. But S(Z) 6= Zd since
its coefficient of Zd−i0 is nonzero . Thus we can factor S(Z) = S1(Z)S2(Z) such that S1(Z)
and S2(Z) are coprime monic polynomials in L[γ′][Z] where γ′ is algebraic over L, i.e., γ′ is a
homogeneous element of degree 0 with respect to ν. Since V fg

ν [〈γ1, . . . , γN , γ, γ
′〉] is a Henselian

local ring by Lemma 4.1, by Hensel Lemma the polynomial S(Z) factors as S(Z) = S1(Z)S2(Z)
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where the images of S1(Z) and S2(Z) in V fg
ν [〈γ1, . . . , γN , γ, γ

′〉] are S1(Z) and S2(Z) and the ν-
support of the coefficients of S1(Z) and S2(Z) are contained in a finitely generated sub-semigroup
of R≥0.

Since degZ(S1(Z)), degZ(S2(Z)) < d = degZ(P (Z)), the theorem is proven by induction on
d by using Proposition 3.28 and Remark 3.20.

The case P (Z) ∈ V̂ν [〈γ1, . . . , γN 〉][Z] is proven in a similar way by using the fact that
V̂ν [〈γ1, . . . , γN , γ, γ

′〉] is a complete local ring, thus a Henselian local ring.
�

Remark 4.3. The proof of this theorem is what we call the Newton-Puiseux method. Usually
the term of Newton-Puiseux method is used when one compute the roots of a monic polynomial
with coefficients in the ring of power series in one variable: one root is constructed by computing
step by step its coefficients. The fact that the ring of formal power series is a complete local ring
allows to conclude that this process converges. But when we want to find roots of a polynomial
in a local ring that is not complete but only Henselian, it is more convenient to use the Hensel
Lemma as we have done here. The proof we used here appeared for the first time in [BM] (to
the knowledge of the author). Of course if ν is a divisorial valuation V̂ν is isomorphic to the ring
of formal power series in one variable over the residue field kν and the previous theorem may be
proven by using the classical Newton-Puiseux method.

Corollary 4.4. The field Kfg

ν (resp. Kν) is algebraically closed and it is the algebraic closure of
Kfg
ν (resp. K̂ν).

Proof. Let P (Z) ∈ Kfg

ν [Z] be an irreducible polynomial. By multiplying P (Z) by an element of
V fg
ν , we may assume that

P (Z) ∈ V fg
ν [〈γ1, . . . , γN 〉][Z]

for some homogeneous elements γ1, . . . , γN with respect to ν. We write P (Z) = adZ
d+ · · ·+a0,

ai ∈ V fg
ν [〈γ1, . . . , γN 〉], 0 ≤ i ≤ d. We set Q(Z) := ad−1

d P (Z/ad). Then Q(Z) is a monic
polynomial of V fg

ν [〈γ1, . . . , γN 〉][Z] and if z is a root of Q(Z), then z
ad

is a root of P (Z). Hence
the result comes from Theorem 4.2.

The assertion concerning Kν is proven similarly. �

We have the similar result for Kalg
:

Lemma 4.5. The algebraic closure of Kn in Kν is equal to Kalg

ν . In particular Kalg

ν is alge-
braically closed.

Proof. Let γ1, . . . , γs be homogeneous elements with respect to ν. Let us denote by qi+1 the
degree of the minimal polynomial of γi+1 over Kn[γ1, . . . , γi] for 0 ≤ i ≤ s−1. Thus any element
z of K̂ν [γ1, . . . , γs] can be uniquely written as z =

∑
i∈I Ai1,...,isγ

i1
1 · · · γiss where Ai1,...,is ∈ K̂ν

for all i ∈ I and I = {0, . . . , q1 − 1} × · · · × {0, . . . , qs − 1}.
In order to prove the lemma we need to show that Ai1,...,is ∈ Kalg

ν for any i1, . . . , is when

z is algebraic over kJxK. In this case let L := K̂ν [γ1, . . . , γs−1] and let us write z :=

qs−1∑
i=0

Biγ
i
s

where Bi ∈ L for all i. Let us set ζ1 := γs and let ζ2, . . . , ζqs be the conjugates of ζ1 over
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Kν [γ1, . . . , γs−1]. Let us define zj =

qs−1∑
i=0

Biζ
i
j for 1 ≤ j ≤ qs. Then we have

(
z1z2

...zqs

)
=


1 ζ1 · · · ζqs−1

1

1 ζ2 · · · ζqs−1
2

...
...

...
...

1 ζqs · · · ζqs−1
qs


(

B0B1

...Bqs−1

)
.

The matrix


1 ζ1 · · · ζqs−1

1

1 ζ2 · · · ζqs−1
2

...
...

...
...

1 ζqs · · · ζqs−1
qs

 is invertible and its entries are algebraic over k(x), zj is

algebraic over kJxK for all j, hence Bj is algebraic over kJxK for all j. By induction on s we see
that Ai1,...,is ∈ Kalg

ν for any i1, . . . , is. �

We can summarize the situation with the following commutative diagram where the bottom
part corresponds to the quotient fields of the rings of the upper part and all the morphisms are
injective:

kJxK ⊂ Vν //

��

V alg
ν

��

!!

// V fg
ν

//

  

��

V̂ν

��

��

V
alg

ν

��

// V
fg

ν

��

// V ν

��

Kn // Kalg
ν

!!

// Kfg
ν

  

// K̂ν

��
Kalg

ν
// Kfg

ν
// Kν

Example 4.6. Let g(T ) =
∑∞
i=1 ciT

i ∈ QJT K be a formal power series which is not algebraic
over Q[T ]. Let α := (α1, α2) ∈ Nn. Let us set

f := g

(
xα1

2

xα2
1

)
=

∞∑
i=1

ci
xα1i

2

xα2i
1

∈ k((x1))((x2)).

But f /∈ Kνα : let P (Z) = a0(x)Zd + · · ·+ ad(x) ∈ V̂να [Z] be a polynomial such that P (f) = 0.
Let us write ai(x) =

∑∞
k=0 ai,k(x) where ai,k(x) is a (α1, α2)-homogeneous rational fraction of

degree k. By homogeneity we have

a0,kf
d + a1,kf

d−1 + · · ·+ ad,k = 0 ∀k ∈ N.
This implies that

a0,k(1, T )g(Tα1)d + a1,k(1, T )g(Tα1)d−1 + · · ·+ ad,k(1, T ) = 0 ∀k ∈ N.

Thus ai,k(x) = 0 for all 0 ≤ i ≤ d and 0 ≤ k. Hence P (Z) = 0 and f /∈ Kνα .

On the other hand, h := g

(
x2α2

1

xα1
2

)
=

∞∑
i=1

ci
x2α2i

1

xα1i
2

∈ K̂να but h is not algebraic over

k((x1))((x2)).
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4.2. Analytically irreducible polynomials.

Proposition 4.7. Let P (Z) ∈ V fg
ν [Z] (resp. V alg

ν [Z]) be an irreducible monic polynomial. Then
P (Z) is irreducible in V̂ν [Z].

Proof. By Corollary 4.4, P (Z) splits in V fg
ν [〈γ1, . . . , γs〉] for some homogeneous elements

γ1, . . . , γs with respect to ν. Since

V fg
ν [〈γ1, . . . , γs〉] ∩ V̂ν = V fg

ν

the result follows.
The proof is the same for V alg

ν . �

Lemma 4.8. Let σ be a K̂ν-automorphism of Kν . For any z ∈ Kν we have ν(σ(z)) = ν(z).

Proof. Let z ∈ K̂ν [γ1, . . . , γs] where γ1, . . . , γs are homogeneous elements with respect to ν. Let
us write z :=

∑
i∈Λ zi where zi is homogeneous of degree i for every i and Λ is a countable subset

of R with no accumulation point (see Remark 3.5). If i0 = ν(z), then zi0 6= 0 and ν(zi) = 0 for
all i < i0. Since σ acts only on the homogeneous elements γ1, . . . , γs, we have σ(z) =

∑
i σ(zi).

For all i, σ(zi) is homogeneous of degree i and σ(zi) = 0 if and only if zi = 0. This proves that
i0 = ν(σ(z)). �

Definition 4.9. Let P (Z) ∈ A[Z] where A is an integral domain. We write

P (Z) = a0Z
d + a1Z

d−1 + · · ·+ ad.

Let ν : A −→ R≥0 be a valuation. The Newton polygon of P is the convex hull of the set{
(ν(ai), d− i) ∈ R2

≥0 / i = 0, . . . , d
}

+ R2
≥0.

Corollary 4.10. Let P (Z) ∈ V̂ν [Z] be an irreducible monic polynomial. Then the Newton
polygon of P (Z) has only one edge. The result remains valid if we replace V̂ν by V alg

ν or V fg
ν .

Proof. Let z be a root of P (Z) in V ν . Let σ be a K̂ν-automorphism of Kν . Then ν(σ(z)) = ν(z)
by Lemma 4.8. The finite product of the distinct linear forms Z − σ(z) obtained in this way is
a monic polynomial with coefficients in K̂ν and divides P (Z). Since P (Z) is irreducible, both
polynomials are equal. This proves that all the roots of P (Z) have same valuation, hence the
Newton polygon of P (Z) has only one edge.

The cases V alg
ν and V fg

ν are deduced from Lemma 4.7. �

Example 4.11. Let P (Z) := Z3 + 3x1x2Z − 2x4
1 ∈ kJx1, x2K[Z]. We see that P (Z) has one

root of order 2 and two roots of order 1 in V
fg

ord. By Corollary 4.10, P (Z) has at least one root
in V alg

ord of order 2.
Let
√

1 + U := 1 +
∑
i≥1 aiU

i, ai ∈ Q for all i, the formal powers series whose square is equal
to 1 +U , and let 3

√
1 + U := 1 +

∑
i≥1 biU

i , bi ∈ Q for all i, the formal power series whose cube
is equal to 1 + U . Then the roots of P (Z) are

a
3

√
q +

√
q2 + p3 + b

3

√
q −

√
q2 + p3

with (a, b) = (1, 1), (j, j2) or (j2, j) and p = x1x2 and q = x4
1. But

3

√
q + ε

√
q2 + p3 =

3

√
x4

1 + ε
√
x3

1x
3
2 + x8

1 = 3
√
ε
√
x1x2 + η

where ε = 1 or −1 and ord(η) > 1. Both order 1 roots of P (Z) have initial term of the form
α
√
x1x2 where α ∈ C∗. Thus P (Z) has only one root in V alg

ord and even in Kfg
ord.
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Let z be the only root of P (Z) in V alg
ord . If z ∈ Kn, since P (Z) is monic and kJxK is an integral

domain, then z ∈ kJxK. But in(z) = 2
3
x3
1

x2
/∈ kJxK. Thus z /∈ Kn, hence P (Z) is irreducible in

Kn[Z]. This shows that Kn −→ Kalg
ord is not a normal extension in general.

Corollary 4.12. Let P (Z) := Zd+a1(x)Zd−1+· · ·+ad(x) ∈ kJxK[Z] be an irreducible polynomial
having its roots in kJx

1
e
1 , . . . , x

1
e
n K for some positive integer e. Then the Newton polyhedron of

P (Z) is the convex hull of the cone of Nn+1 centered in (0, . . . , 0, d) and generated by the convex
hull of the Newton polyhedra of ad(x) in Nn.

x1

Z

x2

d

Proof. Let α ∈ Nn. Let
z1, . . . , zd ∈ kJx

1
e
1 , . . . , x

1
e
n K

be the roots of P (Z). Then zi ∈ V̂να [x
1
e
1 , . . . , x

1
e
n ] for any i, the x

1
e
i being homogeneous elements

with respect to να. Let G ' (Z/eZ)
n be the Galois group of the extension

V̂να −→ V̂να [x
1
e
1 , . . . , x

1
e
n ].

The zi are conjugated under the action of G, thus P (Z) :=
∏d
i=1(Z−zi) is irreducible in V̂να [Z].

This being true for any α ∈ Nn, the result follows from Corollary 4.10.
�

We finish this section by giving two results relating the roots of a polynomial P (Z) to the
roots of polynomials approximating P (Z). First of all we give the following definition:

Definition 4.13. Let P (Z) ∈ A[Z] where A is an integral domain and let ν be a valuation on
A. We define

ν(P (Z)) := min
a
ν(a)

where a runs over all the coefficients of P (Z).

The following proposition is the analogue of Proposition 2.6 of [To]:

Proposition 4.14. Let P (Z) ∈ V fg
ν [Z] be a monic polynomial with no multiple factor. Let us

write P (Z) = P1(Z)...Pr(Z) where Pi(Z) ∈ V fg
ν [Z], 1 ≤ i ≤ r, are irreducible monic polynomials.

Let Q(Z) ∈ V fg
ν [Z] be a monic polynomial and let z1, . . . , zd be the roots of P (Z). If

deg(Q(Z)) = deg(P (Z))



20 GUILLAUME ROND

and
ν(Q(Z)− P (Z)) > dmax

i 6=j
{ν(zi − zj)}

then we may factor Q(Z) = Q1(Z)...Qr(Z) such that Qi(Z) ∈ V fg
ν [Z] is an irreducible monic

polynomial, 1 ≤ i ≤ r, and

ν(Qi(Z)− Pi(Z)) ≥ ν(Q(Z)− P (Z))

d
.

The result is still valid if we replace V fg
ν by V alg

ν or V̂ν .

Proof. Since P (Z) has no multiple factor and since char(k) = 0, we have zi 6= zj for all i 6= j. Let
us set r := maxi 6=j{ν(zi−zj)}. Let z′i, 1 ≤ i ≤ d, be the roots of Q(Z). Let z be a root of P (Z) in
V fg
ν [〈γ1, . . . , γN 〉]. Let us write P (Z) = Zd+a1Z

d−1+· · ·+ad and Q(Z) = Zd+b1Z
d−1+· · ·+bd.

Then ∏
1≤i≤d

(z − z′i) = Q(z) = Q(z)− P (z) =

d∑
i=1

(bi − ai)zd−i.

Thus there exists at least one i such that

ν(z′i − z) ≥
min1≤i≤d{ν(ai − bi)}

d
=
ν(Q(Z)− P (Z))

d
> r.

Let t be another root of P (Z). Then

ν(z′i − t) = ν(z′i − z + z − t) = ν(z − t) ≤ r

since ν(z′i − z) ≥
min1≤i≤d{ν(ai−bi)}

d > r ≥ ν(z − t). Thus for any root of P (Z) denoted by z,
there is only one i such that

ν(z − z′i) ≥
min1≤i≤d{ν(ai − bi)}

d
.

Let σ1(z), . . . , σe(z) be the conjugates of z over Kfg
ν . Set

R(Z) := (Z − z)
e∏
j=1

(Z − σj(z)) ∈ V fg
ν [Z].

Then R(Z) is an irreducible factor of P (Z). Moreover σ1(z′i), . . . , σe(z′i) are conjugates of z′i
over Kfg

ν . Let σ be a Kfg
ν -automorphism of Kfg

ν . Then σ(z) is a conjugate of z thus there exists j
such that σ(z) = σj(z). Moreover σ(z) is a root of P (Z) and ν(σ(z′i)−σ(z)) ≥ min1≤i≤d{ν(ai−bi)}

d
by Lemma 4.8. Thus we have

ν(σ(z′i)− σj(z)) = ν(σ(z′i)− σ(z)) = ν(z′i − z) =

ν(σj(z
′
i)− σj(z)) ≥

min1≤i≤d{ν(ai − bi)}
d

and since there is only one root of Q(Z) whose difference with σj(z) has valuation greater than
min1≤i≤d{ν(ai−bi)}

d , we necessarily have σ(z′i) = σj(z
′
i). Thus σ1(z′i), . . . , σe(z′i) are the conjugates

of z′i over Kfg
ν . Thus the polynomial

S(Z) := (Z − z′i)
e∏
j=1

(Z − σj(z′i))

is irreducible in V fg
ν [Z] and

ν(S(Z)−R(Z)) ≥ min1≤i≤d{ν(ai − bi)}
d

.
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The proof for V̂ν is the same and the case V alg
ν is proven with the help of Lemma 4.7.

�

Remark 4.15. Let us remark that ν(Q(Z) − P (Z)) > d
2ν(∆P ), where ∆P is the discriminant

of P (Z), implies that
ν(Q(Z)− P (Z)) > dmax

i 6=j
{ν(zi − zj)}.

Remark 4.16. This result is not true if P (Z) has multiple factors. For example, let ν be a
divisorial valuation and let us consider P (Z) = Z2 and let Q(Z) = X2 + a where ν(a) = 2k + 1

and k ∈ N. Since ν(a) is odd and since the value group of ν is Z, then it is not a square in V̂ν
and Q(Z) is irreducible but P (Z) is not irreducible.

Proposition 4.17. Let ν be an Abhyankar valuation and let

N := dimQ Γ⊗Z Q.

Let P (Z) ∈ V̂ν [〈γ1, . . . , γN 〉][Z] be a monic polynomial where γ1, . . . , γN are homogeneous
elements with respect to ν. Then there exist integral homogeneous elements with respect to ν,
denoted by γ′1, . . . , γ′N , and c ∈ R>0 such that the roots of P (Z) are in V̂ν [〈γ′1, . . . , γ′N 〉] and
for any monic polynomial Q(Z) ∈ V̂ν [〈γ1, . . . , γN 〉][Z] such that deg(Q(Z)) = deg(P (Z)) and
ν(P (Z)−Q(Z)) ≥ c, the roots of Q(Z) are in V̂ν [〈γ′1, . . . , γ′N 〉].

Proof. The proof of this proposition is based on the proof of Theorem 4.2. So let us use the
notations of that proof. Let us write Q(Z) = Zd + b1Z

d−1 + · · ·+ bd and let us define

R(Z) := Zd + b′1Z
d−1 + · · ·+ b′d

where b′i := bi
γi for 1 ≤ i ≤ d. We have Q(γZ) = γdR(Z). Let us assume that ν(b′i − a′i) > 0 for

all 1 ≤ i ≤ d (i.e., if ν(bi − ai) > ν(γi) for all i, thus we assume here that c > dν(γ)).
Then R(Z) = S(Z) (R(Z) denotes the image of R(Z) in L[Z]) and the factorization

R(Z) = S1(Z)S2(Z) lifts to a factorization R(Z) = R1(Z)R2(Z) of R(Z) as the product of
two monic polynomials as in the proof of Theorem 4.2.

Lemma 4.18. In the previous situation there exist two constants a > 0, b ≥ 0 depending only
on S1(Z) and S2(Z) such that for any c > max{b, ν(γd)}, we have ν(Ri(Z)− Si(Z)) > c−b

a for
i = 1, 2.

Proof of Lemma 4.18. Let us denote by ri,k the coefficient of Zk of the polynomial Ri(Z), for
i = 1, 2 and 0 ≤ k ≤ degZ(Ri(Z)), and let us denote by r the vector whose coordinates are
the ri,k. The coefficient of Zk of R1(Z)R2(Z) − S1(Z)S2(Z), for 0 ≤ k ≤ d, is a polynomial
fk(r) whose coefficients are in V̂ν [〈γ1, . . . , γN , γ, γ

′〉] and depend themselves on the coefficients
of S(Z). By Theorem 1.2 [M-B], there exist a > 0, b ≥ 0 such that

∀c > b, ∀r ∈ V̂ν [〈γ1, . . . , γN , γ, γ
′〉]d+2 such that ν(fk(r)) ≥ c ∀k

∃r′ ∈ V̂ν [〈γ1, . . . , γN , γ, γ
′〉]d+2 such that fk(r′) = 0 ∀k

and ν(r′i,j − ri,j) ≥
c− b
a

∀i, j.

Let us denote by R′i(Z) the polynomial whose coefficients are the r′i,j where 0 ≤ j ≤ deg(Ri).
Then R′1(Z)R′2(Z) = S1(Z)S2(Z). Moreover R

′
i(Z) = Ri(Z) = Si(Z) if c−b

a > 0. Since the
roots of S1(Z) and S2(Z) are different, and since V̂ν [〈γ1, . . . , γN , γ, γ

′〉][Z] is a GCD domain,
then R′i(Z) = Si(Z) for i = 1, 2. This proves the lemma. �
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Here we remark that, the constants a, b, ν(γ) depend only on P (Z). Thus the result is proven
by induction on the degree of P (Z) (since deg(Si(Z)) < deg(P (Z)) for i = 1, 2) and using
Proposition 3.28 and Remark 3.20.

�

5. Monomial valuation case: Eisenstein Theorem

We will first construct a subring of V fg
ν containing V alg

ν when ν is a monomial valuation.

Definition 5.1. Let α ∈ Rn>0 and let δ be a (α)-homogeneous polynomial of degree d. We
define

Vα,δ :=
{
A ∈ V̂να / ∃Λ a finitely generated sub-semigroup of R≥0,

∀i ∈ Λ ∃ai ∈ k[x] (α)-homogeneous,
∃a ≥ 0, b ∈ R ∀i ∈ Λ ∃m(i) ∈ N s.t. m(i) ≤ ai+ b,

να

( ai
δm(i)

)
= i and A =

∑
i∈Λ

ai
δm(i)

}
.

With this notation we say that i 7−→ ai+ b is a bounding function for
∑
i∈Λ

ai
δm(i)

.

By Lemma 3.12 we have kJxK ⊂ Vα,δ ⊂ V fg
να , by identifying a formal power series

∑
β∈Zn≥0

cβx
β

to
∑
i∈Λ

ai(x)

δ(x)m(i)
with ai(x) :=

∑
α1β1+···+αnβn=i

cβx
β et m(i) = 0 for all i ∈ Λ. We extend in an

obvious way the addition and multiplication of kJxK to Vα,δ: this defines a k-algebra structure
over Vα,δ. We have easily the following lemma:

Lemma 5.2. If i 7−→ ai+ b is a bounding function of A and B ∈ Vα,δ then it is also a bounding
function of A+B and the function i 7−→ ai+ 2b is a bounding function of AB.

Proof. Let us write

A =
∑
i∈Λ

ai
δai+b

, B =
∑
i∈Λ

bi
δai+b

where Λ is a semigroup and the ai and bi are (α)-homogeneous polynomials and

να

( ai
δai+b

)
= να

(
bi

δai+b

)
= i ∀i ∈ Λ.

Then we have

A+B =
∑
i∈Λ

ai + bi
δai+b

and AB =
∑
i∈Λ

∑
j∈Λ,j≤i

ajbi−j
δaj+bδa(i−j)+b =

∑
i∈Λ

∑
j∈Λ,j≤i

ajbi−j
δai+2b

.

This proves the lemma. �

Remark 5.3. If A ∈ Vα,δ satisfies να(A) > 0 then A admits a bounding function which is linear.
Indeed let i 7−→ ai+ b be a bounding function of A and let i0 := να(A). Then i 7−→

(
a+ b

i0

)
i

is a bounding function of A.
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Definition 5.4. Let A :=
∑
i∈Λ

ai
δm(i)

∈ Vα,δ, A 6= 0. Let i0 be the least element of Λ such that

ai0 6= 0. We say that ai0
δm(i0) is the initial term of A with respect to να or its (α)-initial term.

We denote it by inα(A).

Lemma 5.5. Let δ and δ′ be two (α)-homogeneous polynomials. We have the following proper-
ties:

i) The ((α)-homogeneous) irreducible divisors of δ divide δ′ if and only if Vα,δ′ ⊂ Vα,δ. We
denote by Vα the inductive limit of the Vα,δ.

ii) The valuation να is well defined on Vα,δ and extends to Vα. Its valuation ring is exactly
Vα.

Proof. It is clear that if the irreducible divisors of δ divide δ′ then Vα,δ ⊂ Vα,δ′ . On the other
hand if Vα,δ ⊂ Vα,δ′ , then 1

δ ∈ Vα,δ′ , thus there exist a (α)-homogeneous polynomial a ∈ k[x]

and an integer m ∈ N such that 1
δ = a

δ′m , hence aδ = δ′
m. This proves i).

If A ∈ Vα,δ and B ∈ Vα,δ′ satisfy να(B) ≥ να(A), let ak(x)
δ(x)m(k) denote the first nonzero term in

the expansion of A. Then we can check easily that B
A ∈ Va,δδ′ak . This proves ii). �

Definition 5.6. For any α ∈ Rn>0 we denote by Kα the fraction field of Vα and

Kα := lim
−→

γ1,...,γs

Kα[γ1, . . . , γs]

the limit being taken over all subsets {γ1, ...., γs} of (integral) homogeneous elements with respect
to ν.

If γ1, . . . , γs are homogeneous elements with respect to να we denote by Vα,δ[〈γ1, . . . , γs〉]
the ring of elements

∑
k Akγ

k where the sum is finite, k := (k1, . . . , ks), Ak =
∑
i∈Λ

ai
δm(i) where

ai ∈ k[x] is (α)-homogeneous, there exist two constants a ≥ 0, b ∈ R such that m(i) ≤ ai+ b for
all i and there exists i0 ∈ Λ such that να

(
ai

δm(i)

)
= i− i0 and ν(γk) ≥ i0.

This means that Vα,δ[〈γ1, . . . , γs〉] is the subring of Kα[γ1, . . . , γs] whose elements have non
negative valuation να. In the same way we denote by Vα[〈γ1, . . . , γs〉] the ring of elements of
Kα[γ1, . . . , γs] having a non negative valuation να. The field of fractions of Vα[〈γ1, . . . , γs〉] is
exactly Kα[γ1, . . . , γs].

Remark 5.7. We will see later (see Remark 6.10) that these fields Kα coincide with those
introduced in [AI] when dimQ(α1Q+· · ·+αnQ) = n where it is proven that they are algebraically
closed.

Remark 5.8. For any α ∈ Rn>0 it is clear that Vα ⊂ V fg
να but both rings are never equal if

dimQ(α1Q1 + · · ·+ αnQ) < n. For instance, let n = 2 and α = (1, 1) and set

z =
∑
i∈N

x
(i+1)2

1

xi
2

2

or
∑
i∈N

xi1
x1 + ix2

.

Then obviously z ∈ V fg
να but z /∈ Vα.

Proposition 5.9. If α1, . . . , αn are linearly independent over Q then Vα = V fg
να .

Proof. Let us denote by α∗ : Qn −→ R the Q-linear map defined by α∗(u) = 〈α, u〉 for any
u ∈ Qn. Since the αi are Q-linearly independent then α∗ is injective.

If Λ is a finitely generated sub-semigroup of Zα1 + · · ·+ Zαn let β1, . . . , βs be generators of
Λ. Then α∗−1(Λ) is a finitely generated semigroup whose generators are

b1 = α∗−1(β1), . . . , bs = α∗−1(βs) ∈ Zn.
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If the support of z ∈ V fg
να is in Λ, since α∗ is injective z can be written as

z =
∑
k∈Zs≥0

akx
k1b1+···+ksbs

where ak ∈ k for all k = (k1, · · · , ks). Let us remark that the monomial akxk1b1+···+ksbs is
(α)-homogeneous of degree k1β1 + · · ·+ ksβs.

Let us write bi = b1,i − b2,i where b1,i, b2,i ∈ Zn≥0. Then we have

xk1b1+···+ksbs =
xk1b1,1+···+ksb1,s

xk1b2,1+···+ksb2,s

=
xk1b1,1+···+ksb1,s+(maxi{ki}−k1)b2,1+···+(maxi{ki}−ks)b2,s

x(b2,1+···+b2,s) maxi{ki}
.

Moreover

max
i
{ki} ≤ max

j

{
1

βj

}
(k1β1 + · · ·+ ksβs).

This shows that z ∈ Vα,xb2,1+···+b2,s and

i 7−→ max
j

{
1

βj

}
i

is a bounding function of z. �

Then we give the following version of the Implicit Function Theorem inspired by Lemma 1.2
[Ga] (see also Lemma 2.2. [To]):

Proposition 5.10. Let α ∈ Rn>0 and let P (Z) ∈ Vα,δ[〈γ1, . . . , γs〉][Z], P (Z) =
∑d
k=0 akZ

k,
where γi is homogeneous for all i with respect to να and d ≥ 2.

Let u ∈ Vα,δ[〈γ1, . . . , γs〉] such that να(P (u)) > 2να(P ′(u)). Let δ̃
δm denote the initial term of

P ′(u) with respect to να.
Then there exists a unique solution u in Vα,δδ̃[〈γ1, . . . , γs〉] of P (Z) = 0 such that

να(u− u) ≥ να(P (u))− να(P ′(u)).

Proof. • By replacing P (Z) by P (u + Z) we can assume that u = 0. In this case we have that
P (u) = P (0) = a0 and P ′(u) = P ′(0) = a1.

The valuation να is defined on the ring Vα,δ[〈γ1, . . . , γs〉] and we denote by V its valuation
ring. We denote by V̂ the completion of V . Let V fg be the subring of V̂ of all elements of V̂
whose να-support is included in a finitely generated semigroup. Then V fg is a Henselian local
ring by Lemma 4.1. We set Z = δ̃

δmY . Thus we are looking for solving the following equation:

P̃ (Y ) :=
δ2m

δ̃2
P

(
δ̃

δm
Y

)
= a0

δ2m

δ̃2
+ a1

δm

δ̃
Y + a2Y

2 + · · ·+ ad
δ̃d−2

δ(d−2)m
Y d = 0.

From now on we denote by ãk the coefficients of P̃ (Y ):

ãk := ak
δ̃k−2

δ(k−2)m
k = 0, . . . , d.

Since

να(a0) = να(P (0)) > 2να(P ′(0)) = 2να(a1) = να

(
δ̃2

δ2m

)
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we have that ã0 ∈ V fg. By assumption we have that να(ã1) = 0 thus ã1 ∈ V fg. Since να
(
δ̃
δm

)
≥ 0

we have that ãk ∈ V fg for all k ≥ 2. Moreover we have

να(P̃ (0)) > 0 and να(P̃ ′(0)) = 0.

Thus by Hensel Lemma this equation has a unique solution y ∈ V fg such that

να(y) = να

(
a0
δ2m

δ̃2

)
= να(P (0))− 2να(P ′(0)) > 0.

Hence there exists a unique solution z := δ̃
δm y ∈ V

fg of the equation P (Z) = 0 such that

να(z) ≥ να(P (u))− να(P ′(u)).

Now we have to show that z or y ∈ Vα,δδ̃[〈γ1, . . . , γs〉].
• We can write y = ã0ỹ where ỹ ∈ V fg and να(ỹ) = 0. Then ỹ is a root of the polynomial

P̃ (ã0Y ) = ã0 + ã1ã0Y + ã2ã
2
0Y

2 + · · ·+ ãdã
d
0Y

d

= ã0

(
1 + ã1Y + ã2ã0Y

2 + · · ·+ ãdã
d−1
0 Y d

)
and y ∈ Vα,δδ̃[〈γ1, . . . , γs〉] if and only if ỹ ∈ Vα,δδ̃[〈γ1, . . . , γs〉].

Since να(ã0) > 0, by replacing P̃ (resp. y) by 1 + ã1Y + ã2ã0Y
2 + · · ·+ ãdã

d−1
0 Y d (resp. ỹ),

we may assume that
να(ãi) > 0 for i ≥ 2.

In this case we have ã0 = 1, inα(ã1) = 1 and inα(y) = −1.
Let Λ be a finitely generated sub-semigroup of R≥0 containing the να-supports of y and the

ãk. We denote by λl, l ∈ Z≥0, its elements ordered as follows:

λ0 := 0 < λ1 < λ2 < · · · < λl < λl+1 < · · · .

Let us expand the coefficients of P̃ (Y ) as

ãk =
∑
l∈Z≥0

ãk,λl

where ãk,λl is homogeneous of degree λl with respect to να. For every l ∈ N let Yλl be a
new variable and set Y ∗ :=

∑
l∈N Yλl . We extend the valuation να to V fg[Yλ1 , . . . , Yλl , ...] by

setting να(Yλl) := λl for any l ∈ N. We may write formally P̃ (Y ∗) =
∑
l P̃λl(Y

∗) where
P̃λl(Y

∗) ∈ Z[ãk,λi ][Yλj ] is the homogeneous term of degree λl with respect to να.
Since inα(ã1) = 1 the equation

(5) P̃ (Y ) = ã0 + ã1Y + ã2Y
2 + · · ·+ ãdY

d = 0,

where Y is replaced by Y ∗, yields the following equation, for every l ∈ Z≥0:

(6) P̃λ(Y ∗) = Yλl +Qλl(Y
∗) = 0.

where Qλl(Y ∗) ∈ Z[ãk,λi ][Yλj ] is a polynomial depending only on the variables ãk,λi (λi ≤ λl)
and Yλj (j < l). Since y is a solution of Equation (5), by replacing Y ∗ by y we have P̃λl(y) = 0,
hence

yλl = −Qλl(yλj , j < l) ∀l ∈ N.
So by induction on l we see that we may write

yλl =
cl

(δδ̃)m(λl)
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for some cl ∈ k[x][γ1, . . . , γs] and m(λl) ∈ N for all l.
Let i 7−→ ai+ b be a common bounding functions of the coefficients of ã0, ã1, ã2, . . . , ãd seen

as elements of Vα,δδ̃[〈γ1, . . . , γs〉]. By Remark 5.3 we may assume that b = 0 since να(ãk) > 0

for k ≥ 2 and inα(ã0) = inα(ã1) = 1.
Thus we have

(δδ̃)aλi ãk,λi ∈ k[x][γ1, . . . , γs] ∀i.

Letm(λl) be the least integer such that (δδ̃)m(λl)yλl ∈ k[x][γ1, . . . , γs]. We will show by induction
on l that

(7) m(λl) ≤ aλl.

This inequality is satisfied for l = 0 since inα(y) = −1 implies that m(λ0) = 0.
We fix an integer l > 0 and we assume that (7) is satisfied for any integer less than l.
Let Q be a monomial of Qi(Y ∗). We may write

Q = ãk,λiyλj1 · · · yλjk
where k ≤ d, j1 ≤ · · · ≤ jk < l and λi + λj1 + · · ·+ λjk = λl.

Then
(δδ̃)aλi+a(λj1+···+λjk )Q = (δδ̃)aλlQ ∈ kJxK[γ1, · · · , γs].

This proves (7). So y ∈ Vα,δδ̃[〈γ1, . . . , γs〉]. �

We deduce from this proposition the main result of this part (Theorem 5.12) which is a
general version of Eisenstein Theorem for algebraic power series over Q. First we recall the
classical Eisenstein Theorem:

Theorem 5.11. [Ei] Let
∑
k∈Z≥0

akT
k ∈ QJT K be a power series algebraic over Q[T ]. Then there

exists an integers a ∈ N such that
ak+1ak ∈ Z

for every integer k.

Theorem 5.12 (Eisenstein Theorem). Let k be a field of characteristic zero. Let α ∈ Rn>0 and
let us set N = dimQ(Qα1 + · · ·+ Qαn). Let

P (Z) ∈ Vα[〈γ1, . . . , γs〉][Z]

be a monic polynomial where γ1, . . . , γs are homogeneous elements with respect to να. Then
there exist integral homogeneous elements with respect to να, denoted by γ′1,... γ′N , such that
P (Z) has all its roots in Vα[〈γ′1, . . . , γ′N 〉].

Proof. By replacing P (Z) by one of its irreducible factors we may assume that P (Z) is irre-
ducible. Let

z ∈ V fg
να [〈γ′1, . . . , γ′N 〉]

be a root of P (Z) where γ′i is an integral homogeneous with respect to να (by Theorem 4.2 such
a z exists). Since P (Z) is irreducible, then P ′(z) 6= 0. Let us set i0 := max{να(z−z′)} where the
maximum is taken over all the roots z′ of P different from z. Let us take z̃ ∈ Vα[〈γ′1, . . . , γ′N 〉]
such that

(8) να(z̃ − z) > max{2να(P ′(z)), i0 + να(P ′(z))}.
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For instance if we expand z =
∑
i∈Λ zi where Λ is a finitely generated sub-semigroup of R≥0 and

zi is a homogeneous element of degree i with respect to να we can choose

z̃ :=
∑

i≤max{2να(P ′(z)),i0+να(P ′(z))}

zi.

By replacing P (Z) by P (Z + z̃) we may assume that z̃ = 0. In this case P ′(z̃) = P ′(0) = ad−1

if we write
P (Z) = Zd + a1Z

d−1 + · · ·+ ad−1Z + ad.

Now inνα(ad−1) ∈ k(x)[γ′1, . . . , γ
′
N ] so if we denote by a the product of the conjugates of

inνα(ad−1) over k(x) different from inνα(ad−1) we have inνα(aad−1) ∈ k(x) and a is a homo-
geneous element with respect to να by Lemma 4.8. Let b be a homogeneous element such that
bd−1 = a. By Proposition 3.28 we may assume that b ∈ V fg

να [〈γ′1, . . . , γ′N 〉]. We have that

bdP

(
Z

b

)
= bd

(
1

bd
Zd +

a1

bd−1
Zd−1 + · · ·+ ad−1

b
Z + ad

)
= Zd + a1bZ

d−1 + · · ·+ bd−1ad−1Z + bdad.

By replacing P (Z) by bdP
(
Z
b

)
we may assume that inνα(P ′(z̃)) = inνα(ad−1) ∈ k(x).

Since P (z̃)− P (z) ∈ (z̃ − z) then by Inequality (8)

να(P (z̃)) > 2να(P ′(z̃))

and
να(P (z̃)) > i0 + να(P ′(z)).

In the same way, since P ′(z̃)− P ′(z) ∈ (z̃ − z), Inequality (8) yields

να(P ′(z̃)) = να(P ′(z)).

Then we apply Proposition 5.10 (with u := z̃ = 0), and we get a root z ∈ Vα[〈γ′1, . . . , γ′N 〉] of
P (Z) such that

νa(z̃ − z) ≥ να(P (z̃))− να(P ′(z̃)) > i0.

Thus
να(z − z) = να(z − z̃ + z̃ − z) > i0 = max

z′ 6=z
P (z′)=0

{να(z − z′)}.

Hence z = z ∈ Vα[〈γ′1, . . . , γ′N 〉]. �

Corollary 5.13. The field Kalg
να is a subfield of Kα.

Proof. Let z ∈ Kalg
να and let P (Z) = a0Z

d+· · ·+ad ∈ kJxK[Z] be a polynomial such that P (z) = 0.
Then a0z ∈ Kalg

να is a root of the polynomial ad−1
0 P (Z/a0) = Zd+a1Z

d−1+a2a0Z
d−2+· · ·+adad−1

0

which is a monic polynomial. Hence a0z ∈ Vα by Theorem 5.12 and z ∈ Kα.
�

Example 5.14. Let us assume that DiscZ(P (Z)) is normal crossing after a formal change of
coordinates and let us assume that k is algebraically closed. This means that there exist power
series xi(y) ∈ (y)kJyK (y = (y1, . . . , yn)), for 1 ≤ i ≤ n, such that the morphism of k-algebras
ϕ : kJxK −→ kJyK defined by ϕ(f(x)) = f(x1(y), . . . , xn(y)) is an isomorphism, and such that

ϕ(DiscZ(P (Z)))kJyK = ye11 · · · yemm kJyK, m ≤ n.
By Abhyankar-Jung Theorem [Ab] (or [KV], [PR], [MS]), the roots of P (Z) can be written as

tk =

d∑
l=0

tk,l(y)wl
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where w = yβ for some β ∈ Qm≥0 × {0}n−m, d ∈ Z≥0 and the tk,l(y) are power series with
coefficients in k. Let us write:

β =

(
b1
e
, . . . ,

bm
e
, 0, . . . , 0

)
for some non negative integers b1, . . . , bm and e ∈ N. Let us denote by fi(x), 1 ≤ i ≤ n, the
power series satisfying ϕ(fi(x)) = yi.

Let α ∈ Nn and write fi(x) = li,α(x) + εi,α(x) where li,α(x) is (α)-homogeneous and
να(εi(x)) > να(li,α(x)) for any i. Thus we have for 1 ≤ i ≤ m:

y
1
e
i = li,α(x)

1
e

(
1 +

εi,α(x)

li,α(x)

) 1
e

= li,α(x)
1
e

1 +
∑
k≥1

ck
εi,α(x)k

li,α(x)k


where ck ∈ Q for all k - here

ck =
1
e

(
1
e − 1

)
· · ·
(

1
e − k + 1

)
k!

.

Hence

w =y
b1
e

1 · · · y
bm
e
m =

l1,α(x)
b1
e · · · lm,α(x)

bm
e

m∏
j=1

1 +
∑
k≥1

ck
εj,α(x)k

∏
p 6=j lp,α(x)k

(
∏m
p=1 lp(x))k

bj

.

We remark that DiscZ(P (Z)) =
∏m
p=1 lp,α(x)ep + ε(x) with

να(ε(x)) > να(

m∏
p=1

lp,α(x)ep).

Let γ :=
∏m
j=1 lj,α(x)

bj
e be a root of the polynomial

Ze −
m∏
j=1

lj,α(x)bj

(in particular it is an integral homogeneous element with respect to να), and set

δ :=

m∏
j=1

lj,α(x)ep .

Here δ is the (α)-initial term of the discriminant of P (Z). Hence we obtain the following three
cases:

i) If ϕ is a linear change of coordinates (i.e., α = (1, . . . , 1) and εi,α = 0 ∀i), then the roots
of P (Z) are in kJxK[γ] (since in this case w = γ).

ii) If ϕ is a quasi-linear change of variables (i.e., α ∈ Nn and εi,α = 0 ∀i), then the roots of
P (Z) are still in kJxK[γ] (since in this case we also have w = γ).

iii) If (at least) one of the εi,α is not zero, then the roots of P (Z) are in Vα,δ[〈γ〉].
This example will be generalized later (see Theorem 7.7).

Example 5.15. Let P (Z) = Z2 + 2aZ + b where a and b are power series over k and let
α ∈ Qn>0. Let δ denote the (α)-initial term of the discriminant of P (Z), i.e., the (α)-initial term
of a2 − b. Then the roots of P (Z) are of the form −a +

√
a2 − b ∈ Vα,δ[〈γ〉] where γ is a root

square of δ.
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Example 5.16. Let P (Z) = Z3 + 3x2
2Z − 2(x3

1 + ε) where ε is a homogeneous polynomial of
degree greater or equal to 4. Its discriminant is D := x6

1 + x6
2 + 2x3

1ε+ ε2 whose initial term is
x6

1 + x6
2. The roots of P are

a
3

√
x3

1 + ε+
√
D + b

3

√
x3

1 + ε−
√
D

with (a, b) = (1, 1), (j, j2) or (j2, j). But we have

3

√
x3

1 + ε+
√
D = γ1

3

√
1 + ε+

γ2

x3
1 + γ2

√
1 +

2x3
1ε+ ε2

δ
− γ2

x3
1 + γ2

with γ2
2 = x6

1 + x6
2, γ3

1 = x3
1 + γ2 and δ = x6

1 + x6
2 is the initial term of D. Thus

3

√
x3

1 + ε+
√
D ∈ V(1,1),δ

[〈
γ1, γ2,

γ2ε

x3
1 + γ2

〉]
.

By doing the same remark for 3

√
x3

1 + ε−
√
D, we see that there exist γ1, . . . , γ5 homogeneous

elements with respect to ord such that the roots of P (Z) are in V(1,1),δ[〈γ1, . . . , γ5〉]. But there is
no reason that the roots of P (Z) are in Vα,δ[〈γ〉] where γ is one (integral) homogeneous element
with respect to να.

6. Approximation of monomial valuations by divisorial monomial valuations

In several cases, it will be easier to work with a monomial valuation να which is divisorial,
i.e., such that dimQ(Qα1 + · · ·+Qαn) = 1. In order to extend some results which are proven for
divisorial monomial valuations to general monomial valuations, we will approximate monomial
valuations by divisorial monomial valuations. The aim of this section is to explain how this can
be done.

Definition 6.1. Let α ∈ Rn>0. Let α∗ : Qn −→ R be the Q-linear morphism defined by
α∗(q1, . . . , qn) :=

∑
i αiqi. We denote by Relα the kernel of this morphism.

For any ε > 0 and q ∈ N, we define the following set:

Rel(α, q, ε) :=

{
α′ ∈ Nn / Relα ⊂ Relα′ and max

i

∣∣∣∣q − α′i
αi

∣∣∣∣ < qε

}
.

Example 6.2. If n = 4, and α1 =
√

2, α2 =
√

3, α3 = 13
√

2 +
√

3, α4 =
√

2 + 757
√

3, then any
α′ of the form (n1, n2, 13n1 + n2, n1 + 757n2), where n1, n2 ∈ N>0, will satisfy Relα ⊂ Relα′ .

Remark 6.3. For α and β ∈ Rn>0 we have

Relα ⊂ Relβ ⇐⇒ β ∈ V ⊗Q R

where V := (Kerα∗)⊥ ⊂ Qn. By definition we have that α ∈ V ⊗Q R. Since V is dense in
V ⊗Q R there exists β ∈ V such that

max
1≤i≤n

∣∣∣∣1− βi
αi

∣∣∣∣ < ε.

Let us write βi =
α′i
q where the α′i and q are positive integers. This implies that

max
1≤i≤n

∣∣∣∣q − α′i
αi

∣∣∣∣ < qε.

Since β ∈ V we have that α′ ∈ V thus Relα ⊂ Relα′ . This shows that for any given α ∈ Rn>0

and ε > 0 there always exists q ∈ N such that Rel(α, q, ε) 6= ∅.
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Moreover if α ∈ Nn then Rel(α, q, ε) = {qα} if 0 < ε < 1
qmax{αi} . Indeed in this case the only

α′ ∈ Nn satisfying max
i
|qαi − α′i| < qαiε is α′ = qα.

Lemma 6.4. Let α, α′ ∈ Rn>0. Then Relα ⊂ Relα′ if and only if every (α)-homogeneous
polynomial is a (α′)-homogeneous polynomial.

Moreover if α′ ∈ Rel(α, q, ε) and if a(x) is a (α)-homogeneous polynomial then

q(1− ε)να(a(x)) ≤ να′(a(x)) ≤ q(1 + ε)να(a(x)).

Proof. First let us assume that Relα ⊂ Relα′ and let a(x) be a (α)-homogeneous polynomial.
This means that for any p, q ∈ Nn, if xp and xq are two nonzero monomials of a(x), then∑
i αipi =

∑
i αiqi. In particular p − q ∈ Ker(α∗), thus

∑
i α
′
ipi =

∑
i α
′
iqi. Thus a(x) is a

(α′)-homogeneous.
On the other hand let us assume that every (α)-homogeneous polynomial is a (α′)-homogeneous

polynomial. Let r ∈ Relα. We can write r = p−q where p, q ∈ Qn>0. By multiplying r by a posi-
tive integerm, we may assume thatmp,mq ∈ Nn. By assumption on r, the polynomial xmp+xmq

is (α)-homogeneous. Thus it is (α′)-homogeneous. This means that
∑
i α
′
impi =

∑
i α
′
imqi.

Hence
∑
i α
′
i(pi − qi) = 0 and r = p− q ∈ Relα′ .

Now let xp be a monomial. Then

να′(x
p) =

∑
i

α′ipi.

But q(1− ε)αi ≤ α′i ≤ q(1 + ε)αi for any 1 ≤ i ≤ n. This proves both inequalities.
�

Example 6.5. Let α ∈ Nn and α′ ∈ Rn>0. Then Relα ⊂ Relα′ if and only if there exists λ ∈ R
such that α′ = λα. Indeed we have dimQ(Relα) = n − 1 hence either dimQ(Relα′) = n and
α′ = 0, either dimQ(Relα′) = n− 1 and there exists λ ∈ R∗ such that α′ = λα.

Lemma 6.6. Let α ∈ Rn>0 and let A ∈ Vα. Let us write

A =
∑
i∈Λ

ai(x)

δ(x)m(i)

where Λ is a finitely generated sub-semigroup of R≥0 and i 7−→ m(i) is bounded by an affine
function. Then there exists εA > 0 such that for all 0 < ε ≤ εA, for all q ∈ N, for all

α′ ∈ Rel(α, q, ε), the element
∑
i∈Λ

ai(x)

δ(x)m(i)
is in the fraction field of Vα′ .

Moreover if A ∈ Vα is not invertible, i.e., να(A) > 0, then we may even choose εA > 0 such

that for all 0 ≤ ε ≤ εA, for all q ∈ N, for all α′ ∈ Rel(α, q, ε),
∑
i∈Λ

ai(x)

δ(x)m(i)
∈ Vα′ and this

element is not invertible in Vα′ .

Proof. Let a, b ≥ 0 such that m(i) ≤ ai+ b for any i ∈ Λ. By Lemma 6.4 we have

να′

(
ai(x)

δ(x)m(i)

)
= να′(ai(x))−m(i)να′(δ(x)) ≥ q(1− ε)να(ai(x))− q(1 + ε)m(i)να(δ(x))

= q(1− ε)i− 2qεm(i)να(δ(x)).

Let εA be a positive real number such that εA < 1
1+2aνα(δ(x)) and set

η := 1− εA(1 + 2aνα(δ(x))) > 0.
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Then for any 0 ≤ ε ≤ εA, any q ∈ N and any α′ ∈ Rel(α, q, ε) we have

να′

(
ai(x)

δ(x)m(i)

)
≥ ηqi− 2qbενα(δ(x)) ∀i ∈ Λ.

This proves that
∑
i∈Λ

ai(x)

δ(x)m(i)
is in the fraction field of Vα′ .

If να(A) > 0, then a0(x) = 0. Let i0 := να(A). Let ε ≥ 0 be such that ε ≤ εA and

i0 > ε ((1 + 2aνα(δ(x)))i0 + 2bνα(δ(x))) .

In this case να′
(

ai(x)
δ(x)m(i)

)
> 0 for any i ∈ Λ, i ≥ i0. This proves the second assertion. �

Definition 6.7. Let α ∈ Rn>0 and α′ ∈ Relα ∩Nn. Then every (α)-homogeneous polynomial
p(x) is (α′)-homogenous by Lemma 6.4. In particular if δ(x) is an other (α)-homogeneous
polynomial and s ∈ N then

p(x1δ(x)α
′
1s, . . . , xnδ(x)α

′
ns) = p(x)δ(x)sνα′ (p(x))

is also a (α)-homogeneous polynomial.
If A =

∑
i∈Λ

ai(x)
δ(x)m(i) ∈ Vα,δ and α′ ∈ Relα ∩Nn, we will set

ϕα′,s(A) :=
∑
i∈Λ

ai

δ
m(i)
i

(x1δ(x)α
′
1s, . . . , xnδ(x)α

′
ns).

Then ϕα,s : Vα,δ −→ Vα,δ is a ring morphism. We also define

ψα′,s(A) := δsϕα′,s(A) ∀A ∈ Vα,δ.

Lemma 6.8. Let α ∈ Rn>0 and A ∈ Vα,δ. For any ε > 0 small enough there exists s(ε) ∈ N
such that for every q ∈ N, α′ ∈ Rel(α, q, ε) and s ≥ s(ε):

ψα′,s(A) ∈ kJxK.

If να(A) > 0 we may even assume that ϕα′,s(A) ∈ kJxK for every q ∈ N, α′ ∈ Rel(α, q, ε) and
s ≥ s(ε).

Proof. Let a(x), δ(x) ∈ k[x] be (α)-homogeneous polynomials and let m ∈ N be such that
να

(
a(x)
δ(x)m

)
= i. Let s ∈ N and a′ ∈ Nn such that Relα ⊂ Relα′ . By Lemma 6.4 we have

(9)
a(x1δ(x)α

′
1s, . . . , xnδ(x)α

′
ns)

δ(x1δ(x)α
′
1s, . . . , xnδ(x)α

′
ns)m

= a(x)δ(x)s[να′ (a(x))−να′ (δ(x))m]−m.

Now let A =
∑
i∈Λ

ai
δm(i)

∈ Vα,δ with m(i) ≤ ai + b for any i ∈ Λ, Λ being a finitely generated

sub-semigroup of R≥0. Set dα := να(δ). Thus να(ai) = dαm(i) + i for any i ∈ Λ. Hence by
Lemma 6.4 we have that

να′(ai)−m(i)να′(δ) ≥ q(1− ε) [dαm(i) + i]− q(1 + ε)m(i)dα

(10) να′(ai)−m(i)να′(δ) ≥ q(1− ε)i− 2qεdαm(i).

Since (1− ε)i− 2εdαm(i) ≥ (1− ε)i− 2εdα(ai+ b), for every ε small enough there exists aε > 0
such that

να′(ai)−m(i)να′(δ) ≥ qaεi
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for all q ∈ N, all α′ ∈ Rel(α, q, ε) and all i ∈ Λ, i > 0. Thus for s ∈ N and i ∈ Λ\{0} we have
that

s(να′(ai)−m(i)να′(δ))−m(i) ≥ sqaεi−m(i) ≥ (sqaε − a)i− b ≥
(
sqaε − a−

b

min Λ\{0}

)
i.

In particular if s ≥
(
a+ b

min Λ\{0}

)
/aε then

s(να′(ai)−m(i)να′(δ))−m(i) ≥ 0

and ai
δ
m(i)
i

(x1δ(x)α
′
1s, . . . , xnδ(x)α

′
ns) ∈ kJxK for all i > 0. Thus if να(A) > 0, a0 = 0 and

ϕα′,s(A) ∈ kJxK for s ≥
(
a+ b

min Λ\{0}

)
/aε.

In the general case where a0 6= 0, if we assume moreover that s ≥ b, we have that

δ(x)s
a0

δ
m(0)
0

(x1δ(x)α
′
1s, . . . , xnδ(x)α

′
ns) ∈ kJxK.

This proves the lemma.
�

When the components of α are Q-linearly independent, by using Lemma 6.8, Theorem 5.12
gives the following generalization of the main result of [McD]:

Theorem 6.9. [McD] Let k be a field of characteristic zero and α ∈ Rn>0 such that

dimQ(Qα1 + · · ·+ Qαn) = n.

Then
Kalg
νa ⊂

⋃
σ

k
((
xβ , β ∈ σ ∩ Zn

))
where the first union runs over all rational strongly convex cones σ such that 〈α, τ〉 > 0 for any
τ ∈ σ, τ 6= 0. Moreover we have:

Kalg

να ⊂
⋃
σ

⋃
k′

⋃
q∈N

k′
((

xβ , β ∈ σ ∩ 1

q
Zn
))

where the first union runs over all rational strongly convex cones σ such that 〈α, τ〉 > 0 for any
τ ∈ σ, τ 6= 0, and the second union runs over all the fields k′ finite over k.

Proof. In order to prove the first inclusion, by Corollary 5.13 it is enough to prove that

Kα ⊂
⋃
σ

k((xβ , β ∈ σ ∩ Zn))

or Vα ⊂
⋃
σ k

q
xβ , β ∈ σ ∩ Zn

y
.

Since the αi are Q-linearly independent the only (α)-homogeneous polynomials are the mono-
mials. Let ω ∈ Nn and A be an element of Vα,xω : A =

∑
i∈Λ

xp(i)

xm(i)ω where Λ is a finitely
generated sub-semigroup of R≥0. We have to prove that A ∈

⋃
σ k

q
xβ , β ∈ σ ∩ Zn

y
. Since

x1A ∈
⋃
σ k

q
xβ , β ∈ σ ∩ Zn

y
implies that A ∈

⋃
σ k

q
xβ , β ∈ σ ∩ Zn

y
we may assume that

να(A) > 0.
By Lemma 6.8, we see that the monomial map ϕα′,s defined by xj 7−→ xjx

sα′jω maps A onto
an element of kJxK for α′ ∈ Rel(α, q, ε), ε > 0 small enough and s large enough. Such a monomial
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map is induced by a linear map on the set of monomials and its matrix is

M1 :=


1 + sω1α

′
1 sω1α

′
2 sω1α

′
3 · · · sω1α

′
n

sω2α
′
1 1 + sω2α

′
2 sω2α

′
3 · · · sω2α

′
n

sω3α
′
1 sω3α

′
2 1 + sω3α

′
3 · · · sω3α

′
n

...
...

...
. . .

...
sωnα

′
1 sωnα

′
2 sωnα

′
3 · · · 1 + sωnα

′
n


Set

M2 :=


−sω1α

′
1 −sω1α

′
2 −sω1α

′
3 · · · −sω1α

′
n

−sω2α
′
1 −sω2α

′
2 −sω2α

′
3 · · · −sω2α

′
n

−sω3α
′
1 −sω3α

′
2 −sω3α

′
3 · · · −sω3α

′
n

...
...

...
. . .

...
−sωnα′1 −sωnα′2 −sωnα′3 · · · −sωnα′n


and let χ(t) be the characteristic polynomial of M2. Then χ(1) = det(M1). If χ(1) = 0, then
the vector ω := (ω1, . . . , ωn) is an eigenvector of M2 with eigenvalue 1 since the image of M2 is
generated by ω. Thus −s(ω1α

′
1 + · · ·+ ωnα

′
n) = 1 which is not possible since ωi ≥ 0 and α′i > 0

for any i. Thus det(M1) 6= 0 and M1 is invertible. In particular σ := M−1
1 (Rn≥0) is a rational

strongly convex cone. Moreover, since A ∈ Vα,δ, we have 〈α, τ〉 > 0 for any τ ∈ σ, τ 6= 0. Hence
A ∈ k

q
xβ , β ∈ σ ∩ Zn

y
.

By Example 3.18 integral homogeneous elements with respect to να are either finite over k,

either of the form cx
n1
q

1 · · ·x
nn
q
n for some integers n1, . . . , nn ∈ Z≥0, q ∈ N such that

n∑
j=1

αjnj > 0.

Using Theorem 5.12 and since Kνα = lim
−→

γ1,...,γs

Kalg
να [γ1, . . . , γs] where the γi are homogeneous with

respect to να, we have the second inclusion by replacing σ by the rational strongly convex
cone generated by σ and the n-uples (n1, . . . , nn) corresponding to the homogeneous elements
γ1, . . . , γs.

�

Remark 6.10. In fact the proof shows that the field Kα, as soon as

dimQ(Qα1 + · · ·+ Qαn) = n,

is the field of Puiseux power series with support in rational strongly convex cones σ such that
〈α, γ〉 ≥ 0 for all γ ∈ σ. Thus Kα is the field of α-positive Puiseux series according to [AI].

Lemma 6.11. Let α ∈ Rn>0 and α′ ∈ Relα ∩Nn. Then

ψα′,t ◦ ψα′,s = ψα′,να′ (δ)st+s+t ∀s, t ∈ Z≥0.

Proof. Let A =
∑
i∈Λ

ai
δm(i)

∈ Vα,δ. Then we have (see Equation (9) in the proof of Lemma 6.8):

δsϕα′,s(A) =
∑
i∈Λ

ai(x)δ(x)s(1+να′ (ai(x))−να′ (δ(x))m(i))−m(i).

If t ∈ Z≥0 and l ∈ Z≥0, and α(x) and δ(x) are (α′)-homogeneous, we have that

ϕα′,t(a(x)δ(x)l) = a(x)δ(x)tνα′ (a)+l(tνα′ (δ)+1).

Thus by denoting

pα′(i) := να′(ai(x))− να′(δ(x))m(i) and dα′ := να′(δ(x))
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we obtain

δtϕα′,t(δ
sϕα′,s(A))

= δt
∑
i∈Λ ai(x1δ

α′1t, . . . , xnδ
α′nt)× δ(x1δ

α′1t, . . . , xnδ
α′nt)s(1+να′ (ai(x))−να′ (δ)m(i))−m(i)

=
∑
i∈Λ aiδ

t+tνα′ (ai)+(s+spα′ (i)−m(i))(tdα′+1)

=
∑
i∈Λ aiδ

dα′ tspα′ (i)+tpα′ (i)+spα′ (i)−m(i)+dα′ ts+t+s.

In particular we have

(11) δtϕα′,t(δ
sϕα′,s(A)) = δdα′st+s+tϕα′,dα′st+s+t(A) ∀t ∈ Z≥0.

�

Lemma 6.12. Let α ∈ Rn>0 and α′ ∈ Relα ∩Nn. For all s1, s2 ∈ N there exist t1, t2 ∈ N such
that

ψα′,t1 ◦ ψα′,s1 = ψα′,t2 ◦ ψα′,s2 .

Proof. Let d denote να′(δ). Let p be a prime number and k ∈ N such that pk divides ds1 + 1
and ds2 + 1. Then gcd(p, d) = 1 and pk divides ds1 − ds2. Thus pk divides s1 − s2. This
proves that gcd(ds1 + 1, ds2 + 1) divides s1 − s2. Thus there exist t1 ∈ Z and t2 ∈ Z such that
(ds1 + 1)t1 − (ds2 + 1)t2 = s2 − s1. If t1t2 < 0, let say t1 > 0 and t2 < 0, then

(ds1 + 1)t1 − (ds2 + 1)t2 > s1 + s2 > |s1 − s2|

which is not possible. Thus we have that t1t2 ≥ 0. If t1 ≤ 0 and t2 ≤ 0, we can replace t1 (resp.
t2) by t1 + k(ds2 + 1) (resp. by t2 + k(ds1 + 1)) for some positive integer k large enough. This
will allows to assume that t1 and t2 are positive integers. Hence

∃t1, t2 ∈ N, ds1t1 + s1 + t1 = ds2t2 + s2 + t2.

This proves the lemma by Lemma 6.11.
�

Definition 6.13. Now we consider a subring R of kJxK that is an excellent Henselian local ring
with maximal ideal mR and satisfying the following properties:

(A) k[x1, . . . , xn](x) ⊂ R,
(B) mR = (x)R and R̂ = kJxK,
(C) if p(x) ∈ k[x] is (α)-homogeneous for some α ∈ Rn>0 then

f(x) ∈ R =⇒ f(p(x)x1, . . . , p(x)xn) ∈ R.

Remark 6.14. If k is a field, the ring of algebraic power series k〈x〉 is an excellent Henselian
local ring satisfying Properties (A), (B) and (C). If k is a valued field, then the field of convergent
power series k{x} does also.

For a field k, the ring kJx1, . . . , xrK〈xr+1, . . . , xn〉 for formal power series algebraic over
kJx1, . . . , xrK[xr+1, . . . , xn] is also an excellent Henselian local ring satisfying Properties (A),
(B) and (C).
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Definition 6.15. Let α ∈ Rn>0 and let δ be a (α)-homogeneous polynomial. Let R be a ring
satisfying Definition 6.13. We set

VRα,δ :=
{
A ∈ V̂να / ∃Λ a finitely generated sub-semigroup of R≥0,

∀i ∈ Λ ∃ai ∈ k[x] (α)-homogeneous,∃a, b ≥ 0 ∀i ∈ Λ ∃m(i) ∈ N s.t.

m(i) ≤ ai+ b, να

( ai
δm(i)

)
= i, A =

∑
i∈Λ

ai
δm(i)

and ∃ε > 0 ∀q ∈ N ∀α′ ∈ Rel(α, q, ε) ∃s ∈ N such that ψα′,s(A) ∈ R} .

Then VRα is the union of the sets VRα,δ when δ runs over all the (α)-homogeneous polynomials.

Lemma 6.16. The sets VRα,δ and VRα are subrings of Vα,δ and Vα.

Proof. Let A =
∑
i∈Λ

ai
δm(i)

and B =
∑
i∈Λ

bi
δn(i)

∈ VRα,δ. Then there exists ε > 0 such that ∀q ∈ N,

∀α′ ∈ Rel(α, q, ε), there exist s1, s2 ∈ N such that

ψα′,s1(A), ψα′,s2(B) ∈ R.
Then by Lemma 6.11, Lemma 6.12 and condition (C) of Definition 6.13 there exists s ∈ N such
that

ψα′,s(A), ψα′,s(B) ∈ R.
This shows that ψα′,s(A+B) = ψα′,s(A) + ψα′,s(B) ∈ R and A+B ∈ VRα,δ.

Now by Lemma 6.8 we can assume that there exists s(ε) ∈ N such that ψα′,s(AB) ∈ kJxK for
all s > s(ε), for all q ∈ N and all α′ ∈ Rel(α, q, ε). On the other hand since ψα′,s(A), ψα′,s(B) ∈ R
then ψα′,να′ (δ)st+s+t(A), ψα′,να′ (δ)st+s+t(B) ∈ R for all t ∈ N by Lemma 6.11 and Condition (C)
of Definition 6.13. Thus there exists s ∈ N such that

ψα′,s(A), ψα′,s(B) ∈ R and ψα′,s(AB) ∈ kJxK.

But we have that
ψα′,s(A)ψα′,s(B) = δsψα′,s(AB) ∈ R.

Hence by Artin Approximation Theorem (cf. [Po], [Sp2]) ψα′,s(AB) ∈ R.
Thus AB ∈ VRα,δ. This proves that VRα,δ is a ring.
Since VRα is the direct limit of the VRα,δ it is also a ring. �

Example 6.17. If α ∈ Nn and R = C{x} is the ring of convergent power series over C, we
claim that

VC{x}
α,δ =

 ∑
i∈Z≥0

ai
δa(i+1)

/ ∀i ai ∈ C[x] is (α)-homogeneous,

να

( ai
δa(i+1)

)
= i, a ∈ Z≥0

and ∃C, r > 0 such that |ai(z)| ≤ Cri‖z‖να(ai)
α ∀z ∈ Cn

}
where ‖z‖α := max

j=1,...,n

∣∣∣∣z 1
αj

j

∣∣∣∣ for any z ∈ Cn.

First of all every element A of Vα,δ is of the form

A =
∑
i∈Z≥0

ai
δm(i)
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where να
(

ai
δm(i)

)
= i and m(i) ≤ ai + b for some a, b ∈ Z≥0. By multiplying the numerator

and the denominator of ai
δm(i) by δai+b−m(i) and replacing ai by aiδai+b−m(i), we may assume

that m(i) = ai + b. If a > b, we may replace ai
δai+b

by aiδ
a−b

δai+a , if a < b we may replace ai
δai+b

by aiδ
(b−a)i

δbi+b
. Thus any element of Vα,δ is of the form

∑
i∈Z≥0

ai
δa(i+1)

where να
(

ai
δa(i+1)

)
= i for all

i ∈ Z≥0. In this case να(ai) = (aνα(δ) + 1)i+ aνα(δ) for any i ∈ N.
By Remark 6.3 Rel(α, q, ε) = {qα} for ε > 0 small enough since α ∈ Nn. Then we have (with

s = a in Lemma 6.8):

f(x) := ψα,a(A) = δ(x)a
∑
i∈Z≥0

ai
δa(i+1)

(x1δ(x)α1a, . . . , xnδ(x)αna) =
∑
i∈Z≥0

ai(x)

and f(x) ∈ CJxK. Moreover we have for every q ∈ N

fq(x) := ψqα,a(A) = δ(x)a
∑
i∈Z≥0

ai
δa(i+1)

(x1δ(x)α1qa, . . . , xnδ(x)αnqa) =
∑
i∈Z≥0

ai(x)δ(x)a(q−1)i

Thus f ∈ C{x} if and only if this power series is convergent on a neighborhood of the origin.
This neighborhood may be chosen of the form:

Bα(0, r) := {z ∈ Cn / |zj | ≤ rαj , j = 1, . . . , n}.
For any z ∈ Bα(0, r) set tαjj = zj for j = 1, . . . , n and bi(t) = ai(z) for any i ∈ N. Then f is
convergent on Bα(0, r) if and only

∑
i∈Z≥0

bi(t) is convergent on

B(0, r) := {t ∈ Cn / |tj | ≤ r, j = 1, . . . , n}.
But this series is convergent if and only if there exist c ≥ 0 and ρ < 1 such that |bi(t)| ≤ cρi for
all i ∈ Z≥0 and all t ∈ B(0, r). Since bi(t) is a homogeneous polynomial of degree

να(ai) = (ad+ 1)i+ ad

where d := να(δ), we have

sup
|tj |≤r,j=1,...,n

|bi(t)| = r(ad+1)i+ad sup
|tj |≤1,j=1,...,n

|bi(t)|.

We see that f is convergent if and only if there exist C ≥ 0 and R > 0 such that

sup
|zj |≤1,j=1,...,n

|ai(z)| = sup
|tj |≤1,j=1,...,n

|bi(t)| ≤ CRi.

This is equivalent to the following inequality for any z ∈ Cn:

(12) |ai(z)| = |bi(t)| ≤ max
j=1,...,n

|tj | sup
|tj |≤1,j=1,...,n

|bi(t)| ≤ CRi‖z‖να(ai)
α .

On the other hand if f ∈ C{x} we have seen that there exist C ≥ 0 and R > 0 such that

sup
|zj |≤1,j=1,...,n

|ai(z)| ≤ CRi.

Thus
sup

|zj |≤1,j=1,...,n

|ai(z)δ(z)a(q−1)i| ≤ C(RS)i

where S := max|zj |≤1,j=1,...,n |δ(z)|a(q−1). Hence fq ∈ C{x} for every q ∈ N. This proves the
claim.

We have the following analogue of Theorem 5.12 in the Henselian case:



THE ALGEBRAIC CLOSURE OF THE FIELD OF POWER SERIES 37

Theorem 6.18. Let k be a field of characteristic zero and let R be a subring of kJxK satisfying
Definition 6.13. Let α ∈ Rn>0 and let us set N = dimQ(Qα1 + · · ·+ Qαn).

Let P (Z) ∈ VRα [〈γ1, . . . , γs〉][Z] be a distinguished polynomial of degree d where the γi are
homogeneous elements with respect to να. Then the roots of P (Z) are in VRα [〈γ′1, . . . , γ′N 〉] for
some integral homogeneous elements γ′1, . . . , γ′N with respect to να.

Proof. Let P (Z) = Zd+a1Z
d−1 + · · ·+ad with aj ∈ VRα [〈γ1, . . . , γs〉] for 1 ≤ j ≤ d. By Theorem

5.12 we may assume that P (Z) has a root z ∈ Vα,δ[〈γ1, . . . , γN 〉]. We denote

ai =
∑

i1,··· ,iN

Ai,i1,...,iNγ
i1
1 · · · γ

iN
N with Ai,i1,...,iN ∈ Vα,δ,

z =
∑

i1,...,iN

zi1,...,iNγ1t
i1 · · · γiNN with zi1,...,iN ∈ Vα,δ.

Let us fix ε > 0, q ∈ N, α′ ∈ Rel(α, q, ε) and s satisfying Lemma 6.8 for the Ai,i1,...,iN and for the
zi1,...,iN . For convenience we denote by ϕ the morphism ϕα′,s defined in Definition 6.7. Then if
A denotes one of the Ai,i1,...,iN or the Zi1,...,iN we have ϕ(A) ∈ Vα′,δ by Lemma 6.8. We set

R := Vα,δ ∩ ϕ−1(Vα′,δ)

and R′ denotes the subring of Vα,γ [〈γ1, . . . , γs〉] of elements
∑
i1,...,iN

Ai1,...,iNγ
i1
1 · · · γ

iN
N whose

coefficients Ai1,...,iN are in R.
Of course ϕ induces a morphism R −→ Vα′,δ but we have the following lemma:

Lemma 6.19. Let γi be homogeneous elements with respect to να for 1 ≤ i ≤ N . Then there
exist homogeneous element γ′i with respect to να′ , 1 ≤ i ≤ N , such that, for any finite number
of elements Ai1,...,iN ∈ Vα,δ,

ϕ

 ∑
i1,...,iN

Ai1,...,iNγ1
i1 · · · γNiN

 :=
∑

i1,...,iN

ϕ(Ai1,...,iN )γ′1
i1 · · · γ′N

iN

defines an extension of ϕ from R′ to Vα′,δ[〈γ′1, . . . , γ′N 〉].

Proof of Lemma 6.19. Let us assume that γi is a homogeneous element of degree ei with respect
to να. Let

Qi(Z) := gi,0(x)Zqi + gi,1(x)Zqi−1 + · · ·+ gi,qi(x)

be a polynomial such that Qi(γ′i) = 0 and such that gi,j(x) is a (α)-homogeneous polynomial of
degree di + jei for some di.

Then gi,j(x) is a (α′)-homogeneous polynomial of degree d′i+je′i for some constants d′i and e′i.
Indeed, if a, b and c are (α)-homogeneous polynomials and να(a)− να(b) = να(b)− να(c), then
ac and b2 are two (α)-homogeneous polynomials of same degree, i.e., ac−b2 is (α)-homogeneous.
Then, by Lemma 6.4, ac− b2 is (α′)-homogeneous, thus να′(a)− να′(b) = να′(b)− να′(c).

Set Qi(Z) = δse
′
iqiQi

(
Z

δse
′
i

)
. We have

Qi(Z) := gi,0(x)Zqi + gi,1(x)δ(x)se
′
iZqi−1 + · · ·+ gqi(x)δ(x)se

′
iqi .

For any i let γ′i denote a root ofQi(Z). So γ′i is a homogeneous element of degree e′i(1+να′(δ(x))s)
with respect to να′ . Then it is straightforward to check that

ϕ
(∑

Ai1,...,iNγ1
i1 · · · γNiN

)
=
∑

ϕ(Ai1,...,iN )γ′1
i1 · · · γ′N

iN

defines an extension of ϕ from R′ to Vα′,δ[〈γ′1, . . . , γ′N 〉]. �
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By Lemmas 6.19, 6.11 and 6.12, and Property (C) we can assume that s is large enough for
having that

δjsϕ(Aj) ∈ R[γ′1, . . . , γ
′
N ]

for 1 ≤ j ≤ d. Again by applying Lemmas 6.19, 6.11 and 6.12 we may even assume that

δsϕ(z) ∈ kJxK[γ′1, . . . , γ
′
N ]

by taking s large enough. Thus z′ := δsϕ(z) ∈ kJxK[γ′1, . . . , γ′N ] is a root of the polynomial

P (Z) := Zd + δsϕ(A1)Zd−1 + · · ·+ δdsϕ(Ad) ∈ R[Z].

Let us write

z′ :=
∑

i1,...,iN

z′i1,...,iNγ
′
1
i1 · · · γ′N

ir

with z′i1,...,iN ∈ kJxK for any i1, . . . , iN . Let us set

Z :=
∑

i1,...,iN

Zi1,...,iNγ
′
1
i1 · · · γ′N

iN

where Zi1,...,iN are new variables. Solving P (Z) = 0 is equivalent to solve a finite system (S)
of polynomial equations in the variables Zi1,...,iN with coefficients in R, just by replacing Z by∑
i1,...,iN

Zi1,...,iNγ1
i1 · · · γNiN and replacing the high powers of the γi by smaller ones using the

division by the Qi(Zi). By Artin Approximation Theorem (cf. [Po], [Sp2]), the set of solutions
of (S) in R is dense in the set of solutions in kJxK, but since P (Z) = 0 has a finite number of
solutions, then (S) has a finite number of solutions and they are in R. Thus z′i1,...,iN ∈ R for all
i1, . . . , iN , hence z′ ∈ R[γ′1, . . . , γ

′
N ]. This proves that z ∈ VRα,δ[〈γ1, . . . , γN 〉]. �

7. A generalization of Abhyankar-Jung Theorem

Definition 7.1. Let α ∈ Nn and let θ ∈ C[x] be a (α)-homogeneous polynomial. Let a > 0,
C > 0 and η > 0. Set :

Dθ,C,a,η :=

 ⋃
K>0,ε>0
ε<KaC

CK,ε

⋂B(0, η)

where B(0, η) is the open ball centered in 0 and of radius η and

CK,ε :=
{
x ∈ Cn / dα(x, θ−1(0)) > K‖x‖α and ‖x‖α < ε

}
where ‖.‖α is defined in Example 6.17 and dα is defined as follows: for any x, y ∈ Cn let us

denote by x
1
αi
i (resp. y

1
αi
i ) a complex αi-th root of xi (resp. yi) and let Ui be the set of αi-roots of

unity. Then we define dα(x, y) := max
i

inf
ξ∈Ui

∣∣∣∣x 1
αi
i − ξy

1
αi
i

∣∣∣∣ and dα(x, θ−1(0)) := inf
x′∈θ−1(0)

dα(x, x′).
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Then Dθ,C,a,η is the complement of a hornshaped neighborhood of {θ = 0} as we can see on
the following picture (here n = 2 and α = (1, 1)):

x2

x1

θ−1(0)

θ−1(0)

Lemma 7.2. Let a ∈ Nn and A ∈ VC{x}
α,θ . Then there exist constants a > 0 and C > 0 such that

A is analytic on Dθ,C,a,η for every η > 0.

Proof. We write A =
∑
i

ai
θm(i) where ai is (α)-homogeneous for every i ∈ N. By multiplying ai

by a convenient power of θ we may even assume that there exist positive constants a and b such
that m(i) = ai+ b for every i.

If να(ai) = di there exist C > 0 and r > 0 such that

(13) |ai(x)| ≤ Cri‖x‖diα ∀x ∈ Cn

by Theorem 6.18, Example 6.17 and Inequality (12) of Example 6.17. On the other hand we
claim that there exists a constant C ′ > 0 such that

(14) |θ(x)| ≥ C ′dα(x, θ−1(0))να(θ) ∀x ∈ Cn.

Indeed if we embed C{x} in C{y} by sending xi onto yαii , we have

θ(x) = θ(yα1
1 , . . . , yαnn ) = τ(y1, . . . , yn)

and τ is a homogeneous polynomial of degree να(θ). After a linear change of coordinates, we
may assume that τ is a monic polynomial in yn of degree να(θ) multiplied by a constant. Then,
for all y1, . . . , yn ∈ Cn, we have

|τ(y1, . . . , yn)| = C ′

∣∣∣∣∣∣
να(θ)∏
i=1

(yn − ϕi(y1, . . . , yn−1))

∣∣∣∣∣∣
where ϕi is a homogeneous function which is locally analytic outside the discriminant locus of
τ , for some constant C ′ > 0. Thus

|τ(y1, . . . , yn)| ≥ C ′min
i
|yn − ϕi(y1, . . . , yn−1)|να(θ)

≥ C ′ inf
y′∈τ−1(0)

max
k
|yk − y′k|

να(θ)
= C ′d(y, τ−1(0))να(θ)

since (y1, . . . , yn−1, ϕi(y1, . . . , yn−1)) ∈ τ−1(0) for any i. This proves (14).
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Hence we have (for positive constants ε, K and x ∈ CK,ε):∣∣∣∣ ai(x)

θm(i)(x)

∣∣∣∣ ≤ C

C ′m(i)

ri‖x‖diα
dα(x, θ−1(0))να(θ)m(i)

=
C

C ′m(i)

ri‖x‖i+να(θ)m(i)
α

dα(x, θ−1(0))να(θ)m(i)

≤ Cri‖x‖iα
C ′m(i)Kνα(θ)m(i)

≤ C(rε)i

C ′m(i)Kνα(θ)m(i)
=

C

C ′bKνα(θ)b

( rε

C ′aKνα(θ)a

)i
.

Then if ε < Kaνα(θ)
(
C′a

r

)
, A defines an analytic function on the domain CK,ε. Thus A defines

an analytic function on the domain Dθ,C′a/r,aνα(θ),η for every η > 0. �

This following proposition has been proven by Tougeron in the case α = (1, . . . , 1) (see
Proposition 2.8 [To]):

Proposition 7.3. Let α ∈ Nn and let P (Z) ∈ C{x}[Z] be a monic polynomial whose discrim-
inant is equal to δu where δ ∈ C[x] is (α)-homogeneous and u ∈ C{x} is invertible. If P (Z)
factors as P (Z) = P1(Z) · · ·Pr(Z) where Pi(Z) ∈ C{x}[Z] is an irreducible monic polynomial
of C{x}[Z] for all i, then Pi(Z) is irreducible in VC{x}

α [Z].

Proof. Let Q(Z) be an irreducible monic factor of P (Z) in Vα[Z]. By Theorem 5.12 there exists
a (α)-homogeneous polynomial θ ∈ C[x] such that the coefficients of Q(Z) are in Vα,θ. Let us
denote by A one of these coefficients.

Since Vα,θ ⊂ Vα,θδ we may assume that δ divides θ, thus

δ−1(0) ∩B(0, ε) ⊂ θ−1(0) ∩B(0, ε)

for every ε > 0.
Let η > 0 small enough such that the roots of P (Z) are locally analytic on the domain

Dθ,η := B(0, η)\θ−1(0) ⊂ B(0, η)\δ−1(0).

Since A is a polynomial depending on the roots of P (Z) it is locally analytic on Dθ,η.
On the other hand by Lemma 7.2 A defines an analytic function on a domain Dθ,C,a,η.
Thus by Lemma 7.4 given below A is global analytic on Dθ,η. Since the roots of P (Z) are

bounded near the origin, A is bounded near the origin, thusA extends to an analytic function near
the origin. This proves that A is analytic on a neighborhood of the origin and Q(Z) ∈ C{x}[Z].

�

Lemma 7.4. Set C > 0, a > 0 and η > 0 and let θ ∈ C[x] be a (α)-homogeneous polynomial.
Let A : Dθ,η −→ C be a multivalued function. Let us assume that A is analytic on Dθ,C,a,η and
locally analytic on Dθ,η. Then A is analytic on Dθ,η.

Proof. Since A is locally analytic on Dθ,η, then A extends to an analytic function on a small
neighborhood of every path in Dθ,η. If A is not analytic on Dθ,η, then there exists a loop
based at a point p of Dθ,η, denoted by ϕ : [0, 1] −→ Dθ,η with ϕ(0) = ϕ(1) = p, such that A
extends to an analytic function on a neighborhood of ϕ but A ◦ ϕ(0) 6= A ◦ ϕ(1). Let us write
ϕ(t) = (ϕ1(t), . . . , ϕn(t)) and let us define Φ : [0, 1]× S −→ Cn by

Φ(t, s) := (sα1ϕ1(t), . . . , sαnϕn(t))

where S := {z ∈ C / |z| ≤ 1,<(z) > 0}.
Then we have that

δ(Φ(t, s)) = sνα(δ)δ(ϕ(t)) 6= 0

for any (t, s) ∈ [0, 1]×S since Im(ϕ) ⊂ Dθ,η and s 6= 0. Thus the image of Φ is included in Dθ,η.
Moreover, for any t ∈ [0, 1], let Φt : S −→ Dθ,η be the function defined by Φt(s) := Φ(t, s). Its
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image is simply connected since S is simply connected and Φt is analytic. Thus A ◦Φt, which is
locally analytic, extends to an analytic function on S by the Monodromy Theorem.

Let us denote by h the holomorphic function on S defined by

h(s) := A ◦ Φ(0, s)−A ◦ Φ(1, s)

for any s ∈ S.
For any s ∈ S and any t ∈ [0, 1] we have

‖Φ(t, s)‖α = |s‖|ϕ(t)‖α
and

dα
(
Φ(t, s), θ−1(0)

)
= |s|dα

(
ϕ(t), θ−1(0)

)
.

Let us set

K :=
1

2
min
t∈[0,1]

dα
(
Φ(t, s), θ−1(0)

)
‖Φ(t, s)‖α

=
1

2
min
t∈[0,1]

dα
(
ϕ(t), θ−1(0)

)
‖ϕ(t)‖α

> 0.

Thus for any s belonging to the domain S ∩ {|s| < KaC}, we have Φ(t, s) ∈ Dθ,C,a,η. Since
Φ(t, s) ∈ Dθ,C,a,η and A is analytic on Dθ,C,a,η, then A ◦ Φ(0, s) = A ◦ Φ(1, s), thus h(s) = 0 on
S ∩ {s < KaC}. Since h is holomorphic on the connected domain S, then h ≡ 0 on S. This
contradicts the assumption. Hence A is analytic on Dθ,η. �

Then we can extend Proposition 7.3 to the formal setting over any field of characteristic zero:

Theorem 7.5. Let k be a field of characteristic zero and α ∈ Rn>0. Let P (Z) ∈ kJxK[Z] be
a monic polynomial whose discriminant is equal to δu where δ ∈ k[x] is (α)-homogeneous and
u ∈ kJxK is a unit. If P (Z) factors as P (Z) = P1(Z) · · ·Ps(Z) where the Pi(Z) are irreducible
monic polynomials of kJxK[Z], then the Pi(Z) remain irreducible in Vα[Z].

Proof. Let us prove this theorem when P (Z) ∈ C{x}[Z]. If α ∈ Nn, this is exactly Proposition
7.3. If α /∈ Nn, then by Lemma 6.6, any decomposition P (Z) = Q1(Z) · · ·Qr(Z) in Vα[Z] is also
a decomposition in Vα′ [Z] for α′ ∈ Rel(α, q, ε) where ε is small enough. Then every irreducible
monic factor of Qi(Z) in Vα′ [Z] is in C{x}[Z] by Proposition 7.3, thus Qi(Z) ∈ C{x}[Z] for every
i. In particular since the Qi(Z) are irreducible in Vα[Z] then they are irreducible polynomials
of C{x}[Z].

Now let us consider the general case. Let

P (Z) = Zd + ad−1(x)Zd−1 + · · ·+ a0(x)

be a polynomial satisfying the hypothesis of the theorem with ak(x) ∈ kJxK for 0 ≤ k ≤ d − 1.
Since P (Z) is defined over a field extension of Q generated by countably many elements and
since such a field extension embeds in C, we may assume that C is a field extension of k and
P (Z) ∈ CJxK.

The discriminant of P (Z) is a polynomial depending on the coefficients a0(x), . . . , ad−1(x)
that we denote by D(a0(x), . . . , ad−1(x)). Let

R(A0, . . . , Ad−1, U) := D(A0, . . . , Ad−1)− δ(x)U ∈ C[x][A0, . . . , Ad−1, U ].

Then R(a0(x), . . . , ad−1(x), u(x)) = 0.
On the other hand, saying that P (Z) factors as P = P1 · · ·Ps is equivalent to

∃b1(x), . . . , br(x) such that ai(x) = Ri(b1(x), . . . , br(x)) ∀i

for some polynomials Ri(B1, . . . , Br) ∈ Q[B1, . . . , Br], 0 ≤ i ≤ d−1 (these Ri are the coefficients
of Zi in the product P1(Z) · · ·Ps(Z) and the bj are the coefficients of the Pk(Z)).
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By Artin Approximation Theorem [Art], for any integer c > 0 there exist convergent power
series

a0,c(x), . . . , ad−1,c(x), uc(x), b1,c(x), . . . , br,c(x) ∈ C{x}
such that

(15) R(a0,c(x), . . . , ad−1,c(x), uc(x)) = 0,

(16) ai,c(x)−Ri(b1,c(x), . . . , br,c(x)) = 0 for 0 ≤ i ≤ d− 1

and
ak,c(x)− ak(x), uc(x)− u(x), bl,c(x)− bl(x) ∈ (x)c

for 0 ≤ k ≤ d, 1 ≤ l ≤ r. Set
P(c)(Z) := Zd + ad−1,c(x)Zd−1 + · · ·+ a0,c(x).

Then P(c)(Z) factors as

P(c)(Z) = P1,(c)(Z) · · ·Ps,(c)(Z)

in C{x}[Z] because of Equation (16) (the coefficients of the Pi,c(Z) are the bk,c) , and

Pi,(c)(Z)− Pi(Z) ∈ (x)ckJxK[Z]

for 1 ≤ i ≤ s. Moreover the discriminant of P(c)(Z) is of the form δ(x)u(c) where u(c) is a
unit in C{x} if c ≥ 1 by Equation (15). Since Pi(Z) is irreducible in kJxK[Z], then Pi,(c)(Z) is
irreducible in kJxK[Z] for all i for c large enough (let us say for c ≥ c0). Moreover we can remark
that να(a) ≥ mini{αi} ord(a) for any a ∈ kJxK, thus να(bk,c(x)− bk(x)) ≥ mini{αi}c .

Let c ≥ c0 and let us assume that Pi,(c)(Z) is not irreducible in Vα[Z]. Thus it is the product
of two monic polynomials: let us say

Pi,(c)(Z) = Pi,(c),1(Z)Pi,(c),2(Z)

with Pi,(c),1(Z), Pi,(c),2(Z) ∈ Vα[Z] and degZ(Pi,(c),k(Z)) > 0 for k = 1, 2. In fact by Theorem
6.18 we may assume that Pi,(c),1(Z), Pi,(c),2(Z) ∈ VC{x}

α [Z]. By Proposition 7.3 we see that
Pi,(c),1(Z), Pi,(c),2(Z) ∈ C{x}[Z], and by Proposition 7.6 Pi,(c)1(Z), Pi,(c),2(Z) ∈ L{x}[Z] where
L is a subfield of C which is finite over k. Thus L = k[γ] by the Primitive Element Theorem
where γ is a homogeneous element of degree 0 with respect to να by Example 3.19. But we
have Vα

⋂
k[γ] = k. Thus Pi,(c),1(Z), Pi,(c),2(Z) ∈ k{x}[Z] ⊂ kJxK[Z] which contradicts the

assumption that Pi,(c) is irreducible in kJxK[Z]. Thus Pi,(c)(Z) is irreducible in Vα[Z]. Hence, by
Corollary 4.14, Pi(Z) is irreducible in Vα[Z] since να(bk,c(x)− bk(x)) increases at least linearly
with c.

�

The next proposition is a generalization of a result of S. Cutkosky and O. Kashcheyeva [CK]
(see also Proposition 1 [AM]) and we will use it to prove Theorem 7.7. It is again an application
of Theorem 5.12.

Proposition 7.6. Let k −→ k′ be a characteristic zero field extension. Let f ∈ k′JxK be algebraic
over kJxK and let L be the field extension of k generated by all the coefficients of f . Then k −→ L
is a finite field extension.

Proof. Let α ∈ Rn>0 such that dimQ(Qα1 + · · · + Qαn) = n. By Theorem 5.12 the roots of the
minimal polynomial of f are in Vα[〈γ1, . . . , γn〉] for some homogeneous elements γ1, . . . , γn with
respect to να. Let us denote by V ′α the ring defined in Definition 5.1 and Lemma 5.5 where k is
replaced by k′. Then k′JxK and Vα[〈γ1, . . . , γn〉] are subrings of V ′α[〈γ1, . . . , γn〉]. Thus by unicity
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of the roots of the minimal polynomial of f we have that f ∈ Vα[〈γ1, . . . , γn〉]. By Example 3.16
the homogeneous elements γi may be written as γi = cix

βi where ci is algebraic over k′ (and so
over k) and βi ∈ Qn for 1 ≤ i ≤ n.

By expanding f either as a formal power series of k′JxK, f =
∑
i bi(x) where bi(x) ∈ k′[x] is

a (α)-homogeneous polynomial for any i, either as an element of Vα[〈γ1, . . . , γn〉],

f =
∑
i

ai(x)

δ(x)m(i)
γ
k1(i)
1 ...γkn(i)

n ,

and by identifying the homogeneous terms of same valuation (which are monomials by Example
3.16), we obtain a countable number of relations of the following form:

(17) b(x)δm(x) =
∑

an1,...,ns(x)γn1
1 ...γnnn

where b(x) (corresponding to the bi(x)), an1,...,ns(x) (corresponding to the ai(x)) and δ are
monomials, b(x) ∈ k′[x], an1,...,ns(x) ∈ k[x], m ∈ N, and the sum is finite. By dividing Equality
(17) by xβ for β well chosen, we see that the coefficient of b(x) is in k[c1, . . . , cn] and L is a
subfield of k[c1, . . . , cn]. �

We can strengthen Theorem 7.5 as follows:

Theorem 7.7. Let α ∈ Rn>0 and let P (Z) ∈ kJxK[Z] be a monic polynomial such that its
discriminant ∆ = δu where δ ∈ k[x] is (α)-homogeneous and u ∈ kJxK is a unit. Let us set
N := dimQ(Qα1 + · · ·+Qαn). Then there exist γ1, . . . , γN integral homogeneous elements with
respect to να and a (α)-homogeneous polynomial c(x) ∈ k[x] such that the roots of P (Z) are in

1
c(x)k

′JxK[γ1, . . . , γN ] where k −→ k′ is finite.

Remark 7.8. This result shows that for a given root z of the polynomial P (Z) the other roots
of P (Z) are obtained from z by the action of the elements of the Galois groups of the elements
γ1, . . . , γN on z. For instance if α ∈ Nn (so N = 1 – we can always assume this by Lemma 6.4),
then the Galois group of P (Z) is a quotient of the Galois group of the minimal polynomial of
γ1, i.e., the Galois group of one weighted homogeneous polynomial.

Proof of Theorem 7.7. If Q(Z) is a monic polynomial dividing P (Z) in kJxK[Z], then the discrim-
inant of Q(Z) divides the discriminant of P (Z). Thus we may assume that P (Z) is irreducible.

We will consider three cases: first the case where the coefficients of P (Z) are complex analytic
with α ∈ Nn, then with α ∈ Rn>0, and finally the general case.
• Let us assume that α ∈ Nn and that P (Z) ∈ C{x}[Z]. By Theorem 5.12 the roots of P (Z)

are of the form ∑
i1,...,is

Ai1,...,isγ
i1
1 · · · γiss

where γ1, . . . , γs are integral homogeneous elements with respect to να and Ai1,...,is ∈ K
C{x}
α for

any i1, . . . , is. We may even choose s = 1 by Proposition 3.28, but we treat here the general
case s ≥ 1 that will be used in the sequel.

We replace γ1, . . . , γs by other integral homogeneous elements with respect to να as follows:
let us denote by γ1,1 := γ1, . . . , γ1,q1 the conjugates of γ1 over Kn. If γ2 /∈ Kn[γ1,1, . . . , γ1,q1 ] we
denote by γ2,1 := γ2, . . . , γ2,q2 its conjugates over Kn[γ1,1, . . . , γ1,q1 ] and so on. So for 1 ≤ l ≤ s,
ql denotes the degree of the minimal polynomial of γl over Kn[γi,j ]1≤i<l,1≤j≤qi , and for 1 ≤ l ≤ s,
γl,1, . . . , γl,ql denote the conjugates of γl = γl,1 over Kn[γi,j ]1≤i<l,1≤j≤qi . Then we may assume
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that the roots of P (Z) are of the form∑
0≤i1<q1···
0≤is<qs

Ai1,...,isγ
i1
1,j1
· · · γiss,js

where Ai1,...,is ∈ K
C{x}
α , να

(
Ai1,...,isγ

i1
1,j1
· · · γiss,js

)
≥ 0 for any i1, . . . , is, and 1 ≤ ji ≤ qi for any

i.
Let us assume that P (Z) factors into a product of monic irreducible polynomials as

P (Z) = P1(Z) · · ·Pr(Z)

in KC{x}
α [γi,j ]1≤i<s,1≤j≤qi [Z]. We write the roots of P1(Z) as zj =

qs−1∑
i=0

Biγ
i
s,j where

Bi ∈ KC{x}
α [γi,j ]1≤i<s,1≤j≤qi

for all i. Then the roots of the other Pl(Z) are
qs−1∑
i=0

B′iγ
i
s,j where (B′0, . . . , B

′
qs−1) is the image

(B0, . . . , Bqs−1) by a KC{x}
α -automorphism of KC{x}

α [γi,j ]1≤i<s,0≤j<qi . If the roots of P1(Z) sat-
isfy the theorem, then we see that the roots of the other Pl(Z) will also satisfy the theorem since
they are conjugates of the roots of P1(Z) by KC{x}

α -automorphisms of KC{x}
α [γi,j ]1≤i<s,0≤j<qi .

Thus it is enough to prove the result for the roots of P1(Z). We have

(
z1z2

...zqs

)
=


1 γs,1 · · · γqs−1

s,1

1 γs,2 · · · γqs−1
s,2

...
...

...
...

1 γs,qs · · · γqs−1
s,qs


(

B0B1

...Bqs−1

)
.

Let us set M :=


1 γs,1 · · · γqs−1

s,1

1 γs,2 · · · γqs−1
s,2

...
...

...
...

1 γs,qs · · · γqs−1
s,qs

. The determinant of M is a homogeneous element

c with respect to να where να(c) = 1
2qs(qs − 1)να(γs). Thus we have

Bi =
1

c
(Ri,1(γs,1, . . . , γs,qs)z1 + · · ·+Ri,s(γs,1, . . . , γs,qs)zqs)

where the Ri,j are polynomials with coefficients in Q and the element Ri,j(γs,1, . . . , γs,qs) is
homogeneous with respect to να. By multiplying c and

Ri,1(γs,1, . . . , γs,qs)z1 + · · ·+Ri,s(γs,1, . . . , γs,qs)zqs

by the conjugates of c over k[x] we may assume that c = c(x) ∈ k[x] is a (α)-homogeneous
polynomial. The zi and the γs,j are locally analytic on Dθ,η := B(0, η)\θ−1(0) and bounded
near the origin, where {θ = 0} contains the discriminant locus of P (Z) and of the minimal
polynomials of the γi and η is small enough. Thus c(x)Bi is locally analytic onDθ,η for 1 ≤ i ≤ qs
and is bounded near the origin. Moreover c(x)Bi is algebraic over kJxK since the gs,j and the
zk are algebraic over kJxK. By induction on s (we replace z1, . . . , zqs by c(x)B0, . . . , c(x)Bqs−1

- here we just used the fact that the roots of P (Z) are algebraic over kJxK and locally analytic
over a domain of the form Dθ,η) we see that there exists a (α)-homogeneous polynomial c(x)
such that c(x)Ai is locally analytic on Dθ,η and bounded near the origin for any i := (i1, . . . , is).
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Since c(x)Ai ∈ KC{x}
α and it is bounded near the origin, we see that c(x)Ai ∈ VC{x}

α . Thus it
is analytic on Dθ,C,a,η for C, a and η well chosen (see Lemma 7.2). Hence by Lemma 7.4 it is
analytic on Dθ,η and since it is bounded near the origin, c(x)Ai ∈ C{x} for any i.
• Now let us consider any α ∈ Rn>0 and P (Z) ∈ C{x}[Z]. Then the roots of P (Z) are in

Vα[〈γ1, . . . , γs〉] for some integral homogeneous elements with respect to να, which we denote by
γ1, . . . , γs. Let us denote these roots by z1, . . . , zd. For any α′ ∈ Nn such that Relα ⊂ Relα′ ,
γ1, . . . , γs are integral homogeneous elements with respect to να′ . Thus, for any ε > 0 small
enough (say ε < ε0), for any q ∈ N and any α′ ∈ Rel(α, q, ε), z1, . . . , zd ∈ Vα′ [〈γ1, . . . , γs〉] by
Proposition 6.6. Moreover, by the previous case, we see that

∀ε ∈]0, ε0[, ∀q ∈ N, ∀α′ ∈ Rel(α, q, ε),

∃cα′(x) an (α′)-homogeneous polynomial such that

cα′(x)z1, . . . , cα′(x)zd ∈ C{x}[γ1, . . . , γs].

Moreover we see that that cα(x) may be chosen as being the product of the determinants of
Vandermonde matrices as M depending only on γ1, . . . , γs, thus cα′(x) does not depend on α′.
Let us denote c(x) := cα′(x). Since c(x) is a (α′)-homogeneous polynomial for all α′ ∈ Rel(α, q, ε)
then c(x) is a (α)-homogeneous polynomial. This proves the result.
• Now let us consider the general case, α ∈ Rn>0 and P (Z) ∈ kJxK[Z] where k is a field of

characteristic zero.
Let us write P (Z) = Zd + ad−1(x)Zd−1 + · · ·+ a0(x). Exactly as in the proof of Theorem 7.5

we may assume that C is a field extension of k. Let us use the notations of the proof of Theorem
7.5. Let

R(A0, . . . , Ad−1, U) := D(A0, . . . , Ad−1)− δ(x)U ∈ C[x][A0, . . . , Ad−1, U ]

where D is the universal discriminant of a monic polynomial of degree d. Then

R(a0(x), . . . , ad−1(x), u(x)) = 0.

By Artin Approximation Theorem [Art], for any integer c > 0, there exist convergent power
series a0,c(x), . . . , ad−1,c(x), uc(x) ∈ C{x} such that

(18) R(a0,c(x), . . . , ad−1,c(x), uc(x)) = 0,

and
ak,c(x)− ak(x), uc(x)− u(x) ∈ (x)c for 0 ≤ k ≤ d.

Let P(c)(Z) := Zd + ad−1,c(x)Zd−1 + · · · + a0,c(x). Then P(c)(Z) is irreducible for c large
enough (say c ≥ c0). Moreover the discriminant of P(c)(Z) is of the form δ(x)u(c) where u(c)

is a unit in C{x} if c ≥ 1 by Equation (18). By the previous case, the roots of P(c)(Z) are in
1

cc(x)C{x}[γ1,c, . . . , γN,c] where γ1,c, . . . , γN,c are integral homogeneous elements with respect
to να and cc(x) is a (α)-homogeneous polynomial. By Proposition 4.17 and the previous cases,
we may assume that the γi,c does not depend on c, thus let us denote γi,c by γi. Moreover
cc(x) may be chosen as being the product of the determinants of Vandermonde matrices as M
depending only on γ1, . . . , γs, thus cc(x) does not depend on c. Let us denote by c(x) this
common (α)-homogeneous polynomial.

Thus, when c goes to infinity, we see that the roots of P (Z) are in 1
c(x)CJxK[γ1, . . . , γN ]. Such

a root has the form
∑
i1,...,iN

Ai1,...,iNγ
i1
1 · · · γ

iN
N where ik runs from 0 to qk − 1. In this case

c(x)Ai1,...,iN ∈ CJxK is algebraic over kJxK, thus c(x)Ai1,...,iN ∈ k′JxK where k −→ k′ is finite by
Proposition 7.6. Thus the roots of P (Z) are in 1

c(x)k
′JxK[γ1, . . . , γN ].

�
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In the case where the αi are linearly independent over Q, we can choose c(x) = 1. This is
exactly the Abhyankar-Jung Theorem:

Corollary 7.9 (Abhyankar-Jung Theorem). Let P (Z) ∈ kJxK[Z] be a monic polynomial whose
discriminant has the form xβu(x) where β ∈ Nn and u(0) 6= 0. Then there exist an integer q ∈ N
and a finite field extension k −→ k′ such that the roots of P (Z) are in k′Jx

1
q

1 , . . . , x
1
q
n K.

Proof. By the previous theorem applied to any α ∈ Rn>0 satisfying dimQ(Qα1 + · · ·+Qαn) = n,

the roots of P (Z) are in 1
xγ k

′Jx
1
q

1 , . . . , x
1
q
n K for some β ∈ Nn, q ∈ N and k −→ k′ a finite field

extension. Since the discriminant of any monic factor of P (Z) in k′Jx1, . . . , xnK[Z] divides the
discriminant of P (Z), we may assume that P (Z) is irreducible in k′Jx1, . . . , xnK[Z], thus we
assume that k′ = k.

Let z be a root of P (Z) and let us denote by NP(z) its Newton polyhedron. Then

NP(z) ⊂ −γ + Rn≥0.

Let us assume that NP(z) 6⊂ Rn≥0. This means that there exists γ′ ∈ NP(z) such that one its
coordinates, let us say γ′n, is negative. But since z is a root of P (Z) that is a monic polynomial
with coefficients in kJxK then να(z) ≥ 0 for any α ∈ Rn>0. But in this case there exists α ∈ Rn>0

such that 〈α, γ′〉 < 0 which is a contradiction. Thus NP(z) ⊂ Rn≥0 which proves the corollary. �

Let us finish this part by giving a few results which are analogous to the fact that if z ∈ C{t 1
k }

for some k ∈ N, t being a single variable, then its minimal polynomial over CJtK is a polynomial
with convergent power series. The next result can also be seen as the converse of Theorem 6.18:

Corollary 7.10. Let P (Z) ∈ kJxK[Z] be an irreducible monic polynomial whose discriminant
has the form δ(x)u(x), where δ(x) is a (α)-homogeneous polynomial, α ∈ Rn>0, and u(x) ∈ kJxK
is invertible. Let us assume that P (Z) has a root in VRα [〈γ1, . . . , γs〉] where R is an excellent
Henselian local ring satisfying Properties (A), (B) and (C) and γ1, . . . , γs are homogeneous
elements with respect to να. Then the coefficients of P (Z) are in R.

Proof. By Theorem 7.5, P (Z) is irreducible in Vα[Z]. Let

z ∈ VRα [〈γ1, . . . , γs〉]
be a root of P (Z) as given in the statement. We can write z =

∑
Ai1,...,isγ

i1
1 · · · γiss where the

sum is finite and Ai1,...,is ∈ VRα . Then the others roots of P (Z) are of the form∑
Ai1,...,isσ(γ1)i1 · · ·σ(γs)

is

where σ is a Kalg
να -automorphism of Kalg

ν . Thus all the roots of P (Z) are in VRα . Hence the
coefficients of P (Z) are in VRα ∩ kJxK = R. �

Definition 7.11. Let k be a valued field and let σ be a strongly convex rational cone of Rn
containing Rn≥0. There exists an invertible n×n matrixM = (mi,j)1≤i,j≤n such thatMγ ∈ Rn≥0

for any γ ∈ σ. We denote by k{xβ , β ∈ σ ∩Zn} the subring of kJxβ , β ∈ σ ∩ZnK of power series
f(x) such that f(τ(x)) ∈ k{x} where τ is the map defined by

(τ(x1), . . . , τ(xn)) = (x
m1,1

1 · · ·xm1,n
n , . . . , x

mn,1
1 · · ·xmn,nn ).

By Example 6.17 k{xβ , β ∈ σ ∩ Zn} is a subring of Vk{x}
α,δ for any α such that 〈α, γ〉 > 0 for all

γ ∈ σ\{0}.

Let us mention the following theorem proven by A. Gabrielov and J.-Cl. Tougeron by using
transcendental methods (they use in a crucial way the maximum principle for analytic functions):
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Theorem 7.12. [Ga][To] Let P (Z) ∈ CJxK[Z] be an irreducible monic polynomial. If one root
of P (Z) is in C{xβ , β ∈ σ ∩ 1

qZ
n} where σ is a strongly convex rational cone and q ∈ N, then

P (Z) ∈ C{x}[Z].

Using what we have done we extend this theorem to any algebraically closed valued field of
characteristic zero under the assumption that the discriminant of P (Z) is close to be weighted
homogeneous. First we need the following lemma:

Lemma 7.13. Let P (Z) ∈ kJxK[Z] be an irreducible monic polynomial where k is a characteristic
zero algebraically closed valued field. Let α ∈ Rn>0 such that dimQ(Qα1 + · · · + Qαn) = n and
P (Z) is irreducible in Vα[Z]. By Theorem 6.9, the roots of P (Z) are in kJxβ , β ∈ σ∩ 1

qZ
nK where

σ is a strongly convex rational cone such that 〈α, γ〉 > 0 for any γ ∈ σ, γ 6= 0, and q ∈ N. If one
root of P (Z) is in k{xβ , β ∈ σ ∩ 1

qZ
n}, then the others roots of P (Z) are in k{xβ , β ∈ σ ∩ 1

qZ
n}

and P (Z) ∈ k{x}[Z].

Proof. Let z ∈ k{xβ , β ∈ σ ∩ 1
qZ

n} be a root of P (Z). For any ξ = (ξ1, . . . , ξn) vector of q-th
roots of unity let us denote by zξ the element of k{xβ , β ∈ σ ∩ 1

qZ
n} obtain from z by replacing

(x
1
q

1 , . . . , x
1
q
n ) by (ξ1x

1
q

1 , . . . , ξnx
1
q
n ). In particular zξ ∈ k{xβ , β ∈ σ ∩ 1

qZ
n}. Then for any ξ, zξ is

a root of P (Z). Let I be a subset of Unq , where Uq is the group of q-th root of unity, such that

zξ 6= zξ′ for any ξ, ξ′ ∈ I, ξ 6= ξ′,

and ∀ξ ∈ Unq , ∃ξ′ ∈ I, zξ′ = zξ.

Let us set Q(Z) =
∏
ξ∈I(Z − zξ). Then Q(Z) is a monic polynomial of Vα[Z] whose roots are

roots of P (Z). Thus it divides P (Z) in Vα[Z] hence, since P (Z) is irreducible, Q(Z) = P (Z).
Thus the other roots of P (Z) are in k{xβ , β ∈ σ ∩ 1

qZ
n} and P (Z) ∈ k{x}[Z]. �

Corollary 7.14. Let P (Z) ∈ kJxK[Z] be an irreducible monic polynomial of degree d where k is
a characteristic zero algebraically closed valued field. Let α ∈ Rn>0 such that

dimQ(Qα1 + · · ·+ Qαn) = n.

Let us assume that there exists an irreducible monic polynomial Q(Z) ∈ kJxK[Z] of degree d
whose discriminant ∆Q is a monomial times a unit and such that

να(P (Z)−Q(Z)) ≥ d

2
να(∆Q).

Let us assume moreover that one of the roots of P (Z) is in k{xβ , β ∈ σ∩ 1
qZ

n} for some strongly
convex rational cone σ, where 〈α, γ〉 > 0 for any γ ∈ σ\{0}, and q ∈ N. Then the coefficients of
P (Z) are in k{x}.

Proof. By Remark 4.15 and Proposition 4.14, the polynomial P (Z) is irreducible in Vα[Z]. Thus
we can apply the previous Lemma. �

8. Diophantine Approximation

Here we give a necessary condition for an element of K̂ν to be algebraic over Kn:

Theorem 8.1. [Ro1][II] Let ν be an Abhyankar valuation and let z ∈ Kalg
ν . Then there exist

two constants C > 0 and a ≥ 1 such that∣∣∣∣z − f

g

∣∣∣∣
ν

≥ C|g|aν ∀f, g ∈ kJxK.
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Proof. Let P (Z) := a0Z
d + a1Z

d−1 + · · · + ad ∈ Kn[Z] be an irreducible polynomial such that
P (z) = 0. Let h ∈ kJxK and set

Ph(Z) := hdad−1
0 P

(
Z

ha0

)
.

Then Ph(Z) = Zd + a1hZ
d−1 + a2a0h

2Zd−2 + · · · + ada
d−1
0 hd and zhad is a root of Ph(Z). It

is straightforward to check that z satisfies the theorem if and only if zhad does. Thus we may
assume that P (Z) is a monic polynomial and ν(z) > 0 by choosing h such that ν(h) is large
enough. Let us set Q(Z1, Z2) := Zd1P (Z2/Z1). By Theorem 3.1 [Ro1] there exist two constants
a ≥ d and b ≥ 0 such that

ord(Q(f, g)) ≤ amin{ord(f), ord(g)}+ b ∀f, g ∈ kJxK.

Moreover, by Izumi’s Theorem ([Iz], [Re], [ELS]), there exists a constant c ≥ 1 such that for all
f ∈ kJxK, ord(f) ≤ ν(f) ≤ c ord(f). Thus

ν(Q(f, g)) ≤ acmin{ν(f), ν(g)}+ bc ∀f, g ∈ kJxK.

Since P (Z) is irreducible in Kn[Z] and Kn is a characteristic zero field, P (Z) has no multiple
roots in V̂ν and we may write

P (Z) = R(Z)(Z − z)
where R(Z) ∈ V̂ν [Z] and R(z) 6= 0. Set r := ν(z). Let f, g ∈ kJxK with g 6= 0. Two cases may
occur: either

(19)
∣∣∣∣z − f

g

∣∣∣∣
ν

≥ e−r

either ν
(
z − f

g

)
> r. In the last case we have ν

(
f
g

)
= ν(z) > 0. In particular ν

(
R
(
f
g

))
≥ 0

and ν(f) > ν(g). Thus

(ac− d)ν(g) + bc ≥ ν
(
P

(
f

g

))
≥ ν

(
f

g
− z
)
.

Thus we have

(20) Aν(g) +B ≥ ν
(
f

g
− z
)

or
∣∣∣∣z − f

g

∣∣∣∣
ν

≥ e−B |g|ν

with A = ac− d and B = bc. Then (19) and (20) prove the theorem.
�

Example 8.2. Let σ := (−1, 1)R≥0 + (1, 0)R≥0 ⊂ R2. This is a rational strongly convex cone
of R2. Let f(x1, x2) be a power series, f(x1, x2) ∈ kJx1, x2K. Let us set

g(x1, x2) :=

∞∑
i=0

(
x2

x1

)i!
+ f(x1, x2) ∈ kJxβ , β ∈ σ ∩ ZK.

Then g ∈ Vα for any α ∈ R2
>0 such that α2 > α1. Moreover

να

(
g − f −

n∑
i=0

(
x2

x1

)i!)
= (n+ 1)!(α2 − α1) =

α2 − α1

α1
(n+ 1)να(xn!

1 ).

Thus there do not exist constants A and B such that

Aνα(xn!
1 ) +B ≥ να

(
g − f −

n∑
i=0

(
x2

x1

)i!)
∀n ∈ N.
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Hence g(x1, x2) is not algebraic over F2 by Theorem 8.1.

Notations

• να is the monomial valuation defined by να(xi) := αi for any i (cf. Example 2.4).
• Vν is the valuation ring associated to ν.
• V̂ν is the completion of Vν .
• Kn is the fraction field of kJxK and Vν .
• K̂ν is the fraction field of V̂ν .
• GrνVν is the graded ring associated to Vν (cf. Part 3).
• V alg

ν is the algebraic closure (or the Henselization) of Vν in V̂ν (see Lemma 2.10).
• Kalg

ν is the fraction field of V alg
ν .

• V fg
ν is the subring of V̂ν whose elements have ν-support included in a finitely generated

sub-semigroup of R≥0 (cf. Definition 3.14).
• Kfg

ν is the fraction field of V fg
ν .

• For any α ∈ Rn>0, a (α)-homogeneous polynomial is a weighted homogeneous polynomial
for the weights α1, . . . , αn (see Definition 2.8).

• A[〈γ1, . . . , γs〉] is the valuation ring associated to A[γ1, . . . , γs] when A = V̂ν , V fg
ν or V alg

ν

(cf. Definition 3.26).
• V ν is the direct limit of the rings V̂ν [〈γ1, . . . , γs〉] where the γi are homogeneous elements

with respect to ν (cf. Definition 3.27).
• Kν is the fraction field of V ν .
• V alg

ν is the direct limit of the rings V alg
ν [〈γ1, . . . , γs〉] where the γi are homogeneous

elements with respect to ν.
• Kalg

ν is the fraction field of V
alg

ν .
• V fg

ν is the direct limit of the rings V fg
ν [〈γ1, . . . , γs〉] where the γi are homogeneous elements

with respect to ν.
• Kfg

ν is the fraction field of V
fg

ν .
• Vα,δ is the subring of V fg

να of elements of the form
∑
i∈Λ

ai
δm(i)

where Λ ⊂ R is a finitely

generated semigroup, να
(

ai
δm(i)

)
= i and i 7−→ m(i) is bounded by an affine function (see

Definition 5.1).
• Vα is the direct limit of the Vα,δ over all the (α)-homogeneous polynomials δ. It is a

valuation ring (cf. Proposition 5.5).
• Kα is the fraction field of Vα (cf. Definition 5.6).
• Kα is the direct limit of the fields K[〈γ1, . . . , γs〉] where the γi are homogeneous elements

with respect to ν (cf. Definition 5.6).
• VRα,δ is the subring Vα,δ whose elements are in the Henselian ring R after a suitable

transform (cf. Definition 6.15).
• VRα is the direct limit of the VRα,δ over all the (α)-homogeneous polynomials δ.
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THÉORÈME DE COMPARAISON POUR LES CYCLES PROCHES PAR UN
MORPHISME SANS PENTE

MATTHIEU KOCHERSPERGER

Résumé. Le but de cet article est de démontrer le théorème de comparaison entre les cycles
proches algébriques et topologiques associés à un morphisme sans pente. Nous obtenons en
particulier que dans le cas d’une famille de fonctions holomorphes sans pente, l’itération
des isomorphismes de comparaison des cycles proches associés à chacune de ces fonctions ne
dépend pas de l’ordre d’itération.

Abstract. The goal of this article is to prove the comparison theorem between algebraic
and topological nearby cycles of a morphism whitout slopes. We prove in particular that for
a family of holomorphic functions whitout slopes, if we iterate comparison isomorphisms for
nearby cycles of each function the result is independent of the order of iteration.

1. Introduction

1.1. Théorème de comparaison pour une fonction. SoitX une variété analytique complexe
et f : X Ñ C une fonction holomorphe. Soit pF ,Mq la donnée d’un faisceau pervers sur X et
d’un DX -module holonome régulier associés par la correspondance de Riemann-Hilbert, c’est-à-
dire F “ DRXpMq. Le foncteur cycles proches topologiques Ψf de P. Deligne associe à F un
faisceau pervers à support f´1p0q muni d’un automorphisme de monodromie. Prolongeant une
construction de B. Malgrange [Mal83], M. Kashiwara introduit dans [Kas83] le foncteur cycles
proches algébriques Ψalg

f (voir aussi [MM04]) qui associe à M un DX -module holonome régulier
à support f´1p0q muni d’un automorphisme de monodromie. Ces deux foncteurs sont reliés par
un isomorphisme de comparaison qui commute à la monodromie :

(1) Ψf pFq » DRXΨalg
f pMq.

1.2. Théorème de comparaison pour plusieurs fonctions. Soit maintenant p ě 2 et
f1, ..., fp des fonctions holomorphes sur X. Notons f “ pf1, ..., fpq : X Ñ Cp le morphisme
associé. En général, les foncteurs Ψfi pi “ 1, ..., pq ne commutent pas entre eux, de même que les
foncteurs Ψalg

fi
.

Dans [Mai13] Ph. Maisonobe montre que sous la condition sans pente pour le couple
pf , carpFqq on peut définir les foncteurs cycles proches topologiques et algébriques associés à
f . Il montre alors l’existence d’isomorphismes

ΨfF » Ψfσp1q ...ΨfσppqF
et

Ψalg
f M » Ψalg

fσp1q
...Ψalg

fσppq
M

pour toute permutation σ de t1, ..., pu. Ceci assure la commutativité des foncteurs cycles proches
associés aux fonctions fi pour 1 ď i ď p. Dans l’introduction Ph. Maisonobe mentionne que, par

1991 Mathematics Subject Classification. 32S40.
Key words and phrases. Monodromie, cycles proches, modules multispécialisables, morphismes sans pente,

V -multifiltration, théorème de comparaison.
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itération de l’isomorphisme (1), ses résultats permettent d’obtenir pour tout σ des isomorphismes
de comparaison

(2) ΨfF » Ψfσp1q ...ΨfσppqpFq » DRXΨalg
fσp1q

...Ψalg
fσppq

pMq » DRXΨalg
f M.

Dans cet article, nous montrerons (corollaire 3.7) que cet isomorphisme ne dépend pas de
la permutation σ. Pour ce faire, nous exhibons un morphisme de comparaison entre ΨfF et
DRXΨalg

f M et nous montrons qu’il coïncide avec les isomorphismes de comparaison itérés (2)
pour toute permutation σ.

1.3. Un exemples de morphisme sans pente. On appelle singularité quasi-ordinaire un
germe d’espace analytique réduit admettant une projection finie sur Cp dont le lieu de ramifi-
cation est contenu dans un diviseur à croisements normaux. Si S est une hypersurface de Cn
à singularité quasi-ordinaire définie par une fonction holomorphe f , il existe une projection
π : Cn Ñ Cn´1 quasi-ordinaire pour S. Le faisceau ΨfCCn est pervers et dans cette situation le
couple pπ, carpΨfCCnqq est sans pente.

Les singularités quasi-ordinaires apparaissent en particulier dans la méthode de Jung de ré-
solution des surfaces singulières (voir [Lip75]).

Remerciements. Cet article a été écrit dans le cadre de ma thèse sous la direction de Claude
Sabbah que je remercie vivement pour ses nombreux conseils durant l’élaboration de ce travail.
Je remercie Philippe Maisonobe pour l’intérêt qu’il a porté à ce travail. Je remercie également
le rapporteur pour ses remarques constructives.

2. V -multifiltration canonique et foncteurs cycles proches

Dans cette section on définit les cycles proches algébriques à l’aide de la V -multifiltration
canonique d’un DX -module sans pente. On démontre des propriétés de cette multifiltration
ainsi que de ses gradués. On définit ensuite les cycles proches topologiques associés à plusieurs
fonctions. Enfin on introduit les fonctions de classe de Nilsson à plusieurs variables et on en
montre des propriétés utilisées dans la section suivante pour établir un lien entre cycles proches
algébriques et cycles proches topologiques.

2.1. V -multifiltration canonique d’un DX-module sans pente. On notera dans la suite
‚ dx :“ dimCX
‚ Bi :“ Bti
‚ Ei :“ tiBi
‚ x :“ px1, ..., xdX´pq
‚ 1i :“ p0, ..., 0, 1, 0, ..., 0q où le 1 est en position i.
‚ α :“ pα1, ..., αpq
‚ αI :“ pαiqiPI pour I Ă t1, ..., pu
‚ t :“ t1...tp
‚ ts :“ ts11 ...t

sp
p

‚ DX rss :“ DX rs1, ..., sps
‚ H “ tH1, ...,Hpu où les Hi sont des hypersurfaces lisses dont la réunion définit un

diviseur à croisements normaux. On se place ici dans le cas où il existe localement des
coordonnées px, t1, ..., tpq telles que

f : X Ñ Cp
px, t1, ..., tpq ÞÑ pt1, ..., tpq

et Hi “ f´1
i p0q.
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Définition 2.1. Notons, pour tout 1 ď i ď p, Ii l’idéal de l’hypersurface Hi et Ik :“
śp
i“1 I

ki
i .

Pour tout k P Zp et pour tout x P X on définit :

pVkDXqx :“ tP P DX,x | @m P Zp, P pIk`mx q Ă Ik`mx u,

ceci permet de définir une filtration croissante de DX indexée par Zp.
SoitM un DX -module cohérent. Une V -multifiltration U‚M deM est une filtration croissante

indexée par Zp satisfaisant à VkDX ¨ Uk1M Ă Uk`k1M pour tout k et k1 dans Zp. Une telle V -
multifiltration est bonne si elle est engendrée localement par un nombre fini de sections pmjqjPJ ,
c’est-à-dire que pour tout j P J il existe kj P Zp tel que pour tout k P Zp

UkM “
ÿ

jPJ

Vk`kjDX ¨mj .

Lorsque des inégalités entre nombres complexes apparaîtront, l’ordre considéré sera toujours
l’ordre lexicographique sur C, c’est-à-dire

x` iy ď a` ib ðñ x ă a ou px “ a et y ď bq.

En suivant [Mai13] on commence par donner les conditions pour qu’un couple pH,Mq soit
sans pente puis on définit la V -multifiltration de Malgrange-Kashiwara.

Définition 2.2. Soit M un DX -module cohérent.
(1) On dit que le couple pH,Mq estmultispécialisable sans pente si au voisinage de tout point

de X, il existe une bonne V -multifiltration U‚pMq de M et des polynômes bipsq P Crss
pour tout 1 ď i ď p tels que pour tout k P Zp, bipEi ` kiqUkM Ă Uk´1iM.

(2) On dit que le couple pH,Mq est multispécialisable sans pente par section si, pour toute
section locale m de M, il existe des polynômes bipsq P Crss pour tout 1 ď i ď p tels que
bipEiqm P V´1iDX ¨m.

Rappelons la proposition 1 de [Mai13] :

Proposition 2.3. Les deux définitions précédentes sont équivalentes et si la première est sa-
tisfaite pour une bonne V -multifiltration de M, elle l’est pour toute. On dit alors que le couple
pH,Mq est sans pente.

On fixe M un DX -module cohérent tel que le couple pH,Mq soit sans pente.

Définition 2.4. Le polynôme unitaire de plus bas degré vérifiant la propriété 1. de la définition
pour l’indice i est appelé polynôme de Bernstein-Sato d’indice i de la V -multifiltration U‚pMq,
on le note bi,U‚pMq.

Le polynôme unitaire de plus bas degré vérifiant la propriété 2. de la définition pour l’indice
i est appelé polynôme de Bernstein-Sato d’indice i de la section m, on le note bi,m.

Proposition 2.5. Soient, pour 1 ď i ď p, des sections σi : C{ZÑ C de la projection naturelle
C Ñ C{Z. Il existe une unique bonne V -multifiltration V σ‚ pMq de M telle que pour tout i les
racines de bi,V σ‚ pMq soient dans l’image de σi.

La démonstration de cette proposition et de la proposition 2.7 est identique à celle du théorème
1. de [Mai13].

Définition 2.6. On définit la multifiltration V‚pMq indexée par Cp et vérifiant :

@x P X, VαpMqx :“ tm PMx; si ě ´αi ´ 1, @si P b
´1
i,mp0q et 1 ď i ď pu.

Cette V -multifiltration est appelée V -multifiltration canonique ou V -multifiltration de Malgrange-
Kashiwara.
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Si on considère l’ordre partiel standard sur Cp

α ď β ðñ αi ď βi pour tout 1 ď i ď p

on peut définir
VăαpMq :“

ÿ

βăα

VβpMq

et
grαpMq :“ VαpMq{VăαpMq.

Soit I Ă t1, ..., pu et Ic son complémentaire, on définit

VăαI ,αIc pMq :“
ÿ

βIăαI

VβI ,αIc pMq.

Proposition 2.7. On a l’égalité des V -multifiltrations VpăαI ,αIc q`kpMq “ V
σăαI ,αIc
k pMq où

σăαI ,αIc est la section dont l’image est l’ensemble
"

a P Cp tel que ´αi ´ 1 ď ai ă ´αi @ i P I
c

et ´αi ´ 1 ă ai ď ´αi @ i P I

*

.

Il existe un ensemble fini A Ă r´1, 0rp tel que la V -multifiltration canonique soit indexée par
A` Zp. Ainsi la V -multifiltration canonique est cohérente.

Soit I Ă t1, ..., pu et J Ă Ic. Comme pour les DX -modules cohérents, on a une notion de
V HI
0I

DX -module multispécialisable sans pente le long des hypersurfaces HJ :“ pHiqiPJ .

Définition 2.8. Soit M un V HI
0I

DX -module cohérent et J Ă Ic, on note q :“ #J .
(1) On dit que le couple pHJ ,Mq est multispécialisable sans pente (ou spécialisable si q “ 1)

si au voisinage de tout point de X, il existe une bonne V -multifiltration U‚pMq de M
et des polynômes bipsq P Crss pour tout i P J tels que pour tout k P Zq,

bipEi ` kiqUkM Ă Uk´1iM.

(2) On dit que le couple pHJ ,Mq est multispécialisable sans pente par section (ou spéciali-
sable par section si q “ 1) si, pour toute section locale m de M, il existe des polynômes
bipsq P Crss pour tout i P J tels que bipEiqm P V HJ

´1i
pV HI

0I
DXq ¨m “ V´1iDX ¨m.

Remarque 2.9. Comme pour les DX -modules (proposition 2.3) les deux définitions sont équi-
valentes et si elle sont satisfaites on dira que le couple pHJ ,Mq est sans pente (ou spécialisable
si q “ 1). Les analogues des propositions 2.5 et 2.7 sont vraies pour les V HI

0I
DX -modules sans

pente.

Proposition 2.10. Soit I Ă t1, ..., pu et M un DX-module cohérent tel que le couple pH,Mq

soit sans pente. Alors le couple pHI ,Mq est sans pente et pour tout αI le couple pHIc , V
HI
αI Mq

est sans pente. De plus, pour I, J Ă t1, ..., pu disjoints, les V -multifiltrations de Malgrange-
Kashiwara satisfont à :

(3) VHIYHJ
αI ,αJ pMq “ VHI

αI pMq X VHJ
αJ pMq “ VHI

αI

`

VHJ
αJ pMq

˘

.

On a également l’analogue de [MM04, corollaire 4.2-7]

Proposition 2.11. Pour tout α P C et tout j P Ic, l’application M ÞÑ V
Hj
α pMq définit un

foncteur exact de la catégorie des V HI
0I

DX-modules spécialisables le long de Hj vers la catégorie
des V Hj0 pV HI

0I
qDX-modules.
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Sachant que la V -multifiltration canonique est indexée par A ` Zp avec A Ă r´1, 0rp fini,
quitte à renuméroter ces indices on peut la supposer indexée par Zp et appliquer la définition
B.3 de l’appendice B aux V -filtrations canoniques de M.

La condition sans pente s’interprète de manière naturelle comme une condition de compati-
bilité des V -filtrations relatives aux différentes hypersurfaces considérées.

Proposition 2.12. Si le couple pH,Mq est sans pente alors les filtrations V H1
‚ pMq, ..., V

Hp
‚ pMq

de M sont compatibles au sens de la définition B.3.

Démonstration. Soit α ă β P Cp et notons Iq :“ t1, ..., qu. On va construire par récurrence sur
l’entier p le p-hypercomplexe Xp correspondant à la compatibilité des sous-objets

V H1
α1
pV
HIp

βIp
Mq, ..., V Hpαp pV

HIp

βIp
Mq Ď V

HIp

βIp
M.

D’après la remarque B.2, deux filtrations sont toujours compatibles. Supposons construit le
q-hypercomplexe Xq. D’après la proposition 2.10 la propriété sans pente assure que les objets qui
apparaissent dans Xq sont des V

HIq

0Iq
DX -modules cohérents spécialisables le long de Hq`1. On

déduit alors de la proposition 2.11 que l’application de V Hq`1
αq`1 p.q et V

Hq`1

βq`1
p.q à de tels objets sont

deux foncteurs exacts munis d’un monomorphisme de foncteurs donné par l’inclusion naturelle
déduite de l’inégalité αq`1 ď βq`1. On applique alors ces deux foncteurs à Xq, la fonctorialité
fournit un pq ` 1q-hypercomplexe

0 // V Hq`1
αq`1 pX

qq
� � i // V Hq`1

βq`1
pXqq // Cokerpiq // 0.

C’est le pq ` 1q-hypercomplexe Xq`1 voulu. L’exactitude des différentes suites courtes provient
de l’exactitude des suite courtes de Xq, de l’exactitude des foncteurs V Hq`1-filtration ainsi que
de l’exactitude du foncteur Coker(.) appliqué à des inclusions (lemme du serpent). On utilise
également ici les identifications (3). Ceci nous donne par récurrence le p-hypercomplexe Xp.
En prenant alors la limite inductive des p-hypercomplexes Xp sur β P Cp on obtient le p-
hypercomplexe correspondant à la compatibilité des sous-objets

V H1
α1
pMq, ..., V Hpαp pMq ĎM.

Ceci étant vérifié pour tout α P Cp la proposition est démontrée. �

La proposition B.5 fournit le corollaire suivant

Corollaire 2.13. Si le couple pH,Mq est sans pente alors l’objet obtenu en appliquant succes-
sivement les gradués grHiαi par rapport aux V -filtrations canoniques V Hi‚ ne dépend pas de l’ordre
dans lequel on applique ces foncteurs et est égal à grαpMq.

Proposition 2.14. Soit M un DX-module cohérent tel que pH,Mq soit sans pente et soit
1 ď i ď p. Alors le DX-module Mp˚Hiq est cohérent et le couple pH,Mp˚Hiqq est sans pente.
De plus, pour tout α vérifiant αi ă 0, le morphisme naturel de V0DX-modules :

VαpMq Ñ VαpMp˚Hiqq

est un isomorphisme.

Démonstration. Comme pH,Mq est sans pente, M est spécialisable le long de Hi et on peut
appliquer [MM04, proposition 4.4-3] qui assure que Mp˚Hiq est cohérent, spécialisable le long
de Hi et que pour αi ă 0,

V Hiαi pMq Ñ V Hiαi pMp˚Hiqq

est un isomorphisme.
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Montrons que le couple pH,Mp˚Hiqq est sans pente. C’est un problème local, on peut supposer
que Hi “ tti “ 0u. Soit m1 une section de Mp˚Hiq, on a m1 “ m{ti

k où m est dans l’image de
M Ñ Mr1{tis et k P N. Le couple pH,Mq étant sans pente, pour tout 1 ď j ď p il existe un
polynôme non nul bjpsjq satisfaisant à

bjpEjqm P V´1j pDXqm.

On a alors

bjpEjqt
k
im

1 P V´1j pDXqtkim1

tki bjpEj ` δijkqm
1 P tki V´1j pDXqm1.

En divisant par tki on obtient, bjpEj ` δijkiqm
1 P V´1j pDXqm1, ce qui permet de conclure que

pH,Mp˚Hiqq est sans pente.
D’après la proposition 2.10 V Hiαi pMq et V Hiαi pMp˚Hiqq sont des V Hi0 DX -modules sans pente

le long de Htiuc donc, si α satisfait à αi ă 0, on a un isomorphisme

VαpMq » V
Htiuc

αtiuc

`

V Hiαi pMq
˘ „
ÝÑ V

Htiuc

αtiuc

`

V Hiαi pMp˚Hiqq
˘

» VαpMp˚Hiqq

ce qui conclut la démonstration de la proposition.
�

Corollaire 2.15. Soit M un DX-module cohérent tel que pH,Mq soit sans pente. Alors le DX-
module Mp˚pH1Y ...YHpqq est cohérent et le couple pH,Mp˚pH1Y ...YHpqqq est sans pente. De
plus pour tout α vérifiant αi ă 0 pour tout 1 ď i ď p, le morphisme naturel de V0DX-modules :

VαpMq Ñ VαpMp˚pH1 Y ...YHpqq

est un isomorphisme.

Démonstration. On effectue une récurrence sur le nombre d’hypersurfaces par rapport auxquelles
on localise M et le corollaire est une conséquence immédiate de la proposition précédente.

�

2.2. Gradués d’un DX-module sans pente et cycles proches algébriques. Ici on dé-
montre des propriétés des gradués de la V -multifiltration de Malgrange-Kashiwara et on définit
les cycles proches algébriques.

Proposition 2.16. Soit M un DX-module tel que pH,Mq soit sans pente. Pour tout β P C et
tout 1 ď i ď p, l’endomorphisme pEi ` β ` 1q de

Vβ,αtiuc pMq{Văβ,αtiuc pMq

est nilpotent.

Démonstration. Notons σ :“ σβ,αtiuc et bipsq le polynôme de Bernstein-Sato d’indice i de la
multifiltration correspondant à la section σ. Les racines de bi sont donc dans l’intervalle r´β ´
1,´βr. Soit ` la multiplicité de la racine ´β ´ 1 de bi. On pose bipsq “ b1ipsqps ` β ` 1q`. On
considère comme dans la preuve de [Kas83, Théorème 1] la V -multifiltration de M suivante :

UkpMq :“ V σk´1ipMq ` pEi ` ki ` β ` 1q`V σk pMq.

On peut montrer que c’est une bonne V -multifiltration, que ses polynômes de Bernstein-Sato
d’indice j ‰ i divisent ceux de V σ‚ et que son polynôme de Bernstein-Sato d’indice i divise
b1psqps` βq`. Les racines de b1psqps` βq` sont dans s ´ β ´ 1,´βs, par unicité la multifiltration
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U‚pMq est égale à la multifiltration V rσ
‚ pMq où rσ “ σăβ,αtiuc . On a donc U0pMq “ Văβ,αtiuc pMq

et on en déduit que pEi ` β ` 1q` annule

Vβ,αtiuc pMq{Văβ,αtiuc pMq.

�

Étant donnée la définition de grαpMq on déduit immédiatement de cette proposition le co-
rollaire suivant :

Corollaire 2.17. Soit M un DX-module tel que pH,Mq soit sans pente. Pour tout α P Cp et
tout 1 ď i ď p, l’endomorphisme pEi ` αi ` 1q de grαpMq est nilpotent.

Définition 2.18. Étant donné un couple pH,Mq sans pente, on définit les cycles proches algé-
briques de M relatifs à la famille d’hypersurfaces H de la manière suivante

ΨHM :“
à

αPr´1,0rp

grαpMq.

C’est un grV0 DX -modules cohérent. Or, si l’on note X0 :“
Ş

1ďiďpHi, on a

grV0 DX » DX0
rE1, ..., Eps.

Le corollaire 2.17 implique ainsi que ΨHM est un DX0
-module cohérent. Les cycles proches

algébriques sont munis d’endomorphismes de monodromie pour 1 ď i ď p

Ti :“ expp´2iπEiq.

La proposition suivante est une conséquence du corollaire 2.13

Proposition 2.19. Soit I Ă t1, ..., pu, on a alors un morphisme naturel, fonctoriel en M, de
grV0 DX-modules

ΨHMÑ ΨHI
pΨHIc

Mq

qui est un isomorphisme si le couple pH,Mq est sans pente.

Dans le cas général f : X Ñ Cp, l’inclusion du graphe de f permet de définir les cycles
proches algébriques.

Définition 2.20. Considérons le diagramme

X
if //

f

##

X ˆ Cp

π“pπ1,...,πpq

��
Cp.

où if est le graphe de f . Soit Hi :“ π´1
i p0q. D’après ce qui précède, si le couple pH, if`Mq est

sans pente, alors ΨH if`M est un DXˆ0-module cohérent à support tpx, 0q|fpxq “ 0u. On peut
le voir comme un DX -module cohérent à support f´1

p0q, on le note alors Ψalg
f M.

On déduit de la proposition 2.19 l’isomorphisme

Ψalg
f MÑ Ψalg

fI
pΨalg
fIc

Mq.
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2.3. Cycles proches topologiques. Ici on définit le foncteur cycles proches topologiques asso-
cié à une fonction f : X Ñ Cp et appliqué à la catégorie des complexes de faisceaux à cohomologie
C-constructible.

Définition 2.21. Considérons le diagramme suivant où les carrés sont cartésiens :

f´1p0q
i //

��

X

f

��

X˚
joo

f X˚

��

rX
poo

rf
��

t0u
i // Cp pC˚qp

joo ČpC˚qp.
poo

Ici X˚ “ X ´ F´1p0q avec F “ f1...fp et ČpC˚qp est le revêtement universel de pC˚qp.
Si F est un complexe de faisceaux à cohomologie C-constructible, on définit :

ΨfF :“ i´1Rj˚p˚p
´1j´1F

c’est le foncteur cycles proches. On peut identifier le morphisme ČpC˚qp Ñ pC˚qp à

exp : Cp Ñ pC˚qp
pz1, ..., zpq ÞÑ pe2iπz1 , ..., e2iπzpq.

Pour 1 ď i ď p les translations

τi : ČpC˚qp Ñ ČpC˚qp
pz1, ..., zi, ..., zpq ÞÑ pz1, ..., zi ` 1, ..., zpq.

permettent d’induire des endomorphismes de monodromie Ti : ΨfF Ñ ΨfF .

Supposons que les fi définissent un diviseur à croisements normaux H où Hi “ tfi “ 0u et
que F “ DRpMq. Dans [Mai13] Ph. Maisonobe démontre la proposition suivante

Proposition 2.22. Soit I Ă t1, ..., pu, il existe un morphisme naturel

(4) ΨfF Ñ ΨfI pΨfIcFq.
De plus si le couple pH,Mq est sans pente alors ce morphisme est un isomorphisme.

2.4. Fonctions de classe de Nilsson. On se place ici dans le cas d’une famille d’hypersurfaces
qui forment un diviseur à croisements normaux, quitte à diminuer X, on suppose qu’il existe
un système de coordonnées px, t1, ..., tpq tel que pour tout 1 ď i ď p, l’hypersurface Hi ait pour
équation ti “ 0. On note

π : X Ñ Cp
px, t1, ..., tpq ÞÑ pt1, ..., tpq.

Définition 2.23. Soit α P r´1, 0r
p et k P Np. On note Nα,k la connexion méromorphe sur Cp :

Nα,k “
à

0ď`ďk

OCpr
1

z1...zp
seα,`

avec la structure de D-module donnée par la formule

ziBzieα,` “ pαi ` 1qeα,` ` eα,`´1i .

On définit Ti le morphisme de monodromie d’indice i par la formule

Tieα,` “ expp2iπpαi ` 1qq
ÿ

0ďmď`i

p2iπqm

m!
eα,`´m.1i .
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Remarque 2.24. Pour se souvenir de la structure de D-module et de la monodromie il faut
remarquer que la section eα,` se comporte comme la fonction multiforme zα`1 log`1 z1

`1!
...

log`p zp
`p!

.

Définition 2.25. Soit M un DX -module tel que le couple pH,Mq soit sans pente. On définit :

Mα,k “Mbπ´1OCp π
´1 pNα,kq “Mr

1

t1...tp
s bπ´1OCp π

´1 pNα,kq .

D’autre part on a
Mα,k “MbOX π

` pNα,kq
où π` est l’image inverse dans la catégorie des D-modules. Ceci permet de munir Mα,k d’une
structure naturelle de DX -module. Notons Y :“

č

1ďiďp

Hi. La restriction de Mα,k à Y est munie

d’endomorphismes Ti induits par les morphismes de monodromie de Nα,k et définis par :

Tipmb eα,`q “ mb Tieα,`.

Proposition 2.26. Soit α P r´1, 0r
p et k P Np et M un DX-module tel que le couple pH,Mq

soit sans pente. Alors le couple pH,Mα,kq est sans pente. De plus, pour tout β P Cp, on a :

VβpMα,kq “
à

0ď`ďk

Vα`β`1

ˆ

Mr
1

t1...tp
s

˙

eα,`.

On commence par un lemme qui sera utile dans la démonstration de cette proposition.

Définition 2.27. Soit px, t1, ..., tpq un système de coordonnées locales où ti “ 0 est une équation
de Hi. Soit Mr1{t, ssts le OX rss-module isomorphe à Mr1{t, ss par l’application m ÞÑ mts. Il
est muni d’une structure naturelle de DX rss-module par la formule :

Bipmt
sq :“ pBimqt

s ` p
sim

ti
qts

Lemme 2.28. Soit m une section locale de Mr1{ts et bpsq P Crss. Les conditions suivantes sont
équivalentes :

(1) bpEiqm P V´1ipDXqm
(2) bp´si ´ 1qmts P DX rsstimts

Démonstration. Montrons que 1 implique 2. Dans Mr1{t, ssts on a l’égalité

ptiBimqt
s “ p´si ´ 1qmts ` Biptimt

sq.

On montre alors par récurrence que pour tout k

pptiBiq
kmqts ´ p´si ´ 1qkmts P DX rsstimts.

On a donc pour tout polynôme bpsq P Crss

pbpEiqmqt
s ´ bp´si ´ 1qmts P DX rsstimts.

D’autre part, si bpEiqm P V´1ipDXqm une récurrence permet de montrer que pbpEiqmqts P
DX rsstimts et on en déduit 2.

Montrons que 2 implique 1. D’une part, on peut montrer par récurrence que pour tout k P N
et tout 1 ď ` ď k, il existe mk,` PMr1{ts satisfaisant à :

(5) skimt
s “ pp´Bitiq

kmqts `
k
ÿ

`“1

B`i pmk,`t
sq.
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D’autre part, en faisant opérer les Bα “ Bα1
1 ...B

αp
p et en annulant les coefficients du polynôme en

les si que l’on obtient, on peut montrer le résultat suivant :

(6)

«

ÿ

α

Bαpmαt
sq “ 0

ff

ñ rmα “ 0 @αs

pour une somme finie sur les α. Enfin, si l’on regarde plus précisément la récurrence faite dans
la première partie de la démonstration on obtient

pbpEiqmqt
s ´ bp´si ´ 1qmts P BiDX rsstimts.

L’hypothèse 2 implique
bp´si ´ 1qmts “

ÿ

α,k

BαskAα,ktimt
s

où Aα,k est un opérateur différentiel indépendant des Bi pour tout 1 ď i ď p. En utilisant
l’égalité (5) on peut substituer les sj et on obtient

pbpEiqmqt
s ´

ÿ

k

“

p´t1B1 ´ 1qk1 ...p´tpBp ´ 1qkpA0,ktim
‰

ts “
ÿ

αą0

Bαpmαt
sq

avec mα PMr1{ts. En utilisant (6) et le fait que p´t1B1´1qk1 ...p´tpBp´1qkpA0,kti P V´1ipDXq
on conclut que bpEiqm P V´1ipDXqm.

�

Démonstration de la proposition 2.26. On commence par montrer que le couple pH,Mα,kq est
sans pente. Quelque soit 1 ď i ď p, le DCp -module Nα,k{Nα,k´1i s’identifie à Nα,k´ki.1i On a
donc la suite exacte :

0 Ñ Nα,k´1i Ñ Nα,k Ñ Nα,k´ki.1i Ñ 0.

Pour tout k P Np le π´1OCp -module π´1Nα,k est à fibres plates car libres, il est donc acyclique
pour le foncteur de produit tensoriel par Mr 1

t1...tp
s et on a la suite exacte :

(7) 0 ÑMα,k´1i ÑMα,k ÑMα,k´ki.1i Ñ 0.

Le module central est sans pente si et seulement si les deux autres modules le sont. En effet,
comme dans le cas des bonnes V -filtration pour p “ 1 (cf [MM04]), une bonne V -multifiltration
du terme central induit des bonnes V -multifiltration des termes extrêmes. On considère alors la
suite exacte

0 Ñ U`Mα,k´1i Ñ U`Mα,k Ñ U`Mα,k´ki.1i Ñ 0

et on observe que la condition multispécialisable sans pente de la définition 2.2 est satisfaite pour
le module central si et seuleument si elle l’est pour les deux autres modules. Par récurrence on est
alors ramené à montrer que pH,Mα,0q est sans pente. Soit m une section locale de Mr 1

t1...tp
s.

D’après la proposition 2.15 le couple pH,Mr 1
t1...tp

sq est sans pente et par conséquent le lemme
2.28 fournit localement, pour 1 ď i ď p, des polynômes bi non nuls vérifiant :

bipsiqmt
s P DX rsstimts.

Par définition du DX rss-module Mr1{t, ssts, on obtient les équations :

(8) bipsi ` αi ` 1qpmb eα,0qt
s P DX rsstipmb eα,0qts.

Soit k0 P Np tel que pour tout ki P N vérifiant ki ě k0,i ` 1, l’entier ´ki n’est pas racine de
bipsi`αi`1q P Crsis. En remplaçant les si par les entiers ki dans la relation (8) et en multipliant
éventuellement par des ti on obtient que pour tout k P Zp

pmb eα,0qt
k P DXppmb eα,0qt´k0q.
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De plus pour tout 1 ď i ď p, l’égalité pBipmb eα,0qqtk “ Bippmb eα,0qtkq ` kipmb eα,0qtk´1i

montre que pBipmb eα,0qqtk P DXppmb eα,0qt´k0q pour tout k P Zp. Comme M est engendré
par un nombre fini de sections, en utilisant des extensions successives on peut supposer que m
engendre M. On a donc Mα,0 “ DXppm b eα,0qt

´k0q. La filtration DXplqppm b eα,0qt
´k0qq

étant une bonne filtration du DX -module Mα,0, celui-ci est cohérent. Les équations (8) ainsi
que le lemme 2.28 permettent alors de conclure que pH,Mα,0q est sans pente et donc par ce
qui précède que pH,Mα,kq l’est.

Pour démontrer la deuxième partie de la proposition on commence par noter

UβpMα,kq :“
à

0ď`ďk

Vα`β`1

ˆ

Mr
1

t1...tp
s

˙

eα,`

et on va montrer que c’est une bonne V -multifiltration qui satisfait à toutes les propriétés
caractéristiques de la multifiltration de Malgrange-Kashiwara. Soit m P M, ` P Np, β P C et
1 ď i ď p. On a localement

(9) ptiBi ` βqpmb eα,`q “ pptiBi ` β ` αi ` 1qmq b eα,` `mb eα,`´1i

et pour tout n P Zp
tnpmb eα,`q “ pt

nmq b eα,`.

Ceci permet de montrer que U‚pMα,kq est une V -multifiltration de Mα,k (c’est-à-dire que cette
multifiltration vérifie V`DX .UβpMα,kq Ă Uβ``pMα,kq pour tout β P Cp et pour tout ` P Zp).

Pour montrer que c’est une bonne V -multifiltration on fixe β P Cp et on montre que la V -
multifiltration indexée par Zp, Uβ`‚pMα,kq, est une bonne V -multifiltration de Mα,k. Comme
la V -multifiltration indexée par Zp, Vα`β`‚`1

´

Mr 1
t1...tp

s

¯

, est une bonne V -multifiltration elle
est engendrée localement par un nombre fini de sections tmjujPJ . Si k “ 0 l’égalité (9) permet
de montrer que les sections tmj b eα,0ujPJ engendrent la V -multifiltration Uβ`‚pMα,0q. On
peut alors montrer par récurrence, en considérant la suite exacte (7) et l’égalité (9), que pour
tout k P Np les sections mj b eα,`, pour j P J et 0 ď ` ď k, engendrent la V -multifiltration
Uβ`‚pMα,kq. C’est donc une bonne V -multifiltration de Mα,k.

On fixe maintenant β P Cp et on va construire, pour tout 1 ď i ď p, un polynôme bipsq qui
satisfait à

biptiBiqUβpMα,kq Ă Uβ´1ipMα,kq.

Par définition de la multifiltration de Malgrange-Kashiwara on peut choisir, pour tout 1 ď i ď p,
un polynôme cipsq vérifiant

ciptiBi ` αi ` βi ` 1qVα`β`1

ˆ

Mr
1

t1...tp
s

˙

Ă Vα`β`1´1i

ˆ

Mr
1

t1...tp
s

˙

et ayant ses racines dans l’intervalle r´1, 0r. Soit m P Vα`β`1

´

Mr 1
t1...tp

s

¯

, l’égalité (9) permet
de montrer que

ciptiBi ` βiqpmb eα,`q “ pciptiBi ` βi ` αi ` 1qmq b eα,` ` rm

où rm P UβpMα,k´1iq si on pose UβpMα,`q “ 0 pour li ă 0. On peut donc construire par
récurrence un polynôme bi,mpsq ayant ses racines dans l’intervalle r´1, 0r et vérifiant

bi,mptiBi ` βiqpmb eα,`q P Uβ´1ipMα,kq.

Comme UβpMα,kq est localement engendré par un nombre fini de sections de la forme mb eα,`
pour 0 ď ` ď k on peut construire bipsq ayant ses racines dans r´1, 0r tel que

biptiBi ` βiqUβpMα,kq Ă Uβ´1ipMα,kq.



COMPARAISON DES CYCLES PROCHES PAR UN MORPHISME SANS PENTE 63

Les racines du polynôme de Bernstein-Sato de la V -multifiltration U‚pMα,k´1iq sont donc dans
l’intervalle r´1, 0r, ce qui permet de conclure que c’est bien la V -multifiltration de Malgrange-
Kashiwara :

VβpMα,kq “
à

0ď`ďk

Vα`β`1

ˆ

Mr
1

t1...tp
s

˙

eα,`.

�

3. Morphisme de comparaison

On va construire un morphisme de comparaison entre les cycles proches algébriques de M et
les cycles proches topologiques de DRpMq relativement à l’application

π : X Ñ Cp
px, t1, ..., tpq ÞÑ pt1, ..., tpq.

On établira le lien avec la composition du morphisme de comparaison relatif aux r premières
coordonnées ti et de celui relatif aux p´ r coordonnées ti suivantes pour 1 ă r ă p.

3.1. Comparaison avec les gradués. Commençons par donner deux définitions.

Définition 3.1. Soit M un DX -module tel que le couple pH,Mq soit sans pente. On consi-
dère la famille tgrkpMq, BiukPt0,1up,1ďiďp composée des objets grkpMq pour k P t0, 1up et des
morphismes Bi : grkpMq Ñ grk`1i

pMq. On définit

i:M :“ spCubepgr‚pMqqq X0

où sp.q et Cubep.q sont les foncteurs définis dans l’appendice A.2 et A.5 et X0 “ π´1p0q.

Par exemple pour p “ 2 on a

i:M “ 0 Ñ gr´1,´1pMq
X0

Ñ gr0,´1pMq
X0

À

gr´1,0pMq
X0

Ñ gr0,0pMq
X0

Ñ 0

m ÞÑ pB1m,´B2mq

pm1,m2q ÞÑ B2m1 ` B1m2 .

Définition 3.2. De la même manière que pour la définition précédente on considère la famille
tVkpMq, BiukPt0,1up,1ďiďp composée des objets VkpMq pour k P t0, 1up et des morphismes

Bi : VkpMq Ñ Vk`1ipMq.

On définit
i#M :“ spCubepV‚pMqqq X0

où X0 “ π´1p0q.

Remarque 3.3. (1) Notons que si on considère la famille M :“ tM, BiukPt0,1up,1ďiďp on a

spCubepM qq X0
» DRX{X0

pMq
X0

où l’on considère la projection

τ : X Ñ X0

px, t1, ..., tpq ÞÑ px, 0, ..., 0q.

(2) On étend ces définitions aux complexes en commençant par appliquer Cubep.q en chaque
degré puis en prenant le complexe simple associé à l’hypercomplexe obtenu. On note
encore i# et i: ces foncteurs appliqués aux complexes.
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D’après la remarque précédente les morphismes naturels pour tout k P t0, 1up

grkpMq Ð VkpMq ÑM

induisent les morphismes de complexes

(10) i:MÐ i#MÑ DRX{X0
pMq

où l’on omet de noter la restriction de DRX{X0
pMq à X0. Soit I “ t1, ..., ru Ă t1, ..., pu les r

premiers entiers pour r ă p, on note

πI : X Ñ Cr
px, t1, ..., tpq ÞÑ pt1, ..., trq

et XI
0 :“ π´1

I p0q. On note V I‚ la V -multifiltration par rapport aux fonctions t1, ..., tr. La V -
multifiltration de Malgrange-Kashiwara de M induit une V I

c

-multifiltration du DXI0 -module
grIαI pMq pour tout αI P Cr. Pour tout α P Cp on a le diagramme commutatif suivant

(11) grαM

��

VαMoo

grI
c

αIc

`

grIαIM
˘

V I
c

αIc

`

grIαIM
˘

oo V I
c

αIc

`

V IαIM
˘

.oo

On définit les foncteurs i:I et i#I en considérant respectivement les familles

tgrkI pM
1q, BiukIPt0,1ur,1ďiďr

et tVkI pM1q, BiukIPt0,1ur,1ďiďr. On définit de manière analogue les foncteurs i:Ic et i#Ic appliqués
à la catégorie des DXI0 -modules en considérant la projection

πIc XI0 : XI
0 Ñ Cp´r

px, tp´r, ..., tpq ÞÑ ptp´r, ..., tpq.

Les propriétés des hypercomplexes, du foncteur sp.q et le diagramme commutatif (11) pour
α P t0, 1up fournissent le diagramme commutatif suivant

(12)
i:M

��

i#Moo // DRX{X0
M

i:Icpi
:

IMq i#Icpi
:

IMqoo i#Icpi
#
I Mqoo // i#IcpDRX{XI0

Mq // DRXI0 {X0
pDRX{XI0

Mq.

3.2. Le morphisme «Nils». D’après la proposition 2.26 on a

gr´1pMα,kq “
à

0ď`ďk

grα

ˆ

Mr
1

t1...tp
s

˙

eα,`.

La proposition 2.15 assure que pour α P r´1, 0rp on a l’isomorphisme

grα pMq » grα

ˆ

Mr
1

t1...tp
s

˙

.
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On définit alors le morphisme suivant

Φ : grα pMq ÝÑ gr´1pMα,kq

m ÞÝÑ
ÿ

0ď`ďk

“

p´1q`1`...``ppt1B1 ` α1 ` 1q`1 ...ptpBp ` αp ` 1q`pm
‰

b eα,`

qui induit un morphisme de complexes

Nils : grα pMq Ñ i:Mα

où l’on identifie grα pMq avec un complexe concentré en degré zéro et où Mα est la limite
inductive des Mα,k prise sur k P Np.

Remarque 3.4. Remarquons ici que Mα n’est pas un DX -module de type fini. Mais le fait
qu’il soit limite des Mα,k et que les couples pH,Mα,kq soient sans pente suffit pour le reste de
la construction et pour le théorème de comparaison.

En utilisant la définition 2.23 on obtient

OX bπ´1OCp π
´1pNα,kq »

´

OX bπ´1
I OCr

π´1
I pNαI ,kI q

¯

bOX

´

OX bπ´1
Ic

OCp´r
π´1
Ic pNαIc ,kIc q

¯

.

On déduit de cet isomorphisme et de la définition du morphisme Φ le diagramme commutatif
suivant

(13) grαM
Nils //

��

i:Mα

��
i:Icpi

:

IMαq

grI
c

αIc

`

grIαIM
˘

// grI
c

αIc

´

i:IMαI

¯

// i:Ic
”

pi:IMαI qαIc

ı

.

3.3. Le morphisme «Topo». Rappelons le diagramme commutatif utilisé pour définir les
cycles proches topologiques :

π´1p0q
i //

��

X

π

��

X˚
joo

π X˚

��

rX
poo

rπ
��

t0u
i // Cp pC˚qp

joo ČpC˚qp.
poo

Lemme 3.5. Soit α P Cp, il existe un morphisme naturel

Topo : DRXpMαq Ñ ΨπDRXpMq.

Démonstration. Par définition,Mα “Mbπ´1OCpπ
´1Nα, or on a une inclusionNα Ă j˚p˚p

´1OpC˚qp
dans le faisceau des fonctions holomorphes multiformes. Par fonctorialité on a donc le mor-
phisme :

DRXpMαq Ñ DRXpMb π´1j˚p˚p
´1OpC˚qpq.

L’adjonction des foncteurs image inverse et image directe fournit un morphisme de foncteurs
π´1pj ˝ pq˚ Ñ pj ˝ pq˚rπ

´1. Ceci donne le morphisme :
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DRXpMb π´1j˚p˚p
´1Oq Ñ DRXpMb j˚p˚rπ

´1p´1Oq
“ DRXpMb j˚p˚p

´1π X˚
´1Oq.

Par adjonction on a le morphisme :

DRXpMb j˚p˚p
´1π X˚

´1Oq Ñ Rj˚j
´1DRXpMb j˚p˚p

´1π X˚
´1Oq

“ Rj˚DRXpj
´1Mb j´1j˚p˚p

´1π´1Oq
“ Rj˚DRXpj

´1Mb p˚p
´1π´1Oq.

On applique ensuite le morphisme (2.3.21) de [KS94] (formule de projection) à la fonction p, en
considérant le fait que p˚ est un foncteur exact car p est à fibres discrètes. Par fonctorialité on
a alors le morphisme suivant :

Rj˚DRXpj
´1Mb p˚p

´1π´1Oq Ñ Rj˚DRXpp˚p
´1pj´1Mb π´1Oqq

“ Rj˚DRXpp˚p
´1j´1Mq.

Sachant que DRXM “ Ωn
L
bDX M, on peut appliquer le morphisme (2.6.21) de [KS94] à p

(formule de projection) et on obtient le morphisme :

Rj˚DRXpp˚p
´1j´1Mq Ñ Rj˚p˚DRXpp

´1j´1Mq

“ Rj˚p˚p
´1j´1DRXpMq.

Si l’on compose tous les morphismes naturels que l’on vient de construire on obtient bien le
morphisme naturel attendu :

DRXpMαq Ñ ΨπDRXpMq.

�

La naturalité de ce morphisme ainsi que la définition du morphisme (4)

ΨπDRXpMq Ñ ΨπIc pΨπIDRXpMqq

permettent de montrer que le diagramme suivant est commutatif

(14) DRXMα
Topo // ΨπDRXM

��
DRX rpMαI qαIc s

// ΨπIc pDRXMαI q
// ΨπIc pΨπIDRXMq.

3.4. Le morphisme de comparaison. En combinant les morphismes (10), Nils et Topo on
obtient la suite de morphismes suivante

(15) DRX0
ΨH pMq

Nils
ÝÝÝÑ

à

αPr´1,0rp

DRX0
i:Mα Ð

à

αPr´1,0rp

DRX0
i#Mα Ñ

à

αPr´1,0rp

DRXpMαq
Topo
ÝÝÝÑ ΨπDRXpMq.

On a appliqué les morphisme (10) à Mα, on a ensuite appliqué le foncteur DRX0 et on a pris
la somme sur α Ps ´ 1, 0sp en utilisant la définition

ΨH pMq :“
à

αPr´1,0rp

grαpMq.
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Théorème 3.6. Si le couple pH,Mq est sans pente alors les morphismes (15) sont des isomor-
phismes qui commutent aux endomorphismes de monodromie Ti, on obtient l’isomorphisme de
comparaison

DRX0ΨH pMq » ΨπDRXpMq.

De plus si I “ t1, ..., ru Ă t1, ..., pu et si l’on applique successivement cet isomorphisme de com-
paraison par rapport aux familles d’hypersurfaces HI et HIc le résultat ne dépend pas de l’ordre
dans lequel on applique l’isomorphisme. Autrement dit le diagramme suivant est commutatif

DRX0
ΨHIc

pΨHI
Mq

»

DRX0
ΨH pMq

„oo „ //

»

DRX0
ΨHI

pΨHIc
Mq

»

ΨπIc pΨπIDRXpMqq ΨπDRXpMq
„oo „ // ΨπI pΨπIcDRXpMqq.

Démonstration. On raisonne par récurrence sur le nombre p d’hypersurfaces dans H, le cas p “ 1
est traité par Ph. Maisonobe et Z. Mebkhout dans [MM04, théorème 5.3-2] ou par Morihiko Saito
dans [Sai88, lemmes 3.4.4 et 3.4.5].

Pour p ą 1, soit I “ t1, ..., ru Ă t1, ..., pu avec 1 ă r ă p, on va considérer les diagrammes
commutatifs (12), (13) et (14). L’hypothèse sans pente permet d’appliquer la proposition 2.19
(resp. 2.22) qui assure que les flèches verticales des diagrammes (12) et (13) (resp. (14)) sont
des isomorphismes. La commutativité de ces diagrammes permet de se ramener aux cas de
r et p ´ r hypersurfaces en appliquant successivement les deux isomorphismes de comparaison
obtenus par récurrence. La commutativité donne alors également directement la deuxième partie
du théorème.

�

Pour un morphisme f : X Ñ Cp, l’inclusion du graphe de f permet de donner une version
générale de ce théorème :

Corollaire 3.7. Soit f : X Ñ Cp un morphisme d’espaces analytiques complexes réduits et
M un DX-module holonome régulier tel que le couple pH, if`Mq soit sans pente. On a un
isomorphisme de comparaison

DRXΨalg
f pMq » ΨfDRXpMq.

De plus si I “ t1, ..., ru Ă t1, ..., pu et si l’on applique successivement cet isomorphisme de
comparaison par rapport aux fonctions f I et f Ic le résultat ne dépend pas de l’ordre dans lequel
on applique l’isomorphisme. Autrement dit le diagramme suivant est commutatif

DRXΨalg
fIc
pΨalg
fI

Mq

»

DRXΨalg
f pMq

„oo „ //

»

DRXΨalg
fI
pΨalg
fIc

Mq

»

ΨfIc pΨfIDRXpMqq ΨfDRXpMq
„oo „ // ΨfI pΨfIcDRXpMqq.

Démonstration. On applique le théorème 3.6 à if`M, on obtient l’isomorphisme

DRX0
ΨH

`

if`M
˘

» ΨπDRXˆCppif`Mq.

où π : X ˆ Cp Ñ Cp est la projection. On applique le foncteur if´1 à cette isomorphisme.
On observe qu’un théorème de changement de base propre donne l’isomorphisme de foncteur
Ψf if

´1 » if
´1Ψπ. On en déduit l’isomorphisme

if
´1DRX0ΨH

`

if`M
˘

» Ψf if
´1DRXˆCppif`Mq.
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On déduit enfin de l’équivalence de Kashiwara appliquée à l’injection du graphe de f dansXˆCp
l’isomorphisme attendu

DRXΨalg
f pMq » ΨfDRXpMq.

La suite du corollaire se démontre de la même manière.
�

On déduit en particulier de ce corollaire que, dans le cas sans pente, si l’on applique l’isomor-
phisme de comparaison par rapport aux fonctions f1, ..., fp l’une après l’autre l’isomorphisme

DRX

´

Ψalg
fσppq

´

...Ψalg
fσp2q

´

Ψalg
fσp1q

M
¯¯¯

» Ψfσppq

`

...Ψfσp2q

`

Ψfσp1qDRXpMq
˘˘

ne dépend pas de la permutation σ de t1, ..., pu.

Annexe A. Hypercomplexes

On définit ici les n-hypercomplexes qui correspondent aux complexes nuple naïfs introduits
par P. Deligne au paragraphe 0.4 de [Del73].

Définition A.1. Soit C une catégorie abélienne, on définit par induction la catégorie abélienne
des n-hypercomplexes de la façon suivante :

‚ Les 1-hypercomplexes sont les complexes d’objets de C.
‚ Les n-hypercomplexes sont les complexes de (n-1)-hypercomplexes.

On notera Cn
pCq la catégorie abélienne des n-hypercomplexes d’objets de C. Par exemple les

2-hypercomplexes sont les complexes doubles. Un n-hypercomplexe est donc la donnée pour tout
k P Zn d’un objet Xk de C et, pour tout 1 ď i ď n de morphismes dpiqk : Xk Ñ Xk`1i vérifiant
les propriétés suivantes :

dpiq ˝ dpiq “ 0 pour tout i

dpiq ˝ dpjq “ dpjq ˝ dpiq pour tout pi, jq

pour les exposants k convenables.

Soit X un n-hypercomplexe, pour tout 1 ď i ď n et tout m P Z on note Xm
i le pn´ 1q-

hypercomplexe composé des Xk avec ki “ m et des différentielles correspondantes. Les différen-
tielles dpiqk avec ki “ m définissent un morphisme :

dmi : Xm
i Ñ Xm`1

i

qui vérifie dm`1
i ˝ dmi “ 0 par définition d’un n-hypercomplexe. On a donc pour tout 1 ď i ď n

un foncteur :
Fi : Cn

pCq Ñ CpCpn´1q
pCqq

X ÞÑ tXm
i , d

m
i umPZ

de la catégorie des n-hypercomplexes dans la catégorie des complexes de pn´1q-hypercomplexes.
On introduit alors le pn´ 1q-hypercomplexe :

Hp
i pXq :“ HppFipXqq,

et le n-hypercomplexe :

HipXq :“ ...Ñ Hp
i pXq

0
ÝÑ Hp`1

i pXq Ñ ...

où toutes les flèches horizontales sont nulles.
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Définition A.2. Si un n-hypercomplexe X vérifie la propriété de finitude suivante :

(16) pour tout m P Z l’ensemble tpk1, ..., knq P Zn | k1 ` ...` kn “ m,Xk ‰ 0u est fini,

alors on peut associer à X un complexe simple spXq. On pose

spXqm :“
à

k1`...`kn“m

Xk.

Soit k P Zn tel que k1 ` ... ` kn “ m. On note ik : Xk Ñ spXqm et pk : spXqm Ñ Xk

les morphismes naturels. On peut alors définir la différentielle dmspXq : spXqm Ñ spXqm`1 du
complexe spXq par :

pl ˝ d
m
spXq ˝ ik “

"

p´1qk1`...`kj´1dpjqk si #ti | ki ‰ liu “ 1 où j vérifie kj ‰ lj
0 sinon

pour tout k et l vérifiant k1 ` ... ` kn “ m et l1 ` ... ` ln “ m ` 1. On peut alors vérifier que
dm`1
spXq ˝ d

m
spXq “ 0 et pspXq, dspXqq est donc bien un complexe. On a défini un foncteur

s : Cn
f pCq Ñ CpCq

X ÞÑ pspXq, dspXqq

où Cn
f pCq est la catégorie des n-hypercomplexes vérifiant la propriété (16). De plus on observe

facilement que sp.q est un foncteur exact.

Théorème A.3. Soit f : X Ñ Y un morphisme de n-hypercomplexes où X et Y vérifient la
propriété (16) et supposons que f induise un isomorphisme :

f : H1pH2p...HnpXq...qq » H1pH2p...HnpY q...qq.

Alors spfq : spXq Ñ spY q est un quasi-isomorphisme.

Démonstration. On raisonne par récurrence sur l’entier n. Pour n “ 1 c’est la définition d’un
quasi-isomorphisme, pour n “ 2 c’est le théorème 1.9.3 de [KS94]. On suppose que n ě 3. Pour
tout p P Z, on a deux pn´ 1q-hypercomplexes, Hp

npXq et Hp
npY q, qui vérifient les hypothèses du

théorème et donc par hypothèse de récurrence f induit un quasi-isomorphisme entre s pHp
npXqq

et s pHp
npY qq. Or Hp

npXq “ HppFnpXqq et Hpp.q est un foncteur additif, il commute donc avec
le foncteur sp.q et f induit un quasi-isomorphisme entre

HpptspXm
n q, spd

m
n qumPZq et HpptspY mn q, spd

m
n qumPZq

pour tout p P Z. Mais ce quasi-isomorphisme correspond aux conditions du théorème pour les
complexes doubles tspXm

i q, spd
m
i qumPZ et tspY mi q, spdmi qumPZ, les complexes simples associés à ces

deux complexes doubles sont donc quasi-isomorphes par hypothèse de récurrence pour n “ 2. En
appliquant la définition du foncteur s on montre alors que ces deux derniers complexes simples
sont en fait les complexes simples associés à X et à Y ce qui conclut la démonstration du
théorème.

�

Corollaire A.4. Soit X un n-hypercomplexe tel qu’il existe un indice i pour lequel le complexe
FipXq soit exact, alors spXq est quasi-isomorphe au complexe nul.

Démonstration. Le théorème précédent est évidemment vérifié si l’on permute les indices des Hi.
Si le complexe FipXq est exact alors HipXq » Hip0nq où 0n est le n-hypercomplexe nul. On a
donc

H1p...Hi´1pHi`1p...HnpHipXqq...q » H1p...Hi´1pHi`1p...HnpHip0nqq...q
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et on peut appliquer le théorème précédent, spXq » sp0nq, spXq est quasi-isomorphe au complexe
nul.

�

Définition A.5. Soit tXk, f piqkukPZn,1ďiďn une famille d’objets de C et de morphismes f piqk :
Xk Ñ Xk`1i , on appelle hypercube associé à X le n-hypercomplexe noté CubepXq‚ vérifiant

CubepXqk1,...,kn “
"

Xk1´1,...,kn´1 si k P t0, 1un

0 sinon

les morphismes étant ceux donnés par les f piqk. On vérifie facilement que Cubep.q définit un
foncteur exact.

Par exemple, pour n “ 3 on a

X´1,0,0 // X0,0,0

X´1,´1,0

88

// X0,´1,0

88

CubepXq “

X´1,0,´1

OO

// X0,0,´1

OO

X´1,´1,´1 //

88

OO

X0,´1,´1

88

OO

où le reste de l’hypercomplexe est nul et X´1,´1,´1 est en degré p0, 0, 0q.

Annexe B. Filtrations compatibles

Les définitions qui suivent ont été introduites par Morihiko Saito dans [Sai88]

Définition B.1. Soit A un objet de la catégorie abélienne C et A1, ..., An Ď A des sous-objets
de A. On dit que A1, ..., An sont des sous-objets compatibles de A si il existe un n-hypercomplexe
X satisfaisant à :

(1) Xk “ 0 si k R t´1, 0, 1un.
(2) X0 “ A.
(3) X0´1i “ Ai pour 1 ď i ď n.
(4) Pour tout 1 ď i ď n et tout k P t´1, 0, 1un tel que ki “ 0, la suite

0 Ñ Xk´1i Ñ Xk Ñ Xk`1i Ñ 0

est une suite exacte courte.

Remarque B.2. ‚ En utilisant les propriétés universelles fournies par les suites exactes
courtes on observe que si les sous-objets A1, ..., An sont compatibles, alors le n-hypercom-
plexe X est déterminé de manière unique. Par exemple si k P t´1, 0un et si

I “ ti; ki “ ´1u Ă t1, ..., nu

alors
Xk “

č

iPI

Ai.
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‚ Si n “ 1, le complexe X est la suite exacte courte

0 Ñ A1 Ñ AÑ A{A1 Ñ 0.

‚ Si n “ 2 deux sous-objets A1 et A2 sont toujours compatibles et X est le complexe
double suivant

A1{pA1 XA2q // A{A2
// A{pA1 `A2q

A1
//

OO

A //

OO

A{A1

OO

A1 XA2
//

OO

A2
//

OO

A2{pA1 XA2q.

OO

‚ Si n ě 3 des sous-objets A1, ..., An ne sont pas compatibles en général.
‚ Par définition si A1, ..., An Ď A sont compatibles alors pour tout I Ă t1, ..., nu les

sous-objets pAiqiPI Ď A sont compatibles et l’hypercomplexe correspondant est le #I-
hypercomplexe XI dont les objets sont les Xk tels que ki “ 0 pour tout i P Ic.

Définition B.3. Soient F 1
‚ , ..., F

n
‚ des filtrations croissantes indexées par Z d’un objet A, on

dit que ces filtrations sont compatibles si pour tout ` P Zn les sous-objets F 1
`1
, ..., Fn`n de A sont

compatibles.

Remarque B.4. ‚ D’après la remarque précédente toute sous famille d’une famille de
filtrations compatibles est compatible.

‚ On peut montrer que si F 1
‚ , ..., F

n
‚ sont compatibles alors pour tout ` P Z les filtrations

induites par F 1
‚ , ..., F

n´1
‚ sur grFn` sont compatibles.

‚ Si F 1
‚ , ..., F

n
‚ sont compatibles alors les filtrations induites sur F 1

`1
X ...X Fn`n sont com-

patibles.

La proposition suivante correspond à [Sai88, corollaire 1.2.13]

Proposition B.5. Soit F 1
‚ , ..., F

n
‚ des filtrations compatibles d’un objet A. L’objet obtenu en ap-

pliquant successivement les gradués grFσpjq`σpjq
par rapport aux filtrations Fσpjq induites sur gr

Fσpj´1q

`σpj´1q
...grFσp1q`σp1q

A

pour 1 ď j ď n ne dépend pas de la permutation σ de t1, ..., nu et est égal à

F 1
`1
AX ...X Fn`nA

ř

j F
1
`1
AX ...X F 1

`j´1AX ...X F
n
`n
A
.
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FLAT SURFACES ALONG CUSPIDAL EDGES

SHYUICHI IZUMIYA, KENTARO SAJI, AND NOBUKO TAKEUCHI

Abstract. We consider developable surfaces along the singular set of a cuspidal edge surface

which are regarded as flat approximations of the cuspidal edge surface. For the study of
singularities of such developable surfaces, we introduce the notion of Darboux frames along

cuspidal edges, and introduce invariants. As a by-product, we introduce the notion of higher-
order helices which are generalizations of previous notions of generalized helices (i.e., slant

helices and clad helices). We use this notion to characterize special cuspidal edges.

1. Introduction

In recent decades, there have appeared several articles concerning the differential geometry of
singular surfaces in Euclidean 3-space [5, 6, 19, 20, 21, 25, 27, 28, 32]. Wave fronts are particularly
interesting singular surfaces which always have normal directions, even along singularities. A
cuspidal edge surface is one of the generic wave fronts in Euclidean 3-space. In this paper, we
consider developable surfaces along the singular curve of a cuspidal edge surface in Euclidean
3-space. Such a developable surface is called a developable surface along the cuspidal edge.
Actually there are infinitely many developable surfaces along a cuspidal edge. Since a cuspidal
edge surface has the normal direction at any point (even at a singular point), we focus on two
typical developable surfaces along the cuspidal edge. One of them is a developable surface which
is tangent to the cuspidal edge surface and the other is normal to the cuspidal edge surface.
These two developable surfaces are considered to be flat approximations of the cuspidal edge
surface along the cuspidal edge. We investigate the singularities of these developable surfaces
along the cuspidal edge and introduce new invariants for the cuspidal edge.

For this purpose, we introduce the notion of Darboux frames along cuspidal edges, which
is analogous to the notion of Darboux frames along curves on regular surfaces (cf. [7, 8, 14]).
Since the Darboux frame along a cuspidal edge is an orthonormal frame along the cuspidal edge,
we can obtain structure equations and invariants (cf. Proposition 3.1). We show that these
invariants are equal to the invariants which are known as basic invariants of a cuspidal edge in
[20, 21, 27], in which the normal form of the cuspidal edge was used for the study of geometric
properties. The normal form of the cuspidal edge is a very strong tool from a singularity theory
viewpoint. However, it is rather difficult to understand the geometric meanings intuitively. Here,
we emphasize that we use the Darboux frame instead of the normal form of the cuspidal edge.
By using the Darboux frame, we can directly and intuitively understand geometric properties of
the cuspidal edge.

The precise definition of the cuspidal edge (surface) is given as follows: The unit cotangent
bundle T ∗1R3 of R3 has a canonical contact structure and can be identified with the unit tangent
bundle T1R3. Let α denote that canonical contact form. Let M be a 2-dimensional manifold.
A map i : M → T1R3 is said to be isotropic if the pull-back i∗α vanishes identically. We call
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the image of π ◦ i the wave front set of i, where π : T1R3 → R3 is the canonical projection and
we denote it by W (i). Moreover, i is called the Legendrian lift of W (i). With this framework,
we define the notion of fronts as follows: A map-germ f : (R2, 0)→ (R3, 0) is called a frontal if
there exists a unit vector field ν (called a unit normal of f) of R3 along f such that

L = (f, ν) : (R2, 0)→ (T1R3, 0)

is an isotropic map by an identification T1R3 = R3 × S2, where S2 is the unit sphere in R3 (cf.
[1], see also [18]). A frontal f is a front if the above L can be taken as an immersion. A point
q ∈ (R2, 0) is a singular point if f is not an immersion at q. A map f : M → N between M
and a 3-dimensional manifold N is called a frontal (respectively, a front) if for every p ∈M , the
map-germ f at p is a frontal (respectively, a front). A singular point p of a map f is called a
cuspidal edge if the map-germ f at p is A-equivalent to (u, v) 7→ (u, v2, v3) at 0. (Two map-germs
f1, f2 : (Rn, 0) → (Rm, 0) are A-equivalent if there exist diffeomorphisms S : (Rn, 0) → (Rn, 0)
and T : (Rm, 0)→ (Rm, 0) such that f2 ◦ S = T ◦ f1.) Therefore if the singular point p of f lies
on a cuspidal edge, then f is a front at p, and furthermore, they are one of two possible types
of generic singularities of fronts (the other one is a swallowtail which is a singular point p of f
satisfying that f at p is A-equivalent to (u, v) 7→ (u, u2v + 3u4, 2uv + 4u3) at 0).

On the other hand, a developable surface is known to be a frontal, so that the normal direction
is well-defined at any point. We say that a developable surface is an osculating developable surface
along the cuspidal edge if it contains the singular set of the cuspidal edge such that the normal
direction of the developable surface coincides with the normal direction of the cuspidal edge at
any point of the singular set. We also say that a developable surface is a normal developable
surface along the cuspidal edge if it contains the singular set of the cuspidal edge such that the
normal direction of the developable surface belongs to the tangent plane of the cuspidal edge
at any point of the singular set. In this paper, we study the geometric properties of cuspidal
edges using these two developable surfaces along cuspidal edges. In particular, we show that
the singular values of those developable surfaces characterize some cuspidal edges with special
geometric properties. As a by-product, we introduce the notion of higher order helices which is
a generalization of previous notions of generalized helices (i.e., slant helices and clad helices) in
[13, 30, 31].

This paper is organized as follows: We describe basic properties of cuspidal edges in §2.
The Darboux frame along a cuspidal edge is introduced in §3. Associated to the Darboux
frame, we introduce three basic invariants, which are the same as those of cuspidal edges, as in
[20, 21, 27]. We also introduce two vector fields along a cuspidal edge which will play critical
roles in this paper. In §4, definitions and basic properties of (general) developable surfaces are
described. Moreover, the notion of higher order helices is introduced and characterizations of
those generalized helices by the curvature and the torsion are given (cf. Proposition 4.4, the
Lancret type theorem). We also consider a tangent developable surface of a curve such that
the curve is a kth-order helix. We give a characterization of such tangent developable surfaces
as a corollary of Proposition 4.4 (cf. Theorem 4.6). Returning to the study of cuspidal edges,
we introduce two developable surfaces along a cuspidal edge in §5. In order to classify the
singularities of those two developable surfaces, we introduce four new invariants represented by
the three basic invariants of a cuspidal edge. The classifications are give by those four invariants
(cf. Theorems 5.1 and 5.3). Moreover, if one of the three basic invariants is identically equal
to zero, we have special developable surfaces alone the cuspidal edge, whose singularities are
classified in Corollaries 5.2 and 5.4. If two of these three basic invariants are identically equal
to zero, the cuspidal edge is a subset of a plane (cf. §5.3). If the all three basic invariants
are identically equal to zero, the cuspidal edge is a line. In §6 we investigate cuspidal edges
with special properties. We compare the properties of cuspidal edges with those of curves on
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regular surfaces in §7. In particular, we give a geometric interpretation of the cuspidal torsion.
Finally we briefly describe definitions and properties of support functions of a cuspidal edge
in the appendix. By using support functions, we give geometric interpretations of singularities
from the contact viewpoint.

2. Cuspidal edges

Let f : (R2, 0)→ (R3, 0) be a frontal with a unit normal vector field ν. For a coordinate system
(u, v) on (R2, 0), we define a function λ by λ = det(fu, fv, ν) and call it the signed area density
of f . We say that a singular point 0 ∈ (R2, 0) is a non-degenerate singular point if dλ(0) 6= 0.
Let 0 be a non-degenerate singular point. Then there exists a vector field germ η on (R2, 0) such
that 〈η(p)〉R = ker dfp for any p ∈ S(f), where S(f) is the set germ of the singular points of f.
We call η a null vector field. We say that 0 ∈ (R2, 0) is a singular point of the first kind if it is
non-degenerate and η(0) is transversal to S(f) at 0. The following lemma is well-known.

Lemma 2.1. ([28, Corollary 2.5, p.735], see also [18]) Let 0 be a singular point of a front
f : (R2, 0)→ (R3, 0). Then 0 is a cuspidal edge (respectively, swallowtail) if and only if ηλ 6= 0
(respectively, ηλ = 0 ηηλ 6= 0 and dλ 6= 0) at 0, where ηλ stands for the directional derivative
of λ by η.

By this lemma, if f is a front, then the singular point of the first kind is a cuspidal edge.
The cuspidal cross cap ((u, v) 7→ (u, v2, uv3)) is a singular point of the first kind, which is not a
front. For details see [27].

On the other hand, it is known [20, 21, 27] that there exist several geometric invariants for
cuspidal edges in R3. In [21], these invariants are defined and studied for cuspidal edges in any
Riemannian 3-manifold. See [21] for details.

Let f : (R2, 0) → (R3, 0) be a frontal and ν the unit normal vector field. Suppose that 0 is
a singular point of the first kind. Then one can easily see that there exists a coordinate system
(u, v) of (R2, 0) with the following properties:

(1) S(f) = {v = 0},
(2) u is an arc-length parameter of the curve given by f(u, 0),
(3) ker df(u,0) is generated by ∂/∂v,

(4) (u, v) is compatible with the orientation of R2.

We call a coordinate system satisfying these properties an adapted coordinate system centered at
(u, v) = (0, 0). On an adapted coordinate system, since ∂/∂u is tangent to S(f), it holds that
λu = 0. Thus dλ(0) 6= 0 implies λv 6= 0. Since fv(0) = 0, we see that

det(fu, fvv, ν)(0) = λv(0) 6= 0.

Hence one can choose the direction of ν such that det(fu, fvv, ν)(0) > 0. We always choose the
unit normal vector ν of f on an adapted coordinate system centered at a singular point of the
first kind so that it satisfies det(fu, fvv, ν)(0) > 0.

We define three invariants for f as follows on an adapted coordinate system (u, v):

κs(u) = det
(
γ′(u), γ′′(u), ν(u, 0)

)
, κν(u) = 〈γ′′(u), ν(u, 0)〉 ,

κt(u) =

[
det
(
γ′, fvv, fuvv

)
|γ′ × fvv|2

−
det
(
γ′, fvv, fuu

)
〈γ′, fvv〉

|γ′|2|γ′ × fvv|2

]
v=0

,

where γ(u) = f(u, 0) and 〈 , 〉 is the canonical inner product of R3. We call κs(u) the singular
curvature, κν(u) the normal curvature and κt(u) the cuspidal torsion of f at (u, 0), respectively.
The singular curvature measures convexity or concavity of a cuspidal edge and the cuspidal
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torsion measures the rate of revolution of the direction of incidence of a cusp along a cuspidal
edge. See [20, 27] for details. See [9, 24, 21] for other studies of geometric invariants of cuspidal
edges.

3. Darboux frames along cuspidal edges

Let f : I × (−ε, ε)→ R3 be a frontal with a unit normal vector ν, where I is an open interval
or a circle, and ε > 0. Assume that I × {0} consists of singular points of the first kind, and we
take a coordinate system (u, v) of I × (−ε, ε) satisfying that

(1) u is an arc-length parameter of the curve given by f(u, 0),
(2) ker df(u,0) is generated by ∂/∂v,

(3) (u, v) is compatible with the orientation of R2.

We also call this coordinate system adapted. In this paper we always choose the unit normal
vector ν of f on an adapted coordinate system so that it satisfies det(fu, fvv, ν)(u, 0) > 0.

We now set γ(u) = f(u, 0) and consider unit vector fields e(u) = fu(u, 0) = γ′(u),
ν(u) = ν(u, 0) and b(u) = −e(u) × ν(u) along γ. Here, a1 × a2 is the exterior product of
a1,a2 in R3. Then {e, b,ν} is a orthonormal frame along γ. We call {e, b,ν} the Darboux frame
along the cuspidal edge γ. As the structure equations for the Darboux frame along the cuspidal
edge, we have the following proposition.

Proposition 3.1 (Frenet-Serret type formulae).

(3.1)

 e
′(u) = κs(u)b(u) + κν(u)ν(u),
b′(u) = −κs(u)e(u) + κt(u)ν(u),
ν′(u) = −κν(u)e(u)− κt(u)b(u).

By using the matrix representation, we havee′b′
ν′

 =

 0 κs κν
−κs 0 κt
−κν −κt 0

eb
ν

 .

Proof. Since {e, b,ν} is an orthonormal frame along γ, we havee′b′
ν′

 =

 0 α β
−α 0 δ
−β −δ 0

eb
ν

 ,

where α = 〈e′, b〉, β = 〈e′,ν〉 and δ = −〈ν′, b〉 . By a straightforward calculation, we have

α = 〈e′, b〉 = −〈e′, e× ν〉 = det(e, e′,ν) = det(γ′,γ′′,ν).

Since det(fu, fvv, ν) > 0, we have α = κs. It follows from β = 〈e′,ν〉 that β = κν . Since f has a
singular point of the first kind at 0 ∈ (R2, 0), fvv, fu are linearly independent. We set

(ũ, ṽ) = φ(u, v) = (u+ a(u)v2, v), a(u) = 〈fu(u, 0), fvv(u, 0)〉 /2.

Then we see that (
uũ uṽ
vũ vṽ

)
=

1

1 + a′(u)v2

(
1 −2a(u)v
0 1 + a′(u)v2

)
◦ φ−1(ũ, ṽ)

fũ = fu. Moreover, since

fṽ = fuuũ + fv = fu
−2a(u)v

1 + a′(u)v2
+ fv,
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it holds that

fṽṽ(ũ, 0) = fṽv(u, 0) =
(
fuv

−2a(u)v

1 + a′(u)v2
+ fu

−2a(u)

1 + a′(u)v2
+ fu

−4a(u)a′(u)v2

(1 + a′(u)v2)2
+ fvv

)
(u, 0)

= −2a(u)fu(u, 0) + fvv(u, 0).

By the definition of a(u), it holds that 〈fũ, fṽṽ〉 (ũ, 0) = 0. Therefore we can choose an adapted
coordinate system (u, v) such that fu, fvv are orthogonal, namely ν = fu× fvv/|fu× fvv| on the
u-axis. Moreover, we have −b = e× ν = fu × (fu × fvv)/|fu × fvv| = −fvv/|fu × fvv|, so that

−δ = 〈ν′, b〉 =
〈fu × fuvv, fvv〉
|fu × fvv|2

=
det(fu, fuvv, fvv)

|fu × fvv|2
= −det(fu, fvv, fuvv)

|fu × fvv|2
= −κt,

on the u-axis. 2

We define a vector field Do(u) along γ by

Do(s) = κt(u)e(u)− κν(u)b(u),

which is called an osculating Darboux vector field along γ. If κ2ν +κ2t 6= 0, we can define the unit
osculating Darboux vector field by

(3.2) Do(u) =
κt(u)e(u)− κν(u)b(u)√

κν(u)2 + κt(u)2
.

We also define a vector field Dr(u) along γ by

Dr(s) = κt(u)e(u) + κs(u)ν(u),

which is called a normal Darboux vector field along γ. If κ2t + κ2s 6= 0, we can also define the
unit normal Darboux vector field by

(3.3) Dr(u) =
κt(u)e(u) + κs(u)ν(u)√

κt(u)2 + κs(u)2
.

We now define the notion of contour edges of cuspidal edges. For a unit vector k ∈ S2, we
say that the cuspidal edge S(f) is the tangential contour edge of the orthogonal projection with
direction k if

S(f) = {(u, 0) ∈ (R2, 0) | 〈ν(u),k〉 = 0}.
We also say that the cuspidal edge S(f) is the normal contour edge of the orthogonal projection
with direction k if

S(f) = {(u, 0) ∈ (R2, 0) | 〈b(u),k〉 = 0}.
Moreover, for a point c ∈ R3, say that the cuspidal edge S(f) is the tangential contour edge of
the central projection (respectively, normal contour edge of the central projection) with center c
if

S(f) = {(u, 0) ∈ (R2, 0) | 〈f(u, 0)− c,ν(u)〉 = 0 }.(
respectively, S(f) = {(u, 0) ∈ (R2, 0) | 〈f(u, 0)− c, b(u)〉 = 0 }.

)
For a regular surface, the notion of contour edges corresponds to the notion of contour generators
[3].

On the other hand, there is a notion of isophotic curves on a regular surfaces. An isophotic
curve of a surface is a curve consisting of points which have the same light intensity from a
given light source. If the light source is infinitely far from the surface, the light rays might be
considered as parallel lines. In this case, an isophotic curve is a curve on a regular surface such
that the normal of the surface along the curve makes a constant angle with a fixed direction.
Therefore, we can define the notion of isophotic curves on the cuspidal edge exactly the same
way as the definition for curves on a regular surface. In particular, the cuspidal edge S(f) is said
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to be a normally isophotic edge if there exists a unit vector d such that 〈d,ν(u)〉 is constant.
We also say that S(f) is a tangential isophotic edge if there exists a unit vector d such that
〈d, b(u)〉 is constant.

We emphasize that notions of contour generators and isophotic curves on regular surfaces
play important roles in the vision theory and visual psychophysics (cf. [3, 15, 16, 17]).

4. Developable surfaces and generalizations of helices

We briefly review the notions and basic properties of ruled surfaces and developable surfaces.
Let γ : I −→ R3 and ξ : I −→ R3 \ {0} be C∞-maps, where I is an open interval or a circle.
Then we define a map F(γ,ξ) : I × R −→ R3 by

F(γ,ξ)(u, t) = γ(u) + tξ(u).

We call the image of F(γ,ξ) a ruled surface, the map γ a base curve and the map ξ a director
curve. The line defined by γ(u) + tξ(u) for a fixed u ∈ I is called a ruling. If the direction
of the director curve ξ is constant, we call F(γ,ξ) a (generalized) cylinder. Using the notation

ξ(u) = ξ(u)/‖ξ(u)‖, we have F(γ,ξ)(I × R) = F(γ,ξ)(I × R). In this case F(γ,ξ) is a cylinder

if and only if ξ̇(u) ≡ 0, where ≡ means that equality holds identically. We say that F(γ,ξ)

is non-cylindrical if ξ̇(u) 6= 0 for any u ∈ I. Suppose that F(γ,ξ) is non-cylindrical. Then a
striction curve is defined to be

(4.1) s(u) = γ(u)− 〈γ̇(u), ξ̇(u)〉
〈ξ̇(u), ξ̇(u)〉

ξ(u).

It is known that a singular point of the non-cylindrical ruled surface is located on the striction
curve. We call the ruled surface with vanishing Gaussian curvature on the regular part a de-
velopable surface. It is known that a ruled surface F(γ,ξ) is a developable surface if and only
if

(4.2) det
(
γ̇(u), ξ(u), ξ̇(u)

)
= 0,

where γ̇(u) = (dγ/du)(u)(cf., [12]). The set of singular points of a non-cylindrical developable
surface coincides with the striction curve[11]. A non-cylindrical ruled surface F(γ,ξ) is a cone if
the striction curve s is constant. It is known (cf., [12]) that a non-cylindrical developable surface
F(γ,ξ) is a wave front if and only if

(4.3) ψ(u) = det
(
ξ(u), ξ̇(u), ξ̈(u)

)
6= 0.

In this case we call F(γ,ξ) a (non-cylindrical) developable front. Let F(γ,ξ)(u, t) be a non-
cylindrical developable surface. Then by (4.2), there exist α(u) and β(u) such that γ̇(u) =

α(u)ξ(u) + β(u)ξ̇(u). The striction curve of F(γ,ξ) is written as s(u) = γ(u)− β(u)ξ(u), and we
see that the signed area density of F(γ,ξ) is proportional to λ = t+ β(u). Thus a singular point
of F(γ,ξ) is always non-degenerate. By Lemma 2.1, we have the following:

Proposition 4.1. With the above notations, a singular point (u,−β(u)) of F(γ,ξ) is a cuspidal
edge (respectively, a swallowtail) if and only if ψ(u) 6= 0 and β′(u) − α(u) 6= 0 (respectively,
ψ(u) 6= 0, β′(u)− α(u) = 0 and β′′(u)− α′(u) 6= 0).

On the other hand, by [4, Corollary 1.5], we have the following:

Proposition 4.2. With the same notations as in Proposition 4.1, a singular point (u,−β(u))
of F(γ,ξ) is a cuspidal cross cap if and only if β′(u)− α(u) 6= 0, ψ(u) = 0 and ψ′(u) 6= 0.
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See [23] for other investigations of developable surfaces with singularities.
Remarkable generalizations of helices in R3 were introduced and investigated in [13, 30, 31].

Let γ : I → R3 be a space curve with an arc-length parameter u. We call γ a Frenet curve if
κ(u) = ‖γ′′(u)‖ 6= 0. For a Frenet curve γ, let {t,nγ , bγ} be the Frenet frame along γ, and κ, τ
the curvature and torsion, respectively. Then γ is said to be a cylindrical helix (or, a generalized
helix ) if there exists a constant vector v such that t(u) makes a constant angle with v. By the
Frenet-Serret formulae, this condition is equivalent to the condition that nγ(u) is orthogonal to
v. Moreover, γ is called a slant helix if there exists a constant vector v such that nγ(u) makes a
constant angle with v [13]. By definition, γ is a slant helix if and only if nγ(u) is a circle in the
unit sphere. Recently, the notion of clad helices have been introduced in [30, 31]. We say that
γ is a clad helix if nγ(u) is a cylindrical helix. Since nγ(u) is a curve in the unit sphere, it is a
spherical cylindrical helix. It is classically known that γ is cylindrical helix if and only if τ/κ is
constant (i.e., the Lancret theorem). If both of τ and κ are constant, γ is a circular helix (i.e.,
an ordinary helix). Therefore, a cylindrical helix is a generalization of circular helix. A curve γ
is a slant helix if and only if

θ(u) =
κ2

(κ2 + τ2)3/2

( τ
κ

)′
(u)

is constant [13]. Moreover, γ is a clad helix if and only if

η(u) =
θ′

(κ2 + τ2)1/2(1 + θ2)3/2
(u)

is constant [30, 31]. See [13, 30, 31] for details. Motivated by the results in [13, 30, 31], we
consider generalizations of these notions of helices. For a Frenet curve γ : I −→ R3, we say that
γ is a 0th-order helix if it is a cylindrical helix, γ is a 1st-order helix if it is a slant helix and γ
is a 2nd-order helix if it is a clad helix, respectively. For k ≥ 1, we inductively define the notion
of kth-order helices. We say that γ is a kth-order helix if t is a (k − 1)th-order helix.

Proposition 4.3. A Frenet curve γ is a kth-order helix if and only if nγ is a (k − 2)th-order
helix.

Proof. For k = 2, γ is a 2nd-order helix if and only if γ is a clad helix. Therefore, nγ is a
cylindrical helix. By definition, it means that nγ is a 0th-order helix. The assertion holds for
k = 2. For k > 2, γ is a kth-order helix if and only if t is a (k − 1)th-order helix. This means
that nγ = t′/‖t′‖ is a (k − 2)th-order helix. This completes the proof. 2

We remark that a cylindrical helix is also called a constant slope curve because its tangent
vector has a constant angle with a constant direction. We can interpret a constant slope as a
0th-order slope. In this sense, we also call a kth-order helix a kth-order slope curve.

On the other hand, we now give a characterization of kth-order helices by the curvature and
the torsion (i.e., the Lancret-type theorem). We define H [γ]0(u) = τ(u)/κ(u), which is called
a 0th-order helical curvature of γ. We have

θ(u) =
κ2

(κ2 + τ2)3/2

( τ
κ

)′
(u) =

1

κ

(
τ
κ

)′(
1 +

(
τ
κ

)2)3/2 (u) =
1

κ

H [γ]
′
0(

1 + (H [γ]0)
2
)3/2 (u).

We set H [γ]1(u) = θ(u), which is called a 1st-order helical curvature. Moreover, the 2nd-order
helical curvature of γ is defined to be

H [γ]2(u) = η(u) =
1

κ(1 + (H [γ])20)1/2
H [γ]

′
1(

1 + (H [γ]1)
2
)3/2 (u).



80 SHYUICHI IZUMIYA, KENTARO SAJI, AND NOBUKO TAKEUCHI

For r ≥ 2, we inductively define

H [γ]2r−1(u) =
1

(1 + (H [γ]2r−3)2)1/2
H [γ]

′
2r−2(

1 +
(
H [γ]2r−2

)2)3/2 (u),

which is called a (2r − 1)st-order helical curvature, and

H [γ]2r(u) =
1

(1 + (H [γ]2r−3)2)1/2(1 + (H [γ]2r−2)2)1/2
H [γ]

′
2r−1(

1 +
(
H [γ]2r−1

)2)3/2 (u),

which is called a 2rth-order helical curvature. On the other hand, let κn(u) and τn(u) be the
curvature and the torsion of the principal normal n(u), respectively. Then we can calculate that

κn(u) =
√

1 + (H [γ]1)2(u), τn(u) =

(
H [γ]

′
1

(1 + (H [γ]1)2)(κ2 + τ2)1/2

)
(u).

By using these formulae, we can show that the above inductive definitions are well-defined. Then
we have the following characterization of higher-order helices.

Proposition 4.4. Let γ : I −→ R3 be a Frenet curve. Then the following conditions are
equivalent :

(1) γ is a kth-order helix,
(2) H [γ]k(u) is constant,
(3) H [γ]k+1(u) is identically equal to zero.

Proof. By definition (2) and (3) are equivalent. It follows from [12, 30, 31] that conditions (1)
and (2) are equivalent for k ≤ 2. Let us write H [n]k(u) as the kth-order helical curvature of the
principal normal curve n(u) of γ(u). By Proposition 4.3, γ(u) is a 3rd-order helix if and only if
n(u) is a 1st-order helix. By the result in [12], this is equivalent to

H [n]1(u) =
1

κn

(H [n]0)′(
1 + (H [n]0)

2
)3/2 (u)

being constant. If we substitute κn(u) =
√

1 + (H [γ]1)2(u) and H [n]0 = τn/κn = H [γ]2,
we have H [γ]3(u) = H [n]1(u), so that conditions (1) and (2) are equivalent for k = 3. By
Proposition 4.3, γ(u) is a 4th-order helix if and only if n(u) is a 2nd-order helix. This condition
is equivalent to the condition that

H [n]2(u) =
1

κn(1 + (H [n]0)2)1/2
(H [n]1)′(

1 + (H [n]1)
2
)3/2 (u)

is constant. If we substitute κn(u) =
√

1 + (H [γ]1)2(u), H [n]0 = H [γ]2 and H [n]1 = H [γ]3
into the above formulae, then the above condition is equivalent to the condition that

H [γ]4(u) =
1

(1 + (H [γ]1)2)(1 + (H [γ]2)2)1/2
H [γ]

′
3

(1 + (H [γ]3)2)
3/2

(u)

is constant. Therefore, conditions (1) and (2) are equivalent for k = 4. We can show that
condition (1) and (2) are equivalent by inductive arguments similar to the above cases. 2

We now consider the tangent surface F(γ,t)(u, t) = γ(u) + tt(u) for a Frenet curve γ(u). We
remark that a tangent surface is a developable surface. Here, we consider tangent surfaces of
special curves in R3. We also remark that F(γ,t) is non-cylindrical if and only if γ is a Frenet
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curve. We assume that γ is a Frenet curve and F(γ,t) is said to be a developable surface with
kth-order slope if γ is a kth-order helix. In particular, a developable surface with 0th-order
slope is called a constant angle surface [22] (or, a developable surface of constant slope [26, 6.3]).
By Proposition 4.3, F(γ,t) is a developable surface with kth-order slope if and only if nγ(u) is
a (k − 2)th-order helix. By the Frenet-Serret formula b′γ = −τnγ , this implies that bγ is a

(k − 1)th-order helix. If τ 6= 0, then the converse holds. Let v : I −→ S2 ⊂ R3 be a smooth
unit vector field. For a unit constant vector c, we say that v(u) has a 1st-order angle with c if
〈v(u), c〉 is constant. For k ≥ 2, we say that v(u) has a kth-order angle with c if v′(u)/‖v′(u)‖
has a (k − 1)th-order angle with c. We have the following lemma.

Lemma 4.5. Let v : I −→ S2 ⊂ R3 be a smooth unit vector field. For k ≥ 2, there exists
a unit constant vector c such that v(u) has a kth-order angle with c if and only if v(u) is a
(k − 2)th-order helix.

Proof. We prove this by induction. Since a 0th-order helix is a cylindrical helix, which is
equivalent to the condition that 〈v′(u)/‖v′(u)‖, c〉 is constant for a unit vector c. This means
that v(u) has a 1st-order angle with c. This completes the proof for k = 2. Suppose that the
assertion holds for k − 1. If v(u) has a kth-order angle with c for a unit vector c. By definition,
v′(u)/‖v′(u)‖ has a (k−1)th-order angle with c for a unit vector c, by the inductive assumption,
v′(u)/‖v′(u)‖ is a (k−3)th-order helix. By definition, v is a (k−2)th-order helix. The converse
also holds. 2

We have the following theorem.

Theorem 4.6. Let γ : I −→ R3 be a Frenet curve. Then the following conditions are equivalent :
(1) F(γ,t) is a developable surface with kth-order slope,
(2) H [γ]k(u) is constant,
(3) H [γ]k+1(u) ≡ 0,
(4) t is a (k − 1)th-order helix,
(5) nγ is a (k − 2)th-order helix.

If τ(u) 6= 0, then the following condition is equivalent to the above:
(6) The restriction of the unit normal vector field of F(γ,t) on the striction curve γ has a
(k − 1)th-order angle with a constant unit vector.

Proof. By Propositions 4.3 and 4.4, conditions (1), (2), (3), (4) and (5) are equivalent. Suppose
τ(u) 6= 0. By a straightforward calculation, the restriction of the unit normal vector field of
F(γ,t) on the striction curve γ(u) is the binormal vector field bγ(u) of γ(u). Suppose that k = 2.
Since H [γ]2(u) is constant, γ(u) is a clad helix (i.e., 2nd-order helix), which is equivalent to the
condition that nγ(u) is a cylindrical helix. Since b′γ = −τnγ , this condition is equivalent to the
condition that b′γ(u)/‖b′γ(u)‖ is a cylindrical helix. By definition, bγ(u) has a 1st-order angle
with a unit vector c. For k > 2, by Lemma 4.5, condition (5) is equivalent to the condition that
nγ(u) has a kth-order angle with a unit vector c. By the relation b′γ = −τnγ and definition,
bγ(u) has a (k − 1)th-order angle with c. 2

In the above theorem, we do not consider condition (4) for k = 0 and condition (5) for k = 0, 1
respectively.

5. Developable surfaces along cuspidal edges

In this section we introduce two kinds of flat surfaces along a cuspidal edge. Let
f : I × (−ε, ε) → R3 be a frontal with a unit normal vector ν, where I is an open interval
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or a circle, and ε > 0. Assume that I × {0} consists of singular points of the first kind, and we
take an adapted coordinate system (u, v) on I × (−ε, ε).

5.1. Osculating developable surfaces along cuspidal edges. If (κν(u), κt(u)) 6= (0, 0) on
u ∈ I, we define a map ODf : I × R −→ R3 by

ODf (u, t) = f(u, 0) + tDo(u) = f(u, 0) + t
κt(u)e(u)− κν(u)b(u)√

κt(u)2 + κν(u)2
.

This is a ruled surface. Setting

(5.1) δo = κs(κ
2
ν + κ2t )− κtκ′ν + κνκ

′
t,

where ′ = d/du, by (3.1), we have

(5.2) Do
′

=
δo

(κ2t + κ2ν)3/2
(κνe+ κtb).

Here and in what follows, we omit “(u)” if it does not create misunderstandings. By (5.2), we

have det
(
γ′, Do, Do

′)
= 0. This means that ODf (I ×R) is a developable surface. We call ODf

an osculating developable surface of f along S(f). By (5.2), ODf is non-cylindrical if and only
if δo 6= 0. The osculating developable surface of f approximates f along S(f) as a developable
surface, and it has common tangent planes with f along S(f) (see Figure 1). Let sOD be the

Figure 1. A cuspidal edge (green) with its osculating developable surface (purple)

striction curve of ODf , which is defined by sOD(u) = ODf

(
u,−

√
κν(u)2 + κt(u)2κν(u)/δo(u)

)
.

By a straightforward calculation, we see that

(5.3) s′OD =
σo
δ2o

(κte− κνb),

where we set

σo = κνδ
′
o + (κsκt − 2κ′ν)δo

= κt(κ
2
ν + κ2t )κ

2
s + 3κt(−κtκ′ν + κνκ

′
t)κs

+κ′sκ
3
ν + κ′′t κ

2
ν + (κ2tκ

′
s − 2κ′νκ

′
t − κtκ′′ν)κν + 2κt(κ

′
ν)2.

By Propositions 4.1 and 4.2, we have the following theorem:

Theorem 5.1. Suppose that ODf is non-cylindrical. Then a singular point (u,−κν(u)/δo(u))
of ODf is

(1) a cuspidal edge if and only if δo(u) 6= 0 and σo(u) 6= 0,
(2) a swallowtail if and only if δo(u) 6= 0, σo(u) = 0 and σ′o(u) 6= 0.
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Moreover, cuspidal cross caps never appear.

Proof. Since D′o = (κνκs + κ′t)e + (κsκt − κ′ν)b, and D′′o = ∗e + ∗b + δ0ν, we see that ψ = δ2o ,
where ∗ stands for some function. On the other hand, since

e =
1

δ

(
(κsκt − κ′ν)Do + κνD

′
o

)
,

α, β in Proposition 4.1 can be taken as (α, β) = (κsκt − κ′ν , κν)/δo. Thus we see that
β′−α = σ/δ2o . By Proposition 4.1, we see assertions (1) and (2). Since ψ = δ2o , if ψ(u) = 0 then
ψ′(u) = 0 for u ∈ I. This proves the last assertion. �

Since ODf is a developable surface, the striction curve sOD coincides with ODf |S(ODf ), and

is a curve in R3. By (5.3), sOD is regular if σo 6= 0. We denote by κOD (respectively, τOD)
the curvature (respectively, the torsion) of sOD the torsions of ODf |S(ODf ) and NDf |S(ODf ),
respectively. By (5.3) and

s′′OD =
1

δ3o

[(
δo(σ

′
oκt + σoκ

′
t + σoκsκν)− 2κtσoδ

′
o

)
e+

(
δo(−σ′oκν − σoκ′ν + σoκsκt) + 2κνσoδ

′
o

)
b

]
,

s′′′OD = ∗e+ ∗b+
σo
δ2o

(
κs(κ

2
ν + κ2t )− κ′νκt + κνκ

′
t

)
ν, if σo 6= 0, then it holds that

(5.4) κOD =
|δo|3

(κ2ν + κ2t )
3/2|σo|

, τOD =
δ2o
σo
.

Therefore, sOD is a Frenet curve if σo 6= 0 and δo 6= 0. If κν ≡ 0, then sOD is equal to f(S(f)).
Moreover, if the cuspidal edge f is a tangent developable surface F(γ,t), then e = t, b = nγ and

ν = bγ . By the Frenet-Serret formulae, we have κν ≡ 0, κs = κ and κt = τ. Then Do(u) = ±e(u)

and the image of sOD coincides with f(S(f)). If κt ≡ 0 and κν 6= 0, then Do(u) = ∓b(u). We
have the following corollary of Theorem 5.1.

Corollary 5.2. Let f be a cuspidal edge. Then we have the following :
(A) Suppose that κν ≡ 0 and κt 6= 0. Then sOD(I) = f(S(f)) (i.e., ODf is the tangent
developable of S(f)) and a singular point (u, 0) ∈ S(f) of ODf is a cuspidal edge if and only if
κs(u) 6= 0. Moreover, swallowtails never appear.
(B) Suppose that κt ≡ 0 and κν 6= 0. Then ODf (u, t) = f(u, 0) + tb(u). If κs(u0) = 0, then
ODf is cylindrical at u0. If ODf is non-cylindrical ( i.e., κs 6= 0), then

sOD(u) = ODf (u,−|κν(u)|/κν(u)κs(u))

and a singular point (u,−|κν(u)|/κν(u)κs(u)) of ODf is
(1) a cuspidal edge if and only if κ′s(u) 6= 0,
(2) a swallowtail if and only if κ′s(u) = 0 and κ′′s (u) 6= 0.

Proof. (A) Since κν ≡ 0, δo = κsκ
2
t and σo = κ3tκ

2
s, and then the results follow from Theorem

5.1.
(B) Since κt ≡ 0 and κν 6= 0, δo = κsκ

2
ν and σo = κ3νκ

′
s, so that σ′o = 3κ2νκ

′
νκ
′
s + κ3νκ

′′
s , and

then the results follow from Theorem 5.1. 2

Let f be a cuspidal edge with κν ≡ 0. Then by Corollary 5.2, S(f) = S(ODf ). If κs > 0
(respectively, κs < 0), then S(ODf ) locates the opposite side across the f(S(f)) (respectively,
the same side with f with respect to f(S(f))). See Figure 2. For a cuspidal edge f with

κν 6= 0, this is investigated in [24], and a cuspidal edge f̂ which is isometric to f and satisfies

f(S(f)) = f̂(S(f̂)). See [24] for detail.
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Figure 2. Left(respectively, right): Cuspidal edge f with κν ≡ 0 and κs > 0
(respectively, κs < 0) (green), and ODf (purple).

5.2. Normal developable surfaces along cuspidal edges. If (κt(u), κs(u)) 6= (0, 0), we
define a map NDf : I × R −→ R3 by

NDf (u, t) = f(u, 0) + tDr(u) = f(u, 0) + t
κt(u)e(u) + κs(u)ν(u)√

κt(u)2 + κs(u)2
.

Since

(5.5) D
′
r =

δn
(κ2t + κ2s)

3/2
(−κse+ κtν),

where

(5.6) δn = κν(κ2s + κ2t )− κsκ′t + κtκ
′
s,

we can also show that NDf (I × R) is a developable surface (See Figure 3). By (5.5), NDf is

Figure 3. A cuspidal edge (green) with its normal developable surface (purple)

non-cylindrical if and only if δn 6= 0. Let sND be the striction curve of NDf , which is defined

by sND(u) = NDf

(
u,−

√
κs(u)2 + κt(u)2κs(u)/δn(u)

)
. Again by a straightforward calculation,

we have

(5.7) s′ND =
σn
δ2n

(κte+ κsν),

where we set

σn = −κsδ′n + (κνκt + 2κ′s)δn
= κt(κ

2
s + κ2t )κ

2
ν + 3κt(κtκ

′
s − κsκ′t)κν

−κsκ′νκ2t + (2κ′2s − κsκ′′s )κt + κs(−κ2sκ′ν − 2κ′sκ
′
t + κsκ

′′
t ).

Similar to Section 5.1, by Propositions 4.1 and 4.2, we have the following theorem:
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Theorem 5.3. Suppose that NDf is non-cylindrical. Then a singular point (u,−κs(u)/δn(u))
of NDf is

(1) a cuspidal edge if and only if δn(u) 6= 0 and σn(u) 6= 0,
(2) a swallowtail if and only if δn(u) 6= 0, σn(u) = 0 and σ′n(u) 6= 0.

Moreover, cuspidal cross caps never appear.

If κs ≡ 0, then Dn(u) = ±e(u) and the image of sND coincides with f(S(f)). If κt ≡ 0 and
κs 6= 0, then Dn(u) = ±ν(u).

Therefore we have the following corollary of Theorem 5.3.

Corollary 5.4. Let f be a cuspidal edge. Then we have the following :
(A) Suppose that κs ≡ 0 and κt 6= 0. Then sND(I) = f(S(f)) (i.e., NDf is the tangent
developable of S(f)) and a singular point (u, 0) ∈ S(f) of NDf is a cuspidal edge if and only
if κν(u) 6= 0. Moreover, swallowtails never appear.
(B) Suppose that κt ≡ 0 and κs 6= 0. Then NDf (u, t) = f(u, 0) + tν(u). If κν(u0) = 0, then
NDf is cylindrical at u0. If NDf is non-cylindrical (i.e., κν 6= 0), then

sND(u) = NDf (u,−|κν(u)|/κν(u)κs(u))

and a singular point (u,−|κν(u)|/κν(u)κs(u)) of NDf is
(1) a cuspidal edge if and only if κν(u) 6= 0,
(2) a swallowtail if and only if κν 6= 0, κ′ν = 0 and κ′′ν(u) 6= 0.

Proof. (A) Since κs ≡ 0, δn = κνκ
2
t and σn = κ3tκ

2
ν . Then the results follow from Theorem 5.1.

(B) If κt ≡ 0, then we have δn = κνκ
2
s and σn = −κ3sκ′ν , so that σ′n = −3κ2sκ

′
sκ
′
ν − κ3sκ′′ν . 2

On the other hand, also similar to Section 5.1, if σn 6= 0, then the curvature κND and the
torsion τND of sND are given by

(5.8) κND =
|δn|3

(κ2s + κ2t )
3/2|σn|

, τND =
δ2n
σn
.

We close this subsection giving examples of ODf and NDf having cuspidal edges and swallow-
tails.

Example 5.5. Let us consider a space curve

(5.9) γ(u) =

(
cos

u√
2
, sin

u√
2
,
u√
2

)
.

Let eγ ,nγ , bγ be the Frenet frame of γ. We set

(5.10) f(u, v) = γ + v2
(

cos θ(u)nγ − sin θ(u)bγ

)
+ v3

(
sin θ(u)nγ − cos θ(u)bγ

)
,

for a function θ(u). Then we see that S(f) = {v = 0} and it consists of cuspidal edges. If
θ(u) = π/4, then

sOD(0) = ODf (0,−2
√

2/3), sND(0) = NDf (0, 2
√

2/3), and σo(0) = σn(0) = 3/128.

Thus singular points of ODf near (0,−2
√

2/3) and NDf near (0, 2
√

2/3) consist of a cuspidal
edge. See Figures 4 and 5. In these pictures, f is colored in green, and ODf and NDf are
colored in purple.

Example 5.6. Let us consider the case θ = π/4 + u/4 in (5.10) of Example 5.5. We see that

sOD(0) = ODf (0,−2
√

3), sND(0) = NDf (0, 2
√

3), σo(0) = σn(0) = 0, and σ′o(0) = −1/256,

σ′n(0) = 1/256. Thus each singular point of ODf at (0,−2
√

3) and NDf at (0, 2
√

3) is a
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Figure 4. Left to right: Cuspidal edge f of θ = π/4, ODf and combined
picture of f and ODf

Figure 5. Left to right: Cuspidal edge f of θ = π/4, NDf and combined
picture of f and NDf

Figure 6. Left to right: Cuspidal edge f of θ = π/4+u/4, ODf and combined
picture of f and ODf

Figure 7. Left to right: Cuspidal edge f of θ = π/4+u/4, NDf and combined
picture of f and NDf

swallowtail. See Figures 6 and 7. In these pictures, f is colored in green, and ODf and NDf

are colored in purple.

5.3. Planer cuspidal edges. In the previous subsections we investigated the singularities of
ODf and NDf with the condition (κν(u), κt(u)) 6= (0, 0) and (κt(u), κs(u)) 6= (0, 0) for any
u ∈ I. Moreover, we also investigated the case when one of κs, κν and κt is identically equal
to zero as special cases (cf. Corollaries 5.2 and 5.4). Here, we study cuspidal edges with
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(κν(u), κt(u)) = (0, 0) and (κt(u), κs(u)) = (0, 0) for any u ∈ I. With the same setting to the
above subsections, let us assume (κν(u), κt(u)) = (0, 0) and κs 6= 0 for any u ∈ I. Since the
curvature κ and the torsion τ of the curve f(u, 0) as a curve in R3 satisfy

(5.11) κ2 = κ2s + κ2ν , τ =
κsκ
′
ν − κνκ′s
κ2s + κ2ν

+ κt,

(see [20]) and ν′(u) ≡ 0, we see that f(u, 0) lies on a plane which is perpendicular to the constant
vector ν. In this case, ODf can be considered as a subset of this plane and

NDf (u, t) = f(u, 0) + tν

is a cylinder. By the same argument as the above, we see that if (κt(u), κs(u)) ≡ (0, 0) and
κν 6= 0, then f(u, 0) lies on a plane which is perpendicular to the constant vector b. In this case,
NDf can be considered as a subset of this plane and NDf (u, t) = f(u, 0) + tb is a cylinder.
Moreover, if we assume (κs(u), κν(u), κt(u)) ≡ (0, 0, 0), then f(u, 0) is a straight line, and
ν′ ≡ b′ ≡ 0. In this case, ODf should be defined as the plane perpendicular to ν and NDf

as the plane perpendicular to b. Since ODf and NDf intersect orthogonally, the cuspidal edge
S(f) is a line in this case.

5.4. Normalized derivate director curves and derivate striction curves. We set

Do
′

=

(
Do

)′∣∣(Do

)′∣∣ =
κνe+ κtb√
κ2ν + κ2t

, D
′
r =

(
Dr

)′∣∣(Dr

)′∣∣ =
−κse+ κtb√

κ2s + κ2t
,

and call them the normalized Do
′

and normalized D
′
r, respectively. They are curves in the unit

sphere in R3. Here, we calculate their geodesic curvatures. Since(
Do
′
)′

=
δo

κ2ν + κ2t

(
− κte+ κνb

)
+

ν√
κ2ν + κ2t

,(
Do
′
)′′

=
1√

κ2ν + κ2t
5

{
−
[(
κ3νκs + κ2νκ

′
t + κνκt(κsκt − 3κ′ν)− 2κ2tκ

′
t

)
δo

+(κ2ν + κ2t )(κ
5
ν + 2κ3νκ

2
t + κνκ

4
t + κtδ

′
o)

]
e

−
[(
κ3tκs − κ2tκ′ν + κtκν(κνκs + 3κ′t) + 2κ2νκ

′
ν

)
δo

+(κ2ν + κ2t )(κ
4
νκt + 2κ2νκ

3
t + κ5t − κνδ′o)

]
b

+(κ2ν + κ2t )
2(κνκ

′
ν + κtκ

′
t)ν

}
,

we obtain the geodesic curvature of Do
′

as follows:(
δ2o + 1

κ2ν + κ2t

)3/2 (
− (κ2ν + κ2t )δ

′
o + 3(κνκ

′
ν + κtκ

′
t)δo

)
,

and in a similar manner, we obtain the geodesic curvature D
′
r as follows:(

δ2n + 1

κ2s + κ2t

)3/2 (
− (κ2s + κ2t )δ

′
n + 3(κsκ

′
s + κtκ

′
t)δn

)
.
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Next we consider normalized striction curves. By (3.2), (5.3), and (3.3), (5.7), we see that

s′OD =
s′OD
|s′OD|

= Do, s′ND =
s′ND
|s′ND|

= Dr.

Thus the normalized derivate striction curves coincide with the normalized director curves.
Moreover, since Do and ν (respectively, Dr and b) are dual to each other as curves in the unit

sphere in R3, s′OD and ν (respectively, s′ND and b) are dual to each other.

6. Special cuspidal edges

In this section we consider the case when the singular values of ODf and NDf are special
curves in R3. Let f : (R2, 0)→ (R3, 0) be a cuspidal edge and {e, b,ν} Darboux frame along the
cuspidal edge γ, where γ = f |S(f).

6.1. Contour edges. In this subsection we give characterizations of contour edges by using the
invariants of cuspidal edges. We have the following theorem.

Theorem 6.1. With the same notations as the previous sections, we have the following :
(A) Suppose that κ2ν + κ2t 6= 0. Then the following properties are equivalent :

(1) ODf is a cylinder,
(2) δo ≡ 0,
(3) ν is a part of a great circle in S2.
(4) S(f) is a tangential contour edge with respect to an orthogonal projection.
(5) Do is a constant vector.

(B) Suppose that κ2s + κ2t 6= 0. Then the following properties are equivalent :

(1) NDf is a cylinder,
(2) δn(u) ≡ 0,
(3) b is a part of a great circle in S2,
(4) S(f) is a normal contour edge with respect to an orthogonal projection.
(5) Dr is a constant vector.

Proof. We show the assertion (A). By (5.2), we see the equivalency of (1) and (2). The condition
κ2t + κ2ν 6= 0 means that ν is a non-singular spherical curve. Moreover, since

ν′′ = (κsκt − κ′ν)e+ (−κνκs − κ′t)b,
we see that det(ν, ν′, ν′′) = δo. This implies that the geodesic curvature of ν is δo(κ

2
t + κ2ν)−3/2,

and it shows that the equivalency of (2) and (3). We assume (2). Then Do(u) is a constant
vector Do. Thus

〈
ν(u), Do

〉
= 0 for any u. This implies that S(f) is a tangential contour edge

with respect to Do. This implies (4). Conversely, we assume (4). Then there exists a vector k
such that 〈ν(u),k〉 = 0 holds for any u. This implies that ν(u) belongs to the normal plane of k
passing through the origin, and it implies (3). Since ν and Do are dual each other as spherical
curves by (3.2) and (5.2), we see that the equivalency of (3) and (5). Thus the assertion (A)
holds. One can show the assertion (B) by the same method as in the proof of (A), using (3.3)
and (5.5) instead of (3.2) and (5.2). 2

Theorem 6.2. With the same notations as above, we have the following :
(A) Suppose that κ2t + κ2ν 6= 0 and δo 6= 0 for any u ∈ I. Then the following properties are
equivalent :

(1) ODf is a cone,
(2) σo ≡ 0,
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Figure 8. Cuspidal edge whose osculating developable surface is a cylinder

Figure 9. Cuspidal edge whose normal developable surface is a cylinder

(3) S(f) is a tangential contour edge with respect to a central projection.
(4) sOD is a constant vector.

(B) Suppose that κ2t + κ2s 6= 0 and δn 6= 0 for any u ∈ I. Then the following properties are
equivalent :

(1) NDf is a cone,
(2) σn ≡ 0,
(3) S(f) is a normal contour edge with respect to a central projection.
(4) sND is a constant vector.

Proof. By (5.3), we see that the equivalency of (1) and (2). We assume (2). Then sOD(u)
is a constant vector for any u. We set c = sOD(u). Then by (4.1), f(u, 0) − c is parallel
to Do(u). Thus 〈f(u, 0)− c,ν(u)〉 =

〈
Do(u),ν(u)

〉
= 0 holds for any u. This implies (3).

Conversely, we assume (3). Then there exists a vector c such that 〈f(u, 0)− c,ν(u)〉 ≡ 0.
By (4.1), sOD(u) − f(u, 0) is parallel to Do(u), 〈sOD(u)− c,ν(u)〉 ≡ 0. Differentiating this
equation by u, and noticing 〈s′OD(u),ν(u)〉 ≡ 0 by (5.3), we have 〈sOD(u),ν′(u)〉 ≡ 0. By (5.3)
and (3.1), we see that 〈s′OD(u),ν′(u)〉 ≡ 0. Thus, differentiating 〈sOD(u),ν′(u)〉 ≡ 0 by u, we
have 〈sOD(u),ν′′(u)〉 ≡ 0. On the other hand, by (3.1), the three vectors ν(u),ν′(u),ν′′(u) are
linearly independent if and only if δo(u) 6= 0. Hence

〈sOD(u)− c,ν(u)〉 ≡ 〈sOD(u)− c,ν′(u)〉 ≡ 〈sOD(u)− c,ν′′(u)〉 ≡ 0

implies sOD(u) − c ≡ 0, and this implies (1). Thus the assertion (A) holds. One can show the
assertion (B) by the same method as in the proof of (A) using (5.7) instead of (5.3). 2

6.2. Isophotic edges. Recall that the curve γ is called the (normal) isophotic edge (respectively,
the tangent isophotic edge) if there exists a constant vector v such that ν (respectively, b) makes
a constant angle with v.
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Figure 10. Cuspidal edge whose osculating developable surface is a cone

Figure 11. Cuspidal edge whose normal developable surface is a cone

Let us turn to our setting. With the same notations as those of Section 5, by a straightforward
calculation, we have

(6.1)

(
τOD
κOD

)2

=
(κ2ν + κ2t )

3

δ2o
and

(
τND
κND

)2

=
(κ2s + κ2t )

3

δ2n
.

These are squares of the geodesic curvatures of ν and b, respectively. Thus we obtain:

Theorem 6.3. With the same notations as those of Section 5, we have the following :
(A) Suppose that κ2t + κ2ν 6= 0, δo 6= 0 and σo 6= 0 for any u ∈ I. Then the following properties
are equivalent :

(1) ODf is a constant angle surface,
(2) ν is a part of a small circle,
(3) S(f) is a normal isophotic edge,
(4) Do is a part of a small circle,

(5) s′OD is a part of a small circle,

(6) δo/(κ
2
ν + κ2t )

3/2 is constant,
(7) sOD is a cylindrical helix.

(B) Suppose that κ2s + κ2ν 6= 0, δn 6= 0 and σn 6= 0 for any u ∈ I. Then the following properties
are equivalent :

(1) NDf is a constant angle surface,
(2) b is a part of a small circle,
(3) γ is a tangent isophotic edge,
(4) Dr is a part of a small circle,

(5) s′ND is a part of a small circle,

(6) δn/(κ
2
s + κ2t )

3/2 is constant,
(7) sND is a cylindrical helix.

Proof. By the definition and (6.1), the equivalency of (1) and (6) is obvious. By the proof of
Theorem 5.3, δo/(κ

2
ν + κ2t )

3/2 is the geodesic curvature of ν, so that (2) and (6) are equivalent.
Since ν is a curve on the unit sphere, we see the equivalency of (2) and (3). By (5.2), ν and Do

are spherical dual each other. Hence we see equivalency of (2) and (4). Equivalency of (2) and
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(5) is obvious since Do and s′OD are parallel. By definition, (5) and (7) are equivalent. Thus the
assertion (A) holds.

One can show the assertion (B) by arguments similar to those for (A). �

6.3. General order sloped edges. In this subsection we consider cuspidal edges such that the
osculating or the normal developables of cuspidal edges are general order sloped, where we say
that S(f) is a k-th order sloped edge with respect to Do (respectively, Dr) if Do (respectively,
Dr) is a (k − 1)th-order (spherical) helix. We denote the kth-order helical curvature of sOD(u)
(respectively, sND(u)) by H [sOD]k(u) (respectively, H [sND]k(u)). By (6.1), we have

H [sOD]0(u) =
(κ2ν + κ2t )

3/2

|δo|
,

H [sND]0(u) =
(κ2s + κ2t )

3/2

|δn|
,

H [sOD]1(u) =

√
κ2ν + κ2t

δ2o + (κ2ν + κ2t )
3

(
3κνκ

′
ν + 3κtκ

′
t − (κ2ν + κ2t )δ

′
o

)
,

H [sND]1(u) =

√
κ2s + κ2t

δ2n + (κ2s + κ2t )
3

(
3κsκ

′
s + 3κtκ

′
t − (κ2s + κ2t )δ

′
n

)
and

H [sOD]2(u) =
σo(κ

2
ν + κ2t )

3/2θ′OD
δo
√
δ2o + (κ2ν + κ2t )

3(1 + θ2OD)3/2
,

H [sND]2(u) =
σn(κ2s + κ2t )

3/2θ′ND
δn
√
δ2n + (κ2s + κ2t )

3(1 + θ2ND)3/2
.

Higher order helical curvatures of sOD(u) and sND(u) are inductively defined. However, these
are very complicated, so we omit explanations by using basic invariants for the cuspidal edge.
Then we have the following theorem as a simple corollary of Theorem 4.6.

Theorem 6.4. With the same notations as those of Sections 4 and 5, we have the following :
(A) Suppose that κ2t + κ2ν 6= 0, δo 6= 0 and σo 6= 0 for any u ∈ I. Then the following properties
are equivalent :

(1) ODf is a developable surface with kth-order slope,
(2) sOD is a kth-order helix,

(3) Do
′

is a (k − 2)th-order (spherical) helix,

(4) s′OD is a (k − 1)th-order (spherical) helix,
(5) H [sOD]k is constant,
(6) H [sOD]k+1 ≡ 0,

(7) S(f) is a k-th order sloped edge with respect to Do.

(B) Suppose that κ2t + κ2s 6= 0, δn 6= 0 and σn 6= 0 for any u ∈ I. Then the following properties
are equivalent :

(1) NDf is a developable surface with kth-order slope,
(2) sND is a kth-order helix,

(3) Dr
′

is a (k − 2)th-order (spherical) helix,
(4) Dr is a (k − 1)th-order (spherical) helix,

(5) s′ND is a (k − 1)th-order (spherical) helix,
(6) H [sND]k is constant,
(7) H [sND]k+1 ≡ 0.
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(8) S(f) is a k-th order sloped edge with respect to Dr.

Proof. (A) With assumptions κ2t + κ2ν 6= 0 and δo 6= 0, sOD is a Frenet curve. By definition,

Do
′

is the unit principal normal vector field of sOD. Since sOD is the striation curve of ODf ,
the director curve of ODf is equal to s′OD, so that we can apply Theorem 4.6 to sOD. By
definition, (4) and (8) are equivalent. For (B), we have arguments similar to the case (A) and
apply Theorem 4.6 to sND. 2

If we consider the case when one of κν , κt, κs is identically equal to zero, we have the following
representations of helical curvatures of sOD and sND, respectively:
(1) Suppose that κν ≡ 0 and κt 6= 0. Then δo = κsκ

2
t and σo = κ3tκ

2
s. If κs 6= 0, then

Do(u) = ±e(u) and sOD(I) = f(S(f)). If we denote by κ and τ the curvature and the tor-
sion of S(f) respectively, then κ(u) = |κs(u)| and τ(u) = κt(u). Therefore we have

H [sOD]0(u) = H [S(f)]0(u) = κt(u)/|κs(u)|.
Moreover, we have

H [S(f)]1(u) =
1

|κs(u)|
H [S(f)]

′
0(u)

(1 + (H [S(f)]0(u))2)3/2
,

H [S(f)]2(u) =
1

|κs(u)|(1 + (H [S(f)]0(u))2)1/2
H [S(f)]

′
1(u)

(1 + (H [S(f)]1(u))2)3/2
.

Higher order helical curvatures of S(f) are inductively defined. Moreover, ODf is the tangent
developable of f(S(f)).
(2) Suppose that κt ≡ 0 and κν 6= 0. Then δo(u) = κs(u)κν(u)2 and σo(u) = κν(u)3κ′s(u). If
κs 6= 0 and κ′s 6= 0, then Do(u) = ±b(u) and sOD(u) = ODf (u,−|κν(u)|/κν(u)κs(u)). Moreover,
we have

κOD(u) =
|κs(u)|3|κν(u)|3

|σo(u)|
and τOD(u) =

κs(u)2κν(u)4

σo(u)
,

so that H [sOD]0(u) = τOD(u)/κOD(u) = |κt(u)|/κs(u). We can define kth-order helical curva-
ture H [sOD]k(u) inductively. In this case NDf (u, t) = f(u, 0) + tb(u).
(3) Suppose that κs ≡ 0 and κt 6= 0. Then δn = κνκ

2
t and σn = κ3tκ

2
ν . If κs 6= 0, then

Dr(u) = ±e(u), sND(I) = f(S(f)) and κ(u) = |κν(u)| and τ(u) = κt(u). Therefore we
have H [sND]0(u) = H [S(f)]0(u) = κt(u)/|κν(u)|. We can define kth-order helical curvature
H [S(f)]k(u) inductively. In this case NDf is the tangent developable of f(S(f)).
(4) Suppose that κt ≡ 0 and κs 6= 0. Then δn = κνκ

2
s and σn = −κ3sκ′ν . If κν 6= 0 and κ′ν 6= 0,

then Do(u) = ±n(u) and sND(u) = NDf (u,−|κν(u)|/κν(u)κs(u)). Moreover, we have

κND(u) =
|κν(u)|3|κs(u)|3

|σn(u)|
and τND(u) =

κν(u)2κt(u)4

σn(u)
,

so that H [sND]0(u) = |κs(u)|/κν(u). We can define kth-order helical curvature H [sND]k(u)
inductively. In this case NDf (u, t) = f(u, 0) + tν(u).

Corollary 6.5. With the same notations as those in the above theorem, we have the following :
(A) Suppose that κν ≡ 0, κt 6= 0, and κs 6= 0. Then ODf is the tangent developable of S(f)
and the following properties are equivalent :

(1) ODf is a developable surface with kth-order slope,
(2) S(f) is a kth-order helix,
(3) b is a (k − 2)th-order (spherical) helix,
(4) e is a (k − 1)th-order (spherical) helix,
(5) H [S(f)]k is constant,
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(6) H [S(f)]k+1 ≡ 0.

(B) Suppose that κt ≡ 0, κν 6= 0, κs 6= 0 and κ′s 6= 0. Then ODf is the tangent developable of
S(f) and the following properties are equivalent :

(1) ODf is a developable surface with kth-order slope,
(2) sOD is a kth-order helix,
(3) e is a (k − 2)th-order (spherical) helix,
(4) b is a (k − 1)th-order (spherical) helix,

(5) s′OD is a (k − 1)th-order (spherical) helix,
(6) H [sOD]k is constant,
(7) H [sOD]k+1 ≡ 0.
(8) S(f) is a k-th order sloped edge with respect to b.

(C) Suppose that κs ≡ 0, κt 6= 0, and κν 6= 0. Then NDf is the tangent developable of S(f)
and the following properties are equivalent :

(1) NDf is a developable surface with kth-order slope,
(2) S(f) is a kth-order helix,
(3) ν is a (k − 2)th-order (spherical) helix,
(4) e is a (k − 1)th-order (spherical) helix,
(5) H [S(f)]k is constant,
(6) H [S(f)]k+1 ≡ 0.

(D) Suppose that κt ≡ 0, κs 6= 0, κν 6= 0 and κ′ν 6= 0. Then NDf (u, t) = f(u, 0) + tν(u) and the
following properties are equivalent :

(1) NDf is a developable surface with kth-order slope,
(2) sND is a kth-order helix,
(3) e is a (k − 2)th-order (spherical) helix,
(4) ν is a (k − 1)th-order (spherical) helix,

(5) s′ND is a (k − 1)th-order (spherical) helix,
(6) H [sND]k is constant,
(7) H [sND]k+1 ≡ 0.
(8) S(f) is a k-th order sloped edge with respect to ν.

7. Curves on regular surfaces and relationships with cuspidal edges

In this section we consider curves on regular surfaces and investigate the relationship with
the previous results on cuspidal edges. In [8, 14], developable surfaces along a curve on a
regular surface are investigated. We consider a regular surface M parametrized by an embedding
X : U → R3 with a unit normal vector field n (i.e., M = X(U)). For a curve c : I → U , we
define γ = X ◦c as a curve on M. We assume that γ is parametrized by the arc-length parameter
s. The Darboux frame {t,d,n} along γ is defined to be the unit tangent vector t of γ, n = n◦γ,
and d = −t× n. Then we have  t′ = κgd+ κnn

d′ = −κgt+ τgn
n′ = −κnt− τgd.

The invariants κg, κn and τg are called the geodesic curvature, the normal curvature and the
geodesic torsion respectively. It is known that γ is a geodesic of M if and only if κg ≡ 0, γ is an
asymptotic curve of M if and only if κn ≡ 0 and γ is a principal curve of M if and only if τg ≡ 0.
Here, γ is said to be a geodesic if the curvature vector t′(s) has only a normal component of the
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surface M, an asymptotic curve if t′(s) has only a tangential component of the surface M and
a line of curvature if ν′(s) is parallel to t(s), respectively.

In [14], an invariant δ̃o = κg + (κnτ
′
g − κ′nτg)(κ2n + τ2g )−1 is introduced1 and it is shown that

δ̃o ≡ 0 if and only if (τgt − κnd)(κ2n + τ2g )−1/2 is a constant vector. Moreover, it is shown that

δ̃o ≡ 0 if and only if γ is a contour generator (i.e., singular set) with respect to an orthogonal
projection such that its kernel is generated by τgt − κnd. Furthermore, in [7], it is shown that

δ̃o(κ
2
n + τ2g )−1/2 is constant if and only if γ is an isophotic curve (i.e., n ◦ γ makes a constant

angle with a constant vector (τgt+ κgn)(κ2g + τ2g )−1/2.).

On the other hand, in [7], an invariant δ̃r = κn + (κ′gτg −κgτ ′g)(κ2g + τ2g )−1 is introduced2 and

it is shown that δ̃r ≡ 0 if and only if (τgt+ κgn)(κ2g + τ2g )−1/2 is a constant.

Actually, (τgt−κnd)(κ2n+τ2g )−1/2 (respectively, (τgt+κgn)(κ2g+τ2g )−1/2) is called a normalized
osculating Darboux vector (respectively, a normalized rectifying Darboux vector) along γ in
[7, 14]. Therefore, the osculating Darboux vector and the rectifying Darboux vector along a
cuspidal edge are the notions analogous to those of the case for a regular curve on a regular
surface. In this section we compare their properties along regular curves on regular surfaces
with those along cuspidal edges.

On the other hand, with the same setting as in Section 5, S(f) is not only a curve on f
but also a curve on ODf and NDf . In particular, if κν 6= 0, then S(f) is a regular curve on
the regular part of ODf . Moreover, S(f) is always a regular curve on the regular part of NDf .
Therefore, we consider the invariants of S(f) as a regular curve on ODf and NDf , respectively.
Let κ̃g, κ̃ν and τ̃g be the geodesic curvature, normal curvature and geodesic torsion of

S(f) = {f(u, 0) = ODf (u, 0) |u ∈ I}
as a curve on ODf , respectively. Also let κg, κν and τg denote the geodesic curvature, normal
curvature and geodesic torsion of S(f) = {f(u, 0) = NDf (u, 0)| u ∈ I} as a curve on NDf ,
respectively.

Since ν is a unit normal vector of ODf , we see that κ̃g = κs, κ̃n = κν and τ̃g = κt. Also,
since b is a unit normal vector of NDf , we see that κg = −κν , κn = κs and τg = κt. Hence we

see that the invariants δ̃o and δ̃r of f(u, 0) = ODf (u, 0) as a curve on ODf are

δ̃o =
δo

κ2ν + κ2t
, δ̃r =

δn
κ2s + κ2t

,

respectively. On the other hand, the invariants δ̃o and δ̃r of f(u, 0) = NDf (u, 0) as a curve on
NDf are

δ̃o = − δn
κ2s + κ2t

, δ̃r =
δo

κ2ν + κ2t
.

For the invariants κg, κn, τg of a curve γ on a regular surface, γ is an asymptotic curve of f
if and only if κn ≡ 0, γ is a geodesic of f if and only if κg ≡ 0, and γ is a line of curvature of f
if and only if τg ≡ 0. It is natural to expect this type of explanation about invariants κs, κν , κt
of cuspidal edge. The singular curvature κs (respectively, the limiting normal curvature κν) is
defined as a limit of the geodesic curvatures with sign (respectively, the normal curvatures) of
curves approaching the singular set of the cuspidal edge, and one can see the same explanation
about κs and κν [27, 20]. Here, we study κt from this point of view. For a regular curve
c : I −→ U, it is classically known that γ = X ◦ c is a line of curvature if and only if the ruled
surface with the normal director curve γ(s) + tn(s) is a developable surface (i.e., Theorem of

1In [14], δ̃o is denoted by δ.
2In [7], δ̃r is denoted by δr.
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Bonnet [29, Page 295]). On the other hand, let f : I × R −→ R3 be a frontal, and suppose
S(f) = I × {0} consists of singular points of the first kind. Assume that κt ≡ 0 on I. Then
Dr(u) = ±ν(u), so that NDf is a ruled surface with base curve f |S(f) and director curve ν,
and it is, by definition, developable. Thus it is natural to expect that S(f) of a frontal with
vanishing κt can be considered as a line of curvature.

Let f : (R2, 0) → (R3, 0) be a map-germ and 0 a cuspidal edge. Suppose that (u, v) is
an adapted coordinate system. Since fv(u, 0) = 0, there exists a vector h(u, v) such that
fv(u, v) = vh(u, v). Set

Ẽ = 〈fu, fu〉 , F̃ = 〈fu, h〉 , G̃ = 〈h, h〉 , L̃ = −〈fu, νu〉 , M̃ = −〈h, νu〉 , Ñ = −〈h, νv〉 .
Then

(7.1) E = Ẽ, F = vF̃ , G = v2G̃, L = L̃, M = vM̃, N = vÑ

holds, where E,F,G (respectively, L,M,N) are the coefficients of the first fundamental form
(respectively, the second fundamental form). Consider the equation

(7.2) (EM − FL) du2 + (EN −GL) dudv + (FN −GM) dv2 = 0

for a tangent vector a(u, v)∂u+b(u, v)∂v ∈ T(u,v)R2. It is known that if u′(t)∂u+v′(t)∂v satisfies
(7.2), then the curve (u(t), v(t)) is a principal curve of f . Substituting (7.1) to (7.2) and factoring
v out, we obtain the equation

(ẼM̃ − F̃ L̃) du2 + (ẼÑ − vG̃L̃) dudv + (vF̃ Ñ − v2G̃M̃) dv2 = 0.

Thus if (ẼM̃ − F̃ L̃)(u, 0) ≡ 0, then we can regard the curve (u, 0) as a line of curvature. By

(5.1) of [20], κt(u) is proportional to (ẼM̃− F̃ L̃)(u, 0). Summarizing the above arguments, S(f)
can be regarded as a line of curvature if κt ≡ 0 holds.

Appendix A. Support functions

In this appendix we study invariants of a cuspidal edge using a family of functions on a
curve. It is well-known that this method is useful for studying singular curves on singular
surfaces. Although the results are the same as we have obtained above, we believe that it is
worth mentioning that one can get the same result as Theorems 5.1 and 5.3 by this method.

For a unit speed curve γ : I −→ M ⊂ R3 and a vector field k : I → TM along γ, we define
a function Gk : I ×R3 −→ R by Gk(u,x) = 〈x− γ(u),k(u)〉. We call Gk a support function on
γ with respect to k. We denote that gk,x0

(u) = Gk(u,x0) for any x0 ∈ R3.
Let f : I × (−ε, ε)→ R3 be a frontal with a unit normal vector ν, where I is an open interval

or a circle, and ε > 0. Assume that I × {0} consists of singular points of the first kind, and
we take an adapted coordinate system (u, v) of I × (−ε, ε). Let e, b,ν be the Darboux frame of
S(f). We consider

Gν(u,x), gν,x0
(u), Gb(u,x), gb,x0

(u)

We have the following propositions.

Proposition A.1. Under the above setting, we have the following :
(A) Suppose that κν(u)2 + κt(u)2 6= 0. Then

(A1) gν,x0(u) = 0 if and only if there exist α(u) and β(u) such that

x0 − f(u, 0) = αe(u) + βb(u).

(A2) gν,x0
(u) = gν,x0

(u)′ = 0 if and only if there exists l(u) such that

x0 − f(u, 0) = −l(u)Do(u).

(AI) Suppose that δo(u) 6= 0. Then
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(A3) gν,x0
(u) = gν,x0

(u)′ = gν,x0
(u)′ = 0 if and only if

(A.1) x0 − f(u, 0) = −κν
δo
Do(u).

(A4) gν,x0(u) = gν,x0(u)′ = gν,x0(u)′ = gν,x0(u)′′ = 0 if and only if (A.1) and σo = 0.
(A5) gν,x0

(u) = gν,x0
(u)′ = gν,x0

(u)′ = gν,x0
(u)′′ = gν,x0

(u)′′′ = 0 if and only if (A.1)
and σo = σ′o = 0.

(AII) Suppose that δo(u) = 0. Then
(A3’) gν,x0(u) = gν,x0(u)′ = gν,x0(u)′′ = 0 if and only if κν = 0. We remark that under

this condition, δo = κsκt − κ′ν .
(AII-1) Set δν1 = κtκ

′
s + 2κsκ

′
t − κ′′ν and suppose that δo(u) = 0, δν1(u) 6= 0. Then

(A4’) gν,x0
(u) = gν,x0

(u)′ = gν,x0
(u)′′ = gν,x0

(u)′′′ = 0 if and only if κs = 0 and
x0 − f(u, 0) = −κsκte(u)/δν1.

(A5’) gν,x0(u) = gν,x0(u)′ = gν,x0(u)′′ = gν,x0(u)′′′ = gν,x0(u)′′′′ = 0 if and only if
κs = 0, x0 − f(u, 0) = −κνκte(u)/δν1 and

−2κ4sκ
2
t−(2κtκ

′
s−3κ′′ν)(κtκ

′
s−κ′′ν)−3κ2s(2(κ′t)

2+κtκ
′′
t )−κs(κ2tκ′′s−9κ′tκ

′′
ν−κt(−10κ′sκ

′
t+κ

′′′
ν )) = 0.

(AII-2) Suppose that δo(u) = 0, δν1(u) = 0. Then
(A4”) gν,x0(u) = gν,x0(u)′ = gν,x0(u)′′ = gν,x0(u)′′′ = 0 if and only if κs = κν = 0

and there exists l(u) such that x0 − f(u, 0) = l(u)e(u). We remark that under this
condition, δν1 = −κtκ′s + κ′′ν .

(AII-2-1) Set δν2 = 3κ′sκ
′
t + κtκ

′′
s − κ′′′ν , and suppose that δo(u) = 0, δν1(u) = 0, δν2(u) 6= 0. Then

(A5”) gν,x0
(u) = gν,x0

(u)′ = gν,x0
(u)′′ = gν,x0

(u)′′′ = gν,x0
(u)′′′′ = 0 if and only if

κs = κν = 0 and x0 − f(u, 0) = −κtκ′se(u)/δν2.
(AII-2-2) Suppose that δo(u) = 0, δν1(u) = 0, δν2(u) = 0. Then

(A5”’) gν,x0
(u) = gν,x0

(u)′ = gν,x0
(u)′′ = gν,x0

(u)′′′ = gν,x0
(u)′′′′ = 0 if and only if

κs = κν = κ′s = 0 and there exists l(u) such that x0 − f(u, 0) = l(u)e(u). We
remark that under this condition, δν2 = κtκ

′′
s − κ′′′ν .

(B) Suppose that κs(u)2 + κt(u)2 6= 0. Then
(B1) gb,x0

(u) = 0 if and only if there exist α(u) and β(u) such that

x0 − f(u, 0) = αe(u) + βν(u).

(B2) gb,x0
(u) = gb,x0

(u)′ = 0 if and only if there exists l(u) such that

x0 − f(u, 0) = l(u)Dr(u).

(BI) Suppose that δn(u) 6= 0. Then
(B3) gb,x0

(u) = gb,x0
(u)′ = gb,x0

(u)′′ = 0 if and only if

(A.2) x0 − f(u, 0) =
−κs
δn

Dr(u).

(B4) gb,x0
(u) = gb,x0

(u)′ = gb,x0
(u)′′ = gb,x0

(u)′′′ = 0 if and only if (A.2)
and σn(u) = 0.

(B5) gb,x0
(u) = gb,x0

(u)′ = gb,x0
(u)′′ = gb,x0

(u)′′′ = gb,x0
(u)′′′′ = 0 if and

only if (A.2) and σn(u) = σ′n(u) = 0.
(BII) Suppose that δn(u) = 0. Then

(B3’) gb,x0
(u) = gb,x0

(u)′ = gb,x0
(u)′′ = 0 if and only if κs = 0. We remark

that under this condition, δn = κνκ
2
t + κtκ

′
s.

(BII-1) Set δb1 = κtκ
′
ν + 2κνκ

′
t + κ′′s and suppose that δn(u) = 0, δb1(u) 6= 0. Then

(B4’) gb,x0(u) = gb,x0(u)′ = gb,x0(u)′′ = gb,x0(u)′′′ = 0 if and only if κs = 0
and x0 − f(u, 0) = −κνκte/δb1.
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(B5’) gb,x0
(u) = gb,x0

(u)′ = gb,x0
(u)′′ = gb,x0

(u)′′′ = gb,x0
(u)′′′′ = 0 if and

only if κs = 0, x0 − f(u, 0) = −κνκte/δb1 and

2κ4νκ
2
t+(κtκ

′
ν+κ′′s )(2κtκν+3κ′′s )+3κ2ν(2(κ′t)

2+κtκ
′′
t )+κν

(
9κ′tκ

′′
s+κ2tκ

′′
ν−κt(−10κ′νκ

′
t−κ′′′s )

)
= 0.

(BII-2) Suppose that δn(u) = 0, δb1(u) = 0. Then
(B4”) gb,x0

(u) = gb,x0
(u)′ = gb,x0

(u)′′ = gb,x0
(u)′′′ = 0 if and only if

κs(u) = κν(u) = 0. We remark that under this condition,
δb1 = κtκ

′
ν + κ′′s .

(BII-2-1) Set δb2 = 3κ′νκ
′
t + κtκ

′′
ν + κ′′′s , and suppose that δn(u) = 0, δb1(u) = 0,

δb2(u) 6= 0. Then
(B5”) gb,x0(u) = gb,x0(u)′ = gb,x0(u)′′ = gb,x0(u)′′′ = gb,x0(u)′′′′ = 0 if and

only if κs = κν = 0 and x0 − f(u, 0) = −κ′νκte(u)/δb2.
(BII-2-2) Suppose that δn(u) = 0, δb1(u) = 0, δb2(u) = 0. Then

(B5”’) gb,x0
(u) = gb,x0

(u)′ = gb,x0
(u)′′ = gb,x0

(u)′′′ = gb,x0
(u)′′′′ = 0 if and

only if κs = κν = κ′ν = 0 and, there exists l(u) such that

x0 − f(u, 0) = l(u)e(u).

We remark that under this condition, δb2 = κtκ
′′
ν + κ′′′s .

If gb,x0(u) = gb,x0(u)′ = gb,x0(u)′′ = 0, gb,x0(u)′′′ 6= 0 or

gb,x0
(u) = gb,x0

(u)′ = gb,x0
(u)′′ = gb,x0

(u)′′′ = 0,

gb,x0
(u)′′′′ = 0 hold, then Gb is a K-versal unfolding of gb,x0

at (u,x0).

If gν,x0
(u) = gν,x0

(u)′ = gν,x0
(u)′′ = 0, gν,x0

(u)′′′ 6= 0 or

gν,x0
(u) = gν,x0

(u)′ = gν,x0
(u)′′ = gν,x0

(u)′′′ = 0,

gν,x0
(u)′′′′ 6= 0 hold, then Gν is a K-versal unfoldings of gν,x0

at (u,x0).

See [1] or [10, Appendix] for K-versal unfolding (written as K-versal deformations). Using
Proposition A.1, and by some general results for the singularity theory for families of function
germs, one can also show Theorems 5.1 and 5.3. Detailed descriptions on general results in the
singularity theory are found in the book[2].

On the other hand, the calculations by using support functions are rather complicated com-
paring with the direct use of the criteria for frontals in the proof of Theorems 5.1 and 5.3.
However, one of the advantages of the method using the support functions is that we can clarify
the geometric meanings of the singularities from the contact viewpoint. Let Γ : I −→ R3×S2 be
a regular curve and F : R3×S2 −→ R a submersion. We say that Γ and F−1(0) have contact of at
least order k for t = t0 if the function g(t) = F ◦Γ(t) satisfies g(t0) = g′(t0) = · · · = g(k)(t0) = 0.
If γ and F−1(0) have contact of at least order k for t = t0 and satisfy the condition that
g(k+1)(t0) 6= 0, then we say that Γ and F−1(0) have contact of order k for t = t0. For any
x ∈ R3, we define a function gx : R3 × S2 −→ R by gx(u,v) = 〈x− u,v〉. Then we have

g−1x (0) = {(u,v) ∈ R3 × S2 |〈u,v〉 = 〈x,v〉}.
If we fix v ∈ S2, then g−1x (0)|R3×{v} is an affine plane defined by 〈u,v〉 = c, where c = 〈x,v〉.
Since this plane is orthogonal to v, it is parallel to the tangent plane TvS

2 at v. Here we have
a representation of the tangent bundle of S2 as follows:

TS2 = {(u,v) ∈ R3 × S2 |〈u,v〉 = 1}.
We consider the canonical projection π2|g−1x (0) : g−1x (0) −→ S2, where π2 : R3 × S2 −→ S2.

Then π2|g−1x (0) : g−1x (0) −→ S2 is a plane bundle over S2. Moreover, we define a map

Ψ : g−1x (0) −→ TS2
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by Φ(u,v) = (u/〈x,v〉,v). Then Φ is a bundle isomorphism. Therefore, we write
TS2(x) = g−1x (0) and call it an affine tangent bundle over S2 through x. With the same nota-
tions as above, we distinguish two cases.

(A) Suppose that (κν(u), κt(u)) 6= (0, 0) and δo(u) 6= 0. We consider

sOD(u) = f(u, 0)− κν(u)

δo(u)
Do(u).

By (5.3), we have

s′OD(u) =
σo(u)

δo(u)
(κt(u)e(u)− κν(u)b(u)).

If we assume that σo(u) ≡ 0, then sOD is a constant vector x0. Then

f(u, 0)− x0 =
κν(u)

δo(s)
Do(u)

Therefore
gx0(f(u, 0),ν(u)) = gν,x0(s) = 〈x0 − f(u, 0),ν(u)〉 = 0.

If there exists x0 ∈ R3 such that gx0
(f(u, 0),ν(u)) = 0, then we have

f(u, 0)− x0 =
κν(u)

δo(s)
Do(u).

and σo(u) ≡ 0. We consider a regular curve (f |S(f),ν) : I −→ R3 × S2.
(B) Suppose that (κs(u), κt(u)) 6= (0, 0) and δn(u) 6= 0. Then we have similar results to case

(A), so that we have the following proposition.

Proposition A.2. With the same notations as above, we have the following :
(A) Suppose that (κν(u), κt(u) 6= (0, 0) and δo(u) 6= 0. Then there exists x0 ∈ R3 such that
(f |S(f),ν)(I) ⊂ TS2(x0) if and only if σo ≡ 0.

(B) Suppose that (κs(u), κt(u) 6= (0, 0) and δn(u) 6= 0. Then there exists x0 ∈ R3 such that
(f |S(f), b)(I) ⊂ TS2(x0) if and only if σn ≡ 0.

The results of Proposition A.1 can be interpreted from the contact viewpoint as follows.

Proposition A.3. With the same notations as above, we have the following :
(A) Suppose that (κν(u), κt(u) 6= (0, 0) and δo(u) 6= 0. For x0 = ODf (u0, t0), we have the
following:
(1) The order of contact of (f |S(f),ν) with TS2(x0) at u = u0 is two if and only if

(A.3) t0 = −κν(u0)

δo(u0)

and σo(u0) 6= 0. In this case ODf is a cuspidal edge at (u0, t0).
(2) The order of contact of (f |S(f),ν) with TS2(x0) at u = u0 is three if and only if (A.3) and
σo(u0) = 0 and σ′o(u0) 6= 0. In this case ODf is a swallowtail at (u0, t0).
(B) Suppose that (κs(u), κt(u) 6= (0, 0) and δn(u) 6= 0. For x0 = NDf (u0, t0), we have the
following:
(1) The order of contact of (f |S(f), b) with TS2(x0) at u = u0 is two if and only if

(A.4) t0 = −κs(u0)

δn(u0)

and σn(u0) 6= 0. In this case NDf is a cuspidal edge at (u0, t0).
(2) The order of contact of (f |S(f), b) with TS2(x0) at u = u0 is three if and only if (A.4) and
σn(u0) = 0 and σ′n(u0) 6= 0. In this case NDf is a swallowtail at (u0, t0).
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A REMARK ON THE IRREGULARITY COMPLEX

CLAUDE SABBAH

Abstract. We prove that, for a good meromorphic flat bundle with poles along a divisor
with normal crossings, the restriction of the irregularity complex to each natural stratum of
this divisor only depends on the formal flat bundle along this stratum. This answers a question
raised by J.-B.Teyssier.

1. Statement of the results

Let X be a complex manifold of dimension n and let D =
⋃
i∈J Di be a divisor with normal

crossings. We assume that each irreducible component Di of D is smooth. For any subset I ⊂ J ,
we set DI =

⋂
i∈I Di and D◦I = DI r

⋃
j /∈I Dj . We denote the codimension of D◦I by `, that we

regard as a locally constant function on D◦I (which can have many connected components), and
by ιI : D◦I ↪→ D the inclusion. Let M be a holonomic DX -module such that

(1) M = M (∗D),
(2) MXrD is locally OX -free of finite rank.

We then say that M is a meromorphic flat bundle with poles along D. In this note, we assume
that M has a good formal structure along D (we simply say that M is a good D-meromorphic flat
bundle, or a good meromorphic flat bundle on (X,D)). This notion, together with the Riemann-
Hilbert correspondence, will be recalled in Section 2. Recall also that, given any meromorphic flat
bundle on (X ′, D′) (where D′ is an arbitrary reduced divisor in X ′), there exists, locally on X ′,
a projective modification X → X ′ such that the pullback of D′ by this modification is a divisor
with simple normal crossings D and the pullback meromorphic flat bundle is a D-meromorphic
flat bundle having a good formal structure along D (see [Ked10, Ked11], and [Moc09, Moc11a]
in the algebraic case; see also [Sab00] for special cases when dimX = 2).

For every I ⊂ J , we consider the sheaf O
X̂|D◦I

on D◦I , also denoted by O
D̂◦I

, defined as the
formalization of OX along D◦I . We also regard it as a sheaf on X by extending it by zero. We
then set D

D̂◦I
= O

D̂◦I
⊗OX DX , and M

D̂◦I
:= D

D̂◦I
⊗DX M .

For any holonomic DX -module N , the irregularity complexes IrrD N and Irr∗D N , as defined
by Mebkhout [Meb90], are constructible complexes supported onD, and only depend on N (∗D).
For a good D-meromorphic flat bundle M as above, the cohomology of IrrD M and Irr∗D M is
locally constant along each stratum D◦I : this follows from [Tey13, Th. 12.2.7] if #I = 1 and from
Corollary 3.4 together with the case #I = 1 otherwise. On the other hand, Mebkhout has shown
that the complexes IrrD M [dimX], Irr∗D M [dimX] are a perverse sheaves (see loc. cit.).

Our aim in this note is to compare the irregularity complexes of M restricted to D◦I and those
of the formalized module M

D̂◦I
. However, the irregularity complexes of M

D̂◦I
are not defined by
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the procedure of [Meb90]. To give a meaning to the question, we start by proving in Section 2.f
the following proposition.

Proposition 1.1. For every I ⊂ J , there exists a unique good D-meromorphic flat bundle M ◦
I

in the neighbourhood of D◦I which satisfies the following two properties.
(1) D

D̂◦I
⊗DX M ◦

I 'M
D̂◦I

.
(2) At each point of D◦I , the local formal decomposition of M ◦

I (after a local ramification
around D) into elementary formal D-meromorphic flat bundles already holds without
taking formalization.

The main result of this note can now be stated.

Theorem 1.2. For every I ⊂ J , we have

ι−1
I IrrD M ' ι−1

I IrrD(M ◦
I ), and ι−1

I Irr∗D M ' ι−1
I Irr∗D(M ◦

I ).

In other words, the complexes ι−1
I IrrD M , ι−1

I Irr∗D M only depend (up to isomorphism) on
the formalization M

D̂◦I
of M along D◦I .

Acknowledgements. The statement of Theorem 1.2 has been suggested, in a numerical variant,
by Jean-Baptiste Teyssier, against my first expectation. He was motivated by a nice application
to moduli of Stokes torsors obtained in [Tey16]. I thank him for having led me to a better
understanding of the irregularity complex, and for suggesting a simpler proof of Proposition 1.1.
I thank the referee for interesting comments.

2. Good formal structure and the Riemann-Hilbert correspondence

2.a. Notation. We keep the notation of the introduction. If Z is any locally closed analytic
subspace of the complex analytic manifold X, we denote by OẐ , the formal completion of OX
with respect to the ideal sheaf IZ . We regard OẐ as a sheaf on Z.

Given xo ∈ D, there exists a unique I ⊂ J such that xo ∈ D◦I , and we will be mostly interested
in the case where Z is the point xo ∈ D and the case where Z is equal to D◦I . We will denote
by OẐ(∗D) the sheaf OX|Z(∗D)⊗OX|Z OẐ , where as usual OX|Z (resp. OX|Z(∗D)) denotes the
sheaf-theoretic restriction to Z of the sheaf OX of holomorphic functions on X (resp. the sheaf
OX(∗D) of meromorphic functions on X with poles at most on D).

If ϕ (resp. ϕ̂) is a section of OX(∗D) (resp. of OẐ(∗D)), we denote by E ϕ (resp. E ϕ̂) the
module with connection (OX(∗D),d+dϕ) (resp. (OẐ(∗D),d+ ϕ̂)). It only depends on the class,
also denoted by ϕ (resp. ϕ̂), of ϕ (resp. ϕ̂) modulo OX (resp. OẐ).

2.b. Good formal structure. We say that the D-meromorphic flat bundle M has a good
formal structure if, for any xo ∈ D, there exists a local ramification ρdI of multi-degree dI
around the branches (Di)i∈I passing through xo (hence inducing an isomorphism aboveD◦I in the
neighbourhood of xo) such that the pullback of the formal flat bundle Mx̂o := Ox̂o⊗OX,xo Mxo by
this ramification decomposes as the direct sum of formal elementary D-meromorphic connections
E ϕ̂ ⊗ R̂ϕ̂, as defined below.

We denote by nb(xo) a small open neighbourhood of xo in X above which the ramification
is defined, and we denote by x′o the pre-image of xo, so the ramification is a finite morphism
ρdI : nb(x′o)→ nb(xo). It induces a one-to-one map above D◦I ∩ nb(xo). We also set

D′ = ρ−1
dI

(D ∩ nb(xo)),

so that D′I maps isomorphically to DI ∩ nb(xo) = D◦I ∩ nb(xo).
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In the above decomposition, ϕ̂ varies in a good finite subset Φ̂xo ⊂ O
x̂′o

(∗D′)/O
x̂′o

and R̂ϕ̂ is
a free O

D̂′I
(∗D′)-module with an integrable connection having a regular singularity along D′. In

other words, we do not distinguish between ϕ̂ and ψ̂ in O
x̂′o

(∗D′) if their difference has no poles

along D′. Goodness means here that for any pair ϕ̂ 6= ψ̂ ∈ Φ̂xo ∪ {0}, the difference ϕ̂ − ψ̂ can
be written as x−mη̂(x), with m ∈ N#I and η̂ ∈ O

x̂′o
satisfying η̂(0) 6= 0 (see [Sab00, §I.2.1].1 By

[Ked11, Prop. 4.4.1&Def. 5.1.1] (see also [Sab00, §I.2.4] and [Moc11b, Prop. 2.19]), the ϕ̂’s are
convergent, i.e., the set Φ̂xo is the formalization at xo of a finite subset

Φxo ⊂ Γ(nb(x′o),Onb(x′o)(∗D′)/Onb(x′o)),

and the decomposition extends in a neighbourhood of x′o, that is, it holds for the pullback by
ρdI of M

D̂◦I ,xo
and induces the original one after taking formalization at x′o.

2

2.c. Stratified I-covering. The set
⊔
xo∈D◦I

(Φxo ∪{0}) has a natural structure of a finite non-
ramified covering of D◦I (in particular, it is a Hausdorff topological space), that we denote by
Σ◦I → D◦I . Locally, it is described as follows. Given a germ ϕx′o ∈ Φxo ∪{0}, it extends locally as
a section of Onb(x′o)(∗D′)/Onb(x′o) and thus defines a germ in Φyo ∪{0} for any yo ∈ D◦I ∩nb(xo).
This defines the local branch of Σ◦I passing through ϕx′o . (This construction is nothing but that
of the sheaf space, or étalé space, of a sheaf.)

By a similar procedure, the set Σ(M ) :=
⊔
I ΣI can be endowed with a natural topology as

a sheaf space, but the topology can be non-Hausdorff: this occurs if some difference ϕx′o − ψx′o
does not have poles along all the components of D′ passing through x′o.

In order to state the Riemann-Hilbert correspondence, we will lift these objects to the real
oriented blowing-up $ : X̃ := X̃(Di∈J) → X along the components Di of D in X. We set
∂X̃ := $−1(D) and ∂X̃◦I := $−1(D◦I ). The fibre of $ over a point in D◦I is diffeomorphic
to (S1)`, making ∂X̃◦I a (S1)`-bundle on D◦I . We consider the sheaf I on ∂X̃ as constructed in
[Sab13, §9.3].

By considering the fiber product

Σ̃◦I
//

��

Σ◦I

��

∂X̃◦I
$ // D◦I

we obtain a finite covering Σ̃◦I of ∂X̃◦I which is naturally contained in the étalé space Iét of I.
By a similar procedure, we get a good stratified I-covering

⊔
I Σ̃◦I =: Σ̃(M )→ ∂X̃ of ∂X̃, in the

sense of [Sab13, Rem. 11.12]. As before, Σ̃(M ) can be non-Hausdorff.

2.d. The Riemann-Hilbert correspondence (local theory). Let us fix a good stratified
I-covering Σ̃. Let xo ∈ D◦I . The local Riemann-Hilbert correspondence ([Moc11a, Moc11b],
[Sab13]) is an equivalence between the category of germs at xo of good D-meromorphic flat
bundles Mxo with stratified I-covering Σ̃(M ) contained in Σ̃, and that of germs at $−1(xo)

of good Stokes-filtered local systems (L ◦I ,L
◦
I,•) on ∂X̃◦I (see e.g. [Sab13, §9.5]) with I-covering

contained in Σ̃◦I (see [Moc11b, Th. 4.11] and [Sab13, Th. 12.16]).

1 Note that, here, the goodness condition is assumed for Φ̂ ∪ {0} and not only for Φ̂, because of [Sab13,
Cor. 12.7]. This is unfortunately not made precise in [Sab13, Th. 12.16] and should be corrected.

2I thank J.-B.Teyssier for pointing this out to me. In [Moc11a, Moc11b] (see also [Sab13, §11.3]), this is
shown to hold only if one assumes the good formal structure at all points of D◦

I ∩ nb(xo).
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More precisely, we have a commutative diagram of functors

(2.1)

Mxo_

��

� ∼ // (L ◦I ,L
◦
I,•)$−1(xo)

_
gr
��

M
D̂◦I ,xo

� ∼ // (gr L ◦I , gr L ◦I,•)$−1(xo)

similar to that of [Mal91, p. 58], where gr means grading with respect to the Stokes filtration and
the horizontal functors are equivalences of categories. Recall that grading a Stokes-filtered local
system is well-defined only when one restricts to Σ̃◦I , which is Hausdorff (see [Sab13, Chap. 1]).
In order to give a meaning to grading in general, one needs to control the extension from D◦I to
a small neighbourhood nb(D◦I ). Locally, this is provided by the following equivalence.

Proposition 2.2 (see [Moc11b, Lem. 3.17]). The restriction functor to ∂X̃◦I induces an equiva-
lence between the category of germs at $−1(xo) of Stokes-filtered local systems (L ,L•) on ∂X̃
with associated stratified I-covering contained in Σ̃ and the category of germs at $−1(xo) of
Stokes-filtered local systems (L ◦I ,L

◦
I,•) on ∂X̃◦I with associated I-covering contained in Σ̃◦I .

2.e. The Riemann-Hilbert correspondence (global theory). We now consider the previ-
ous correspondence all along D◦I . We consider a covering U of D◦I by open subsets Uα which
are the intersection of D◦I with a local chart on X. Any germ M of D-meromorphic flat bundle
along D◦I gives rise to gluing data ((Mα), (σαβ)), where

Mα = M|Uα , σαβ : Mα|Uα∩Uβ −→Mβ|Uα∩Uβ

is an isomorphism, and the family (σαβ) satisfies the cocycle property. Any germ M of good
D-meromorphic flat bundle along D◦I admits a covering U such that one can apply the local
Riemann-Hilbert correspondence of Section 2.d to its restriction Mα to every Uα. Given such
a covering U , we can consider the category of such good gluing data

(
(Mα), (σαβ)

)
. The local

Riemann-Hilbert correspondence gives rise to a commutative diagram of functors between gluing
data

(2.3)

(
(Mα), (σαβ)

)
_

��

� //
(
(L ◦I ,L

◦
I,•)α, (ηαβ)

)
_

gr
��(

(Mα,D̂◦I
), (σ̂αβ)

) � //
(
(gr L ◦I , gr L ◦I,•)α, (gr ηαβ)

)
and the horizontal functors remain equivalences, due to the full faithfulness of the horizontal
functors in (2.1).

Arguing similarly with the equivalence of Proposition 2.2, we obtain the Riemann-Hilbert
correspondence.

Theorem 2.4. The category Modhol

(
(X,D◦I ), D, Σ̃

)
of germs along D◦I of good D-meromorphic

flat bundles with stratified I-covering contained in Σ̃ is equivalent to that of germs along ∂X̃◦I of
Stokes-filtered local systems (L ,L•) on ∂X̃ with associated stratified I-covering contained in Σ̃

and, by restriction, to that of Stokes-filtered local systems (L ◦I ,L
◦
I,•) on ∂X̃◦I with associated

I-covering contained in Σ̃◦I . �
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2.f. Proof of Proposition 1.1. By Theorem 2.4, there exists a germ M ◦
I along D◦I of good

D-meromorphic flat bundle whose associated Stokes-filtered local system is (gr L ◦I , gr L ◦I,•),
and it is unique up to isomorphism with respect to this property. A covering U adapted
to M is also adapted to M ◦

I , and the diagram (2.3) shows that the gluing data of MD̂◦I
and of M ◦

I,D̂◦I
are isomorphic, since they correspond to the same Stokes-filtered gluing data(

(gr L ◦I , gr L ◦I,•)α, (gr ηαβ)
)
. The uniqueness of M ◦

I is proved similarly. �

Remark 2.5. The construction of M ◦
I is functorial with respect to M|D◦I .

2.g. An equivalence of categories. Let A be a category and let G be a group. The category
G-A is the category whose objects are G-objects of A, that is, pairs (M,ρ) where M is an object
of A and ρ is a morphism G→ Aut(M), and for which

HomG-A((M,ρM ), (N, ρN )) ⊂ HomA(M,N)

is the subset consisting of morphisms ϕ : M → N such that, for every g ∈ G, ϕ◦ρM (g) = ρN (g).
Let Σ̃→ ∂X̃ be a good stratified I-covering and let Modhol(X,D, Σ̃) denote the full subcate-

gory of that of holonomic DX -modules whose objects consist of good meromorphic flat bundles
on (X,D) with associated stratified I-covering contained in Σ̃.

Let us fix a nonempty subset I ⊂ J , let D◦I the corresponding stratum of D, let xo ∈ D◦I
and let D◦I (xo) the connected component of D◦I containing xo. Let us fix a local holomorphic
decomposition (

nb(xo, X),nb(xo, D)
)

= (Ω, DΩ)× nb(xo, D
◦
I ),

where Ω is an open neighbourhood of 0 in C` and DΩ is the union of the coordinate hyperplanes
in C`. The category Modhol

(
(X,D◦I (xo)), D, Σ̃

)
has been defined in Section 2, and we have the

similar category Modhol((Ω, 0), DΩ, Σ̃xo), where Σ̃xo is the restriction of Σ̃ above

∂Ω̃ := $−1(DΩ).

Theorem 2.6. Set G = π1

(
D◦I (xo), xo

)
. There is a natural equivalence of categories:

Modhol

(
(X,D◦I (xo)), D, Σ̃

)
' G-Modhol

(
(Ω, 0), DΩ, Σ̃xo

)
.

Proof. We set ∂X̃◦I (xo) := $−1(D◦I (xo)) and we denote similarly by Σ̃◦I(xo) the restriction of Σ̃
above this set.

(1) By the Riemann-Hilbert correspondence (Theorem 2.4), we can replace the category on
the left-hand side with that of Stokes-filtered local systems on ∂X̃◦I (xo) with associated
I-covering contained in Σ̃◦I(xo).

(2) Let π : (E◦I (xo), yo) → (D◦I (xo), xo) be a universal covering of D◦I (xo) with base-point
yo above xo and let G = Gal(π) be the corresponding Galois group. We consider the
fibre-product diagram

∂Ỹ ◦I (xo)

��

// ∂X̃◦I (xo)

$
��

(E◦I (xo), yo)
π // (D◦I (xo), xo)

and we denote by π−1Σ̃◦I(xo) the corresponding pullback π
−1I-covering of ∂Ỹ ◦I (xo). Then

the category considered in (1) is equivalent to the category of G-Stokes-filtered local
systems (L ◦I ,L

◦
I,•) on ∂Ỹ ◦I (xo) with associated π−1I-covering contained in π−1Σ̃◦I(xo).

This is a standard argument.
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(3) (See [Moc11b, Th. 4.13] and Remark A.11) The sheaf-theoretic restriction functor is an
equivalence from the latter category to the category of G-Stokes-filtered local systems
(L ,L•) on (∂Ω̃)0 ' (S1)` with associated Ixo-covering contained in Σ̃xo (we identify
here (π−1I)yo with Ixo and π−1Σ̃◦I(xo)yo with Σ̃xo). This proof will be reviewed in the
appendix.

(4) By applying now the G-Riemann-Hilbert correspondence of Theorem 2.4 in the reverse
direction to ((Ω, 0), DΩ, Σ̃xo), one ends the proof of the theorem. �

3. The irregularity complex

Our aim in this section is to show that, under the goodness assumption as above, the irregu-
larity complex is determined by its restriction to the smooth part of D. More precisely, for every
I ⊂ J , and for every connected component of D◦I , we show that there exists a component Dk

of D (k ∈ I) such that ι−1
I IrrD M (on this connected component) is determined by ι−1

k IrrD M .
Let (L ,L•) be the Stokes-filtered local system corresponding to a (germ of) good

D-meromorphic flat bundle M . We have L = ı̃−1R̃∗DR M|XrD, where

ı̃ : ∂X̃ ↪−→ X̃ and ̃ : X rD ↪−→ X̃

are the natural closed and open inclusions. Let us denote by A modD
X̃

(resp. A rdD
X̃

) the
sheaf on X̃ of holomorphic functions on X r D having moderate growth (resp. rapid decay)
along ∂X̃. One can then define the moderate (resp. rapidly decaying) de Rham complex
DRmodD M (resp. DRrdD M ) on ∂X̃. With the goodness assumption, it is known that both
have cohomology in degree zero at most. More precisely, the Riemann-Hilbert correspondence
recalled in Section 2.e gives

L60 = H 0 DRmodD M and H j DRmodD M = 0 for j 6= 0.

We set L >0 := L /L60, and similarly DR>modD M is defined as the cone of

DRmodD M −→ ı̃−1R̃∗DR M|XrD,

so that L >0 = H 0 DR>modD M (and H k DR>modD M = 0 for k 6= 0).

Proposition 3.1. We have IrrD M [1] = R$∗L >0.

Proof. We have

R$∗DRmodD M = DR M (∗D) and R$∗R̃∗DR M|XrD = Rj∗DR M|XrD,

where j : X rD ↪→ X is the inclusion. We then apply [Meb04, Def. 3.4-1]. �

Remark 3.2 (The irregularity complex Irr∗D M ). Recall that Mebkhout also defined the irregular-
ity complex Irr∗D M in [Meb90] (see also [Meb04, Def. 3.4-2]), which is non-canonically isomorphic
to the complexRHomDX|D (M ,QD)[−1], where QD = OD̂/OX|D (see [Meb04, Cor. 3.4-4]). Let
us set L≺0 := H 0 DRrdD M . We then have

(3.2 ∗) R$∗L≺0 ' Irr∗D M ∨,

where M ∨ is the holonomic DX -module dual to M . Indeed, According to [Kas03, (3.13)] we
have

DR(QD

L
⊗M )[−1] ' RHomDX|D (M ∨,QD)[−1] ' Irr∗D M ∨.
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On the other hand, as QD is flat over OX|D (because O
X̂|D is faithfully flat over OX|D) and as

R$∗A rdD
X̃

' QD[−1], we have

DR(QD ⊗M )[−1] ' DR(QD

L
⊗M )[−1] ' R$∗DRrdD M .

We also notice that Irr∗D M ∨ = Irr∗D M ∨(∗D) and M ∨(∗D) is also a good D-meromorphic flat
bundle, which is identified with the dual D-meromorphic flat bundle HomOX(∗D)(M ,OX(∗D)).

Let us fix I ⊂ J . Near each point xo of D◦I , there exists a local ramification

ρ : nb(xo)dI −→ nb(xo)

along D such that the pullback of M has a good formal decomposition at each point in nb(xo)dI .
By the goodness assumption, there exists an index k(xo) ∈ I such that each nonzero ϕ ∈ Φxo
has a pole along Dk(xo): indeed, the set Φxo ∪ {0} is good, so in particular the pole divisors of
each of its nonzero elements are totally ordered; the smallest such divisor is nonzero, and we can
choose k(xo) to be the index of a component of this divisor. One can choose this index constant
along any connected component of D◦I . For simplicity, we denote by k(I) the locally constant
function xo 7→ k(xo) on D◦I .

For every subset I ⊂ J , we have a natural inclusion lifting ιI :

ι̃I : ∂X̃◦I = $−1(D◦I ) ↪−→ $−1(D) = ∂X̃.

Proposition 3.3. Let us fix I ⊂ J and let us set k = k(I) for simplicity. Then the natural
morphism ι̃−1

I L >0 → ι̃−1
I Rι̃k∗ ι̃

−1
k L >0 is an isomorphism. The same property holds for L≺0.

By applying R$∗ and using Proposition 3.1, we obtain:

Corollary 3.4. With the notation as in Proposition 3.3, the natural morphism ι−1
I IrrD(M )→

ι−1
I Rιk∗ ι

−1
k IrrD(M ) is an isomorphism. The same property holds for Irr∗D(M ). �

Proof of Proposition 3.3. Since the morphism is globally defined, the proof that it is an isomor-
phism is a local question. We thus fix xo ∈ D◦I and work in some neighbourhood nb(xo) of xo
that we may shrink if needed.

Let us first assume that M = E ϕ (see Section 2.a) for some ϕ ∈ OX,xo(∗D).
– If ϕ = 0 in OX,xo(∗D)/OX,xo , then L >0 = 0 and there is nothing to prove.
– If ϕ 6= 0 in OX,xo(∗D)/OX,xo , we set ϕ(x) = u(x)/xm, where u ∈ OX,xo satisfies u(xo) 6= 0,

and mi ∈ N for i ∈ I. In particular, mk(I) 6= 0. We choose polar coordinates on $−1(nb(xo))
of the form (ρ1, . . . , ρ`, θ1, . . . , θ`, (xj)j /∈I) with ρi ∈ [0, ε). We can assume that, in these coor-
dinates, mi 6= 0 for i = 1, . . . , p, mi = 0 for i = p + 1, . . . , `, and that k(I) = 1. Then, in these
coordinates, $−1(D ∩ nb(xo)) =

∏`
i=1 ρi = 0 and L >0 is the constant sheaf of rank one on the

closed subset of $−1(D ∩ nb(xo)) defined by

(3.5)

{∑p
i=1miθi ∈ arg u(x) + [−π/2, π/2],∏p
i=1 ρi = 0,

and it is zero outside this closed subset. Let us describe this closed subset. We set

x′ := (xj)j /∈I ∈ ∆n−`
ε

(with 0 < ε � 1) and (ρ, ei θ) ∈ [0, ε)` × (S1)`. We can write u(x) = u(ρ, θ, x′) = u(xo)e
g(x)

with g holomorphic and g(0) = 0 and we set ei θo := u(xo)/|u(xo)|. A simple computation shows
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that, if ε > 0 is small enough, the map

[0, ε)` × (S1)` ×∆n−`
ε

(F, ρ, x′)
−−−−−−−−→ S1 × [0, ε)` ×∆n−`

ε

(ρ, θ, x′) 7−→
(∏p

i=1 e
imiθi · e− i(θo+im g(ρ,θ,x′)), ρ, x′

)
has everywhere maximal rank (in fact, we have ∂F/∂θ1(0, θ, 0) 6= 0 on (S1)`). By Ehresmann’s
theorem, the map (F, ρ, x′) is a C∞ fibration, which can be trivialized on contractible sets like

[−π/2, π/2]× [0, ε)` ×∆n−`
ε .

For our topological computation, we can thus as well consider the situation where u(x) is constant
and replace u(x) with u(xo) in (3.5).

Each connected component of (3.5) is then homeomorphic to a product

∂[0, ε)p × [a, b]× (S1)p−1 × [0, ε)`−p × (S1)`−p ×∆n−`
ε

for suitable a, b. The trace of this set on $−1(D◦k(I)) is the set defined by
∏`
j=2 ρj 6= 0. This is

the subset

(3.6) {ρ1 = 0} × (0, ε)p−1 × [a, b]× (S1)p−1 × [0, ε)`−p × (S1)`−p ×∆n−`
ε .

Its closure is the subset

(3.7) {ρ1 = 0} × [0, ε)p−1 × [a, b]× (S1)p−1 × [0, ε)`−p × (S1)`−p ×∆n−`
ε .

The ordinary pushforward of the constant sheaf on (3.6) by the open inclusion (3.6) ↪→ (3.7) is
the constant sheaf on (3.7) and the higher pushforwards vanish. Since $−1(DI) is the subset
of (3.7) defined by ρi = 0 for i = 2, . . . , `, the restriction of the latter sheaf to $−1(DI) is the
constant sheaf on $−1(DI), and the morphism ι̃−1

I L >0 → ι̃−1
I Rι̃k∗ ι̃

−1
k L >0 is nothing but the

identity C$−1(DI) → C$−1(DI), proving the proposition in this case.
Let us now consider the general case. As already said, the question is local, and we argue

now locally on ∂X̃. One can then reduce the question to the non-ramified case and apply the
higher dimensional Hukuhara-Turrittin theorem (see e.g. [Sab13, Th. 12.5]). Let AX̃ denote the
sheaf of C∞ functions on X̃ which are holomorphic on X∗ in some neighbourhood of x̃o. We can
thus assume that AX̃ ⊗ $

−1M decomposes as the direct sum of terms AX̃ ⊗$
−1(E ϕ ⊗Rϕ).

By induction on the rank, we can also assume that Rϕ has rank one, and locally on $−1(D◦I )
the corresponding local system is trivial, so we can finally assume that M = E ϕ, a case which
was treated above.

The case of L≺0 is treated similarly. If we regard all sheaves considered above as external
products of constant sheaves of rank one with respect to the product decomposition in (3.6)
and (3.7), the case of L≺0 is obtained by replacing [−π/2, π/2] with the complementary open
interval in (3.5), and the corresponding sheaf C[a,b] with the sheaf C(a′,b′) for suitable a′, b′ (i.e.,
the extension by zero of the constant sheaf on (a′, b′)). Then the same argument as above applies
to this case. �

4. Proof of Theorem 1.2

The case ` = 1. We first assume that I = {i}. The transversal slice Ω has dimension one and
DΩ = {0}. Let us first prove a statement in dimension one. Let (L ,L•) be a Stokes-filtered
local system on S1 and let (gr L , (gr L )•) be the associated graded Stokes-filtered local system.
We denote by N resp. N ′ the corresponding meromorphic flat bundles on (Ω, 0).

It is well-known that H k IrrDΩ
(N ) and H k IrrDΩ

(N ′) have the same rank for any k,
and vanish except for k = 1, and similarly for Irr∗D N ∨ and Irr∗D N ′∨. They correspond to
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H0(S1,L >0) and H0(S1, gr L >0) on the one hand, H1(S1,L≺0) and H1(S1, gr L≺0) on the
other hand (this is of course a particular case of Proposition 3.1 and Remark 3.2).

Lemma 4.1. There exists an isomorphism between the vector spaces H1(S1,L≺0) and
H1(S1, gr L≺0) such that, for any automorphism λ of (L ,L•), the induced automorphism
of H1(S1,L≺0) corresponds, via this isomorphism, to the automorphism induced by grλ on
H1(S1, gr L≺0). The same assertion holds for H0(S1,L >0) and H0(S1, gr L >0) respectively.

Proof. We start with L≺0. Let us cover S1 with open intervals (Uα)α=1,...,N such that

• every open interval which contains at most one Stokes direction for every pair of distinct
exponential factors (see e.g. Example 1.4 in [Sab13]),

• the intersection of two intervals of the covering is an interval not containing any Stokes
direction,

• there are no triple intersections of intervals of the covering.

Then this covering is a Leray covering for L≺0 (see e.g. the proof of Lemma3.12 in loc. cit.),
and moreover the only nonzero term of the associated Čech complex is the term in degree one.
It follows that

H1(S1,L≺0) =
⊕

α=1,...,N

H0(Uα ∩ Uα+1,L≺0),

if we set UN+1 = U1.
Recall that, on each interval Uα, the Stokes-filtered local system (L ,L•) is graded, i.e., the

Stokes filtration splits (see e.g. Lemma3.12 in loc. cit.). Let us choose a splitting on Uα ∩Uα+1.
Then Theorem 3.5 (and its proof) in loc. cit. shows that any automorphism λ is graded with
respect to the chosen splitting on Uα ∩ Uα+1. It follows that the action of the automorphism
on H0(Uα ∩ Uα+1,L≺0) is the same as the action of the associated graded automorphism on
H0(Uα ∩ Uα+1, (gr L )≺0), so we have found a model where both actions are equal.

For L >0 we argue by duality. Recall that the dual local system L ∨ is naturally endowed with
a Stokes-filtration L ∨

• (so that (L ∨,L ∨
• ) RH-corresponds to the dual meromorphic flat bundle),

that L >0 ' HomC(L ∨
≺0,C) (this is similar to [Sab13, Lem. 2.16]), and this isomorphism is

compatible with grading. In particular, it induces isomorphisms

H0(S1,L >0) ' H1(S1,L ∨
≺0)∨ and H0(S1, gr L >0) ' H1(S1, gr L ∨

≺0)∨,

and by the first point applied to (L ∨,L ∨
• ) we obtain a distinguished isomorphism between

H0(S1,L >0) and H0(S1, gr L >0). Let λ be an automorphism of (L ,L•), and let λ∨ be its
dual. Then the first point applied to λ∨ gives the desired property for λ. �

End of the proof of Theorem 1.2 in the case ` = 1. We set I = {i}, G = π1(D◦i , xo). By Lemma
4.1, given a Stokes-filtered local system (L ,L•) endowed with a G-action (i.e., a representation
G → Aut(L ,L•)), there exists an isomorphism between H0(S1,L >0) and H0(S1, gr L >0),
resp. H1(S1,L≺0) and H1(S1, gr L≺0), so that the induced G-action on H0(S1,L >0) is trans-
formed into the induced graded G-action on H0(S1, gr L >0), and the induced G-action on
H1(S1,L≺0) into the induced graded G-action on H1(S1, gr L≺0).

Recall now that IrrD M is a complex whose cohomology is locally constant on each D◦I .
On D◦i it reduces to the local system H 1 IrrD◦i M . If we consider the G-Stokes-filtered local
system (L ,L•) on S1 corresponding to M|D◦i by (the proof of) Theorem 2.6, then H 1 IrrD◦i M

is the local system corresponding to G-vector spaceH0(S1,L >0) that this G-Stokes-filtered local
system defines. We argue similarly with M ◦

i and (gr L , gr L•), so that the desired isomorphism
follows from Lemma 4.1, as explained above. The argument for Irr∗Doi M is identical. �
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The case ` > 2. When ` = #I > 2, the structure of a Stokes-filtered local system on (S1)` is more
difficult to analyze, although it shares many properties with the case ` = 1 (see e.g. [Sab13, §9.e]).
This is why we use another argument. Namely, Proposition 3.1 enables us to deduce the case
where ` > 2 from the case where ` = 1.

We set k = k(I) as defined after Proposition 3.1. Let nb(D◦I ) be an open neighbourhood
of D◦I in X on which M ◦

I is defined. We claim that

ι−1
k M ◦

I = M ◦
k |nb(D◦I ).

Indeed, this follows from the uniqueness of M ◦
k , and from the fact that M ◦

I also decomposes
after ramification along D at each point of nb(D◦I ) ∩D◦i if this neighbourhood is chosen small
enough. We then have

IrrD(ι−1
k M ◦

I ) ' IrrD(M ◦
k )|nb(D◦I )

' IrrD(ι−1
k M )|nb(D◦I ) (case ` = 1),

and therefore, by applying ι−1
I Rιk∗,

ι−1
I Rιk∗ι

−1
k IrrD(M ◦

I ) ' ι−1
I Rιk∗ι

−1
k IrrD(M ).

The assertion of Theorem 1.2 for IrrD now follows from Corollary 3.4, applied both to M
and M ◦

I . The case of Irr∗D is completely similar. �

Appendix. Some properties of Stokes-filtered local systems

In this appendix we keep the setting of Section 3. We review in Proposition A.10 the proof
of [Moc11b, Th. 4.13]: by choosing the projection to D◦I of a tubular neighbourhood of D◦I in X
and its fibre product over D◦I with a universal covering of D◦I , we are in the situation of loc. cit.
except that we do not assume that the C∞ fibration is topologically trivial. Remark A.11 will
then provide the main result used in Step 3 of the proof of Theorem 2.6. We will also review
some other essential results which are proved in loc. cit.

A.a. Grading of a Stokes-filtered local system. The result in this subsection is local with
respect to D, hence we allow a ramification around the components of D. We fix a nonempty
subset I ⊂ J . We fix a simply connected open set U◦I ⊂ D◦I .

We assume that (L ,L•) is non-ramified in the neighbourhood of U◦I . The covering Σ̃◦I can
then be trivialized on U◦I × (S1)` = $−1(U◦I ), and we set

Σ̃◦I = Φ× U◦I × (S1)`,

where Φ is a finite subset of Γ
(
U◦I , (OX(∗D)/OX)|U◦I

)
. Moreover, by the goodness assumption

on Σ̃, Φ is a good set, namely, for every pair ϕ 6= ψ, the divisor of ϕ − ψ is negative. The set
St(ϕ,ψ) ⊂ U◦I × (S1)` of Stokes directions is smooth over U◦I with fibers equal to a union of
translated codimension-one subtori

(A.1) St(ϕ,ψ)x =
{

(θ1, . . . , θ`) ∈ (S1)` |
∑
jmjθj − arg c(x) = ±π/2 mod 2π

}
,

where c(x) is an invertible holomorphic function on U◦I and (m1, . . . ,m`) ∈ N`r{0}. We denote
by St(Φ) the union of the subsets St(ϕ,ψ) for all pairs ϕ 6= ψ ∈ Φ.

Let us fix
θo = (θo,1, . . . , θo,`) ∈ (S1)` and α1, . . . , α` ∈ N∗

such that gcd(α1, . . . , α`) = 1. The map θ 7→ (α1θ+ θo,1, . . . , α`θ+ θo,`) embeds S1 in (S1)`. In
the following, S1

α,θo
denotes this circle.
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Proposition A.2. Let A◦ be an open interval of length < 2π in S1
α,θo

and let A be its closure.
Assume that A satisfies the following property.

• For every x ∈ U◦I and every pair ϕ 6= ψ ∈ Φ,

#
(
A ∩ St(ϕ,ψ)

)
= #

(
A◦ ∩ St(ϕ,ψ)

)
6 1.

If moreover U◦I is contractible, then (L ,L•) is graded when restricted to a sufficiently
small neighbourhood U◦I × nb(A) in U◦I × (S1)`.

Proof. We first prove that, for every ϕ ∈ Φ, we have Hk(U◦I × A,L<ϕ) = 0 for k > 1. Note
that, since $ : U◦I × A→ U◦I is proper, Rk$∗L<ϕ|U◦I×A is compatible with base change, hence
its germ at x is equal to Hk(A,L<ϕ|{x}×A). By our assumption on A, this is also equal to
Hk(A◦,L<ϕ|{x}×A◦), and by the proof of [Sab13, Lem. 9.26], this is zero for k > 1. As a
consequence, Rk$∗L<ϕ|U◦I×A = 0 for k 6= 0.

We argue as in loc. cit. to obtain that (L ,L•) is graded in the neighbourhood of {x} × A
for every x ∈ U◦I . In particular, it is easy to check that $∗L<ϕ|U◦I×A is locally constant, hence
constant, on U◦I . Since U

◦
I is assumed contractible, we obtain the vanishing of Hk(U◦I ×A,L<ϕ)

(k > 1). Using once more the argument of loc. cit., we obtain the grading property all over
U◦I ×A, hence in some open neighbourhood of it. �

By mimicking the proof of [Sab13, Th. 3.5&Prop. 9.21], we also obtain the following proposi-
tion.

Proposition A.3. Let λ : (L ,L•) → (L ′,L ′•) between Stokes-filtered local systems as con-
sidered in the beginning of this subsection with the same set Φ. For A as in Proposition A.2,
there exist gradings of both Stokes-filtered local systems on UoI × nb(A) with respect to which λ
is graded. �

A.b. Closedness. Let U◦I be an open subset of D◦I with closure U◦I in D◦I and boundary ∂U◦I ,
and let j : U◦I ↪→ U◦I and ̃ : $−1(U◦I ) → $−1(U◦I ) be the open inclusions. Let (L ,L•) be a
Stokes-filtered local system on $−1(U◦I ) with associated covering contained in Σ̃◦I |U◦I . Assume
that

(∗) any point x ∈ ∂U◦I has a fundamental system of open neighbourhoods V in D◦I such that
V ∩ U◦I and V ∩ U◦I are contractible.

Proposition A.4. Under this assumption, the functor ̃∗ induces an equivalence between the
category of Stokes-filtered local systems (L ,L•) on $−1(U◦I ) with associated I-covering contained
in Σ̃◦I |U◦I , and the category of Stokes-filtered local systems on $−1(U◦I ) with associated I-covering
contained in Σ̃◦I |U◦I

, a quasi-inverse functor being the restriction ̃−1.

Proof. Since the functor is globally defined, the question is local near a point xo ∈ ∂U◦I . More-
over, as in SectionA.a, we can assume that Σ̃◦I is a trivial covering on some neighbourhood
of xo. It is enough to prove the statement in the non-ramified case since, by uniqueness the
construction, it will descend by means of the Galois action of the ramification. We will work
with the corresponding set Φ of exponential factors.

Firstly, we note that Assumption (∗) also holds for $−1(U◦I ), since any point in $−1(x) has
a fundamental systems of neighbourhoods of the form of the product of neighbourhoods V with
a product of ` open intervals. It follows that the local system L extends in a unique way as a
local system on $−1(U◦I ), and the latter is ̃∗L . Similarly, a morphism between local systems
extends in a unique way by the functor ̃∗. The same property holds for the local systems grψ L
for ψ ∈ Φ.
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Let us first show that the functor ̃∗ takes values in the category of Stokes-filtered local
systems. For a pair ϕ 6= ψ ∈ Φ, we denote by βψ6ϕ the functor composed of the restriction
to the open subset where ϕ 6 ψ (i.e., Re(ϕ − ψ) < 0) and the extension by zero to the whole
space. The point is to check that every ̃∗L6ϕ decomposes as

⊕
ψ∈Φ βψ6ϕ̃∗ grψ L in the

neighbourhood of every point (xo, θo) of $−1(xo). If we fix a small interval A◦ containing this
point as in Proposition A.2, we find that, according to this proposition and Assumption (∗),

(A.5) L6ϕ|(V ∩U◦I )×nb(A◦) '
⊕
ψ∈Φ

βψ6ϕ(grψ L )|(V ∩U◦I )×nb(A◦).

We are thus reduced to checking that, for a local system L, the natural morphism

βψ6ϕL −→ ̃∗βψ6ϕ̃
−1L

is an isomorphism: we will apply this to the local system L = ̃∗(grψ L )|(V ∩U◦I )×nb(A◦) for any ψ.
The question is then local, and we can work in the neighbourhood of (xo, θo), with the constant
sheaf of rank one as the given local system.

If (xo, θo) /∈ St(ϕ,ψ)xo , the result is easy. We will thus focus on the case where

(xo, θo) ∈ St(ϕ,ψ)xo .

This can be written as
∑
mjθo,j − arg c(xo) = ±π/2. We will consider the case +π/2, the other

one being similar. We need to check that the germ at (xo, θo) of ̃∗̃−1βψ6ϕC is zero for any
such (xo, θo). For that purpose, it is enough to prove that, for small enough closed neighbour-
hoods V of xo and nb(θo) of θo, the cohomology of the sheaf on

(A.6) (V × nb(θo)) ∩
{∑

mjθj − arg c(x) ∈ [π/2− ε, π/2]
}

which is zero on
(V × nb(θo)) ∩

{∑
mjθj − arg c(x) = π/2

}
and constant on the complementary set, is zero for 0 < ε � 1 and V small enough. We can
regard

∑
mjθj − arg c(xo)− π/2 as a coordinate θ′ near θo vanishing at θo, and we can choose

the neighbourhood nb(θo) of the form [−2ε, 2ε]× [−2ε, 2ε]`−1 accordingly. For V small enough,
the set (A.6) is a topological fibration above V , and the fiber over x ∈ V is the product of
[−2ε, 2ε]`−1 with the interval

θ′ ∈ arg c(x)− arg c(xo) + [−ε, 0].

Since the projection to V is proper, the base change formula shows that the pushforward to V of
this sheaf is identically zero, as the cohomology with compact support of a semi-closed interval
is zero. Hence its global cohomology on (A.6) is also zero.

The next step is to show that the extension by ̃∗ of a morphism λ between Stokes-filtered
local systems is compatible with the Stokes filtration. The question is local, and we can assume
that the morphism λ is graded on (V ∩U◦I )×nb(A◦), according to Proposition A.3. Then ̃∗λ is
also graded on this open set with respect to the Stokes filtration constructed above, and is thus
also Stokes-filtered.

Once the functor ̃∗ is defined, that it is essentially surjective is proven similarly, since in the
neighbourhood of any point (xo, θo) the sheaves L6ϕ are given by a formula like (A.5).

The full faithfulness follows from the full faithfulness for the underlying local systems. �

A.c. Openness. We keep the notation as above.

Proposition A.7. Let xo ∈ D◦I and let (L ,L•)xo be a Stokes-filtered local system on

$−1(xo) ' (S1)`
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with associated I-covering contained in Σ̃◦I,xo . Then there exists an open neighbourhood nb(xo)

in D◦I such that (L ,L•)xo extends in a unique way as a Stokes-filtered local system on
$−1(nb(xo)) ' nb(xo)× (S1)` with associated I-covering contained in Σ̃◦I |nb(xo). Any morphism
(L ,L•)xo → (L ′,L ′•)xo between such objects also extends locally in a unique way.

Proof. The problem is local on D◦I and, by the uniqueness of the extension of morphisms, one
can reduce the proof to the non-ramified case. We can therefore assume that Σ◦I = Φ× nb(xo).
Moreover, the unique extension of local systems and morphisms between them is clear, so the
question reduces to checking that Stokes filtrations extend as well, and that the extended mor-
phism between the extended local systems is compatible with the extended Stokes filtrations.

By Proposition A.2, we can cover (S1)` = $−1(xo) by simply connected open sets Uα such
that, for every α, there exists a neighbourhood Vα of the compact subset Uα and an isomorphism

(A.8) Lxo|Vα '
⊕
ϕ∈Φ

grϕ Lxo|Vα ,

and the Stokes filtration on Vα is given by

(A.9) Lxo,6ϕ|Vα '
⊕
ψ∈Φ

βψ6ϕ grψ Lxo|Vα .

The transition maps λαβ for (A.8) on Vαβ := Vα ∩ Vβ satisfy the cocycle condition and are
compatible with the Stokes filtration, that is, λψ,ϕαβ : grψ Lxo|Vαβ → grϕ Lxo|Vαβ is zero unless
ψ 6 ϕ on Vαβ .

Let us shrink nb(xo) to a contractible open neighbourhood such that, for all ψ 6= ϕ ∈ Φ, ψ < ϕ
on Vαβ implies ψ < ϕ on nb(xo) × Uαβ . The local system grϕ Lxo|Uα extends in a unique way
to a local system grϕ L|nb(xo)×Uα on nb(xo)× Uα, and so do the morphisms λψϕαβ , which satisfy
thus the cocycle condition. In particular, if such an extension λψϕαβ is non-zero at one point of
nb(xo)×Uαβ , it is nonzero everywhere on this open set and we have ψ < ϕ on this open set. Let
us set L|nb(xo)×Uα :=

⊕
ϕ∈Φ grϕ L|nb(xo)×Uα , that we equip with the Stokes filtration given by a

formula similar to (A.9). It follows that λαβ is compatible with the Stokes filtrations. We regard
now λαβ as gluing data. The cocycle condition shows that they define a local system L on
$−1(nb(xo)) whose restriction to $−1(xo) is isomorphic to L . It is thus uniquely isomorphic to
the unique extension of Lxo . Moreover, due to the compatibility with the Stokes filtrations, the
latter also glue correspondingly as a Stokes filtration L• of this local system, and its restriction
to $−1(xo) is equal to Lxo•.

Let µxo : (L ,L•)xo → (L ′,L ′•)xo be a morphism. We can choose the covering (Uα) and the
decomposition (A.8) so that each µxo,α is graded (see [Sab13, Prop. 9.21]). It extends uniquely as
a morphism µ : L|nb(xo)×Uα → L ′|nb(xo)×Uα , and it is graded with respect to the corresponding
decompositions (A.8). It follows that µ is strictly compatible with the Stokes filtrations L•
and L ′• , where these Stokes-filtered local systems (L ,L•) and (L ′,L ′•) are obtained as in the
first part.

We can now prove the uniqueness (i.e., up to unique isomorphism) of (L ,L•) constructed in
the first part: the identity automorphism (L ,L•)xo extends in a unique way as an isomorphism
between two such extensions. �

A.d. An equivalence of categories. We will use the notation as in Section 2.g. Let

π : (E◦I (xo), yo) −→ (D◦I (xo), xo)

be a universal covering of D◦I (xo) with base point yo above xo, and let ∂Ỹ ◦I (xo) be the pullback
of ∂X̃◦I (xo) by π.
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Proposition A.10. The restriction functor
• from the category of Stokes-filtered local systems on ∂Ỹ ◦I (xo) with associated π−1I-
covering contained in π−1Σ̃◦I(xo)

• to the category of Stokes-filtered local systems on (∂Ω̃)0 ' (S1)` with associated Ixo-
covering contained in Σ̃xo

is an equivalence.

Proof. Let Γ : [0, 1]2 → E◦I (xo) be a continuous map sending (0, 0) to yo. We pullback by Γ the
data from the first item of the proposition. Let us consider the subset of [0, 1] consisting of ε’s
such that the equivalence of the proposition holds with respect to the restriction corresponding
to the inclusion (0, 0) ∈ [0, ε]2. Propositions A.4 and A.7 imply that this set is open and closed,
and contains 0, hence it is equal to [0, 1]. This shows that one can uniquely extend an object in
the second category to an object in the first category along paths starting from yo and that this
extension does not depend on the choice of the path. A similar assertion holds for morphisms. �

Remark A.11. The uniqueness of the extension of morphisms enables one to obtain the equiva-
lence between the corresponding G-equivariant categories, and this gives the implication (2)⇒
(3) in the proof of Theorem 2.6.
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PAIRS OF MORSE FUNCTIONS

OLIVIER THOM

Abstract. The goal of this paper is to classify pairs of Morse functions in general position
modulo the action of different groups. In particular, we obtain the classification of generic
pairs of Morse functions, with or without target diffeomorphisms, and that of quotients of
Morse functions.

We will also present a lemma which gives a sufficient condition for two pairs of functions
to be conjugated.

1. Introduction

Throughout this paper, we will denote byO(Cn,0) the set of germs at 0 of holomorphic functions
on Cn and by m(Cn,0) its maximal ideal. We will also use the notation X · f = dXf to mean the
derivative of f in the direction given by the holomorphic vector field X.

Following the works of Mather ([Mat]), we will consider the problem of knowing when two
objects are diffeomorphic as a problem about group actions. More precisely, for a group S
acting on pairs of functions f, g ∈ O(Cn,0), we will say that two pairs p1 and p2 are S -
conjugated or S -equivalent if there exists ϕ ∈ S such that ϕ · p1 = p2. In this paper we
will consider the groups R,A ,F ,Q which follows: R = Diff(Cn, 0) acting by composition at
the source, A = Diff(Cn, 0) × Diff(C2, 0) acting by composition at the source and at the tar-
get, F = Diff(Cn, 0) × (Diff(C, 0))2 acting by (ϕ,ψ1, ψ2) · (f, g) = (ψ1 ◦ f, ψ2 ◦ g) ◦ ϕ−1, and
Q = Diff(Cn, 0) o O∗(Cn,0) acting by (ϕ,U) · p = Up ◦ ϕ−1. Classification of pairs of functions
up to F -equivalence corresponds to the classification of pairs of foliations up to diffeomorphism
at the source; classification of pairs of functions (f, g) up to Q-equivalence corresponds to the
classification of meromorphic functions f/g up to diffeomorphism at the source.

For a more complete bibliography about S -equivalence of applications, the reader is referred
to [AVG1], [AVG2] and the references therein.

Let f and g be two Morse functions on (Cn, 0) whith quadratic parts qf and qg. Denote by
F and G the foliations given by the level sets of f and g. Denote also by I(f, g) the tangency
ideal between f and g, that is the ideal of O(Cn,0) spanned by (∂xi

f∂xj
g− ∂xj

f∂xi
g)i,j for a set

of coordinates (xi) and by Tang(f, g) = Tang(F ,G) the set of zeroes of I(f, g), which we will
name the tangency locus between f and g.

We will begin by giving the classification up to R-equivalence of pairs of Morse functions, but
first, let us recall the well-known classification of pairs of quadratic forms on Cn (cf [HP]). Seen
as matrices, two nondegenerate forms qf and qg can be simultaneously diagonalized by blocks
with blocks 

(0) 1

...

...

1 (0)

 and



(0) λ

... 1

... ...

λ 1 (0)

 .

As an example, take the quadratic forms given by the matrices(
0 1

1 0

)
and

(
0 1

1 1

)
:

http://dx.doi.org/10.5427/jsing.2017.16e
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f = 2xy and g = 2xy + y2. We see that this pair cannot be simultaneously diagonalized.
Nevertheless, counting the parameters in the diagonalization by blocks we see that a generic

(outside a set of codimension 1) pair of quadratic forms (qf , qg) can be simultaneously diagonal-
ized.

Morse theorem ([Mor]) allows us to assume without loss of generality that f =
∑
x2i . Moreover

we suppose that qf and qg are in generic position:

qf (x) =
∑

x2i , qg(x) =
∑

λix
2
i

with λi 6= λj 6= 0 if i 6= j up to a linear change of coordinate.
Next, look at the tangency locus between the foliations F and G: if f and g were diagonal

quadratic forms, this would be the reunion of the coordinate axes. In general, if qf and qg are
diagonal, it is diffeomorphic and tangent to the reunion of the axes so we can suppose that it is
exactly the reunion of the axes; this will be detailed further.

For example, in the case n = 2 the functions f = x2 + y2 and g = x2 + 2y2 give the following
real phase portrait:

T1

T2

If we name the axes Tj as in the picture, we can look at the restriction of each function to
each tangency curve, which gives couples (f |Tj

, g|Tj
) for each j. If Φ is a diffeomorphism of

(Cn, 0) stabilizing the Tj ’s, we have ((f ◦ Φ)|Tj
, (g ◦ Φ)|Tj

) = (f |Tj
, g|Tj

) ◦ (Φ|Tj
) so that each

couple (f |Tj
, g|Tj

) up to diffeomorphism on the right gives an invariant for the R-equivalence of
pairs of functions.

Hence, if C0 and C1 are smooth curves, we will say that two couples (u0, v0) and (u1, v1)
with uj , vj ∈ O(Cj , 0) are conjugated under the action of Diff(C0, C1) on the right if there exists
ψ ∈ Diff(C0, C1) such that (u0, v0) = (u1, v1) ◦ ψ.

The use of tangency curves and functions defined on them as invariants for classification
problems has already been considered, for example in [ORV]. In our case, these invariants are
enough to classify the pairs of Morse functions up to R-equivalence, as stated in the theorem :

Theorem. Let (f0, g0) and (f1, g1) be two pairs of Morse functions on (Cn, 0) with quadratic
parts (qfi , qgi) in generic position.

Suppose that we can number the tangency curves T i
j (j = 1, . . . , n and i = 0, 1) in such

a manner that the pairs of Morse functions (fi|T i
j
, gi|T i

j
) are conjugated under the action of

Diff(T 0
j , T

1
j ) on the right. Then (f0, g0) and (f1, g1) are R-equivalent.

As a consequence, if two pairs of Morse functions with quadratic parts in generic position are
topologically conjugated, they are analytically conjugated.

A part of the proof of this theorem is in fact quite general and is expressed as a separate
lemma (the key lemma in what follows); Section 2 is devoted to the statement and proof of this
lemma. The next section (Section 3) handles the R-classification of pairs of Morse functions.
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After the R-classification of pairs of Morse functions, the A -classification and the F -classifi-
cation are just a matter of rewriting as it will be shown later; these are done in Sections 4 and
5. The Q-classification of pairs of Morse functions is not a straightforward consequence of the
former theorem; the main result is that a generic pair (f, g) of Morse functions is determined
up to the action of Q by the 3-jets of f and g, so that a generic quotient of Morse functions is
diffeomorphic to an explicit rational function of degree 3. This will be detailed in Section 6.

We will also show that the restriction of a generic Morse function to a quadratic cone (the
set of zeroes of a Morse function) is determined up to diffeomorphism by its quadratic part (in
section 7).

In the last section, we will show that the key lemma can be applied in a general setting, by
rediscovering classical results like the classification of folds, or giving finite determinacy results.
As an example, we will give the classification of some special pairs of cusps.

Some of these problems can be restated in terms of diagrams in the sense of Dufour (cf. [D]):
the F -classification of pairs of Morse functions corresponds to the classification of divergent
diagrams of Morse functions

(Cn, 0)

(C, 0)

(C, 0).

f

g

We should also mention the work of J. Vey about a similar problem: the simultaneous reduc-
tion of a Morse function and a volume form (cf. [Vey]).

2. Proof of the key lemma

Recall that two pairs (f0, g0) and (f1, g1) of functions of (Cn, 0) are called R-equivalent if
there exists a diffeomorphism ϕ ∈ Diff(Cn, 0) such that (f0 ◦ϕ, g0 ◦ϕ) = (f1, g1). In this section
we want to prove the following:

Lemma 1 (Key Lemma). Let f , g0 and g1 be three functions on (Cn, 0) where f has a singular
point at 0. Suppose that the tangency ideals I(f, g0) and I(f, g1) are equal and that

g1 − g0 ∈ I(f, g0).

Then (f, g0) and (f, g1) are R-conjugated.

The proof of this lemma is based on Moser’s path method: we will construct a path (f, gt)
between (f, g0) and (f, g1) and show that every (f, gt) are diffeomorphic. Put gt = g0 +t(g1−g0)
and g(t, ·) = gt(·) ∈ O(U) for a neighborhood U of [0, 1] × {0} in Ct × Cn. Introduce also
I = I(f, g) (which is an ideal of O(U)) and for each t, It = I(f, gt) (which is an ideal of O(Cn,0)).
Write finally dxf ∧dxg =

∑
i<j hijdxi ∧ dxj for a system of coordinates (xi) on Cn, J = 〈hij〉i<j

and note that It = 〈hij(t, ·)〉i<j .
We will first study these ideals to show that J = I0 ⊗Ox

O(U) where Ox denotes the set of
germs of holomorphic functions in the variables x1, . . . , xn.

Proposition 1. Suppose I0 = I1, then I0 = It for t generic.

Proof. The tangency ideal It is spanned by the components of df∧dgt = tdf∧dg1+(1−t)df∧dg0
so it is contained in I0. But I0/It is null for t = 0 so the support of I0/It can only consist of
finitely many points, hence the result. �

In what follows, we will use the additional hypothesis that It is constant along the interval
[0, 1]. If this is not the case, we could find a point t0 ∈ C such that It = I0 for each t in
both segments [0, t0] and [t0, 1] (thanks to the previous proposition) and use what will follow on
these segments to show that (f, g0) ' (f, gt0) ' (f, g1) so we can indeed suppose without loss of
generality that It is constant along [0, 1].
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Proposition 2. For each t0, the localization J(t0) of J at t0 satisfies J(t0) = I0⊗Ox
C{t− t0, x}.

Proof. It is enough to prove that J(t0) = It0 ⊗ C{t− t0, x} because It0 = I0.
Note first that the hij are affine in t so that hij(t) = hij(t0) + t−t0

1−t0 (hij(1) − hij(t0)) (we
supposed that t0 6= 1, the case t0 = 1 can be done similarly). Denote by H(t) the vector
(hij(t))i<j ; the hypothesis that I1 = It0 then gives a matrix A with constant coefficients such
that H(1) = AH(t0). Hence the existence of a matrix B satisfying H(t) = (id+(t− t0)B)H(t0).

For t near t0, the matrix id + (t − t0)B is invertible so the components of the vectors H(t)
and H(t0) span the same germ of ideal around the point t0. Note finally that the germ of ideal
spanned by the components of H(t0) is I0 ⊗ C{t− t0, x}. �

As a corollary, for each point p0 = (t0, x0) ∈ U ⊂ Ct × Cn, we have the relation

J(p0) = (I0)(x0) ⊗C{x−x0} C{t− t0, x− x0}.

Proposition 3. J = I0 ⊗Ox
O(U).

Proof. We can suppose that the neighborhood U is Stein. The ideal J (resp., I0⊗O(U)) defines
a sheaf of ideals J (resp., K ) defined by J(p0) = J(p0) for p0 ∈ U (resp.,

K(p0) = (I0)(x0) ⊗ C{t− t0, x− x0}
for p0 = (t0, x0) ∈ U). These sheaves are locally of finite type; if a1, . . . , ak are local sections of
J (resp., K ), the sheaf of relations R(a1, . . . , ak) may be viewed as the relations of the sections
ai of the sheaf O. Hence by Oka’s theorem (see, for example, [Hör]), R(a1, . . . , ak) is locally of
finite type and J and K are coherent.

Take a ∈ I0 ⊗O(U), then a(p) ∈ K(p) = J(p) for each p ∈ U ; since U is Stein and since the
global sections hij span J locally, there exists holomorphic rij ∈ O(U) such that a =

∑
rijhij ,

i.e., a ∈ J (cf. [Hör]).
The converse works in the same way with hij(0, ·) as global sections spanning K locally. �

Moreover, if g1 − g0 ∈ I0 as in the hypotheses of the lemma, g1 − g0 ∈ J by the former
proposition, so J is also equal to I because df ∧ dg = dxf ∧ dxg + (g1 − g0)df ∧ dt.

Now we can prove the key lemma:

Proof of the key lemma. As noted above, the hypothesis g1 − g0 ∈ I0 together with Proposition
3 means that there exists holomorphic rij(t, x) (for i < j) such that g1 − g0 =

∑
i<j rijhij .

To use the path method, we need to find a vector field X =
∑n

i=1Xi∂xi + ∂t defined in a
neighborhood of {0} × [0, 1] ⊂ Cn × [0, 1] such that X · f = X · g = 0. We also want to have
X(0, t) = ∂t so that the flow ϕs(x, t) of X will be defined on a neighborhood of {0}× [0, 1]. The
diffeomorphism ϕ : x 7→ ϕ1(x, 0) will then verify (f ◦ ϕ, g0 ◦ ϕ) = (f, g1) on (Cn, 0).

Remember that

X · f =

n∑
i=1

Xi∂xi
f and

X · g =

n∑
i=1

Xi∂xi
gt + (g1 − g0).

Note that it is enough to find for each j = 2, . . . , n a vector field Xj satisfying Xj · f = 0 and
n∑

i=1

Xj
i ∂xi

gt +

j−1∑
i=1

rijhij = 0

because the vector field X =
∑n

j=2X
j + ∂t would then be as sought.

On Uj = {∂xjf 6= 0}, we may impose

Xj
j =

−1

∂xj
f

∑
i 6=j

(∂xi
f)Xj

i


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so that(
∂xj

f
)( n∑

i=1

Xj
i ∂xi

gt +

j−1∑
i=1

rijhij

)
=
∑
i6=j

(
∂xj

f∂xi
gt − ∂xi

f∂xj
gt
)
Xj

i + (∂xjf)

(
j−1∑
i=1

rijhij

)

=
∑
i 6=j

−hijXj
i + (∂xj

f)

(
j−1∑
i=1

rijhij

)
.

So we can chooseXj
i = rij∂xjf if i < j andXj

i = 0 for i > j which givesXj
j = −

∑
i<j rij∂xif .

We see that every component Xj
i is holomorphic around {∂xj

f = 0} which means that the vector
field Xj is defined on (Cn, 0)× [0, 1]. Moreover, since f is singular at 0, every ∂xi

f cancels at 0
so that each Xj cancels on {0} × [0, 1].

The vector field X =
∑

j X
j + ∂t is the one we wanted. �

Remark 1. The hypothesis "f has a singular point at 0" is only used to show that the vector
field X − ∂t cancels along the t-axis, which is also true if all the rij cancel on {0} × [0, 1]. It is
also the case if g1 − g0 cancels at a high enough order at the origin (the exact order depends on
the coefficients hij).

3. R-classification of pairs of Morse functions

A pair of Morse functions (f, g) is called R-generic if (up to linear isomorphism) the quadratic
parts qf and qg are diagonal : qf (x) =

∑
x2i and qg(x) =

∑
λix

2
i with λi 6= λj if i 6= j.

Let (f, g) be an R-generic pair of Morse functions. Let us first study the tangency loci: if
qf and qg are diagonal, Tang(qf , qg) is the union of the coordinate axes; in general, we have the
following:

Proposition 4. The sets Tang(f, g) and Tang(qf , qg) are diffeomorphic and tangent.

Proof. We can suppose f quadratic and qg diagonal. Blow up the origin to get that (recycling
the coordinates xi as coordinates in the blow-up) the transforms of f and g are given by

f̃ = x21(1 + x22 + . . .+ x2n) and g̃ = x21(λ1 + λ2x
2
2 + . . .) + x31(. . .).

We will simultaneously compute the tangency locuses Tang(f, g) and Tang(qf , qg) in the blow-
up to show this proposition (since we already know Tang(qf , qg), this will help understand
Tang(f, g)). Write f̂ = f̃ = q̃f and ĝ = q̃g + x31ε with ε = 0 or ε = x−31 (g̃ − q̃g).

Note that the genericity hypothesis on the n-uple (λ1, . . . , λn) implies that qf and qg are not
tangent near a point of the surface {f = 0} (except at 0). In the blow-up, put

S := {1 + x22 + . . .+ x2n = 0}
and E := {x1 = 0}. The remark above tells that the components of the tangency locus between
q̃f and q̃g which are different from E do not intersect E ∩ S. So this is the case for f̂ and ĝ

independently of ε. The change of coordinate x1 7→
√
f̂ is allowed near each point of E far away

from the hypersurface S and every component of Tang(f̂ , ĝ) different from E is far away from
this hypersurface (note also that this change of coordinate does not depend on ε).

In these new local coordinates,

f̂ = x21 and ĝ = x21u = x21(u0 + x1ε
′)

with u0 not depending on x1 and ε′ holomorphic far from S (ε′ = 0 in case ε = 0). The
tangency locus is the union of the varieties given by the equations x1 = 0 and dx1 ∧du = 0. But
dx1 ∧ du = dx1 ∧ (du0 + x1dε

′) so on the exceptional divisor, the solutions of dx1 ∧ du = 0 are
the same as the solutions of dx1 ∧ du0 = 0. So the solutions of dx1 ∧ du = 0 on E do not depend
on ε, thus they are n simple points corresponding to the axes.

Finally, remark that dx1∧du = 0 is given by n−1 equations so its solution set is of dimension
at least 1. Each point p solution of these equations on E then gives rise to a set Tp of dimension
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at least 1, but Tp ∩ E = {p} so that dim(Tp) = 1. The fact that p is a simple point means that
Tp is a simple smooth curve intersecting E transversally. Hence, before blowing up, there were n
simple smooth tangency curves tangent to the ones between qf and qg, which in addition implies
that Tang(f, g) is diffeomorphic to Tang(qf , qg).

�

Even better :

Proposition 5. There exists a diffeomorphism φ which conjugates Tang(f, g) with Tang(qf , qg)
and f with qf .

Proof. If we suppose that f is quadratic and qg diagonal, it is enough to find φ which conjugates
Tang(f, g) with Tang(qf , qg) and preserves f : f ◦ φ = f . Call Dn the xn-axis and Tn the
tangency curve tangent to Dn. It is sufficient to find a diffeomorphism φ preserving f and fixing
the points of {xn = 0} such that φ(Dn) = Tn. Indeed, applying such a φ transforms Tn into Dn,
but if φ̃ is a similar diffeomorphism obtained by exchanging the roles of xn and xn−1, applying
φ̃ transforms (the new) Tn−1 into Dn−1 and stabilizes Dn. We can repeat this for each Tj to
obtain a diffeomorphism preserving the fibers of f and conjugating the tangency loci.

The curve Tn is tangent to Dn so that it has equations xi = x2nαi(xn) (i = 1, . . . , n− 1). We
can then search φ in the form

φ(x1, . . . , xn) = (x1 − x2nα1(xn), . . . , xn−1 − x2nαn−1(xn), (1 + u)xn)

where u is an unknown holomorphic function. The condition that φ preserve f can be written∑
i≤n

x2i − 2x2n
∑
i<n

xiαi(xn) + x4n
∑
i<n

αi(xn)2 + 2x2nu+ x2nu
2 =

∑
i≤n

x2i ,

that is
2u+ u2 = 2

∑
i<n

xiαi − x2n
∑
i<n

α2
i .

The implicit function theorem then gives a holomorphic solution u ∈ m(Cn,0) which in turn gives
the desired diffeomorphism φ (note that φ(x1, . . . , xn−1, 0) = (x1, . . . , xn−1, 0)). �

Proposition 6. If (f, g) is an R-generic pair of Morse functions then the tangency ideal I(f, g)
is radical.

Proof. Suppose that f =
∑
x2i , qg =

∑
λix

2
i and that T := Tang(f, g) is the union of the axes.

Write df∧dg =
∑

i<j hijdxi ∧ dxj with hij = 4(λj−λi)xixj+O(m(Cn,0)
3). The ideal of functions

vanishing on T is 〈xixj〉 so 〈hij〉 ⊂ 〈xixj〉 and we need to show that 〈hij〉 = 〈xixj〉.
Introduce N = n(n−1)

2 and the vectors

H = (hij)i<j ∈ (O(Cn,0))
N and X = (xixj)i<j ∈ (O(Cn,0))

N .

Note that hij − 4(λj − λi)xixj ∈ m(Cn,0)〈xixj〉 so that there is a matrix A with coefficients in
O(Cn,0) such that H = AX. Note also that A = Λ +B where Λ = diag(4(λj − λi)) is invertible
and B has coefficients in m(Cn,0). Hence, A is invertible and the coefficients of the vectors H
and X span the same ideal. �

With these propositions, we can use the key lemma to conclude the R-classification of pairs
of Morse functions:

Theorem 1. Let (f0, g0) and (f1, g1) be two R-generic pairs of Morse functions on (Cn, 0).
Suppose that we can number the tangency curves T i

j (j = 1, . . . , n and i = 0, 1) in such a manner
that the pairs of Morse functions (fi|T i

j
, gi|T i

j
) are conjugated under the action of Diff(T 0

j , T
1
j )

on the right. Then there is a diffeomorphism ϕ such that (f0 ◦ ϕ, g0 ◦ ϕ) = (f1, g1).
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Proof. By Proposition 5, we can suppose that f0 = f1 = qf and that the tangency loci for both
couples are the same. Then, by hypothesis, (f, g0) = (f, g1) in restriction to each tangency curve.
Since the ideals I(f, g0) and I(f, g1) are radical by Proposition 6, this means that

I(f, g0) = I(f, g1) and g1 − g0 ∈ I(f, g0).

The proof is then completed by Lemma 1. �

In particular, we obtain:

Corollary 1. An R-generic pair of Morse functions (f, g) is R-conjugated to its quadratic parts
if and only if f and g are C-proportional on each tangency curve.

Remark 2. Given n smooth curves Tj whose tangents at 0 span Cn and n couples (uj , vj) of
Morse functions on Tj, there exists a pair of Morse functions having Tj as tangency curves
and equal to (uj , vj) on Tj. Indeed, we can suppose that Tj is the xj-axis so that we can take
f(x1, . . . , xn) =

∑
uj(xj) and g =

∑
vj(xj).

Hence, since f can be normalized, the moduli space for generic couples of Morse functions is
given by the set of generic non-ordered n-uples (v1, . . . , vn) of germs of Morse functions on (C, 0)
modulo the relation (v1, . . . , vn) ∼ (v1 ◦ (±id), . . . , vn ◦ (±id)), the signs ± being independent.

Note also the corollary:

Corollary 2. Let (f0, g0) and (f1, g1) be two R-generic pairs of Morse functions on (Cn, 0). If
these pairs are topologically conjugated, they are analytically conjugated.

Proof. First, note that the tangency points between f0 and g0 are given by the points where
the Milnor number of g0 restricted to a leaf of f0 is greater or equal to 1. This characterization
of the tangency points shows that a topological conjugacy between both couples respects the
tangency curves.

As a consequence the restrictions of the couples (fi, gi) to each tangency curve are topologically
conjugated, and for each tangency curve C there exists an homeomorphism φ of C such that
l0 ◦ φ = l1 for l = f, g on C. For coordinates z, w of C such that f0(z) = z2 and f1(w) = w2,
this equation writes φ(z)2 = w2 so that φ(z) = ±w. This shows that φ is holomorphic and each
couples (fi, gi)|T i

j
are conjugated under the action of Diff(T 0

j , T
1
j ) on the right.

Theorem 1 can then be applied. �

Remark 3. There is also a link between formal and analytical conjugacy: Artin’s approximation
theorem shows that if two pairs of germs of Morse functions are formally conjugated, they are
also analytically conjugated.

4. Pairs of Morse foliations

As stated in the introduction, two pairs of Morse foliations (Fi,Gi) given by the level set of
pairs of functions (fi, gi) are diffeomorphic if and only if the pairs of Morse functions (fi, gi)
are F -equivalent. Recall that these pairs are F -equivalent if there exist diffeomorphisms
ϕ ∈ Diff(Cn, 0), ψ1, ψ2 ∈ Diff(C, 0) such that (ψ1 ◦ f0 ◦ ϕ,ψ2 ◦ g0 ◦ ϕ) = (f1, g1). We say
that a pair of Morse foliations (F ,G) is F -generic if it has a pair of first integrals (f, g) which
is R-generic.

The invariants (fi|T i
j
, gi|T i

j
) modulo conjugacy on the right are now only defined modulo

conjugacy on the right and on the left. First, these new invariants can be re-written in terms of
involutions: on (C, 0), the data of a Morse function modulo conjugacy on the left is equivalent
to the data of an involution via f 7→ if where if is the function which associates to x the other
solution of f(if (x)) = f(x).
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•
0

•x•
if (x)

But some information is lost in the process of considering the invariants modulo conjugacy on
the left : for every pair of curves C1, C2 transverse to F and G and passing through the origin
we can consider the holonomy transports ϕF12, ϕ

G
12 from C1 to C2 following the leaves of F or G :

C1

C2

•
x

•
ϕF12(x)

•
ϕG12(x)

More precisely, we will consider the holonomy transport ϕFij and ϕGij between the tangency
curves Ti and Tj . We see on the picture that there are two possible ways to define ϕFnj and
ϕGnj , so we have to make a choice (which is equivalent to choosing a local determination of the
square root). Put then ϕnjn = (ϕGnj)

−1 ◦ ϕFnj ∈ Diff(Tn); this function allows us to recover the
pair (f |Tj

, g|Tj
) from (f |Tn

, g|Tn
). Indeed, take two parametrizations αj(t) and αn(t) of Tj and

Tn such that αj = ϕFnj ◦ αn. We want to compute g ◦ αj , but g(αj(t)) = g((ϕGnj)
−1(αj(t))) and

αj(t) = ϕFnj(αn(t)) so g(αj(t)) = g(ϕnjn(αn(t))).
Note also that the invariant λj/λn can be found by taking the linear part of ϕnjn; hence the

following definition:

Definition 1. Define the invariant of (F ,G) to be Inv(F ,G) = ((inf , i
n
g ), (ϕnjn)j<n). Two

invariants Inv0, Inv1 are equivalent if there exists a diffeomorphism ψ ∈ Diff(T 0
n , T

1
n) such that

ψ−1 ◦ Inv1 ◦ ψ = Inv0.

Theorem 2. Let (F0,G0) and (F1,G1) be two F -generic pairs of Morse foliations on (Cn, 0).
Suppose that we can number their tangency curves T i

j (j = 1, . . . , n and i = 0, 1) such that their
invariants Inv(f, g) are equivalent. Then (F0,G0) and (F1,G1) are analytically conjugated.

Proof. Let (fi, gi) be first integrals for (Fi,Gi); we can suppose that their invariants

((inf , i
n
g ), (ϕnjn)j<n)

are exactly the same and that f0 = f1 =
∑
x2i . We can also compose g1 with a diffeomorphism

on the left in such a manner that g0|T 0
n

= g1|T 1
n
because the involutions ing are the same. Then,

as shown above, g0 and g1 are equal on each tangency curve because the ϕnjn are the same.
Hence Theorem 1 can be applied and the pairs (fi, gi) are indeed conjugated.

�

Note that for each invariant ((i1, i2), (ϕnjn)j<n) there is a pair of Morse foliations having
this invariant. Indeed, we can suppose that i1 = −id, f =

∑
x2i and that Tj is the xj-axis.

Choose g a Morse function on Tn invariant by i2 and for pj = (0, . . . , 0, xj , 0, . . . , 0) ∈ Tj put
g(pj) = g(ϕnjn(pn)) for pn = (0, . . . , 0, xn) with xn = xj . We thus have for each curve Tj a pair
of Morse functions which can be extended to (Cn, 0) as seen before (in Remark 2).
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In order to better understand these invariants, one can find the classification of pairs of
involutions in [Vor] or [CM]. In particular, we see that the formal and the analytic classification
of pairs of Morse foliations are not the same, because there are some pairs of involutions that
are formally but not analytically conjugated.

5. A -classification of pairs of Morse functions

Recall that two couples Φi = (fi, gi) are called A -equivalent if there exists two diffeomor-
phisms ϕ ∈ Diff(Cn, 0) and ψ ∈ Diff(C2, 0) such that ψ◦Φ0◦ϕ = Φ1. We say that an application
Φ : (Cn, 0)→ (C2, 0) whose components (f, g) are Morse functions is A -generic if the pair (f, g)
is R-generic.

Note that the set of such applications Φ is not stable under target diffeomorphisms (for exam-
ple, the diffeomorphism (y1, y2) 7→ (y1, y2−λ1y1) transforms (

∑
x2i ,
∑
λix

2
i ) into (

∑
x2i ,
∑
µix

2
i )

with µ1 = 0). Nevertheless, a pair of functions obtained by a target diffeomorphism from an
R-generic pair of Morse functions still has the same tangency locus and is still classified by its
values on the tangency locus.

Throughout this section, we will carry on considering pairs of Morse functions to avoid un-
necessary notations, but the results extend to pairs A -equivalent to an R-generic pair of Morse
functions.

Definition 2. Let Γ ⊂ (C2, 0) be an irreducible curve and σ1, σ2 : (C, 0)→ Γ two parametriza-
tions of Γ. We say that the parametrized curves (Γ, σ1) and (Γ, σ2) are σ-equivalent if there is
a diffeomorphism φ ∈ Diff(C, 0) such that σ1 ◦ φ = σ2. An equivalence class [(Γ, σ)] is called a
σ-curve; we define its σ-multiplicity to be the integer n such that σ(t) = (atn + . . . , btn + . . .)
with (a, b) 6= (0, 0).

If the parametrization is clear from the context, we may omit to mention it.

Remark 4. A σ-curve [(Γ, σ)] is entirely determined by Γ and its σ-multiplicity.
A σ-curve [(Γ, σ)] is of σ-multiplicity 2 in exactly two cases: either Γ is diffeomorphic to a

curve y2 − x2k+1 (k ≥ 1) and σ is a bijection or Γ is smooth and σ is a double cover. The last
case happens for example when σ(t) = (t2, b(t2)).

We saw that pairs of Morse functions are classified modulo the action of diffeomorphisms
at the source only by the restrictions of Φ = (f, g) on the tangency curves Ti between f and
g, i.e., on the critical set of Φ. Said another way, the classification is given by the functions
Φ|Ti

with diffeomorphisms at the source acting as reparametrization, that is by the σ-curves
Φ(Ti) ⊂ (C2, 0).

Each of these σ-curves has σ-multiplicity 2 at the origin and has the line (t2, λit
2) as tangent

cone if f|Ti
(t) = t2 + . . . and g|Ti

(t) = λit
2 + . . .

Thus the result is the following:

Theorem 3. Two A -generic pairs of Morse functions Φ1 and Φ2 are A -conjugated if and
only if the set of σ-curves {Φ1(T 1

i )}i≤n and {Φ2(T 2
i )}i≤n are conjugated by a diffeomorphism of

(C2, 0).
Moreover, for each set of n σ-curves {Ci} in (C2, 0) with σ-multiplicity 2 and distinct tangent

cones, there exists an application Φ : (Cn, 0) → (C2, 0) whose components are Morse functions
for which Ci = Φ(Ti).

Remark 5. A diffeomorphism ψ of (C2, 0) conjugates two families of σ-curves ([C1
i , σ

1
i ]) and

([C2
i , σ

2
i ]) if and only if for each i, the σ-curves C1

i and C2
i have the same multiplicity and ψ

conjugates the families of curves (C1
i ) and (C2

i ).

Proof. Clearly, if two pairs are conjugated by source and target diffeomorphisms, their critical
sets are conjugated at the source, so the images of the critical sets are conjugated at the target.

Conversely, suppose that for two generic pairs Φj = (fj , gj) there exists a diffeomorphism
ψ ∈ Diff(C2, 0) conjugating the sets of σ-curves {Φj(T

j
i )}i≤n. Then we can suppose these sets
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to be equal, which means that for the right numbering of the tangency curves, the σ-curves
Φ1(T 1

i ) and Φ2(T 2
i ) are equal for each i. This gives for every i a diffeomorphism ϕi : T 1

i → T 2
i

such that Φ1|T 1
i

= Φ2|T 2
i
◦ ϕi.

We can then conclude with theorem 1.

For the realization part of the theorem, take n σ-curves Ci in (C2, 0) with σ-multiplicity 2
and distinct tangent cones. Note first that we can suppose that no curve has an axe as tangent
cone so that these σ-curves can be parametrized by σi(t) = (t2, λit

2 + O(t3)) =: (ui(t), vi(t))
with λi 6= 0. But these curves are the images of the critical locus of the pair (

∑
ui(xi),

∑
vi(xi))

which is A -generic because λi 6= λj if i 6= j and this concludes the proof. �

6. Quotients of Morse functions

Next, consider meromorphic functions h = g/f with f, g ∈ O(Cn,0) Morse functions satisfying
the genericity condition. As pointed out in the introduction, two quotients hi = gi/fi are
diffeomorphic if and only if the pairs (fi, gi) are Q-equivalent, i.e., if there exist a diffeomorphism
ϕ ∈ Diff(Cn, 0) and a unity U ∈ O∗(Cn,0) such that (Uf0 ◦ ϕ,Ug0 ◦ ϕ) = (f1, g1).

First, consider the critical locus of h : it is given by the zeroes of ω = gdf − fdg, which
contain the indeterminacy locus {f = 0} ∩ {g = 0}. Note that when f =

∑
x2i and g =

∑
λix

2
i ,

the critical locus contains not only {f = 0} ∩ {g = 0} but also the union of the axes. We begin
by showing that after a generic perturbation, only the indeterminacy locus remains. Denote by
I(ω) the ideal spanned by the components of ω.

We say that a pair of Morse functions is Q-generic if it is diffeomorphic to(∑
x2i ,

∑
λix

2
i + αix

3
i +O(m4)

)
with λi 6= λj and αi 6= 0; we say that a quotient g/f is Q-generic if the pair (f, g) is Q-generic.

Lemma 2. For a Q-generic pair of Morse functions (f, g), the ideal I(ω) contains 〈f, g〉·m4
(Cn,0).

Proof. For simplicity, denote m = m(Cn,0). By theorem 1 we can suppose that f =
∑
x2i and

g =
∑
ui(xi). The genericity hypothesis thus means that ui(xi) = λix

2
i + αix

3
i + O(x4i ) with

αi 6= 0. If we write ω =
∑
ωidxi, the coefficient ωi is

ωi = 2
∑
j 6=i

(λj − λi)xix2j +O(m4)

so that ωi = 2xi(g−λif) +O(m4). Hence the equalities xjωi− xiωj = 2xixj(λj −λi)f +O(m5)
and λjxjωi − λixiωj = 2xixj(λj − λi)g + O(m5). As a consequence, for each monomial m of
degree 4 except m = x4k and each l = f, g, we have ml ∈ I(ω) + m7. Furthermore,

1

2

∑
i

xiωi =
∑
i

1

2
xi (g∂xi

f − f∂xi
g)

= g
∑
i

1

2
xi∂xi

f − 1

2
f
∑
i

xi∂xi
g

= gf − 1

2
f
∑
i

xi∂xi
g

= f

(
g −

∑
i

1

2
xi∂xig

)

= f

(
−1

2

∑
i

αix
3
i +O(m4)

)
.
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Thus,
xi
∑

xjωj = βix
4
i f +

∑
j 6=i

βjxjx
3
i f +O(m7)

for some non-zero coefficients βk, and x4i f ∈ I(ω) + m7.
A similar computation shows that x4i g ∈ I(ω) + m7; so for each monomial m of degree 4

and each l = f, g, we have ml ∈ I(ω) + m7. In fact, ml belongs to the ideal I(ω) + 〈f, g〉 · m5

because I(ω) is obviously a subset of 〈f, g〉. It immediately follows that for each index k ≥ 4,
each monomial m of degree k and each l = f, g, ml ∈ I(ω) + 〈f, g〉 ·mk+1. This means that ml
formally belongs to the ideal I(ω) hence by flatness, 〈f, g〉 ·m4 ⊂ I(ω). �

Remark 6. Note that the proof is still valid for 1-parameter families (ft), (gt) with fixed 3-jets.
Indeed, we can show in the exact same way that ml ∈ I(ω) + m7 for each monomial m in x
of degree 4 and l = f, g, the only difference is that f, g and ω depend on t (here m is still
〈x1, . . . , xn〉).

Note also that for 1-parameter families (ft), (gt) with fixed 3-jets, being a Q-generic pair of
Morse functions for each t ∈ C is equivalent to being a Q-generic pair of Morse functions for
t = 0 because the genericity only depends on the 3-jets.

We thus obtain the following:

Lemma 3. Consider two functions f, g ∈ O(t, x1, . . . , xn) defined in a neighborhood of

Ct × {0} ⊂ Ct × Cn
x

with 3-jets independent of t. Suppose that (f(t, ·), g(t, ·)) is a Q-generic pair of Morse functions
for each t. Consider ωx = gdxf − fdxg and m = 〈x1, . . . , xn〉, then 〈f, g〉m4 ⊂ I(ωx).

Theorem 4. Let h0 and h1 be Q-generic quotients of Morse functions with hi = gi/fi. Suppose
that we have equalities between the 3-jets: j3f0 = j3f1 and j3g0 = j3g1. Then there exists a
diffeomorphism ϕ ∈ Diff(Cn, 0) such that h0 ◦ ϕ = h1.

Proof. By Theorem 1, we can suppose that gk =
∑

i u
k
i (xi) and fk =

∑
i x

2
i with

uki (x) = λix
2 + αix

3 + εki

with αi 6= 0 and εki ∈ m4
(Cn,0). Set for t in a neighborhood of [0, 1] in C f(t, ·) = ft = f0 = f1,

g(t, ·) = gt = g0 + t(g1 − g0), h(t, ·) = ht = gt/ft and ω = gdf − fdg = ωx + rdt.
Note that r = −f∂tg ∈ 〈f, g〉m4 and that by Lemma 3, this implies r ∈ I(ωx). We can then

find a vector field X =
∑

iXi∂xi
+ ∂t such that ω(X) = 0 (note that Xi ∈ 〈x1, . . . , xn〉 because

there is no linear relation with constant coefficients between the leading terms of the components
of ωx). But this means that h is constant along the trajectories of X so that the flow ϕs(x, t) of
X (which is defined on a neighborhood of {0} × [0, 1]) gives a diffeomorphism ϕ : x 7→ ϕ1(x, 0)
such that h0 ◦ ϕ = h1 on (Cn, 0). �

Corollary 3. Let h be a Q-generic quotient of Morse functions. There exists λi, αi ∈ C∗ such
that h is diffeomorphic to ∑

i λix
2
i + αix

3
i∑

i x
2
i

.

Remark 7. Since the latter form is stable under homotecies, we can even suppose that α1 = 1.

7. Restriction of a Morse function to a quadratic cone

In this section, we want to study restrictions of Morse functions g to a "quadratic cone" (i.e.,
a hypersurface {f = 0} with f also a Morse function).

Remark 8. We can see by a cohomological argument that each function and each diffeomorphism
defined on a quadratic cone extends to (Cn, 0) (respectively to a function or a diffeomorphism of
(Cn, 0)). Thus, studying functions on a quadratic cone up to diffeomorphism of the cone is the
same as studying functions of (Cn, 0) in restriction to a quadratic cone up to diffeomorphisms
of (Cn, 0) fixing the cone.
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Theorem 5. Let f , g0 and g1 be three Morse functions with (f, gi) R-generic pairs and equalities
between the 2-jets j2g0 = j2g1. Then there is a diffeomorphism ϕ such that f ◦ ϕ = f and
g0 ◦ ϕ = g1 in restriction to {f = 0}.

Proof. Let gt = g0 + t(g1 − g0). We want to find a diffeomorphism ϕ such that f ◦ ϕ = f
and g0 ◦ ϕ − g1 ∈ 〈f〉; we will use Moser’s path method to find it as the flow of a vector field
X =

∑
Xi∂xi

+ ∂t such that X · g ∈ 〈f〉 and X · f = 0. Note that we can find X verifying
X · g = X · f = 0 as soon as ∂tg ∈ I(f, g), so that we can find X as sought as soon as
∂tg ∈ 〈f〉 + I(f, g). Remark that the components of X − ∂t will cancel on the t-axis because
there is no linear relation with constant coefficients between f and the components of df ∧ dg.

We saw in the proof of Proposition 6 that I(f, g) = 〈xixj + . . .〉, but x3i is equal to xif modulo
the ideal I(f, g) + m4

(Cn,0) so that each monomial of degree 3 belongs to 〈f〉+ I(f, g) + m4
(Cn,0).

Thus, the inclusion m3
(Cn,0) ⊂ 〈f〉 + I(f, g) holds so that ∂tg ∈ 〈f〉 + I(f, g) and the proof is

complete. �

Remark 9. Note also that g and g + λf represent the same function on {f = 0} so that we
obtain the following:

Corollary 4. Given a Morse function f , each Morse function g such that the pair (f, g) is
R-generic is diffeomorphic in restriction to {f = 0} to a quadratic function

∑n−1
i=1 λix

2
i .

8. Applications of the Key Lemma

The key lemma can be used in a very general setting for the R-classification of pairs of
functions: although the hypotheses might seem strong, they are in fact necessary. For example,
it can be applied to rediscover the R-classification of folds.

Definition 3. Define a fold to be a pair of functions f, g : (Cn, 0)→ (C, 0) such that f is regular
and Tang(f, g) is a simple smooth curve transverse to {f = 0}.

Theorem 6. Let (f, g) be a fold on (Cn, 0). There exists a unique function ϕ ∈ O(C, 0) and a
set of coordinates (xi) such that f = x1 and g = ϕ(x1) +

∑
i>1 x

2
i .

Proof. We can suppose without loss of generality that f = x1 and that Tang(f, g) is the x1-axis.
This means that I(f, g) = 〈∂xi

g〉i>1 = 〈x2, . . . , xn〉 so g = ϕ(x1) + q(x2, . . . , xn) + ε with q a
nondegenerate quadratic form and ε ∈ 〈x2, . . . , xn〉2m(Cn,0). Since q is nondegenerate, we can
suppose q =

∑
i>1 x

2
i .

We want to use the key lemma in (Cn, 0) for f = x1, g0 = ϕ(x1) + x22 + . . . + x2n and
g1 = g. Let us check the hypotheses: first, g1 − g0 = ε ∈ 〈x2, . . . , xn〉2m(Cn,0). Then, for each
a ∈ 〈x2, . . . , xn〉2m(Cn,0), the ideal I(f, g0 + a) writes 〈x2 + η2, . . . , xn + ηn〉 with

ηi ∈ 〈x2, . . . , xn〉m(Cn,0),

which means that Tang(f, g0 + a) is a simple curve and the ideal I(f, g0 + a) is radical. So
the hypotheses I(f, g0) = I(f, g1) and g1 − g0 ∈ I(f, g0) are verified, hence the only hypothesis
missing is f having a singular point.

But g1 − g0 cancels at order 3 at the origin, which will allow us to use the remark 1. Indeed,
if we use the same notations, the fact that there is no C-linear relation between the generators
of I(f, g0) implies that the coefficients rij in the decomposition g1 − g0 =

∑
rijhij cancel on

{0}× [0, 1]. The lemma can thus be applied and the couples (f, g0) and (f, g1) are diffeomorphic.
Last, the function ϕ is entirely determined by the equality ϕ ◦ f = g on Tang(f, g). �

A first corollary is the classification of regular folds as foliations (i.e., the F -classification):

Corollary 5. Let (F ,G) be a pair of foliations on (Cn, 0) given by a fold (f, g) with g regular.
Then (F ,G) is diffeomorphic to the pair of foliations given by the first integrals (x1, x1+

∑
i>1 x

2
i ).
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Proof. We can suppose that (f, g) are as in the conclusion of the theorem 6. The hypothesis
that g be regular means that ϕ is a diffeomorphism. In the variables (ϕ(x1), x2, . . . , xn) the pair
(F ,G) is in the right form. �

We can also use this to obtain the R-classification of generic pairs (f, g) with f regular and
g a Morse function: this is exactly when ϕ is a Morse function. In the case of F -equivalence,
we obtain the normal form (x1,

∑
i≥1 x

2
i ).

We could also study pairs (f, g) of the form (x3 + y2 + z2, λx2 + µy2 + νz2 + . . .), but in this
case the tangency ideal I(f, g) will again be radical and this case will be similar to the case of
pairs of Morse functions.

The lemma 1 can also be applied for more complicated cases, like for example when the
ideal I(f, g) is not radical. To illustrate this, note that if we take f = x3 + y2 + z2 and
g = λx3 + µy2 + νz2 with λ 6= µ 6= ν 6= 0, the tangency ideal is I(f, g) = 〈x2y, x2z, yz〉 and
corresponds to Dx ∪ 2Dy ∪ 2Dz with Dl the l-axis. Let us classify pairs of functions that "look
like" this pair. First, recall the following:

Proposition 7. Let f be a function on (C3, 0) having a singular point with Milnor number 2 at
the origin; then in a right set of coordinates, f(x, y, z) = x3 + y2 + z2.

Proof. Since the Milnor number of f is 2, the hessian matrix of f at 0 is of rank 2 and in the
right set of coordinates, it can be written diag(0, 2, 2). Then f(x, y, z) = y2 + z2 + ε with ε ∈ m3

and f can be seen as a deformation of f(0, ·, ·) which has a non-degenerate singular point at 0.
By the parametrized Morse lemma, there exists a function ϕ and a set of coordinates such that
f(x, y, z) = ϕ(x) + y2 + z2.

Since the Milnor number of f is 2, ϕ is diffeomorphic to x3 and changing the coordinates once
more, we can write f(x, y, z) = x3 + y2 + z2. �

So in fact we are interested in pairs (f, g) of functions with Milnor number 2, having hessians
H(f), H(g) which can be simultaneously diagonalized with the 0 in the same spot. For such
functions, we can then suppose that

(1) f = x3 + y2 + z2 and g = λx3 + µy2 + νz2 + ε

with ε ∈ m3 which has no component in x3.
The tangency locus might not be diffeomorphic to the union of one simple curve and two

double curves: the double curves might split. For example, for

f = x3 + y2 + z2 and g = x3 + µy2 + νz2 + x2y,

the y-axis splits into two curves tangent respectively to the y-axis and to the line

{z = 0 = 3(µ− 1)x− 2y}.

Let us assume the double curves don’t split. We will call such a pair (f, g) an exceptional pair of
3-dimensional cusps (or an exceptional pair of cusps because we only deal with the 3-dimensional
ones in this example).

Proposition 8. If (f, g) is an exceptional pair of cusps written as in (1), then Tang(f, g) is
tangent and diffeomorphic to the union of the axes. Moreover, the tangency curve tangent to the
x-axis is tangent at order 2 with the x-axis.

The proof is very similar to that of Proposition 4 and is a bit tedious so it is skipped here,
but a proof can be found in [T].

Proposition 9. If (f, g) is an exceptional pair of cusps in the form (1), there exists a diffeo-
morphism ϕ preserving f such that Tang(f ◦ ϕ, g ◦ ϕ) is the union of the axes.
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Once again this proof can be found in [T].

Since the ideal is not radical, the tangency locus is not sufficient to characterize the ideal. The
following proposition gives a geometric description of the ideal; it might be interesting in other
contexts because it hints at something more general: the characterization of any ideal in terms
of cancellation of functions and cancellation of some differential operators on these functions.
But I couldn’t find mention of such a characterization anywhere, so we only give the following
special case:

Proposition 10. Let (f, g) be an exceptional pair of cusps in the form (1) with Tang(f, g) equal
to the union of the axes. Then there is a vector field X such that X(0) = ∂x and

I(f, g) =
{
a ∈ O(C3,0) such that a|Tx = a|Ty = a|Tz = 0 and (X · a)|Ty = (X · a)|Tz = 0

}
.

Such a vector field will be said to characterize the tangency ideal.

Proof. The ideal I(f, g) is spanned by the functions h1 = x2y + O(m4), h2 = x2z + O(m4) and
h3 = yz + O(m3) Note that the tangent cone at 0 of the variety {h3 = 0} is the union of the
planes {y = 0} and {z = 0}. Moreover, we know by hypothesis that h3(Ty) = h3(Tz) = {0} so
for each z near 0, there is a unique plane tangent to {h3 = 0} at the point (0, 0, z). This plane
contains the direction Tz so it is defined by another direction X(z) which we can choose regular
in z with X(0) = ∂x. Similarly, the tangent plane to {h3 = 0} along Ty is defined by a vector
field along Ty which we can choose so that both vector fields can be extended to a vector field
X on (C3, 0) with X(0) = ∂x.

Now let

J = {a ∈ O(C3,0) such that a|Tx
= a|Ty

= a|Tz
= 0 and (X · a)|Ty

= (X · a)|Tz
= 0}.

The set J is an ideal and we first need to show that I(f, g) ⊂ J , i.e., that (X · hi)|Tl
= 0 for

i = 1, 2, 3 and l = y, z. By construction, (X ·h3)|Ty
and (X ·h3)|Tz

are null. Next, we know that
h1 ∈ 〈xy, yz, zx〉 so up to changing h1 by h1 −

∑
i=2,3 λihi with λi ∈ m(C3,0), we can suppose

that h1 = ux2y + xα(y) + xβ(z) with u invertible, α and β in m3
(C,0).

The condition that the tangency curves do not split implies that when cutting the curve Ty
by a plane y = y0, we obtain a point with multiplicity 2. But if α 6= 0, then α(y0) is generically
invertible and h1(·, y0, ·) is generically regular. The function h3(·, y0, ·) is also generically regular,
so if α 6= 0, we obtain a simple point; hence α = 0. By the same reasons, β = 0 and

I(f, g) = 〈x2y, h2, h3〉.

Similarly, I(f, g) = 〈x2y, x2z, h3〉 and it is now clear that I(f, g) ⊂ J .
For the converse, we will show that (x2y, x2z, h3) generate J : suppose a ∈ J and P is his

leading homogeneous polynomial (and let k + 1 be his degree). Since J ⊂ 〈xy, yz, zx〉, P
has no term in lk+1 for l = x, y or z. The only terms that are not spanned by the leading
coefficients of x2y, x2z or h3 are the xlk for l = y, z. But if X = (1 + a1)∂x + a2∂y + a3∂z, then
X · xyk = (1 + a1)yk + ka2xy

k−1 is not nul on Ty: there can’t be such a term in P . Therefore
(x2y, x2z, h3) generate J and I(f, g) = J . �

Proposition 11. If (f, g) is an exceptional pair of cusps in the form (1), there exists a diffeo-
morphism ϕ preserving f such that I(f ◦ ϕ, g ◦ ϕ) = 〈x2y, x2z, yz〉.

Proof. By Proposition 9, we can suppose that the tangency locus is the union of the axes. By
Proposition 10, we can find a vector field X such that X(0) = ∂x characterizing the tangency
ideal. We want to transform X into ∂x using a diffeomorphism ϕ preserving f and the coordinate
axes.

As before we will construct ϕ in two steps by transforming the vector field first on the y-axis
and then on the z-axis. We will search the first diffeomorphism in the form

ϕ1(x, y, z) = (x+ yxa(y), y + yxb(y), z + yxc(y)),
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so that
ϕ∗1∂x = (1 + ya, yb, yc).

We see that for each vector field X tangent to ∂x at 0, its restriction to the y-axis can be
obtained this way. Note that ϕ1 fixes {y = 0} and preserves the y-axis so that if we do the same
construction for the z-axis, the newly constructed diffeomorphism ϕ2 will preserve the vector
field along the y-axis. Hence ϕ = ϕ2ϕ1 will conjugate I(f, g) with 〈x2y, x2z, yz〉. �

Theorem 7. Let (f0, g0) and (f1, g1) be two exceptional pairs of cusps on (C3, 0) with tangency
curves T i

j (i = 0, 1, j = 1, 2, 3 and T i
1 is the simple one). Suppose that there is a diffeomor-

phism ψ conjugating the tangency curves and the restrictions (fi|T i
j
, gi|T i

j
). Then there exists a

diffeomorphism ϕ such that (f0 ◦ ϕ, g0 ◦ ϕ) = (f1, g1).

Proof. After what has been done before, we can suppose that each couple is in the form (1),
with tangency ideals I = 〈x2y, x2z, yz〉, with f0 = f1 everywhere and g0 = g1 in restriction to
the tangency locus T .

Let X be a vector field characterizing the ideal I. If Y is tangent to T , then λX + µY
also characterizes I for all λ, µ ∈ O(C3,0) with λ not vanishing on T so we can suppose that
X ∈ Ker(df0) at every point of T (note that Ker(df0) is transverse to T at each point different
from the origin). By definition of the tangency locus, X then also belongs to the kernel of dgi
for each i on T , hence g1 − g0 ∈ I.

The key lemma can then be applied to finish the proof of this theorem. �
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SMOOTH ARCS ON ALGEBRAIC VARIETIES

DAVID BOURQUI AND JULIEN SEBAG

Abstract. Let k be a field and V be a k-variety. We say that a rational arc γ ∈ L∞(V )(k)
is smooth if its formal neighborhood L∞(V )γ is an infinite-dimensional formal disk. In this
article, we prove that every rational arc γ ∈ (L∞(V ) \ L∞(Vsing))(k) is smooth if and only
if the formal branch containing γ is smooth.

1. Introduction

1.1. The present article is partly motivated by the exegesis of the following statement with
respect to singularity theory. This result was obtained by M. Grinberg and D. Kazhdan in
case the base field k is contained in C, and by V. Drinfeld for an arbitrary field k (see [8, 6],
or [4] for a generalization of such a statement in the context of formal geometry).

Theorem 1.2. Let k be a field. Let V be a k-variety, and v ∈ V (k) be a rational point of
V . We assume that dimv(V ) ≥ 1. Let γ ∈ L∞(V )(k) be a rational point of the associated
arc scheme, not contained in L∞(Vsing) such that γ(0) = v. If L∞(V )γ denotes the formal
neighborhood of the k-scheme L∞(V ) at the point γ, there exists an affine k-scheme S of finite
type, with s ∈ S(k), and an isomorphism of formal k-schemes:

L∞(V )γ ∼= Ss×̂k Spf(k[[(Ti)i∈N]]). (1.1)

1.3. Since the work of J. Nash, which introduced the so-called Nash problem, one knows that
the geometry of L∞(V ) is deeply related to the geometry of the singularities of V . As an
illustration of this general principle at the level of formal neighborhoods, let us mention the
following easy and well-known fact: for every rational arc γ ∈ L∞(V )(k), with origin v := γ(0)
contained in the smooth locus of V , the formal neighborhood L∞(V )γ is isomorphic to the
infinite-dimensional k-formal disk DN

k := Spf(k[[(Ti)i∈N]]). If we translate this remark in the
terms of theorem 1.2, it means that, in this case, S can be chosen equal to Spec(k). In fact,
we observe that, in this case, the corresponding algebra OL∞(V ),γ is formally smooth over k for
the discrete topology. Indeed, one may assume that V is affine and smooth and that there is an
étale map V → Ad. By [14, Lemme 3.3.6] one then has L∞(V ) ∼= V ×Ad

k
L∞(Ad

k) thus by [9,
Chapter 0, 19.3.3, 19.3.5 (ii)] the k-algebra O(L∞(V )) ∼= O(V )[(Ti)i∈N] is formally smooth for
the discrete topology. By [9, Chapter 0, 19.3.5 (iv)], this is also the case for OL∞(V ),γ . In this
general context, we address the following natural question:

Question 1.4. Does the converse property hold true? In other words, if S = Spec(k) in theo-
rem 1.2, is it true that γ(0) is a smooth point of V ?

With respect to theorem 1.2, a positive answer in the direction of question 1.4 clearly indicates
that the formal k-scheme Ss in the Drinfeld-Grinberg-Kazhdan theorem would be a measure of
the singularities of V at the origin γ(0) of the involved arc γ. Since the authors proved in [3] that,
in general, theorem 1.2 does not hold if the involved arc γ belongs to L∞(Vsing), it seems natural
to us, in this perspective, to restrict ourselves to the case of arcs not contained in L∞(Vsing),
that we call non-degenerate.

1991 Mathematics Subject Classification. 14E18, 14B20, 32S05.
Key words and phrases. Arc scheme, curve singularity, formal neighborhood.
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1.5. In the present paper, we provide a complete answer to question 1.4 for non-degenerate
arcs (which are in particular contained in a unique irreducible component of Spec(ÔV,γ(0)), by
proposition 3.6). Precisely we obtain the following statement:

Theorem 1.6. Let V be a k-variety and v ∈ V (k) such that OV,v is reduced and dimv(V ) ≥ 1.
Let γ ∈ L∞(V )(k) be a non-degenerate rational arc, such that γ(0) = v. Then, the following
conditions are equivalent:

(1) The unique formal branch containing γ is smooth.
(2) The formal neighborhood L∞(V )γ is isomorphic to DN

k .

Let us note that by [9, Chapter 0, 19.3.6, 19.5.4] the second condition in the statement of
theorem 1.6 characterizes those non-degenerate rational arcs γ whose local ring OL∞(V ),γ is
formally smooth over k for the m-adic topology. In the case of curves, we are able to interpret
the above result in terms of a notion of rigidity for deformations of arcs (see corollary 4.14). We
also obtain analogs of theorem 1.6 in the case of constant arcs (in particular degenerate) and in
the context of jet schemes (see proposition 5.2 and theorem 5.4).

1.7. Conventions, notation. In this article, k is a field of arbitrary characteristic (unless
explicitly stated otherwise); k[[T ]] is the ring of power series over the field k. The category of k-
schemes is denoted by Schk. The local k-algebra k[[(Ti)i∈N]] is the completion of k[(Ti)i∈N] with
respect to the maximal ideal 〈(Ti)i∈N〉. It is a topological complete k-algebra when we endow it
with the projective limit topology. We denote by DN

k := Spf(k[[(Ti)i∈N]]) the associated formal
k-scheme. A k-variety is a k-scheme of finite type. The singular locus Vsing of V is defined as
the (unique) reduced closed subscheme associated with the non-smooth locus of V . An arc of V ,
i.e., a point of the arc scheme L∞(V ) associated with V , which is not contained in the singular
locus Vsing of V , is called a non-degenerate arc. In other words, the subset L∞(V )\L∞(Vsing) is
the set of non-degenerate arcs. In this article, by slightly abusing the standard conventions, we
introduce the terminology of smooth rational arcs on V to designate those arcs γ ∈ L∞(V )(k)
such that L∞(V )γ ∼= DN

k (assuming that the dimension at the origin γ(0) of the arc is positive).

2. Arc schemes and arc deformations: recollection

2.1. If V is a k-variety and n ∈ N, the restriction à la Weil of the k[T ]/〈Tn+1〉-scheme
V ×k Spec(k[T ]/〈Tn+1〉)

with respect to the morphism of k-algebras k ↪→ k[T ]/〈Tn+1〉 exists; it is a k-scheme of fi-
nite type which is called the n-jet scheme of V and that we denote by Ln(V ). The projec-
tive limit lim←−n(Ln(V )) exists in the category of k-schemes; it is the arc scheme associated
with V and we denote it by L∞(V ). For every integer n ∈ N, the canonical morphism of k-
schemes π∞n : L∞(V ) → Ln(V ) is called the truncation morphism of level n. Let A be a k-
algebra. As proved in [1], there exists a natural bijection

HomSchk
(Spec(A),L∞(V )) ∼= HomSchk

(Spec(A[[T ]]), V ). (2.1)
Let us note that in case V is affine or A is local, such a property directly follows from the mere
definitions.

2.2. We denote by Lacp the following category. The objects are the topological local k-algebras,
which are topologically isomorphic to m-adic completions of local k-algebras and whose residue
field are k-algebras isomorphic to k. The morphisms in Lacp are the continuous morphisms of
local k-algebras. We denote by Tes the full subcategory of Lacp whose objects are test-rings, i.e.,
local k-algebras in Lacp with nilpotent maximal ideal and residue field isomorpic to k. If T̂es is
the category of pre-cosheaves on the category Tes (i.e., covariant functors from the category Tes
to the category of sets), we define the functor

F : Lacp −→ T̂es

Ô 7−→ HomLacp(Ô, ·).
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One has the following seemingly standard observation (see [6]):

Observation 2.3. The functor F is fully faithful.

One will use the following trivial consequence of the observation: let S and S′ be k-schemes,
let s ∈ S(k) and s ∈ S′(k), let Ss and S′s′ be the associated formal neighborhoods and
let fA : Ss(A)→ S′s′(A) be a natural map defined for every test-ring (A,mA); then there exists a
unique morphism of formal k-schemes f : Ss → S′s′ inducing fA for every test-ring A; moreover, f
is an isomorphism if and only if fA is bijective for every A.

2.4. Let V be a k-variety. Let γ ∈ L∞(V )(k). Then, in the sense of observation 2.3, the
formal k-scheme L∞(V )γ is uniquely determined by the functor F ( ̂OL∞(V ),γ). Let A be a test-
ring. Let γA ∈ L∞(V )γ(A). The datum of γA corresponds to one of the following (equivalent)
commutative diagram:

OL∞(V ),γ
γA //

��

A

��
k k

OV,v
γA //

γ

��

A[[T ]]

pA

��
k[[T ]] k[[T ]],

ÔV,v
γA //

γ

��

A[[T ]]

pA

��
k[[T ]] k[[T ]],

(2.2)

where we denote by pA : A[[T ]] → k[[T ]] the unique local morphism which extends the projec-
tion A → A/mA ∼= k. The set L∞(V )γ(A) parametrizes the elements γA ∈ V (A[[T ]]) whose
reduction modulo mA coincides with γ.

Definition 2.5. Every morphism γA ∈ L∞(V )γ(A) is called an A-deformation of γ.

3. Reduction to formal branches

Definition 3.1. Let V be a k-variety. Let γ ∈ L∞(V )(k) be a rational arc, viewed as a local
morphism γ : ÔV,γ(0) → k[[T ]]. A formal branch (or formal component) at γ(0) which contains γ
is a minimal prime ideal p of ÔV,γ(0) such that p ⊂ Ker(γ).

In particular, if p is such a branch, this definition implies that γ factorizes through the quotient
morphism ÔV,γ(0) → ÔV,γ(0)/p. A classical fact on arc geometry is that every arc on a reduced
variety factorizes through the irreducible components of the involved variety which contain the
origin of the arc. In the same spirit, the following lemma shows in particular that the formal
neighborhood of a given arc contained in a unique formal branch of a reduced variety carries a
part of the information on the mere singularities of the formal branch containing the arc.

Proposition 3.2. Let V be a k-variety. Let γ ∈ L∞(V )(k) be a rational arc contained in a
unique formal branch p. We assume that OV,γ(0) is reduced. Then, for every test-ring (A,mA),
for every A-deformation γA ∈ L∞(V )γ(A) of γ, the induced morphism of admissible local k-
algebras γA : ÔV,γ(0) → A[[T ]] factorizes through ÔV,γ(0) → ÔV,γ(0)/p. Besides, the ideal p is the
only minimal prime ideal with this property.

In other words, if the arc γ is contained in a unique formal branch at γ(0), then every A-
deformation of γ is contained in the same branch (and only in this one).

Proof. Let (A,mA) be a test-ring and γA ∈ L∞(V )γ(A), corresponding to a diagram of mor-
phisms of complete local k-algebras:

ÔV,γ(0)
γA //

γ
$$

A[[T ]]

��
k[[T ]].

(3.1)
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Then, we have Ker(γ) = γ−1
A (mA[[T ]]). Let p, q1, . . . , qn be the minimal prime ideals of the

ring ÔV,γ(0). By assumptions, Ker(γ) contains p and does not contain qi for every i ∈ {1, . . . , n}.
Let us prove that p ⊂ Ker(γA).

Let x ∈ p. Since the ring ÔV,γ(0) is reduced, we have p ∩ (∩ni=1qi) = 〈0〉. By assumption, for
every integer i ∈ {1, . . . , n}, there exists an element yi ∈ qi such that yi 6∈ Ker(γ). Then, we
deduce that xy1 . . . yn = 0 and that

γA(xy1 . . . yn) = 0
γA(x) · γA(y1) . . . γA(yn) = 0. (3.2)

Since, by construction, yi 6∈ γ−1
A (mA[[T ]]) for every integer i ∈ {1, . . . , n}, we conclude that

the element γA(yi) does not reduce to zero modulo mA[[T ]]. In particular (see lemma 3.3),
the element γA(yi) is not a zero-divisor in the ring A[[T ]]; hence, by equation (3.2), we have
γA(x) = 0, i.e., x ∈ Ker(γA).

In the end, if there exists i ∈ {1, . . . , n} such that qi ⊂ γ−1
A (0) = Ker(γA), then we

have qi ⊂ γ−1
A (mA[[T ]]) = Ker(γ), which contradicts our assumption. It concludes the proof

of our statement. �

Lemma 3.3. Let (A,mA) be a test-ring, let rA(T ) ∈ A[[T ]] whose reduction modulo mA[[T ]] is
a non-zero element of k[[T ]]. Then, the power series rA(T ) is not a zero-divisor in A[[T ]].

Proof. By the Weierstrass preparation theorem (see [12, Chapter IV, Theorem 9.2]), there is a
decompostion rA(T ) = qA(T )uA(T ) where qA(T ) is a distinguished polynomial and uA(T ) is
invertible in A[[T ]]. By the uniqueness in the Weierstrass division theorem, (see [12, Chapter
IV, Theorems 9.1 and 9.2]) a distinguished polynomial is not a zero-divisor in A[[T ]]. �

Remark 3.4. In particular, under the assumptions of proposition 3.2 with V reduced, the arc γ
is contained in a unique irreducible component passing through γ(0), and every A-deformation
of γ is contained in this irreducible component.

Remark 3.5. If one does not assume that the arc γ belongs to a unique formal branch, and
dim(OV,v) ≥ 2, it is important to keep in mind that the situation is much more complicated and
proposition 3.2 does not hold anymore. Let us consider the example of the affine k-surface

V = Spec(k[X,Y, Z]/〈Y 2 −X3 −X〉).

It is an integral k-variety and ÔV,o ' k[[U, V,W ]]/〈UV 〉, where we denote by o the origin of A3
k.

Let A = k[S]/〈S2〉 and s := S̄. We observe that the arc γ, defined by U 7→ 0, V 7→ 0,W 7→ T ,
admits the A-deformation γA(T ) = (s, s, T ), which is not contained in any formal branch of V
at the origin o.

Proposition 3.6. Let V be a k-variety. Let γ ∈ L∞(V )(k) be a rational arc. If the arc γ is
non-degenerate, then the arc γ is contained in a unique formal branch.

Proof. In Spec(k[[T ]]), we denote by 0 the closed point, and η the generic point. Let us note
that the arc γ is non-degenerate if and only if the point γ(η) does not belong to Vsing. Up to
shrinking V , we may assume that the k-variety V is affine and reduced. We also may assume
that dim(OV,γ(0)) ≥ 1. The arc γ corresponds a morphism of local k-algebras γ : OV,γ(0) → k[[T ]]
which extends to a morphism of local k-algebras γ̂ : ÔV,γ(0) → k[[T ]]. We denote by M the
maximal ideal of O(V ) corresponding to γ(0). First assume that Ker(γ) contains at least two
distinct minimal prime ideals of OV,γ(0); in more geometric terms, that γ lies on at least two
distinct irreducible components passing through γ(0). Then (OV,γ(0))Ker(γ) ∼= OV,γ(η) is not a
domain, thus γ(η) is not a smooth point of V and γ ∈ L∞(Vsing).

Now consider the general case. Let OhV,γ(0) be the henselization of OV,γ(0). One has

OhV,γ(0) = lim−→ Bq,
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where the limit is taken over all étale O(V )-algebras B localized at a prime q such that

q ∩ O(V ) = M and κ(q) = κ(M).

By [16, Tag 0CB3], one may find such a (B, q) such that the morphism Bq → OhV,γ(0) induces
a bijection on the level of minimal prime ideals. On the other hand, by [16, Tag 0C2E], the
morphism OhV,γ(0) → ÔV,γ(0) also induces a bijection on the level of minimal prime ideals.
Let γB : B → k[[T ]] (resp. γBq

: Bq → k[[T ]]) be the morphism induced by γ̂. Assuming
that Ker(γ̂) contains at least two distinct minimal prime ideals, we deduce that the same holds
for Ker(γBq

). By the particular case treated above, one infers that BKer(γB) is not a domain, in
particular Ker(γB) = γB(η) is not a smooth point of Spec(B). Since Spec(B)→ V is étale and
maps γB(η) to γ(η), the point γ(η) is not a smooth point of V by [10, Chapitre 4, 17.11.1]. �

4. The proof of theorem 1.6

Let p be the unique formal branch containing γ, v := γ(0) and Ôp,v := ÔV,v/p be the
corresponding local ring.

4.1. Let us show first 1⇒ 2. This implication is a direct consequence of the following proposi-
tion, which is a corollary of proposition 3.2, and of proposition 3.6.

Proposition 4.2. Let V be a k-variety and γ ∈ L∞(V )(k) be an arc with v = γ(0) which
is assumed to be contained in a unique formal branch. We assume that OV,v is reduced and
dimv(V ) ≥ 1. Assume that the formal branch p containing γ is smooth. Then the formal k-
scheme L∞(V )γ is isomorphic to DN

k .

Proof. Let (A,mA) be a test-ring. By assumption, there exists an integer d ≥ 1 such that

Ôp,v
∼→ k[[S1, . . . , Sd]].

By proposition 3.2, the A-deformations of γ are in natural bijection with the set of local mor-
phisms Ôp,v → A[[T ]]. This set is itself in natural bijection with mN

A . By observation 2.3,
the k-formal schemes L∞(V )γ and DN

k are isomorphic. �

4.3. We prove now 2 ⇒ 1. We have to show that the k-algebra Ôp,v is isomorphic (in Lacp)
to a k-algebra of power series in a finite number of variables. Our proof is based on different
ingredients which are established in subsections 4.4, 4.6; the main arguments are presented in
subsection 4.9.

4.4. Let us start by establishing a basic result. Keep the notation of theorem 1.2.

Lemma 4.5. Let V be a k-variety and v ∈ V (k) such that OV,v is reduced and dimv(V ) ≥ 1.
Let γ ∈ L∞(V )(k) be a non-degenerate rational arc with γ(0) = v. Assume that the formal
neighborhood L∞(V )γ is isomorphic to DN

k and that the minimal prime ideal p of ÔV,v corre-
sponds to the formal branch containing γ. Let (B,mB) be a local ring. Then, every morphism
of local k-algebras Ôp,v → (B/m2

B)[[T ]] lifts to a morphism of local k-algebras Ôp,v → B̂[[T ]].

Proof. First, since we have L∞(V )γ ∼= DN
k , we observe that, for every surjective morphism of

test-rings f : A′ → A, the natural map

mN
A′
∼=HomLacp(Ôp,v, A

′[[T ]]) f◦· // HomLacp(Ôp,v, A[[T ]])∼= mN
A

is surjective. Hence, starting from a morphism ϕ2 : Ôp,v → B/m2
B [[T ]], we may construct, by

induction, a family of morphisms ϕn : Ôp,v → B/mn+2
B [[T ]], for every integer n ∈ N, which
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makes, for every pair (m,n) ∈ N2 of integers with m ≥ n, the following diagram of morphisms
in Lacp commute

Ôp,v
ϕm // B/m2+m

B

π
����

Ôp,v ϕn

// B/m2+n
B ,

where we denote by π the canonical projection. By the very definition, we have constructed a
morphism ϕ : Ôp,v → B̂[[T ]] lifting ϕ2. �

For every noetherian local k-algebra B, we have B/mnB ∼= B̂/m̂nB for every integer n ≥ 1 by
[13, §8]. Under this assumption, the arguments developed in the proof of lemma 4.5 imply in
particular that the set of liftings of ϕ2 can be identified with k[[(Ti)i∈N]].

4.6. Using the following lemma, we shall, in some sense, reduce the proof of the theorem 1.6 to
the case of a complete intersection. This kind of reduction is a classical “trick” in the construction
of motivic measures (see [5] or, e.g., [14]).

Lemma 4.7. Let V be an affine k-variety, defined by the datum of an ideal IV of the poly-
nomial ring k[X1, . . . , XN ] and γ ∈ L∞(V )(k) be a non-degenerate arc. Then, there exist an
integer M ∈ {0, . . . , N} and elements F1, . . . , FM ∈ IV , such that:

(1) There exists an (M ×M)-minor of the jacobian matrix (∂Xj
Fi)i,j which does not vanish

at γ.
(2) Setting

V ′ := Spec(k[X]/〈F1, . . . , FM 〉),
the morphism of formal k-schemes L∞(V )γ ∼= L∞(V ′)γ induced by the closed immer-
sion V ↪→ V ′ is an isomorphism.

Proof. Let us denote by JV the ideal generated by the elements hδ ∈ k[X1, . . . , XN ], where δ is
an (M ×M)-minor of the jacobian matrix of aM -tuple (F1, . . . , FM ) of elements of IV , for some
integerM ∈ N, and h ∈ (〈F1, . . . , FM 〉 : IV ). Using the jacobian criterion, one may show (see [7,
§0.2], [17, §4]) that the singular locus Vsing of V , i.e., the reduced closed subscheme associated
with the non-smooth locus, is the support of the closed subscheme of V associated with the
datum of the ideal IV + JV . Since γ 6∈ L∞(Vsing)(k), we obtain all the desired properties, using
lemma 4.8 below for the last one. �

Lemma 4.8. Let V ′ be an affine k-variety, V be a closed k-subscheme of V ′ and
h ∈ (0 : IV ) ⊂ O(V ′).

Let γ ∈ L∞(V )(k) such that h(γ) 6= 0. Then, still denoting by γ the image of γ in V ′, the natural
morphism of formal schemes L∞(V )γ → L∞(V ′)γ is an isomorphism of formal k-schemes.

Proof. It suffices to show that for every test-ring A the induced map L∞(V )γ(A)→ L∞(V ′)γ(A)
is bijective. Injectivity is clear; so let us show surjectivity. We pick out γA ∈ L∞(V ′)γ(A)
and G ∈ IV . We have to show that G(γA) = 0. By hypothesis, one has h(γA)G(γA) = 0.
Since h(γ) 6= 0, the reduction of h(γA) modulo mA is not zero. By lemma 3.3, one infers
that G(γA) = 0. �

4.9. We are ready to complete the proof of theorem 1.6, by proving implication 2 ⇒ 1. We
may assume that V ↪→ AN

k is affine and, thanks to proposition 3.2 and remark 3.4, irreducible.
LetM , F1, F2, . . . , FM , δ and h be the elements provided by lemma 4.7 and set d := N−M . Up
to renumbering, we may assume that δ is the determinant of the matrix (∂Xd+j

(Fi))i,j∈{1,...,M}
and that ordT (δ(γ(T )) is minimal among the T -orders of the evaluation at γ(T ) of the (M×M)-
minors of the jacobian matrix (∂Xj (Fi))i∈{1,...,M}

j∈{1,...,N}
. Moreover, up to a translation, we may assume
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that v is the origin of Ad+M
k . For every integer i ∈ {1, . . . , d + M}, we will denote by x̂i the

image of Xi in Ôp,v. Note that, since hδ does not vanish at γ, the element hδ does not vanish
identically on V ; hence,we have dim(V ) = d.

We shall identify γ(T ) with a tuple (xj(T ))i∈{1,...,N} ∈ k[[T ]]d+M which satisfies, for every
integer i ∈ {1, . . . ,M}, the equation

Fi((xj(T ))j∈{1,...,d+M}) = 0.
Using the second property of lemma 4.7, for every test-ring (A,mA), an element of L∞(V )γ(A)
may and shall be identified with a tuple (x1,A(T ), . . . , xd+M,A(T )) of elements of mA[[T ]]d+M

such that, for every integer i ∈ {1, . . . ,M},
Fi((xj(T ) + xj,A(T ))j∈{1,...,d+M}) = 0.

We denote by Ad,2 the test-ring k[S1, . . . , Sd]/〈S1, . . . , Sd〉2 and by si the image of Si in Ad,2. By
lemma 4.11, there exists an element (x1,Ad,2(T ), . . . , xd+M,Ad,2(T )) ∈ L∞(V )γ(Ad,2) such that,
for every integer i ∈ {1, . . . , d},

xi,Ad,2(T ) = si.

By proposition 3.2, there exists a morphism Ôp,v → Ad,2[[T ]] which maps x̂i to si for every
integer i ∈ {1, . . . , d}. Since the formal k-scheme L∞(V )γ is isomorphic to DN

k , by lemma 4.5,
there exists a morphism Ôp,v → k[[S1, . . . , Sd]][[T ]] which maps, for every integer i ∈ {1, . . . , d},
the element x̂i to an element of Si + 〈S1, . . . , Sd〉2[[T ]]. Specializing to T = 0, we deduce from
lemma 4.10 that the induced morphism Ôp,v → k[[S1, . . . , Sd]] is surjective. Its kernel is a prime
ideal of Ôp,v. Since Ôp,v is an integral domain of dimension d, this prime ideal is necessarily
zero, by the Hauptidealsatz. We deduce the existence of a continuous isomorphism

Ôp,v
∼→ k[[S1, . . . , Sd]]

of admissible local k-algebras, which shows the desired result by [10, 17.5.3].

For the convenience of the reader, we state and prove the following version of the inverse
function theorem for formal power series, probably well-known among the specialists.

Lemma 4.10. Let d ≥ 1 be an integer. Let m be the maximal ideal of the local k-algebra
k[[S1, . . . , Sd]]. Let ϕ : k[[S1, . . . , Sd]] → k[[S1, . . . , Sd]] be a morphism of local k-algebras which
induces an isomorphism of k-vector spaces ϕ1 : m/m2 → m/m2. Then, the morphism ϕ is an
isomorphism.

Proof. For every integer n ≥ 1, we deduce from the assumption a k-linear map
ϕn : mn/mn+1 → mn/mn+1

defined by ϕn(P̄ ) = ϕ(P ) for every power series P ∈ k[[S1, . . . , Sd]]. For every integer n ≥ 1,
the map ϕn is surjective. Indeed, for every y1, . . . , yn ∈ m, there exists x1, . . . , xn ∈ m such
that ϕ2(x̄i) := ϕ(xi) = ȳi for every integer i ∈ {1, . . . , n}. The element x := x1 . . . xn is a
preimage of y := y1 . . . yn by ϕn which concludes the proof of our claim.

Since, for every integer n ∈ N, the k-vector space mn/mn+1 is finite dimensional, we conclude
that the map ϕn are bijective. We deduce the assertion from [2, III/§2/Corollaire 3]. �

Let us recall a convention of subsection 4.9. If a rational arc γ(T ) is identified with a tu-
ple (xj(T ))i∈{1,...,N} ∈ k[[T ]]d+M which satisfies, for every integer i ∈ {1, . . . ,M}, the equation

Fi((xj(T ))j∈{1,...,d+M}) = 0,
then, for every test-ring (A,mA), an element of L∞(V )γ(A) may be identified with a tuple

(x1,A(T ), . . . , xd+M,A(T ))
of elements of mA[[T ]]d+M such that, for every integer i ∈ {1, . . . ,M},

Fi((xj(T ) + xj,A(T ))j∈{1,...,d+M}) = 0.
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Lemma 4.11. Keep the notation and convention of subsection 4.9. Let (A,mA) be a test-ring
such that m2

A = 0. Then, the natural application

L∞(V )γ(A) −→ (mA[[T ]])d
(x1,A(T ), . . . , xd+M,A(T )) 7−→ (x1,A(T ), . . . , xd,A(T ))

is bijective.

Proof. We denote by J the jacobian matrix [∂Xj
Fi] i∈{1,...,M}

j∈{1,...,d+M}
. Recall that

det
([
∂XjFi

]
i∈{1,...,M}

j∈{d+1,...,d+M}

)
does not vanish at γ(T ). Using the Taylor expansion and the fact that m2

A = 0, we observe that,
for every tuple (x1,A(T ), . . . , xd+M,A(T )) ∈ mA[[T ]]d+M , the conditions

∀i ∈ {1, . . . ,M} Fi(xj(T ) + xj,A(T ))j∈{1,...,d+M} = 0
are equivalent to the condition

J (γ(T )) ·

 x1,A(T )
...

xd+M,A(T )

 =

0
...
0

 .

Using lemmas 3.3 and 4.12, we deduce that there exist elements (bi,j(T ))i∈{1,...,M}
j∈{1,...,d}

in k[[T ]] such

that latter condition is equivalent to the system

xd+i,A(T ) =
d∑
j=1

bi,j(T ) · xj,A(T ), i ∈ {1, . . . ,M}.

That concludes the proof. �

Lemma 4.12. Let k be a field, and d, M be positive integers. Let

M =
[
(Mi,j) 1≤i≤M

1≤j≤d+M

]
be a (M × (d+M)) matrix with coefficients in k[[T ]]. Assume that

µ := ordT
(

det
[
(Mi,j) 1≤i≤M

d+1≤j≤d+M

])
is an integer, minimal among the orders of the (M ×M)-minors of the matrix M. Then there
exists an (M ×M) matrix N with coefficients in k[[T ]], whose determinant is not zero, such that

N ·M =


a1,1 . . . a1,d Tµ 0 . . . 0
a2,1 . . . a2,d 0 Tµ . . . 0
... . . .

... 0 0
. . . 0

aM,1 . . . aM,d 0 0 . . . Tµ

 (4.1)

∀(i, j) ∈ {1, . . . ,M} × {1, . . . , d} ordT (ai,j) ≥ µ. (4.2)

Proof. This obvious remark was originally made in [5, p. 216]. Write

det
([

(Mi,j) 1≤i≤M
d+1≤j≤d+M

])
= Tµ u(T )

with u(T ) ∈ k[[T ]]× and set

N = u(T )−1ad
([

(Mi,j) 1≤i≤M
d+1≤j≤d+M

])
.
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Clearly equation (4.1) holds. Moreover for (i, j) ∈ {1, . . . ,M} × {1, . . . , d} the coefficient ai,j
is a linear combination of (M ×M)-minors of the matrixM with coefficients in k[[T ]]. Hence,
formula (4.2) also holds. �

4.13. Let k be a field. Let (C , c) be an integral k-curve, geometrically unibranch at c ∈ C (k).
Let γ ∈ L∞(C )(k) be a primitive k-parametrization of C at c1. We say that γ is a rigid arc2

if, for every test-ring (A,mA), for every A-deformation γA ∈ L∞(V )γ(A), there exists a unique
power series rA(T ) ∈ mA[[T ]] such that γA(T ) = γ(T + rA(T )). In the particular case of curves,
we may interpret theorem 1.6 as follows.

Corollary 4.14. Let k be a field. Let C be an integral k-curve and c ∈ C (k). We assume
that (C , c) is geometrically unibranch. Let γ be a primitive k-parametrization at c. Then the
following conditions are equivalent:

(1) The germ (C , c) is smooth.
(2) The formal neighborhood L∞(C )γ is isomorphic to DN

k .
(3) The arc γ is rigid.
(4) Let π : C̄ → C be the normalization of C and γ̄ the unique lifting of γ to C̄ ; then the

morphism of formal k-schemes L∞(C̄ )γ̄ → L∞(C )γ induced by π is an isomorphism.

Proof. By theorem 1.6 and standard remarks, we only have to show implication 4⇒ 3. Let
us assume that γ is a primitive k-parametrization at c such that the morphism of formal k-
schemes L∞(C̄ )γ̄ → L∞(C )γ induced by the normalization π : C̄ → C is an isomorphism,
and let us show that γ is rigid. Note that γ̄ is the unique isomorphism ÔC̄ ,c̄

∼→ k[[T ]] such
that γ = π̂ ◦ γ̄. Let (A,mA) be a test-ring. For every power series rA ∈ mA[[T ]], one has

γ(rA(T ) + T ) = π̂(γ̄(rA(T ) + T ))

By assumption, γ̄A(T ) 7→ π̂(γ̄A(T )) is a natural bijection from L∞(C̄ )γ̄(A) onto L∞(C )γ(A).
Since γ̄ is rigid, we conclude that γ is rigid too, which concludes the proof of the implication. �

5. Related problems

5.1. A slight variation on an argument of [11, proof of Proposition 1.1] also allows to describe
the constant arcs whose formal neighborhood is isomorphic to DN

k (in arbitrary dimensions),
i.e., smooth constant arcs. We denote by σ the canonical section of the projection

π∞0 : L∞(V )→ L0(V ) ∼= V.

Thus, for every v ∈ V , the point σ(v) of L∞(V ) is the associated constant arc.

Proposition 5.2. Let V be a k-variety and v ∈ V (k) such that dimv(V ) ≥ 1. Then the following
conditions are equivalent:

(1) The k-variety V is smooth at v.
(2) The formal neighborhood L∞(V )σ(v) is isomorphic to DN

k .

In other words, smooth constant arcs on V correspond to smooth points of V .

Proof. We only have to show implication 2⇒ 1. By [10, 17.5.1, 17.5.3], it suffices to show that
the local k-algebra ÔV,v is formally smooth for the mv-adic topology (which coincides here with
the projective limit topology). By [9, 19.3.3,19.3.6] and the hypothesis, the k-algebra ̂OL∞(V ),σ(v)
is formally smooth for the projective limit topology. Since the continuous morphism

ÔV,v → ̂OL∞(V ),σ(v)

induced by the projection L∞(V ) → V admits a continuous retraction (induced by σ) we may
conclude the proof by the very definition of formal smoothness. �

1If k is assumed to be perfect, the assumption that c is geometrically unibranch guarantees the existence of
primitive k-parametrizations at c.

2An analogous notion has been originally introduced in [15] for constant arcs.
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5.3. For non-degenerate arcs centered at a unibranch point, we have an analog of theorem 1.6
with regards to the smoothness of the truncations of the involved arc.

Theorem 5.4. Let V be a k-variety and v ∈ V (k). We assume that ÔV,v is a domain. Let
γ ∈ L∞(V )(k) be a rational non-degenerate arc with γ(0) = v. Then the following conditions
are equivalent:

(1) The k-variety V is smooth at v.
(2) There exists an integer n ∈ N such that γn := π∞n (γ) is a smooth point of the jet

scheme Ln(V ).
(3) For every n ∈ N, the point γn is a smooth point of Ln(V ).

Implication 1 ⇒ 3 is well-kown (e.g., see [14, Lemme 3.4.2]); 3 ⇒ 2 is formal. In the end,
the proof of implication 2 ⇒ 1 is very similar to the proof of theorem 1.6. Indeed, we have
to mimick the original proof and replace the use of lemma 4.5 by that of the following lemma,
whose proof is completely similar to that of lemma 4.5.

Lemma 5.5. Let V be a k-variety and v ∈ V (k) such that OV,v is reduced and dimv(V ) ≥ 1.
Let γ ∈ L∞(V )(k) be a non-degenerate rational arc with γ(0) = v. Let n ∈ N be an integer.
Assume that the formal neighborhood Ln(V )γn

is isomorphic to Dr
k and that the minimal prime

ideal p of ÔV,v corresponds to the formal branch containing γ. Let (B,mB) be a local ring.
Then, every morphism of local k-algebras Ôp,v → (B/m2

B)[T ]/〈Tn+1〉 lifts to a morphism of
local k-algebras Ôp,v → B̂[T ]/〈Tn+1〉.

Remark 5.6. This completes in particular a result of [11]. In loc. cit., S. Ishii shows that the
jet scheme Ln(V ) is not smooth at any constant jet centered at a non-smooth point of V (see
the proof of proposition 1.1 in op.cit.). Theorem 5.4 shows that Ln(V ) is not smooth at any jet
which is the truncation of a non-degenerate arc centered at a non-smooth unibranch point of V .

Remark 5.7. If the reduced germ (V, v) is no longer assumed analytically irreducible, even if
the formal branch containing γ is smooth, the truncations γn can be non-smooth points of the
corresponding jet scheme in general. This is already clear for n = 0 but this may fail more
generally for every n. For example let V = Spec(k[X,Y ]/〈X Y 〉) and γ(T ) = (T, 0); then one
may check that for every non-negative integer n one has

̂OLn(V ),γn
∼= k[[X0, . . . , Xn, Y ]]/〈Xn+1

0 Y 〉.
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INTERSECTION SPACES, EQUIVARIANT MOORE APPROXIMATION

AND THE SIGNATURE

MARKUS BANAGL AND BRYCE CHRIESTENSON

Abstract. We generalize the first author’s construction of intersection spaces to the case
of stratified pseudomanifolds of stratification depth 1 with twisted link bundles, assuming

that each link possesses an equivariant Moore approximation for a suitable choice of structure

group. As a by-product, we find new characteristic classes for fiber bundles admitting such
approximations. For trivial bundles and flat bundles whose base has finite fundamental group

these classes vanish. For oriented closed pseudomanifolds, we prove that the reduced rational
cohomology of the intersection spaces satisfies global Poincaré duality across complementary

perversities if the characteristic classes vanish. The signature of the intersection spaces agrees

with the Novikov signature of the top stratum. As an application, these methods yield new
results about the Goresky-MacPherson intersection homology signature of pseudomanifolds.

We discuss several nontrivial examples, such as the case of flat bundles and symplectic toric

manifolds.

1. Introduction

Classical approaches to Poincaré duality on singular spaces are Cheeger’s L2 cohomology
with respect to suitable conical metrics on the regular part of the space ([16], [15], [17]), and
Goresky-MacPherson’s intersection homology [22], [23], depending on a perversity parameter p̄.
More recently, the first author has introduced and investigated a different, spatial perspective on
Poincaré duality for singular spaces ([3]). This approach associates to certain classes of singular
spaces X a cell complex IpX, which depends on a perversity p̄ and is called an intersection space
of X. Intersection spaces are required to be generalized rational geometric Poincaré complexes
in the sense that when X is a closed oriented pseudomanifold, there is a Poincaré duality isomor-

phism H̃i(IpX;Q) ∼= H̃n−i(I
qX;Q), where n is the dimension of X, p̄ and q̄ are complementary

perversities in the sense of intersection homology theory, and H̃∗, H̃∗ denote reduced singular
(or cellular) cohomology and homology.

The resulting homology and cohomology theories

HI p̄∗ (X) = H∗(I
pX;Q) and HI∗p̄ (X) = H∗(IpX;Q)

are not isomorphic to intersection (co)homology I p̄H∗(X;Q), Ip̄H
∗(X;Q). Since its inception,

the theory HI∗p̄ has so far had applications in areas ranging from fiber bundle theory and com-
putation of equivariant cohomology ([4]), K-theory ([3, Chapter 2.8], [37]), algebraic geometry
(smooth deformation of singular varieties ([10], [11]), perverse sheaves [8], mirror symmetry
[3, Chapter 3.8]), to theoretical Physics ([3, Chapter 3], [8]). For example, the approach of in-
tersection spaces makes it straightforward to define intersection K-groups by K∗(IpX). These
techniques are not accessible to classical intersection cohomology. There are applications to
L2-theory as well: In [9], for every perversity p̄ a Hodge theoretic description of the theory
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H̃I∗p̄ (X;R) is found; that is, a Riemannian metric on the top stratum (which is in fact a fiber-
wise scattering metric and thus very different from Cheeger’s class of metrics) and a suitable
space of L2 harmonic forms with respect to this metric (the extended weighted L2 harmonic forms

for suitable weights) which is isomorphic to H̃I∗p̄ (X;R). A de Rham description of HI∗p̄ (X;R)
has been given in [5] for two-strata spaces whose link bundle is flat with respect to the isometry
group of the link.

At present, intersection spaces have been constructed for isolated singularities and for spaces
with stratification depth 1 whose link bundles are a global product, [3]. Constructions of IpX
in some depth 2 situations have been provided in [7]. The fundamental idea in all of these
constructions is to replace singularity links by their Moore approximations, a concept from
homotopy theory Eckmann-Hilton dual to the concept of Postnikov approximations. In the
present paper, we undertake a systematic treatment of twisted link bundles. Our method is
to employ equivariant Moore approximations of links with respect to the action of a suitable
structure group for the link bundle.

Equivariant Moore approximations are introduced in Section 3. On the one hand, the exis-
tence of such approximations is obstructed and we give a discussion of some obstructions. For
instance, if Sn−1 is the fiber sphere of a linear oriented sphere bundle, then the structure group
can be reduced so as to allow for an equivariant Moore approximation to Sn−1 of degree k,
0 < k < n, if and only if the Euler class of the sphere bundle vanishes (Proposition 12.1).
If the action of a group G on a space X allows for a G-equivariant map X → G, then the
existence of a G-equivariant Moore approximation to X of positive degree k implies that the
rational homological dimension of G is at most k − 1. On the other hand, we present geomet-
ric situations where equivariant Moore approximations exist. If the group acts trivially on a
simply connected CW complex X, then a Moore approximation of X exists. If the group acts
cellularly and the cellular boundary operator in degree k vanishes or is injective, then X has an
equivariant Moore approximation. Furthermore, equivariant Moore approximations exist often
for the effective Hamiltonian torus action of a symplectic toric manifold. For instance, we prove
(Proposition 12.3) that 4-dimensional symplectic toric manifolds always possess T 2-equivariant
Moore approximations of any degree.

In Section 6, we use equivariant Moore approximations to construct fiberwise homology trun-
cation and cotruncation. Throughout, we use homotopy pushouts and review their properties
(universal mapping property, Mayer-Vietoris sequence) in Section 2. Proposition 6.5 relates the
homology of fiberwise (co)truncations to the intersection homology of the cone bundle of the
given bundle. Of fundamental importance for the later developments is Lemma 6.6, which shows
how the homology of the total space of a bundle is built up from the homology of the fiberwise
truncation and cotruncation. In order to prove these facts, we employ a notion of precosheaves
together with an associated local to global technique explained in Section 4. Proposition 6.7
establishes Poincaré duality between fiberwise truncations and complementary fiberwise cotrun-
cations.

At this point, we discover a new set of characteristic classes

Oi(π, k, l) ⊂ Hd(E;Q), d = dimE, i = 0, 1, 2, . . . ,

defined for fiber bundles π : E → B which possess degree k, l fiberwise truncations (Definition
6.8). We show that these characteristic classes vanish if the bundle is a global product (Propo-
sition 6.11). Furthermore, they vanish for flat bundles if the fundamental group of the base is
finite (Theorem 7.1). On the other hand, we construct in Example 6.13 a bundle π for which
O2(π, 2, 1) does not vanish. The example shows also that the characteristic classes O∗ seem to
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be rather subtle, since the bundle of the example is such that all the differentials of its Serre
spectral sequence do vanish.

Now the relevance of these characteristic classes vis-à-vis Poincaré duality is the following:
While, as mentioned above, there is always a Poincaré duality isomorphism between truncation
and complementary cotruncation, this isomorphism is not determined uniquely and may not
commute with Poincaré duality on the given total space E. Proposition 6.9 states that the
duality isomorphism in degree r between fiberwise truncation and cotruncation can be chosen to
commute with Poincaré duality on E if and only if Or(π, k, l) vanishes. In this case, the duality
isomorphism is uniquely determined by the commutation requirement. Thus, we refer to the
classes O∗ as local duality obstructions, since in the subsequent application to singular spaces,
these classes are localized at the singularities.

The above bundle-theoretic analysis is then applied in Section 9 in constructing intersection
spaces IpX for stratified pseudomanifolds X of stratification depth 1 such that every connected
component of every singular stratum has a closed neighborhood whose boundary is the total
space of a fiber bundle, the link bundle, while the neighborhood itself is described by the cor-
responding cone bundle. A large and well-studied class of stratified spaces that have such link
bundle structures are the Thom-Mather stratified spaces, which we review in Section 8 with par-
ticular emphasis on depth 1. We assume that the link bundles allow for structure groups with
equivariant Moore approximations. The central definition is 9.1; the main result here, Theorem
9.5, establishes generalized Poincaré duality

(1.1) H̃r(IpX;Q) ∼= H̃n−r(I
qX;Q)

for complementary perversity intersection spaces, provided the local duality obstructions of the
link bundle vanish.

In the Sections 10, 11, we investigate the signature and Witt element of intersection forms.
We show first that if a Witt space allows for middle-degree equivariant Moore approximation,
then its intersection form on intersection homology agrees with the intersection form of the top
stratum as an element in the Witt group W (Q) of the rationals (Corollary 10.2). Section 11
shows that the duality isomorphism (1.1), where we now use the (lower) middle perversity, can
in fact be constructed so that the associated middle-degree intersection form is symmetric when
the dimension n is a multiple of 4. Let σ(IX) denote the signature of this symmetric form.
Theorem 11.3 asserts that σ(IX) = σ(M,∂M), where σ(M,∂M) denotes the signature of the
top stratum. In particular then, σ(IX) agrees with the intersection homology signature. For the
rather involved proof of this theorem, we build on the method of Spiegel [37], which in turn is
partially based on the methods introduced in the proof of [3, Theorem 2.28]. It follows from all
of this that there are interesting global signature obstructions to fiberwise homology truncation
in bundles. For instance, viewing the complex projective space CP2 as a stratified space with
bottom stratum CP1 ⊂ CP2, the signature of CP2 is 1, whereas the signature of the top stratum
D4 vanishes. Indeed, the normal circle bundle of CP1, i.e. the Hopf bundle, does not have a
degree 1 fiberwise homology truncation, as can of course be verified directly.

On notation: Throughout this paper, all homology and cohomology groups are taken with

rational coefficients. Reduced homology and cohomology will be denoted by H̃∗ and H̃∗. The
linear dual of a K-vector space V is denoted by V † = Hom(V,K).

2. Properties of Homotopy Pushouts

This paper uses homotopy pushouts in many constructions. We recall here their definition,
as well as the two properties we will need: their universal mapping property and the associated
Mayer-Vietoris sequence.



144 MARKUS BANAGL AND BRYCE CHRIESTENSON

Definition 2.1. Given continuous maps Y1 X
f1oo f2 // Y2 between topological spaces we

define the homotopy pushout of f1 and f2 to be the topological space Y1 ∪X Y2, the quotient of
the disjoint union X × [0, 1] t Y1 t Y2 by the smallest equivalence relation generated by

{(x, 0) ∼ f1 (x) | x ∈ X} ∪ {(x, 1) ∼ f2 (x) | x ∈ X}

We denote ξi : Yi → Y1 ∪X Y2, for i = 1, 2, and ξ0 : X × I → Y1 ∪X Y2, to be the inclusions into
the disjoint union followed by the quotient map, where I = [0, 1].

Remark 2.2. The homotopy pushout satisfies the following universal mapping property: Given
any topological space Z, continuous maps gi : Yi → Z, and homotopy h : X × I → Z satisfying
h (x, i) = gi+1 ◦ fi+1 (x) for x ∈ X, and i = 0, 1, then there exists a unique continuous map
g : Y1 ∪X Y2 → Z such that gi = g ◦ ξi for i = 1, 2, and h = g ◦ ξ0.

From the data of a homotopy pushout we get a long exact sequence of homology groups

(2.1) · · · // Hr (X)
(f1∗,f2∗)// Hr (Y1)⊕Hr (Y2)

ξ1∗−ξ2∗// Hr (Y1 ∪X Y2)
δ // · · ·

This is the usual Mayer-Vietoris sequence applied to Y1 ∪X Y2 when it is decomposed into the
union of (Y1 ∪X Y2) \ Yi for i = 1, 2, whose overlap is X crossed with the open interval. If X is
not empty, then there is also a version for reduced homology:

(2.2) · · · // H̃r (X)
(f1∗,f2∗)// H̃r (Y1)⊕ H̃r (Y2)

ξ1∗−ξ2∗// H̃r (Y1 ∪X Y2)
δ // · · ·

3. Equivariant Moore Approximation

Our method to construct intersection spaces for twisted link bundles rests on the concept of
an equivariant Moore approximation. The transformation group of the general abstract concept
will eventually be a suitable reduction of the structure group of a fiber bundle, which will enable
fiberwise truncation and cotruncation. The basic idea behind degree-k Moore approximations
of a space X is to find a space X<k, whose homology agrees with that of X below degree k,
and vanishes in all other degrees. It is well-known that Moore-approximations cannot be made
functorial on the category of all topological spaces and continuous maps, as explained in [3].
The equivariant Moore space problem was raised in 1960 by Steenrod, who asked whether given
a group G, a right Z[G]-module M and an integer k > 1, there exists a topological space X

such that π1(X) = G, Hi(X̃;Z) = 0, i 6= 0, k, H0(X̃;Z) = Z, and Hk(X̃;Z) = M, where X̃
is the universal cover of X, equipped with the G-action by covering translations. The first
counterexample was due to Gunnar Carlsson, [14]. Further work on Steenrod’s problem has
been done by Douglas Anderson [1], James Arnold [2], Peter Kahn [26], [27], Frank Quinn [34],
and Justin Smith [36].

Definition 3.1. Let G be a topological group. A G-space is a pair (X, ρX), where X is a
topological space and ρX : G→ Homeo (X) is a continuous group homomorphism. A morphism
between G-spaces f : (X, ρX)→ (Y, ρY ) is a continuous map f : X → Y that satisfies

ρY (g) ◦ f = f ◦ ρX(g), for every g ∈ G.

We denote the set of morphisms by HomG(X,Y ). Morphisms are also called G-equivariant maps.
We will write g · x = ρX(g)(x), x ∈ X, g ∈ G.

Let cX be the closed cone X × [0, 1]/X × {0}. If X is a G-space, then the cone cX becomes
a G-space in a natural way: the cone point is a fixed point and for t ∈ (0, 1], g ∈ G acts
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by g · (x, t) = (g · x, t). More generally, given G-equivariant maps Y1 X
f1oo f2 // Y2 , the

homotopy pushout Y1 ∪X Y2 is a G-space in a natural way.

Definition 3.2. Given a G-space X and an integer k ≥ 0, a G-equivariant Moore approximation
toX of degree k is aG-spaceX<k together with a continuousG-equivariant map f<k : X<k → X,
satisfying the following properties:

• Hr (f<k) : Hr (X<k)→ Hr (X) is an isomorphism for all r < k, and
• Hr (X<k) = 0 for all r ≥ k.

Definition 3.3. Let X be a nonempty topological space. The (Q-coefficient) homological di-
mension of X is the number

Hdim (X) = min {n ∈ Z : Hm (X) = 0 for all m > n} ,

if such an n exists. If no such n exists, then we say that X has infinite homological dimension.

Example 3.4. There are two extreme cases, in which equivariant Moore approximations are
trivial to construct. For k = 0, any Moore approximation must satisfy Hi (X<0) = 0, for all
i ≥ 0. This forces X<0 = ∅, and f<0 is the empty function. If X has Hdim (X) = n, then for
k ≥ n + 1 set X<k = X and f<k = idX . Hence, any space of homological dimension n has an
equivariant Moore approximation of degrees k ≤ 0 and k > n.

Example 3.5. If G acts trivially on a simply connected CW complex X, then Moore approxi-
mations of X exist in every degree. For spatial homology truncation in the nonequivariant case,
see Chapter 1 of [3], which also contains a discussion of functoriality issues arising in connec-
tion with Moore approximations. The simple connectivity condition is sufficient, but far from
necessary.

Example 3.6. Let G be a compact Lie group acting smoothly on a smooth manifold X. Then,
according to [25], one can arrange a CW structure on X in such a way that G acts cellularly.
Now suppose that X is any G-space equipped with a CW structure such that G acts cellularly.
If the k-th boundary operator ∂k : Ck(X) → Ck−1(X) in the cellular chain complex of X
vanishes, then the (k − 1)-skeleton of X, together with its inclusion into X and endowed with
the restricted G-action, is an equivariant Moore-approximation X<k = Xk−1. This condition is
for example satisfied for the standard minimal CW structure on complex projective spaces and
tori. However, in order to make a given action cellular, one may of course be forced to endow
spaces with larger, nonminimal, CW structures. Similarly, if ∂k is injective, then X<k = Xk is
an equivariant Moore-approximation.

The following observation can sometimes be used to show that certain G-spaces and degrees
do not allow for an equivariant Moore approximation.

Proposition 3.7. Let G be a topological group and X a nonempty G-space. Let Gλ be the
G-space G with the action by left translation. If

HomG (X,Gλ) 6= ∅

and X has a G-equivariant Moore approximation of degree k > 0, then

k − 1 ≥ Hdim (G) .

Proof. Let f<k : X<k → X be a G-equivariant Moore approximation, k > 0. Precomposition
with f<k induces a map

f ]<k : HomG (X,Gλ)→ HomG (X<k, Gλ) .
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As k > 0 and X is not empty, we have H0(X<k) ∼= H0(X) 6= 0. Thus X<k is not empty. For
each φ ∈ HomG (X<k, Gλ), we note that φ is surjective since X<k is not empty, left translation
is transitive and φ is equivariant. Choose x ∈ X<k such that φ (x) = e. Define hx : G → X<k

by hx (g) = g · x. Then φ ◦ hx = idG, since

φ (hx (g)) = φ (g · x) = gφ (x) = ge = g.

Therefore the map induced by φ on homology has a splitting induced by hx, so there is an
isomorphism

Hr (X<k) ∼= Ar ⊕Hr (G)

for some subgroup Ar ⊂ Hr (X<k) and every r. Since by definition Hr (X<k) = 0 for r ≥ k,
then if such a φ exists we must have Hdim (G) ≤ k − 1. The condition HomG (X,Gλ) 6= ∅ is
sufficient to guarantee the existence of such a φ. �

Example 3.8. By Proposition 3.7, the action of S1 on itself by rotation does not have an
equivariant Moore space approximation of degree 1.

Consider S1 acting on X = S1 × S2 by rotation in the first coordinate and trivially in
the second coordinate. Example 3.4 shows that for k ≤ 0 and k ≥ 4, S1-equivariant Moore
approximations exist trivially. By Proposition 3.7, there is no such approximation for k = 1. We
shall now construct an approximation for degree k = 2. Fix a point y0 ∈ S2. Let i : S1 → X,
θ 7→ (θ, y0) , be the inclusion at y0. Let S1 act on itself by rotation, then the map i is equivariant.
Furthermore, by the Künneth theorem we know that H1 (X) ∼= Q is generated by the class
[S1 × y0], and H1 (i) : H1

(
S1
)
→ H1 (X) is an isomorphism taking [S1] to [S1 × y0]. Thus

since both S1 and X are connected, we have that the map i gives a S1-equivariant Moore space
approximation of degree 2.

Further positive results asserting the existence of Moore approximations in geometric situa-
tions such as symplectic toric manifolds are discussed in Section 12.

4. Precosheaves and Local to Global Techniques

The material of this section is fairly standard ([12]); we include it in order to fix terminology
and notation. Let B be a topological space and let V SQ denote the category of rational vector
spaces and linear maps.

Definition 4.1. A covariant functor F : τB → V SQ from the category τB of open sets on B,
with inclusions for morphisms, to the category V SQ, is called a precosheaf on B. For open sets
U ⊂ V ⊂ B, we denote the result of applying F to the inclusion map U ⊂ V by

iFU,V : F (U)→ F (V ) .

A morphism f : F → G of precosheaves on B is a natural transformation of functors.

Let U = {Uα}α∈Λ be an open cover of B, and let τU be the category whose objects are unions
of finite intersections of open sets in U and whose morphisms are inclusions. There is a natural
inclusion functor u : τU → τB, regarding an open set in τU as an object of τB. This realizes
τU as a full subcategory of τB.

Definition 4.2. A precosheaf F on B is U-locally constant if for any Uα ∈ U and any U which
is a finite intersection of elements of U and intersects Uα nontrivially, the map

iFUα∩U,Uα : F (Uα ∩ U)→ F (Uα)

is an isomorphism.
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Consider the product category τU × τU whose objects are pairs (U, V ) with U, V ∈ τU , and
whose morphism are pairs of inclusions (U, V )→ (U ′, V ′) given by U ⊂ U ′ and V ⊂ V ′. Define
the functors ∩,∪ : τU × τU → τU that take the object (U, V ) to U ∩ V and U ∪ V , respectively,
and the morphism (U, V ) → (U ′, V ′) to the inclusions U ∩ V ⊂ U ′ ∩ V ′ and U ∪ V ⊂ U ′ ∪ V ′.
Similarly we have the projection functors pi : τU × τU → τU , for i = 1, 2 where pi projects onto
the i-th factor. The inclusions U, V ⊂ U ∪ V and U ∩ V ⊂ U, V induce natural transformations
of functors ji : pi → ∪, and ιi : ∩ → pi for i = 1, 2. Applying a precosheaf F to the ji(U, V ),
we obtain linear maps F(U) → F(U ∪ V ), F(V ) → F(U ∪ V ), which we will again denote by
j1, j2 (rather than F(ji(U, V ))). Similarly for the ιi. Thus for any precosheaf F on B we have
the morphisms

F (U ∩ V )
(ι1,ι2)// F (U)⊕F (V )

j1−j2 // F (U ∪ V )

for any object (U, V ) in τU × τU . The functoriality of F implies that (j1 − j2) ◦ (ι1, ι2) = 0.
Any morphism of precosheaves f : F → G gives a commutative diagram

(4.1) F (U ∩ V )
(ι1,ι2)//

f(U∩V )

��

F (U)⊕F (V )
j1−j2 //

f(U)⊕f(V )

��

F (U ∪ V )

f(U∪V )

��
G (U ∩ V )

(ι1,ι2)// G (U)⊕ G (V )
j1−j2 // G (U ∪ V ) .

Definition 4.3. Let Fr be a collection of precosheaves on B, for r ≥ 0, and let U be an open
cover of B. We say that the sequence Fr satisfies the U-Mayer-Vietoris property if there is a
natural transformation of functors on τU × τU ,

δFi : Fi ◦ ∪ −→ Fi−1 ◦ ∩,

for each i, such that for every pair of open sets U, V ∈ τU the following sequence is exact:

// Fi+1 (U ∪ V )
δFi+1 // Fi (U ∩ V )

(ιi1,ι
i
2)// Fi (U)⊕Fi (V )

ji1−j
i
2 // Fi (U ∪ V )

δFi // .

A collection of morphisms fr : Fr → Gr, for r ≥ 0, is called δ-compatible if for each pair of open
sets U, V ∈ τU the following diagram commutes for all i ≥ 0:

(4.2) Fi+1 (U ∪ V )
δFi+1(U,V )

//

fi+1(U∪V )

��

Fi (U ∩ V )

fi(U∩V )

��
Gi+1 (U ∪ V )

δGi+1(U,V )
// Gi (U ∩ V ) .

Proposition 4.4. Let B be a compact topological space and let U be an open cover of B. Let
fi : Fi → Gi be a sequence of δ-compatible morphisms between U-locally constant precosheaves
on B that satisfy the U-Mayer-Vietoris property. If fi (U) : Fi (U)→ Gi (U) is an isomorphism
for every U ∈ U and for every i ≥ 0, then fi (B) : Fi (B) → Gi (B) is an isomorphism for all
i ≥ 0.

Proof. We shall prove the following statement by induction on n: For every U ∈ τU which can be
written as a union U = U1∪· · ·∪Un of n open sets Uj ∈ τU , each of which is a finite intersection
of open sets in U , the map fi(U) : Fi(U)→ Gi(U) is an isomorphism for all i ≥ 0. The base case
n = 1 follows from the fact that Fi,Gi are U-locally constant together with the assumption on
fi(U) for U ∈ U . Denote U j = U1∪· · ·∪Ûj∪· · ·∪Un and V j = (U1 ∩ Uj) · · ·∪Ûj∪· · ·∪(Un ∩ Uj);
then U = U j ∪ Uj and V j = U j ∩ Uj . Since the fi are δ-compatible, by (4.2) and (4.1) we have
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the commutative diagram below, whose rows are the U-Mayer-Vietoris sequences associated to
the pair U j and Uj :

// Fi
(
V j
)

//

fi(V j)
��

Fi
(
U j
)
⊕Fi (Uj) //

fi(Uj)⊕fi(Uj)
��

Fi (U)
δ //

fi(U)

��

Fi−1

(
V j
)

//

fi−1(V j)
��

// Gi
(
V j
)

// Gi
(
U j
)
⊕ Gi (Uj) // Gi (U)

δ // Gi−1

(
V j
)

// .

Each of V j , U j , and Uj is a union of less than n open sets, each of which is a finite intersection
of elements of U . Thus by induction hypothesis, fi(V

j), fi(U
j) and fi(Uj) are isomorphisms for

all i. By the 5-lemma, fi(U) is an isomorphism for all i, which concludes the induction step.
Since B is compact, there is a finite number of open sets in U which cover B. Thus the induction
yields the desired result. �

5. Examples of Precosheaves

Throughout this section we consider a topological fiber bundle π : E → B with fiber L and
topological structure group G. We assume that B,E, and L are compact oriented topological
manifolds such that E is compatibly oriented with respect to the orientation of B and L. Set
n = dimE, b = dimB and c = dimL = n − b. We may form the fiberwise cone of this
bundle, DE, by defining DE to be the homotopy pushout, Definition 2.1, of the pair of maps

B E
πoo id // E. By Remark 2.2, the map π induces a map πD : DE → B, given by idB on

B and (x, t) 7→ π(x) for (x, t) ∈ E× I. This makes DE into a fiber bundle whose fiber is cL, the
cone on L, and whose structure group is G. We point out, for U ⊂ B open, that π−1

D U → U is

obtained as the homotopy pushout of the pair of maps U π−1U
π|π−1Uoo id // π−1U . One more

fact that will be needed is that the pair (DE,E), where E is identified with E×{1} ⊂ DE, along
with a stratification of DE given by B ⊂ DE, is a compact Q-oriented ∂-stratified topological
pseudomanifold, in the sense of Friedman and McClure [21]. Here we have identified B with
the image σ (B) of the “zero section” σ : B → DE, sending x ∈ B to the cone point of cL
over x. Similarly for any open U ⊂ B, the pair

(
π−1
D U, π−1U

)
is a Q-oriented ∂-stratified

pseudomanifold, though it will not be compact unless U is compact. We write ∂π−1
D U = π−1U.

Example 5.1. For each r ≥ 0, there are precosheaves π∗Hr on B defined by

U 7→ Hr

(
π−1 (U)

)
.

By the Eilenberg-Steenrod axioms, these are U-locally constant, and satisfy the U-Mayer-Vietoris
property for any good open cover U of B. (An open cover U of a b-dimensional manifold is good,
if every nonempty finite intersection of sets in U is homeomorphic to Rb. Such a cover exists if
the manifold is smooth or PL.)

Let π′ : E′ → B be another fiber bundle, and f : E → E′ a morphism of fiber bundles. Then
f induces a morphism of precosheaves f∗ : π∗Hr → π′∗Hr, given on any open set U ⊂ B by

f∗(U) := (f |π−1U )∗ : Hr

(
π−1U

)
→ Hr

(
π′−1U

)
.
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Furthermore, for any pair of open sets U, V ⊂ B, we have the following commutative diagram
whose rows are exact Mayer-Vietoris sequences:

(5.1) // Hr

(
π−1(U ∩ V )

)
//

fr(U∩V )

��

Hr

(
π−1U

)
⊕Hr

(
π−1V

)
//

fr(U)⊕fr(V )

��

Hr

(
π−1(U ∪ V )

) δ //

fr(U∪V )

��
// Hr

(
π′−1(U ∩ V )

)
// Hr

(
π′−1U

)
⊕Hr

(
π′−1V

)
// Hr

(
π′−1(U ∪ V )

) δ //

Thus, for any good open cover U , the map f induces a δ-compatible sequence of morphisms
between precosheaves which satisfy the U-Mayer-Vietoris property, and are U-locally constant.

Example 5.2. Define the precosheaf of intersection homology groups, πD∗IpHr for each r ≥ 0,
and each perversity p, by assigning to the open set U ⊂ B the vector space, IpHr

(
π−1
D U

)
. We

use the definition of intersection homology via finite singular chains as in [21]. This is a slightly
more general definition than that of King,[28], and Kirwan-Woolf [29]. For our situation the
definitions all agree with the exception that the former allows for more general perversities, see
the comment after Prop. 2.3 in [21] for more details. In Section 4.6 of Kirwan-Woolf [29] it
is shown that each πD∗IpHr is a precosheaf for each r ≥ 0, and that this sequence satisfies
the U-Mayer-Vietoris property for any open cover U of B. Furthermore, these are all U-locally
constant for any good cover U of B.

Let f : E → E′ be a bundle morphism with dimE ≥ dimE′. Using the levelwise map
E × I → E′ × I, (e, t) 7→ (f(e), t), and the identity map on B, f induces a bundle morphism
fD : DE → DE′. Recall that a continuous map between stratified spaces is called stratum-
preserving if the image of every pure stratum of the source is contained in a single pure stratum of
the target. A stratum-preserving map g is called placid if codim g−1(S) ≥ codimS for every pure
stratum S of the target. Placid maps induce covariantly linear maps on intersection homology
(which is not true for arbitrary continuous maps). The map fD is indeed stratum-preserving
and, since dimE ≥ dimE′, placid and thus induces maps

(fD|π−1
D (U))∗ : IpHr

(
π−1
D U

)
−→ IpHr

(
π′D
−1
U
)

for each open set U ⊂ B. This way, we obtain a sequence of δ-compatible morphisms

fD∗ : πD∗IpHr → π′D∗IpHr.

With IpC∗(X) the singular rational intersection chain complex as in [21], we define in-
tersection cochains by IpC

∗(X) = Hom(IpC∗(X),Q) and define intersection cohomology by
IpH

∗(X) = H∗(IpC
∗(X)). Then the universal coefficient theorem

IpH
∗(X) ∼= Hom(IpH∗(X),Q)

holds. Theorem 7.10 of [21] establishes Poincaré-Lefschetz duality for compact Q-oriented n-
dimensional ∂-stratified pseudomanifolds (X, ∂X). Some important facts are established there
in the proof:

(1) For complementary perversities p + q = t, there is a commutative diagram whose rows
are exact:

(5.2)
jr∂ // IpHr (X)

ir∂ //

DrX∼=
��

IpH
r (∂X)

δr∂ //

Dr∂X∼=
��

IpH
r+1 (X, ∂X) //

DXn−r−1
∼=
��j∂n−r // IqHn−r (X, ∂X)

δ∂n−r // IqHn−r−1 (∂X)
i∂n−r−1 // IqHn−r−1 (X) //
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(2) The inclusion X \ ∂X → X induces an isomorphism

(5.3) IqHn−r (X \ ∂X) ∼= IqHn−r (X) .

Consider the smooth oriented c-dimensional manifold L. The closed cone cL is a compact Q-
oriented (c+ 1)-dimensional ∂-stratified pseudomanifold. Thus the long exact sequence coming
from the bottom row of diagram (5.2) gives

(5.4) // IpHr+1 (cL, L)
δ∂r+1 // IpHr (L)

i∂r // IpHr (cL)
j∂r // IpHr (cL, L) // .

Proposition 5.3. Let p be a perversity and let k = c−p (c+ 1). Then for the maps in the exact
sequence (5.4) we have an isomorphism

i∂r : Hr (L)→ IpHr (cL),

when r < k, and an isomorphism

δ∂r+1 : IpHr+1 (cL, L)→ Hr (L),

when r ≥ k.

Proof. The standard cone formula for intersection homology asserts that for a closed c-dimensional
manifold L, the inclusion L ↪→ cL as the boundary induces an isomorphism

IpHr (L) ∼= IpHr (cL) for r < c− p(c+ 1),

whereas IpHr (cL) = 0 for r ≥ c− p(c+ 1). (By (5.3) above, this holds both for the closed and
the open cone.) This already establishes the first claim. The second one follows from the cone
formula together with the exact sequence (5.4). �

6. Fiberwise Truncation and Cotruncation

Let π : E → B be a fiber bundle of closed topological manifolds with fiber L and structure
group G such that B,E and L are compatibly oriented. Suppose that a G-equivariant Moore
approximation L<k of degree k exists for the fiber L. The bundle E has an underlying principal
G-bundle EP → B such that E = EP ×G L. Using the G-action on L<k, we set

ft<kE = EP ×G L<k.

Then ft<kE is the total space of a fiber bundle π<k : ft<kE → B with fiber L<k, structure group
G and underlying principal bundle EP . The equivariant structure map f<k : L<k → L defines
a morphism of bundles

F<k : ft<kE = EP ×G L<k → EP ×G L = E.

Definition 6.1. The pair (ft<kE,F<k) is called the fiberwise k-truncation of the bundle E.

Definition 6.2. The fiberwise k-cotruncation ft≥kE is the homotopy pushout of the pair of
maps

B ft<kE
π<koo F<k // E .

Let c≥k : E → ft≥kE, and σ : B → ft≥kE be the maps ξ2 and ξ1, respectively, appearing in
Definition 2.1.

Since F<k satisfies π<k = π ◦ F<k we have, by the universal property of Remark 2.2, using
the constant homotopy, a unique map π≥k : ft≥kE → B satisfying π = π≥k ◦ c≥k, π≥k ◦ σ = idB
and (π≥k ◦ ξ0)(x, t) = π<k(x) for all t ∈ I, where ξ0 : ft<kE × I → ft≥kE is induced by the
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inclusion (as in Definition 2.1). The map π≥k : ft≥kE → B is a fiber bundle projection with
fiber the homotopy pushout of

? L<koo f<k // L ,

i.e. the mapping cone of f<k. Note that this mapping cone is a G-space in a natural way (with
? as a fixed point), since f<k is equivariant. The map c≥k : E → ft≥kE is a morphism of fiber
bundles. Furthermore, the bundle π≥k has a canonical section σ, sending x ∈ B to ? over x.

Definition 6.3. Define the space Q≥kE to be the homotopy pushout of the pair of maps

? Boo σ // ft≥kE .

This is the mapping cone of σ and hence

H̃∗(Q≥kE) ∼= H∗(ft≥kE,B),

where we identified B with its image under the embedding σ. Define the maps

ξ≥k : ft≥kE → Q≥kE and [c] : ?→ Q≥kE

to be the maps ξ2 and ξ1, respectively (Definition 2.1). Set

C≥k = ξ≥k ◦ c≥k : E → Q≥kE.

For each open set U ⊂ B, the space π−1
≥kU is the pushout of the pair of maps

U π−1
<kU

π<k|oo F<k| // π−1U

and the restrictions of c≥k induce a morphism of fiber bundles c≥k(U) : π−1U → π−1
≥kU . Define

the precosheaf πQ∗ Hr by the assignment U 7→ Hr(π
−1
≥kU,U) (again identifying U with its image

under σ). That this assignment is indeed a precosheaf follows from the functoriality of homology
applied to the commutative diagram of inclusions

(π−1
≥kU,U) //

&&

(π−1
≥kV, V )

��
(π−1
≥kW,W )

associated to nested open sets U ⊂ V ⊂ W . The maps Ckr (U) : Hr(π
−1U) → Hr(π

−1
≥kU,U),

given by the composition

Hr(π
−1U)

c≥k(U)∗−→ Hr(π
−1
≥kU) −→ Hr(π

−1
≥kU,U),

define a morphism of precosheaves

Ckr : π∗Hr → πQ∗ Hr
for all r ≥ 0. The following lemma justifies the terminology “cotruncation”.

Lemma 6.4. For U ∼= Rb, the map Ckr (U) is an isomorphism for r ≥ k, while Hr(π
−1
≥kU,U) = 0

for r < k.

Proof. Let L≥k denote the mapping cone of f<k : L<k → L. Since the bundles π and π≥k both
(compatibly) trivialize over U ∼= Rb, the map Ckr (U) can be identified with the composition

Hr(Rb × L) −→ Hr(Rb × L≥k) −→ Hr(Rb × (L≥k, ?)),
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which can further be identified with

Hr(L) −→ H̃r(L≥k).

This map fits into a long exact sequence

Hr(L<k)
f<k∗−→ Hr(L) −→ H̃r(L≥k) −→ Hr−1(L<k).

The result then follows from the defining properties of the Moore approximation f<k. �

As in Example 5.1, the map F<k,r : Hr (ft<kE) → Hr (E) is F<k,r (B) for the morphism of

precosheaves F<k,r : π<k∗Hr → π∗Hr given by F<k|∗ : Hr(π
−1
<kU)→ Hr(π

−1U) for each r ≥ 0.
For each open set U we have the long exact sequence of perversity p-intersection homology

groups

(6.1) · · · // IpHr+1

(
π−1
D U, ∂π−1

D U
) δ∂r+1(U)

// Hr

(
π−1U

) i∂r (U) // IpHr

(
π−1
D U

) j∂r (U) // // · · ·

(Recall that πD : DE → B is the projection of the cone bundle.) When U varies, this exact
sequence forms a precosheaf of acyclic chain complexes. In particular the morphisms i∂r and
δ∂r+1 are morphisms of precosheaves for every r ≥ 0. From now on, in order to have good open
covers, we assume that B is either smooth or at least PL.

Proposition 6.5. Fix a perversity p. Let n − 1 = dimE, b = dimB, c = n − b − 1, and
k = c − p (c+ 1). Assume that B is compact and that an equivariant Moore approximation
f<k : L<k → L to L of degree k exists. Then the compositions

i∂r (B) ◦ F<k∗ : Hr (ft<kE)→ IpHr (DE)

and
Ckr ◦ δ∂r+1 (B) : IpHr+1 (DE,E)→ Hr(ft≥kE,B) ∼= H̃r (Q≥kE)

are isomorphisms for all r ≥ 0.

Proof. We use our local to global technique. Let U be a finite good open cover of B which
trivializes E. The map F<k induces (by restrictions to preimages of open subsets) a map of
precosheaves as demonstrated in Example 5.1. Both i∂r and F<k,∗ are sequences of δ-compatible
morphisms of U-locally constant precosheaves that satisfy the U-Mayer-Vietoris property. Let
U ∈ U , then Hr

(
π−1
<kU

) ∼= Hr (L<k) and F<k,r = f<k∗ is an isomorphism in degrees r < k

and 0 in degrees r ≥ k. Likewise by Proposition 5.3, the map i∂r induces an isomorphism
Hr (L) ∼= IpHr

(
π−1
D U

)
in degrees r < k and 0 in degrees r ≥ k, since

π−1
D U ∼= U × cL ∼= Rb × cL,

IpHr

(
Rb × cL

) ∼= IpHr (cL), and we can identify i∂r (U) with i∂r from (5.4). Thus, the composi-
tion is an isomorphism in every degree. We can now apply Proposition 4.4 to obtain the desired
result.

A analogous argument gives the desired result for the second statement, using Lemma 6.4 in
conjunction with Proposition 5.3 to establish the base case. �

It follows from Proposition 6.5 that i∂r (B) : Hr(E) → IpHr (DE) is surjective for all r,
F<k∗ : Hr(ft<kE)→ Hr(E) is injective for all r, Ckr : Hr(E)→ Hr(ft≥kE,B) is surjective for all
r, and δ∂r+1(B) : IpHr+1 (DE,E)→ Hr(E) is injective for all r. We may use the isomorphisms

in Proposition 6.5 to identify Hr (ft<kE) with IpHr (DE) and H̃r (Q≥kE) with IpHr+1 (DE,E).
In doing so, we may consider the exact sequence

(6.2) // IpHr+1 (DE,E)
δ∂r+1 // Hr (E)

i∂r // IpHr (DE)
j∂r // ,
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and identify F<k,r as a section of i∂r , and Ckr as a section of δ∂r+1. Thus we see that j∂r = 0 for
every r ≥ 0, and we have a split short exact sequence

(6.3) 0 // IpHr+1 (DE,E)

δ∂r+1 ,,
Hr (E)

i∂r ..

Ckr

oo IpHr (DE) //

F<k,r

ll 0.

Lemma 6.6. The sequence

0→ Hr(ft<kE)
F<k,∗−→ Hr(E)

C≥k,∗−→ H̃r(Q≥kE)→ 0

is exact.

Proof. Only exactness in the middle remains to be shown. The standard sequence

ft<kE
F<k−→ E ↪→ cone(F<k)

induces an exact sequence

(6.4) Hr(ft<kE)
F<k,r−→ Hr(E) −→ H̃r(cone(F<k)).

Collapsing appropriate cones yields homotopy equivalences

cone(F<k)
'−→ ft≥kE/B

'←− Q≥kE
such that the diagram

E �
� //� _

c≥k

��

cone(F<k)
' // ft≥kE/B

ft≥kE
� � ξ≥k // Q≥kE

' // ft≥kE/B

commutes. The induced diagram on homology,

Hr(E) //

c≥k∗

��

H̃r(cone(F<k))
∼= // H̃r(ft≥kE/B)

Hr(ft≥kE)
ξ≥k∗ // H̃r(Q≥kE)

∼= // H̃r(ft≥kE/B),

shows that the homology kernel of E → cone(F<k) equals the kernel of ξ≥k∗c≥k∗ = C≥k∗, but it
also equals the image of F<k,r by the exactness of (6.4). �

Proposition 6.7. Let n − 1 = dimE, b = dimB and c = n − b − 1. For complementary
perversities p + q = t, let k = c − p (c+ 1) and l = c − q (c+ 1). Assume that an equivariant
Moore approximation to L exists of degree k and of degree l. Then there is a Poincaré duality
isomorphism

Dk,l : Hr(ft<kE) ∼= H̃n−r−1(Q≥lE).

Proof. We use the isomorphisms in Proposition 6.5 and the Poincaré-Lefschetz duality of [21],
as described here in (5.2), applied to the ∂-stratified pseudomanifold (DE,E). By definition,
Dk,l is the unique isomorphism such that

Ip̄H
r(DE)

F∗<k◦i
∗

∼=
//

∼= DDE

��

Hr(ft<kE)

Dk,l
��

I q̄Hn−r(DE,E)
Cln−r−1◦δ
∼=

// H̃n−r−1(Q≥lE)
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commutes. �

It need not be true, however, that the diagram

(6.5) Hr (E)
F∗<k //

DE ∼=
��

Hr (ft<kE)

Dk,l∼=
��

Hn−r−1 (E)
C≥l∗// H̃n−r−1 (Q≥lE)

commutes, see Example 6.13 below. It turns out that there is an obstruction to the existence of

any isomorphism Hr(ft<kE) ∼= H̃n−r−1(Q≥lE) such that the diagram (6.5) commutes.

Definition 6.8. Let k, l be two integers. Given G-equivariant Moore approximations

f<k : L<k → L, f<l : L<l → L,

the local duality obstruction in degree i is defined to be

Oi(π, k, l) = {C∗≥k(x) ∪ C∗≥l(y) | x ∈ H̃i(Q≥kE), y ∈ H̃n−1−i(Q≥lE)} ⊂ Hn−1(E).

Locality of this obstruction refers to the fact that in the context of stratified spaces, the
obstruction arises only near the singularities of the space. Clearly, the definition of Oi(π, k, l)
does not require any smooth or PL structure on B and thus is available for topological base
manifolds. The obstruction set Oi(π, k, l) is a cone: If z = C∗≥k(x)∪C∗≥l(y) is in Oi(π, k, l) then
for any λ ∈ Q,

λz = C∗≥k(λx) ∪ C∗≥l(y) ∈ Oi(π, k, l).
If E is connected, then Hn−1(E) ∼= Q is one-dimensional, so

either Oi(π, k, l) = 0 or Oi(π, k, l) ∼= Q.

Proposition 6.9. There exists an isomorphism D : Hr(ft<kE) ∼= H̃n−r−1(Q≥lE) such that

Hr (E)
F∗<k //

DE ∼=
��

Hr (ft<kE)

D∼=
��

Hn−r−1 (E)
C≥l∗// H̃n−r−1 (Q≥lE)

commutes if and only if the local duality obstruction Or(π, k, l) vanishes. In this case, D is
uniquely determined by the diagram.

Proof. We have seen that both F ∗<k and C≥l∗ are surjective and their respective images have
equal rank. Thus by linear algebra D exists if and only if DE(kerF ∗<k) = kerC≥l∗. By

Lemma 6.6, kerF ∗<k = imC∗≥k. Thus the condition translates to: For every x ∈ H̃r(Q≥kE),

C≥l∗DEC
∗
≥k(x) = 0. Rewriting this entirely cohomologically using the universal coefficient the-

orem, this translates further to
C∗≥k(x) ∪ C∗≥l(y) = 0

for all x, y.
The uniqueness of D is standard: If x ∈ Hr(ft<kE)), then D(x) = C≥l∗DE(x′), where

x′ ∈ Hr(E) is any element with F ∗<k(x′) = x. By the condition on the kernels, this is independent
of the choice of x′. �

Proposition 6.10. If Oi(π, k, l) = 0, then the unique D given by Proposition 6.9 equals the
Dk,l constructed in Proposition 6.7.
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Proof. This follows from the diagram

IpH
r(DE)

i∗ //

DDE ∼=
��

Hr(E)
F∗<k //

DE ∼=
��

Hr(ft<k E)

D∼=
��

IqHn−r(DE,E)
δ // Hn−r−1(E)

C≥l∗// H̃n−r−1(Q≥lE).

The left hand square is part of the commutative ladder (5.2). The right hand square commutes
by the construction of D. Since the horizontal compositions are isomorphisms, D = Dk,l. �

Although superficially simple, this proposition has rather interesting geometric ramifications:
Since Dk,l can always be defined, even when the duality obstruction is not zero, the proposition
implies that in such a case, diagram (6.5) cannot commute. This means that Dk,l is not always
a geometrically “correct” duality isomorphism, and the duality obstructions govern when it is
and when it is not.

It was already shown in [3, Section 2.9] that if the link bundle is a global product, then
Poincaré duality holds for the corresponding intersection spaces. This suggests that the duality
obstruction vanishes for a global product. We shall now verify this directly:

Proposition 6.11. For complementary perversities p+ q = t, let

k = c− p (c+ 1) and l = c− q (c+ 1) .

If π : E = B × L→ B is a global product, then Oi(π, k, l) = 0 for all i.

Proof. We have ft≥k E = B × L≥k and by the Künneth theorem, the reduced cohomology of
Q≥kE is given by

H̃∗(Q≥kE) = H∗(ft≥k E,B) = H∗(B × L≥k, B × ?) = H∗(B × (L≥k, ?))

∼= H∗(B)⊗H∗(L≥k, ?).

Let f≥k : L → L≥k be the structural map associated to the cotruncation. By the naturality of
the cross product, the square

H∗(E) H∗(B)⊗H∗(L)
×
∼=

oo

H̃∗(Q≥kE)

C∗≥k

OO

H∗(B)⊗H∗(L≥k, ?)
×
∼=

oo

id⊗f∗≥k

OO

commutes. Let x ∈ H̃i(Q≥kE), y ∈ H̃n−1−i(Q≥lE). Their images under the Eilenberg-Zilber
map are of the form

EZ(x) =
∑
r

br ⊗ e≥kr , br ∈ H∗(B), e≥kr ∈ H∗(L≥k, ?),

EZ(y) =
∑
s

b′s ⊗ e≥ls , b′s ∈ H∗(B), e≥ls ∈ H∗(L≥l, ?),

deg br + deg e≥kr = i, deg b′s + deg e≥ls = n− 1− i. Thus

(id⊗f∗≥k) EZ(x) ∪ (id⊗f∗≥l) EZ(y) =

(∑
r

br ⊗ f∗≥k(e≥kr )

)
∪

(∑
s

b′s ⊗ f∗≥l(e≥ls )

)
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and

C∗≥k(x) ∪ C∗≥l(y) = × ◦ (id⊗f∗≥k) EZ(x) ∪ × ◦ (id⊗f∗≥l) EZ(y)

=

(∑
r

br × f∗≥k(e≥kr )

)
∪

(∑
s

b′s × f∗≥l(e≥ls )

)
=
∑
r,s

±(br ∪ b′s)× (f∗≥k(e≥kr ) ∪ f∗≥l(e≥ls )).

If deg f∗≥k(e≥kr ) + deg f∗≥l(e
≥l
s ) < dimL, then deg br + deg b′s > dimB and thus br ∪ b′s = 0.

If deg f∗≥k(e≥kr ) + deg f∗≥l(e
≥l
s ) > dimL, then trivially f∗≥k(e≥kr ) ∪ f∗≥l(e≥ls ) = 0. Finally, if

deg f∗≥k(e≥kr ) + deg f∗≥l(e
≥l
s ) = dimL, then f∗≥k(e≥kr )∪ f∗≥l(e≥ls ) = 0 by the defining properties of

cotruncation and the fact that k and l are complementary. This shows that

C∗≥k(x) ∪ C∗≥l(y) = 0.

�

This result means that, as for other characteristic classes, the duality obstructions of a bundle
are a measure of how twisted a bundle is. An important special case is p(c+ 1) = q(c+ 1). Then

k = l, Q≥kE = Q≥lE, and for x ∈ H̃i(Q≥kE), y ∈ H̃n−1−i(Q≥kE),

C∗≥k(x) ∪ C∗≥l(y) = C∗≥k(x ∪ y).

By the injectivity of C∗≥k, this product vanishes if and only if x ∪ y = 0. So in the case k = l

the local duality obstruction O∗(π, k, k) vanishes if and only complementary cup products in

H̃∗(Q≥kE) vanish. For a global product this is indeed always the case, by Proposition 6.11.

Example 6.12. Let B = S2, L = S3 and E = B ×L = S2 × S3. Then c = 3 and, taking p and
q to be lower and upper middle perversities,

k = 3−m(4) = 2 = 3− n(4) = l.

The degree 2 Moore approximation is L<2 = pt and the cotruncation is L≥2 ' S3 = L. Thus

ft≥2E = B × L≥2 ' S2 × S3 = E.

The reduced cohomology H̃i(Q≥2E) = Hi(S2× (S3,pt)) is isomorphic to Q for i = 3, 5 and zero
for all other i. Thus all (and in particular, the complementary) cup products vanish and so the
local duality obstruction O∗(π, 2, 2) vanishes.

Here is an example of a fiber bundle whose duality obstruction does not vanish.

Example 6.13. Let Dh be the disc bundle associated to the Hopf bundle h : S3 → S2, i.e. Dh
is the normal disc bundle of CP 1 in CP 2. Now take two copies Dh+ → S2

+ and Dh− → S2
− of

this disc bundle and define E as the double

E = Dh+ ∪S3 Dh−.

Then E is the fiberwise suspension of h and so an L = S2-bundle over B = S2, with L the
suspension of a circle. Let σ+, σ− ∈ L be the two suspension points. The bundle E is the sphere
bundle of a real 3-plane vector bundle ξ over S2 with ξ = η ⊕ R1, where η is the real 2-plane
bundle whose circle bundle is the Hopf bundle and R1 is the trivial line bundle. The points σ±
are fixed points under the action of the structure group on L. Let p be the lower, and q the
upper middle perversity. Here n = 5, b = 2 and c = 2. Therefore, k = 2 and l = 1. Both
structural sequences

L<1
f<1−→ L

f≥1−→ L≥1
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and

L<2
f<2−→ L

f≥2−→ L≥2

are given by

{σ+} ↪→ S2 id−→ S2.

The identity map is of course equivariant, but the inclusion of the suspension point is equivariant
as well, since this is a fixed point. It follows that the fiberwise (co)truncations

ft<1E −→ E −→ ft≥1E

and

ft<2E −→ E −→ ft≥2E

are both given by

S2
+

s+
↪→ E

id−→ E,

where s+ is the section of π : E → S2 given by sending a point to the suspension point σ+ over
it. Furthermore,

Q≥1E = Q≥2E = E ∪S2
+
D3,

which is homotopy equivalent to complex projective space CP2. Indeed, a homotopy equivalence
is given by the quotient map

Q≥1E
'−→ Q≥1E

D3
∼=

E

S2
+

∼=
Dh+ ∪S3 Dh−

S2
+

∼= D4 ∪S3 Dh− = CP2.

The cohomology ring of CP2 is the truncated polynomial ring Q[x]/(x3 = 0) generated by

x ∈ H2(CP2) ∼= H̃2(Q≥2E) ∼= H̃n−1−2(Q≥1E).

The square x2 generates H4(CP2), so by the injectivity of C∗≥1 = C∗≥2,

C∗≥1(x) ∪ C∗≥2(x) = C∗≥1(x2) ∈ H4(E)

is not zero. Thus the duality obstruction O2(π, 2, 1) does not vanish.
It follows from Proposition 6.11 that π : E → S2 is in fact a nontrivial bundle, which can here

of course also be seen directly. Note that the Serre spectral sequence of any S2-bundle over S2

collapses at E2. Thus the obstructions O∗(π, k, l) are able to detect twisting that is not detected
by the differentials of the Serre spectral sequence.

7. Flat Bundles

We have shown that the local duality obstructions vanish for product bundles. We prove here
that they also vanish for flat bundles, at least when the fundamental group of the base is finite.
The latter assumption can probably be relaxed, but we shall not pursue this further here. A
fiber bundle π : E → B with structure group G is flat if its G-valued transition functions are
locally constant.

Theorem 7.1. Let π : E → B be a fiber bundle of topological manifolds with structure group G,
compact connected base B and compact fiber L, dimE = n − 1, b = dimB, c = n − b − 1. For
complementary perversities p̄, q̄, let k = c− p̄(c+ 1), l = c− q̄(c+ 1). If

(1) L possesses G-equivariant Moore approximations of degree k and of degree l,
(2) π is flat with respect to G, and
(3) the fundamental group π1(B) of the base is finite,

then Oi(π, k, l) = 0 for all i.
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Proof. Let B̃ be the (compact) universal cover of B and π1 = π1(B) the fundamental group. By
the G-flatness of E, there exists a monodromy representation π1 → G such that

E = (B̃ × L)/π1,

where B̃ × L is equipped with the diagonal action of π1, which is free. If M is any compact
space on which a finite group π1 acts freely, then transfer arguments (using the finiteness of π1)
show that the orbit projection ρ : M →M/π1 induces an isomorphism on rational cohomology,

ρ∗ : H∗(M/π1)
∼=−→ H∗(M)π1 ,

where H∗(M)π1 denotes the π1-invariant cohomology classes. Applying this to M = B̃ × L, we
get an isomorphism

ρ∗ : H∗(E)
∼=−→ H∗(B̃ × L)π1 .

Using the monodromy representation, the G-cotruncation L≥k becomes a π1-space with

ft≥kE = (B̃ × L≥k)/π1.

The closed subspace B̃ × ? ⊂ B̃ ×L≥k, where ? ∈ L≥k is the cone point, is π1-invariant, since ?

is a fixed point of L≥k. Then a relative transfer argument applied to the pair (B̃ × L≥k, B × ?)
yields an isomorphism

ρ∗ : H̃∗(Q≥kE) = H∗(ft≥k E,B)
∼=−→ H∗(B̃ × L≥k, B̃ × ?)π1 .

Using the structural map f≥k : L→ L≥k, we define a map

p≥k = id×f≥k : B̃ × L −→ B̃ × L≥k.
Since f≥k is equivariant, the map p≥k is π1-equivariant with respect to the diagonal action. The
diagram

B̃ × L
ρ //

p≥k

��

E

c≥k

��
B̃ × L≥k

ρ // ft≥kE

commutes and induces on cohomology the commutative diagram

(7.1) H∗(E)
ρ∗

∼=
// H∗(B̃ × L)π1

H∗(ft≥kE)
ρ∗

∼=
//

c∗≥k

OO

H∗(B̃ × L≥k)π1

p∗≥k

OO

as we shall now verify: If a ∈ H∗(B̃×L≥k) satisfies g∗(a) = a for all g ∈ π1, then the equivariance
of p≥k implies that

g∗p∗≥k(a) = p∗≥k(g∗a) = p∗≥k(a),

which shows that indeed p∗≥k(a) ∈ H∗(B̃ × L)π1 . Similarly, there is a commutative diagram

(7.2) H∗(ft≥kE)
ρ∗

∼=
// H∗(B̃ × L≥k)π1

H̃∗(Q≥kE)
ρ∗

∼=
//

ξ∗≥k

OO

H∗(B̃ × (L≥k, ?))
π1 .

OO
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Concatenating diagrams (7.1) and (7.2), we obtain the commutative diagram

H∗(E)
ρ∗

∼=
// H∗(B̃ × L)π1

H̃∗(Q≥kE)
ρ∗

∼=
//

C∗≥k

OO

H∗(B̃ × (L≥k, ?))
π1 .

P∗≥k

OO

By the Künneth theorem, the cross product × is an isomorphism

× : H∗(B̃)⊗H∗(L)
∼=−→ H∗(B̃ × L)

whose inverse is given by the Eilenberg-Zilber map EZ. Define a π1-action on the tensor product

H∗(B̃)⊗H∗(L) by

g∗(a) := (EZ ◦g∗ ◦ ×)(a), g ∈ π1.

This makes the cross-product π1-equivariant:

× ◦ g∗(a) = × ◦ EZ ◦g∗ ◦ ×(a) = g∗ ◦ ×(a).

Therefore, the cross-product restricts to a map

(7.3) × : (H∗B̃ ⊗H∗L)π1 −→ H∗(B̃ × L)π1 .

The Eilenberg-Zilber map is equivariant as well, since

g∗ EZ(b) = EZ ◦g∗ ◦ × ◦ EZ(b) = EZ ◦g∗(b).

Consequently, the Eilenberg-Zilber map restricts to a map

(7.4) EZ : H∗(B̃ × L)π1 −→ (H∗B̃ ⊗H∗L)π1 .

Since × and EZ are inverse to each other, this shows in particular that the restricted cross-
product (7.3) and the restricted Eilenberg-Zilber map (7.4) are isomorphisms. All of these
constructions apply just as well to (L≥k, ?) instead of L. By the naturality of the cross product,
the square

H∗(B̃ × L) H∗B̃ ⊗H∗L×
∼=

oo

H∗(B̃ × (L≥k, ?))

P∗≥k

OO

H∗B̃ ⊗H∗(L≥k, ?)
×
∼=

oo

id⊗f∗≥k

OO

commutes. As we have seen, this diagram restricts to the various π1-invariant subspaces. In
summary then, we have constructed a commutative diagram

H∗(E)
ρ∗

∼=
// H∗(B̃ × L)π1 (H∗B̃ ⊗H∗L)π1

×
∼=

oo

H̃∗(Q≥kE)
ρ∗

∼=
//

C∗≥k

OO

H∗(B̃ × (L≥k, ?))
π1

P∗≥k

OO

(H∗B̃ ⊗H∗(L≥k, ?))π1
×
∼=

oo

id⊗f∗≥k

OO

An analogous diagram is, of course, available for Q≥lE.

Let x ∈ Hi(B̃ × (L≥k, ?))
π1 , y ∈ Hn−1−i(B̃ × (L≥l, ?))

π1 . Their images under the Eilenberg-
Zilber map are of the form

EZ(x) =
∑
r

br ⊗ e≥kr , br ∈ H∗(B̃), e≥kr ∈ H∗(L≥k, ?),
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EZ(y) =
∑
s

b′s ⊗ e≥ls , b′s ∈ H∗(B̃), e≥ls ∈ H∗(L≥l, ?),

deg br + deg e≥kr = i, deg b′s + deg e≥ls = n− 1− i. Thus

(id⊗f∗≥k) EZ(x) ∪ (id⊗f∗≥l) EZ(y) =

(∑
r

br ⊗ f∗≥k(e≥kr )

)
∪

(∑
s

b′s ⊗ f∗≥l(e≥ls )

)
and

P ∗≥k(x) ∪ P ∗≥l(y) = × ◦ (id⊗f∗≥k) EZ(x) ∪ × ◦ (id⊗f∗≥l) EZ(y)

=

(∑
r

br × f∗≥k(e≥kr )

)
∪

(∑
s

b′s × f∗≥l(e≥ls )

)
=
∑
r,s

±(br ∪ b′s)× (f∗≥k(e≥kr ) ∪ f∗≥l(e≥ls )).

If deg f∗≥k(e≥kr ) + deg f∗≥l(e
≥l
s ) < dimL, then deg br + deg b′s > dimB and thus br ∪ b′s = 0.

If deg f∗≥k(e≥kr ) + deg f∗≥l(e
≥l
s ) > dimL, then trivially f∗≥k(e≥kr ) ∪ f∗≥l(e≥ls ) = 0. Finally, if

deg f∗≥k(e≥kr ) + deg f∗≥l(e
≥l
s ) = dimL, then f∗≥k(e≥kr )∪ f∗≥l(e≥ls ) = 0 by the defining properties of

cotruncation and the fact that k and l are complementary. This shows that

P ∗≥k(x) ∪ P ∗≥l(y) = 0.

For ξ ∈ H̃i(Q≥kE), η ∈ H̃n−1−i(Q≥lE), we find

ρ∗(C∗≥k(ξ) ∪ C∗≥l(η)) = ρ∗C∗≥k(ξ) ∪ ρ∗C∗≥l(η) = P ∗≥k(ρ∗ξ) ∪ P ∗≥l(ρ∗η) = 0.

As ρ∗ is an isomorphism,

C∗≥k(ξ) ∪ C∗≥l(η) = 0.

�

8. Thom-Mather Stratified Spaces

In the present paper, intersection spaces will be constructed for closed topological pseudoman-
ifolds that possess a topological stratification of depth 1 such that every connected component
of every singular stratum has a closed neighborhood whose boundary is the total space of a fiber
bundle, the link bundle, while the neighborhood itself is described by the corresponding cone
bundle. A large and well-studied class of stratified spaces that have such link bundle structures
are the Thom-Mather stratified spaces, which we shall briefly review with particular emphasis on
depth 1. Such spaces are locally compact, second countable Hausdorff spaces X together with
a Thom-Mather C∞-stratification, [30]. We are concerned with two-strata pseudomanifolds,
which, in more detail, are understood to be pairs (X,Σ), where Σ ⊂ X is a closed subspace
and a connected smooth manifold, and X \ Σ is a smooth manifold which is dense in X. The
singular stratum Σ must have codimension at least 2 in X. Furthermore, Σ possesses control
data consisting of an open neighborhood T ⊂ X of Σ, a continuous retraction π : T → Σ, and
a continuous distance function ρ : T → [0,∞) such that ρ−1 (0) = Σ. The restriction of π
and ρ to T \ Σ are required to be smooth and (π, ρ) : T \ Σ → Σ × (0,∞) is required to be a
submersion. (Mather’s axioms do not require (π, ρ) to be proper.) Without appealing to the
method of controlled vector fields required by Thom and Mather for general stratified spaces, we
shall prove directly that for two-strata spaces, the bottom stratum Σ possesses a locally trivial
link bundle whose projection is induced by π.
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Lemma 8.1. Let f : M → N be a smooth submersion between smooth manifolds and let Q ⊂ N
be a smooth submanifold. Then P = f−1(Q) ⊂M is a smooth submanifold and f | : P → Q is a
submersion.

Proof. A submersion is transverse to any submanifold. Thus, f is transverse to Q and
P = f−1(Q) is a smooth submanifold of M . The differential f∗ : TxM → Tf(x)N at any
point x ∈ P maps TxP into Tf(x)Q and thus induces a map TM/TP → TN/TQ of normal bun-
dles. This map is a bundle isomorphism (cf. [13, Satz (5.12)]). An application of the four-lemma
to the commutative diagram with exact rows

0 // TxP

f |∗
��

// TxM

f∗
����

// TxM/TxP

∼=
��

// 0

0 // Tf(x)Q // Tf(x)N // Tf(x)N/Tf(x)Q // 0

shows that f |∗ : TxP → Tf(x)Q is surjective for every x ∈ P . �

Proposition 8.2. Let (X,Σ) be a Thom-Mather C∞-stratified pseudomanifold with two strata
and control data (T, π, ρ). Then there exists a smooth function ε : Σ → (0,∞) such that the
restriction π : E → Σ to

E = {x ∈ T | ρ(x) = ε(π(x))}
is a smooth locally trivial fiber bundle with structure group G = Diff(L), the diffeomorphisms of
L = π−1(s) ∩ E, where s ∈ Σ.

Proof. If ε : Σ→ (0,∞) is any function, we write

Tε = {x ∈ T | ρ(x) < ε(π(x))}

and

Σ× [0, ε) = {(s, t) ∈ Σ× [0,∞) | 0 ≤ t < ε(s)}.
By [33, Lemma 3.1.2(2)], there exists a smooth ε such that (π, ρ) : Tε → Σ× [0, ε) is proper and
surjective (and still a submersion on Tε \Σ because Tε \Σ is open in T \Σ). (This involves only
arguments of a point-set topological nature, but no controlled vector fields. Pflaum’s lemma
provides only for a continuous ε, but it is clear that on a smooth Σ, one may take ε to be
smooth.) Setting

E = {x ∈ T | ρ(x) = 1
2ε(π(x))} ⊂ Tε \ Σ,

we claim first that π : E → Σ is proper. Let Gr ⊂ Σ× [0,∞) be the graph of 1
2ε. The continuity

of ε implies that Gr is closed in Σ× [0,∞) and the smoothness of ε implies that Gr is a smooth
submanifold. From the description E = (π, ρ)−1(Gr) we deduce that E is closed in Tε. The
inclusion of a closed subspace is a proper map, and the composition of proper maps is again
proper. Hence the restriction of a proper map to a closed subspace is proper. It follows that
(π, ρ) : E → Σ × [0,∞) is proper and then that (π, ρ) : E → Gr is proper. The first factor
projection π1 : Σ× [0,∞)→ Σ restricts to a diffeomorphism π1 : Gr→ Σ, which is in particular
a proper map. The commutative diagram

(8.1) E

π
  

(π,ρ) // Gr

∼= π1

��
Σ

shows that π : E → Σ is proper.
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We prove next that π : E → Σ is surjective: Given s ∈ Σ, the surjectivity of

(π, ρ) : Tε → Σ× [0, ε)

implies that there is a point x ∈ Tε such that (π(x), ρ(x)) = (s, 1
2ε(s)), that is, ρ(x) = 1

2ε(π(x)).
This means that x ∈ E and π(x) = s.

By Lemma 8.1, applied to the smooth map (π, ρ) : T \ Σ → Σ × (0,∞) and Q = Gr,
E = (π, ρ)−1(Gr) is a smooth submanifold and (π, ρ) : E → Gr is a submersion. Using the
diagram (8.1), π : E → Σ is a submersion.

Applying Ehresmann’s fibration theorem (for a modern exposition see [20]) to the proper,
surjective, smooth submersion π : E → Σ yields the desired conclusion. �

We call the bundle given by Proposition 8.2 the link bundle of Σ in X. The fiber is the link
of Σ. In this manner, Σ becomes the base space B of a bundle and thus we will also use the
notation Σ = B. More generally, this construction evidently applies to the following class of
spaces:

Definition 8.3. A stratified pseudomanifold of depth 1 is a tuple (X,Σ1, · · · ,Σr) such that

the Σi are mutually disjoint subspaces of X such that
(
X \

(⋃
j 6=i Σj

)
,Σi

)
is a two strata

pseudomanifold for every i = 1, . . . , r.

In a depth 1 space, every Σi possesses its own link bundle.

Definition 8.4. A stratified pseudomanifold of depth 1, (X,Σ1, · · · ,Σr), is a Witt space if the
top stratum X \

⋃
Σi is oriented and the following condition is satisfied:

• For each 1 ≤ i ≤ r such that Σi has odd codimension ci in X, the middle dimensional
homology of the link Li vanishes:

H ci−1

2
(Li) = 0.

Witt spaces were introduced by P. Siegel in [35]. He assumed them to be endowed with a
piecewise linear structure, as PL methods allowed him to compute the bordism groups of Witt
spaces. We do not use these computations in the present paper.

9. Intersection Spaces and Poincaré Duality

Let (X,B) be an n-dimensional two strata topological pseudomanifold such that B 6= ∅ is
a b-dimensional manifold that has a good open cover, e.g. B PL or even smooth. We assume
furthermore that B has a link bundle π : E → X in X so that a tubular neighborhood of B is
the associated cone bundle and the complement of the open tube is a manifold M with boundary
∂M = E. This is the case if (X,B) is a Thom-Mather C∞-stratification: The Thom-Mather
control data provide a tubular neighborhood T of B in X and a distance function ρ : T → [0,∞).
Let ε : Σ = B → (0,∞) be the smooth function provided by Proposition 8.2 such that π : E → B
is a fiber bundle, where E = {x ∈ T | ρ(x) = ε(π(x))}. Let M be the complement in X of
Tε = {x ∈ T | ρ(x) < ε(π(x))} and let L be the fiber of π : E → B. By the surjectivity of π, L
is not empty. The space M is a smooth n-dimensional manifold with boundary ∂M = E. Let
c = dimL = n− 1− b. Fix a perversity p satisfying the Goresky-MacPherson growth conditions
p(2) = 0, p(s) ≤ p(s + 1) ≤ p(s) + 1 for all s ∈ {2, 3, . . .}. Set k = c − p (c+ 1). The growth
conditions ensure that k > 0. Let q be the dual perversity to p. The integer l = c− q (c+ 1) is
positive. Assume that there exist G-equivariant Moore approximations of degree k and l,

f<k : L<k → L and f<l : L<l → L

for some choice of structure group G for the bundle π : E → B.
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We perform the fiberwise truncation and cotruncation of Section 6 on the link bundle

π : E = ∂M → B,

use these constructions to define two incarnations of intersection spaces, IpX and JpX associated
to X, and show that they are homotopy equivalent. The first, IpX, agrees with the original
definition given by the first author in [3] in all cases where they can be compared, the second
JpX has not been given before. It is introduced here to facilitate certain computations.

Definition 9.1. Define the map τ<k : ft<kE →M to be the composition

τ<k : ft<kE
F<k // E = ∂M

� � i // M,

where i is the canonical inclusion of ∂M as the boundary. Define IpX to be the homotopy
cofiber of τ<k, i.e. the homotopy pushout of the pair of maps

? ft<kEoo τ<k // M.

This is called the p-intersection space for X defined via truncation. If E ∼= B × L is a product
bundle, then this agrees with [3, Definition 2.41].

Definition 9.2. In Section 6, we obtained the map C≥k : E → Q≥kE. Define the p-intersection
space for X via cotruncation, JpX, to be the space obtained as the homotopy pushout of

Q≥k E
C≥koo � � i // M.

We have the following diagram of topological spaces, commutative up to homotopy, in which
every square is a homotopy pushout square:

ft<kE
F<k //

π<k

��

E

c≥k

��

i // M

η≥k

��

B
σ //

��

ft≥kE

ξ≥k

��
?

[c] // Q≥kE
ν≥k // JpX,

where η≥k and ν≥k are defined to be the maps coming from the definition of JpX as a homotopy
pushout.

Lemma 9.3. The canonical collapse map JpX → IpX is a homotopy equivalence.

Proof. By construction, the space JpX contains the cone on B, cB, as a subspace and (JpX, cB)
is an NDR-pair. Since cB is contractible, the collapse map JpX → JpX/cB is a homotopy
equivalence. The quotient JpX/cB is homeomorphic to IpX. �

The sequence

ft<k E
τ<k−→M −→ cone(τ<k) = IpX

induces a long exact sequence

(9.1) // Hr−1(ft<kE)
δp,r // H̃r

(
IpX

) ηr≥k // Hr(M)
τr<k // Hr(ft<kE) // .

Furthermore, we can define M̂ to be the homotopy pushout of the pair of maps

? ∂M = Eoo i // M.
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This is nothing but the space M with a cone attached to the boundary. Define J−1X to be the
homotopy pushout obtained from the pair of maps

? Q≥kEoo ν≥k // JpX.

Lemma 9.4. The canonical collapse map J−1X → M̂ is a homotopy equivalence.

Proof. The space J−1X contains the cone cQ≥kE as a subspace and (J−1X, cQ≥kE) is an NDR-
pair. Thus the collapse map J−1X → J−1X/cQ≥kE is a homotopy equivalence. The quotient

J−1X/cQ≥kE is homeomorphic to M̂ . �

By the lemma, using l and q instead of k and p, we have the long exact sequence (2.2)
associated to J−1X:

(9.2) // H̃r (Q≥lE)
ν≥l,r // H̃r

(
JqX

) ζ≥l,r // Hr (M,∂M)
δqr // H̃r−1 (Q≥lE) // ,

where ζ≥l is the composition of the map JqX → J−1X, defined by J−1X as a homotopy pushout,

with the collapse map J−1X
'−→ M̂ . In the sequence, we have identified H̃r(M̂) ∼= Hr (M,∂M).

Theorem 9.5. Let (X,B) be a compact, oriented, two strata pseudomanifold of dimension n.
Let p and q be complementary perversities, and k = c − p (c+ 1), l = c − q (c+ 1), where
c = n− 1− dimB. Assume that equivariant Moore approximations to L of degree k and degree
l exist. If the local duality obstructions O∗(π, k, l) of the link bundle π vanish, then there is a
global Poincaré duality isomorphism

(9.3) H̃r
(
IpX

) ∼= H̃n−r
(
IqX

)
.

Proof. We achieve this by pairing the sequence (9.1) with the sequence (9.2) (observing
Lemma 9.3) and using the five lemma. Consider the following diagram of solid arrows whose
rows are exact:

(9.4) // Hr−1(ft<kE)
δp,∗ //

Dr−1
k,l

∼=
��

H̃r
(
IpX

)
DrIX
��

η∗≥k // Hr(M)
τ∗<k //

DrM∼=
��

Hr(ft<kE)

Drk,l∼=
��

// H̃n−r (Q≥lE)
ν≥l,∗ // H̃n−r

(
IqX

) ζ≥l,∗// Hn−r (M,∂M)
δq∗ // H̃n−r−1 (Q≥lE)

Here Dr
k,l comes from Proposition 6.7, and Dr

M comes from the classical Lefschetz duality for
manifolds with boundary. The solid arrow square on the right can be written as

Hr(M)
i∗ //

DrM∼=
��

Hr(∂M)
F∗<k //

Dr∂M∼=
��

Hr(ft<kE)

Drk,l∼=
��

Hn−r (M,∂M)
δM,∂M∗ // Hn−r−1(∂M)

C≥l,∗// H̃n−r−1 (Q≥lE)

The left square commutes by classical Poincaré-Lefschetz duality, and the right square commutes
by Proposition 6.9 and Proposition 6.10, since O∗(π, k, l) = 0. Thus diagram (9.4) commutes.
By e.g. [3, Lemma 2.46], we may find a map Dr

IX to fill in the dotted arrow so that the diagram
commutes. By the five lemma, Dr

IX is an isomorphism. �

It does not follow from this proof that for a 4d-dimensional Witt space X the associated

intersection form H̃2d(IX) × H̃2d(IX) → Q is symmetric, where IX = Im̄X = I n̄X. In
Section 11, however, we shall prove that the isomorphism (9.3) can always be constructed so as
to yield a symmetric intersection form (cf. Proposition 11.11).
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10. Moore Approximations and the Intersection Homology Signature

Assume that (X,B) is a two-strata Witt space with dimX = n = 4d, d > 0, and dimB = b,
then c = 4d − 1 − b = dimL. If we use the upper-middle perversity n and the lower-middle
perversity m, which are complementary, we get the associated pair of integers k = b c+1

2 c and

l = d c+1
2 e. When c is odd then k = l = c+1

2 , and when c is even then k = c/2 and l = k + 1.
Notice that the codimension of B in X is c+ 1. So the Witt condition says that when c is even
then H c

2
(L) = 0. In this case if an equivariant Moore approximation of degree k exists, then so

does one of degree k + 1 = l and they can be chosen to be equal. Therefore, when X satisfies
the Witt condition and an equivariant Moore approximation to L of degree k exists, we can
construct ImX = InX and JmX = JnX. We denote the former space IX and the latter JX
and call this homotopy type the intersection space associated to the Witt space X.

The cone bundle DE is nothing but ft≥c+1E with L<c+1 = L. Note that when E = ∂M
as above, then DE is a two strata space with boundary ∂DE = ∂M , and we can realize X as

the pushout of the pair of maps M ∂M
ioo c≥c+1 // DE . Thus ∂M is bi-collared in X and by

Novikov additivity, Prop. II,3.1 [35], we have that the intersection homology Witt element wIH ,
defined in I,4.1 [35], is additive over these parts,

(10.1) wIH (X) = wIH(M̂) + wIH (TE) ∈W (Q) ,

where the Thom space TE is DE with a cone attached to its boundary, and W (Q) is the Witt
group of Q. When X is Witt, we write IH∗(X) for Im̄H∗(X) = I n̄H∗(X).

Proposition 10.1. If an equivariant Moore approximation to L of degree k = b 1
2 (dimL + 1)c

exists, then the middle degree, middle perversity intersection homology of the n = 4d-dimensional
Witt space TE vanishes,

IH2d (TE) = 0.

Proof. In this proof we use the notation ċE and ḊE to mean the open cone on E and the open
cone bundle associated to E. According to (5.3),

IpHr(ḊE) ∼= IpHr (DE) , and IpHr (ċE) ∼= IpHr (cE)

for all r ≥ 0. Hence, as in the proof of Proposition 5.3, we can identify the long exact sequence
of intersection homology groups associated to the pair (ḊE, ḊE \ B) with the same sequence
associated to the ∂-stratified pseudomanifold (DE,E) from (5.2).

Define open subsets U, V of TE by U = TE \ B = ċE and V = TE \ c = ḊE, where c is
the cone point. Then TE = U ∪ V and U ∩ V = E × (−1, 1). The Mayer-Vietoris sequence
associated to the pair (U, V ) gives

(10.2) // Hr (E)
iTEr // IHr(ḊE)⊕ IHr (ċE)

jTEr // IHr (TE)
δTEr // Hr−1 (E) //

Here we have identified IHr (E × (−1, 1)) ∼= Hr (E). After making the identifications as decribed
in the previous paragraph, the map iTEr = iDEr ⊕ icEr is identified as the sum of the maps coming
from the sequences associated to the pairs (DE,E) and (cE,E) respectively. In degrees r < 2d
we know from Proposition 5.3 that icEr is an isomorphism Hr (E) = IHr (cE). Thus iTEr is
injective for r < 2d. Consequently, when r = 2d, we have an exact sequence

· · · // H2d (E) // IH2d (DE)⊕ IH2d(cE) // IH2d (TE) // 0.

By the cone formula for intersection homology, IH2d(cE) = 0, since 2d = dimE−m(dimE+1).
Now by Proposition 6.5, the map H2d(E)→ IH2d(DE) is surjective. �
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Corollary 10.2. Let X be a compact, oriented, n = 4d-dimensional stratified pseudomanifold
of depth 1 which satisfies the Witt condition. If equivariant Moore approximations of degree
k = b 1

2 (dimL+ 1)c to the links of the singular set exist, then

wIH (X) = wIH(M̂) ∈W (Q) .

In particular, the signature of the intersection form on intersection homology satisfies

σIH (X) = σIH(M̂).

Proof. If IH2n (TE) = 0, then wIH (TE) = 0. The assertion follows from Novikov additivity
(10.1). �

Example 10.3. Let X = CP2 be complex projective space with B = CP1 ⊂ X as the bottom
stratum, so that the link bundle is the Hopf bundle over B. Then

σIH(X) = σ(CP2) = 1,

but

σ(M,∂M) = σ(D4, S3) = 0.

Indeed, the link S1 in the Hopf bundle has no middle-perversity equivariant Moore-approximation
because the Hopf bundle has no section.

11. The Signature of Intersection Spaces

Theorem 2.28 in [3] states that for a closed, oriented, 4d-dimensional Witt space X with only
isolated singularities, the signature of the symmetric nondegenerate intersection form

H̃2d(IX)× H̃2d(IX)→ Q

equals the signature of the Goresky-MacPherson-Siegel intersection form

IH2d(X)× IH2d(X)→ Q

on middle-perversity intersection homology. In fact, both are equal to the Novikov signature of
the top stratum. We shall here generalize that theorem to spaces with twisted link bundles that
allow for equivariant Moore approximation.

Definition 11.1. Define the signature of a 4d-dimensional manifold-with-boundary (M,∂M)
to be

σ (M,∂M) = σ (β) ,

where β is the bilinear form

β : im j∗ × im j∗ → Q, (j∗v, j∗w) 7→ (dM (v))(j∗w),

the homomorphism

j∗ : H2d(M) −→ H2d(M,∂M)

is induced by the inclusion, and

dM : H2d(M) −→ H2d(M,∂M)

is Lefschetz duality. This is frequently referred to as the Novikov signature of (M,∂M). It is

well-known ([35]) that σ(M,∂M) = σIH(M̂).
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Let (X,B) be a two strata Witt space with dimX = n = 4d, dimB = b. We assume
that an equivariant Moore approximation of degree k = 4d − b − 1 −m (4d− b) exists for the
link L of B in X, and that the local duality obstruction O∗(π, k, k) vanishes. As discussed
in the previous section, this implies that the intersection space IX exists and is well-defined.
Theorem 9.5 asserts that IX satisfies Poincaré duality

dIX : H̃2d(IX)
∼=−→ H̃2d(IX).

We shall show (Proposition 11.11) that dIX can in fact be so constructed that the associated
intersection form on the middle-dimensional homology is symmetric. One may then consider its
signature:

Definition 11.2. The signature of the space IX,

σ (IX) = σ (β) ,

is defined to be the signature of the symmetric bilinear form

β : H̃m(IX)× H̃m(IX)→ Q,

with m = 2d, defined by

β(v, w) = dIX(v)(w)

for any v, w ∈ H̃m(IX). Here we have identified H̃m(IX) ∼= H̃m(IX)† via the universal coeffi-
cient theorem.

Theorem 11.3. The signature of IX is supported away from the singular set B, that is,

σ (IX) = σ (M,∂M) .

Before we prove this theorem, we note that in view of Corollary 10.2, we immediately obtain:

Corollary 11.4. If a two-strata Witt space (X,B) allows for middle-perversity equivariant
Moore-approximation of its link and has vanishing local duality obstruction, then

σIH(X) = σ(IX).

The rest of this section is devoted to the proof of Theorem 11.3. We build on the method
of Spiegel [37], which in turn is partially based on the methods introduced in the proof of
[3, Theorem 2.28]. Regarding notation, we caution that the letters i and j will both denote
certain inclusion maps and appear as indices. This cannot possibly lead to any confusion.

Let {e1, . . . , er} be any basis for j∗Hm(M), where

j∗ : Hm(M) −→ Hm(M,∂M)

is induced by the inclusion. For every i = 1, . . . , r, pick a lift ei ∈ Hm(M), j∗(ei) = ei. Then
{e1, . . . , er} is a linearly independent set in Hm(M) and

(11.1) Q〈e1, . . . , er〉 ∩ ker j∗ = {0}.

Let

dM : Hm(M)
∼=−→ Hm(M,∂M) = Hm(M,∂M)†

be the Lefschetz duality isomorphism, i.e. the inverse of

D′M : Hm(M,∂M)
∼=−→ Hm(M),

given by capping with the fundamental class [M,∂M ] ∈ H2m(M,∂M). Let

d′M : Hm(M,∂M)
∼=−→ Hm(M)
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be the inverse of
DM : Hm(M)

∼=−→ Hm(M,∂M),

given by capping with the fundamental class. We shall make frequent use of the symmetry
identity

dM (v)(w) = d′M (w)(v),

v ∈ Hm(M), w ∈ Hm(M,∂M), which holds since the cup product of m-dimensional cohomology
classes commutes as m = 2d is even. The commutative diagram

Hm(M)
j∗ //

dM

��

Hm(M,∂M)

d′M
��

Hm(M,∂M)
j∗

// Hm(M)

implies that the symmetry equation

dM (ei)(ej) = dM (ej)(ei)

holds, as the calculation

dM (ei)(ej) = dM (ei)(j∗ej) = j∗dM (ei)(ej) = d′M (j∗ei)(ej)

= d′M (ei)(ej) = dM (ej)(ei)

shows.
In the proof of [3, Theorem 2.28], the first author introduced the annihilation subspace

Q ⊂ Hm(M,∂M),
Q = {q ∈ Hm(M,∂M) | dM (ei)(q) = 0 for all i}.

It is shown on p. 138 of loc. cit. that one obtains an internal direct sum decomposition

Hm(M,∂M) = im j∗ ⊕Q.

Let L ⊂ H̃m(IX) be the kernel of the map

ζ≥k∗ : H̃m(IX) −→ Hm(M,∂M).

Once we have completed the construction of a symmetric intersection form, L will eventually be

shown to be a Lagrangian subspace of an appropriate subspace of H̃m(IX). Let {u1, . . . ul} be
any basis for L.

We consider the commutative diagram

(11.2) Hm(M,∂M) Hm(M,∂M)

Hm(ft<k E)
τ<k∗ // Hm(M)

j∗

OO

η≥k∗ // H̃m(IX)

ζ≥k∗

OO

δ∗ // Hm−1(ft<k E)

Hm(ft<k E) �
� F<k∗ // Hm(∂M)

i∗

OO

C≥k∗ // // H̃m(Q≥kE)

ν≥k∗

OO

δ∗=0 // Hm−1(ft<k E)

The rows and columns are exact and we have used Lemma 6.6. By exactness of the right

hand column, the basis elements uj can be lifted to H̃m(Q≥kE), and by the surjectivity of C≥k∗,
these lifts can be further lifted to Hm(∂M). In this way, we obtain linearly independent elements
u1, . . . , ul in Hm(∂M) such that

η≥k∗i∗(uj) = ν≥k∗C≥k∗(uj) = uj



INTERSECTION SPACES, EQUIVARIANT MOORE APPROXIMATION AND THE SIGNATURE 169

for all j. Setting

wj = dM (i∗(uj))

yields a linearly independent set {w1, . . . , wl} ⊂ Hm(M,∂M). From now on, let us briefly write
η∗, ζ∗, etc., for η≥k∗, ζ≥k∗, etc. Since η∗i∗(uj) = uj , we have

Q〈i∗(u1), . . . , i∗(ul)〉 ∩ ker η∗ = {0}.
Together with (11.1), and noting ker η∗ ⊂ ker j∗, this shows that there exists a linear subspace
A ⊂ Hm(M) yielding an internal direct sum decomposition

(11.3) Hm(M) = Q〈i∗(u1), . . . , i∗(ul)〉 ⊕ ker η∗ ⊕Q〈e1, . . . , er〉 ⊕A.
Setting

Z = ker η∗ ⊕Q〈e1, . . . , er〉 ⊕A,
we have

Hm(M) = Q〈i∗(u1), . . . , i∗(ul)〉 ⊕ Z,
such that

(11.4) ker η∗ ⊂ Z and Q〈e1, . . . , er〉 ⊂ Z.
Choose a basis {z̃1, . . . , z̃s} of Z and put zj = dM (z̃j) ∈ Hm(M,∂M). Then {z1, . . . zs} is a
basis for dM (Z) and

Hm(M,∂M) = Q〈w1, . . . , wl〉 ⊕Q〈z1, . . . , zs〉.
Let

{w1, . . . , wl, z1, . . . , zs} ⊂ Hm(M,∂M)

be the dual basis of {w1, . . . , wl, z1, . . . , zs}, that is,

(11.5) wi(wj) = δij , z
i(zj) = δij , w

i(zj) = 0, zi(wj) = 0.

Lemma 11.5. The set {w1, . . . , wl} is contained in the image of ζ∗.

Proof. In view of the commutative diagram

H̃m(IX)
ζ∗ // Hm(M,∂M)

δ∗ //

d′M
∼=
��

H̃m−1(Q≥kE)

Hm(M)
τ∗ // Hm(ft<k E),

Dk,k∼=

OO

it suffices to show that δ∗(wj) = 0, since the top row is exact. Let x ∈ Hm(ft<k E) be any
element. Then τ∗x ∈ ker η∗ ⊂ Z, so dM (τ∗x)(wj) = 0 by (11.5). Consequently,

(τ∗d′M (wj))(x) = d′M (wj)(τ∗x) = dM (τ∗x)(wj) = 0.

It follows that τ∗d′M (wj) = 0 and in particular

δ∗(wj) = Dk,kτ
∗d′M (wj) = 0.

�

Suppose that v ∈ ker ζ∗ ∩ η∗〈e1, . . . , er〉. Then v is a linear combination v = η∗
∑
λiei and

0 = ζ∗(v) = ζ∗η∗
∑

λiei =
∑

λij∗(ei) =
∑

λiei.

Thus λi = 0 for all i by the linear independence of the ei. This shows that

L ∩ η∗〈e1, . . . , er〉 = {0}.
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Therefore, it is possible to choose a direct sum complement W ⊂ H̃m(IX) of L = ker ζ∗,

(11.6) H̃m(IX) = L⊕W,

such that

(11.7) η∗〈e1, . . . , er〉 ⊂W.

The restriction

ζ∗|W : W −→ im ζ∗

is then an isomorphism and thus by Lemma 11.5, we may define

wj = (ζ∗|W )−1(wj).

We define subspaces V,L′ ⊂W by

V = (ζ∗|W )−1(im j∗), L
′ = (ζ∗|W )−1(Q ∩ im ζ∗).

Recall that {e1, . . . , er} is a basis of im j∗. Setting

vj = (ζ∗|W )−1(ej),

yields a basis {v1, . . . , vr} for V . From

ζ∗(vi) = ei = j∗(ei) = ζ∗η∗(ei)

it follows that

vi = η∗(ei),

since both vi and η∗(ei) are in W and ζ∗ is injective on W .
The decomposition Hm(M,∂M) = im j∗ ⊕Q induces a decomposition

im ζ∗ = (im j∗ ⊕Q) ∩ im ζ∗ = im j∗ ⊕ (Q ∩ im ζ∗).

Applying the isomorphism (ζ∗|W )−1, we receive a decomposition

W = (ζ∗|W )−1(im j∗)⊕ (ζ∗|W )−1(Q ∩ im ζ∗) = V ⊕ L′.

By (11.6), we arrive at a decomposition

H̃m(IX) = L⊕ V ⊕ L′.

Lemma 11.6. The set {w1, . . . , wl} ⊂W is contained in L′.

Proof. By construction of L′, we have to show that ζ∗(wj) ∈ Q for all j. Now ζ∗(wj) = wj ,
so by construction of Q, we need to demonstrate that dM (ei)(wj) = 0 for all i. By (11.4),
dM (ei) ∈ dM (Z), whence the result follows from (11.5). �

Lemma 11.7. The set {w1, . . . , wl} ⊂W is a basis for L′.

Proof. The preimages wj = (ζ∗|W )−1(wj) under the isomorphism ζ∗|W are linearly independent
since {w1, . . . , wl} is a linearly independent set. In particular, dimL′ ≥ l. It remains to be
shown that dimL′ ≤ l. Standard linear algebra provides the inequality

rk η∗ ≤ dim ker ζ∗ + rk(ζ∗η∗),

valid for the composition of any two linear maps. As ζ∗η∗ = j∗, we may rewrite this as

(11.8) rk η∗ ≤ l + rk j∗.
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By Theorem 9.5, there exists some isomorphism H̃m(IX)→ H̃m(IX) such that

(11.9) H̃m(IX)
η∗ //

∼=
��

Hm(M)

∼= DM

��
H̃m(IX)

ζ∗ // Hm(M,∂M)

commutes. Therefore,

rk ζ∗ = rk η∗ = rk η∗,

and by (11.8),

rk ζ∗ ≤ l + rk j∗.

The decomposition (11.6) implies that

dim H̃m(IX) = l + dimW = l + rk ζ∗ ≤ 2l + rk j∗.

On the other hand, the decomposition H̃m(IX) = L⊕ V ⊕ L′ implies

dim H̃m(IX) = l + dimV + dimL′ = l + rk j∗ + dimL′.

It follows that

l + rk j∗ + dimL′ ≤ 2l + rk j∗

and thus

dimL′ ≤ l.
�

In summary then, we have constructed a certain basis

(11.10) {u1, . . . , ul, v1, . . . , vr, w1, . . . , wl}

for H̃m(IX) = L⊕ V ⊕ L′.

Remark 11.8. The above proof shows that rk η∗ ≤ l + rk j∗ = l + r. Thus the restriction of η∗
to the subspace A ⊂ Hm(M) in the decomposition (11.3) is zero, which implies that A ⊂ ker η∗
and so A = {0}. The decomposition of Hm(M) is thus seen to be

(11.11) Hm(M) = Q〈i∗(u1), . . . , i∗(ul)〉 ⊕ ker η∗ ⊕Q〈e1, . . . , er〉.

In particular,

Z = ker η∗ ⊕Q〈e1, . . . , er〉.

Let

{u1, . . . , ul, v1, . . . , vr, w1, . . . , wl}

be the dual basis for H̃m(IX). Setting

L† = Q〈u1, . . . , ul〉, V † = Q〈v1, . . . , vr〉, (L′)† = Q〈w1, . . . , wl〉,

we get a dual decomposition

H̃m(IX) = L† ⊕ V † ⊕ (L′)†.

We define the duality map

dIX : H̃m(IX) −→ H̃m(IX)
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on basis elements to be

dIX(uj) := wj ,

dIX(wj) := uj ,

dIX(vj) := ζ∗dM (ej).

We shall now prove that dIX is an isomorphism.

Lemma 11.9. The image dIX(V ) is contained in V †.

Proof. In terms of the dual basis, dIX(vj) can be expressed as a linear combination

dIX(vj) =
∑
p

πpu
p +

∑
q

εqv
q +

∑
i

λiw
i.

The coefficients πp are

πp = (ζ∗dM (ej)) (up) = dM (ej)(ζ∗up) = 0,

since up ∈ L = ker ζ∗. Using (11.5) and dM (ej) ∈ dM (Z) = Q〈z1, . . . , zs〉, we find

λi = (ζ∗dM (ej)) (wi) = dM (ej)(wi) = 0.

�

Lemma 11.10. The restriction dIX | : V → V † is injective.

Proof. Suppose that v =
∑
q εqvq is any vector v ∈ V with dIX(v) = 0. Then

0 = η∗dIX(v) = η∗
∑

εqdIX(vq) = η∗
∑

εqζ
∗dM (eq)

= j∗dM
∑

εqeq = d′M
∑

εqj∗(eq)

= d′M
∑

εqeq.

Since d′M is an isomorphism,
∑
εqeq = 0 and by the linear independence of the eq, the coefficients

εq all vanish. This shows that v = 0. �

By definition, dIX maps L isomorphically onto (L′)† and L′ isomorphically onto L†. Since by
Lemma 11.10, dIX | : V → V † is an isomorphism, we conclude that the duality map

dIX : H̃m(IX)→ H̃m(IX)

is an isomorphism.

Proposition 11.11. The intersection form

β : H̃m(IX)× H̃m(IX)→ Q

given by β(v, w) = dIX(v)(w) is symmetric. In fact it is given in terms of the basis (11.10) by
the matrix 0 0 I

0 S 0
I 0 0

 ,

where I is the l× l-identity matrix and S is a symmetric r× r-matrix, representing the classical
intersection form on im j∗ whose signature is the Novikov signature σ(M,∂M).
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Proof. On V , we have

dIX(vi)(vj) = ζ∗dM (ei)(vj) = ζ∗dM (ei)(η∗ej)

= dM (ei)(j∗ej) = dM (ei)(ej) = dM (ej)(ei)

= dM (ej)(j∗ei) = ζ∗dM (ej)(η∗ei)

= ζ∗dM (ej)(vi) = dIX(vj)(vi).

These are the symmetric entries of S. Between V and L we find

dIX(vi)(uj) = ζ∗dM (ei)(uj) = dM (ei)(ζ∗uj) = 0,

as uj ∈ L = ker ζ∗. This agrees with

dIX(uj)(vi) = wj(vi) = 0,

by definition of the dual basis. The intersection pairing between V and L′ is trivial as well:

dIX(vi)(wj) = ζ∗dM (ei)(wj) = dM (ej)(ζ∗wj) = dM (ei)(wj) = 0,

since dM (ei) ⊂ dM (Z). This agrees with

dIX(wj)(vi) = uj(vi) = 0,

again by definition of the dual basis. On L,

dIX(ui)(uj) = wi(uj) = 0

and on L′,
dIX(wi)(wj) = ui(wj) = 0.

Finally, the intersection pairing between L and L′ is given by

dIX(ui)(wj) = wi(wj) = δij = uj(ui) = dIX(wj)(ui).

�

Theorem 11.3 follows readily from this proposition because

σ(IX) = σ(S) + σ

(
0 I
I 0

)
= σ(S) = σ(M,∂M).

It remains to prove that both

(11.12) H̃m(IX)
ζ∗ //

dIX
��

Hm(M,∂M)

d′M

��
H̃m(IX)

η∗
// Hm(M)

and

(11.13) H̃m(Q≥kE)
ν∗ // H̃m(IX)

dIX
��

Hm−1(ft<k E)

Dk,k

OO

δ∗ // H̃m(IX)

commute. We begin with diagram (11.12) and check the commutativity on basis elements.

1. We verify that η∗dIX(uj) = d′Mζ∗(uj) for all j. By exactness, ζ∗η∗i∗ = j∗i∗ = 0 and hence

d′Mζ∗(uj) = d′Mζ∗η∗i∗(uj) = 0.
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So it remains to show that η∗dIX(uj) = 0. We break this into three steps according to the
decomposition (11.11). Evaluating on elements of the form i∗ui yields

η∗dIX(uj)(i∗ui) = (η∗wj)(i∗ui) = wj(η∗i∗ui) = wj(ui) = 0.

If a is any element in ker η∗, then

(η∗wj)(a) = wj(η∗a) = 0.

Before evaluating on elements ei, we observe that since η∗ei ∈W (by (11.7)) and

ζ∗(η∗ei) = j∗ei ∈ im j∗,

we have

η∗ei ∈W ∩ ζ−1
∗ (im j∗) = V.

It follows that

(η∗wj)(ei) = wj(η∗ei) = 0.

Thus η∗dIX(uj) = 0 as claimed.

2. On basis elements vj , the commutativity is demonstrated by the calculation

η∗dIX(vj) = η∗ζ∗dM (ej) = j∗dM (ej) = d′M j∗(ej)

= d′Mζ∗η∗(ej) = d′Mζ∗(vj).

3. We prove that η∗dIX(wj) = d′Mζ∗(wj) for all j. Again it is necessary to break this into
three steps according to the decomposition (11.11). Evaluating on elements of the form i∗ui
yields

η∗dIX(wj)(i∗ui) = η∗(uj)(i∗ui) = uj(η∗i∗ui) = uj(ui) = δij

and

d′Mζ∗(wj)(i∗ui) = d′M (wj)(i∗ui) = dM (i∗ui)(wj) = wi(wj) = δij .

If a is any element in ker η∗, then

η∗(uj)(a) = uj(η∗a) = 0 = dM (a)(wj) = d′M (wj)(a),

using (11.5) and dM (a) ∈ dM (Z). Finally, on elements ei we find

η∗(uj)(ei) = uj(η∗ei) = uj(vi) = 0 = dM (ei)(wj) = d′M (wj)(ei),

using (11.5) and dM (ei) ∈ dM (Z). The commutativity of (11.12) is now established.

If a ∈ Hm(M) and b ∈ H̃m(IX) are any elements, then using (11.12),

ζ∗dM (a)(b) = dM (a)(ζ∗b) = d′M (ζ∗b)(a) = (η∗dIXb)(a)

= dIX(b)(η∗a) = dIX(η∗a)(b),

where the last equation uses the symmetry of dIX , Proposition 11.11. Hence the diagram

(11.14) Hm(M)
η∗ //

dM

��

H̃m(IX)

dIX
��

Hm(M,∂M)
ζ∗ // H̃m(IX)
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commutes as well. The cohomology braid of the triple

ft<k E
F<k //

τ
##

∂M

i

��
M

contains the commutative square

(11.15) Hm−1(∂M)
δ∗ //

F∗<k
��

Hm(M,∂M)

ζ∗

��
Hm−1(ft<k E)

δ∗ // H̃m(IX).

We are now in a position to prove the commutativity of (11.13).
Let a ∈ Hm−1(ft<k E) be any element. We must show that dIXν∗Dk,k(a) = δ∗(a). As

F ∗<k : Hm−1(∂M) → Hm−1(ft<k E) is surjective (Lemma 6.6), there exists an a ∈ Hm−1(∂M)
with a = F ∗<k(a). By Propositions 6.9, 6.10, Dk,k is the unique isomorphism such that

Hm−1 (∂M)
F∗<k //

D∂M ∼=
��

Hm−1 (ft<kE)

Dk,k∼=
��

Hm (∂M)
C≥k∗ // H̃m (Q≥kE)

commutes. Therefore,

Dk,k(a) = Dk,kF
∗
<k(a) = C≥k∗D∂M (a).

Then, by the lower middle square in Diagram (11.2),

ν∗Dk,k(a) = ν∗C≥k∗D∂M (a) = η∗i∗D∂M (a).

Applying dIX and using the commutative diagram (11.14), we arrive at

dIXν∗Dk,k(a) = dIXη∗i∗D∂M (a) = ζ∗dM i∗D∂M (a).

Now the commutative diagram

Hm(∂M)
i∗ // Hm(M)

dM

��
Hm−1(∂M)

D∂M

OO

δ∗ // Hm(M,∂M)

shows that

dIXν∗Dk,k(a) = ζ∗δ∗(a),

which by Diagram (11.15) equals δ∗F ∗<k(a) = δ∗(a), as was to be shown.

12. Sphere Bundles, Symplectic Toric Manifolds

We discuss equivariant Moore approximations for linear sphere bundles and for symplectic
toric manifolds.
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Proposition 12.1. Let ξ = (E, π,B) be an oriented real n-plane vector bundle over a closed,
oriented, connected, n-dimensional base manifold B. Let S(ξ) be the associated sphere bundle
and let eξ ∈ Hn(B;Z) be the Euler class of ξ. Then S(ξ) can be given a structure group which
allows for a degree k equivariant Moore approximation, for some 0 < k < n, if and only if eξ = 0.

Proof. Assume that S(ξ) can be given a structure group which allows for a degree k equivariant
Moore approximation for some 0 < k < n. If the fiber dimension n of the vector bundle is odd,
then the Euler class has order two. Since Hn(B;Z) ∼= Z is torsion free, eξ = 0. Thus we may
assume that n = 2d is even. We form the double

X4d = DE ∪SE DE,

where DE is the total space of the disk bundle of ξ, and SE = ∂DE. Then X is a manifold,
but we may view it as a 2-strata pseudomanifold (X,B) by taking B ⊂ X to be the zero section
in one of the two copies of DE in X. For this stratified space, M = DE, ∂M = SE, and

M̂ = TE, the Thom-space of ξ. Since the double of any manifold with boundary is nullbordant,
the signature of X vanishes, σIH(X) = σ(X) = 0. Note that a degree k equivariant Moore
approximation to Sn−1, some 0 < k < n, is in particular an equivariant Moore approximation
of degree b 1

2 (dimSn−1 + 1)c = bn2 c. Thus by Corollary 10.2,

σIH(TE) = σIH(X) = 0.

The middle intersection homology of the Thom space of a vector bundle is given by

IHn(TE) ∼= im (Hn(DE)→ Hn(DE,SE)),

[29, p. 77, Example 5.2.5.3]. By homotopy invariance Hn(DE) ∼= Hn(B) ∼= Q[B], and by the
Thom isomorphism Hn(DE,SE) ∼= H0(B) ∼= Q. The intersection form on the, at most one-
dimensional, image is determined by the self-intersection number [B] · [B] of the fundamental
class of B, which is precisely the Euler number. Since σIH(TE) = 0, this self-intersection
number, and thus eξ, must vanish. (Note that in this case, the map Hn(DE) → Hn(DE,SE)
is the zero map and IHn(TE) = 0, for IHn(TE) ∼= Q and [B] · [B] = 0 would contradict the
nondegeneracy of the intersection pairing.)

Conversely, if eξ = 0, then [24, Thm. 2.10, p. 137] asserts that ξ has a nowhere vanishing

section. This section induces a splitting ξ ∼= ξ′⊕R1, where ξ′ is an (n− 1)-plane bundle and R1

denotes the trivial line bundle over B. This splitting reduces the structure group from SO(n) to
SO(1)×SO(n−1) = {1}×SO(n−1). The action of this reduced structure group on Sn−1 has two
fixed points; let p ∈ Sn−1 be one of them. Then {p} ↪→ Sn−1 is an {1} × SO(n− 1)-equivariant
Moore approximation for every degree 0 < k < n. �

Example 12.2. A symplectic toric manifold is a quadruple (M,ω, Tn, µ), where M is a 2n-
dimensional, compact, symplectic manifold with non-degenerate closed 2-form ω, there is an
effective Hamiltonian action of the n-torus Tn on M , and µ : M → Rn is a choice of moment map
for this action. There is a one-to-one correspondence between such 2n-dimensional symplectic
toric manifolds and so-called Delzant polytopes in Rn, [19], given by the assignment

(M,ω, Tn, µ) 7→ ∆M := µ (M) .

Recall that a polytope in Rn is the convex hull of a finite number of points in Rn. Delzant
polytopes in Rn have the property that each vertex has exactly n edges adjacent to it and for
each vertex p, every edge adjacent to p has the form {p + tui | Ti ≥ t ≥ 0} with ui ∈ Zn, and
u1, . . . , un constitute a Z-basis of Zn.

Section 3.3 of [18] uses the Delzant polytope ∆M to construct Morse functions on M as
follows: Let X ∈ Rn be a vector whose components are independent over Q. Then X is not
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parallel to any facet of ∆M and the orthogonal projection πX : Rn → R onto the line spanned
by X, πX(Y ) = 〈Y,X〉, is injective on the vertices of ∆M . By composing the moment map µ
with the projection πX , one obtains a Morse function fX = πX ◦µ : M → R, fX(q) = 〈µ(q), X〉,
whose critical points are precisely the fixed points of the Tn action. The images of the fixed
points under the moment map are the vertices of ∆M . Since the coadjoint action is trivial on a
torus, Tn acts trivially on Rn, and as µ is equivariant, it is thus constant on orbits. Hence the
level sets of πX ◦ µ are Tn-invariant. The index of a critical point p is twice the number of edge
vectors ui of ∆M at µ(p) whose inner product with X is negative, 〈ui, X〉 < 0. In particular,
the index is always even. For a ∈ R, we set Ma = f−1

X (−∞, a] ⊂M .
Suppose that one can choose X in such a way that the critical points satisfy:

(C) For any two critical points p, q of fX , if the index of p is larger than the index of q, then
fX(p) > fX(q).

Then, since fX is Morse, for each critical value a of fX the set Ma+ε is homotopy equivalent
to a CW-complex with one cell attached for each critical point p with fX(p) < a+ ε. (Here ε > 0
has been chosen so small that there are no critical values of fX in (a, a+ ε].) The dimension of
the cell associated to p is the index of fX at p. Let 2i be the index of any critical point p ∈Ma+ε

with fX(p) = a. If q ∈ Ma+ε is an arbitrary critical point of fX , then fX(q) ≤ fX(p) = a
and thus the index of q is at most 2i by condition (C). Thus Ma+ε contains all cells of M that
have dimension at most 2i and no other cells. Since M has only cells in even dimensions, the
cellular chain complex of M has zero differentials in all degrees. Thus, since fX is equivariant,
Ma+ε ↪→ M is a Tn-equivariant Moore approximation of degree 2i + 1 (and of degree 2i + 2),
and is a smooth manifold with boundary.

A particular case of this is the complex projective space (CPn, ωFS, T
n, µ), where ωFS is the

Fubini-Study symplectic form and Tn acts on CPn by

(eit1 , . . . , eitn) · (z0 : z1 : · · · : zn) = (z0 : eit1z1 : · · · : eitnzn).

On page 26 of [31], an equivariant Morse function with n+1 critical points is constructed, the i-th
one having index 2i and critical value i. Using this we obtain equivariant Moore approximations
to CPn of every degree with respect to the torus action.

In the case that M is 4-dimensional, condition (C) is satisfied. The Delzant polytope µ(M)
associated to a 4-dimensional symplectic toric manifold (M,ω, T 2, µ) is a 2-dimensional polytope
in R2. As M is compact, fX attains its minimum m and its maximum m′ on M . Let pmin ∈M
be a critical point with fX(pmin) = m and let pmax ∈M be a critical point with fX(pmax) = m′.
Suppose that p ∈M is any critical point such that fX(p) = m. Then πXµ(p) = m = πXµ(pmin).
The moment images v = µ(p) and vmin = µ(pmin) are vertices of ∆M . Since the projection πX
is injective on vertices, we have v = vmin. Now as µ maps the fixed points (which are precisely
the critical points) bijectively onto the vertices, it follows that p = pmin. This shows that pmin is
unique and similarly pmax is unique. The index of pmin is 0, while the index of pmax is 4. Thus
〈u1, X〉 ≥ 0 and 〈u2, X〉 ≥ 0 at vmin and 〈u1, X〉 < 0 and 〈u2, X〉 < 0 at vmax.

Geometrically, this means that the two edges that go out from vmin point in the same half-
plane as X, while the outgoing edges at vmax point in the half-plane complementary to the one
of X. If v is any vertex of the moment polytope different from vmin, vmax, then by the convexity
of ∆M , one of the two outgoing edges must point in X’s half-plane, while the other outgoing
edge points into the complementary half-plane, yielding an index of 2. If p ∈ M is a critical
point different from pmin, pmax, then µ(p) is a vertex different from vmin, vmax and thus must have
index 2. From this, it follows that condition (C) is indeed satisfied: If p, q are critical points
such that p has larger index than q, then there are two cases: p has index 4 and q has index in
{0, 2}, or p has index 2 and q has index 0. In the first case, p = pmax and in the second case
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q = pmin. In both cases it is then clear, using the uniqueness of pmin, pmax, that fX(p) > fX(q).
We have thus shown:

Proposition 12.3. Every 4-dimensional symplectic toric manifold (M,ω, Tn, µ) has an equi-
variant Moore approximation M<k of degree k for every k ∈ Z. Furthermore, the space M<k

can be chosen to be a smooth compact codimension 0 submanifold-with-boundary of M .
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Birkhäuser, 2003.

19. T. Delzant, Hamiltoniens périodiques et images convexes de l’application moment, Bulletin de la Société
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HOROSPHERICAL AND HYPERBOLIC DUAL SURFACES OF SPACELIKE

CURVES IN DE SITTER SPACE

SHYUICHI IZUMIYA, ANA CLAUDIA NABARRO, AND ANDREA DE JESUS SACRAMENTO

Abstract. We define two surfaces, the horospherical surface and the hyperbolic dual surface
of a spacelike curve in the de Sitter 3-space, in the Lorentzian-Minkowski 4-space. These

surfaces are, respectively, in the lightcone 3-space and in the hyperbolic 3-space (other pseudo-

spheres). We use techniques from singularity theory to obtain the generic shape of these
surfaces and of their singular point sets. Furthermore, we give a relation between these

surfaces from the viewpoint of the theory of Legendrian dualities between pseudo-spheres.

1. Introduction

Submanifolds in Lorentz-Minkowski space are investigated from various mathematical view-
points and are of interest also in relativity theory. In recent years, using singularity theory, very
important progress has been made and many investigations have been conducted to classify and
characterize the singularities of submanifolds in Euclidean spaces or in semi-Euclidean spaces
(see, for example, [1]-[9] and [11]). The first author introduced Legendrian dualities between
three kinds of pseudo-spheres in Lorentz-Minkowski space [5, 6]. Curves in the pseudo-spheres
and duality relations between the curves and some surfaces in pseudo-spheres are studied. For
example, in [3, 4, 8], curves in the hyperbolic space H3(−1) in R4

1, in the de Sitter dual surface
in S3

1 , and in the horospherical surface in the lightcone LC∗, are investigated. The results in this
paper contribute to the study of the extrinsic geometry of curves in the above different ambient
spaces.

We use Legendrian duality to investigate spacelike curves in the de Sitter space S3
1 ⊂ R4

1

and two special surfaces related by duality. For a curve γ : I → S3
1 with nowhere vanishing

curvature, we define its associated horospherical surface in the lightcone LC∗ and its hyperbolic
dual surface in the hyperbolic space H3(−1). For the study of the generic differential geometry of
these surfaces and of their singular sets, we use singularity theory techniques, and in particular,
classical deformation theory.

Our paper is organized as follows: Section 2 reviews basic definitions for the Minkowski 4-
space and introduces a moving frame along γ together with Frenet-Serret type formulae. We
also review the definition of the Ak-singularities and their discriminant sets. We define the hy-
perbolic focal surface and the horospherical surface of γ. In Sections 3 and 5, we define two
families of height functions on γ, horospherical height functions and hyperbolic height func-
tions. These functions measure the contact of γ with special hyperplanes. Differentiating these
functions yields invariants related to each surface. We show that the horospherical surface of γ
is the discriminant set of the family of horospherical height functions (Corollary 3.2) and that
its hyperbolic dual surface is the discriminant set of the family of hyperbolic height functions
(Corollary 5.3).

The second author was supported by FAPESP grant 2013/02794-4. The third author was supported by
FAPESP grant 2010/20301-7.

http://dx.doi.org/10.5427/jsing.2017.16h
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Furthermore, using the theory of deformations, we give a classification and a characterization
of the diffeomorphism-type of these surfaces (Theorems 3.4 and 5.5). It is easy to show that
the discriminant sets of these families on timelike curves in S3

1 are empty. For this reason, we
consider only spacelike curves in S3

1 .
In Section 4, we investigate the geometric meaning of the invariants discussed in the previous

sections. We prove results that give conditions (related to these invariants) for the curve γ to be
on a parabolic de Sitter quadric and we give also conditions for γ to be part of a T-horoparabola
or an S-horoparabola (Propositions 4.1 and 4.2). In Section 5, we give information about the
geometry of the hyperbolic dual surface and of its singular set. We separate the cases where γ
has spacelike normal vectors from those where γ has timelike normal vectors. We prove that, if
the normal vector is timelike, then the hyperbolic dual surface of γ has no singular points. For
this reason, in Section 5, we consider only the case when γ has spacelike normal vectors.

In Section 6, we show that γ can be part of an elliptic de Sitter quadric (Proposition 6.1)
by using an invariant of the curve. When γ is not part of an elliptic de Sitter quadric, we
characterize the contact of γ with an elliptic de Sitter quadric using the singularity types of the
hyperbolic dual surface of γ (Proposition 6.2).

Finally, in Section 7, we recall the concepts of Legendrian dualities between pseudo-spheres
in Lorentz-Minkowski space, introduced in [6]. Several duality relationships are presented in
Theorem 7.1. These give a dual relation between the horospherical surface and the hyperbolic
dual surface of γ.

2. Preliminaries

The Minkowski space R4
1 is the vector space R4 endowed with the pseudo-scalar product

〈x, y〉 = −x0y0 + x1y1 + x2y2 + x3y3, for any x = (x0, x1, x2, x3) and y = (y0, y1, y2, y3) in R4
1

(see, e.g., [10]). We say that a non-zero vector x ∈ R4
1 is spacelike if 〈x, x〉 > 0, lightlike if

〈x, x〉 = 0 and timelike if 〈x, x〉 < 0. We call γ : I → R4
1, with I ⊂ R an open interval, a

spacelike (resp. timelike) curve if γ′(t) is a spacelike (resp. timelike) vector for any t ∈ I. We
define, for x ∈ R4

1,

sign (x) =


1 if x is spacelike,

0 if x is lightlike,

−1 if x is timelike.

We call sign (x) the signature of x. The norm of a vector x ∈ R4
1 is defined by ‖ x ‖=

√
| 〈x, x〉 |.

We now consider the pseudo-spheres in R4
1. The hyperbolic 3-space is defined by

H3(−1) = {x ∈ R4
1 | 〈x, x〉 = −1},

the de Sitter 3-space by

S3
1 = {x ∈ R4

1 | 〈x, x〉 = 1},
and the lightcone by

LC∗ = {x ∈ R4
1 \ {0} | 〈x, x〉 = 0}.

For any x = (x0, x1, x2, x3), y = (y0, y1, y2, y3), z = (z0, z1, z2, z3) ∈ R4
1, the pseudo-product

of x, y and z is defined by:

x ∧ y ∧ z =

∣∣∣∣∣∣∣∣
−e0 e1 e2 e3

x0 x1 x2 x3

y0 y1 y2 y3

z0 z1 z2 z3

∣∣∣∣∣∣∣∣ ,
where {e0, e1, e2, e3} is the canonical basis of R4.
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For a non-zero vector v ∈ R4
1 and a real number c, a hyperplane with pseudo-normal vector v

is defined by

HP (v, c) = {x ∈ R4
1 | 〈x, v〉 = c}.

We call HP (v, c) a spacelike, a timelike, or a lightlike hyperplane if v is spacelike, timelike, or
lightlike, respectively.

We have three types of models of quadric surfaces in S3
1 , which are given by intersections of

S3
1 with hyperplanes in R4

1, determined by the type of the hyperplane. A surface S3
1 ∩HP (v, c) is

called an elliptic de Sitter quadric, a hyperbolic de Sitter quadric or a parabolic de Sitter quadric
if HP (v, c) is spacelike, timelike, or lightlike, respectively. We denote the parabolic de Sitter
quadric by QDP (v, c) and the elliptic de Sitter quadric by QDE(v, c).

Let γ : I → S3
1 be a smooth and regular spacelike curve in S3

1 . We can parametrise it by
arc length s, and write t(s) = γ′(s) for the unit tangent vector. In this case, we call γ a unit
speed spacelike curve. If 〈t′(s), t′(s)〉 6= 1, then ‖ t′(s) + γ(s) ‖6= 0, and we define the unit vector

n(s) =
t′(s) + γ(s)

‖ t′(s) + γ(s) ‖
. We also define another unit vector by e(s) = γ(s) ∧ t(s) ∧ n(s). Then

we obtain a pseudo-orthonormal frame {γ(s), t(s), n(s), e(s)} of R4
1 along γ. The Frenet-Serret

type formulae for that frame are given by
γ′(s) = t(s),

t′(s) = −γ(s) + kg(s)n(s),

n′(s) = −δ(γ(s)) kg(s) t(s) + τg(s) e(s),

e′(s) = τg(s)n(s),

where δ(γ(s)) = sign (n(s)) (which we shall write as simply δ), kg(s) =‖ t′(s) + γ(s) ‖ and

τg(s) =
δ(γ(s))

k2
g(s)

det(γ(s), γ′(s), γ′′(s), γ′′′(s)).

The invariant kg is called the geodesic curvature and τg the geodesic torsion of γ (see [7]).
Since 〈t′(s)+γ(s), t′(s)+γ(s)〉 = 〈t′(s), t′(s)〉−1, it follows that 〈t′(s), t′(s)〉 6= 1 is equivalent

to kg(s) 6= 0.

We define the following maps

HS±γ : I × J → LC∗ and HD±γ : I × J → H3(−1)

by

HS±γ (s, µ) = γ(s) + µn(s) + λe(s) and HD±γ (s, µ) = µn(s) + λe(s),

respectively, where λ2 − µ2 = δ(γ(s)).
In other words,

HS±γ (s, µ) = γ(s) + µn(s)±
√
µ2 + δ(γ(s))e(s) and HD±γ (s, µ) = µn(s)±

√
µ2 + δ(γ(s))e(s),

with µ2 + δ(γ(s)) ≥ 0, i.e., µ ∈ J = R for n(s) spacelike and µ ∈ J = (−∞,−1]∪ [1,∞) for n(s)
timelike. We call HS±γ the horospherical surface of γ and HD±γ the hyperbolic dual surface of
γ. We can suppose that λ and µ are one of cosh and sinh, depending on δ(γ(s)).

Definition 2.1. Let F : R4
1 → R be a submersion and γ : I → S3

1 be a regular curve. We
say that γ and F−1(0) (respectively F−1(0) ∩ S3

1) have contact of order k at s0, if the function
g(s) = F ◦ γ(s) satisfies g(s0) = g′(s0) = · · · = g(k)(s0) = 0 and g(k+1)(s0) 6= 0, i.e., g has an
Ak-singularity at s0.
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Let G : R × Rr, (s0, x̄) → R be a family of germs of functions. We call G an r-parameter
deformation of f if f(s) = Gx̄(s). Suppose that f has an Ak-singularity (k ≥ 1) at s0. If we
write

j(k−1)

(
∂G

∂xi
(s, x̄)

)
(s0) =

k−1∑
j=0

αji(s− s0)j ,

for i = 1, . . . , r, then G is a versal deformation if the k × r matrix of coefficients (αji) has rank
k (k ≤ r) (see [2]).

The discriminant set of G is the set

DG =

{
x ∈ (Rr, x̄)

∣∣ G =
∂G

∂s
= 0 at (s, x) for some s ∈ (R, s0)

}
.

Theorem 2.2. [2] Let G : R × Rr, (s0, x̄) → R be an r-parameter deformation of f , with f
having an Ak-singularity at s0. Suppose that G is a versal deformation. Then DG is locally
diffeomorphic to

(1) C × Rr−2, if k = 2, and
(2) SW × Rr−3, if k = 3,

where C = {(x1, x2) | x2
1 = x3

2} is the ordinary cusp and

SW = {(x1, x2, x3) | x1 = 3u4 + u2v, x2 = 4u3 + 2uv, x3 = v}

is the swallowtail surface.

We use families of height functions on curves in S3
1 to study the horospherical surface and the

hyperbolic dual surface. In fact, these surfaces are the discriminant sets of these families.
It is easy to show that the discriminant sets of the family of horospherical height functions

and family of hyperbolic height functions on timelike curves in S3
1 are empty. For this reason,

we only consider spacelike curves in S3
1 .

3. Horospherical height functions

In this section, we introduce a family of height functions on a curve that is useful for the
study of the horospherical surface. We prove that the horospherical surface is the discriminant
set of this family.

For a spacelike curve γ : I → S3
1 , we define a function H : I × LC∗ → R by

H(s, v) = 〈γ(s), v〉 − 1.

We call H a family of horospherical height functions on γ. We denote hv(s) = H(s, v) for any
fixed v ∈ LC∗. The family of horospherical height functions measures the contact of γ with
lightlike hyperplanes in R4

1. Generically, this contact can be of order k, where k = 1, 2, 3.
We obtain equivalent conditions for each Ak-singularity, k = 1, 2, 3 of hv by the following

result. For example, hv has an A2-singularity at s if and only if

v = γ(s) + µn(s)±
√
µ2 + δ(γ(s))e(s), µ =

1

kg(s)δ(γ(s))
, and σ(s) 6= 0.

Proposition 3.1. Let γ : I → S3
1 be a unit speed spacelike curve such that kg(s) 6= 0. Then

(1) hv(s) = 0 if and only if there exist real numbers µ, λ, η with

η2 + δ(γ(s))µ2 − δ(γ(s))λ2 = −1

such that v = γ(s) + ηt(s) + µn(s) + λe(s).
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(2) hv(s) = h′v(s) = 0 if and only if there exist real numbers µ, λ such that

v = γ(s) + µn(s) + λe(s)

with λ2 − µ2 = δ(γ(s)).

(3) hv(s) = h′v(s) = h′′v(s) = 0 if and only if v = γ(s) + µn(s) ±
√
µ2 + δ(γ(s))e(s) with

µ =
1

kg(s)δ(γ(s))
.

(4) hv(s) = h′v(s) = h′′v(s) = h
(3)
v (s) = 0 if and only if v = γ(s)+µn(s)±

√
µ2 + δ(γ(s))e(s),

µ =
1

kg(s)δ(γ(s))
and σ(s) = 0, where

σ(s) = (k′g ± kgτg(−δ)
√

1 + k2
gδ)(s).

(5)

(i) If n(s) is timelike with kg(s) = 1 then hv(s) = h′v(s) = · · · = h
(4)
v (s) = 0 if and only if

v = γ(s)+µn(s)±
√
µ2 + δ(γ(s))e(s), µ =

1

kg(s)δ(γ(s))
, σ(s) = 0 and k′′g (s)+τ2

g (s) = 0.

(ii) If n(s) is timelike with kg(s) 6= 1 or if n(s) is spacelike, then

hv(s) = h′v(s) = · · · = h(4)
v (s) = 0

if and only if

v = γ(s) + µn(s)±
√
µ2 + δ(γ(s))e(s), mu =

1

kg(s)δ(γ(s))
, and σ(s) = σ′(s) = 0.

Proof. Since hv(s) = 〈γ(s), v〉 − 1, by using the Frenet-Serret type formulae, we have

(a) h′v(s) = 〈t(s), v〉,
(b) h′′v(s) = 〈−γ(s) + kg(s)n(s), v〉,
(c) h

(3)
v (s) = 〈(−1− k2

g(s)δ(γ(s)))t(s) + k′g(s)n(s) + kg(s)τg(s)e(s), v〉, and

(d) h(4)(s) = 〈(1+k2
g(s)δ(γ(s)))γ(s)−3δ(γ(s))k′g(s)kg(s)t(s)+(−kg(s)+k′′g (s)+kg(s)τ

2
g (s)−

k3
g(s)δ(γ(s)))n(s) + (2k′g(s)τg(s) + kg(s)τ

′
g(s))e(s), v〉.

The proof follows by simple calculations using (a)-(d). �

Corollary 3.2. The horospherical surface of γ is the discriminant set DH of the family of
horospherical height functions H.

Proof. The proof follows from the definition of the discriminant set given in Section 2 and by
Proposition 3.1 (2). �

Following Proposition 3.1, we define the invariant

σ(s) =
(
k′g ± kgτg(−δ)

√
1 + k2

gδ
)

(s)

of the curve γ. We will study the geometric meaning of this invariant in Section 4.
In the next result, we show that the family of horospherical height functions on a curve in S3

1

is a versal deformation of an Ak-singularity, k = 2, 3, of its members.

Proposition 3.3. With the same assumptions as in Proposition 3.1, let H : I × LC∗ → R be
the family of horospherical height functions on γ. If hv has an A2-singularity at s0, then H is a
versal deformation of hv. If hv has an A3-singularity at s0 and n(s0) is timelike with kg(s0) 6= 1
(which is a generic condition) or if n(s0) is spacelike, then H is a versal deformation of hv.
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Proof. The family of horospherical height functions is given by

H(s, v) = −v0x0(s) + v1x1(s) + v2x2(s) + v3x3(s)− 1,

where v = (v0, v1, v2, v3), γ(s) = (x0(s), x1(s), x2(s), x3(s)) is the curve parametrised by arc

length, v0 =
√
v2

1 + v2
2 + v2

3 and x0(s) =
√
x2

1(s) + x2
2(s) + x2

3(s)− 1.
Writing H(s, v) = H(s, v1, v2, v3), we have

∂H

∂vi
= xi(s)−

vi
v0
x0(s),

for i = 1, 2, 3. Therefore, the 2-jet of
∂H

∂vi
at s0, is given by

xi(s0)− vi
v0
x0(s0) +

(
x′i(s0)− vi

v0
x′0(s0)

)
(s− s0) +

1

2

(
x′′i (s0)− vi

v0
x′′0(s0)

)
(s− s0)2.

We assume first that hv has an A3-singularity at s = s0, and we show that the determinant
of the 3× 3 matrix

A =


x1(s0)− v1

v0
x0(s0) x2(s0)− v2

v0
x0(s0) x3(s0)− v3

v0
x0(s0)

x′1(s0)− v1

v0
x′0(s0) x′2(s0)− v2

v0
x′0(s0) x′3(s0)− v3

v0
x′0(s0)

x′′1(s0)− v1

v0
x′′0(s0) x′′2(s0)− v2

v0
x′′0(s0) x′′3(s0)− v3

v0
x′′0(s0)


is nonzero. Denote

a =

 x0(s0)
x′0(s0)
x′′0(s0)

 , bi =

 xi(s0)
x′i(s0)
x′′i (s0)

 ,

for i = 1, 2, 3. Then

detA =
v0

v0
det(b1 b2 b3)− v1

v0
det(a b2 b3)− v2

v0
det(b1 a b3)− v3

v0
det(b1 b2 a).

On the other hand,

(γ ∧ γ′ ∧ γ′′)(s0) = (−det(b1 b2 b3),−det(a b2 b3),−det(b1 a b3),− det(b1 b2 a)).

Therefore,

detA =

〈(
v0

v0
,
v1

v0
,
v2

v0
,
v3

v0

)
, (γ ∧ γ′ ∧ γ′′)(s0)

〉
=

1

v0
〈γ(s0) + µn(s0)±

√
µ2 + δe(s0), kg(s0)e(s0)〉

= ± 1

v0
(−δ)

√
k2
g(s0)δ + 1.

In the case where n(s0) is a spacelike vector, we have detA = ∓ 1

v0

√
k2
g(s0) + 1 6= 0 and therefore

H is a versal deformation of hv at s = s0. If n(s0) is a timelike vector, then we have

detA = ± 1

v0

√
1− k2

g(s0)

and therefore detA 6= 0 under the condition that kg(s0) 6= 1 , so H is a versal deformation of hv
at s = s0.
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When k = 2, we require the rank of B to equal 2, where B is the matrix

B =

 x1(s0)− v1

v0
x0(s0) x2(s0)− v2

v0
x0(s0) x3(s0)− v3

v0
x0(s0)

x′1(s0)− v1

v0
x′0(s0) x′2(s0)− v2

v0
x′0(s0) x′3(s0)− v3

v0
x′0(s0)

 .

Since B consists of the first and second lines of A, we have that if n(s0) is a spacelike vector, then
rank of B is 2 because detA 6= 0. If n(s0) is a timelike vector, the rank of B is 2 if kg(s0) 6= 1.

For the case kg(s0) = 1, the rank of B is 2 if
2(x0(s0)− v0)

v0
6= 0. Then it is enough to show that

x0(s0) 6= v0. As kg(s0) = 1, we have by Proposition 3.1 (2) that

v(s0) = γ(s0)− n(s0).

Therefore v0 = x0(s0) − n0(s0), where n(s0) = (n0(s0), n1(s0), n2(s0), n3(s0)). Without loss of
generality, we can suppose n0(s0) 6= 0, so the rank of B is 2. �

Using Theorem 2.2 and Proposition 3.3, we can obtain the diffeomorphism type of the horo-
spherical surface.

Theorem 3.4. With the same assumptions as in Proposition 3.1, let HS±γ be the horospherical
surface of γ. Then we have the following:

(1) The singular values of HS±γ are given by

h±µ Sγ(s) = γ(s) +
1

kg(s)δ(γ(s))
n(s)±

√
1

k2
g(s)

+ δ(γ(s))e(s).

(2) HS±γ is, at (s0, µ0), locally diffeomorphic to a cuspidal edge if and only if

µ0 =
1

kg(s0)δ(γ(s0))
and σ(s0) 6= 0.

(3) HS±γ is, at (s0, µ0), locally diffeomorphic to a swallowtail surface if and only if

µ0 =
1

kg(s0)δ(γ(s0))
, σ(s0) = 0, and σ′(s0) 6= 0,

for n(s0) timelike with kg(s0) 6= 1, or for n(s0) spacelike.

Proof. Consider the horospherical surface given byHS±γ (s, µ) = γ(s)+µn(s)±
√
µ2 + δ(γ(s))e(s).

Then

∂HS±γ
∂s

(s, µ) = (1− µδ(γ(s))kg(s))t(s)±
√
µ2 + δ(γ(s))τg(s)n(s) + µτg(s)e(s) and

∂HS±γ
∂µ

(s, µ) = n(s)± µ√
µ2 + δ(γ(s))

e(s).

The vectors {
∂HS±γ
∂s

(s0, µ0),
∂HS±γ
∂µ

(s0, µ0)

}
are linearly dependent if and only if

µ0 =
1

kg(s0)δ(γ(s0))
.

Then the singular values of HS±γ are given by h±µ0
Sγ(s0) = HS±γ (s0, µ0) and assertion (1) follows.

By Corollary 3.2, the discriminant set DH of the family of horospherical height functions H of
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γ is the horospherical surface of γ. It also follows from assertions (3) and (4) of Proposition 3.1
that hv has an A2-singularity (respectively, an A3-singularity) at s = s0 if and only if

µ0 =
1

kg(s0)δ(γ(s0))
and σ(s0) 6= 0

(respectively,

µ0 =
1

kg(s0)δ(γ(s0))
, σ(s0) = 0, and σ′(s0) 6= 0).

By Theorem 2.2 and Proposition 3.3, we have assertions (2) and (3). We observe that, in (3),
if n(s0) is timelike, it is necessary to suppose that kg(s0) 6= 1 in order to obtain Proposition
3.3. �

4. Invariants and special geometry of the horosphe-rical surface

We study the geometric meaning of the invariant σ(s) defined in the previous section. Let
v be a lightlike vector, w be a spacelike vector, and z be a timelike vector. We call the de
Sitter space curve, given by the intersections of the parabolic de Sitter quadric QDP (v, 1) with
HP (w, 0) (resp. HP (z, 0)), T-horoparabolas (resp. S-horoparabolas).

Given a unit speed spacelike curve γ in S3
1 , the unit normal vector n can be a timelike vector

or a spacelike vector. We prove the following results that give conditions depending on the
invariants, for the curve γ to be in a parabolic de Sitter quadric. In addition, we also give
conditions for γ to be part of a T-horoparabola or a S-horoparabola. These facts are related to
the invariants σ(s) and τg(s). It is convenient to divide the discussion into two cases: n(s) is
timelike (Proposition 4.1) and n(s) is spacelike (Proposition 4.2).

We observe that for a curve in hyperbolic 3-space (see [8]), there is only one case because n(s)
is always spacelike.

Proposition 4.1. Let γ : I → S3
1 be a unit speed spacelike curve such that n(s) is a timelike

vector field along γ, kg(s) ≤ 1, and kg(s) 6= 0. Consider the singular values h±µ Sγ(s) of the
horospherical surface.

(1) Suppose that kg(s) ≡ 1. Then the following conditions are equivalent:
(a) h±µ Sγ(s) is a constant vector,
(b) τg(s) ≡ 0,
(c) γ is a part of a T-horoparabola.

(2) Suppose that the set {s ∈ I | kg(s) = 1} consists of isolated points. The following
conditions are equivalent:
(a) h±µ Sγ(s) is a constant vector v0 ∈ LC∗,
(b) σ(s) ≡ 0,
(c) γ is located on a parabolic de Sitter quadric QDP (v0, 1).

Proof. The proof is similar to that for a curve in hyperbolic space in [8]. Consider the singular
values h±µ Sγ(s) of the surface that we denote by

v(s) = γ(s) + µn(s)±
√
µ2 − 1e(s) with µ = − 1

kg(s)
.

Suppose that kg(s) ≡ 1. Then v(s) = γ(s) − n(s), and v′(s) = −τg(s)e(s). Therefore, v(s)
is constant if and only if τg(s) ≡ 0, so statements (a) and (b) of (1) are equivalent. If v(s)
is constant, then τg(s) ≡ 0 and, as e′(s) = τg(s)n(s), this means that e(s) is constant. Thus,
the hyperplane HP (e(s), 0) generated by γ(s), t(s) and n(s), is constant. In this case, the
parabolic de Sitter quadric QDP (v(s), 1) is also constant. Thus, the image of γ is a part of a
horoparabola given by QDP (v(s), 1)∩HP (e(s), 0). Therefore, (a) implies (c). If γ is a part of a
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T-horoparabola, then it is a de Sitter plane curve and, hence, τg(s) ≡ 0; so (c) implies (b). This
completes the proof of (1).

Suppose now that kg(s) 6= 1. Since µ(s) = − 1

kg(s)
, we have

v(s) = γ(s)− 1

kg(s)
n(s)±

√
1− k2

g(s)

kg(s)
e(s).

Thus

v′(s) =

k′g ± kgτg
√

1− k2
g

k2
g

 (s)n(s)−


√

1− k2
gkgτg ± k′g

k2
g

√
1− k2

g

 (s)e(s).

Therefore, v′(s) ≡ 0 if and only if σ(s) ≡ 0, so the statements (a) and (b) of (2) are equivalent
at any point s ∈ I.

We now consider the family of horospherical height functions H(s, v) on γ. If γ is located
on the parabolic de Sitter quadric QDP (v0, 1), then H(s, v0) ≡ 0. By Proposition 3.1 (4), we

have (k′g ± kgτg
√

1− k2
g)(s) ≡ 0. Therefore, (c) implies (b). If v is a constant vector v0, then

〈γ(s), v0〉 = 1 for all s ∈ I and thus γ(s) ∈ QDP (v0, 1) for all s ∈ I. Therefore, γ is located on
a parabolic de Sitter quadric. �

Proposition 4.2. Let γ : I → S3
1 be a unit speed spacelike curve such that n(s) is a spacelike

vector field along γ and kg(s) 6= 0. Consider the singular values h±µ Sγ(s) of the horospherical
surface. The following conditions are equivalent:

(a) h±µ Sγ(s) is a constant vector v0 ∈ LC∗,
(b) σ(s) ≡ 0,
(c) γ is located on a parabolic de Sitter quadric QDP (v0, 1) for some v0.

Furthermore, if γ ⊂ QDP (v0, 1) and τg(s) ≡ 0, then γ is part of a S-horoparabola.

Proof. The proof is analogous to that of Proposition 4.1 (2). �

5. Hyperbolic height functions

We introduce here a family of functions on a curve which is useful to study the singularities
of the hyperbolic dual surface of a spacelike unit speed curve γ. First, we explain why we
consider only spacelike curves with spacelike normal vector fields. Let γ : I → S3

1 be a unit
speed spacelike curve. We suppose, as we did previously, 〈t′(s), t′(s)〉 6= 1 (generic condition),

equivalently kg(s) 6= 0, in order to define n(s) =
t′(s) + γ(s)

‖ t′(s) + γ(s) ‖
. Then n(s) is a spacelike

normal vector field or a timelike normal vector field along γ.

Proposition 5.1. Let γ : I → S3
1 be a unit speed spacelike curve such that kg(s) 6= 0 for all

s ∈ I.

(1) Suppose that n(s) is a spacelike normal vector field along γ. Then the hyperbolic dual
surface HD±γ of γ is singular at (s0, µ0) if and only if µ0 = 0. That is, the singular

values of the hyperbolic dual surface are given by h±µ0
Dγ(s) = HD±γ (s, 0) with s ∈ I and

µ0 = 0.
(2) If n(s) is a timelike normal vector field along γ, then the hyperbolic dual surface HD±γ

of γ does not have singular points.
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Proof. Consider the hyperbolic dual surface of γ,

HD±γ (s, µ) = µn(s)±
√
µ2 + δ(γ(s))e(s).

Then, we have

∂HD±γ
∂s

(s, µ) = −δ(γ(s))µkg(s)t(s)±
√
µ2 + δ(γ(s))τg(s)n(s) + µτg(s)e(s) and

∂HD±γ
∂µ

(s, µ) = n(s)± µ√
µ2 + δ(γ(s))

e(s).

If n(s) is a spacelike normal vector field, the proof of (1) is similar to that of Theorem 3.4
(1). However, if n(s) is a timelike normal vector field, the hyperbolic dual surface is not defined
for µ0 = 0. Therefore assertion (2) holds. �

Since we are interested in studying the singularities of the hyperbolic dual surface of a spacelike
curve, then it follows from Proposition 5.1 (2) that we need only to consider spacelike curves
with spacelike normal vector fields n(s).

We define a family of functions H : I ×H3(−1) → R on γ given by H(s, v) = 〈γ(s), v〉. We
call H the family of hyperbolic height functions on γ and denote hv(s) = H(s, v) for any fixed
v ∈ H3(−1). By Definition 2.1, the hyperbolic height function measures the contact of γ with
spacelike hyperplanes. Generically, the order of this contact can be k, k = 1, 2, 3.

We have the following result about the singularities of hv.

Proposition 5.2. Let γ : I → S3
1 be a unit speed spacelike curve such that n(s) is a spacelike

vector field along γ and kg(s) 6= 0 for all s ∈ I. Then we have the following:

(1) hv(s) = 0 if and only if there exist real numbers µ, λ, η with η2 + µ2 − λ2 = −1 such
that v = ηt(s) + µn(s) + λe(s).

(2) hv(s) = h′v(s) = 0 if and only if there exist real numbers µ, λ such that v = µn(s)+λe(s)
with λ2 − µ2 = 1.

(3) hv(s) = h′v(s) = h′′v(s) = 0 if and only if v = ±e(s).

(4) hv(s) = h′v(s) = h′′v(s) = h
(3)
v (s) = 0 if and only if v = ±e(s) and τg(s) = 0.

(5) hv(s) = h′v(s) = · · · = h
(4)
v (s) = 0 if and only if v = ±e(s) and τg(s) = τ ′g(s) = 0.

Proof. Since hv(s) = 〈γ(s), v〉, we have

(a) h′v(s) = 〈t(s), v〉,
(b) h′′v(s) = 〈−γ(s) + kg(s)n(s), v〉,
(c) h

(3)
v (s) = 〈(−1− k2

g(s))t(s) + k′g(s)n(s) + kg(s)τg(s)e(s), v〉,
(d) h(4)(s) = 〈(1+k2

g(s))γ(s)−3k′g(s)kg(s)t(s)+(−kg(s)+k′′g (s)+kg(s)τ
2
g (s)−k3

g(s))n(s)+
(2k′g(s)τg(s) + kg(s)τ

′
g(s))e(s), v〉.

The proof follows by simple calculations using (a)-(d). �

Corollary 5.3. The hyperbolic dual surface of γ is the discriminant set DH of the family of
hyperbolic height functions H.

Proof. The proof follows from the definition of the discriminant set given in Section 2 and
Proposition 5.2 (2). �

Proposition 5.4. Let γ : I → S3
1 be a unit speed spacelike curve such that n(s) is a spacelike

vector field along γ, kg 6= 0. Then the family H of hyperbolic height functions on γ is a versal
deformation of the A2 and A3-singularities of hv.

Proof. The method of the proof is similar to that of Proposition 3.3. �
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We can now obtain the diffeomorphism-type of the hyperbolic dual surface.

Theorem 5.5. Let γ : I → S3
1 be a unit speed spacelike curve such that n(s) is a spacelike vector

field along γ and kg(s) 6= 0 for all s ∈ I. Consider the hyperbolic dual surface HD±γ of γ.

(1) The singular values of HD±γ are given by h±µDγ(s) = ±e(s).
(2) HD±γ is, at (s0, µ0), locally diffeomorphic to a cuspidal edge if and only if µ0 = 0 and

τg(s0) 6= 0.
(3) HD±γ is, at (s0, µ0), locally diffeomorphic to a swallowtail surface if and only if µ0 = 0,

τg(s0) = 0 and τ ′g(s0) 6= 0.

Proof. By Corollary 5.3, the discriminant set DH of the family of hyperbolic height functions
H on γ is the hyperbolic dual surface of γ. It follows from Proposition 5.2 (3) and (4) that hv
has an A2-singularity (respectively, an A3-singularity) at s0 if and only if µ0 = 0 and τg(s0) 6= 0
(respectively, µ0 = 0, τg(s0) = 0 and τ ′g(s0) 6= 0). By Theorem 2.2 and Proposition 5.4, this
completes the proof. �

6. Invariant and special geometry of the hyperbolic dual surface

In this section, we investigate the geometric properties of a hyperbolic dual surface HD±γ at
its singularities by using the invariant τg of γ. The de Sitter focal surfaces of hyperbolic space
curves are studied in [3].

Proposition 6.1. Let γ : I → S3
1 be a unit speed spacelike curve such that n(s) is a spacelike

vector field along γ and kg(s) 6= 0 for all s ∈ I. Consider the singular values h±µDγ(s) of the
hyperbolic dual surface. The following conditions are equivalent:

(a) h±µDγ(s) is a constant vector v0 ∈ H3(−1),
(b) τg(s) ≡ 0,
(c) γ is part of the elliptic de Sitter quadric QDE(v0, 0).

Proof. If the hyperbolic dual surface is singular at (s, µ), then µ = 0. Therefore,

h±µDγ(s) = HD±γ (s, µ) = ±e(s) and
∂HD±γ
∂s

(s, µ) = ±τg(s)n(s) ≡ 0

if and only if τg(s) ≡ 0. This means that assertion (a) is equivalent to assertion (b). Suppose
that τg(s) ≡ 0 then h±µDγ(s) = ±e(s) = ±v0 is constant. Since 〈γ(s),±e(s)〉 = 0, then

γ(s) ∈ S3
1 ∩ HP (e(s), 0), where v0 = e(s) that is a timelike vector. Therefore, assertion (b)

implies assertion (c).
On the other hand, suppose that Imγ ⊂ QDE(v, 0) = S3

1 ∩HP (v, 0), where v is a timelike
fixed vector. Then we have hv(s) = 〈γ(s), v〉 = 0 for all s ∈ I. By Proposition 5.2, (4), τg(s) ≡ 0.
This completes the proof. �

Proposition 6.1 characterizes the case when γ is contained in the elliptic de Sitter quadric:
τg(s) ≡ 0. If τg(s) 6≡ 0 the result below shows that the degeneracy of the singularities of HD±γ
characterize the contact of the γ with elliptic de Sitter quadrics.

Theorem 6.2. Let γ : I → S3
1 be a unit speed spacelike curve such that n(s) is a spacelike vector

field along γ, kg 6= 0 and τg 6≡ 0. For v0 = HD±γ (s0, µ0), we have the following:

(1) γ has at least 2-point contact with QDE(v0, 0) at s0 if and only if µ0 = 0, equivalently,
the hyperbolic dual surface of γ is singular at (s0, µ0).

(2) γ has 2-point contact with QDE(v0, 0) at s0 if and only if µ0 = 0 and τg(s0) 6= 0,
equivalently, the hyperbolic dual surface of γ is locally diffeomorphic to a cuspidal edge.
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(3) γ has 3-point contact with QDE(v0, 0) at s0 if and only if µ0 = 0, τg(s0) = 0 and
τ ′g(s0) 6= 0, equivalently, the hyperbolic dual surface of γ is locally diffeomorphic to a
swallowtail surface.

Proof. For v0 = HD±γ (s0, µ0), we define a map h̃v0 : S3
1 → R by h̃v0(x) = 〈x, v0〉. Thus, we have

(h̃v0)
−1

(0) = QDE(v0, 0). In this case, g(s) = h̃v0 ◦ γ(s) = hv0(s) and then the proof follows
from Definition 2.1, Proposition 5.2 and Theorem 5.5.

�

7. Dual relations on horospherical and hyperbolic dual surfaces

We require some properties of contact manifolds and Legendrian submanifolds for the duality
results in this section, and we now review these concepts (for more details see, for example, [1]).

Let N be a (2m + 1)-dimensional smooth manifold and K be a field of tangent hyperplanes
on N . Locally, K is defined as the kernel of a 1-form θ. We say that the tangent hyperplane
field K is non-degenerate if θ∧ (dθ)m 6= 0 at any point on N . The pair (N,K) is called a contact
manifold if K is a non-degenerate hyperplane field. In this case, we call K a contact structure
and θ a contact form. A submanifold i : L ⊂ N of a contact manifold (N,K) is Legendrian if
dimL = m and dix(TxL) ⊂ Ki(x) at any x ∈ L, where i is an immersion. A smooth fibre bundle
π : E → M is a Legendrian fibration if its total space E is furnished with a contact structure
and the fibers of π are Legendrian submanifolds. For a Legendrian submanifold i : L ⊂ E,
π ◦ i : L → M is called a Legendrian map. We call the image of the Legendrian map π ◦ i a
wavefront set of i, which is denoted by W (i).

The duality concepts we use here are those introduced in [6] and [5] (the Legendrian dualities
between pseudo-spheres in Lorentz-Minkowski space), where five Legendrian double fibrations
are considered on the subsets ∆i, i = 1, . . . , 5 of the product of two of the pseudo-spheresHn(−1),
Sn1 and LC∗. Here we use only i = 1, 2, 3. We define one-forms 〈dv, w〉 = w0dv0 +

∑n
i=1 widvi,

〈v, dw〉 = v0dw0 +
∑n
i=1 vidwi on Rn+1

1 × Rn+1
1 , and consider the following three Legendrian

double fibrations.

(1) (a) Hn(−1)× Sn1 ⊃ ∆1 = {(v, w) | 〈v, w〉 = 0},
(b) π11 : ∆1 → Hn(−1), π12 : ∆1 → Sn1 ,

(c) θ11 = 〈dv, w〉 |∆1
, θ12 = 〈v, dw〉 |∆1

.

(2) (a) Hn(−1)× LC∗ ⊃ ∆2 = {(v, w) | 〈v, w〉 = −1},
(b) π21 : ∆2 → Hn(−1), π22 : ∆2 → LC∗,

(c) θ21 = 〈dv, w〉 |∆2
, θ22 = 〈v, dw〉 |∆2

.

(3) (a) LC∗ × Sn1 ⊃ ∆3 = {(v, w) | 〈v, w〉 = 1},
(b) π31 : ∆3 → LC∗, π32 : ∆3 → Sn1 ,

(c) θ31 = 〈dv, w〉 |∆3 , θ32 = 〈v, dw〉 |∆3 .

Here, πi1(v, w) = v, πi2(v, w) = w are the canonical projections. We remark that θ−1
i1 (0) and

θ−1
i2 (0) define the same tangent hyperplane field over ∆i which is denoted by Ki, (i = 1, 2, 3).

It has been shown in [6] that each (∆i,Ki) (i = 1, 2, 3) is a contact manifold and πi1 and πi2
(i = 1, 2, 3) are Legendrian fibrations. Moreover, the contact manifolds (∆1,K1), (∆2,K2) and
(∆3,K3) are contact-diffeomorphic to each other.
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For a given Legendrian embedding Li : U → ∆i, i = 1, 2, 3, we say that πi1(Li(U)) is the ∆i-
dual of πi2(Li(U)) and vice-versa (see [4]). In the next result, to show duality, we have to show
that the immersion Li : U → ∆i, i = 1, 2, 3 is a Legendrian immersion , i.e., dimU = m and
(dLi)x(Tx(U)) ⊂ KLi(x) for all x ∈ L (see also [6]). Equivalently, Li is a Legendrian immersion
if dimU = m and Li∗θi1 = 0 (see, e.g., [9]). Therefore, we can show that a submanifold is
Legendrian using the second definition.

We have the following relations on horospherical and hyperbolic dual surfaces. We observe
that here n = 3, m = 2 and dim ∆i = 5, i = 1, 2, 3. (For hyperbolic curves γ, the are duality
results in [4] for hyperbolic focal surface and de Sitter focal surface of γ).

Theorem 7.1. Let γ : I → S3
1 be a unit speed spacelike curve such that kg(s) 6= 0 for all s ∈ I.

Then

(1) γ is ∆1-dual of HD±γ .

(2) γ is ∆3-dual of HS±γ .

(3) HD±γ is ∆2-dual of HS±γ .

Proof. (1) Define the mapping L1 : I × J → ∆1 by L1(s, µ) = (HD±γ (s, µ), γ(s)), where

M = π11(L1(I × J)) = HD±γ (s, µ) = µn(s)±
√
µ2 + δ(γ(s))e(s)

and

M∗ = π12(L1(I × J)) = γ(s).

Then 〈HD±γ (s, µ), γ(s)〉 = 0, so the mapping is well-defined, i.e., L1(s, µ) ∈ ∆1. We have

∂L1

∂s
(s, µ) = (−δ(γ(s))µkg(s)t(s)±

√
µ2 + δ(γ(s))τg(s)n(s) + µτg(s)e(s), t(s))

∂L1

∂µ
(s, µ) = (n(s)± µ√

µ2 + δ(γ(s))
e(s), 0),

and so L1 is an immersion. Since L∗1θ12 = 〈HD±γ (s, µ), t(s)〉ds = 0, then, by definition, L1(I×J)
is a Legendrian submanifold in ∆1.

(2) We also define the mapping L3 : I × J → ∆3 by L3(s, µ) = (HS±γ (s, µ), γ(s)), where

HS±γ (s, µ) = γ(s) +µn(s)±
√
µ2 + δ(γ(s))e(s). Thus, 〈HS±γ (s, µ), γ(s)〉 = 1, i.e., L3(s, µ) ∈ ∆3

and the proof follows as in (1).
(3) We now define the mapping L2 : I × J → ∆2 by L2(s, µ) = (HD±γ (s, µ), HS±γ (s, µ)).

Then we have

〈HD±γ (s, µ), HS±γ (s, µ))〉 = µ2δ(γ(s)) + (µ2 + δ(γ(s)))(−δ(γ(s))) = −1.

Thus, L2(s, µ) ∈ ∆2, so the mapping is well-defined. Since

∂L2

∂s
(s, µ) = (−δ(γ(s))µkg(s)t(s)±

√
µ2 + δ(γ(s))τg(s)n(s) + µτg(s)e(s),

(1− δ(γ(s))µkg(s))t(s)±
√
µ2 + δ(γ(s))τg(s)n(s) + µτg(s)e(s))

∂L2

∂µ
(s, µ) = (n(s)± µ√

µ2 + δ(γ(s))
e(s), n(s)± µ√

µ2 + δ(γ(s))
e(s)),
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L2 is an immersion, because −δ(γ(s))µkg(s) 6= 0 or 1− δ(γ(s))µkg(s) 6= 0. Moreover,

L∗2θ21 =
〈
d(HD±γ (s, µ)), HS±γ (s, µ)

〉
=

〈
∂HD±γ
∂s

(s, µ)ds+
∂HD±γ
µ

(s, µ)dµ,HS±γ (s, µ)

〉
=
〈
−µδ(γ(s))kg(s)t(s)±

√
µ2 + δ(γ(s))τg(s)n(s) + µτg(s)e(s), γ(s)

〉
ds+〈

τg(s)(µe(s)±
√
µ2 + δ(γ(s))n(s))− µδ(γ(s))kg(s)t(s), µn(s)±

√
µ2 + δ(γ(s))e(s)

〉
ds

+

〈
n(s)± µ√

µ2 + δ(γ(s))
e(s), γ(s) + µn(s)±

√
µ2 + δ(γ(s))e(s)

〉
dµ = 0.

Therefore, L2(I × J) is a Legendrian submanifold in ∆2.
�
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ERRATUM TO:
A REMARK ON THE IRREGULARITY COMPLEX

CLAUDE SABBAH

Abstract. We correct a wrong statement in [Sab17].

Proposition 3.3 and Corollary 3.4 of [Sab17] should be modified as follows.

Proposition 3.3. Let us fix I ⊂ J and let us set k = k(I) for simplicity. Then the natural
morphism ι̃−1I L >0 → ι̃−1I Rι̃k∗ ι̃

−1
k L >0 is an isomorphism. The same property holds for L≺0

up to replacing k(I) with k′(I).

Corollary 3.4. 3. With the notation as in Proposition 3.3, the natural morphism

ι−1I IrrD(M )→ ι−1I Rιk∗ ι
−1
k IrrD(M )

is an isomorphism. The same property holds for Irr∗D(M ) up to replacing k(I) with k′(I). �

Here, the index k′(I) is any index k′ such that the following property is satisfied: any ϕ ∈ Φxo

having a pole along Dk′ has a pole along all the components of D passing through xo (such a k′
exists, due to the goodness condition). Equivalently, the number of ϕ ∈ Φxo

having no pole on
Dk′ is maximum (this maximum could be zero).

The last paragraph of the proof of Proposition 3.3 should be replaced with the following.
The case of L≺0 is treated similarly by reducing to the case where M = E ϕ. Assume first

that ϕ has poles along all components of D passing through xo (i.e., p = `). If we regard all
sheaves considered above as external products of constant sheaves of rank one with respect to the
product decomposition in (3.6) and (3.7), the case of L≺0 is obtained by replacing [−π/2, π/2]
with the complementary open interval in (3.5), and the corresponding sheaf C[a,b] with the sheaf
C(a′,b′) for suitable a′, b′ (i.e., the extension by zero of the constant sheaf on (a′, b′)). Then the
same argument as above applies to this case.

If the assumption on ϕ does not hold, then ϕ has no pole along Dk′ , so that ι−1k′ L≺0 = 0. We
also have ι−1I L≺0 = 0 since eϕ is not of rapid decay all along D, so the statement is obvious in
this case.
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ON THE TOPOLOGY OF A RESOLUTION OF ISOLATED SINGULARITIES

VINCENZO DI GENNARO AND DAVIDE FRANCO

Abstract. Let Y be a complex projective variety of dimension n with isolated singularities,

π : X → Y a resolution of singularities, G := π−1Sing(Y ) the exceptional locus. From the
Decomposition Theorem one knows that the map Hk−1(G) → Hk(Y, Y \Sing(Y )) vanishes

for k > n. Assuming this vanishing, we give a short proof of the Decomposition Theorem
for π. A consequence is a short proof of the Decomposition Theorem for π in all cases where

one can prove the vanishing directly. This happens when either Y is a normal surface, or

when π is the blowing-up of Y along Sing(Y ) with smooth and connected fibres, or when
π admits a natural Gysin morphism. We prove that this last condition is equivalent to

saying that the map Hk−1(G) → Hk(Y, Y \Sing(Y )) vanishes for all k, and that the pull-back

π∗
k : Hk(Y ) → Hk(X) is injective. This provides a relationship between the Decomposition

Theorem and Bivariant Theory.

1. Introduction

Consider an n-dimensional complex projective variety Y with isolated singularities. Fix a
desingularization π : X → Y of Y . This paper is addressed at the study of some topological
properties of the map π. In a previous paper [14], we already observed that, even though π is
never a local complete intersection map, in some very special cases it may nonetheless admit a
natural Gysin morphism. By a natural Gysin morphism, we mean a topological bivariant class
[20, §7], [7]

θ ∈ T 0(X
π→ Y ) := HomDb(Y )(Rπ∗QX ,QY ),

commuting with restrictions to the smooth locus of Y (here and in the following Db(Y ) denotes
the bounded derived category of sheaves of Q-vector spaces on Y ).

In this paper, we give a complete characterization of morphisms like π admitting a natural
Gysin morphism by means of the Decomposition Theorem [2], [6], [8], [9]. In some sense, what we
are going to prove is that π admits a natural Gysin morphism if and only if Y is a Q-intersection
cohomology manifold, i.e., IC•Y ' QY [n] in Db(Y ) (IC•Y denotes the intersection cohomology
complex of Y [17, p. 156], [27]). Furthermore, in this case, there is a unique natural Gysin
morphism θ, and it arises from the Decomposition Theorem (compare with Theorem 1.2 below).

The Decomposition Theorem is a beautiful and very deep result about algebraic maps. In
the words of MacPherson, “it contains as special cases the deepest homological properties of
algebraic maps that we know”[26], [34]. As observed in [34, Remark 2.14], since the proof of the
Decomposition Theorem proceeds by induction on the dimension of the strata of the singular
locus, a key point is the case of varieties with isolated singularities:
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32S60, 58K15.
Key words and phrases. Projective variety, Isolated singularities, Resolution of singularities, Derived category,
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Theorem 1.1 (The Decomposition Theorem for varieties with isolated singularities). In Db(Y ),
we have a decomposition

Rπ∗QX ∼= IC•Y [−n]⊕H•,
where H• is quasi-isomorphic to a skyscraper complex on Sing(Y ). Furthermore, we have

(1) Hk(H•) ∼= Hk(G), for all k ≥ n,
(2) Hk(H•) ∼= H2n−k(G), for all k < n,

where G := π−1(Sing(Y )), and Hk(G) and H2n−k(G) have Q-coefficients.

The relationship between the Gysin morphism and the Decomposition Theorem is closely
related to an important topological property of the morphism π. Specifically, in [22] and [32]
one proves that Theorem 1.1 implies the following vanishing

(1) Hk−1(G)→ Hk(Y,U) vanishes for k > n,

where U = Y \Sing(Y ).

One of the main points we would like to stress in this paper (compare with Theorem 3.1) is
that

the vanishing (1) is equivalent to the Decomposition Theorem.

More precisely, what we are going to do in this paper is to prove that assuming (1), one can
prove Theorem 1.1 in few pages. Actually this equivalence is already implicit in the argument
developed by Navarro Aznar in order to prove [30, (6.3) Corollaire, p. 293]. In fact, after
proving (1) using Hodge Theory, Navarro Aznar proves the relative Hard Lefschetz Theorem
and observes that the Decomposition Theorem follows from Deligne’s results on degeneration of
spectral sequences. Instead, here we give a simpler and more direct proof, avoiding the use of
the relative Hard Lefschetz Theorem. In fact, we deduce the splitting in derived category from
a simple result concerning short exact sequences of complexes (compare with Lemma 4.7).

A byproduct of our result is a short proof of the Decomposition Theorem in all cases where one
can prove the vanishing (1) directly. This happens when either 2 dimG < n (for trivial reasons),
or when Y is a normal surface in view of Mumford’s theorem [23], [29], or when π : X → Y is
the blowing-up of Y along Sing(Y ) with smooth and connected fibres (see Remark 5.1). It is
worth remarking that if Y is a locally complete intersection variety, then Milnor’s theorem on the
connectivity of the link [16] implies (via Lemma 4.1 below) that the map Hk−1(G)→ Hk(Y,U)
vanishes for all k ≥ n + 2. Therefore, in this case the question reduces to check that the map
Hn(G) → Hn+1(Y,U) vanishes. This in turn is equivalent to require that Hn(G), which is
contained in Hn(X) via push-forward, is a nondegenerate subspace of Hn(X) with respect to
the natural intersection form Hn(X) × Hn(X) → H0(X) (see Remark 5.1, (i)). Another case
is when π admits a natural Gysin morphism. Indeed, in this case it is very easy to prove the
stronger property

Hk−1(G)→ Hk(Y, U) vanishes for k > 0.

This is the real reason why in our approach the same argument leads to both Theorem 1.1
and the following:

Theorem 1.2. There exists a natural Gysin morphism for π if and only if Y is a Q-intersection
cohomology manifold. In this case, in Db(Y ) we have a decomposition

Rπ∗QX ∼= IC•Y [−n]⊕H• ∼= QY ⊕
⊕
k≥1

Rkπ∗QX [−k].
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Moreover, a natural Gysin morphism is unique, and, up to multiplication by a nonzero rational
number, it comes from the decomposition above via projection onto QY .

For a more precise and complete statement see Theorem 3.2 and Remark 3.3 below. For
instance, from Theorem 3.2, (ix), we deduce that a natural Gysin morphism exists when Y is
nodal of even dimension n, or when Y is a cone over a smooth basis M with H•(M) ∼= H•(Pn−1).
We stress that the existence of a natural Gysin morphism forces the exceptional locus G to have
dimension 0 or n− 1 (see Remark 6.1).

Last but not least, we have been led to consider the issues addressed in this paper by our
previous work on Noether-Lefschetz Theory. We refer to the papers [10], [11], [12], [13] anyone
interested in the overlaps between the topological properties investigated here and the Noether-
Lefschetz Theorem (specifically, we made an heavy use of the Decomposition Theorem in [12,
Remark 3 and Theorem 6, (6.3), p. 169], and in [13, Theorem 2.1, proof of (a), p. 262]).

2. Notations

(i) Let Y be a complex irreducible projective variety of dimension n ≥ 1, with isolated
singularities. Let π : X → Y be a resolution of the singularities of Y . For all y ∈ Sing(Y ), set
Gy := π−1(y). Set G :=

⋃
y∈Sing(Y )Gy = π−1(Sing(Y )). Let i : G ↪→ X be the inclusion.

(ii) All cohomology and homology groups are with Q-coefficients. For a function f : A → B
we denote by =(f) the image of f , i.e., =(f) = f(A).

(iii) Set U := Y \Sing(Y ) ∼= X\G. Denote by α : U ↪→ Y and β : U ↪→ X the inclusions. For
all k we have the following natural commutative diagram:

(2)
Hk(Y )

π∗k−→ Hk(X)
α∗k↘ ↙β∗k

Hk(U)

where all the maps denote pull-back.

Remark 2.1. From the commutativity of (2) we deduce =(α∗k) ⊆ =(β∗k). Since Hk(Y ) ∼= Hk(X)
for k ≤ 0 or k ≥ 2n, we have =(α∗k) = =(β∗k) for k ≤ 0 or k ≥ 2n. It may happen that
=(α∗k) 6= =(β∗k). We may interpret the condition =(α∗k) = =(β∗k) as follows. Combining the
Universal Coefficient Theorem with the Lefschetz Duality Theorem [31, p. 248 and p. 297] we
have Hk(U) ∼= H2n−k(Y,Sing(Y )) for all k. Since Sing(Y ) is finite, we also have

H2n−k(Y ) ∼= H2n−k(Y,Sing(Y ))

for k ≤ 2n− 2, and H1(Y ) ⊆ H1(Y,Sing(Y )). Therefore, for k ≤ 2n− 2, (2) identifies with the
diagram:

Hk(Y ) −→ H2n−k(X)
↘ ↙

H2n−k(Y )

where the map Hk(Y ) → H2n−k(X) is the composite of Poincaré Duality Hk(X) ∼= H2n−k(X)
with the pull-back π∗k, the map H2n−k(X) → H2n−k(Y ) is the push-forward, and the map

Hk(Y )
· ∩[Y ]−→ H2n−k(Y ) is the duality morphism, i.e., the cap-product with the fundamental class

[Y ] ∈ H2n(Y ) [28]. It follows that =(α∗k) = =(β∗k) if and only if every cycle in H2n−k(Y ) coming
from H2n−k(X) via push-forward is the cap-product of a cocycle in Hk(Y ) with the fundamental
class [Y ]. This holds true also for k = 2n− 1 because H1(Y ) ⊆ H1(Y, Sing(Y )) ∼= H2n−1(U).
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(iv) Embed Y in some projective space PN . For all y ∈ Sing(Y ) choose a small closed ball
Sy ⊂ PN around y, and set By := Sy∩Y , Dy := π−1(By), B :=

⋃
y∈Sing(Y )By, and D := π−1(B).

By is homeomorphic to the cone over the link ∂By of the singularity y ∈ Y , with vertex at y
[16, p. 23]. By is contractible, by excision we have

Hk(Y,U) ∼= Hk(B,B\Sing(Y )) ∼= Hk(B, ∂B)

for all k, and from the cohomology long exact sequence of the pair (B, ∂B) we get

Hk(Y, U) ∼= Hk−1(∂B)

for all k ≥ 2. We have ∂D ∼= ∂B via π, and by excision we have

Hk(X,U) ∼= Hk(D,D\G) ∼= Hk(D, ∂D)

for all k [17, p. 38]. Since G is homotopy equivalent to D, we have Hk(G) ∼= Hk(D). Putting
everything together, from the cohomology long exact sequence of the pair (D, ∂D) we get the
following exact sequence

(3) Hk(X,U)→ Hk(G)→ Hk+1(Y,U)
γ∗k+1→ Hk+1(X,U)

for all k ≥ 1, where γ∗k+1 denotes the pull-back. Observe that since Sing(Y ) is finite, we have

Hk(G) = ⊕y∈Sing(Y )H
k(Gy), Hk(B) = ⊕y∈Sing(Y )H

k(By), Hk(∂B) = ⊕y∈Sing(Y )H
k(∂By).

Remark 2.2. Assume that Y is a locally complete intersection variety. From the connectivity
of the link [16, Milnor’s theorem p. 76, and Hamm’s theorem p. 80], it follows that the duality
morphism Hk(Y ) → H2n−k(Y ) is an isomorphism for all k /∈ {n − 1, n, n + 1}, is injective for
k = n − 1, and is surjective for k = n + 1. In particular =(α∗k) = =(β∗k) for all k /∈ {n − 1, n}.
In order to prove this property, we argue as follows. We may assume 0 < k < 2n and n ≥ 2.
From the cohomology long exact sequence of the pair (Y, U) we have:

(4) . . .→Hk(Y,U)→ Hk(Y )→ Hk(U)→ Hk+1(Y, U)→ . . . ,

and by excision Hk(Y, U) ∼= Hk(B, ∂B). Taking into account that each By is contractible and
that ∂By is path connected [16, loc. cit.], from the cohomology long exact sequence of the pair
(B, ∂B) we get H1(B, ∂B) = 0 and Hk(B, ∂B) ∼= Hk−1(∂B) for k ≥ 2. Since

Hk(U) ∼= H2n−k(Y,Sing(Y )),

and H2n−k(Y ) ∼= H2n−k(Y, Sing(Y )) for k ≤ 2n − 2, from (4) we get the exact sequence for
k /∈ {1, 2n− 1} (compare with [15, p. 5]):

Hk−1(∂B)→ Hk(Y )→ H2n−k(Y )→ Hk(∂B).

Each ∂By is (n− 2)-connected by Milnor’s theorem [16, loc. cit.], and it is a compact oriented
real manifold of dimension 2n− 1, in particular hk(∂By) = h2n−1−k(∂By) by Poincaré Duality
[16, p. 91]. It follows that the map Hk(Y )→ H2n−k(Y ) is an isomorphism for

k /∈ {1, n− 1, n, n+ 1, 2n− 1}.
As for the case k = 1 6= n− 1, this follows from (4) because

H1(Y,U) ∼= H1(B, ∂B) = 0,

H1(U) ∼= H2n−1(Y,Sing(Y )) ∼= H2n−1(Y ), and H2(Y, U) ∼= H2(B, ∂B) ∼= H1(∂B) = 0 by
connectivity of the link. When k = 2n− 1 6= n+ 1, we have

H2n−1(Y,U) ∼= H2n−1(B, ∂B) = H2n−2(∂B) = 0.

Thus, H2n−1(Y ) ↪→ H2n−1(U). On the other hand H1(Y ) ↪→ H1(Y,Sing(Y )) ∼= H2n−1(U). It
follows that the duality morphism H2n−1(Y ) → H1(Y ) is injective. Then it is an isomorphism
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because we have just seen, in the case k = 1, that h1(Y ) = h2n−1(Y ). Finally notice that, when
n ≥ 3, from previous analysis and (4) we get the exact sequence:

0→ Hn−1(Y )→ Hn+1(Y )→ Hn−1(∂B)→ Hn(Y )→ Hn(Y )

→ Hn(∂B)→ Hn+1(Y )→ Hn−1(Y )→ 0.

Therefore, the duality morphism

Hn−1(Y )→ Hn+1(Y )

is injective, and the map Hn+1(Y ) → Hn−1(Y ) is onto. This holds true also when n = 2.
In fact, also in this case we have H1(B, ∂B) = 0, which implies that the duality morphism
H1(Y ) → H3(Y ) is injective. Moreover, a similar analysis as before shows that the image of
H3(Y ) and H1(Y ) have the same codimension in H3(U). Thus, they are equal. This concludes
the proof of the claim.

(v) By [31, Lemma 14, p. 351] we have Hk(X,U) ∼= H2n−k(G). Therefore, from the coho-
mology long exact sequence of the pair (X,U) we get a long exact sequence:

(5) . . .→Hk−1(U)→ H2n−k(G)→ Hk(X)
β∗k→ Hk(U)→ . . . .

(vi) For all y ∈ Sing(Y ) set:

Hk
y :=

{
Hk(Gy) if k ≥ n
H2n−k(Gy) if k < n.

Let Hky be the skyscraper sheaf on Y with stalk at y given by Hk
y . Set Hk := ⊕y∈Sing(Y )H

k
y and

Hk := ⊕y∈Sing(Y )Hky . We consider H• as a complex of sheaves on Y with vanishing differentials

dkH• = 0.

Remark 2.3. From the Universal Coefficient Theorem [31, p. 248 ] it follows that the Q-vector
spaces Hn−k and Hn+k are isomorphic for all k. This implies that H•[n] is self-dual, i.e., in
the bounded derived category Db(Y ) of Y we have H•[n] ∼= D(H•[n]). Taking into account that
in H•[n] all the differentials vanish, to prove that H•[n] is self-dual it suffices to prove that the
complexes H•[n] and D(H•[n]) have isomorphic sheaf cohomology. Since H•[n] is supported on
a finite set, this amounts to prove that H•[n] and D(H•[n]) have isomorphic hypercohomology,
i.e., that

Hk(H•[n]) ∼= Hk(D(H•[n]))

for all k. But by Poincaré-Verdier Duality [17, p. 69, Theorem 3.3.10] we have:

Hk(D(H•[n])) ∼= H−k(H•[n])∨ ∼= Hn−k(H•)∨ ∼= (Hn−k)∨ ∼= Hn+k ∼= Hk(H•[n]).

(vii) We say that a graded morphism θ• : H•(X) → H•(Y ) is natural if for all k one has
θk ◦ π∗k = idHk(Y ), and the following diagram commutes [14]:

Hk(Y )
θk←− Hk(X)

α∗k↘ ↙β∗k

Hk(U),

i.e., α∗k ◦ θk = β∗k .

Remark 2.4. The existence of a natural graded morphism θ• : H•(X) → H•(Y ) is equivalent
to saying that, for all k, the pull-back π∗k : Hk(Y ) → Hk(X) is injective and =(α∗k) = =(β∗k)
(compare with the proof of (i) =⇒ (ii) in Theorem 3.2 below).
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(viii) We say that a (topological) bivariant class θ ∈ HomDb(Y )(Rπ∗QX ,QY ) is natural if the
induced graded morphism θ• : H•(X)→ H•(Y ) is natural [14], [20].

Remark 2.5. Fix a bivariant class

θ ∈ H0(X
π→ Y ) ∼= HomDb(Y )(Rπ∗QX ,QY ).

Let θ0 : H0(X)→ H0(Y ) be the induced map. Let q ∈ Q be such that

θ0(1X) = q · 1Y ∈ H0(Y ) ∼= Q

[31, p. 238]. Put

deg θ := q.

For all k and all c ∈ Hk(Y ), by the projection formula [20, (G4), (i), p. 26], and [31, 9, p. 251],
we have :

(6) θk(π∗k(c)) = θk(1X ∪ π∗k(c)) = θ0(1X) ∪ c = deg θ · (1Y ∪ c) = deg θ · c.

It follows that for all k one has:

(7) θk ◦ π∗k = deg θ · idHk(Y ).

Next consider the independent square:

U
β
↪→ X

‖ π↓
U

α
↪→ Y

and set θ′ := α∗(θ) ∈ HomDb(U)(QU ,QU ) [20, (G2), p. 26]. Applying [20, (G2), (ii), p. 26] to
the square:

H0(U)
β∗0← H0(X)

θ′0↓ θ0↓
H0(U)

α∗0← H0(Y )

we get

θ′0(1U ) = θ′0(β∗0(1X)) = β∗0(θ0(1X)) = β∗0(deg θ · 1Y ) = deg θ · β∗0(1Y ) = deg θ · 1U .

Since π|U = idU , as in (6) we deduce for all k and all c ∈ Hk(U):

θ′k(c) = θ′k((π|U )∗k(c)) = θ′k(1U ∪ c) = θ′0(1U ) ∪ c = deg θ · (1U ∪ c) = deg θ · c,

i.e.,

(8) θ′k = deg θ · idHk(U).

From [20, (G2), (ii), p. 26] it follows that

(9) deg θ · β∗k = θ′k ◦ β∗k = α∗k ◦ θk
for all k. By (7) and (9) we see that a bivariant class θ is natural if and only if deg θ = 1, and
this is equivalent to saying that β∗k = α∗k ◦ θk for all k. Observe that if θ is a bivariant class with
deg θ 6= 0, then 1

deg θ θ is natural.

(ix) We say that Y is a Q-cohomology (or homology) manifold if for all y ∈ Y and all k 6= 2n
one has Hk(Y, Y \{y}) = 0, and H2n(Y, Y \{y}) ∼= Q [27], [28]. Recall that Y is a Q-intersection
cohomology manifold if IC•Y

∼= QY [n] in Db(Y ), where IC•Y denotes the intersection cohomology
complex of Y [17, p. 156], [27].
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Remark 2.6. By [20, 3.1.4, p. 34] we know that there is a mapping φ : X → Rm such that
(π, φ) : X → Y × Rm is a closed imbedding. In this case one has

H0(X
π→ Y ) ∼= Hm(Y × Rm, Y × Rm\Xφ),

where Xφ is the image of X in Y × Rm. If Y is a Q-cohomology manifold, then by Poincaré-
Alexander-Lefschetz Duality [1, Theorem 1.1] we have:

Hm(Y × Rm, Y × Rm\Xφ) ∼= H2n(X).

It follows that

(10) dimQH
0(X

π→ Y ) = 1.

On the other hand, since U is smooth, we also have [19, Lemma 2 and (26), p. 217]:

H0(U
idU→ U) ∼= Hm(U × Rm, U × Rm\Uφ) ∼= HBM

2n (U) ∼= H0(U) ∼= Q,

where HBM
2n (U) denotes the Borel-Moore homology. Therefore, the pull-back

α∗ : H0(X
π→ Y )→ H0(U

idU→ U)

for bivariant classes identifies with the restriction in Borel-Moore homology:

H2n(X) ∼= HBM
2n (U).

Comparing with (8) and (10), this proves that if Y is a Q-cohomology manifold, then there is a
unique natural bivariant class.

(x) Let I• be an injective resolution of QX . Let J • := π∗(I•) be the derived direct im-
age Rπ∗QX of QX in Db(Y ). When k ≥ 1 the cohomology sheaves Rkπ∗QX = Hk(J •) are
supported on Sing(Y ), and for all y ∈ Sing(Y ) we have Hk(J •)y = Hk(Gy).

Remark 2.7. The complex J •[n] is self-dual. In fact, by [17, p. 69, Proposition 3.3.7, (ii)], we
have:

D(J •[n]) = D(Rπ∗QX [n]) = Rπ∗(D(QX [n])) = Rπ∗(QX [n]) = J •[n].

(xi) Since Y has only isolated singularities, we have [17, Proposition 5.4.4, p. 157]:

(11) IHk(Y ) ∼=


Hk(Y ) if k > n

=(α∗n) if k = n

Hk(U) if k < n.

3. The main results

Theorem 3.1 below is essentially already known. Property (i) implies (ii) by [32, Theorem
1.11, p. 518]. That property (ii) implies (i) is implicit in the argument developed by Navarro
in order to prove [30, (6.3) Corollaire, p. 293] using a relative version of the Hard Lefschetz
Theorem. Here we give a simpler and more direct proof that (ii) implies (i), avoiding the use of
the relative Hard Lefschetz Theorem.

Theorem 3.1. The following properties are equivalent.

(i) In the derived category of Y there is an isomorphism:

Rπ∗QX ∼= IC•Y [−n]⊕H•.

(ii) The map Hk−1(G)→ Hk(Y, U) vanishes for all k > n.



202 VINCENZO DI GENNARO AND DAVIDE FRANCO

The equivalences of properties (v), (vi) and (vii) in the next Theorem 3.2 are already known
[4], [28], [27]. We insert them in the claim for Reader’s convenience. We refer to [27] for other
equivalences concerning a Q-cohomology manifold.

Theorem 3.2. The following properties are equivalent.

(i) The map Hk−1(G)→ Hk(Y,U) vanishes for all k > 0 and the pull-back π∗k is injective.

(ii) There exists a natural graded morphism θ• : H•(X)→ H•(Y ).

(iii) There exists a natural bivariant class θ ∈ HomDb(Y )(Rπ∗QX ,QY ).

(iv) The natural map H•(Y )→ IH•(Y )is an isomorphism;

(v) Y is a Q-intersection cohomology manifold.

(vi) Y is a Q-cohomology manifold.

(vii) The duality morphism H•(Y )
· ∩[Y ]−→ H2n−•(Y ) is an isomorphism (i.e., Y satisfies

Poincaré Duality).

(viii) In Db(Y ) there exists a decomposition

(12) Rπ∗QX ∼= QY ⊕
⊕
k≥1

Rkπ∗QX [−k].

Moreover, if π : X → Y is the blowing-up of Y along Sing(Y ) with smooth and connected fibres,
then previous properties are equivalent to the following property:

(ix) For all y ∈ Sing(Y ) one has H•(Gy) ∼= H•(Pn−1).

Remark 3.3. (i) Projecting onto QY , from the decomposition (12), we obtain a bivariant class

η ∈ HomDb(Y )(Rπ∗QX ,QY ),

whose induced Gysin morphisms ηk : Hk(X) → Hk(Y ) are surjective. In particular deg η 6= 0.
By Remark 2.6 it follows that 1

deg ηη is the unique natural bivariant class.

(ii) The natural morphism θ• : H•(X) → H•(Y ) is unique and identifies with the push-
forward via Poincaré Duality:

H•(X) ∼= H2n−•(X)→ H2n−•(Y ) ∼= H•(Y ).

In fact, by Remark 2.1 we know that, for k < 2n− 1, the restriction map α∗k : Hk(Y )→ Hk(U)
is nothing but the duality (iso)morphism because Hk(U) ∼= H2n−k(Y ). Therefore, we have

θk = (α∗k)
−1 ◦ β∗k . The case k = 2n − 1 is similar because H1(Y ) ⊆ H2n−1(U) (again compare

with Remark 2.1).

4. Preliminaries

Lemma 4.1. The following sequences are exact:

0→ Hk(Y )
π∗k→ Hk(X)

i∗k→ Hk(G)→ 0 for all k > n,

Hn(Y )
π∗n→ Hn(X)

i∗n→ Hn(G)→ 0,

0→ H2n−k(G)→ Hk(X)
β∗k→ Hk(U)→ 0 for all k < n.
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Proof. By [18, p. 84, 6∗] we know that Hk(Y,Sing(Y )) ∼= Hk(X,G) for all k. Since Sing(Y ) is
finite, we also have Hk(Y, Sing(Y )) ∼= Hk(Y ) for k ≥ 1. Therefore, the long exact sequence of
the pair:

. . .→ Hk(X,G)→ Hk(X)
i∗k→ Hk(G)→ Hk+1(X,G)→ . . .

identifies, when k ≥ 1, with the long exact sequence:

(13) . . .→ Hk(Y )
π∗k→ Hk(X)

i∗k→ Hk(G)→ Hk+1(Y )→ . . . .

In order to prove that the first two sequences are exact, it suffices to prove that i∗k is surjective
for all k ≥ n. To this purpose, let L be a general hyperplane section of Y , and put Y0 := Y \L,
and X0 := π−1(Y0). As before, we have a long exact sequence:

. . .→ Hk(Y0)→ Hk(X0)→ Hk(G)→ Hk+1(Y0)→ . . .

and by Deligne’s theorem [33, Proposition 4.23], we know that the pull-back maps

Hk(X)
i∗k→ Hk(G) and Hk(X0)→ Hk(G)

have the same image. Then we are done. In fact, since Y0 is affine, we have Hk+1(Y0) = 0 for
all k ≥ n by stratified Morse Theory [21, p. 23-24].

In order to examine the last sequence, assume k < n. Then 2n − k > n, and we just proved
that the pull-back H2n−k(X,G) ∼= H2n−k(Y )→ H2n−k(X) is injective. Combining the Poincaré
Duality Theorem with the Lefschetz Duality Theorem [31, p. 297] we have H2n−k(X) ∼= Hk(X)
and H2n−k(X,G) ∼= Hk(U). Therefore, the push-forward Hk(U) → Hk(X) is injective. Hence,
the restriction Hk(X)→ Hk(U) is onto for all k < n. Now our assertion follows from (5). �

Lemma 4.2. Fix an integer k, and let γ∗k : Hk(Y, U) → Hk(X,U) be the pull-back. Assume
that π∗k : Hk(Y )→ Hk(X) is injective. Then the following properties are equivalent.

(i) γ∗k is injective;

(ii) =(α∗k−1) = =(β∗k−1);

(iii) Hk−1(G)→ Hk(Y,U) is the zero map.

Proof. Consider the natural commutative diagram with exact rows:

Hk−1(X)
β∗k−1−→ Hk−1(U) −→ Hk(X,U) −→ Hk(X)

π∗k−1↑ ‖ γ∗k↑ π∗k↑

Hk−1(Y )
α∗k−1−→ Hk−1(U) −→ Hk(Y,U) −→ Hk(Y ).

If γ∗k is injective, then

ker(Hk−1(U)→ Hk(X,U)) = ker(Hk−1(U)→ Hk(Y,U)).

It follows that =(α∗k−1) = =(β∗k−1) because =(α∗k−1) = ker(Hk−1(U)→ Hk(Y,U)) and

=(β∗k−1) = ker(Hk−1(U)→ Hk(X,U)).

Conversely, assume that =(α∗k−1) = =(β∗k−1), and fix an element c ∈ ker γ∗k . Since π∗k is injective,

there exists some c′ ∈ Hk−1(U) which maps to c via Hk−1(U)→ Hk(Y,U). Since c ∈ ker γ∗k , a
fortiori c′ belongs to =(β∗k−1). Hence, c′ ∈ =(α∗k−1) and c = 0. The equivalence of (i) with (iii)
follows from (3). �

Corollary 4.3. Let Hk(G) → H2n−k(G) be the map obtained by composing the map
Hk(G) → H2n−k(X) with the pull-back H2n−k(X) → H2n−k(G). Assume k ≥ n and that
=(α∗k) = =(β∗k). Then the map Hk(G)→ H2n−k(G) is injective.
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Proof. By Lemma 4.1, Lemma 4.2, and (3), we deduce that the map Hk(X,U) → Hk(G) is
onto. Dualizing we get an injective map Hk(G)→ Hk(X,U). We are done because, by excision
and the Lefschetz Duality Theorem [31, p. 298], we have

Hk(X,U) ∼= Hk(D, ∂D) ∼= H2n−k(D) ∼= H2n−k(G).

�

Corollary 4.4. We have:

Hk(X) ∼=

{
IHk(Y )⊕Hk(G) if k > n,

IHk(Y )⊕H2n−k(G) if k < n.

Moreover, if =(α∗n) = =(β∗n), then

Hn(X) ∼= IHn(Y )⊕Hn(G).

Proof. In view of Lemma 4.1 we only have to examine the case k = n. Since β∗n ◦π∗n = α∗n, there
exists a subspace P ⊆ =(π∗n) ⊆ Hn(X), which is mapped isomorphically to

=(β∗n) = =(α∗n) = IHn(Y )

via β∗n. In particular P ∩ kerβ∗n = {0}, and so Hn(X) = IHn(Y ) ⊕ kerβ∗n. On the other hand
kerβ∗n = =(Hn(X,U)→ Hn(X)). By Corollary 4.3 we know that the map Hn(X,U)→ Hn(X)
is injective because so is the composite Hn(X,U) ∼= Hn(G) → Hn(X) → Hn(G). Therefore,
kerβ∗n = =(Hn(X,U)→ Hn(X)) ∼= Hn(X,U) ∼= Hn(G) ∼= Hn(G). �

Lemma 4.5. Assume that =(α∗k) = =(β∗k) for all k ≥ n. Then there is an injective map of
complexes

0→ H• → J •.

Proof. It is enough to prove that for all k there is a monomorphism of sheaves

Hk ↪→ ker (J k → J k+1).

First, we examine the case k ≥ n.
To this aim, set Γ• := Γ(J •) and denote by dk : Γk → Γk+1 the differential. Then we have

Hk(X) = Hk(Γ•). By Lemma 4.1 every element a of Hk = Hk(G) can be lifted to an element
c ∈ ker dk. We claim that every a ∈ Hk(G) can be lifted to an element b ∈ ker dk ⊆ Γ(J k)
which is supported on Sing(Y ). Proving this claim amounts to show that every a ∈ Hk(G) can
be lifted to an element b ∈ ker dk ⊂ Γ(J k) = Γ(Ik) such that b |U= 0 ∈ Γ(J k |U ). But c |U
projects to a cohomology class living in =(Hk(X)→ Hk(U)). By our assumption we have

=(Hk(X)
β∗k→ Hk(U)) = =(Hk(Y )

α∗k→ Hk(U)).

Since

Hk(Y ) ∼= Hk(Y, Sing(Y )) ∼= Hk(X,G)

[18, p. 84, 6∗], we find

=(Hk(Y )
α∗k→ Hk(U)) = =(Hk(X,G)→ Hk(U)).

On the other hand we have

Hk(X,G) ∼= Hk(X,β!QU )

[5, Theorem 12.1], [17, Remark 2.4.5, (ii)]. By definition of direct image with proper support
[24, §2.6], [17, Definition 2.3.21], the sheaf β!QU identifies with the subsheaf of QX consisting
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of sections with support contained in U . It follows that there exists eU ∈ Γ(J k−1 |U ) and
g ∈ Γ(J k) supported in U such that

c |U −dk−1(eU ) = g |U .

Moreover, there exists e ∈ Γ(J k−1) with e |U= eU , because J k−1 is injective (hence flabby).
We conclude that the section

c− g − dk−1(e) ∈ Γ(J k)

is supported on Sing(Y ). Our claim is proved because g + dk−1(e) ∈ Γ(J k) vanishes in Hk(G).
To conclude the proof in the case k ≥ n, fix a basis ar ∈ Hk = Hk(G) and lift every ar to a
br ∈ ker dk ⊆ Γ(J k) as in the claim. We get an isomorphism between Hk(G) and a subspace of
Γ(J k) consisting of sections supported on Sing(Y ). We are done because such an isomorphism
projects to a monomorphism of sheaves Hk ↪→ ker (Jk → Jk+1).

Now we assume k < n.
By Lemma 4.1 every element a of Hk = H2n−k(G) ⊆ Hk(X) can be lifted to an element

c ∈ ker dk. Since a restricts to 0 in Hk(U), there exists e ∈ Γ(J k−1 |U ) such that c |U= dk−1U (e).
Since J k−1 is flabby, we may assume e ∈ Γ(J k−1). Therefore, b := c − dk−1(e) ∈ Γ(J k)
represents a and is supported on Sing(Y ). As in the case k ≥ n, applying this argument to a
basis of Hk = H2n−k(G), we define a monomorphism of sheaves Hk ↪→ ker (J k → J k+1). �

With the same assumption as in Lemma 4.5, let K• be the cokernel of the inclusion
0→ H• → J •:

0→ H• → J • → K• → 0.

All the sheaves of these complexes are injective. Previous sequence gives rise to a long exact
sequence of sheaf cohomology:

. . .→Hk → Hk(J •)→ Hk(K•)→ . . . ,

and for all k ≥ 1 these sheaves are supported on Sing(Y ).

Proposition 4.6. For all k the sequence

0→ Hk → Hk(J •)→ Hk(K•)→ 0

is exact.

Proof. It suffices to prove that the map Hk
y → Hk(J •)y is injective for all y ∈ Sing(Y ) and all

k > 0. If k ≥ n this is obvious because Hk(J •)y = Hk(Gy) = Hk
y . When 1 ≤ k < n we have

Hk
y = H2n−k(Gy). And the map H2n−k(Gy) → Hk(J •)y = Hk(Gy) is injective by Corollary

4.3. �

Lemma 4.7. Let 0 → H• f•→ J • g•→ K• → 0 be an exact sequence of complexes of sheaves.
Assume that H• is a complex of injective sheaves with vanishing differential dkH• = 0 for all k.
The following properties are equivalent.

(i) The sequence coming from the cohomology long exact sequence:

(14) 0→Hk(H•)→ Hk(J •)→ Hk(K•)→ 0

is exact for all k.

(ii) There is a complex map s• : K• → J • such that g• ◦ s• = idK• .
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Proof. We only have to prove that (i) implies (ii).
Since H0 is injective, the exact sequence sequence 0→H0 → J 0 → K0 → 0 admits a section

s0 : K0 → J 0, with g0 ◦ s0 = idK0 . Therefore, we may construct s• = {si}i≥0 using induction
on i. Assume i ≥ 0 and that there are sections s0, . . . , si, with sh : Kh → J h, gh ◦ sh = idKh ,
and sh ◦ dh−1K• = dh−1J • ◦ sh−1 for all 0 ≤ h ≤ i. As before, since Hi+1 is injective and the

sequence 0→Hi+1 → J i+1 → Ki+1 → 0 is exact, there exists a section σi+1 : Ki+1 → J i+1,
with gi+1 ◦ σi+1 = idKi+1 . A priori it may happen that σi+1 ◦ diK• is different from diJ • ◦ si, so

we have to modify σi+1. To this purpose set:

δ := σi+1 ◦ diK• − diJ • ◦ si ∈ Hom(Ki,J i+1).

Since
gi+1 ◦ δ = gi+1 ◦ σi+1 ◦ diK• − gi+1 ◦ diJ • ◦ si = diK• − diK• = 0,

it follows that

(15) =(δ) ⊆ Hi+1.

Since (14) is exact, the map gi sends ker diJ • onto ker diK• , i.e.,

(16) gi(ker diJ •) = ker diK• .

In view of the exactness of the sequence 0 → H• f•→ J • g•→ K• → 0, and of the assumption
diH• = 0, we also have

(17) ker gi = =(f i) ⊆ ker diJ • .

Combining (16) and (17) we deduce that:

(18) ker diJ • = (gi)−1(ker diK•).

In fact, by (16) we have ker diJ • ⊆ (gi)−1(ker diK•). On the other hand, if x ∈ (gi)−1(ker diK•),

then gi(x) ∈ ker diK• , and by (16) we may write gi(x) = gi(y) for some y ∈ ker diJ • . Hence,

x− y ∈ ker gi, and from (17) it follows that x ∈ ker diJ • . From (18) we get:

(19) si(ker diK•) ⊆ ker diJ • .

To prove this, recall that gi ◦ si = idKi . Therefore, gi(si(ker diK•)) = ker diK• , and so, taking into
account (18), we have:

si(ker diK•) ⊆ (gi)−1(ker diK•) = ker diJ • .

By (19) we deduce that:

(20) ker diK• ⊆ ker δ,

and from (15) and (20) we get

δ ∈ Hom(Ki/ ker diK• ,Hi+1).

Since Hi+1 is injective, we may extend δ to a map δ̃ ∈ Hom(Ki+1,Hi+1) such that

(21) δ̃ ◦ diK• = δ.

We have
δ̃ ∈ Hom(Ki+1,J i+1)

because Hi+1 maps to J i+1 via f i+1. Now we define:

si+1 := σi+1 − δ̃.
From (21) it follows that

si+1 ◦ diK• = diJ • ◦ si,
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and since =(δ̃) ⊆ Hi+1, we also have

gi+1 ◦ si+1 = idKi+1 .

�

5. Proof of Theorem 3.1

As we have seen in Section 3, by [32, Theorem 1.11, p. 518] one knows that the Decomposition
Theorem implies (ii). Therefore, we only have to prove that (ii) implies (i).

In view of Lemma 4.1 and Lemma 4.2 we have =(α∗k) = =(β∗k) for all k ≥ n. From Lemma
4.5, Proposition 4.6, and Lemma 4.7, we get:

(22) Rπ∗QX = J • = K• ⊕H•.

Hence, we only have to prove that

K• ∼= ICY [−n],

where IC•Y = ICtopY [−n] denotes the intersection cohomology complex of Y [17, p. 156]. Observe
that the restriction α−1K• of K• to U is QU , and that, by (22), we have K• ∈ Db

c(Y ) [17, p.
81-82]. Therefore, K•[n] is an extension of QU [n] [17, p. 134]. So to prove that K• ∼= ICY [−n]
it suffices to prove that K•[n] ∼= α!∗QU [n], i.e., that K•[n] is the intermediary extension of QU [n]
[17, p.156 and p.135]. By [17, Proposition 5.2.8, p. 135], this in turn reduces to prove that for
all y ∈ Sing(Y ) the following two conditions hold true (iy : {y} → Y denotes the inclusion):

(a) Hki−1y K•[n] = 0 for all k ≥ 0;

(b) Hki!yK•[n] = 0 for all k ≤ 0.

As for condition (a) we notice that [17, p.130]:

Hki−1y K•[n] = Hk(K•[n])y = Hk+n(K•)y,

and Hk+n(K•)y = 0 because J • = K• ⊕ H•, and Hk+n(J •)y = Hk+n(Gy) = Hk+n(H•)y for
k ≥ 0.

For the condition (b), first notice that combining (22) with Remarks 2.3 and 2.7, we deduce
that K•[n] is self-dual. Therefore, condition (b) reduces to (a). In fact, we have [17, p. 130,
proof of Lemma 5.1.15]:

Hki!yK•[n] = H−k(i−1y D(K•[n]))∨ = H−k(i−1y (K•[n]))∨ = H−k+n(K•)∨y = 0

because k ≤ 0.

Remark 5.1. (i) If n = 2, then the map Hk−1(G) → Hk(Y,U) vanishes for all k ≥ n + 2 for
trivial reasons. In view of the connectivity of the link, combining Remark 2.2 with Lemma
4.1 and Lemma 4.2, we see that this holds true also when Y is locally complete intersection.
Therefore, either when n = 2 or when Y is locally complete intersection, in order to deduce the
decomposition (i) in Theorem 3.1, we need only check that the map Hn(G) → Hn+1(Y,U) is
the zero map. On the other hand, the vanishing of the map Hn(G)→ Hn+1(Y, U) is equivalent
to require that the natural map Hn(G)→ Hn(G) ∼= Hn(G)∨ is onto (compare with (3), (5), and
Corollary 4.3). Since Hn(G) is contained in Hn(X) via push-forward (Lemma 4.1), it follows that
the map Hn(G)→ Hn(G) ∼= Hn(G)∨ is onto if and only if Hn(G) is a nondegenerate subspace
of Hn(X) with respect to the natural intersection form Hn(X) × Hn(X) → H0(X) ∼= Q. By
Mumford’s theorem [23], [29] we know this holds true when Y is a normal surface. Therefore,
in the case Y is a normal surface (or when 2 dimG < n), our Theorem 3.1 gives a new and
simplified proof of the Decomposition Theorem for π : X → Y .
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(ii) Assume that π : X → Y is the blowing-up of Y along Sing(Y ), with smooth and connected
fibres. By Poincaré Duality we have H2n−k(Gy) ∼= Hk−2(Gy) for all y ∈ Sing(Y ). It follows
that Hk(X,U) ∼= H2n−k(G) ∼= ⊕y∈Sing(Y )H2n−k(Gy) ∼= ⊕y∈Sing(Y )H

k−2(Gy). Hence, the map

Hk(X,U) → Hk(G) identifies with the map ⊕y∈Sing(Y )H
k−2(Gy) → ⊕y∈Sing(Y )H

k(Gy) given,

on each summandHk−2(Gy)→ Hk(Gy), by the self-intersection formula, i.e., by the cup-product
with the first Chern class c1(Ny) ∈ H2(Gy) of the normal bundle Ny of Gy in X. Since π is the
blowing-up along the finite set Sing(Y ), the dual normal bundle N∨y

∼= OGy
(1) is ample for all

y ∈ Sing(Y ). From the Hard Lefschetz Theorem it follows that the map Hk−2(Gy)→ Hk(Gy) is
onto for all k ≥ n, and so also the map Hk(X,U)→ Hk(G) is. By (3), this implies the vanishing
of the map Hk(G)→ Hk+1(Y, U). Therefore, also in this case our Theorem 3.1 gives a new and
simplified proof of the Decomposition Theorem for π.

(iii) More generally, assume only that the fibres of π : X → Y are smooth and connected,
so that π is not necessarily the blowing-up along Sing(Y ). Using the extension of the Hard
Lefschetz Theorem to bundles of higher rank due to Bloch and Gieseker [3], [25], with a similar
argument as before one proves that if the dual normal bundle N∨y of Gy in X is ample for all

y ∈ Sing(Y ), then the map Hk(G)→ Hk+1(Y, U) vanishes for all k ≥ n. In fact, set

hy := dimX − dimGy

for all y ∈ Sing(Y ). Now the map Hk(X,U)→ Hk(G) identifies with the map

⊕y∈Sing(Y )H
k−2hy (Gy)→ ⊕y∈Sing(Y )H

k(Gy)

given, on each summand Hk−2hy (Gy)→ Hk(Gy), by the cup-product with the top Chern class
chy (Ny) = (−1)hychy (N∨y ) ∈ H2hy (Gy) of the normal bundle Ny of Gy in X. And such a map
is onto for k ≥ n by the quoted extension of the Hard Lefschetz Theorem, because N∨y is ample.
We refer to [15, Proposition 2.12 and proof] for examples of resolution of singularities verifying
previous assumptions.

6. Proof of Theorem 3.2

(i) =⇒ (ii) By Lemma 4.1 and Lemma 4.2 we have =(α∗k) = =(β∗k) for all k. Let
y1, . . . , ya, ya+1, . . . , yb be a basis of Hk(Y ) such that α∗ky1, . . . , α

∗
kya is a basis for =(α∗k) = =(β∗k),

and ya+1, . . . , yb a basis for kerα∗k. Since π∗k(kerα∗k) ⊆ kerβ∗k , we may extend π∗kya+1, . . . , π
∗
kyb

to a basis π∗kya+1, . . . , π
∗
kyb, xb+1, . . . , xc of kerβ∗k . Then

π∗ky1, . . . , π
∗
kya, π

∗
kya+1, . . . , π

∗
kyb, xb+1, . . . , xc

is a basis for Hk(X). Define θk : Hk(X) → Hk(Y ) setting θk(π∗k(yi)) := yi, and θk(xi) := 0.
Then θ• is a natural morphism.

(ii) =⇒ (i) The existence of a natural morphism implies that π∗k is injective and
=(β∗k) ⊆ =(α∗k) for all k. Since in general we have =(α∗k) ⊆ =(β∗k), it follows that =(α∗k) = =(β∗k)
for all k. By Lemma 4.1 and Lemma 4.2 we get (i).

(ii) =⇒ (iv) Since π∗k is injective for all k, using (13) we get a short exact sequence:

0→ Hk(Y )
π∗k→ Hk(X)

i∗k→ Hk(G)→ 0

for all k ≥ 1. In particular, for k ≥ 1, we have

(23) Hk(X) ∼= Hk(Y )⊕Hk(G).
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On the other hand, since θk ◦ π∗k = idHk(Y ), the short exact sequence

0→ ker θk → Hk(X)
θk→ Hk(Y )→ 0

admits π∗k as a section. It follows another decomposition:

(24) Hk(X) = π∗kH
k(Y )⊕ ker θk.

Comparing (23) with (24) we see that

ker θk ∼= Hk(G)

for all k ≥ 1. On the other hand, since α∗k ◦ θk = β∗k , we have

(25) ker θk ⊆ ker(Hk(X)
β∗k→ Hk(U)) = =(Hk(X,U)→ Hk(X)).

Since Hk(X,U) ∼= H2n−k(G), it follows that

(26) dimHk(G) ≤ dimH2n−k(G)

for all k ≥ 1. By the Universal-coefficient formula [31, p. 248 ] we deduce that, for 1 ≤ k ≤ 2n−1,

(27) ker θk ∼= Hk(G) ∼= H2n−k(G).

Taking into account that =(α∗n) = =(β∗n), combining (23), (27) and Corollary 4.4, it follows
that dimHk(Y ) = dim IHk(Y ) for all k. Therefore, by (11), it suffices to prove that

α∗k : Hk(Y )→ Hk(U)

is surjective for all k < n. To this purpose notice that, for k < n, β∗k is surjective by Lemma 4.1.
This implies that also α∗k is by (24) and (25) (compare with diagram (2)).

(iv) =⇒ (vii) Since intersection cohomology verifies Poincaré Duality [17, p. 158], we have:

Hh(Y ) = IHh(Y ) = (IH2(m+1)−h(Y ))∨ = (H2(m+1)−h(Y ))∨ = H2(m+1)−h(Y ).

(vii) =⇒ (iv) This follows from (11) and Remark 2.1.

(v) ⇐⇒ (vi) ⇐⇒ (vii) By [28, Theorem 2, Lemma 2, Lemma 3] we know that the duality
morphism is an isomorphism if and only if Y is a Q-cohomology manifold, which is equivalent
to saying that Y is a Q-intersection cohomology manifold by [27, Theorem 1.1] (compare also
with [4]).

(vii) =⇒ (ii) Denote by dYk : Hk(Y )→ H2n−k(Y ) the duality isomorphism, by

dXk : Hk(X) ∼= H2n−k(X)

the Poincaré Duality isomorphism, by π∗,k : H2n−k(X) → H2n−k(Y ) the push-forward. Set
θk : Hk(X)→ Hk(Y ) with

θk := (dYk )−1 ◦ π∗,k ◦ dXk .
Then θ• is a natural morphism.

(iii) ⇐⇒ (ii) We only have to prove that (ii) implies (iii). This follows from Remark 2.6
because Y is a Q-cohomology manifold.

(ii) =⇒ (viii) Since Y is a Q-intersection cohomology manifold, combining (27) with Theorem
3.1, we get:

Rπ∗QX ∼= QY ⊕H• ∼= QY ⊕
⊕
k≥1

Rkπ∗QX [−k].
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(viii) =⇒ (ii) See Remark 3.3, (i).

(ii) ⇐⇒ (ix) By [27, Theorem 1.1] we deduce that Y is a Q-intersection cohomology manifold
if and only if for all y ∈ Sing(Y ) the link ∂By has the same Q-homology type as a sphere S2n−1.
On the other hand, via deformation to the normal cone, we may identify ∂By with the link of
the vertex of the projective cone over Gy ⊆ PN−1. Restricting the Hopf bundle S2N−1 → PN−1
to Gy, we obtain an S1-bundle ∂By → Gy inducing the Thom-Gysin sequence [31, p. 260]

· · · → Hk(Gy)→ Hk(∂By)→ Hk−1(Gy)→ Hk+1(Gy)→ Hk+1(∂By)→ . . .

And this sequence implies that ∂By has the same Q-homology type as a sphere S2n−1 if and
only if H•(Gy) ∼= H•(Pn−1).

Remark 6.1. By (26) it follows that h2(G) ≤ h2n−2(G). Therefore, if Y is a Q-cohomology
manifold, then dimG = 0 or dimG = n− 1.
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Davide Franco , Università di Napoli “Federico II”, Dipartimento di Matematica e Applicazioni “R.
Caccioppoli”, P.le Tecchio 80, 80125 Napoli, Italy.

E-mail address: davide.franco@unina.it

https://doi.org/10.1007/978-4-431-55081-5
https://doi.org/10.1007/978-3-642-82783-9
https://doi.org/10.1142/S0129167X0900539X
https://doi.org/10.1112/jlms/s2-16.1.149
https://doi.org/10.1090/pspum/040.2/713277


Journal of Singularities
Volume 16 (2017), 212-227

received: 3 May 2017
in revised form: 9 October 2017

DOI: 10.5427/jsing.2017.16k

EULER CHARACTERISTIC RECIPROCITY FOR CHROMATIC, FLOW

AND ORDER POLYNOMIALS

TAKAHIRO HASEBE, TOSHINORI MIYATANI, AND MASAHIKO YOSHINAGA

Abstract. The Euler characteristic of a semialgebraic set can be considered as a general-
ization of the cardinality of a finite set. An advantage of semialgebraic sets is that we can

define “negative sets” to be the sets with negative Euler characteristics. Applying this idea to

posets, we introduce the notion of semialgebraic posets. Using “negative posets”, we establish
Stanley’s reciprocity theorems for order polynomials at the level of Euler characteristics. We

also formulate the Euler characteristic reciprocities for chromatic and flow polynomials.

1. Introduction

Let P be a finite poset. The order polynomial O≤(P, t) ∈ Q[t] and the strict order polynomial
O<(P, t) ∈ Q[t] are polynomials which satisfy

O≤(P, n) = # Hom≤(P, [n]),

O<(P, n) = # Hom<(P, [n]),
(1)

where [n] = {1, . . . , n} with the usual ordering and

Hom≤(<)(P, [n]) = {f : P −→ [n] | x < y =⇒ f(x) ≤ (<)f(y)}

is the set of increasing (resp. strictly increasing) maps.
These two polynomials are related to each other by the following reciprocity theorem proved

by Stanley ([10, 11], see also [1, 3, 4] for recent surveys).

(2) O<(P, t) = (−1)#P · O≤(P,−t).

By putting t = n, the formula (2) can be informally presented as follows.

(3) “ # Hom<(P, [n]) = (−1)#P ·# Hom≤(P, [−n]). ”

It is a natural problem to extend the above reciprocity to homomorphisms between arbitrary
(finite) posets P and Q. We may expect a formula of the following type.

(4) “ # Hom<(P,Q) = (−1)#P ·# Hom≤(P,−Q). ”

Of course this is not a mathematically justified formula. In fact, we do not have the notion of a
“negative poset −Q.”

In [9], Schanuel discussed what “negative sets” should be. A possible answer is that a negative
set is nothing but a semialgebraic set which has a negative Euler characteristic (Table 1). For

Finite set Semialgebraic set
Cardinality Euler characteristic

Table 1. Negative sets
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example, the open simplex
◦
σd = {(x1, . . . , xd) ∈ Rd | 0 < x1 < · · · < xd < 1}

has the Euler characteristic e(
◦
σd) = (−1)d, and the closed simplex

σd = {(x1, . . . , xd) ∈ Rd | 0 ≤ x1 ≤ · · · ≤ xd ≤ 1}
has e(σd) = 1. Thus we have the following “reciprocity”

(5) e(
◦
σd) = (−1)d · e(σd).

This formula looks like Stanley’s reciprocity (2). This analogy would indicate that (2) could be
explained via the computations of Euler characteristic of certain semialgebraic sets.

In this paper, by introducing the notion of semialgebraic posets, we settle Euler characteristic
reciprocity theorems for poset homomorphisms. Semialgebraic posets also provide a rigorous
formulation for the reciprocity (4). A similar idea works also for reciprocities of chromatic and
flow polynomials.

Briefly, a semialgebraic poset P is a semialgebraic set with poset structure such that the
ordering is defined semialgebraically (see Definition 2.2). Finite posets and the open interval
(0, 1) ⊂ R are examples of semialgebraic posets. A semialgebraic poset P has the Euler charac-
teristic e(P ) ∈ Z which is an invariant of semialgebraic structure of P (see §2.1). In particular,
if P is a finite poset, then e(P ) = #P , and if P is the open interval (0, 1), then e((0, 1)) = −1.

The philosophy presented in the literature [9] leads one to consider the “moduli space”

Hom≤(<)(P,Q) of poset homomorphisms from a finite poset P to a semialgebraic poset Q, and
then to compute the Euler characteristic of the moduli space instead of counting the number of
maps.

Considering the space Hom≤(<)(P,Q) itself and its Euler characteristic is not a new idea for
the chromatic theory of finite graphs. For example, in [8], the Euler characteristic of the space
of colorings is explored, and in [14] the functorial aspects of colorings are studied. The essential
reasons why the Euler characteristic works well in these situations are its additivity properties
and its consistency with the inclusion-exclusion principle.

The point of the present paper is to introduce the negative of a poset Q in the category
of semialgebraic posets. We define −Q := Q × (0, 1) (See Definition 3.1). Then we have
e(−Q) = −e(Q). Furthermore, we have the following result.

Theorem 1.1 (Proposition 2.8 and Theorems 3.3, 3.7). Let P be a finite poset and Q be a
semialgebraic poset.

(i) Hom≤(P,Q) and Hom<(P,Q) possess the structure of semialgebraic sets.
(ii) The following reciprocity of Euler characteristics holds,

e(Hom<(P,±Q)) = (−1)#P · e(Hom≤(P,∓Q)).

(iii) Let T be a semialgebraic totally ordered set. Then

e(Hom≤(P, T )) = O≤(P, e(T )),

e(Hom<(P, T )) = O<(P, e(T )).

The most important result is the second assertion (ii) which is a rigorous formulation of the
reciprocity (4). It should be emphasized that (ii) is a substantially new result since Q need not be
a totally ordered set. When we specialize to the totally ordered sets Q = [n] and T = [n]×(0, 1),
our (ii) and (iii) recover Stanley’s reciprocity (2) for order polynomials (see §3.3).

Similar Euler characteristic reciprocities are obtained also for Stanley’s chromatic polynomials
reciprocity [12] and for Breuer and Sanyal’s flow polynomials reciprocity [6].
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This paper is organized as follows. In §2, we introduce semialgebraic posets, semialgebraic
abelian groups and Euler characteristics. In §3, we prove the main result, Theorem 1.1 (ii). The
proof is based on topological (cut and paste) arguments. We also deduce Stanley’s reciprocity (2)
from the main theorem. In §4, we describe other Euler characteristic reciprocities for chromatic
polynomials of simple graphs and flow polynomials of oriented graphs.

2. Semialgebraic posets and Euler characteristics

2.1. Semialgebraic sets. A subset X ⊂ Rn is said to be a semialgebraic set if it is expressed
as a Boolean connection (i.e., a set expressed by a finite combination of ∪,∩ and complements)
of subsets of the form

{x ∈ Rn | p(x) > 0},
where p(x) ∈ R[x1, . . . , xn] is a polynomial. Let f : X −→ Y be a map (not necessarily con-
tinuous) between semialgebraic sets X ⊂ Rn and Y ⊂ Rm. It is called semialgebraic if the
graph

Γ(f) = {(x, f(x)) | x ∈ X} ⊂ Rm+n

is a semialgebraic set. If f is semialgebraic then the pull-back f−1(Y ) and the image f(X) are
also semialgebraic sets (see [2, 5] for details).

Any semialgebraic set X has a finite partition into Nash cells (see [7] for details), namely, a

partition X =
⊔k
α=1Xα such that Xα is Nash diffeomorphic (that is a semialgebraic analytic

diffeomorphism) to the open cell (0, 1)dα for some dα ≥ 0. Then the Euler characteristic

(6) e(X) :=

k∑
α=1

(−1)dα

is independent of the partition [7]. Moreover, the Euler characteristic satisfies

e(X t Y ) = e(X) + e(Y ),

e(X × Y ) = e(X)× e(Y ).

Example 2.1. As mentioned in §1, the closed simplex σd and the open simplex
◦
σd have e(σd) = 1

and e(
◦
σd) = (−1)d.

2.2. Semialgebraic posets.

Definition 2.2. (P,≤) is called a semialgebraic poset if

(a) (P,≤) is a partially ordered set, and
(b) there is an injection i : P ↪→ Rn (n ≥ 0) such that the image i(P ) is a semialgebraic set

and the image of

{(x, y) ∈ P × P | x ≤ y}
by the map i× i : P × P −→ Rn × Rn, is also a semialgebraic subset of Rn × Rn.

Let P and Q be semialgebraic posets. The set of homomorphisms (strict homomorphisms) of
semialgebraic posets is defined by

(7) Hom≤(<)(P,Q) =

{
f : P −→ Q

∣∣∣∣ f is a semialgebraic map s.t.
x < y =⇒ f(x) ≤ (<)f(y)

}
.

Example 2.3. (a) A finite poset (P,≤) admits the structure of a semialgebraic poset, since
any finite subset in Rn is a semialgebraic set. A finite poset has the Euler characteristic
e(P ) = #P .
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(b) The open interval (0, 1) and the closed interval [0, 1] are semialgebraic posets with respect
to the usual ordering induced from R. Their Euler characteristics are e((0, 1)) = −1 and
e([0, 1]) = 1, respectively.

In this paper, we always consider the following lexicographic ordering on the product P ×Q.

Definition 2.4. Let P and Q be posets. Define an ordering on P ×Q by

(p1, q1) ≤ (p2, q2)⇐⇒
{
p1 < p2, or
p1 = p2 and q1 ≤ q2,

for (pi, qi) ∈ P ×Q.

Remark 2.5. There are several ways to define poset structures on the product P ×Q. However,
the lexicographic ordering in Definition 2.4 seems to be the only one that works for our purposes.
In particular, the decomposition (18) in §3.2 is crucial.

Proposition 2.6. Let P and Q be semialgebraic posets. Then the product poset P ×Q (with
lexicographic ordering) admits the structure of a semialgebraic poset.

Proof. Suppose P ⊂ Rn and Q ⊂ Rm. Then

{((p1, q1), (p2, q2)) ∈ (P ×Q)2 | (p1, q1) ≤ (p2, q2)}
= {(p1, q1, p2, q2) ∈ (P ×Q)2 | (p1 < p2) or (p1 = p2 and q1 ≤ q2)}
'
(
{(p1, p2) ∈ P 2 | p1 < p2} ×Q2

)
t
(
P × {(q1, q2) ∈ Q2 | q1 ≤ q2}

)
is also semialgebraic since semialgebraicity is preserved by disjoint union, complement and Carte-
sian products. �

Proposition 2.7. Let P and Q be semialgebraic posets. Then the projection onto the first
factor π : P ×Q −→ P is a homomorphism of semialgebraic posets.

Proof. This is straightforward from the definition of the lexicographic ordering. �

The next result shows that the “moduli space” of homomorphisms from a finite poset to a
semialgebraic poset has the structure of a semialgebraic set.

Proposition 2.8 (Theorem 1.1 (i)). Let P be a finite poset and Q be a semialgebraic poset.

Then Hom≤(P,Q) and Hom<(P,Q) have structures of semialgebraic sets.

Proof. Let us set P = {p1, . . . , pn} and L = {(i, j) | pi < pj}. Since each element

f ∈ Hom≤(P,Q) can be identified with the tuple (f(p1), . . . , f(pn)) ∈ Qn, we have the ex-
pression

Hom≤(P,Q) ' {(q1, . . . , qn) ∈ Qn | qi ≤ qj for (i, j) ∈ L}

=
⋂

(i,j)∈L

{(q1, . . . , qn) ∈ Qn | qi ≤ qj}.

Clearly, the right-hand side is a semialgebraic set.
The semialgebraicity of Hom<(P,Q) is proved similarly. �
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2.3. Semialgebraic abelian groups. An abelian group (A,+) is called a semialgebraic abelian
group if there exists an injection i : A ↪→ Rn (n ≥ 0) such that the image i(A) is a semialgebraic
set and the maps

+: i(A)× i(A) −→ i(A), (i(x), i(y)) 7−→ i(x+ y)

(−1) : i(A) −→ i(A), i(x) 7−→ i(−x)

are semialgebraic maps. Finite abelian groups and the set of all real numbers R are semialgebraic
abelian groups.

It is easy to see that if A1 and A2 are semialgebraic abelian groups, then so is the product
A1 ×A2.

3. Euler characteristic reciprocity

3.1. The main result.

Definition 3.1. For a semialgebraic poset Q, let us define the negative by −Q := Q × (0, 1).
(Recall that we consider the lexicographic ordering on −Q.)

Remark 3.2. Note that since −(−Q) = (Q× (0, 1))× (0, 1), −(−Q) is not equal to Q.

The main theorem of this paper is the following.

Theorem 3.3 (Theorem 1.1 (ii)). Let P be a finite poset and Q be a semialgebraic poset. Then

e(Hom<(P,±Q)) = (−1)#P · e(Hom≤(P,∓Q)).

In other words,

(8) e(Hom<(P,Q)) = (−1)#P · e(Hom≤(P,Q× (0, 1)))

and

(9) e(Hom<(P,Q× (0, 1))) = (−1)#P · e(Hom≤(P,Q))

hold.

Note that since −(−Q) 6= Q (Remark 3.2), two formulas (8) and (9) are not equivalent.
Before the proof of Theorem 3.3, we present an example which illustrates the main idea of

the proof.

Example 3.4. Let P = Q = {1, 2} with 1 < 2. Clearly we have

Hom<(P,Q) = {id}.

Let us describe Hom≤(P,Q × (0, 1)). Note that Q × (0, 1) is isomorphic to the semialgebraic
totally ordered set (1, 32 ) t (2, 52 ) by the isomorphism

ϕ : Q× (0, 1) −→
(

1,
3

2

)
t
(

2,
5

2

)
, (a, t) 7−→ a+

t

2
.

A homomorphism f ∈ Hom≤(P,Q × (0, 1)) is described by the two values f(1) = (a1, t1) and
f(2) = (a2, t2) ∈ Q × (0, 1). The condition imposed on a1, a2, t1 and t2 (by the inequality
f(1) ≤ f(2)) is

(a1 < a2), or (a1 = a2 and t1 ≤ t2),

which is equivalent to a1 + t1
2 ≤ a2 + t2

2 . Therefore, the semialgebraic set Hom≤(P,Q × (0, 1))

can be described as in Figure 1. Each diagonal triangle in Figure 1 has a stratification
◦
σ2 t

◦
σ1.

Therefore the Euler characteristic is e(
◦
σ2 t

◦
σ1) = e(

◦
σ2) + e(

◦
σ1) = (−1)2 + (−1)1 = 0. On the
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a1 < a2

a1 = a2 = 1, t1 ≤ t2

a1 = a2 = 2, t1 ≤ t2

Figure 1. f(1) ≤ f(2).

other hand, the square region corresponding to a1 < a2 has the Euler characteristic (−1)2 = 1.
Hence we have

e(Hom≤(P,Q× (0, 1))) = 1 = e(Hom<(P,Q)).

The following lemma will be used in the proof of Theorem 3.3.

Lemma 3.5. Let P ⊂ Rn be a d-dimensional polytope which has a hyperplane description

P = {α1 ≥ 0} ∩ · · · ∩ {αN ≥ 0}

of P where αi are affine maps from Rn to R (see [16]). For a given x0 ∈ P , define the associated
locally closed subset Px0 of P (see Figure 2) by

Px0
=

⋂
αi(x0)=0

{αi ≥ 0} ∩
⋂

αi(x0)>0

{αi > 0}.

Then the Euler characteristic is

e(Px0
) =

{
(−1)d, if x0 ∈

◦
P

0, otherwise (x0 ∈ ∂P ),

where
◦
P is the relative interior of P and ∂P = P r

◦
P .

x0

x0

Figure 2. Px0
.
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Proof. If x0 ∈
◦
P , then Px0 =

◦
P . The Euler characteristic is e(

◦
P ) = (−1)d.

Suppose x0 ∈ ∂P . Then Px0
can be expressed as

(10) Px0
=
⊔
F3x0

◦
F ,

where F runs over the faces of P containing x0 and
◦
F denotes its relative interior. Then we

obtain the decomposition

Px0 =
◦
P t

⊔
F3x0,F⊂∂P

◦
F .

We look at the structure of the second component Z :=
⊔
F3x0,F⊂∂P

◦
F . For any point y ∈ Z,

the segment [x0, y] is contained in Z. Hence Z is contractible open subset of ∂P , which is
homeomorphic to the (d− 1)-dimensional open disk. The Euler characteristic is computed as

e(Px0
) = e(

◦
P ) + e(Z)

= (−1)d + (−1)d−1

= 0.

�

3.2. Proof of the main result. Now we prove Theorem 3.3. The strategy is to decompose
the space Hom≤(P,−Q) into appropriate semialgebraic subsets, and then to apply Lemma 3.5
to compute the Euler characteristics.

We first prove (8). Let ϕ ∈ Hom<(P,Q× (0, 1)). Then ϕ is a pair of maps

ϕ = (f, g),

where f : P −→ Q and g : P −→ (0, 1). Let π1 : Q × (0, 1) −→ Q be the projection onto
the first factor. Since π1 is order-preserving (Proposition 2.7), so is f = π1 ◦ ϕ, and hence

f ∈ Hom≤(P,Q).
In order to compute the Euler characteristics, we consider the map

(11) π1∗ : Hom≤(P,Q× (0, 1)) −→ Hom≤(P,Q), ϕ 7−→ π1 ◦ ϕ = f.

Let us set

M := Hom≤(P,Q) r Hom<(P,Q)

={f ∈ Hom≤(P,Q) | ∃x < y ∈ P s.t. f(x) = f(y)}.
(12)

Then obviously, we have

(13) Hom≤(P,Q) = Hom<(P,Q) tM.

This decomposition induces that of Hom≤(P,Q× (0, 1)),

(14) Hom≤(P,Q× (0, 1)) = π−11∗
(
Hom<(P,Q)

)
t π−11∗ (M).

By the additivity of the Euler characteristics, we obtain

(15) e
(
Hom≤(P,Q× (0, 1))

)
= e

(
π−11∗

(
Hom<(P,Q)

))
+ e(π−11∗ (M)).

We claim the following two equalities which are sufficient for the proof of (8).

e
(
π−11∗

(
Hom<(P,Q)

))
= (−1)#P · e

(
Hom<(P,Q)

)
,(16)

e(π−11∗ (M)) = 0.(17)
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We first prove (16). Let ϕ ∈ π−11∗
(
Hom<(P,Q)

)
, that is ϕ = (f, g) with f ∈ Hom<(P,Q). By

the definition of the ordering of Q× (0, 1), for every g : P −→ (0, 1) the pair (f, g) is contained
in π−11∗

(
Hom<(P,Q)

)
. This implies

(18) π−11∗
(
Hom<(P,Q)

)
' Hom<(P,Q)× (0, 1)#P ,

which yields (16).
The proof of (17) requires further stratification of M . Let

L(P ) := {(p1, p2) ∈ P × P | p1 < p2}.
For given f ∈M , consider the set of collapsing pairs,

K(f) := {(p1, p2) ∈ L(P ) | f(p1) = f(p2)}.
Note that f ∈ M if and only if K(f) 6= ∅. We decompose M according to K(f). Namely, for
any nonempty subset X ⊂ L(P ) define a subset MX ⊂M by

MX := {f ∈M | K(f) = X}.
Since L(P ) is a finite set,

(19) M =
⊔

X⊂L(P )
X 6=∅

MX

is a decomposition of M into finitely many semialgebraic sets. Therefore, we obtain

e(π−11∗ (M)) =
∑

X⊂L(P )
X 6=∅

e(π−11∗ (MX)).

Thus it is enough to show e(π−11∗ (MX)) = 0 for all X ⊂ L(P ) as long as π−11∗ (MX) 6= ∅ (note
that π−11∗ (MX) = ∅ can occur for a nonempty X e.g. when #Q = 1).

Now we fix X ⊂ L(P ) such that π−11∗ (MX) 6= ∅. Then we can show that π−11∗ (MX) −→MX is
a trivial fibration. Indeed, for any f ∈MX , the condition imposed on g by

(f, g) ∈ Hom≤(P,Q× (0, 1))

is
(p1, p2) ∈ X =⇒ g(p1) ≤ g(p2).

Hence the fiber π−11∗ (f) is independent of f ∈MX and isomorphic to

(20) FX := {(tp)p∈P ∈ (0, 1)P | (p1, p2) ∈ X =⇒ tp1 ≤ tp2},
and we have

(21) π−11∗ (MX) 'MX × FX .
The fiber FX is a locally closed polytope defined by the following inequalities.

0 < tp < 1, tp1 ≤ tp2 for (p1, p2) ∈ X.

The closure FX is defined by

FX = {(tp)p∈P ∈ [0, 1]P | tp1 ≤ tp2 for (p1, p2) ∈ X}.

Then FX is equal to the locally closed polytope (FX)x0 associated to the point

x0 = (
1

2
,

1

2
, . . . ,

1

2
) ∈ ∂FX .

Since X 6= ∅, x0 is not contained in the interior of FX . By Lemma 3.5, e(FX) = 0. Together
with (21), we conclude e(π−11∗ (MX)) = 0. This completes the proof of (8) of Theorem 3.3.
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The proof of the other formula (9) is similar to and actually simpler than that of (8) since we
do not need Lemma 3.5. Again the first projection π1 : Q× (0, 1) 7−→ Q induces the map

π1∗ : Hom<(P,Q× (0, 1)) −→ Hom≤(P,Q).

We can prove that this map is surjective and each fiber of π−11∗ (MX) (now X = ∅ is allowed) is
isomorphic to

◦
FX = {(tp)p∈P ∈ (0, 1)P | tp1 < tp2 for all (p1, p2) ∈ X}.

This fiber is an open polytope of dimension #P and hence is isomorphic to (0, 1)#P whose Euler
characteristic is (−1)#P . Thus we obtain

e(Hom<(P,Q× (0, 1))) =
∑

X⊂L(P )

e(π−11∗ (MX)) =
∑

X⊂L(P )

e(MX ×
◦
FX)

=
∑

X⊂L(P )

e(MX) · (−1)#P = (−1)#P · e

 ⊔
X⊂L(P )

MX


= (−1)#P · e(Hom≤(P,Q)).

This completes the proof.

3.3. Stanley’s reciprocity for order polynomials. In this section, we deduce Stanley’s reci-
procity (2) from Theorem 3.3. The idea is to take semialgebraic totally ordered posets as the
target posets.

Example 3.6. Any semialgebraic set X ⊂ R with the induced ordering is a semialgebraic
totally ordered set. Furthermore, since Rn is totally ordered by the lexicographic ordering, any
semialgebraic set X ⊂ Rn admits the structure of a semialgebraic totally ordered set.

The Euler characteristic of Hom≤(P, T ), with T a semialgebraic totally ordered set, can be

computed by using the order polynomial O≤(<)(P, t).

Theorem 3.7 (Theorem 1.1 (iii)). Let P be a finite poset and T be a semialgebraic totally
ordered set. Then

e(Hom≤(P, T )) = O≤(P, e(T )),(22)

e(Hom<(P, T )) = O<(P, e(T )).(23)

Before proving Theorem 3.7, we need several lemmas on the Euler characteristics of configu-
ration spaces.

Definition 3.8. Let X be a semialgebraic set. The ordered configuration space of n-points on
X, denoted by Cn(X), is defined by

Cn(X) = {(x1, . . . , xn) ∈ Xn | xi 6= xj if i 6= j}.

Lemma 3.9. e(Cn(X)) = e(X) · (e(X)− 1) · · · (e(X)− n+ 1).

Proof. It is proved by induction. When n = 1, it is obvious from C1(X) = X. Suppose n > 1.
Consider the projection

π : Cn(X) −→ Cn−1(X), (x1, . . . , xn) 7−→ (x1, . . . , xn−1).

Then the fiber of π at the point (x1, . . . , xn−1) ∈ Cn−1(X) is

X r {x1, . . . , xn−1},
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which has the Euler characteristic

e(X r {x1, . . . , xn−1}) = e(X)− (n− 1).

Therefore, from the inductive assumption, we have

e(Cn(X)) = e(Cn−1(X)) · (e(X)− n+ 1)

= e(X) · (e(X)− 1) · · · (e(X)− n+ 1).

�

Remark 3.10. We will give a stronger result later (Theorem 4.2 and Corollary 4.3).

Lemma 3.11. Let T be a semialgebraic totally ordered set. Then

(24) e(Hom<([n], T )) =
e(T ) · (e(T )− 1) · · · (e(T )− n+ 1)

n!
.

Proof. The set
Hom<([n], T ) = {(x1, . . . , xn) ∈ Tn | x1 < · · · < xn}

is obviously a subset of the configuration space Cn(T ). Moreover, using the natural action of
the symmetric group Sn on Cn(T ) and the fact that T is totally ordered, we have

Cn(T ) =
⊔

σ∈Sn

σ(Hom<([n], T )).

Since the group action preserves the Euler characteristic, we obtain the following.

e(Cn(T )) = n! · e(Hom<([n], T )).

�

Proof of Theorem 3.7. We fix ε ∈ {≤, <}. Let f ∈ Homε(P, T ). Since P is a finite poset,
the image f(P ) ⊂ T is a finite totally ordered set. Suppose #f(P ) = k. Then the map f is
decomposed as

f : P
α−→ [k]

β−→ T,

where α : P −→ [k] is surjective while β : [k] −→ T is injective. Hence β can be considered as an
element of Hom<([k], T ), and we have the following decomposition,

(25) Homε(P, T ) =
⊔
k≥1

Homε,surj(P, [k])×Hom<([k], T ),

where Homε,surj(P, [k]) is the set of surjective maps in Homε(P, [k]). By putting T = [n] and
then extending n to real numbers t, we obtain the expression for the (strict) order polynomial,

(26) Oε(P, t) =
∑
k≥1

# Homε,surj(P, [k]) · t(t− 1) · · · (t− k + 1)

k!
,

which was already obtained by Stanley [10, Theorem 1]. Using (25), Lemma 3.11 and (26), we
have

e(Homε(P, T )) =
∑
k≥1

e(Homε,surj(P, [k])) · e(Hom<([k], T ))

=
∑
k≥1

# Homε,surj(P, [k]) · e(T )(e(T )− 1) · · · (e(T )− k + 1)

k!

= Oε(P, e(T )).

This completes the proof of Theorem 3.7. �
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Corollary 3.12. (Stanley’s reciprocity [10]) Let P be a finite poset and n ∈ N. Then

(27) # Hom<(P, [n]) = (−1)#P · O≤(P,−n).

Proof. Since Hom<(P, [n]) is a finite poset, the cardinality is equal to the Euler characteristic:
# Hom<(P, [n]) = e(Hom<(P, [n])). We apply the Euler characteristic reciprocity (Theorem
3.3),

e(Hom<(P, [n])) = (−1)#P · e(Hom≤(P, [n]× (0, 1))).

Note that [n]×(0, 1) is a semialgebraic totally ordered set (with the lexicographic ordering) with
the Euler characteristic e([n]× (0, 1)) = −n. Applying Theorem 3.7, we have

e(Hom≤(P, [n]× (0, 1))) = O≤(P,−n),

which implies (27). �

4. Chromatic and flow polynomials for finite graphs

In this section, we formulate Euler characteristic reciprocities for chromatic polynomials of
finite simple graphs and for flow polynomials of finite oriented graphs.

4.1. Chromatic polynomials. Let G = (V,E) be a finite simple graph with vertex set V and
(un-oriented) edge set E. The chromatic polynomial is a polynomial χ(G, t) ∈ Z[t] which satisfies

χ(G,n) = #{c : V −→ [n] | v1v2 ∈ E =⇒ c(v1) 6= c(v2)},
for all n > 0. The chromatic polynomial is also characterized by the following properties:

• if E = ∅ then χ(G, t) = t#V ;
• if e ∈ E, then χ(G, t) = χ(G − e, t) − χ(G/e, t), where G − e and G/e are the deletion

and the contraction with respect to the edge e, respectively.

(See [15] for these terminologies and basic properties of chromatic polynomials.)

Definition 4.1. Given a set X, define the set of vertex coloring with X (or the graph configu-
ration space) by

(28) χ(G,X) = {c : V −→ X | v1v2 ∈ E =⇒ c(v1) 6= c(v2)}.

The assignment X 7−→ χ(G,X) can be considered as a functor [14]. The space χ(G,X) is
also called the graph (generalized) configuration space [8].

The chromatic polynomial χ(G, t) ∈ Z[t] satisfies χ(G,n) = #χ(G, [n]) for all n ∈ N.
In this section, we investigate the Euler characteristic aspects of the chromatic polynomial

for a finite simple graph.
When X is a semialgebraic set, χ(G,X) is also a semialgebraic set. The following result

generalizes [8, Theorem 2], where the result is proved when X is a complex projective space.

Theorem 4.2. Let G = (V,E) be a finite simple graph and X be a semialgebraic set. Then

(29) e(χ(G,X)) = χ(G, e(X)).

Proof. This result is proved by induction on #E. When E = ∅,
e(χ(G,X)) = e(X#V ) = e(X)#V = χ(G, e(X)).

Suppose e ∈ E. Then we can prove

(30) χ(G− e,X) ' χ(G,X) t χ(G/e,X).

Using the additivity of the Euler characteristic and the recursive relation for the chromatic
polynomial, we obtain (29). �
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Note that for the complete graph G = Kn, χ(Kn, X) is identical to the configuration space
Cn(X) of n-points. Applying Theorem 4.2 to the complete graph Kn (which has the chromatic
polynomial χ(Kn, t) = t(t− 1) · · · (t− n+ 1)), we have the following.

Corollary 4.3. e(Cn(X)) = e(X)(e(X)− 1) · · · (e(X)− n+ 1).

To formulate the reciprocity for chromatic polynomials, we recall the notion of acyclic orien-
tations on a graph G. (See [3, 12] for details.)

Let G = (V,E) be a finite simple graph. The set of edges E can be considered as a subset of

(V × V r ∆)/S2,

where ∆ = {(v, v) | v ∈ V } is the diagonal subset and S2 acts on V ×V by transposition. There
is a natural projection

π : V × V r ∆ −→ (V × V r ∆)/S2.

An edge orientation on G is a subset Ẽ ⊂ V × V r ∆ such that π|Ẽ : Ẽ
'−→ E is a bijec-

tion. An orientation Ẽ is said to contain an oriented cycle, if there exists a cyclic sequence

(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1) ∈ Ẽ for some n > 2. The orientation Ẽ is called acyclic
if it does not contain oriented cycles.

Definition 4.4. Let G = (V,E) be a finite simple graph. Fix an acyclic orientation

Ẽ ⊂ V × V r ∆. Let T be a totally ordered set.

(a) A map c : V −→ T is said to be compatible with Ẽ if

(v, v′) ∈ Ẽ =⇒ c(v) ≤ c(v′).

(b) A map c : V −→ T is said to be strictly compatible with Ẽ if

(v, v′) ∈ Ẽ =⇒ c(v) < c(v′).

We denote the sets of all pairs of an acyclic orientation with a compatible map, and with a
strictly compatible map, by

AOC≤(G,T ) :=

{
(Ẽ, c)

∣∣∣∣∣ Ẽ is an acyclic orientation, and c : V → T

is a map compatible with Ẽ

}
,

and

AOC<(G,T ) :=

{
(Ẽ, c)

∣∣∣∣∣ Ẽ is an acyclic orientation, and c : V → T

is a map strictly compatible with Ẽ

}
,

respectively.
If T is a semialgebraic totally ordered set, then these spaces possess the structure of semial-

gebraic sets. We will see a reciprocity between these two spaces from which Stanley’s reciprocity
for chromatic polynomials is deduced.

It is straightforward that AOC<(G,T ) can be identified with χ(G,T ). In particular, we have

(31) e(AOC<(G,T )) = χ(G, e(T )).

We formulate a reciprocity for chromatic polynomials in terms of Euler characteristics.

Theorem 4.5. Let G = (V,E) be a finite simple graph and T be a semialgebraic totally ordered
set. Then

e(AOC≤(G,T )) = (−1)#V · e(AOC<(G,T × (0, 1))),(32)

e(AOC<(G,T )) = (−1)#V · e(AOC≤(G,T × (0, 1))).(33)
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To prove Theorem 4.5, we give alternative descriptions of AOC≤(<)(G,T ) in terms of poset

homomorphisms and graph configuration spaces. Let Ẽ be an acyclic orientation of G = (V,E).

Then Ẽ determines an ordering on V , called the transitive closure of Ẽ, defined by

v < v′ ⇐⇒ ∃v0, . . . , vn ∈ V s.t.

{
v = v0, v

′ = vn, and

(vi−1, vi) ∈ Ẽ for 1 ≤ i ≤ n.

This ordering defines a poset which we denote by P (V, Ẽ).

A map c : V −→ T is compatible with Ẽ if and only if c is an increasing map from P (V, Ẽ)

to T . Hence the set of maps compatible with Ẽ is identified with Hom≤(P (V, Ẽ), T ). We have
the following decomposition.

(34) AOC≤(G,T ) '
⊔

Ẽ: acyclic ori.

Hom≤(P (V, Ẽ), T ).

Similarly, AOC<(G,T ) is decomposed as follows.

(35) AOC<(G,T ) '
⊔

Ẽ: acyclic ori.

Hom<(P (V, Ẽ), T ).

Proof of Theorem 4.5. We prove (32). Using the above decompositions (34) and (35) together
with Theorem 3.3, we obtain

e(AOC≤(G,T )) = e

 ⊔
Ẽ: acyclic ori.

Hom≤(P (V, Ẽ), T )


=

∑
Ẽ: acyclic ori.

e
(

Hom≤(P (V, Ẽ), T )
)

= (−1)#V ·
∑

Ẽ: acyclic ori.

e
(

Hom<(P (V, Ẽ), T × (0, 1))
)

= (−1)#V · e

 ⊔
Ẽ: acyclic ori.

Hom<(P (V, Ẽ), T × (0, 1))


= (−1)#V · e(AOC<(G,T × (0, 1))).

This completes the proof. The second formula (33) is proved similarly. �

We deduce Stanley’s reciprocity on chromatic polynomials ([12]). Applying Theorem 4.5 and
(31) shows that (note that T × (0, 1) is also a semialgebraic totally ordered set)

e(AOC≤(G,T )) = (−1)#V · e(AOC<(G,T × (0, 1)))

= (−1)#V · χ(G, e(T × (0, 1)

= (−1)#V · χ(G,−e(T )).

Putting T = [n], we have the following Stanley’s reciprocity.

Corollary 4.6. Let G = (V,E) be a finite simple graph and n ∈ N. Then

#AOC≤(G, [n]) = (−1)#V · χ(G,−n).
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4.2. Flow polynomials. This section treats finite oriented graphs that are allowed to have
distinguished multiple edges and loops. Our object is a tuple G = (V,E, h, t) where V and E
are finite sets and h : E −→ V and t : E −→ V are maps. An element of V is called a vertex
and an element of E is called an edge. For an edge e ∈ E, h(e) ∈ V is called the head and
t(e) ∈ V is called the tail. An edge e ∈ E is a loop if h(e) = t(e). In Figure 3, the oriented graph
G has five edges e1, . . . , e5 and their orientations are described by h(e1) = h(e2) = t(e3) = x,
t(e1) = t(e2) = h(e3) = h(e4) = y and t(e4) = h(e5) = t(e5) = z.

An oriented graph G can also be seen as a 1-dimensional CW-complex. The number of
connected components and the 1-st Betti numbers are denoted by b0(G) and b1(G), respectively.
Note that b0(G)− b1(G) = #V −#E. An edge e ∈ E is called a coloop if b0(Gr e) = b0(G) + 1.
The graph in Figure 3 has the unique coloop e4.

Let A be an abelian group. The map f : E −→ A is called an A-flow if f satisfies

(36)
∑

e:h(e)=v

f(e) =
∑

e:t(e)=v

f(e)

for all v ∈ V (see [6, 15] more on the notion of flow and flow polynomials). Let f be an A-flow.
Denote Supp(f) = {e ∈ E | f(e) 6= 0}. An A-flow is called nowhere zero if Supp(f) = E. The
set of all A-flows and nowhere zero A-flows are denoted by F(G,A) and F0(G,A), respectively.

Let A be a semialgebraic abelian group. Then clearly F0(G,A) possesses a structure of a
semialgebraic set.

The flow polynomial is a polynomial φG(t) ∈ Z[t] which satisfies

φG(k) = #F0(G,Z/kZ),

for all k > 0. The flow polynomial is also characterized by the following properties:

• if E = ∅, then φG(t) = 1;
• if e ∈ E is a loop, then φG(t) = (t− 1)φGre(t);
• if e ∈ E is a coloop, then φG(t) = 0;
• if e ∈ E is neither a loop nor a coloop, then φG(t) = φG/e(t)− φGre(t).

Proposition 4.7. Let G be a finite oriented graph, and A be a semialgebraic abelian group.

(a) If e ∈ E is a loop, then F0(G,A) ' (Ar {0})×F0(Gr e,A).
(b) If e ∈ E is a coloop, then F0(G,A) = ∅.
(c) If e ∈ E is neither a loop nor a coloop, then F0(G/e,A) ' F0(G,A) t F0(Gr e,A).

Proof. Straightforward. �

Theorem 4.8. Let G be a finite oriented graph and A be a semialgebraic abelian group. Then
e(F0(G,A)) = φG(e(A)).

Proof. Using Proposition 4.7, it is proved by induction on the number of edges. (See Theorem
4.2.) �

x y z
e2

e1

e3

e4 e5

Figure 3. An oriented graph.
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An oriented graph G is called totally cyclic if every edge is contained in an oriented cycle. Let
σ ⊂ E be a subset of edges and denote by σG the reorientation of G along σ. A subset σ ⊂ E
is a totally cyclic reorientation if σG is totally cyclic.

Let us denote by FT C(G,A) the set of all pairs (f, σ) of the flow f and totally cyclic reori-
entation σ ⊂ E r Supp(f). Namely,

FT C(G,A) =

{
(f, σ)

∣∣∣∣ f ∈ F(G,A), and σ ⊂ E r Supp(f) is a
totally cyclic reorientation for G/ Supp(f)

}
.

For each subset σ ⊂ E, the set of all f with (f, σ) ∈ FT C(G,A) forms a semialgebraic subset of
F(G,A). Therefore FT C(G,A) possesses a structure of semialgebraic set. Let us define −A by

−A := A× R.

The following is proved along the same lines of the proof presented in [6, Appendix A], which
can be considered as a Breuer-Sanyal’s reciprocity at the level of Euler characteristic.

Theorem 4.9. Let G be a finite oriented graph and A be a semialgebraic abelian group. Then

e(FT C(G,±A)) = (−1)b1(G)e(F0(G,∓A)).
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