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DEFORMING MONOMIAL SPACE CURVES INTO SET-THEORETIC

COMPLETE INTERSECTION SINGULARITIES

MICHEL GRANGER AND MATHIAS SCHULZE

Abstract. We deform monomial space curves in order to construct examples of set-theoretical
complete intersection space curve singularities. As a by-product we describe an inverse to Her-

zog’s construction of minimal generators of non-complete intersection numerical semigroups

with three generators.

1. Introduction

It is a classical problem in algebraic geometry to determine the minimal number of equations
that define a variety. The codimension is a lower bound for this number which is reached in
case of set-theoretic complete intersections. Let I be an ideal in a polynomial ring or a regular
analytic algebra over a field K. Then I is called a set-theoretic complete intersection if

√
I =
√
I ′

for some ideal I ′ generated by height I many elements. The subscheme or analytic subgerm X
defined by I is also called a set-theoretic complete intersection in this case. It is hard to determine
whether a given X is a set-theoretic complete intersection. We address this problem in the case
I ∈ SpecK{x, y, z} of irreducible analytic space curve singularities X over an algebraically closed
(complete non-discretely valued) field K.

Cowsik and Nori (see [CN78]) showed that over a perfect field K of positive characteristic any
algebroid curve and, if K is infinite, any affine curve is a set-theoretic complete intersection. To
our knowledge there is no example of an algebroid curve that is not a set-theoretic complete in-
tersection. Over an algebraically closed field K of characteristic zero, Moh (see [Moh82]) showed
that an irreducible algebroid curve K[[ξ, η, ζ]] ⊂ K[[t]] is a set-theoretic complete intersection if
the valuations `,m, n = υ(ξ), υ(η), υ(ζ) satisfy

(1.1) gcd(`,m) = 1, ` < m, (`− 2)m < n.

We deform monomial space curves in order to find new examples of set-theoretic complete
intersection space curve singularities. Our main result in Proposition 4.2 gives sufficient numer-
ical conditions for the deformation to preserve both the value semigroup and the set-theoretic
complete intersection property. As a consequence we obtain

Corollary 1.1. Let C be the irreducible curve germ defined by

OC = K
{
t`, tm + tp, tn + tq

}
⊂ K{t}

where gcd(`,m) = 1, p > m, q > n and there are a, b ≥ 2 such that

` = b+ 2, m = 2a+ 1, n = ab+ b+ 1.

Let γ be the conductor of the semigroup Γ = 〈`,m, n〉 and set

d1 = (a+ 1)(b+ 2), δ = min {p−m, q − n}.
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(a) If d1 + δ ≥ γ, then Γ is the value semigroup of C.
(b) If d1 + δ ≥ γ + `, then C is a set-theoretic complete intersection.
(c) If a, b ≥ 3 and d1 + q − n ≥ γ + `, then C defined by

p := γ − 1− ` > m

is a non-monomial set-theoretic complete intersection.

In the setup of Corollary 1.1 Moh’s third condition in (1.1) becomes ab < 1 and is trivially
false. Corollary 1.1 thus yields an infinite list of new examples of non-monomial set-theoretic
complete intersection curve germs.

Let us explain our approach and its context in more detail. Let Γ be a numerical semigroup.
Delorme (see [Del76]) characterized the complete intersection property of Γ by a recursive con-
dition. The complete intersection property holds equivalently for Γ and its associated monomial
curve Spec(K[Γ]) (see [Her70, Cor. 1.13]) and is preserved under flat deformations. For this
reason we deform only non-complete intersection Γ. A curve singularity inherits the complete
intersection property from its value semigroup since it is a flat deformation of the corresponding
monomial curve (see Proposition 3.3). The converse fails as shown by a counter-example of
Herzog and Kunz (see [HK71, p. 40-41]).

In case Γ = 〈`,m, n〉, Herzog (see [Her70]) described minimal relations of the generators
`,m, n. There are two cases (H1) and (H2) (see §2) with 3 and 2 minimal relations respectively.
In the non-complete intersection case (H1) we describe an inverse to Herzog’s construction (see
Proposition 2.4). Bresinsky (see [Bre79b]) showed (for arbitrary K) by an explicit calculation
based on Herzog’s case (H1) that any monomial space curve is a complete intersection. Our
results are obtained by lifting his equations to a (flat) deformation with constant value semi-
group. In section §3 we construct such deformations (see Proposition 3.3) following an approach
using Rees algebras described by Teissier (see [Zar06, Appendix, Ch. I, §1]). In §4 we prove
Proposition 4.2 by lifting Bresinsky’s equations under the given numerical conditions. In §5 we
derive Corollary 1.1 and give some explicit examples (see Example 5.2).

It is worth mentioning that Bresinsky (see [Bre79b]) showed (for arbitrary K) that all mono-
mial Gorenstein curves in 4-space are set-theoretic complete intersections.

2. Ideals of monomial space curves

Let `,m, n ∈ N generate a semigroup Γ = 〈`,m, n〉 ⊂ N.

d = gcd(`,m).

We assume that Γ is numerical, that is, gcd(`,m, n) = 1.
Let K be a field and consider the map

ϕ : K[x, y, z]→ K[t], (x, y, z) 7→ (t`, tm, tn),

whose image K[Γ] = K[t`, tm, tn] is the semigroup ring of Γ.
Pick a, b, c ∈ N minimal such that

a` = b1m+ c2n, bm = a2`+ c1n, cn = a1`+ b2m

for some a1, a2, b1, b2, c1, c2 ∈ N. Herzog distinguished two cases and proved the following
statements (see [Her70, Props. 3.3, 3.4, 3.5, Thm. 3.8]).

(H1) 0 /∈ {a1, a2, b1, b2, c1, c2}. Then

(2.1) a = a1 + a2, b = b1 + b2, c = c1 + c2
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and the unique minimal relations of `,m, n read

a`− b1m− c2n = 0,(2.2)

−a2`+ bm− c1n = 0,(2.3)

−a1`− b2m+ cn = 0.(2.4)

Their coefficients form the matrix

(2.5)

 a −b1 −c2
−a2 b −c1
−a1 −b2 c

 .

Accordingly the ideal I = 〈f1, f2, f3〉 of maximal minors

(2.6) f1 = xa − yb1zc2 , f2 = yb − xa2zc1 , f3 = xa1yb2 − zc

of the matrix

(2.7) M0 =

(
zc1 xa1 yb1

yb2 zc2 xa2

)
.

equals kerϕ, and the rows of this matrix generate the module of relations between
f1, f2, f3. Here K[Γ] is not a complete intersection.

(H2) 0 ∈ {a1, a2, b1, b2, c1, c2}. One of the relations (a,−b, 0), (a, 0,−c), or (0, b,−c) is a min-
imal relation of `,m, n and, up to a permutation of the variables, the minimal relations
are

a` = bm,(2.8)

a1`+ b2m = cn.(2.9)

Their coefficients form the matrix

(2.10)

(
a −b 0
−a1 −b2 c

)
.

It is unique up to adding multiples of the first row to the second. Overall there are 3
cases and an overlap case described equivalently by 3 matrices

(2.11)

(
a −b 0
a 0 c

)
,

(
a −b 0
0 −b c

)
,

(
a 0 −c
0 b −c

)
.

Here K[Γ] is a complete intersection.

In the following we describe the image of Herzog’s construction and give a left inverse:

(H1’) Given a1, a2, b1, b2, c1, c2 ∈ N \ {0}, define a, b, c by (2.1) and set

`′ = b1c1 + b1c2 + b2c2 = b1c+ b2c2 = b1c1 + bc2,(2.12)

m′ = a1c1 + a2c1 + a2c2 = ac1 + a2c2 = a1c1 + a2c,(2.13)

n′ = a1b1 + a1b2 + a2b2 = a1b+ a2b2 = a1b1 + ab2,(2.14)

and e′ = gcd(`′,m′, n′). Note that `′,m′, n′ are the submaximal minors of the matrix in
(2.5).

(H2’) Given a, b, c ∈ N \ {0} and a1, b2 ∈ N, define `′,m′, n′, d′ by

`′ = bd′,(2.15)

m′ = ad′,(2.16)

n′

d′
=
a1b+ ab2

c
, gcd(n′, d′) = 1.(2.17)
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Remark 2.1. In the overlap case (2.11) the formulas (2.15)-(2.16) yield

(`′,m′, n′) = (bc, ac, ab).

Lemma 2.2. In case (H1), let ñ ∈ N be minimal with xñ − z ˜̀ ∈ I for some ˜̀ ∈ N. Then

gcd(˜̀, ñ) = 1 and (ñ, ˜̀) · gcd(b1, b2) = (n′, `′).

Proof. The first statement holds due to minimality. By Buchberger’s criterion, the generators 2.6
form a Gröbner basis with respect to the reverse lexicographical ordering on x, y, z. Let g′ denote

a normal form of g = xñ − z ˜̀
with respect to 2.6. Then g ∈ I if and only if g′ = 0. By (2.1),

reductions by f2 can be avoided in the calculation of g. If r2 and r1 many reductions by f1 and
f3 respectively are applied, then

g′ = xñ−a1r1−ar2yb1r2−r1b2zr1c+r2c2 − z ˜̀

and g′ = 0 is equivalent to

˜̀= r1c+ r2c2, b1r2 = r1b2, ñ = a1r1 + ar2.

Then ri = bi
gcd(b1,b2) for i = 1, 2 and the claim follows. �

Lemma 2.3.
(a) In case (H1), equations (2.12)-(2.14) recover `,m, n.
(b) In case (H2), equations (2.15)-(2.17) recover `,m, n, d.

Proof.

(a) Consider ñ, ˜̀∈ N as in Lemma 2.2. Then xñ−z ˜̀ ∈ I = kerϕ means that (t`)ñ = (tn)
˜̀

and

hence `ñ = ˜̀n. So the pair (`, n) is proportional to (˜̀, ñ) which in turn is proportional to (`′, n′)
by Lemma 2.2. Then the two triples (`,m, n) and (`′,m′, n′) are proportional by symmetry.
Since gcd(`,m, n) = 1 by hypothesis (`′,m′, n′) = q · (`,m, n) for some q ∈ N. By Lemma 2.2,
q divides gcd(b1, b2) and by symmetry also gcd(a1, a2) and gcd(c1, c2). By minimality of the
relations (2.2)-(2.4), gcd(a1, a2, b1, b2, c1, c2) = 1 and hence q = 1. The claim follows.

(b) By the minimal relation (2.8), gcd(a, b) = 1 and hence (`,m) = d · (b, a). Substitution
into equation (2.9) and comparison with (2.17) gives

n

d
=
a1b+ ab2

c
=
n′

d′

with gcd(n, d) = gcd(`,m, n) = 1 by hypothesis. We deduce that (n, d) = (n′, d′) and then
(`,m) = (`′,m′). �

Proposition 2.4.
(a) In case (H1’), a1, a2, b1, b2, c1, c2 arise through (H1) from some numerical semigroup

Γ = 〈`,m, n〉 if and only if e′ = 1. In this case, (`,m, n) = (`′,m′, n′).
(b) In case (H2’), a, b, c, a1, b2 arise through (H2) from some numerical semigroup Γ =

〈`,m, n〉 if and only if (`′,m′, n′) is in the corresponding subcase of (H2),

gcd(a, b) = 1,(2.18)

∀q ∈ [−b2/b, a1/a] ∩N : gcd(−a1 + qa,−b2 − qb, c) = 1.(2.19)

In this case, (`,m, n) = (`′,m′, n′).

Proof.
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(a) By Lemma 2.3.(a), e′ = 1 is a necessary condition. Conversely let e′ = 1. By definition,
(2.5) is a matrix of relations of (`′,m′, n′). Assume that (`′,m′, n′) is in case (H2). By symmetry,
we may assume that (`′,m′, n′) admits a matrix of minimal relations

(2.20)

(
a′ −b′ 0
−a′1 −b′2 c′

)
of type (2.10). By the choice of a′, b′, c′, it follows that

a > a′, b > b′, c ≥ c′.

By Lemma 2.3.(b), d′ is the denominator of
a′1b
′+a′b′2
c′ and

`′ = b′d′.

In particular c′ ≥ d′. Then b1 ≥ b′ contradicts (2.12) since

`′ = b1c+ b2c2 ≥ b′c′ + b2c2 > b′c′ ≥ b′d′ = `′.

We may thus assume that b1 < b′. The difference of first rows of (2.20) and (2.5) is then a
relation (

a′ − a b1 − b′ c2
)

of (`′,m′, n′) with a′ − a < 0, b1 − b′ < 0 and c2 > 0. Then c2 ≥ c′ ≥ d′ by choice of c′. This
contradicts (2.12) since

`′ = b1c1 + bc2 ≥ b1c1 + b′d′ > b′d′ = `′.

We may thus assume that (`′,m′, n′) is in case (H1) with a matrix of unique minimal relations

(2.21)

 a′ −b′1 −c′2
−a′2 b′ −c′1
−a′1 −b′2 c′


of type (2.5) where

a′ = a′1 + a′2, b′ = b′1 + b′2, c′ = c′1 + c′2.

as in (2.1). Then (a, b, c) ≥ (a′, b′, c′) by choice of the latter and

`′ = b′1c
′ + b′2c

′
2 = b′1c

′
1 + b′c′2

by Lemma 2.3.(a). If (ai, bi, ci) ≥ (a′i, b
′
i, c
′
i) for i = 1, 2, then

`′ = b1c+ b2c2 ≥ b′1c′ + b′2c
′
2 = `′

implies c = c′ and hence (a, b, c) = (a′, b′, c′) by symmetry. By uniqueness of (2.21) then,
(a1, a2, b1, b2, c1, c2) = (a′1, a

′
2, b
′
1, b
′
2, c
′
1, c
′
2) and hence the claim. By symmetry, it remains to

exclude the case c′2 > c2. The difference of first rows of (2.21) and (2.5) is then a relation(
a′ − a b1 − b′1 c2 − c′2

)
of (`′,m′, n′) with a′ − a ≤ 0, c2 − c′2 < 0 and hence b1 − b′1 ≥ b′ by choice of the latter. This
leads to the contradiction

`′ = b2c2 + b1c > b1c ≥ b′c′ + b′1c
′ > b′2c

′
2 + b′1c

′ = `′.

(b) By Lemma 2.3.(b), the conditions are necessary. Conversely assume that the conditions
hold true. By definition, (2.10) is a matrix of relations of (`′,m′, n′). By hypothesis, (2.20) is a
matrix of minimal relations of (`′,m′, n′). By (2.18), gcd(`′,m′) = d′ and hence by Lemma 2.3.(b)

b =
`′

d′
= b′, a =

m′

d′
= a′.



418 M. GRANGER AND M. SCHULZE

Writing the second row of (2.10) as a linear combination of (2.20) yields(
−a1 + qa −b2 − qb c

)
= p

(
−a′1 −b′2 c′

)
with p ∈ N and q ∩ [−b2/b, a1/a] ∩N and hence p = 1 by (2.19). The claim follows. �

The following examples show some issues that prevent us from formulating stronger statement
in Proposition 2.4.(b).

Example 2.5.
(a) Take (a,−b, 0) = (3,−2, 0) and (−a1,−b2, c) = (−1,−4, 4). Then (`′,m′, n′) = (4, 6, 7)

which is in case (H2). The second minimal relation is (−2,−1, 2) = 1
2 ((−a1,−b2, c)− (a,−b, 0)).

The same (`′,m′, n′) is obtained from (a, 0,−c) = (7, 0,−4) and (−a2, b,−c1) = (−1, 3,−2).
This latter satisfies (2.18) and (2.19), but (a, 0,−c) is not minimal.

(b) Take (a,−b, 0) = (4,−3, 0) and (−a1,−b2, c) = (−2,−1, 2). Then (`′,m′, n′) = (3, 4, 5),
but (a,−b, 0) is not a minimal relation. In fact the corresponding complete intersection K[Γ]
defined by the ideal

〈
x3 − y4, z2 − x2y

〉
is the union of two branches x = t3, y = t4, z = ±t5.

3. Deformation with constant semigroup

Let O = (O,m) be a local K-algebra with O/m ∼= K. Let F• = {Fi | i ∈ Z} be a decreasing
filtration by ideals such that Fi = O for all i ≤ 0 and F1 ⊂ m. Consider the Rees ring

A =
⊕
i∈Z

Fis
−i ⊂ O[s±1].

It is a finite type graded O[s]-algebra and flat (torsion free) K[s]-algebra with retraction

A� A/A ∩m[s±1] ∼= K[s].

For u ∈ O∗ there are isomorphisms

(3.1) A/(s− u)A ∼= O, A/sA ∼= grF O.

Geometrically A defines a flat morphism with section

Spec(A)
π // A1

K

ι

gg

with fibers over K-valued points

π−1(x) ∼= Spec(O), ι(x) = m, 0 6= x ∈ A1
K,

π−1(0) ∼= Spec(grF O), ι(0) = grF m.

Let K be an algebraically closed complete non-discretely valued field. Let C be an irreducible
K-analytic curve germ. Its ring O = OC is a one-dimensional K-analytic domain. Denote by
Γ′ its value semigroup. Pick a representative W such that C = (W,w). We allow to shrink W
suitably without explicit mention. Let OW be the normalization of OW . Then

OW,w = (O,m) ∼= (K{t′}, 〈t′〉) υ // N ∪ {∞}

is a discrete valuation ring. Denote by mW and mW the ideal sheaves corresponding to m and
m. There are decreasing filtrations by ideal (sheaves)

F• = m•W COW , F• = F•,w = m• = υ−1[•,∞]CO.
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Setting t = t′/s and identifying K ∼= OW /mW this yields a finite extension of finite type graded
OW - and flat (torsion free) K[s]-algebras

(3.2) A =
⊕
i∈Z

(Fi ∩ OW )s−i ⊂
⊕
i∈Z
Fis−i = OW [s, t] = B ⊂ OW [s±1]

with retraction defined by K[s] ∼= B/(B<0 + BmW ). The stalk at w is

A = Aw =
⊕
i∈Z

(Fi ∩ O)s−i ⊂
⊕
i∈Z

Fis
−i = O[s, t] = B ⊂ O[s±1].

At w 6= w′ ∈ W the filtration Fw′ is trivial and the stalk becomes Aw′ = OW,w′ [s±1]. The

graded sheaves grF OW ⊂ grF OW are thus supported at w and the isomorphism

grF (OW )w = grF O ∼= K[t′] ∼= K[N]

identifies

(3.3) (grF OW )w = grF O ∼= K[Γ′], Γ′ = υ(O \ {0})

with the semigroup ring K[Γ′] of O.
The analytic spectrum Specan

W (−) → W applied to finite type OW -algebras represents the
functor T 7→ HomOT

(−T ,OT ) from K-analytic spaces over W to sets (see [Car62, Exp. 19]).
Note that

Specan
W (K[s]) = Specan

{w}(K[s]) = L

is the K-analytic line. The normalization of W is

ν : W = Specan
W (OW )→W

and B = ν∗B where B = OW [s, t]. Applying Specan
W to (3.2) yields a diagram of K-analytic

spaces (see [Zar06, Appendix])

(3.4) X = Specan
W (A)

π

&&

Specan
W (B) = Y

ρ
oo

L

ι

88

where π is flat with π ◦ ρ ◦ ι = id and

π−1(x) ∼= Specan
W (OW ) = W, ι(x) = w, 0 6= x ∈ L,

π−1(0) ∼= Specan
W (grF OW ), ι(0)↔ grF mW .

Remark 3.1. Teissier defines X as the analytic spectrum of A over W ×L (see [Zar06, Appendix,
Ch. I, §1]). This requires to interpret the OW -algebra A as an OW×L-algebra.

Remark 3.2. In order to describe (3.4) in explicit terms, embed

L ⊃W ν // W ⊂ Ln

with coordinates t′ and x = x1, . . . , xn and

X = {(x, s) | (s`1x1, . . . , s`nxn) ∈W, s 6= 0} ⊂ Ln × L,
Y =

{
(t, s)

∣∣ t′ = st ∈W
}
∪ L× {0} ⊂ L× L.

This yields the maps X →W ← Y . The map ρ in (3.4) becomes

ρ(t, s) = (x1(t′)/s`1 , . . . , xn(t′)/s`n)
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for s 6= 0 and the fiber π−1(0) is the image of the map

ρ(t, 0) = ((ξ1(t), . . . , ξn(t)), 0), ξk(t) = lim
s→0

xk(st)/s`k = σ(xk)(t).

Taking germs in (3.4) this yields the following.

Proposition 3.3. There is a flat morphism with section

S = (X, ι(0))
π // (L, 0)

ι

ii

with fibers

π−1(x) ∼= (W,w) = C, ι(x) = w, 0 6= x ∈ L,
π−1(0) ∼= Specan(K[Γ′]) = C0, ι(0)↔ K[Γ′+]. �

The structure morphism factorizes through a flat morphism

X = Specan
W (A)

f

44
f̂
// (|W |,A) // W

and f̂#
ι(0) : A→ OX,ι(0) induces an isomorphism of completions (see [Car62, Exp. 19, §2, Prop. 4])

Âι(0)
∼= ÔX,ι(0).

This yields the finite extension of K-analytic domains

OS = OX,ι(0) ⊂ OY,ι(0).

We aim to describe OY,ι(0) and K-analytic algebra generators of OS . In explicit terms OS is
obtained from a presentation

I → O[x]→ A→ 0

mapping x = x1, . . . , xn to ι(0) = A ∩m[s±1] +As as

(3.5) OS = O{x}/O{x}I = O{x} ⊗O[x] A, O{x} = O⊗̂K{x}.
Any OW -module M gives rise to an OX -module

M̃ = OX ⊗f∗A f∗M = f̂∗M.

With M =Mw, its stalk at ι(0) becomes

M̃ = OS ⊗AM.

Lemma 3.4. Specan
W (B) = Specan

W
(B) and hence OY,ι(0) = K{s, t}.

Proof. By finiteness of ν (see [Car62, Exp. 19, §3, Prop. 9]),

B = ν̃∗B = B̃ = OW ⊗ν∗OW
ν∗B.

By the universal property of Specan, it follows that (see [Con06, Thm. 2.2.5.(2)])

Specan
W

(B) = Specan
W

(OW ⊗ν∗OW
ν∗B)

= Specan
W

(OW )×Specan
W

(ν∗OW ) Specan
W

(ν∗B)

= W ×W×WW (Specan
W (B)×W W )

= W ×W Specan
W (B)

= Specan
W (B). �
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For ξ′ =
∑
i∈N ξit

′i ∈ K[t′] with ` = υ(ξ′) denote

(3.6) ξ = ξ′/s` =
∑
i≥`

ξit
isi−` ∈ F`s−` = B`.

Lemma 3.5. Consider ξ′ = ξ′1, . . . , ξ
′
n ∈ m ∩ K[t′], define ξ by (3.6) and ` by `i = υ(ξ′i) for

i = 1, . . . , n. If Γ′ = 〈`〉, then O = K
{
ξ′
}

and OS = K
{
ξ, s
}

.

Proof. By choice of F•, there is a cartesian square

B =O[t, s] �
�

// O[s±1]

A =
⊕

i∈Z(Fi ∩ O)s−i
?�

OO

� � // O[s±1]
?�

OO

of finite type graded O-algebras. Thus ξ ∈ A ∩m[s±1] if ξ′ ∈ m ∩ k[t′].
By hypothesis and (3.3), the symbols σ(ξ′) generate the graded K-algebra grF O. Then

σ(ξ′) = σ(ξ
′
) generate

grF m/ grF m2 = grF (m/m2)

and hence ξ
′

generate m/m2 over K. Then m =
〈
ξ′
〉
O by Nakayama’s lemma and hence

O = K
{
ξ′
}

by the analytic inverse function theorem.
Under the graded isomorphism (3.1) with ξ as in (3.6)

(A/As)`
·s` // grF` O,

ξ � // σ(ξ′).

The graded K-algebra A/sA is thus generated by ξ. Extend F• to the graded filtration F•[s
±1]

on O[s±1]. For i ≥ j,

(A/As)i = grFi Ai
·si−j

∼=
// grFi Aj .

Thus finitely many monomials in ξ, s generate any Aj/FiAj ∼= Fj/Fi over K. With γ′ the
conductor of Γ′ and i = γ′ + j, Fγ′ ⊂ m∩O = m and hence Fi = Fγ′Fj ⊂ mFj . Therefore these
monomials generate Aj as O-module by Nakayama’s lemma. It follows A = O[ξ, s] as graded

K-algebra. Using O = K
{
ξ′
}

and ξ′ = ξs` then OS = K
{
ξ′, ξ, s

}
= K

{
ξ, s
}

(see (3.5)). �

We now reverse the above construction to deform generators of a semigroup ring. Let Γ
be a numerical semigroup with conductor γ generated by ` = `1, . . . , `n. Pick corresponding
indeterminates x = x1, . . . , xn. The weighted degree deg(−) defined by deg(x) = ` makes K[x]
a graded K-algebra and induces on K{x} a weighted order ord(−) and initial part inp(−) . The
assignment xi 7→ `i defines a presentation of the semigroup ring of Γ (see (3.3))

K[x]/I ∼= K[Γ] ⊂ K[t′] ⊂ K{t′} = O.
The defining ideal I is generated by homogeneous binomials f = f1, . . . , fm of weighted degrees
deg(f) = d. Consider elements ξ = ξ1, . . . , ξn defined by

(3.7) ξj = t`j +
∑

i≥`j+∆`j

ξj,it
isi−`j ∈ K[t, s] ⊂ O[t, s] = B

with ∆`j ∈ N \ {0} ∪ {∞}. Set

δ = min {∆`}, ∆` = ∆`1, . . . ,∆`n.
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With deg(t) = 1 = −deg(s) ξ defines a map of graded K-algebras K[x, s]→ K[t, s] and a map of
analytically graded K-analytic domains K{x, s} → K{t, s} (see [SW73] for analytic gradings).

Remark 3.6. Converse to (3.6), any homogeneous ξ ∈ K{t, s} of weighted degree ` can be written
as ξ = ξ′/s` for some ξ′ ∈ K{t′}. It follows that ξ(t, 1) = ξ′(t) ∈ K{t}.

Consider the curve germ C with K-analytic ring

(3.8) O = OC = K
{
ξ′
}
, ξ′ = ξ(t, 1),

and value semigroup Γ′ ⊃ Γ.
We now describe when (3.7) generate the flat deformation in Proposition 3.3.

Proposition 3.7. The deformation (3.7) satisfies Γ′ = Γ if and only if there is a f ′ ∈ K{x, s}m
with homogeneous components such that

(3.9) f(ξ) = f ′(ξ, s)s

and ord(f ′i(x, 1)) ≥ di + min {∆`}. The flat deformation in Proposition 3.3 is then defined by

(3.10) OS = K
{
ξ, s
}

= K{x, s}/〈F 〉, F = f − f ′s.

Proof. First let Γ′ = Γ. Then Lemma 3.5 yields the first equality in (3.10). By flatness of π
in Proposition 3.3, the relations f of ξ(t, 0) = t` lift to relations F ∈ K{x, s}m of ξ. That is,
F (x, 0) = f and F (ξ, s) = 0. Since f and ξ have homogeneous components of weighted degrees

d and `, F can be written as F = f − f ′s where f ′ ∈ K{x, s}m has homogeneous components of

weighted degrees d + 1. This proves in particular the last claim. Since fi(t
`) = 0, any term in

f ′i(ξ, s)s = fi(ξ) involves a term of the tail of ξj for some j. Such a term is divisible by tdi+∆`j

which yields the bound for ord(f ′i(x, 1)).
Conversely let f ′ with homogeneous components satisfy (3.9). Suppose that there is a

k′ ∈ Γ′ \ Γ. Take h ∈ K{x} of maximal weighted order k such that υ(h(ξ′)) = k′. In par-

ticular, k < k′ and inph(t`) = 0. Then inph ∈ I =
〈
f
〉

and inph =
∑m
i=1 qifi for some

q ∈ K[x]m. Set

h′ = h−
m∑
i=1

qiFi(x, 1) = h− inph+

m∑
i=1

qif
′
i(x, 1).

Then h′(ξ′) = h(ξ′) by (3.9) and hence υ(h′(ξ′)) = k′. With (3.9) and homogeneity of f ′ it
follows that ord(h′) > k contradicting the maximality of k. �

Remark 3.8. The proof of Proposition 3.7 shows in fact that the condition Γ′ = Γ is equivalent to
the flatness of a homogeneous deformation of the parametrization as in (3.7). These Γ-constant
deformations are a particular case of δ-constant deformations of germs of complex analytic curves
(see [Tei77, §3, Cor. 1]).

The following numerical condition yields the hypothesis of Proposition 3.7.

Lemma 3.9. If min {d}+ δ ≥ γ then Γ′ = Γ.

Proof. Any k ∈ Γ′ is of the form k = υ(p(ξ′)) for some p ∈ K{x} with p0 = inp(p) ∈ K[x]. If

p0(t`) 6= 0, then k ∈ Γ. Otherwise, p0 ∈
〈
f
〉

and hence k ≥ min {d} + min
{
`′
}

. The second
claim follows. �
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4. Set-theoretic complete intersections

We return to the special case Γ = 〈`,m, n〉 of §2. Recall Bresinsky’s method to show that
Spec(K[Γ]) is a set-theoretic complete intersection (see [Bre79a]). Starting from the defining
equations (2.6) in case (H1) he computes

f c1 = (xa − yb1zc2)c = xag1 ± yb1czc2c

= xag1 ± yb1cz(c2−1)c(xa1yb2 − f3)

= xa1g2 ∓ yb1cz(c2−1)cf3

≡ xa1g2 mod 〈f3〉

where g1 ∈ 〈x, z〉 and

g2 = xa−a1g1 ± yb1c+b2z(c2−1)c.

He shows that if c2 ≥ 2, then further reducing g2 by f3 yields

g2 = xa−a1g1 ± yb1c+b2z(c2−2)c(xa1yb2 − f3)

≡ xa−a1g1 ± xa1yb1c+2b2z(c2−2)c mod 〈f3〉

≡ xa1
(
g̃1 + yb1c+2b2z(c2−2)c

)
mod 〈f3〉

≡ xa1g3 mod 〈f3〉

for some g̃1 ∈ K[x, y, z]. Iterating c2 many times yields a relation

(4.1) f c1 = qf3 + xkg, k = a1c2,

where g ≡ y`′ mod 〈x, z〉 with `′ from (2.12). One computes that

xa1f2 = yb1f3 − zc1f1, zc2f2 = xa2f3 − yb2f1.

Bresinsky concludes that

(4.2) Z(x, z) 6⊂ Z(g, f3) ⊂ Z(f1, f3) = Z(f1, f2, f3) ∪ Z(x, z)

making Spec(K[Γ]) = Z(g, f3) a set-theoretic complete intersection.
As a particular case of (3.7) consider three elements

ξ = t` +
∑

i≥`+∆`

ξis
i−`ti,(4.3)

η = tm +
∑

i≥m+∆m

ηis
i−mti,

ζ = tn +
∑

i≥n+∆n

ζis
i−nti ∈ K[t, s].

Consider the curve germ C in (3.8) with K-analytic ring

(4.4) O = OC = K{ξ′, η′, ζ ′}, (ξ′, η′, ζ ′) = (ξ, η, ζ)(t, 1),

and value semigroup Γ′ ⊃ Γ. We aim to describe situations where C is a set-theoretic complete
intersection under the hypothesis that Γ′ = Γ. By Proposition 3.7, (ξ, η, ζ) then generate the flat
deformation of C0 = Specan(K[Γ]) in Proposition 3.3. Let F1, F2, F3 be the defining equations
from Proposition 3.7.

Lemma 4.1. If g in (4.1) deforms to G ∈ K{x, y, z, s} such that

(4.5) F c1 = qF3 + xkG, G(x, y, z, 0) = g,



424 M. GRANGER AND M. SCHULZE

then
C = S ∩ Z(s− 1) = Z(G,F3, s− 1)

is a set-theoretic complete intersection.

Proof. Consider a matrix of indeterminates

M =

(
Z1 X1 Y1

Y2 Z2 X2

)
and the system of equations defined by its maximal minors

F1 = X1X2 − Y1Z2,

F2 = Y1Y2 −X2Z1,

F3 = X1Y2 − Z1Z2.

By Schaps’ theorem (see [Sch77]), there is a solution with coefficients in K{x, y, z}[[s]] that
satisfies M(x, y, z, 0) = M0. By Grauert’s approximation theorem (see [Gra72]), the coefficients
can be taken in K{x, y, z, s}. Using the fact that M is a matrix of relations, we imitate in
Bresinsky’s argument in (4.2),

Z(G,F3) ⊂ Z(F1, F3) = Z(F1, F2, F3) ∪ Z(X1, Z2).

The K-analytic germs Z(G,F3) and Z(G,X1, Z2) are deformations of the complete intersections
Z(g, f3) and Z(g, xa1 , zc2), and are thus of pure dimensions 2 and 1 respectively. It follows that
Z(G,F3) does not contain any component of Z(X1, Z2) and must hence equal Z(F1, F2, F3) = S.
The claim follows. �

Proposition 4.2. Set δ = min(∆`,∆m,∆n) and k = a1c2. Then the curve germ C defined by
(4.3) is a set-theoretic complete intersection if

min(d1, d2, d3) + δ ≥ γ,
min(d1, d3) + δ ≥ γ + k`,

or, equivalently,

min(d1, d2 + k`, d3) + δ ≥ γ + k`.

Proof. By Lemma 3.9, the first inequality yields the assumption Γ′ = Γ on (4.3). The conductor
of ξkO equals γ + k` and contains (Fi − fi)(ξ′, η′, ζ ′), i = 1, 3, by the second inequality. This
makes Fi − fi, i = 1, 3, divisible by xk. Substituting into (4.1) yields (4.5) and by Lemma 4.1
the claim. �

Remark 4.3. We can permute the roles of the fi in Bresinsky’s method. If the role of (f1, f3) is
played by (f1, f2), we obtain a formula similar to (4.1), f b1 = qf2 + xkg with k = a2b1. Instead
of xk, there is a power of y if we use instead (f2, f1) or (f2, f3) and a power of z if we use (f3, f1)
or (f3, f1). The calculations are the same. In the examples we favor powers of x in order to
minimize the conductor γ + k`.

5. Series of examples

Redefining a, b suitably, we specialize to the case where the matrix in (2.7) is of the form

M0 =

(
z x y
yb z xa

)
.

By Proposition 2.4.(a), these define Spec(K[〈`,m, n〉]) if and only if

` = b+ 2, m = 2a+ 1, n = ab+ b+ 1(= (a+ 1)`−m), gcd(`,m) = 1.
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We assume that a, b ≥ 2 and b + 2 < 2a + 1 so that ` < m < n. The maximal minors (2.6) of
M0 are then

f1 = xa+1 − yz, f2 = yb+1 − xaz, f3 = z2 − xyb

with respective weighted degrees

d1 = (a+ 1)(b+ 2), d2 = (2a+ 1)(b+ 1), d3 = 2ab+ 2b+ 2

where d1 < d3 < d2. In Bresinsky’s method (4.1) with k = 1 reads

f2
1 − y2f3 = xg, g = x2a+1 − 2xayz + yb+2.

We reduce the inequality in Proposition 4.2 to a condition on d1.

Lemma 5.1. The conductor of ξO is bounded by

γ + ` ≤ d2 −
⌊m
`

⌋
` < d3.

In particular, d2 ≥ γ + 2` and d3 > γ + `.

Proof. The subsemigroup Γ1 = 〈`,m〉 ⊂ Γ has conductor

γ1 = (`− 1)(m− 1) = 2a(b+ 1) = n+ (a− 1)`+ 1 ≥ γ.

To obtain a sharper upper bound for γ we think of Γ as obtained from Γ1 by filling gaps of Γ1.
Since 2n ≥ γ1,

Γ \ Γ1 = (n+ Γ1) \ Γ1.

The smallest elements of Γ1 are i` where i = 0, . . . ,
⌊
m
`

⌋
. By symmetry of Γ1 (see [Kun70]), the

largest elements of N \ Γ1 are

γ1 − 1− i` = n+ (a− 1− i)`, i = 0, . . . ,
⌊m
`

⌋
,

and contained in n+ Γ1 since the minimal coefficient a− 1− i is non-negative by

a− 1−
⌊m
`

⌋
≥ a− 1− m

`
=

(a− 1)b− 3

b+ 2
> −1.

They are thus the largest elements of Γ \ Γ1. Their minimum attained at i =
⌊
m
`

⌋
then bounds

γ ≤ γ1 − 1−
⌊m
`

⌋
`.

Substituting γ1 + `− 1 = d2 yields the first particular inequality. The second one follows from

d2 − d3 = 2a− b− 1 = m− ` <
⌊m
`

⌋
`. �

Proof of Corollary 1.1.
(a) This follows from Lemma 3.9.
(b) By Lemma 5.1, the inequality in Proposition 4.2 simplifies to d1 + δ ≥ γ + `. The claim

follows.
(c) Suppose that

d1 + q − n ≥ γ + `

for some q > n and a, b ≥ 3. Set p = γ − 1 − `. Then n > m + ` and Γ ∩ (m + `,m + 2`) can
include at most n and some multiple of `. Since ` ≥ 4 it follows that (m+ `,m+ 2`) contains a
gap of Γ and hence γ − 1 > `+m and p > m. Moreover (a− 1)b ≥ 4 is equivalent to

d1 + p−m ≥ γ + `.

By (b), C is a set-theoretic complete intersection.
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It remains to show that C 6∼= C0. This follows from the fact that Ω1
C0
→ K{t}dt has valuations

Γ \ {0} whereas the 1-form

ω = mydx− `xdy = `(m− p)tp+`−1dt ∈ Ω1
C → K{t}dt

has valuation p+ ` = γ − 1 6∈ Γ. �

Example 5.2. We discuss a list of special cases of Corollary 1.1.
(a) a = b = 2. The monomial curve C0 defined by (x, y, z) = (t4, t5, t7) has conductor γ = 7.

Its only admissible deformation is

(x, y, z) = (t4, t5 + st6, t7).

However, this deformation is trivial and our method does not yield a new example. To see
this, we adapt a method of Zariski (see [Zar06, Ch. III, (2.5), (2.6)]). Consider the change of
coordinates

x̃ = x+
4s

5
y = t4 +

4s

5
t5 +

4s2

5
t6

and the change of parameters of the form τ = t+O(t2) such that x̃ = τ4. Then τ = t+ s
5 t

2+O(t3)

and hence y = τ5 +O(t7) and z = τ7 +O(t8). Since O(t7) lies in the conductor, it follows that
C ∼= C0.

In all other cases, Corollary 1.1 yields an infinite list of new examples.
(b) a = 3, b = 2. Consider the monomial curve C0 defined by (x, y, z) = (t4, t7, t9). By

Zariski’s method from (a), we reduce to considering the deformation

(x, y, z) = (t4, t7, t9 + st10).

While part (c) of Corollary 1.1 does not apply, C 6∼= C0 remains valid. To see assume that C0
∼= C

induced by an automorphism ϕ of C{t}. Then ϕ(x) ∈ OC shows that ϕ has no quadratic term.
This, however, contradicts ϕ(z) ∈ OC .

(c) a = b = 3. The monomial curve C0 defined by (x, y, z) = (t5, t7, t13) has conductor
γ = 17. We want to satisfy p ≥ γ + ` − d1 + m = 9. The most general deformation of y thus
reads

y = t7 + s1t
9 + s2t

11 + s3t
16.

The parameter s1 can be again eliminated by Zariski’s method as in (a). This leaves us with
the deformation

(x, y, z) = (t5, t7 + s2t
11 + s3t

16, t13 + s4t
16)

which is non-trivial due to part (c) of Corollary 1.1 with p = 11.
(d) a = 8, b = 3. The monomial curve C0 defined by (x, y, z) = (t5, t17, t28) has conductor

γ = 47. The condition in part (b) of Corollary 1.1 requires p ≥ γ − d1 + m = 19. In fact, the
deformation

(x, y, z) = (t5, t17 + st18, t28)

is not flat since C has value semigroup Γ′ = Γ ∪ {46}. However, C is isomorphic to the general
fiber of the flat deformation in 4-space

(x, y, z, w) = (t5, t17 + st18, t28, t46).
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