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THE CHAIN-LEVEL INTERSECTION PRODUCT FOR PL

PSEUDOMANIFOLDS REVISITED

GREG FRIEDMAN

Abstract. We generalize the PL intersection product for chains on PL manifolds and for
intersection chains on PL stratified pseudomanifolds to products of locally finite chains on

non-compact spaces that are natural with respect to restriction to open sets. This is necessary

to sheafify the intersection product, an essential step in proving duality between the Goresky-
MacPherson intersection homology product and the intersection cohomology cup product

pairing recently defined by the author and McClure.
We also provide a correction to the Goresky-MacPherson proof of a version of Poincaré

duality on pseudomanifolds that is used in the construction of the intersection product.

1. Introduction

The purpose of this paper it to construct an intersection product for not-necessarily compact
PL intersection chains on not-necessarily compact PL stratified pseudomanifolds that is natural
with respect to restriction to open sets1. Such a construction is required to sheafify the intersec-
tion product, which will be used in [10] to prove duality between the intersection cohomology cup
product and the Goresky-MacPherson intersection homology intersection product. To explain
more fully, we begin with some background.

Intersection products. The investigation of duality pairings on manifolds using intersection
of geometric objects in general position dates back to Poincaré [22] and Lefschetz [18, 19].
While this point of view was largely supplanted by the development of cohomology and the cup
product, intersection products nonetheless remained relevant. As Dold observes, they are “closer
to geometric intuition and therefore possess considerable heuristic value; they often indicate how
to turn an intuitive geometric result . . . into a rigorous one. . . . Intersection-products can also
serve to compute ^-products in manifolds” [6, Section VIII.13.26].

The importance of intersection products was elevated considerably in the 1980s when Goresky
and MacPherson [12] extended Poincaré duality to piecewise linear (PL) stratified pseudomani-
folds (Definition 2.1), a class of spaces more general than PL manifolds and including, for exam-
ple, irreducible singular varieties. They did this by constructing a new intersection product for a
version of chains called intersection chains. The resulting homology theory is called intersection
homology, and Poincaré duality on pseudomanifolds was first expressed in terms of nonsingular
pairings on certain intersection homology groups. When the space is in fact a manifold, the
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Goresky-MacPherson construction provided a new chain-level definition for the classical inter-
section product. By using the cup product as part of their definition of the intersection product
and by working with PL chains, they avoided many of the complexities and technical difficulties
in Lefschetz’s constructions (cf. [5, Section 1.II.4.D]). For example, PL chains live in the direct
limit of the usual simplicial chain complexes under subdivision, and consequently they are de-
termined by the PL structure of the space but not any specific triangulation choices, making
them more natural geometric objects and simplifying general position requirements.

On pseudomanifolds, the Goresky-MacPherson intersection product is defined on certain pairs
of PL chains in stratified general position, meaning that general position holds within each
manifold stratum of the space. So the the product is not given by a chain map, but it nonetheless
induces pairings on homology. On a compact oriented PL n-manifold M , for example, we obtain
products

(1) Hi(M)⊗Hj(M)→ Hi+j−n(M)

by intersecting representative cycles in general position [12, Section 2], and similarly one can
generalize to products of certain intersection homology groups on pseudomanifolds. In the
manifold case, the product (1) is Poincaré dual to the cup product in cohomology, as we shall
see (Corollary 7.4).

Relationships with other products. This duality between the Goresky-MacPherson inter-
section product and the cup product on compact manifolds is not surprising, as it is well known
that Poincaré duality on manifolds manifests in many forms. Depending on the setting, this can
include nonsingular pairings in homology or cohomology induced by constructions on chains (in-
tersection products), cochains (cup products), differential forms (wedge products), or complexes
of sheaves. Versions of all of these pairings also now exist in the setting of pseudomanifolds uti-
lizing intersection homology and cohomology [12, 13, 3, 11]. However, these various pairings are
not a priori isomorphic in either context, and so it is necessary to develop methods of compari-
son. Such compatibilities are often taken for granted, but they are not always straightforward,
especially those involving intersection products. Even in the manifold case, it can be hard to
come by detailed proofs of the isomorphism between the cohomology cup product and the homol-
ogy intersection product as induced by a chain-level pairing, such as Goresky and MacPherson’s.
For example, in the 1970s Dold [6, Section VIII.13] gave a product on manifolds, defined only
at the level of homology, that is essentially built to be Poincaré dual to the cup product, but it
takes some work to see that this product is induced by some chain-level construction. In fact,
it turns out to be the same homology product as that determined by the Goresky-MacPherson
chain-level product (1) (see Corollary 7.4).

So the relationship between cup and intersection products on compact manifolds really does
end up as expected, and this can be shown using only the tools of classical algebraic topology (see
Section 7). By contrast, the case of intersection homology and cohomology on pseudomanifolds
proves less straightforward. Following the original work of Goresky and MacPherson on inter-
section products [12], many of the standard tools of algebraic topology have since been extended
to intersection homology and cohomology. Very recently this includes cup and cap products and
a Poincaré duality theorem given by cap product with a fundamental class [11, 7]. However,
as we will see in Section 7.1, there does not appear to be a simple way to demonstrate duality
between the cup and intersection products by direct classical means (e.g. without sheaf theory).
Yet the existence of such an isomorphism has important applications. For example, while cup
products are useful theoretical tools, the intersection cohomology cup product does not seem to
admit combinatorial computation as does the ordinary simplicial cup product [7, Introduction
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to Chapter 7], and so the intersection product remains a key computational tool in intersection
homology in the spirit of Dold’s quote above. For a recent interesting example see [26, 27].

Without a proof by classical techniques, it is necessary to utilize other tools to prove that the
intersection homology intersection product is compatible with other products on pseudomani-
folds. The most convenient lingua franca for such comparisons seems to be the derived category
of sheaves, which possesses powerful axiomatic tools for comparing maps [2, Section V.9], and
we pursue this approach in [10]. Products to be considered in [10] include the intersection prod-
uct discussed here, the Goresky-MacPherson sheaf product of [13], the cup product of [11], and
the wedge product of intersection differential forms of Brasselet-Hector-Saralegi [3] and Saralegi
[24, 25]. On manifolds these products reduce to the usual homology/cohomology pairings, and
so we also recover many classical equivalences as special cases.

Sheafification of the intersection product. To carry out the program of [10], it is necessary
to have a version of the chain-level intersection product that can be “sheafified.” While sheafi-
fying cup products of cochains and wedge products of differential forms is straightforward due
to their contravariant functoriality, sheafifying the intersection product is not. In particular, it
requires a version of the intersection product given by chain maps and behaving contravariantly
with respect to the inclusion of open subsets. We thus need a chain-level intersection product
with the following properties2:

(1) The product should be defined on not necessarily compact PL stratified pseudomanifolds.
(2) The product should accept as inputs not necessarily compact PL chains and PL inter-

section chains (sometimes called locally finite or Borel-Moore PL chains) in appropriate
general position.

(3) The product should be natural with respect to restriction to open subsets. For example,
if U ⊂ X is an open subset, ξ and η are appropriate chains, and t denotes the intersection
product, then (ξ t η)|U = ξ|U t η|U in the appropriate chain complex on U .

(4) The product should be formulated in terms of chains maps, not just on pairs of chains
in general position.

We construct such a product, and our main conclusion is the following theorem. Perversities
p̄ and intersection chains I p̄C∞∗ (X) will be reviewed in Section 6.1. The ∞ decorations denote
locally finite chains, and the maps µ are induced by intersections of chains. Other expressions
in the theorem will be explained elsewhere below. The theorem statement itself follows directly
by assembling Definitions 5.15 and 6.3 and Propositions 5.17, 5.18, 6.4, 6.5, 6.7, and 6.9.

Theorem 1.1. Let X be an oriented PL stratified pseudomanifold of dimension n with singular
locus Σ, and let P = (p̄1, p̄2) be a pair of perversities on X. Then there exist well-defined chain
maps

C∞∗ (X,Σ)⊗ C∞∗ (X,Σ)←↩ G∞∗ (X,Σ)
µ−→ C∞∗−n(X,Σ)(2)

I p̄1C∞∗ (X)⊗ I p̄2C∞∗ (X)←↩ G∞,P∗ (X)
µ−→ I p̄1+p̄2C∞∗−n(X)(3)

such that

(1) the leftward inclusion maps are quasi-isomorphisms, i.e. they induce isomorphisms of all
homology groups,

(2) all maps are natural with respect to restrictions to open subsets,

2Another well-known way to sheafify complexes of chains on a space X, including complexes of singular chains,
is via functors U → C∗(X,X − Ū) for open U ⊂ X. However, in the PL setting the sheafification discussed here

is more standard [13, 2] and has several useful sheaf theoretic properties; in particular we obtain a complex of
soft sheaves [2, Section II.5].
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(3) the maps in (3) are restrictions of those in (2) to subcomplexes, and
(4) the maps (3) induce the Goresky-MacPherson intersection homology product on compact

X.

Limiting the discussion momentarily to compact n-manifolds for simplicity, the reader may
be surprised that our intersection products are not given by chain maps of the form

C∗(M)⊗ C∗(M)→ C∗−n(M).

However, general position requirements rule out intersection maps of this form because, for
example, we cannot generally intersect a chain with itself. In fact, there is no hope of producing
a chain map of this form (over Z) that is graded commutative (as is the intersection pairing) and
produces a homology product isomorphic to the cup product. This is a consequence of the failure
of the “commutative cochain problem” (see [14, Section IX.A]). Rather, as an alternative way to
construct a homology intersection product using chain maps, McClure [20] defined the domain
for an arity-k intersection product to be a subcomplex Gk∗(M) ⊂ C∗(M)⊗k of chains satisfying
a suitable notion of general position and such that the inclusion is a quasi-isomorphism. The
chain-level intersection product is then a chain map µk : Gk∗(M)→ C∗(M). In arity 2, one thus
obtains a homology product as the composition

(4) H∗(M)⊗H∗(M)→ H∗(C∗(M)⊗ C∗(M))
∼=←− H∗(G2

∗(M))
µ2−→ H∗−n(M).

A similar construction for intersection chains on pseudomanifolds was given in [8]. Incidentally,

data of the form C∗
q.i.←−− D∗ → E∗, with q.i. denoting a quasi-isomorphism, constitutes the

data of a morphism in the derived category of chain complexes, and so having our intersection
product in this format is perfect for obtaining an intersection product in the derived category of
sheaves in [10].

A correction of the Goresky-MacPherson product. Another feature of this paper is that
we correct a minor error in the Goresky-MacPherson intersection product [12]. The issue occurs
in [12, Appendix] in generalizing Dold’s version of Poincaré duality [6, Proposition VIII.7.2] to
pseudomanifolds. We will explain the error in [12], provide a corrected proof of this pseudoman-
ifold duality isomorphism, and explore some of its properties that we will need. This material
can be found in Section 3, following a detailed treatment of some properties of the Dold duality
isomorphism. Beyond fixing the existing error, we hope that such a detailed discussion will be
a useful expository addition to the literature.

Outline. Sections 2, 4, 5.3, and 6.1 of the paper contain review and foundational development of,
respectively, PL stratified pseudomanifolds, PL chains, the PL cross product, and PL intersection
chains. Section 3.1 contains our study of Dold duality for manifolds, which we then use in Section
3.2 to provide our correction to the proof of Goresky-MacPherson duality for pseudomanifolds,
which is in turn needed for the construction of the intersection product.

Our development of the intersection product properly begins in Section 5. We construct
the intersection product as a chain map on relative chains G∞∗ (X,Σ) → C∞∗ (X,Σ), where
C∞∗ (X,Σ) denotes the complex of locally-finite relative PL chains on X, the subspace Σ is the
locus of singular points of X, and G∞∗ (X,Σ) ⊂ C∞∗ (X,Σ) ⊗ C∞∗ (X,Σ) is the domain complex
consisting of chains satisfying the needed stratified general position requirements. In particular,
if X = M is a manifold (unstratified), then Σ is empty and we obtain an intersection map
G∞∗ (M) → C∞∗ (M). These products generalize the products of compact chains from [20, 8].
The intersection chain version of the product is derived as a consequence in Section 6, and we
show in Proposition 6.9 that in the compact setting it generalizes our product from [8] and the
Goresky-MacPherson intersection product [12].
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In the final section, Section 7, we show that the work of this paper can be applied to give a
short and direct proof that the Goresky-MacPherson homology product of [12], i.e. that induced
by the chain-level intersection product, is Poincaré dual to the cohomology cup product on
compact orientable PL manifolds. As we have noted, such a result is certainly not unexpected
and it does not even employ the full power of our non-compact machinery, but the only other
thorough proof of which the author is aware is that developed in [10] using some heavy sheaf-
theoretic machinery. It is therefore quite reasonable to seek a proof using only standard algebraic
topology techniques, and that is provided here. We also utilize this argument to confirm our
above claim that the Goresky-MacPherson intersection product on the homology of manifolds
agrees with Dold’s homology product from [6, Section VIII.13]. Quite surprisingly, however,
we will demonstrate that the argument given for manifolds does not seem to extend to a proof
of the analogous duality between cup and intersection products for intersection (co)homology
on pseudomanifolds, leaving an open question. We conclude that it seems that sheaf-theoretic
techniques are, for now, necessary for pseudomanifolds, further motivating the work here for
application in [10].

A note on relations to past work. The construction of an intersection product of not-
necessarily-compact intersection chains on not-necessarily-compact pseudomanifolds and the re-
sulting map in the derived category of sheaf complexes was sketched in [8, Remark 4.7]. This
construction relied on a pseudomanifold version of a Poincaré duality isomorphism between
cohomology and locally finite homology on non-compact manifolds provided by Spanier [28].
However, the generalization to pseudomanifolds was not provided in detail in [8]. In any case,
this approach to intersection products remains somewhat unsatisfactory, as Spanier’s isomor-
phisms do not utilize a cap product with a fundamental class but rather a dual approach using
Thom classes. Consequently, there is not an obvious direct way to compare the intersection
product proposed in [8] with those of Goresky-MacPherson, McClure, and the author on com-
pact spaces [12, 20, 8], as we do here. Furthermore, naturality with respect to restriction to open
subsets was never formally verified in [8]. This paper thus remedies several lacunae from [8].

In fact, in our approach here to noncompact intersection products, we do not use at all a global
version of Poincaré duality for noncompact chains as suggested in [8]. Rather, we show that it
is possible to “patch together” local intersection information obtained on compact subsets. This
method has the benefit of making it clear that intersection of chains is completely governed by
local information, a fact that is not always transparent in the previous formulations of intersection
products, even for compact chains. It is this local nature that makes the compatibility with
restrictions to open subsets conceptually obvious, though there are still details to check to
provide a complete proof.

A note on conventions. In [8], following McClure’s conventions in [20], the chain complexes
incorporate some degree shifts in order for the intersection product to be a chain map of degree
0. Additionally, intersection products with more than two input tensor factors were considered,
with the goal of studying partial algebra structures. In the present paper, we simplify somewhat
by restricting to the more traditional two input factors and without shifts, so that our products
will be chain maps of degree −dim(X). The reader should have little difficulty placing the
development here back into the context of [8] if desired. We also generalize somewhat from the
intersection chains used in [8]; there, all perversities were assumed to be traditional perversities,
i.e. those satisfying the original definition of Goresky and MacPherson in [12]. Here, we will
take advantage of the more general notion of perversity, which results in some simplifications. In
particular, a perversity will be any function from the set of singular strata to Z; additionally, our
pseudomanifolds will be allowed codimension one strata. See [9] for a survey or [7] for full details.
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In this context, it makes sense to think of the PL intersection chain complexes as subcomplexes
not of C∗(X) but of C∗(X,Σ), explaining our setting of the intersection product in this context.
Hence we will mostly work with relative chain complexes. We note, however, that when Σ = ∅,
i.e. when X is a PL manifold, then C∗(X,Σ) = C∗(X), and we recover a product on absolute
chains.

2. PL stratified pseudomanifolds

All work in this paper is done in the piecewise linear (PL) category of topological spaces unless
noted otherwise; we refer the reader to [7, Section 2.5 and Appendix B] for a review suited to
our work here or to [23] or [17] as more thorough references. In this section, we provide a quick
review of the essential definitions concerning pseudomanifolds. A review of intersection chains
and intersection homology can be found in Section 6.1, with [7] providing a thorough reference
for all this material.

For a compact PL space K, we let c(K) denote its open cone; if vK is the usual PL cone [23,
page 2] with vertex v, then c(K) = (vK)−K. Note that c(∅) = {v}. If K is a filtered PL space,
meaning that K is endowed with a family of closed PL subspaces

K = Kn ⊃ Kn−1 ⊃ · · · ⊃ K0 ⊃ K−1 = ∅,

we define c(K) to be the filtered space with (c(K))i = c(Ki−1) for i ≥ 0 and (c(K))−1 = ∅. The
definition of stratified pseudomanifold is inductive on the dimension:

Definition 2.1. A 0-dimensional PL stratified pseudomanifold X is a discrete set of points with
the trivial filtration X = X0 ⊃ X−1 = ∅.

An n-dimensional PL stratified pseudomanifold X is a PL space filtered by closed PL subsets

X = Xn ⊃ Xn−1 ⊃ Xn−2 ⊃ · · · ⊃ X0 ⊃ X−1 = ∅
such that

(1) X −Xn−1 is dense in X, and
(2) for each point x ∈ Xi − Xi−1 there exist a neighborhood U of x, a compact n − i − 1

dimensional PL stratified pseudomanifold L, and a PL homeomorphism

φ : Ri × cL→ U

that takes Ri× c(Lj−1) onto Xi+j ∩U for all 0 ≤ j ≤ n− i− 1. A neighborhood U with
this property is called distinguished and L is called a link of x.

The Xi are called skeleta. As the number of skeleta is finite, there exist triangulations of
X with respect to which each Xi is a subcomplex [7, Lemma 2.5.12]; we will refer to such
triangulations as being compatible with the stratification and assume that all triangulations
satisfy this requirement. In general, we say that a triangulation T is compatible with a PL
subspace Y if some subcomplex of T triangulates Y . Note that we abuse notation by referring
to the “triangulation T” without referring separately to the triangulating simplicial complex and
the homeomorphism taking the simplicial complex to the space being triangulated.

We write Xi for Xi − Xi−1; this is a PL i-manifold that may be empty. We refer to the
connected components of the various Xi as strata. If L and L′ are links of points in the same
stratum then they are PL homeomorphic [7, Lemma 2.5.18]. If dim(X) = n then a stratum
Z that is a subset of Xn is called a regular stratum; otherwise it is called a singular stratum.
Note that codimension 1 strata are allowed. The union of the singular strata, which is identical
to Xn−1, is often denoted Σ, or ΣX . The stratified pseudomanifold X is considered oriented if
X − Σ is given an orientation as a PL manifold.
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3. Dold duality for manifolds and Goresky-MacPherson duality for
pseudomanifolds

3.1. Dold duality. In this section we consider Dold’s Poincaré duality isomorphism of [6, Propo-
sition VIII.7.2] in order to obtain some properties we will need and that are not set out explicitly
in [6]. According to [12, Appendix], this isomorphism appears in Whitehead [29] but was first
proven by Dold. The isomorphism will be used below to construct the Goresky-MacPherson du-
ality isomorphism for pseudomanifolds, which in turn will be used for our intersection product.
The results in this section apply for topological manifolds.

The following is Dold’s duality isomorphism, slightly modified:

Theorem 3.1 (Dold). If L ⊂ K are compact subsets of an oriented topological n-manifold M ,
then there is an isomorphism Ȟi(K,L)→ Hn−i(M −L,M −K) induced by the cap product with
a fundamental class ΓK ∈ Hn(M,M −K).

Here Ȟ∗(K,L) is the Čech cohomology of the pair (K,L), which is isomorphic to the direct
limit lim−→H∗(V,W ) as (V,W ) ranges over open neighborhood pairs of (K,L) and the maps of

the direct system are induced by restrictions to subspaces. See [6, Section VIII.6].
More specifically, the Dold duality isomorphism is constructed as follows: First let (V,W ) be

a pair of open neighborhoods of (K,L) and consider the composite

(5) Hi(V,W )
∼=−→ Hi(V −L,W −L)

_jW,K
∗ ΓK−−−−−−−→ Hn−i(V −L, V −K)

∼=−→ Hn−i(M −L,M −K).

The unlabeled maps are induced by inclusions, the leftmost being the excision isomorphism with
L being excised and the rightmost being the excision isomorphism with M − V being excised.
The class ΓK ∈ Hn(M,M −K) is the fundamental class of M over K (see [16, Lemma 3.27] or

[7, Chapter 8]), and jW,K∗ is the composition

(6) H∗(M,M −K)→ H∗(M, (M −K) ∪W )
∼=←− H∗(V − L, (V −K) ∪ (W − L)),

the leftward map being an excision isomorphism that excises the set (M − V ) ∪ L. Dold’s
isomorphism is the direct limit of the composition (5) over all open neighborhoods (V,W ) of
(K,L). See [6] for the proof that this is, in fact, an isomorphism. This is Dold’s version of
Poincaré duality, and the reader may be more convinced of the plausibility of this claim by
drawing some pictures, which, with the help of the right homotopy equivalences, can make the
cap product appearing here look a lot like a more common form of Lefschetz duality.

So that we can later utilize Dold’s isomorphism to obtain chain maps of the appropriate
degree, we adopt the following definition:

Definition 3.2. Define the Dold duality isomorphism D : Ȟi(K,L) → Hn−i(M − L,M −K)
to be (−1)in times the direct limit of the composition (5). The extra sign is necessary to be
consistent with duality maps being chain maps of the appropriate degree at the chain level; see
[8, Section 1.3] or [7, Remark 8.2.2] for details.

We demonstrate the naturality of the Dold duality isomorphism with respect to inclusion
maps in the variables K, L, and M .

Proposition 3.3. Let (K,L) ⊂ (K ′, L′) be pairs of compact subsets of an oriented topological
n-manifold M ′ contained in a larger oriented topological n-manifold M , i.e. M ′ ⊂ M . Then
there is a commutative diagram

Ȟi(K,L) � Ȟi(K ′, L′)

Hn−i(M − L,M −K)

D
?

� Hn−i(M
′ − L′,M ′ −K ′),

D
?
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in which the horizontal maps are induced by inclusions and the vertical maps are Dold duality
isomorphisms.

Proof. Let (V,W ) be a pair of open neighborhoods of (K,L), and, similarly, let (V ′,W ′) be a
pair of open neighborhoods of (K ′, L′). We further suppose that (V,W ) ⊂ (V ′,W ′).

Now consider the following diagram:

Hi(V,W ) � Hi(V ′,W ′) �
=

Hi(V ′,W ′)

Hi(V − L,W − L)

?
� Hi(V ′ − L,W ′ − L)

?
- Hi(V ′ − L′,W ′ − L′)

?

Hn−i(V − L, V −K)

_ jW,K∗ ΓK
?

- Hn−i(V
′ − L, V ′ −K)

_ jW
′,K

∗ ΓK
?

� Hn−i(V
′ − L′, V ′ −K ′)

_ jW
′,K′

∗ ΓK′
?

Hn−i(M − L,M −K)
?

�= Hn−i(M − L,M −K)
?

� Hn−i(M
′ − L′,M ′ −K ′).
?

Here, the unlabeled maps are induced by inclusions,

ΓK ∈ Hn(M,M −K) and ΓK′ ∈ Hn(M ′,M ′ −K ′)

are orientation classes (see [16, Lemma 3.27]), while jW,K∗ is the composite (6). The maps

jW
′,K

∗ and jW
′,K′

∗ are defined analogously. The direct limit over all such (V,W ) ⊃ (K,L)
of the maps down the left side of the diagram is, up to sign (−1)in, the Dold isomorphism
Ȟi(K,L)→ Hn−i(M−L,M−K), and similarly the direct limit over all such (V ′,W ′) ⊃ (K ′, L′)
of the maps down the right side is the Dold isomorphism Ȟi(K ′, L′)→ Hn−i(M

′−L′,M ′−K ′)
up to the same sign. That these limits of maps are well-defined is demonstrated in [6].

Let us observe that the diagram commutes. This is immediate for the squares not involving
cap products. For the squares involving cap products, the commutativity is due to the naturality
of the cap product [6, §VII.12.6]. For the square on the left, we use naturality with respect to
the inclusion map of triples (V − L;V − K,W − L) → (V ′ − L;V ′ − K,W ′ − L), and for the
square on the right, this we use naturality with respect to the inclusion map of triples

(V ′ − L′;V ′ −K ′,W ′ − L′)→ (V ′ − L;V ′ −K,W ′ − L).

To utilize the naturality, we observe that the images of jW,K∗ ΓK and jW
′,K′

∗ ΓK′ under the
respective maps induced by inclusion

Hn(V − L, (V −K) ∪ (W − L))→ Hn(V ′ − L, (V ′ −K) ∪ (W ′ − L))

and

Hn(V ′ − L′, (V ′ −K ′) ∪ (W ′ − L′))→ Hn(V ′ − L, (V ′ −K) ∪ (W ′ − L))

are each indeed jW
′,K

∗ ΓK . This follows from an easy commutative diagram argument, noting
that the image of ΓK′ in Hn(M,M −K) is ΓK , by [16, Lemma 3.27].

An easy diagram chase now shows that the outer square of the diagram commutes, yielding
the commutative square
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Hi(V,W ) � Hi(V ′,W ′)

Hn−i(M − L,M −K)
?

� Hn−i(M
′ − L′,M ′ −K ′),
?

and taking the direct limit over (V,W ) ⊃ (K,L) yields a diagram

Ȟi(K,L) � Hi(V ′,W ′)

Hn−i(M − L,M −K)

D
?

� Hn−i(M
′ − L′,M ′ −K ′),
?

where the lefthand vertical map is Dold’s isomorphism. Lastly, taking the direct limit over
(V ′,W ′) ⊃ (K ′, L′) gives the diagram

Ȟi(K,L) � Ȟi(K ′, L′)

Hn−i(M − L,M −K)

D
?

� Hn−i(M
′ − L′,M ′ −K ′).

D
?

�

We also need to know how Dold’s isomorphism interacts with boundary maps:

Proposition 3.4. Let L ⊂ K ⊂ J be compact subsets of an oriented topological n-manifold M .
The following diagram commutes up to the sign (−1)n:

Ȟi(K,L)
d∗ - Ȟi+1(J,K)

Hn−i(M − L,M −K)

D
? ∂∗- Hn−i−1(M −K,M − J).

D
?

Proof. Consider the following diagram, in which D is the Dold isomorphism but without our
added sign (i.e. D(α) = (−1)|α|nD(α)):

Ȟi(K,L) - Ȟi(K)
d∗ - Ȟi+1(J,K)

Hn−i(M − L,M −K)

D
?

- Hn−i(M,M −K)

D
? ∂∗- Hn−i−1(M −K,M − J).

D
?

The unlabeled maps are induced by inclusions. Each of the squares commute by the arguments
in Case 6 in the proof of [6, Proposition VIII.7.2]. The bottom horizontal composition is equal
to the boundary map in the exact sequence of the triple (M − L,M −K,M − J), as we see by
the natural transformation to the sequence of the triple (M,M −K,M − J):

- Hn−i(M − L,M − J) - Hn−i(M − L,M −K)
∂∗- Hn−i−1(M −K,M − J) -

- Hn−i(M,M − J)
?

- Hn−i(M,M −K)
? ∂∗- Hn−i−1(M −K,M − J)

=
?

-
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Similarly, the composition across the top is the cohomology coboundary map of the triple
(J,K,L) via

- Ȟi(J, L) - Ȟi(K,L)
d∗- Ȟi+1(J,K) -

- Ȟi(J)

?
- Ȟi(K)

?
d∗- Ȟi+1(J,K)

=
?

- .

So, if α ∈ Ȟi(K,L) then

D(d∗(α)) = (−1)(i+1)nD(d∗(α))

= (−1)(i+1)n∂∗(D(α))

= (−1)n∂∗(D(α)).

�

3.2. Goresky-MacPherson duality. In the appendix to [12], Goresky and MacPherson pro-
vide a generalization of the Dold duality isomorphism to PL stratified pseudomanifolds. However,
there is an error in their argument. In this section, we prove a slight modification that does
not claim the full generality of the original Goresky-MacPherson statement but that is sufficient
both for the applications here and in [12].

The setting in [12, Appendix] assumes a compact oriented n-dimensional PL pseudomanifold
X with singular locus Σ and with A ⊂ B two constructible subsets, i.e. unions of interiors of
simplices in some triangulation of X. It is also assumed that B−A ⊂ X−Σ or, equivalently, that
A∩Σ = B∩Σ. The claimed duality isomorphism is of the form Hi(B,A)→ Hn−i(X−A,X−B),
induced by the cap product with the fundamental class. The first step in constructing this
isomorphism, which occurs in the proof of the lemma on page 162, is

“Hi(B,A) ∼= Hi(B ∪ Σ, A ∪ Σ) by excision of Σ− (A ∩ Σ).”

However, this is not always an isomorphism.
For example, consider B = X − Σ and A = ∅, in which case (X − A,X − B) = (X,Σ);

this case is of practical importance to the intersection theory as elements of Hn(X,Σ) arise as
homological representatives of the fundamental class of X in the Goresky-MacPherson version
of the intersection pairing. Note that the requirement B − A = X − Σ ⊂ X − Σ is satisfied
trivially here, and B is constructible as Σ is a subcomplex in any triangulation compatible with
the stratification. But then the excision isomorphism would be Hi(X − Σ) ∼= Hi(X,Σ), which
is false, for example, when i = 0, Σ is neither empty nor all of X, and X is connected.

We will give a construction of the Goresky-MacPherson isomorphism below as Proposition
3.6. Our approach utilizes essentially the same basic ideas as that of Goresky and MacPherson
but avoids the problematic excision. We simplify matters somewhat by limiting ourselves to
the case where, in the Goresky-MacPherson notation, X − A and X − B are subcomplexes of
some triangulation of X, as this is the only situation required for the construction of intersection
products both below and in [12]. Note that the example of the prior paragraph satisfies this
condition, so the limitation does not obviate the error in [12].

Remark 3.5. There is another minor logical problem with the Goresky-MacPherson construction
that is cured using the approach of McClure in [20], which is emulated in [8] and below: In Section
2.1 of [12], Goresky and MacPherson define a notion of dimensional transversality and define
their intersection product on pairs of chains C,D such that the following pairs are dimensionally
transverse: (C,D), (C, ∂D), and (∂C,D). If we let C t D denote the Goresky-MacPherson
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intersection product3, it is then claimed that ∂(C t D) = (∂C) t D+ (−1)n−|C|C t (∂D). The
trouble is that in order for, say, (∂C) t D to be defined, one must then also know that the pair
(∂C, ∂D) is dimensionally transverse, which is not a part of the initial assumption. This does
not become a serious problem in [12], however, as the primary interest there is in the intersection
of cycles.

In the following proposition, we do not require that X be a pseudomanifold, but merely that
we have a compact PL pair (X,S) such that X − S is an n-dimensional oriented manifold.

Proposition 3.6. Let (X,S) be a compact PL space pair such that X − S is an oriented n-
dimensional (topological) manifold, and let L ⊂ K ⊂ X be compact PL subspaces, such that
S ⊂ L. Then there is an isomorphism D : Hi(X − L,X − K) → Hn−i(K,L) composed of
excisions, isomorphisms induced by inclusions, and the Dold duality isomorphism.

Proof. As S, L, and K are PL subspaces of X, there is a triangulation T of X with respect to
which these subspaces arise as subcomplexes [23, Addendum 2.12]. Furthermore, by replacing T
with a subdivision, if necessary, we may assume that each is a full subcomplex of T , using [23,
Lemma 3.3].

Suppose Z is the underlying space of a full subcomplex of T . Let CZ be the the union of all
simplices in T that are disjoint from Z. Then, by [21, Lemma 70.1] and its proof, the subcomplex
corresponding to CZ is also a full subcomplex of T , Z is a deformation retract of X − CZ , and
CZ is a deformation retract of X − Z. Furthermore, if, as in [21, Section 72] (modifying that
notation slightly), we let St(Z) be the union of the interiors of all simplices of T that have a
face in Z, then X − CZ = St(Z).

Note that, as X is compact, each CZ is also compact. Also, as S ⊂ L ⊂ K, both sets CL and
CK are subsets of the manifold X − S.

The claimed isomorphism of the lemma is the composite of the following isomorphisms:

Hi(X − L,X −K)
∼=−→ Hi(CL, CK) homotopy equivalences

D−→ Hn−i((X − S)− CK , (X − S)− CL) Dold

= Hn−i((X − CK)− S, (X − CL)− S) set equality(7)

= Hn−i(St(K)− S, St(L)− S) see above
∼=−→ Hn−i(St(K), St(L)) by excision, see below
∼=←− Hn−i(K,L) homotopy equivalences.

For the excision in the fifth line, which excises S, we note that S is a closed subcomplex
contained in the interior of St(L) by construction.

The map labeled “Dold” is the duality isomorphism reviewed in the preceding section. Note
that Ȟi(CL ∪ S,CK ∪ S) ∼= Hi(CL ∪ S,CK ∪ S) by [6, Proposition CIII.6.12], as both spaces
are ENRs as subcomplexes of compact simplicial complexes (in fact any finite CW complex is
an ENR [16, Corollary A.10]).

The construction of D as stated depends on the triangulation T . But if T ′ is a sufficiently
fine refinement of T we obtain complement sets C ′L, C ′K and star sets St′(K), St′(L) with
CK ⊂ C ′K , CL ⊂ C ′L, St(K ′) ⊂ St(K), and St(L′) ⊂ St(L). We can then easily form a ladder
diagram comparing our first definition of D with that using T ′. Such a diagram commutes by the
naturality of inclusions and of the Dold map D, using Proposition 3.3. As any two triangulations

3This is not the notation in [12], where t serves a different purpose.
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of X will have a common refinement, this demonstrates that D does not depend on the choice
of T . �

We now prove some properties of the duality isomorphism D.

Lemma 3.7. The duality isomorphism of Lemma 3.6 is natural in the sense that, if
(K,L) ⊂ (K ′, L′) are pairs of compact PL subspaces satisfying the criteria of Lemma 3.6, then
there is a commutative diagram

Hi(X − L,X −K) - Hi(X − L′, X −K ′)

Hn−i(K,L)

D
?

- Hn−i(K
′, L′),

D
?

in which the horizontal maps are induced by inclusions and the vertical maps are the isomor-
phisms of Lemma 3.6.

Proof. By the observation at the end of the proof of Lemma 3.6, we may use any triangulation
with respect to which all our subsets are subcomplexes. With the exception of the Dold duality
isomorphism, it is then straightforward to verify that all of the maps in the sequence of isomor-
phisms in Proposition 3.6 commute with appropriate inclusion maps. The commutativity for
the Dold isomorphisms is provided by Lemma 3.3. �

There are two other observations we will need concerning the duality isomorphism D. As
stated, the lemma and its construction utilize the singular set S as part of the input data. It
will be useful to know that the isomorphism is in fact independent of S, so long as S ⊂ L and
X − S is an oriented n-manifold.

Lemma 3.8. The duality isomorphism of Proposition 3.6 does not depend on the choice of
compact set S such that S ⊂ L ⊂ X and such that X − S is an oriented n-manifold.

Proof. Let S′ be an alternative such subspace. We may assume that S′ ⊂ S, for if not then the
claim follows by comparing the isomorphism determined by each of S and S′ to that determined
by S ∩ S′. So, assuming that S′ ⊂ S, we have the following diagram, continuing to use the
notation of the proof of Proposition 3.6:

Hi(CL, CK)
= - Hi(CL, CK)

Hn−i((X − S)− CK , (X − S)− CL)

D
?

- Hn−i((X − S′)− CK , (X − S′)− CL)

D
?

Hn−i((X − CK)− S, (X − CL)− S)

=
?

- Hn−i((X − CK)− S′, (X − CL)− S′)

=
?

Hn−i(St(K)− S, St(L)− S)

=
?

- Hn−i(St(K)− S′, St(L)− S′)

=
?

Hn−i(St(K), St(L))

∼=
? = - Hn−i(St(K), St(L))

∼=
?

The top square commutes by Proposition 3.3 and the remaining squares clearly commute. Com-
mutativity of the whole diagram, together with the definition of the map in Proposition 3.6,
demonstrates the independence of choice of S. �
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We will also need that the duality isomorphism of Proposition 3.6 is natural with respect
to “expansion of the singularity.” In other words, suppose that we enlarge X to a complex
X ∪ T such that X ∩ T ⊂ S. Then, as S ⊂ L, we have Hi(K,L) ∼= Hi(K ∪ T, L ∪ T ), while
(X − (L ∪ T ), X − (K ∪ T )) = (X − L,X −K). We have the following compatibility:

Lemma 3.9. Let (X,S) be a compact PL space pair such that X−S is an oriented n-dimensional
manifold, and let L ⊂ K ⊂ X be compact PL subspaces such that S ⊂ L. Let X∪T be a compact
PL space with X ∩ T ⊂ S. Then the following diagram commutes, with each vertical map being
the isomorphism of Proposition 3.6:

Hi(X − L,X −K)
=- Hi(X − (L ∪ T ), X − (K ∪ T ))

Hn−i(K,L)

D
? ∼= - Hn−i(K ∪ T, L ∪ T ).

D
?

Proof. This time we use the commutative diagram

Hi(CL, CK)
= - Hi(CL, CK)

Hn−i((X − S)− CK , (X − S)− CL)

D

?
=- Hn−i(((X ∪ T )− (S ∪ T ))− CK , ((X ∪ T )− (S ∪ T ))− CL)

D

?

Hn−i((X − CK)− S), (X − CL)− S))

=

?
=- Hn−i(((X ∪ T )− CK)− (S ∪ T )), ((X ∪ T )− CL)− (S ∪ T ))

=

?

Hn−i(StX(K)− S, StX(L)− S)

=

?
=- Hn−i(StX∪T (K ∪ T )− (S ∪ T ), StX∪T (L ∪ T )− (S ∪ T ))

=

?

Hn−i(StX(K), StX(L))

?
- Hn−i(StX∪T (K ∪ T ), StX∪T (L ∪ T ))

?

Hn−i(K,L)

∼=
6

∼= - Hn−i(K ∪ T, L ∪ T ).

∼=
6

Here the subscript on St indicates in which space the star is taken. �

The next lemma shows how the duality isomorphism D interacts with the connecting mor-
phisms:

Lemma 3.10. Let (X,S) be a compact PL space pair such that X − S is an oriented n-
dimensional manifold, and let J ⊂ L ⊂ K ⊂ X be compact PL subspaces such that S ⊂ J .
Then the following diagram commutes up to (−1)n:

Hi(X − L,X −K)
d∗- Hi+1(X − J,X − L)

Hn−i(K,L)

D
? ∂∗ - Hn−i−1(L, J).

D
?



THE CHAIN-LEVEL INTERSECTION PRODUCT FOR PL PSEUDOMANIFOLDS REVISITED 343

Proof. Consider the definition of the duality map of Proposition 3.6 and the evident ladder
diagram connecting the maps of the definition for the pair (K,L) with that for the pair (L, J)
via boundary/coboundary maps. It is clear from the standard naturality of the connecting maps
in the long exact sequences that such a diagram commutes in all squares with the possible
exception of the square involving the Dold duality map. But this square commutes up to (−1)n

by Proposition 3.4. �

4. PL chains

In this section, we first review some fundamentals concerning PL chains and then review and
develop some useful identifications between groups of PL chains and certain homology groups.

4.1. PL chains. Let X be a locally compact PL space. Any triangulation T of X is locally

finite [21, Lemma 2.6]. Let cT,∞i (X) be the group of locally finite i-chains on X with respect

to the triangulation T , i.e. the elements of cT,∞i (X) are formal sums
∑
σ aσσ, where the sum

is over all oriented4 i-simplices σ of X in T and each aσ ∈ Z. These are called locally finite
chains or chains with closed support or Borel-Moore chains. The local-finiteness ensures that
the boundary map is well defined in the usual way (see [15, 13] or [1, Section 4.1.3]), and

thus cT,∞∗ (X) is a chain complex with homology groups HT,∞
∗ (X). Relative chain complexes

and relative homology are defined in the obvious way. If T ′ is a subdivision of T , there is a

subdivision map cT,∞∗ (X) → cT
′,∞
∗ (X) that (formally) takes each i-simplex to the sum of the

i-simplices contained in it with compatible orientations. We let C∞∗ (X) be the direct limit of the

cT,∞i (X) over all compatible triangulations of X with maps induced by the subdivision maps.
The corresponding homology groups are H∞∗ (X).

Given a chain ξ ∈ C∞i (X), its support |ξ| is defined as follows: write ξ as an element∑
σ

aσσ ∈ cT,∞i (X)

for some triangulation T and let |ξ| be the union of the i-simplices σ such that aσ 6= 0. This
definition is independent of the choice of T . If ξ ∈ C∞i (X,Y ), for Y a PL subspace of X, then we

can again write a representative for ξ as an element
∑
σ aσσ ∈ c

T,∞
i (X) for some triangulation

T for which Y is a subcomplex, then we let |ξ| be the union of the i-simplices σ not contained
in Y and such that aσ 6= 0. In other words, |ξ| is the support of the minimal chain representing
ξ in C∞i (X,Y ).

If we let cT∗ (X) be the usual simplicial chain complex in which each chain is a finite sum of

simplices with coefficients, then cT∗ (X) ⊂ cT,∞∗ (X). Taking subdivisions we obtain the PL chain
complex with compact supports, C∗(X) ⊂ C∞∗ (X).

4.2. Useful lemmas. By [13, §2.1] and [15, §1], we have the following useful isomorphism. A
detailed proof can be found in [20, Lemma 4] (compare also [12, §1.2]) for the corresponding
result concerning compactly supported chains, though the proof in the case of locally finite chains
is identical:

Lemma 4.1. Let X be a PL space and let B ⊂ A be closed PL subspaces of X such that
dim(A) = p and dim(B) < p. Then

4More precisely, each simplex comes equipped with two orientations (σ, o) and (σ,−o), and we impose in

cT,∞i (X) the relation −(σ, o) = (σ,−o). For the sake of writing chains as sums, we follow standard practice and

choose the notation “σ” to denote a simplex with one of its orientations, arbitrarily chosen, and then allow the
simplex to appear in the sum expression only with this orientation.
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(1) there is an isomorphism αA,B from H∞p (A,B) to the abelian group

CA,Bp = {ξ ∈ C∞p (X) | |ξ| ⊂ A, |∂ξ| ⊂ B},
(2) the following diagram commutes:

H∞p (A,B)
αA,B- CA,Bp

H∞p−1(B)

∂∗
? αB,∅- CB,∅p−1

∂
?

Proof. As observed in [20], H∞p (A,B) is the pth homology of the complex C∞∗ (A,B), which is

the quotient of the relative cycles by the relative boundaries. But the set CA,Bp is precisely the
set of relative cycles, while the set of relative boundaries is 0 by the dimension hypothesis. The
second part of the lemma follows by chasing the definitions. �

In particular then, as noted in [15, §1], a chain ξ ∈ C∞p (X) is completely described by |ξ|,
|∂ξ|, and the class represented by ξ in H∞p (|ξ|, |∂ξ|).

Remark 4.2. Suppose ξ ∈ CA,Bp and T is a triangulation ofX such that A and B are subcomplexes

and ξ can be represented as an element of cT,∞i (X). Let σ be an (oriented) p-simplex of A. Then

the coefficient of σ in the representation of ξ in cT,∞i (X) can be recovered as the image of α−1
A,B(ξ)

in H∞p (A,A− int(σ)) ∼= Hp(σ, ∂σ) ∼= Z, the first isomorphism by excision. The argument in this
context for excision is identical to the standard simplicial proof, e.g. [21, Theorem 9.1]. The claim

follows by letting the representation of ξ in cT,∞i (X) also serve as the chain representative for

α−1
A,B(ξ) and then its image in H∞p (A,A− int(σ)). So, in fact, given an element [ξ] ∈ H∞p (A,B)

and a triangulation T compatible with A and B, we can in this way construct a representative
of αA,B([ξ]) in cT,∞p (A) ⊂ cT,∞p (X) by so determining its coefficient at each p-simplex of A.

In our application below, we will need to consider more general scenarios in which A might
have arbitrary dimensions but A−B still has dimension p. For this we have the following lemma.
We let cl(Y ) denote the closure of the subspace Y in its ambient space.

Lemma 4.3. Let X be a PL space and let C ⊂ B ⊂ A be closed PL subspaces of X such that
dim(A − B) = p and dim(B − C) < p, and let T be a triangulation of X with respect to which
A,B,C are subcomplexes. Then:

(1) There is an isomorphism ᾱA,B from H∞p (A,B) to the abelian group

C̄A,Bp = {ξ ∈ C∞p (X) | |ξ| ⊂ cl(A−B), |∂ξ| ⊂ B}.
If [ξ] ∈ H∞p (A,B) is represented by a simplicial chain ξ =

∑
aσσ with p-simplices in T ,

then ᾱA,B([ξ]) =
∑
σ 6⊂B aσσ, with the sum being over p-simplices of T not contained in

B (though necessarily σ ⊂ A).
(2) If [ξ] ∈ H∞p (A,B) with ∂ᾱA,B([ξ]) =

∑
bττ and ∂∗ : H∞p (A,B) → H∞p−1(B,C) is the

connecting morphism, then ᾱB,C(∂∗([ξ])) =
∑
τ 6⊂C bττ .

Proof. Let ĀB denote the closure of A − B. In the triangulation T , this is just the space of
p-simplices of A that are not contained in B. We have dim(ĀB) = p and also dim(ĀB ∩B) < p,
as ĀB ∩ B consists of those simplices of B that are faces of the simplices of A that are not
contained in B. Thus, via Lemma 4.1, we have an isomorphism between H∞p (ĀB , ĀB ∩B) and

CĀB ,ĀB∩B
p . There is also an excision isomorphism H∞p (ĀB , ĀB∩B)→ H∞p (A,B). Furthermore,

CĀB ,ĀB∩B
p = C̄A,Bp from the definitions, noting that if ξ is a chain in ĀB , then ∂ξ is in B if
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and only if it is in B ∩ AB . We let ᾱA,B : H∞p (A,B) → C̄A,Bp be the composition of these
isomorphisms. In addition, if [ξ] ∈ H∞p (A,B) is represented by ξ =

∑
aσσ, it is also represented

by ξ̄ =
∑
σ 6⊂B aσσ, as the piece of ξ contained in B is 0 in C∞p (A,B). But then

ξ̄ ∈ C̄A,Bp = CĀB ,ĀB∩B
p .

It follows that ᾱA,B([ξ]) = ξ̄ from the proof of Lemma 4.1.
For the second part of the lemma, if [ξ] ∈ H∞p (A,B) is represented by the chain ξ =

∑
aσσ,

then, as above, it is also represented by ξ̄ =
∑
σ 6⊂B aσσ. So ∂∗([ξ]) is represented by ∂ξ̄, which

is
∑
bττ by assumption. The map ᾱB,C thus takes ∂∗([ξ]) to

∑
τ 6⊂C bττ by the argument just

above. �

Remark 4.4. As in Remark 4.2, given [ξ] ∈ H∞p (A,B) in the setting of Lemma 4.3, as well as a
triangulation T compatible with A and B and a p-simplex σ of cl(A − B), we can recover the

coefficient of σ in the corresponding chain ᾱA,B([ξ]) in cT,∞i (X) by looking at the image of [ξ] in
H∞p (A,A− int(σ)) ∼= Hp(σ, ∂σ) ∼= Z. In this way, given [ξ] ∈ H∞p (A,B) and a triangulation T

compatible with A and B, we can construct the unique chain in cT,∞p (ĀB) ⊂ cT,∞p (X) prescribed
by the isomorphisms.

5. Chain-level intersection products on pseudomanifolds

This section contains our development of the intersection product

C∞∗ (X,Σ)⊗ C∞∗ (X,Σ) ⊃ G∞∗ (X,Σ)
µ−→ C∞∗ (X,Σ)

for locally finite chains on not-necessarily-compact pseudomanifolds. Following some preparatory
remarks, we define intersection coefficients via local umkehr maps in Section 5.1; these are used
to define a global umkehr map in Section 5.2. Section 5.3 concerns the chain cross product, and,
finally, Section 5.4 contains the definition of the intersection product.

The rough idea for constructing intersection products, going back at least to Dold in [6,
Section VIII.13] and then used in [20, 8], is the observation that if A,B ⊂ X then a point x ∈ X
is in A ∩ B if and only if the point (x, x) ∈ X ×X is contained in A × B. When A and B are
replaced by chains ξ and η, this lets us utilize the well known chain cross product to consider
ξ × η in X × X. Then we pull back to X itself via the diagonal map ∆ : X → X × X with
∆(x) = (x, x). This process is reminiscent of the construction of the cup product. However, as
chains behave covariantly we do not have a pullback map ∆∗ but must instead utilize a version
of the umkehr or transfer map ∆!, versions of which can be found for manifolds in [6, Section
VIII.10] or [4, Definition 6.11.2].

The cross the product will be reviewed below. We begin instead by outlining the construction
to follow in Sections 5.1 and 5.2 of the umkehr chain map

∆! : C∆,∞
∗ ((X,Σ)× (X,Σ))→ C∞∗−n(X,Σ),

generalizing previous constructions to not-necessarily-compact pseudomanifolds. We use here
the notation for products of pairs:

(A,B)× (C,D) = (A× C, (A×D) ∪ (B × C)).

Throughout this section, our X is an oriented n-dimensional PL stratified pseudomanifold, not

necessarily compact, and C∆,∞
∗ ((X,Σ)× (X,Σ)) is the subcomplex of chains of

C∞∗ ((X,Σ)× (X,Σ))

that are in general position with respect to the map ∆. Explicitly, this means the following:
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Definition 5.1. Let X be an oriented n-dimensional PL stratified pseudomanifold. For a set

A ∈ X ×X, let A′ = ∆−1(A) ⊂ X. Then C∆,∞
i ((X,Σ)× (X,Σ)) ⊂ C∞i ((X,Σ)× (X,Σ))) is the

subcomplex consisting of those chains ξ such that

(1) dim(|ξ|′ − Σ) ≤ i− n
(2) dim(|∂ξ|′ − Σ) ≤ i− n− 1.

Observe that this is indeed a chain subcomplex, as if ξ1, ξ2 ∈ C∆,∞
i ((X,Σ)× (X,Σ)) then so

is ξ1 + ξ2, as |ξ1 + ξ2| ⊂ |ξ1| ∪ |ξ2|, so |ξ1 + ξ2|′ ⊂ |ξ1|′ ∪ |ξ2|′ and similarly for ∂(ξ1 + ξ2). The

second condition guarantees that if ξ ∈ C∆,∞
i ((X,Σ)× (X,Σ)) then so is ∂ξ.

Remark 5.2. These are weaker conditions than what were required in [8, Definition 4.2], where
there were also requirements on the dimensions of intersection with the singular strata in both
X × X and X. Our use here of the relative chain complex ultimately makes these additional
assumptions unnecessary for the purposes of defining an intersection product on relative chains.
However, we will impose some additional constraints below in Section 6.2 when working with
intersection chains in order to properly manage the perversities involved.

Also, recalling that two respectively a- and b-dimensional PL subspaces A and B of an m-
dimensional PL manifold M are in general position if dim(A∩B) ≤ a+ b−m, we note that the
dimension i − n in Definition 5.1 is precisely the intersecton dimension we would expect if we
had i- and n-dimensional subspaces (in this case |ξ| and the diagonal ∆(X)) in general position
in a 2n-dimensional manifold.

So let ξ ∈ C∆,∞
i ((X,Σ)× (X,Σ))). To define the map ∆!, we need to say what

∆!(ξ) ∈ C∞i−n(X,Σ)

is. Due to our focus on relative chains, we only care about simplices that are not contained in the
singular locus Σ, so to define ∆!(ξ) in a given triangulation T of X, it suffices to prescribe the
coefficient of ∆!(ξ) for each simplex of T not contained in Σ. More precisely, given a sufficiently
refined T , we define a simplicial chain ∆T

! (ξ). We then show that our definition is independent
of the choice of triangulation in order to obtain a well-defined PL chain ∆!(ξ). More explicitly,
we show that if T ′ is a subdivision of T , then the image of ∆T

! (ξ) under the subdivision map is

∆T ′

! (ξ). As any two triangulations of X have a common subdivision (apply [17, Theorem 3.6.C]
to the identity map), this suffices to determine a PL chain ∆!(ξ).

In fact, we will use triangulations of X of the following form: Suppose T is some triangulation
of X×X compatible with the stratification (letting (X×X)i = ∪j+k=iX

j×Xk) and with respect
to which |ξ| and ∆(X) are subcomplexes (apply [17, Theorem 3.6.C] inductively to obtain such
a triangulation). Let T be the induced triangulation on X corresponding to the subcomplex
triangulation of ∆(X). Note that using only such triangulations on X is not a strong restriction,
as any arbitrary triangulations T of X and T of X×X have subdivisions T ′ and T ′ such that T ′

is a subcomplex of T ′; this follows from [17, Theorem 3.6.C], as the diagonal inclusion is proper.
So now to define ∆T

! (ξ), let σ be an i − n simplex of T with σ 6⊂ Σ. We will define an
intersection coefficient Iσ(ξ) ∈ Z, which ultimately will not depend on the particular choice of
triangulation so long as σ is a simplex of the triangulation and the triangulation is obtained
as above. Then we will define ∆T

! (ξ) =
∑
σ∈T,σ 6⊂Σ Iσ(ξ)σ, the sum over i − n simplices. Here,

the referenced “intersection” justifying the name “intersection coefficient” is the intersection of
ξ with the diagonal ∆(X).

We carry out this program in the next two subsections.

5.1. Local umkehr maps and intersection coefficients. To motivate the definition that
follows, recall that the classical diagonal transfer map for a compact oriented n-manifold M
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would have the form ∆! : Hi(M ×M)→ Hi−n(M) defined by the composition

Hi(M ×M)
D−1

M×M−−−−−→ H2n−i(M ×M)
∆∗−−→ H2n−i(M)

DM−−→ Hi−n(M),

with DM×M and DM being Poincaré duality maps (see, for example, [4, Definition 6.11.2]). The
map ∆! we seek to define will have the same general character, but as we do not work with
manifolds and as our input homology groups are not those of the whole space but rather those
representing PL chains, we will need to use a version of the Goresky-MacPherson duality map D
instead of D. Furthermore, as we do not work on compact spaces, we begin instead with a local
construction that determines intersection coefficients by restricting to compact neighborhoods
of the simplex of interest σ. We will eventually obtain a global map ∆! by piecing together this
local data.

So to define the intersection coefficient ITσ (ξ), let T , ξ, and σ all be given as above. Let Z be
any finite union of n-simplices of T such that the interior of σ is contained in the interior of Z;
this will be our compact neighborhood of σ. Such a Z exists; for example we could choose Z to
be the union of all n-simplices of T containing σ as a face. For a chain ζ in X, let |ζ|Z = |ζ| ∩Z,
and, similarly, for a chain ζ in X × X, let |ζ|Z×Z = |ζ| ∩ (Z × Z). Let ΣZ = Σ ∩ Z. These
notations will be useful for restricting objects to the neighborhoods Z or Z × Z.

Let DZ be the union of all n-simplices of T not contained in Z, and let SZ = Z ∩ DZ .
So DZ is morally the complement of Z and SZ is the boundary between Z and DZ . We also
let DZ×Z = (X × DZ) ∪ (DZ × X). Let JZ = ΣZ ∪ SZ , which we will see is essentially the
complement of the manifold points in Z, and let JZ×Z = (Z × JZ) ∪ (JZ × Z), which will play
the same role for Z × Z. Note that ∆−1(JZ×Z) = JZ . We also recall that if A ∈ X ×X, then
we let A′ = ∆−1(A) ∼= A ∩∆(X).

We will show below that Z−JZ and Z×Z−JZ×Z are indeed oriented n-dimensional manifolds,
with the orientations inherited from X and X×X, respectively. Thus (Z, JZ) and (Z×Z, JZ×Z)
each satisfy the first hypothesis of Proposition 3.6.

Definition 5.3. Given the assumptions above, we define the (Z, T )-intersection coefficient
IZ,Tσ (ξ) as follows for an i− n simplex σ, σ 6⊂ Σ, of the triangulation T : If σ 6⊂ ∆−1(|ξ|) = |ξ|′,
then define IZ,Tσ (ξ) to be 0. Otherwise, let [ξ] ∈ H∞i (|ξ|, |∂ξ|) represent ξ under the isomorphism
α−1
|ξ|,|∂ξ| of Lemma 4.1 and let IZ,Tσ (ξ) be the image of [ξ] under the following composition:

H∞i (|ξ|, |∂ξ|)→ H∞i (|ξ| ∪ JZ×Z ∪DZ×Z , |∂ξ| ∪ JZ×Z ∪DZ×Z)
∼=←− Hi(|ξ|Z×Z ∪ JZ×Z , |∂ξ|Z×Z ∪ JZ×Z)

D←− H2n−i(Z × Z − (|∂ξ|Z×Z ∪ JZ×Z), Z × Z − (|ξ|Z×Z ∪ JZ×Z))

∆∗−−→ H2n−i(Z − |∂ξ|′Z ∪ JZ , Z − (|ξ|′Z ∪ JZ))

D−→ Hi−n(|ξ|′Z ∪ JZ , |∂ξ|′Z ∪ JZ)

→ Hi−n((|ξ|′Z ∪ JZ , (|ξ|′Z ∪ JZ)− int(σ))
∼=←− Hi−n(σ, ∂σ)
∼= Z.

The last isomorphism is determined by the orientation of σ.
We will show below that this construction does not depend on the choice of Z or the triangu-

lation T , given the previous constraints, and so we can define the intersection coefficient Iσ(ξ)
to be IZ,Tσ (ξ) for any choice of Z or of T containing σ.
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Well-definedness. Let us first observe that IZ,Tσ (ξ, η) is well defined:

(1) The first map is induced by inclusions.
(2) The second map is an excision isomorphism. To see that this is a valid excision, we note

that

(|∂ξ| ∪ JZ×Z ∪DZ×Z) ∩ (|ξ|Z×Z ∪ JZ×Z)

= |∂ξ|Z×Z ∪ JZ×Z ,

as DZ×Z ∩ |ξ|Z×Z ⊂ DZ×Z ∩ (Z × Z) = (Z × SZ) ∪ (SZ × Z) ⊂ JZ×Z . So the excision
removes DZ×Z−((Z×Z)∩DZ×Z). As Z×Z can be triangulated as a finite subcomplex
of X × X, the argument for excision is identical to the standard simplicial homology
excision proof, e.g. [21, Theorem 9.1]. Finally, as |ξ|Z×Z ∪JZ×Z and |∂ξ|Z×Z ∪JZ×Z are
compact, in particular they will be finite subcomplexes in any triangulation of Z × Z,
we have H∞i (|ξ|Z×Z ∪ JZ×Z , |∂ξ|Z×Z ∪ JZ×Z) = Hi(|ξ|Z×Z ∪ JZ×Z , |∂ξ|Z×Z ∪ JZ×Z),
which can from here on also be identified with the singular homology group.

(3) The third map and fifth maps are the isomorphisms of Proposition 3.6, once we show
that Z − JZ and Z × Z − JZ×Z are manifolds.

(4) The fourth map is the pullback by the diagonal map.
(5) The sixth map is induced by inclusion, noting that, by our assumptions, σ is contained

in |ξ|′Z and the interior of σ is not contained in |∂ξ|′Z ∪ JZ . In fact, by assumption of
general position, dim(|ξ|′Z) ≤ i − n and dim(|∂ξ|′Z) ≤ i − n − 1. So, in particular, if σ
is an i − n simplex contained in |ξ|′Z , then σ cannot be contained in |∂ξ|′Z . It is also
outside of SZ and ΣZ by assumption.

(6) The seventh map is again an excision.
(7) The last isomorphism is standard and determined by the orientation of σ.

To finish showing that the intersection coefficient IZ,Tσ (ξ) is well defined, we must show that
Z − JZ and Z × Z − JZ×Z are manifolds, as claimed. We do this now:

Lemma 5.4. Z − JZ and Z × Z − JZ×Z are oriented manifolds with orientations inherited
respectively from X and X ×X.

Proof. We begin with Z − JZ = Z − (ΣZ ∪ SZ). Once we have shown that it is a manifold, the
orientability will follow because then Z − (ΣZ ∪ SZ) must be a submanifold of X − ΣX , which
is oriented.

Let x ∈ Z − (ΣZ ∪SZ). We must show that x has an n-dimensional Euclidean neighborhood.
Clearly this is true at any point that is interior to an n-simplex of Z. So suppose that x is
contained in the interior of a simplex τ of Z in the triangulation T with respect to which Z
is defined and that dim(τ) < n. Thinking of x as a point of X, we have x ∈ X − ΣX and so
x has a Euclidean neighborhood, say U , in X, and we may suppose U is contained in a star
neighborhood of τ in X (in the triangulation T ). If the star neighborhood of τ is contained
in Z, then U is a Euclidean neighborhood of x in Z. If not, then there is a simplex δ of X
that contains τ as a face and that is not contained in Z. But, as X is a pseudomanifold, every
simplex of X is contained in some n-simplex, and this implies there is some n-simplex γ, having
δ and τ as faces and such that γ is not contained in Z (if any n-simplex having δ as a face were
contained in Z, then δ would be contained in Z). So then τ is contained in Z and in DZ , which
was defined as the union of n-simplices not contained in Z. So {x} ⊂ τ ⊂ SZ , a contradiction.

Thus all points x ∈ Z − (ΣZ ∪ SZ) have n-dimensional Euclidean neighborhoods, and

Z − (ΣZ ∪ SZ)

is a subspace of a Hausdorff space, so it is a manifold.
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For Z × Z − JZ×Z , we recall that

JZ×Z = (Z × JZ) ∪ (JZ × Z)

so Z × Z − JZ×Z = (Z − JZ)× (Z − JZ), and the claim follows. �

Remark 5.5. Note that while the triangulation T is utilized in our selection of σ and Z, once
this simplex and subspace have been established, nothing in the chain of maps defining IZ,Tσ (ξ)
depends on the specific triangulation. Thus, we can define IZσ (ξ) = IZ,Tσ (ξ) for any suitable
triangulation. Furthermore, we see that if we replace T with some subdivision T ′, then Z and
the other spaces involved in defining our intersection coefficient are still well-defined as simplicial
subspaces of X in this subdivision. Furthermore, if τ is an i− n simplex of T ′ with τ ⊂ σ and
with τ oriented consistently with σ, then the diagram

Hi−n(|ξ|′Z ∪ JZ , |∂ξ|′Z ∪ JZ)

H∗((|ξ|′Z ∪ JZ , (|ξ|′Z ∪ JZ)− int(σ))
?

- H∗((|ξ|′Z ∪ JZ , (|ξ|′Z ∪ JZ)− int(τ)))
-

H∗(σ, ∂σ)

∼=6

- H∗(σ, σ − int(τ)) �
∼=

∼=
-

H∗(τ, ∂τ))

∼=6

shows that IZτ (ξ) = IZ,T
′

τ (ξ) agrees with IZσ (ξ) = IZ,Tσ (ξ).

Remark 5.6. By assumption, dim(|ξ|′Z) ≤ i − n, and therefore, by Lemma 4.3 (taking B = C
there), an element of Hi−n(|ξ|′Z ∪ JZ , |∂ξ|′Z ∪ JZ), as occurs in the middle of our definition of
IZ,Tσ (ξ), determines a PL chain in Z that consists, in any compatible triangulation, of i − n
simplices not contained in ΣZ or SZ and whose boundary is contained in |∂ξ|′Z ∪ ΣZ ∪ SZ . We
can think of this chain as the local umkehr image of ξ in Z, which we denote ∆Z

! (ξ). If we wish

to fix a given triangulation, we can refer more specifically to the simplicial chain ∆Z,T
! (ξ) whose

underlying PL chain is ∆Z
! (ξ). The further refinement in the definition to IZ,Tσ (ξ), itself, is

then just an example of the process described in Remarks 4.2 and 4.4 for finding the coefficients
of simplices in a simplicial representation of a PL chain. Our construction of ∆!(ξ), which is
described in the next section, can then be thought of alternatively as patching together these
local images to obtain a single global chain in X with boundary in |∂ξ| ∪ Σ. The independence
of choice of Z that we are about to demonstrate implies that this patching is well defined locally,
and so determines a unique such global image chain.

Independence of Z. Next we want to show that IZσ (ξ) is independent of the choice of Z. It
is sufficient to demonstrate this property with respect to an alternative choice, say Y , in any
triangulation compatible with the stratification and containing |ξ| and ∆(X) as subcomplexes,
and such that σ ⊂ Y ⊂ Z. For if Z ′ is an arbitrary alternative to Z then we can always
find a Y such that Z ⊃ Y ⊂ Z ′ by taking Y to be a star neighborhood of σ in a sufficiently
fine triangulation. Then the independence of choices between Z and Y and between Y and Z ′

demonstrate the overall independence of choice of Z.

Proposition 5.7. The intersection coefficient IZσ (ξ) is independent of the choice of Z.

Proof. The proof will proceed through a series of commutative diagrams, throughout which the
top lines will compose to the definition of IZ,Tσ (ξ) and the bottom lines will compose to the
definition of IY,Tσ (ξ). The middle line will be an intermediary that accepts maps from the top
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and bottom lines, but the middle and lower lines will be isomorphic throughout, allowing us to
reverse the lower vertical maps to obtain a direct comparison between IZ,Tσ (ξ) and IY,Tσ (ξ).

The following observations will be useful: As Y ⊂ Z, it follows that DZ ⊂ DY , SZ ⊂ DY ,
DZ×Z ⊂ DY×Y , if A is any subset of X then (AZ)Y = AY , and if A is any subset of X × X
then (AZ×Z)Y×Y = AY×Y . Also, JY×Y ⊂ JZ×Z ∪ DY×Y , and, in fact, one can check that
JY×Y ∪DY×Y = JZ×Z ∪DY×Y , using that ΣZ ⊂ ΣY ∪DY . Similarly, JZ ∪DY = JY ∪DY .

First, letting

B = Hi(|ξ|Z×Z ∪ JZ×Z ∪ (DY×Y ∩ (Z × Z)), |∂ξ|Y×Y ∪ JY×Y ∪ (DY×Y ∩ (Z × Z))),

we have the following:

H∞i (|ξ| ∪ JZ×Z ∪DZ×Z , |∂ξ| ∪ JZ×Z ∪DZ×Z) �
∼=

Hi(|ξ|Z×Z ∪ JZ×Z , |∂ξ|Z×Z ∪ JZ×Z)

H∞i (|ξ|, |∂ξ|) -

-

H∞i (|ξ| ∪ JZ×Z ∪DY×Y , |∂ξ| ∪ JZ×Z ∪DY×Y )
?

�
∼=

B
?

H∞i (|ξ| ∪ JY×Y ∪DY×Y , |∂ξ| ∪ JY×Y ∪DY×Y )

=6

�
∼=-

Hi(|ξ|Y×Y ∪ JY×Y , |∂ξ|Y×Y ∪ JY×Y ).

∼=
6

The commutativity is clear at the space level as all maps are induced by spatial inclusions,
using the observations concerning spatial relations given above. Notice also that |∂ξ|Z×Z is the
union of |∂ξ|Y×Y with the simplices of |∂ξ| in DY×Y ∩ (Z × Z). The right horizontal arrow in
the middle row excises (X × (DZ − SZ)) ∪ ((DZ − SZ) ×X), and so is an isomorphism. Thus
the bottom right vertical map is also an isomorphism.

Next, with B as above and letting

E = H2n−i(Z×Z−(|∂ξ|Y×Y ∪JY×Y ∪(DY×Y ∩(Z×Z))), Z×Z−(|ξ|Z×Z ∪JZ×Z ∪(DY×Y ∩(Z×Z)))),

we have a diagram

Hi(|ξ|Z×Z ∪ JZ×Z , |∂ξ|Z×Z ∪ JZ×Z) �
D

H2n−i(Z × Z − (|∂ξ|Z×Z ∪ JZ×Z), Z × Z − (|ξ|Z×Z ∪ JZ×Z))

B
?
� D

E
?

Hi(|ξ|Y×Y ∪ JY×Y , |∂ξ|Y×Y ∪ JY×Y )

∼=
6

�D H2n−i(Y × Y − (|∂ξ|Y×Y ∪ JY×Y ), Y × Y − (|ξ|Y×Y ∪ JY×Y )).

=
6

The top commutes by Lemma 3.7, using (Z ×Z, JZ×Z) for the pair “(Z, S)”. By Lemma 3.8,
we can also treat the middle duality isomorphism as utilizing (Z×Z, JY×Y ∪ (DY×Y ∩ (Z×Z)))
for the pair “(Z, S).” Then the bottom square commutes by Lemma 3.9, letting the S of that
lemma be JY×Y and the T of that lemma be DY×Y ∩ (Z × Z).

Letting

F = H2n−i(Z − |∂ξ|′Y ∪ JY ∪ (DY ∩ Z), Z − (|ξ|′Z ∪ JZ ∪ (DY ∩ Z))),

we then have the naturality of the pullback:
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H2n−i(Z × Z − (|∂ξ|Z×Z ∪ JZ×Z), Z × Z − (|ξ|Z×Z ∪ JZ×Z))
∆∗- H2n−i(Z − |∂ξ|′Z ∪ JZ , Z − (|ξ|′Z ∪ JZ))

E
? ∆∗ - F

?

H2n−i(Y × Y − (|∂ξ|Y×Y ∪ JY×Y ), Y × Y − (|ξ|Y×Y ∪ JY×Y ))

=
6

∆∗- H2n−i(Y − |∂ξ|′Y ∪ JY , Y − (|ξ|′Y ∪ JY )).

=
6

This is followed again by a commutative duality map

H2n−i(Z − |∂ξ|′Z ∪ JZ , Z − (|ξ|′Z ∪ JZ))
D - Hi−n(|ξ|′Z ∪ JZ , |∂ξ|′Z ∪ JZ)

H2n−i(Z − |∂ξ|′Y ∪ JY ∪ (DY ∩ Z), Z − (|ξ|′Z ∪ JZ ∪ (DY ∩ Z)))

? D- Hi−n(|ξ|′Z ∪ JY ∪ (DY ∩ Z), |∂ξ|′Z ∪ JZ ∪ (DY ∩ Z))
?

H2n−i(Y − |∂ξ|′Y ∪ JY , Y − (|ξ|′Y ∪ JY ))

=
6

D - Hi−n(|ξ|′Y ∪ JY , |∂ξ|′Y ∪ JY ).

∼=6

Again, the top commutes by Lemma 3.7, using (Z, JZ) for the pair “(Z, S)”. By Lemma 3.8,
we can also treat the middle duality isomorphism as utilizing (Z, JY ∪ (DY ∩ Z)) for the pair
“(Z, S).” Then the bottom square commutes by Lemma 3.9, letting the T of that lemma be
DY ∩ Z.

Finally, with σ̊ = int(σ), we have the diagram

Hi−n(|ξ|′Z ∪ JZ , |∂ξ|′Z ∪ JZ)) - Hi−n((|ξ|′Z ∪ JZ , (|ξ|′Z ∪ JZ)− σ̊) �
∼=

Hi+j−n(σ, ∂σ)

Hi−n(|ξ|′Z ∪ JY ∪ (DY ∩ Z), |∂ξ|′Z ∪ JZ ∪ (DY ∩ Z))
?

- Hi−n((|ξ|′Z ∪ JY ∪ (DY ∩ Z), (|ξ|′Z ∪ JY ∪ (DY ∩ Z))− σ̊)
?

�
∼=

Hi+j−n(σ, ∂σ)

=
?

Hi−n(|ξ|′Y ∪ JY , |∂ξ|′Y ∪ JY )

∼=6

- Hi−n((|ξ|′Y ∪ JY , (|ξ|′Y ∪ JY )− σ̊)

∼=6

�
∼=

Hi+j−n(σ, ∂σ).

=6

The lower vertical map in the middle column is an isomorphism from the commutativity of
the diagram and from the other excision isomorphisms.

Putting all these pieces together, we see that IZ,Tσ (ξ) = IY,Tσ (ξ), which is the desired inde-
pendence result. �

Definition 5.8. Proposition 5.7, together with Remark 5.5, demonstrates that we are justified
in defining the intersection coefficient Iσ(ξ) to be IZ,Tσ (ξ) for any appropriate choice of Z and
T , without ambiguity.

Additivity. We would next like to show that if we have ξ1, ξ2 ∈ C∆,∞
i ((X,Σ)× (X,Σ))), then

Iσ(ξ1 + ξ2) = Iσ(ξ1) + Iσ(ξ2). Below, this will allow us to see that the intersection product is
a homomorphism. This point is somewhat neglected in all the previous treatments [12, 20, 8],
though it is not completely trivial. The tricky point is that Iσ(ξ1) is defined using a representation
of ξ1 in H∞i (|ξ1|, |∂ξ1|), while Iσ(ξ2) is defined using a representation of ξ2 in H∞i (|ξ2|, |∂ξ2|),
and Iσ(ξ1 + ξ2) is defined using a representation of ξ1 + ξ2 in H∞i (|ξ1 + ξ2|, |∂(ξ1 + ξ2)|). Beyond
needing to find a way to relate these groups, we also have the issue that |ξ1 + ξ2| 6= |ξ1| ∪ |ξ2|
in general, as there may be cancellation of simplices in the sum. The solution is to observe that
the use of H∞i (|ξ|, |∂ξ|) in the first step of the definition of Iσ(ξ) is overly restrictive. This is the
content of the next lemma.

Lemma 5.9. Let B ⊂ A ⊂ X ×X be PL subspaces such that
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(1) dim(A) = i and dim(B) < i,
(2) |ξ| ⊂ A and |∂ξ| ⊂ B
(3) A and B are in general position with respect to ∆.

Then for σ ⊂ A ∩ ∆(X) and σ 6⊂ Σ, the definition of Iσ(ξ) remains unchanged replacing
[ξ] ∈ H∞i (|ξ|, |∂ξ|) with its image in H∞i (A,B) in the first step of the construction of Definition
5.3 and then replacing (|ξ|, |∂ξ|) with (A,B) throughout. If σ 6⊂ A ∩ ∆(X), we set Iσ(ξ) = 0,
which is consistent with the original definition.

Proof. Definition 5.3 defines Iσ(ξ) in terms of IZ,Tσ (ξ, η). We show here that IZ,Tσ (ξ) does not
change when we replace (|ξ|, |∂ξ|) by (A,B), but the independence of IZ,Tσ (ξ) with respect to
choices of Z and T will then indicate that the same is true using (A,B).

Choose T , σ, and Z as in Definition 5.3, though assuming also that T is compatible with A
and B. We first suppose σ ⊂ |ξ|′Z and σ 6⊂ ΣX . Let A′ = ∆−1(A) = A ∩∆(X) and define B′

similarly. Then we have the following diagram:

H∞i (|ξ|, |∂ξ|) - H∞i (A,B)

H∞i (|ξ| ∪ JZ×Z ∪DZ×Z , |∂ξ| ∪ JZ×Z ∪DZ×Z)
?

- H∞i (A ∪ JZ×Z ∪DZ×Z , B ∪ JZ×Z ∪DZ×Z)
?

Hi(|ξ|Z×Z ∪ JZ×Z , |∂ξ|Z×Z ∪ JZ×Z)

∼=6

- Hi(AZ×Z ∪ JZ×Z , BZ×Z ∪ JZ×Z)

∼=6

H2n−i(Z × Z − (|∂ξ|Z×Z ∪ JZ×Z), Z × Z − (|ξ|Z×Z ∪ JZ×Z))

D6

- H2n−i(Z × Z − (BZ×Z ∪ JZ×Z), Z × Z − (AZ×Z ∪ JZ×Z))

D6

H2n−i(Z − |∂ξ|′Z ∪ JZ , Z − (|ξ|′Z ∪ JZ))

∆∗
?

- H2n−i(Z −B′Z ∪ JZ , Z − (A′Z ∪ JZ))

∆∗
?

Hi−n(|ξ|′Z ∪ JZ , |∂ξ|′Z ∪ JZ)

D
?

- Hi−n(A′Z ∪ JZ , B′Z ∪ JZ)

D
?

Hi−n(|ξ|′Z ∪ JZ , (|ξ|′Z ∪ JZ)− int(σ))
?

- Hi−n(A′Z ∪ JZ , (A′Z ∪ JZ)− int(σ))
?

Hi−n(σ, ∂σ)

∼=6

- Hi−n(σ, ∂σ)

∼=6

Z

∼=6

- Z.

∼=6

The diagram commutes by the obvious space inclusions and by Lemma 3.7, for the duality
maps; we can use (Z, JZ) and (Z ×Z, JZ×Z) as the pairs “(X,S)” for the duality isomorphisms.
Note that the inclusion map

Hi−n(A′Z ∪ JZ , B′Z ∪ JZ)→ Hi−n(A′Z ∪ JZ , (A′Z ∪ JZ)− int(σ))

utilizes our usual assumption that σ is not contained in JZ , while the assumptions on B assure
that dim(B′X) < i− n. Similarly, the excision isomorphism

Hi−n(σ, ∂σ)→ Hi−n(A′Z ∪ JZ , (A′Z ∪ JZ)− int(σ))

uses the dimension assumptions to assure that σ ∩ ((A′Z ∪ JZ) − int(σ)) = ∂σ. The diagram
shows that, in this case, IZ,Tσ (ξ) can indeed be computing utilizing (A,B) as claimed.

Next, suppose σ 6⊂ A′. Then σ 6⊂ |ξ|′, so IZ,Tσ (ξ) = 0 by definition, which is consistent with
the statement of the lemma here.
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Finally, suppose σ ⊂ A′ but σ 6⊂ |ξ|′. Then IZ,Tσ (ξ) = 0 by definition, and we must show that
the image down the right side of our diagram of [ξ] ∈ H∞i (A,B) is 0. But notice that the top
part of the diagram does not depend on σ, so the image of [ξ] in Hi−n(A′Z ∪ JZ , B′Z ∪ JZ) must
be in the image of Hi−n(|ξ|′Z ∪ JZ , |∂ξ|′Z ∪ JZ). Therefore, it can be represented by a chain that
does not include σ and so represents 0 in Hi−n(A′Z ∪ JZ , (A′Z ∪ JZ)− int(σ)), as desired. �

Proposition 5.10. Suppose ξ1, ξ2 ∈ C∆,∞
i ((X,Σ)×(X,Σ)). Then Iσ(ξ1 +ξ2) = Iσ(ξ1)+Iσ(ξ2).

Proof. By Lemma 5.9, Iσ(ξ1 + ξ2), Iσ(ξ1), and Iσ(ξ2) can all be computed using the formula
of Definition 5.3 beginning with representations of the chains ξ1, ξ2, and ξ1 + ξ2 as elements
[ξ1], [ξ2], [ξ1 + ξ2] ∈ H∞i (|ξ1| ∪ |ξ2|, |∂ξ1| ∪ |∂ξ2|). Clearly [ξ1] + [ξ2] = [ξ1 + ξ2], using the
isomorphism α|ξ1|∪|ξ2|,|∂ξ1|∪|∂ξ2| of Lemma 4.1. From here, the result follows using that the
maps of Definition 5.3 are all homomorphisms. �

5.2. The umkehr map. We can now officially define the umkehr map

∆! : C∆,∞
∗ ((X,Σ)× (X,Σ))→ C∞∗−n(X,Σ)

as follows:

Definition 5.11. Let X be an oriented n-dimensional PL stratified pseudomanifold, not nec-

essarily compact, and let ξ ∈ C∆,∞
i ((X,Σ)× (X,Σ)). If T is any triangulation of X restricting

a triangulation of X ×X that is compatible with the stratification and for which |ξ| and ∆(X)

are subcomplexes, then define ∆T
! (ξ) ∈ cT,∞i−n (X,Σ) to be

∆T
! (ξ) =

∑
σ∈T,σ 6⊂Σ

Iσ(ξ)σ.

By Remark 5.5, the image of ∆T
! (ξ) in C∞i−n(X,Σ) does not depend on T , and we let this image

be ∆!(ξ). It follows from Proposition 5.10 that ∆! is a homomorphism

C∆,∞
i ((X,Σ)× (X,Σ))→ C∞i−n(X,Σ).

Next we show that ∆! is a chain map of degree −n. Recall ([6, Remark VI.10.5]) that this
means that ∆! lowers the degree by n and that ∂∆! = (−1)n∆!∂.

Proposition 5.12. Let X be an oriented n-dimensional PL stratified pseudomanifold, not nec-

essarily compact, and let ξ ∈ C∆,∞
i ((X,Σ)× (X,Σ)). Then

∆!(∂ξ) = (−1)n∂(∆!(ξ)) ∈ Ci−n−1(X,Σ).

Proof. It is sufficient to demonstrate that this proposition holds with respect to some fixed
triangulation T of the type we have been using. Given such a triangulation, we next observe
that all boundary computations are local. In other words, if τ is an i − n − 1 simplex of T ,
not contained in Σ, then the coefficient of τ in ∂(∆!(ξ)) depends only on the coefficients of the
simplices of ∆!(ξ) that contain τ as a face. Thus if Z is a neighborhood of τ containing all the

i−n simplices adjacent to τ , we can compute the coefficient of τ in ∂(∆!(ξ)) using only ∆Z,T
! (ξ)

(see Remark 5.6). Let us first use this observation to show that both ∆!(∂ξ) and ∂(∆!(ξ)) are
only made up of simplices in |∂ξ|′. This is clear for ∆!(∂ξ) by the construction of ∆!. For

∂(∆!(ξ)), we know from Remark 5.6 that each ∆Z,T
! (ξ) is a chain composed of i − n simplices

not contained in ΣZ or SZ and whose boundary is contained in |∂ξ|′Z ∪ΣZ ∪SZ . Since we work
with relative chains, we are not interested in coefficients of simplices in Σ, while the spaces SZ
are artifacts of the choice of Z. Consequently, as we patch the various ∆Z,T

! (ξ) together to form
∆!(ξ), we can get a better look at the simplices in ∂(∆!(ξ)) that might possibly lie in SZ by
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choosing a more appropriate Z. Ultimately, by “moving our microscope,” we see that all of
∂(∆!(ξ)) must be contained in |∂ξ|′ (or Σ).

Thus, to prove the proposition, it suffices to show for each τ ∈ |∂ξ|′ with τ 6⊂ Σ that ∆Z,T
! (∂ξ)

and (−1)n∂(∆Z,T
! (ξ)) agree for a large enough choice of Z, say one containing the star neigh-

borhoods of all i−n simplices having τ as a face. For such a τ , we can now utilize the following
diagram:

H∞i (|ξ|, |∂ξ|)
∂∗ - H∞i−1(|∂ξ|)

H∞i (|ξ| ∪ JZ×Z ∪DZ×Z , |∂ξ| ∪ JZ×Z ∪DZ×Z)
? ∂∗ - H∞i−1(|∂ξ| ∪ JZ×Z ∪DZ×Z , JZ×Z ∪DZ×Z)

?

Hi(|ξ|Z×Z ∪ JZ×Z , |∂ξ|Z×Z ∪ JZ×Z)

∼=6

∂∗ - Hi−1(|∂ξ|Z×Z ∪ JZ×Z , JZ×Z)

∼=6

H2n−i(Z × Z − (|∂ξ|Z×Z ∪ JZ×Z), Z × Z − (|ξ|Z×Z ∪ JZ×Z))

D6

d∗- H2n−i+1(Z × Z − (JZ×Z), Z × Z − (|∂ξ|Z×Z ∪ JZ×Z))

D6

H2n−i(Z − |∂ξ|′Z ∪ JZ , Z − (|ξ|′Z ∪ JZ))

∆∗
?

d∗ - H2n−i+1(Z − JZ , Z − (|∂ξ|′Z ∪ JZ))

∆∗
?

Hi−n(|ξ|′Z ∪ JZ , |∂ξ|′Z ∪ JZ)

D
? ∂∗ - Hi−n−1(|∂ξ|′Z ∪ JZ , JZ)

D
?

Hi−n−1(|∂ξ|′Z ∪ JZ , JZ)

∂∗
? = - Hi−n−1(|∂ξ|′Z ∪ JZ , JZ)

=
?

Hi−n−1(|∂ξ|′Z ∪ JZ , (|∂ξ|′Z ∪ JZ)− int(τ))
?-

Hi−n−1(τ, ∂τ)

∼=6

Z.

∼=6

Except for the squares involving D, this diagram commutes by the standard properties of
connecting morphisms. The top square involving D commutes up to (−1)2n = 1 by Lemma 3.10,
while the lower square involving D commutes up to (−1)n by the same lemma. Starting up the
upper left and proceeding right then down in the diagram takes the homology class representing
ξ to ∆!(∂ξ) and then to its coefficient for τ . On the other hand, proceeding straight downward

takes us to the class representing ∆Z,T
! (ξ) and then to its boundary. More specifically, applying

Lemma 4.3 with A = |ξ|′Z ∪ JZ , B = |∂ξ|′Z ∪ JZ , and C = JZ , the ∂∗ map here can be thought

of as taking ∆Z,T
! (ξ) to the piece of its boundary consisting of simplices in |∂ξ|′Z but not in JZ .

We know that τ is such a simplex by assumption. The bottom of the diagram then provides the
coefficient of τ according to Remark 4.4.

It follows that τ obtains the same coefficient, up to the sign (−1)n, by either route, proving
the proposition. �

The next lemma concerns the behavior of ∆! under restriction. Recall5that if X is a PL space
then any open subset U is also PL and that if X is given a triangulation T then U can be given
a triangulation S such that every simplex of S is contained in a simplex of T (see [2, Section

I.1.3]). This induces a restriction map cT,∞∗ (X)→ cS,∞∗ (U) that takes each i-simplex of T to the
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formal sum of the compatibly oriented i-simplices of S contained in it. Such maps then induce
a restriction map r : C∞∗ (X)→ C∞∗ (U).

Lemma 5.13. Let U ⊂ X be an open subset. Then there is a commutative diagram

C∆,∞
∗ ((X,ΣX)× (X,ΣX))

∆!- C∗−n(X,ΣX)

C∆,∞
∗ ((U,ΣU )× (U,ΣU ))

r
?

∆!- C∗−n(U,ΣU ).

r
?

Proof. Let ξ ∈ C∆,∞
i ((X,ΣX)× (X,ΣX)), let T be a triangulation T of X satisfying our usual

conditions as given above, and let S be a triangulation of U such that every simplex of S is
contained in some simplex of T . Let σ be any i − n simplex of S contained in |ξ|′ but not
contained in ΣU . As dim(|ξ|′ ≤ i− n) and as |ξ|′ is triangulated by T , any such σ is contained
in an i−n simplex γ of |ξ|′ in T . By the arguments of Remark 5.5, we see that the coefficient of
σ in r∆!(ξ) will equal Iγ(ξ) (which can be computed as IZ,Tγ (ξ) using T and some appropriate
choice of Z). We must show that this is equal to the coefficient of σ in ∆!r(ξ), which is Iσ(r(ξ))
(which can be computed as IY,Sγ (ξ) using S and some appropriate choice of Y ). As σ in S is an
arbitrary simplex of |ξ|′ ∩ U , this will suffice to prove the lemma.

Next, we take a sufficiently iterated barycentric subdivision T ′ of T so that

(1) there is an i− n simplex τ of T ′ contained within σ and
(2) the star neighborhood of τ in T ′ is contained in U .

This is possible by the arguments of [21, Section 15]. Then let S′ be a subdivision of S such that
τ is also a simplex of S′ and such that every simplex of S′ is contained in some simplex of T ′. We
can find such an S′ by the same procedure described in Footnote 5: form the cell complex on U
whose cells are the intersections of the simplices of S and T ′ (see [23, Example 2.8.5]) and then
create the simplicial complex obtained from this cell complex but with the same vertices via the
procedure of [23, Proposition 2.9]. As τ is already a simplex of T ′ contained in the simplex σ
of S, τ will be a cell of the cell complex and then remain a simplex in the triangulation S′. As
every simplex of S′ is contained in a simplex of T ′, the star neighborhood of τ in S′ will be a
subset of the star neighborhood of τ in T ′.

Now, let the star neighborhood of τ in T ′ be our space Z. As Z ⊂ U , it will also be triangulated
as a union of n-simplexes in S′. We will use this same Z for the computation of the intersection
coefficients IZ,T

′

τ (ξ) in X and IZ,S
′

τ (r(ξ)) in U . By Remark 5.5, IZ,T
′

τ (ξ) = Iγ(ξ), as τ ⊂ σ ⊂ γ,

and IZ,S
′

τ (r(ξ)) = Iσ(r(ξ)). So it suffices to show that IZ,T
′

τ (ξ) = IZ,S
′

τ (r(ξ)). This follows from
the following commutative diagram and the definitions of these intersection coefficients, noting
that the spaces Z, Z ×Z, JZ , JZ×Z , and DZ×Z (as a subspace of X ×X) do not depend on the
particular choice of triangulation used to define Z:

5 Here is one way to do this: start with a triangulation T of X and an arbitrary triangulation S0 of U
compatible with the PL structure on U inherited from X. We can then obtain a cell complex on U whose cells are

the intersections of the simplices of S0 with the simplices of T (see [23, Example 2.8.5]). Finally, we can subdivide

the cell complex on U to a simplicial complex S triangulating U by using the procedure of [23, Proposition 2.9];
note that the cited proposition works on infinite complexes either by choosing a well-ordering of the vertices or

simply by using a partial ordering on the vertices which is locally a total ordering on each cell. Each simplex of
S will be contained in a cell of the cell complex and thus in a simplex of T .
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H∞i (|ξ|, |∂ξ|)
r - H∞i (|r(ξ)|, |r(∂ξ)|))

H∞i (|ξ| ∪ JZ×Z ∪DZ×Z , |∂ξ| ∪ JZ×Z ∪DZ×Z)
? r- H∞i (U ∩ (|ξ| ∪ JZ×Z ∪DZ×Z), U ∩ (|∂ξ| ∪ JZ×Z ∪DZ×Z))

?

Hi(|ξ|Z×Z ∪ JZ×Z , |∂ξ|Z×Z ∪ JZ×Z)

∼=6

= - Hi(|ξ|Z×Z ∪ JZ×Z , |∂ξ|Z×Z ∪ JZ×Z).

∼=6

Note that the excisions are both still valid as all of the spaces in the bottom row are contained
within U . �

5.3. The cross product. In addition to the umkehr map, the other main ingredient of the
intersection product is the PL chain cross product ε : C∞∗ (X) ⊗ C∞∗ (X) → C∞∗ (X × X); see
[20], [8], or [7, Section 5.2.2]. The cross products in the citations are defined primarily for
compact chains, but as the cross product construction can be defined locally using simplicial
chain representatives, there is no difficulty extending it in the obvious way to locally finite
chains. This map induces a relative product ε : C∞∗ (X,Σ)⊗C∞∗ (X,Σ)→ C∞∗ ((X,Σ)× (X,Σ)).

When an element of C∞∗ (X) ⊗ C∞∗ (X) can be represented as ξ ⊗ η, we sometimes use the
notation ε(ξ ⊗ η) = ξ × η.

Lemma 5.14. Let U ⊂ X be an open subset. Then there is a commutative diagram

C∞∗ (X)⊗ C∞∗ (X)
r ⊗ r- C∞∗ (U)⊗ C∞∗ (U)

C∞∗ (X ×X)

ε
? r - C∞∗ (U × U),

ε
?

where the horizontal maps are induced by restriction. This induces a commutative diagram

C∞∗ (X,ΣX)⊗ C∞∗ (X,ΣX)
r ⊗ r- C∞∗ (U,ΣU )⊗ C∞∗ (U,ΣU )

C∞∗ ((X,ΣX)× (X,ΣX))

ε
? r- C∞∗ ((U,ΣU )× (U,ΣU )),

ε
?

Proof. The groups C∞∗ (X) ⊗ C∞∗ (X) in any fixed degree are generated by elements of the for
ξ⊗ η (though not every element can be written in this form). Suppose ξ is an i-chain and η is a
j-chain. As observed in [2, Section II.1], a PL chain ξ is completely determined by |ξ|, |∂ξ|, and
the local sheaf values [ξ]x ∈ (Hi)x ∼= Hi(|ξ|, |ξ| − {x}) ∼= H∞i (|ξ|, |ξ| − {x}) determined by the
class [ξ] ∈ Hi(|ξ|, |∂ξ|) as x varies in |ξ| − |∂ξ|.

Noting that |r(ξ)| = |ξ| ∩ U and as |ξ × η| = |ξ| × |η|, we have

|r(ξ × η)| = |ξ × η| ∩ (U × U)

= (|ξ| × |η|) ∩ (U × U)

= (|ξ| ∩ U)× (|η| ∩ U)

= |r(ξ)| × |r(η)|,

and so rε(ξ ⊗ η) and ε(r(ξ)⊗ r(η)) have the same support.
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Similarly, as r and ε are chain maps and |∂(ξ ⊗ η)| = (|∂ξ| × |η|) ∪ (|ξ| × |∂η|), we have

|∂rε(ξ ⊗ η)| = |rε((∂ξ)⊗ η ± ξ ⊗ ∂η)|
= [(|∂ξ| × |η|) ∪ (|ξ| × |∂η|)] ∩ (U × U)

= (|r(∂ξ)| × |r(η)|) ∪ (|r(ξ)| × |r(∂η)|)
= (|∂r(ξ)| × |r(η)|) ∪ (|r(ξ)| × |∂r(η)|)
= |∂(r(ξ)× r(η))|
= |∂ε(r ⊗ r)(ξ × η)|.

So the boundaries of rε(ξ ⊗ η) and ε(r(ξ)⊗ r(η)) have the same support.
It remains to check the local sheaf values, but clearly, via excisions and using standard local

chain representatives, we have a commutative diagram at each point (x, y) ∈ |r(ξ×η)|−|∂r(ξ×η)|:

Hi(|ξ|, |ξ| − {x})⊗Hj(|η|, |η| − {y})
∼=- Hi(|rξ|, |rξ| − {x})⊗Hj(|rη|, |rη| − {y})

Hi+j(|ξ| × |η|, |ξ| × |η| − {(x, y)})

ε
? ∼=- Hi+j(|rξ| × |rη|, |rξ| × |rη| − {(x, y)})

ε
?

�

5.4. The chain-level intersection product. We can now define our intersection product:

Definition 5.15. Let X be an oriented n-dimensional PL stratified pseudomanifold. Let the
domain G∞∗ (X,Σ) be the subcomplex of C∞∗ (X,Σ)⊗ C∞∗ (X,Σ) defined by

G∞∗ (X,Σ) = ε−1(C∆,∞
∗ ((X,Σ)× (X,Σ))).

The intersection product is defined to be

µ = ∆! ◦ ε : G∞∗ (X,Σ)→ C∞∗−n(X,Σ).

We note that µ is a chain map of degree −n as ∆! is a chain map of degree −n by Propositions
5.12 and 5.10, while ε is a degree 0 chain map by [7, Corollary 5.2.10].

Remark 5.16. We will see below in Proposition 6.9 that when X is compact we can let every Z
in the definition of ∆! be X itself and then µ reduces to the map µ2 of [8] up to the convention
changes noted in the introduction. If X is moreover a compact oriented PL manifold, i.e. Σ = ∅,
then this map is isomorphic to the map µ2 of McClure [20], again up to conventions. This
isomorphism is not quite immediate due to some slight differences between the definitions of the
umkehr maps in [20] and [8] (in particular, the uses of D versus D), but it is not hard to show that
they are isomorphic using the tools of Section 3 and the discussion of McClure’s construction in
[20, Section 5]. By [8, Section 4.3], these maps µ2 induce the Goresky-MacPherson intersection
product.

Proposition 5.17. The inclusion G∞∗ (X,Σ)→ C∞∗ (X,Σ)⊗C∞∗ (X,Σ) induces an isomorphism
on homology.

Proof. This follows directly as a special case of the proof Theorem 3.5 of [8], which is the
equivalent statement for compact chains. As noted in [8, Remark 3.8], that proof consists of
pushing chains into stratified general position (see Definition 6.1, below) by proper isotopies,
and so the arguments work just as well for locally finite chains. The proof in [8] also deals only
with absolute chains, not relative chains mod Σ, but this only means that the proof there is
stronger than necessary here, providing stronger general position in the singular strata than is
strictly needed to satisfy Definition 5.1. �
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This intersection product is also compatible with restriction:

Proposition 5.18. If U ⊂ X is an open subset then we obtain a commutative diagram

C∞∗ (X,ΣX)⊗ C∞∗ (X,ΣX) �⊃ G∞∗ (X,ΣX)
µ- C∞∗−n(X,ΣX)

C∞∗ (U,ΣU )⊗ C∞∗ (U,ΣU )
?

� ⊃ G∞∗ (U,ΣU )
? µ- C∞∗−n(U,ΣU ),

?

where the vertical maps are induced by restriction.

Proof. Commutativity on the right follows immediately by putting together Lemmas 5.13 and
5.14. Commutativity on the left follows from Lemma 5.14 and the fact that the restriction map

takes C∆,∞
∗ ((X,ΣX)× (X,ΣX)) to C∆,∞

∗ ((U,ΣU )× (U,ΣU )). �

Together, Definition 5.15, Propositions 5.17 and 5.18, and Remark 5.16 demonstrate all the
claims of Theorem 1.1 concerning the intersection product (2).

6. The intersection product for intersection homology

In this section, we briefly review the definition of intersection chains and then demonstrate
how an intersection product of intersection chains follows from the work of the previous sections.
A thorough introduction to intersection homology can be found in [7].

6.1. PL intersection chains. If X is a PL stratified pseudomanifold, a perversity on X is a
function

p̄ : {singular strata of X} → Z.

Recall from Section 4.1 that if ξ is a chain then |ξ| denotes the union in some triangulation
(compatible with ξ and with the stratification of X) of the i-simplices of ξ that are not contained
in Σ. The perversity p̄ PL intersection chain complex I p̄C∗(X) is defined as the subcomplex of
C∗(X,Σ) consisting of chains ξ ∈ Ci(X,Σ) such that the following conditions are satisfied for
each singular stratum Z of X:

(1) dim(|ξ| ∩ Z) ≤ i− codim(Z) + p̄(Z),
(2) dim(|∂ξ| ∩ Z) ≤ i− 1− codim(Z) + p̄(Z).

The groups I p̄C∗(X) form a chain complex due to the second condition, and the homology groups
are the intersection homology groups, denoted I p̄H∗(X). Similarly, I p̄C∞∗ (X) and I p̄H∞∗ (X) are
defined identically by imposing the dimension conditions on chains in C∞∗ (X,Σ).

The reader familiar with the original definition of intersection chains, e.g. from Goresky-
MacPherson [12], might be surprised to see them defined here as a subcomplex of the relative
chain complex, but it is shown in [7, Section 6.2] that these intersection chain complexes are
isomorphic to those of Goresky and MacPherson provided that p̄(Z) ≤ codim(Z) − 2 for all
singular strata Z, which is the case for all perversities treated in [12]. Roughly speaking, for
these stricter perversities the chains are sufficiently forced away from Σ that, even though they
may still intersect Σ, they are not affected by what happens internal to Σ. Conversely, for
larger perversities, the relative approach is critical for obtaining agreement with sheaf-theoretic
intersection homology; see [9, 7] for expository discussions.
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6.2. The intersection product. In this section, we demonstrate how the intersection product
µ of the prior section restricts to provide an intersection product on intersection chains. In
addition to limiting ourselves to intersection chains, we will need to impose a stronger notion of
general position (cf. Remark 5.2). This stratified general position is formulated in general in [8,
Definition 3.1]; we here restrict to the version we will need:

Definition 6.1. Let X be a PL stratified pseudomanifold and ∆ : X → X × X the diagonal
inclusion ∆(x) = (x, x). We will say that the PL subset A ⊂ X × X is in stratified general
position (with respect to ∆) if for each stratum Z ⊂ X we have

dim(A ∩∆(Z)) ≤ dim(A ∩ (Z × Z))− dim(Z).

In other words, noting that dim(Z × Z) = 2 dim(Z), we require that, for each stratum Z, the
PL spaces A ∩ (Z × Z) and ∆(Z) are in general position in the manifold Z × Z.

If ξ ∈ C∞i ((X,Σ)× (X,Σ)), then we will say that ξ is in stratified general position if |ξ| is in
stratified general position.

Remark 6.2. Notice that if ξ ∈ C∞i ((X,Σ)× (X,Σ)) is in stratified general position and if R is
the union of regular strata of X, then we have dim(∆−1(|ξ|) − Σ) = dim(|ξ| ∩∆(R)) ≤ i − n.

So if |ξ| and |∂ξ| are in stratified general position, then ξ ∈ C∆,∞
i ((X,Σ)× (X,Σ)).

Next, let P = (p̄1, p̄2) be a pair of perversities.

Definition 6.3. The domain G∞,P∗ (X) of the intersection product is defined to be the subcom-
plex of I p̄1C∞∗ (X)⊗I p̄2C∞∗ (X) consisting of chains ξ such that |ε(ξ)| and |ε(∂ξ)| are in stratified

general position. We have G∞,P∗ (X) ⊂ G∞∗ (X,Σ) by Remark 6.2. Let

µ : G∞,P∗ (X)→ C∞∗−n(X,Σ)

be the restriction of the intersection product.

Now that we have constructed the intersection product for intersection chains, we can verify
its key properties:

Proposition 6.4. The inclusion G∞,P∗ (X)→ I p̄1C∞∗ (X)⊗ I p̄2C∞∗ (X) induces an isomorphism
on homology.

Proof. As for Proposition 5.17, this result follows from the same reasoning as the analogous
Theorem 3.7 of [8]. �

Proposition 6.5. Let p̄1 + p̄2 be the perversity that evaluates on the singular stratum Z to

p̄1(Z) + p̄2(Z). The intersection product µ restricts to a map µ : G∞,P∗ (X)→ I p̄1+p̄2C∞∗−n(X).

Proof. We already know that µ : G∞,P∗ (X) → C∞∗−n(X,Σ) is well defined, so we have only to
show that the image lies in I p̄1+p̄2C∞∗−n(X).

As G∞,Pi (X) ⊂ I p̄1C∞∗ (X) ⊗ I p̄2C∞∗ (X), each element ξ ∈ G∞,Pi (X) can be written as a
sum

∑
a ζa ⊗ ηa with ζa ∈ I p̄1C∞∗ (X) and ηa ∈ I p̄2C∞∗ (X). Suppose ζa ∈ I p̄1C∞j (X) and

ηa ∈ I p̄2C∞k (X) with j + k = i, and let Z be a stratum of X. Then, by definition,

dim(|ζa| ∩ Z) ≤ j − codimX(Z) + p̄1(Z)
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and similarly for ηa. Thus

dim(|ε(ζa ⊗ ηa)| ∩ (Z × Z)) = dim((|ζa| × |ηa|) ∩ (Z × Z))

= dim((|ζa| ∩ Z)× (|ηa| ∩ Z))

= dim(|ζa| ∩ Z) + dim(|ηa| ∩ Z)

≤ j − codimX(Z) + p̄1(Z) + k − codimX(Z) + p̄2(Z)

= i− 2codimX(Z) + p̄1(Z) + p̄2(Z).

It follows that dim(|ε(ξ)| ∩ (Z ×Z)) ≤ i− 2codimX(Z) + p̄1(Z) + p̄2(Z). Therefore, as |ε(ξ)| is
in stratified general position by assumption,

dim(|ε(ξ)| ∩∆(Z)) ≤ i− 2codimX(Z) + p̄1(Z) + p̄2(Z)− dim(Z)

= i− 2codimX(Z) + p̄1(Z) + p̄2(Z)− (n− codimX(Z))

= i− n− codimX(Z) + p̄1(Z) + p̄2(Z).

Therefore, as µ(ξ) is supported in ∆−1(|ε(ξ)|) = |ε(ξ)| ∩ ∆(X), we see that µ(ξ) satisfies the
conditions to be p̄1 + p̄2 allowable. An equivalent computation shows that ∂µ(ξ) = µ(∂ξ) is also
p̄1 + p̄2 allowable, so µ(ξ) ∈ I p̄1+p̄2C∞∗−n(X). �

Remark 6.6. Notice that the full power in Proposition 6.5 of the stratified general position
assumption is in making sure that µ(ξ) lies in the intersection chain complex with the smallest
possible perversity, p̄1 + p̄2. Consequently, µ(ξ) also lies in I r̄C∞∗−n(X) for all perversities r̄
with p̄1 + p̄2 ≤ r̄. In fact, it follows directly from the definitions that I p̄C∞∗ (X) ⊂ I q̄C∞∗ (X)
if p̄ ≤ q̄, meaning that p̄(Z) ≤ q̄(Z) for all singular strata Z. If our goal is simply to have
µ(ξ) ∈ I r̄C∞∗−n(X) for some r̄ ≥ p̄1+p̄2, we could relax the stratified general position requirement
accordingly on the singular strata. In fact, this is the case in the original definition of the
intersection product for intersection chains in [12, Section 2.1], where, in addition to general
position on the regular strata, it is only required for the intersection of a pair of chains to satisfy
the dimension requirements recalled in Section 6.1 with respect to r̄ (see [12] for full details).

Proposition 6.7. If U ⊂ X is an open subset then there is a commutative diagram

I p̄1C∞∗ (X)⊗ I p̄2C∞∗ (X) �⊃ G∞,P∗ (X)
µ- I p̄1+p̄2C∞∗−n(X)

I p̄1C∞∗ (U)⊗ I p̄2C∞∗ (U)

r
?

�⊃ G∞,P∗ (U)

r
?

µ- I p̄1+p̄2C∞∗−n(U),

r
?

where the vertical maps are induced by restriction.

Proof. This follows from Lemmas 5.13 and 5.14 as in the proof of Proposition 5.18, together with
the observation that the restriction maps r : C∞∗ (X,ΣX) → C∞∗ (U,ΣU ) take the subcomplex
I p̄C∞∗ (X) to I p̄C∞∗ (U) for any perversity p̄. �

Next, let us verify that our intersection chain product agrees with the Goresky-MacPherson
product on compact spaces, which we denote by t. For this, we need the notion of stratified
general position for two chains.

Definition 6.8. We say that two chains ξ, η in X are in stratified general position if ε(ξ ⊗ η)
is in stratified general position, i.e. if |ξ| × |η| is in stratified general position with respect to ∆.
As (|ξ| × |η|)∩∆(Z) = |ξ| ∩ |η| ∩Z and dim(B×C) = dim(B) + dim(C) in general (if neither B
nor C is empty), this is equivalent to requiring that |ξ| ∩ Z and |η| ∩ Z are in general position
in Z, i.e. dim(|ξ| ∩ |η| ∩ Z) ≤ dim(|ξ| ∩ Z) + dim(|η| ∩ Z)− dim(Z).



THE CHAIN-LEVEL INTERSECTION PRODUCT FOR PL PSEUDOMANIFOLDS REVISITED 361

Proposition 6.9. Suppose X is a compact oriented PL stratified pseudomanifold and that p̄1, p̄2

are Goresky-MacPherson perversities such that there exists a Goresky-MacPherson perversity r̄

with p̄1 + p̄2 ≤ r̄. Then the composition µ : GP∗ (X)
µ−→ I p̄1+p̄2C∗−n(X) → I r̄C∗−n(X) agrees

with the intersection product µ2 defined in [8], replacing the Goresky-MacPherson duality map
with the one constructed here. Therefore, if ξ ∈ I p̄1Ci(X) and η ∈ I p̄2Cj(X) are such that the
pairs6 (ξ, η), (ξ, ∂η), and (∂ξ, η) are in stratified general position, then µ(ξ ⊗ η) is equal to the
Goresky-MacPherson intersection product ξ t η, up to sign.

Remark 6.10. Goresky-MacPherson perversitities are the perversities that satisfy the original
definition of a perversity in [12]; see also [7, Definition 3.1.4]. The restriction on perversities
in the statement of the proposition is necessary because the intersection products in [12, 8] are
defined only for Goresky-MacPherson perversities. However, the definitions of those products
work just as well so long as all perversities satisfy p̄(Z) ≤ codim(Z)−2 for all singular strata Z.
To use perversities that allow for p̄(Z) > codim(Z)− 2 for some strata it is necessary to utilize
the relative chain complexes as we have done here. For an explanation of the different behaviors
resulting from these assumptions, see [7, Chapter 6].

Proof of Proposition 6.9. Given that X is compact, the entire construction of ∆! in Sections 5.1
and 5.2 can be carried out with a single neighborhood space Z, namely X itself. In this case,
DZ = DZ×Z = SZ = ∅, so JZ = ΣZ and JZ×Z = (X × ΣX) ∪ (ΣX ×X) = ΣX×X . So then if
ξ ∈ C∆

∗ ((X,Σ) × (X,Σ)), by following Definition 5.3 in this case, the chain ∆!(ξ) corresponds
under the isomorphism of Lemma 4.3 to the image of [ξ] under the composition

Hi(|ξ|, |∂ξ|)→ Hi(|ξ| ∪ ΣX×X , |∂ξ| ∪ ΣX×X)

D←− H2n−i(X ×X − (|∂ξ| ∪ ΣX×X), X ×X − (|ξ| ∪ ΣX×X))

∆∗−−→ H2n−i(X − |∂ξ|′ ∪ ΣX , X − (|ξ|′ ∪ ΣX))

D−→ Hi−n(|ξ|′ ∪ ΣX , |∂ξ|′ ∪ ΣX).

But, up to indexing shifts and the new corrected version of the map D, this is precisely the
map defined in Section 4.2 of [8]. The cross product part of the intersection product remains
identical.

The comparison with the Goresky-MacPherson intersection product is then outlined7 in the
proof of Proposition 4.9 of [8]. �

Definition 6.3 and Propositions 6.4, 6.5, 6.7, and 6.9 complete the proof of Theorem 1.1.�

7. Duality of intersection products and cup products

In this section, we utilize some of the tools we have developed to verify a seemingly well-known
fact: On a compact oriented PL manifold, the Goresky-MacPherson homology intersection prod-
uct and the cup product are Poincaré dual. We also show that the Goresky-MacPherson homol-
ogy product agrees with Dold’s [6, Section VIII.13]. We then discuss how our argument fails to

6We do not need to require that the pair (∂ξ, ∂η) be in stratified position, as we do not here run into the
logical difficulty mentioned in Remark 3.5. This is because (ξ, ∂η) and (∂ξ, η) being in stratified general position

is enough to guarantee that ∂(ξ × η) = (∂ξ)× η ± ξ × ∂η is in stratified general position with respect to ∆, and
we never need to consider directly terms such as (∂ξ) t η or ξ t ∂η.

7That argument notes (α×β) _ (ξ×η) = (−1)|β||ξ|(α×β) _ (ξ×η), as provided by [6, §VII.12.17], but does
not trace through the full compatibility between cross products and the Dold and Goresky-MacPherson duality

maps. However, that is a routine, though tedious, exercise in applying naturality of cross products, as well as the
formula just quoted, to the defining diagrams of the duality isomorphisms.
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generalize to compact oriented PL stratified pseudomanifolds, demonstrating the need for the
“sheafifiable” intersection product we have developed in this paper.

We begin with the following result about PL manifolds; it is a nice corollary of Lemma 3.7,
which demonstrated the naturality of the duality map D. We will use the following notation:
For a subset A ⊂M , let iA : Hi(A)→ Hi(M) and iA : Hi(M,M −A)→ Hi(M) be induced by
inclusion.

Corollary 7.1. Let M be a compact oriented PL n-manifold, and let ξ be a PL i-cycle in M .
The following diagram commutes:

Hn−i(M,M − |ξ|)
i|ξ|- Hn−i(M)

Hi(|ξ|)

D
? i|ξ|- Hi(M).

D
?

In other words, i|ξ|D = Di|ξ|.

Proof. In Lemma 3.7, take X = K ′ = M , K = |ξ|, and L = L′ = ∅. �

Tracing through the definitions, the vertical map on the right of the diagram in Corollary 7.1
is just the (signed) cap product with the fundamental class. The corollary thus demonstrates a
compatibility between classical Poincaré duality and the dualities we’ve been using to explore
chains: If ξ is an i-cycle in M , it can be represented by a class [ξ] ∈ Hi(|ξ|) by Lemma 4.1, and
this maps by inclusion to the class represented by ξ in Hi(M). The Poincaré dual in Hn−i(M) of
this class in Hi(M) is then the image of D−1([ξ]) ∈ Hn−i(M,M−|ξ|) under the inclusion-induced
Hn−i(M,M − |ξ|)→ Hn−i(M).

Beyond being a pleasant verification of consistency, this observation can be used fairly readily
to see that the homology product induced by the Goresky-MacPherson intersection product of
chains really is Poincaré dual to the usual cup product on compact manifolds. In fact, suppose
ξ ∈ Ci(M) and η ∈ Cj(M) are two cycles in general position in the compact oriented PL n-
manifold M . In this case, “stratified” general position reduces to the single general position
requirement that dim(|ξ| ∩ |η|) ≤ i + j − n. If [ξ] ∈ Hi(|ξ|) and [η] ∈ Hj([η]) are the homology
classes corresponding to the chains by Lemma 4.1, then the definition of the Goresky-MacPherson
intersection product in [12, Section 2.1] reduces in this case to the chain corresponding to the
image of [ξ]⊗ [η] under the composition of maps

Hi(|ξ|)⊗Hj(|η|)
(D⊗D)−1

−−−−−−→ Hn−i(M,M − |ξ|)⊗Hn−j(M,M − |η|)
^−→ H2n−i−j(M,M − (|ξ| ∩ |η|))(8)

D−→ Hi+j−n(|ξ| ∩ |η|),

though replacing the Goresky-MacPherson duality map with our corrected map D. By Proposi-
tion 6.9, the product in this case agrees with that previously studied in [8].

We denote this intersection product by ξ t η. It is shown in [12, Theorem 1] that this inter-
section product leads to a well-defined product on homology Hi(M) ⊗ Hj(M) → Hi+j−n(M),
using that any two PL cycles are homologous to a pair of cycles in general position and that the
homology class of the image depends only on the homology classes of the inputs. In fact, more
generally, such products are defined for intersection homology groups of appropriate perversities
on PL stratified pseudomanifolds.
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We show that the homology intersection product on manifolds is dual to the cup product. By
the Goresky-MacPherson result just cited, it is sufficient to verify this utilizing two representative
cycles in general position.

Theorem 7.2. Let M be a compact oriented PL n-manifold. Let ξ ∈ Ci(M) and η ∈ Cj(M) be
PL cycles in general position and represented by classes [ξ] ∈ Hi(|ξ|) and [η] ∈ Hj(|η|). Then if
t is the Goresky-MacPherson intersection product we have a commutative diagram

Hi(|ξ|)⊗Hj(|η|)
i|ξ| ⊗ i|η| - Hi(M)⊗Hj(M)

Hn−i(M)⊗Hn−j(M)

(D⊗ D)−1

?

H2n−i−j(M)

^
?

Hi+j−n(|ξ| ∩ |η|)

t

? i|ξ|∩|η| - Hi+j−n(M).

D
?

(9)

Corollary 7.3. Let M be a compact oriented PL manifold of dimension n and t the Goresky-
MacPherson intersection product. The following diagram commutes:

Hn−i(M)⊗Hn−j(M) -̂ H2n−i−j(M)

Hi(M)⊗Hj(M)

D⊗ D
? t- Hi+j−n(M).

D
?

Proof of Theorem 7.2. Applying the definition of t and Corollary 7.1, we have

i|ξ|∩|η|[ξ t η] = [i|ξ|∩|η| ◦ D◦^ ◦(D⊗ D)−1]([ξ]⊗ [η])

= [D ◦ i|ξ|∩|η|◦^ ◦(D⊗ D)−1]([ξ]⊗ [η])

= (−1)n[D ◦ i|ξ|∩|η|◦^ ◦(D−1 ⊗ D−1)]([ξ]⊗ [η])

= (−1)n+ni[D ◦ i|ξ|∩|η|](D−1([ξ]) ^ D−1([η]))

= (−1)n+niD((i|ξ|D−1([ξ])) ^ (i|η|D−1([η])))

= (−1)n+niD(D−1(i|ξ|([ξ])) ^ D−1(i|η|([η])))

= (−1)n[D◦^ ◦(D−1 ⊗ D−1) ◦ (i|ξ| ⊗ i|η|)]([ξ]⊗ [η])

= [D◦^ ◦(D⊗ D)−1 ◦ (i|ξ| ⊗ i|η|)]([ξ]⊗ [η]).

In the fifth line, we use naturality of the cup product coming from the maps

(M ; ∅, ∅)→ (M ;M − |ξ|,M − |η|).

In particular, i|ξ|∩|η| restricts on pairs to i|ξ| and i|η|. To explain the signs, we also recall that
if f, g are chain maps then the Koszul convention has f ⊗ g acting on an element x ⊗ y by
(f ⊗ g)(x⊗ y) = (−1)|g||x|f(x)⊗ g(y), where |g| is the degree of g as a chain map and |x| is the
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degree of x as a chain element. It also follows that

α⊗ β = (D−1D(α))⊗ (D−1D(β))

= (−1)n(|α|−n)(D−1 ⊗ D−1)((Dα)⊗ (Dβ))

= (−1)n(|α|−n)+n|α|(D−1 ⊗ D−1)(D⊗ D)(α⊗ β)

= (−1)n(D−1 ⊗ D−1)(D⊗ D)(α⊗ β),

so (D⊗ D)−1 = (−1)n(D−1 ⊗ D−1). �

An alternative proof of Theorem 7.2 could likely be obtained from the naturality of the
homology intersection product of Dold [6, Section VIII.13]. The composition down the right of
Diagram (9) agrees with Dold’s intersection product by [6, Equation VIII.13.5], taking (M, ∅)
as both input pairs. By Proposition 6.9, the Goresky-MacPherson intersection product on the
left of Diagram (9) coincides with our product map µ. The definition of µ is formally analogous
to the definition of the homology intersection product in Dold, but they are not identical owing
to the technicalities in the formulations of the various duality and transfer maps. These can
probably be compared, but we will not pursue it here.

Rather, we can turn around the observation that the composition down the right of Dia-
gram (9) is Dold’s homology intersection product to note that Corollary 7.3 demonstrates that
the Goresky-MacPherson chain intersection product induces Dold’s homology product. It then
follows from Proposition 6.9 and Remark 5.16 that the homology products induced by our chain-
level µ (equivalently McClure’s µ2 of [20]) are the Dold intersection product up to signs. We
state this as a further corollary:

Corollary 7.4. Let M be a compact oriented PL manifold. Then the following homology prod-
ucts Hi(M)⊗Hj(M)→ Hi+j−n(M) are equivalent (up to sign conventions):

(1) the Goresky-MacPherson intersection product,
(2) the homology product induced by our chain-level map µ,
(3) the homology product induced by McClure’s chain-level map µ2 [20],
(4) the Dold homology product [6, Section VIII.13].

7.1. Open questions: duality on pseudomanifolds without sheaves. The next reason-
able question to ask is whether versions of Corollary 7.1 and Theorem 7.2 hold for intersection
homology on PL stratified pseudomanifolds, utilizing the intersection homology Poincaré duality
isomorphism and intersection homology cup and cap products of [11, 7]. In particular, if X is
a compact oriented PL stratified pseudomanifold and if ξ ∈ I p̄Ci(X) is a cycle, then we have
a version of i|ξ| that runs Hi(|ξ|) → I p̄Hi(X) and takes the homology class representing ξ in
Hi(|ξ|) to the intersection homology class represented by ξ in I p̄Hi(X). Letting Dp̄ be the dual
perversity to p̄ (see [7, Definition 3.1.7]), one could then first seek a diagram

Hn−i(X,X − |ξ|)
i|ξ|- IDp̄H

n−i(X)

Hi(|ξ|)

D
? i|ξ|- I p̄Hi(X),

D
?

(10)
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analogous to the diagram of Corollary 7.1 but with the map D on the right now being the duality
isomorphism8 of [11, 7]; as for the manifold case above, this isomorphism is simply the signed
(intersection homology) cap product with the fundamental class. Then one could attempt to
proceed on through the argument of Theorem 7.2 using these i maps.

But there are problems. First of all, the map D on the left here is not well defined because the
hypotheses for Proposition 3.6 are not met, as the subspace in the pair (|ξ|, ∅) does not contain
ΣX . It fact, it is easy to construct examples where Hi(|ξ|) and Hn−i(X,X − |ξ|) are not even
abstractly isomorphic. For example, let X = Sn ∨Sn with some orientation on the spheres, and
let ξ be a fundamental class. Then |ξ| = X andHn(X) ∼= Z⊕Z, butH0(X,X−X) = H0(X) ∼= Z.
Of course this does not immediately rule out the commutativity of some diagram of the form
(10), but it does mean that we cannot define an intersection product by the composition (8).

Indeed, this is not how Goresky and MacPherson define their intersection pairing for inter-
section chains. Instead, simplifying the construction of [12, Section 2.1] to cycles and using our
duality map, their intersection product is determined instead by the composition

Hi(|ξ|)⊗Hj(|η|)→ Hi(|ξ| ∪ Σ,Σ)⊗Hj(|η| ∪ Σ,Σ)

(D⊗D)−1

−−−−−−→ Hn−i(X − Σ, X − (|ξ| ∪ Σ))⊗Hn−j(X − Σ, X − (|η| ∩ Σ))
^−→ H2n−i−j(X − Σ, X − ((|ξ| ∩ |η|) ∪ Σ))

D−→ Hi+j−n((|ξ| ∩ |η|) ∪ Σ,Σ)
∼=←− Hi+j−n(|ξ| ∩ |η|, |ξ| ∩ |η| ∩ Σ) by excision.

With the assumptions on the perversities in [12], this last group is isomorphic to Hi+j−n(|ξ|∩|η|),
though we also know from our work here (see Propositions 6.5 and 6.9) that an element of
Hi+j−n((|ξ|∩ |η|)∪Σ,Σ) itself determines an intersection chain if ξ and η are intersection chains
in stratified general position. Thus it seems that our replacement for the diagram of Corollary
7.1 might instead be something like

Hn−i(X − Σ, X − (|ξ| ∪ Σ))
i|ξ|- IDp̄H

n−i(X)

Hi(|ξ| ∪ Σ,Σ)

D ∼=
?

Hi(|ξ|)

6

i|ξ|- I p̄Hi(X).

D

?

(11)

As both D maps are now isomorphisms again, we can still talk sensibly about commutativity of
this diagram. And, in fact, if p̄(Z) ≤ codim(Z) − 2 for all singular strata Z, as is the case for
all perversities in [12], then the map Hi(|ξ|)→ Hi(|ξ| ∪Σ,Σ) is also an isomorphism: It is equal
to the composition

Hi(|ξ|)→ Hi(|ξ|, |ξ| ∩ Σ)→ Hi(|ξ| ∪ Σ,Σ),

the second map being an excision isomorphism and the first being an isomorphism from the long
exact sequence of the pair, as the perversity condition ensures Hi(|ξ| ∩ Σ) = Hi−1(|ξ| ∩ Σ) = 0.

8Technically, we should either work with field coefficients or with locally-torsion free spaces for the duality

isomorphism IDp̄H
n−i(X) ∼= I p̄Hi(X) and the intersection cohomology cup product to be defined; see [7, Chapter

8]. The reader can choose either option or safely ignore the issue for the point of this discussion.
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But now there is a different problem: what is the natural definition of the map

i|ξ| : Hn−i(X − Σ, X − (|ξ| ∪ Σ))→ IDp̄H
n−i(X) ?

There is no obvious chain map IDp̄C∗(X) → C∗(X − Σ, X − (|ξ| ∪ Σ)) that would induce
this cohomology map. We could conceivably define i|ξ| via diagram (11) in the case where all
vertical maps are isomorphisms, but that’s not good enough for a version of Theorem 7.2 as it
is not clear how to show that a collection of i maps defined this way is natural with respect to
the cup product without already having some kind of compatibility between cup products and
appropriate homology pairings.

So we are stuck. There does not seem to be in the spirit of Theorem 7.2 and Corollary 7.3 a
similar proof of the duality isomorphism for pseudomanifolds between the Goresky-MacPherson
intersection product and the intersection cohomology cup product of [11]. However, such an
isomorphism is shown in [10] using sheaf-theoretic techniques, including the sheafification of the
noncompact chain-level intersection product we have just developed, justifying our work here.
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