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ARTIN APPROXIMATION

GUILLAUME ROND

Abstract. In 1968, M. Artin proved that any formal power series solution of a system of
analytic equations may be approximated by convergent power series solutions. Motivated by
this result and a similar result of A. Płoski, he conjectured that this remains true when the
ring of convergent power series is replaced by a more general kind of ring.

This paper presents the state of the art on this problem and its extensions. An extended
introduction is aimed at non-experts. Then we present three main aspects of the subject:
the classical Artin Approximation Problem, the Strong Artin Approximation Problem and
the Artin Approximation Problem with constraints. Three appendices present the algebraic
material used in this paper (The Weierstrass Preparation Theorem, excellent rings and regular
morphisms, étale and smooth morphisms and Henselian rings).

The goal is to review most of the known results and to give a list of references as complete
as possible. We do not give the proofs of all the results presented in this paper but, at least, we
always try to outline the proofs and give the main arguments together with precise references.

“On the whole, divergent series are
the work of the Devil and it is a
shame that one dares base any
demonstration on them. You can
get whatever result you want when
you use them, and they have given
rise to so many disasters and so
many paradoxes.”

N. H. Abel, letter to Holmboe,
January 1826
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1. Introduction

The aim of this text is to present the Artin Approximation Theorem and some related results.
The problem we are interested in is to find analytic solutions of some system of equations when
this system admits formal power series solutions and the Artin Approximation Theorem yields
a positive answer to this problem. This topic has been an important subject of study in the 70s
and 80s having a wide variety of applications in algebraic and analytic geometry as well as in
commutative algebra. But this is still an important subject of study that has been stimulated by
several more recent applications (for instance in real algebraic geometry [CRS04], to the theory
of arc spaces [Ve06] or in CR geometry [MMZ03]).

The main object of study are power series, i.e., formal sums of the form∑
α∈Nn

cαx
α1
1 . . . xαn

n

and the relations that they satisfy. We will be mainly interested in the nature of series that
satisfy some given relations: convergent power series, divergent power series, algebraic power
series, . . . . But we will also be interested in studying the existence of power series satisfying
some given relations.

We begin this paper by giving several examples explaining what are precisely the different
problems we aim to study. Then we will present the state of the art on this problem.
This text contains essentially three parts: the first part is dedicated to present the Artin Ap-
proximation Theorem and its generalizations; the second part presents a stronger version of the
Artin Approximation Theorem; the last part is mainly devoted to exploring the Artin Approxi-
mation Problem in the case of constraints. The end of the text contains 3 appendices: the first
one concerns the Weierstrass Preparation and Division Theorems, the second one concerns the
notions of excellent ring and regular morphism, and the last one reviews the main definitions
and results concerning the étale morphisms and Henselian rings.

This paper is an extended version of the habilitation thesis of the author. I wish to thank the
members of the jury of my habilitation thesis who encouraged me to improve the first version of
this writing: Edward Bierstone, Charles Favre, Herwig Hauser, Michel Hickel, Adam Parusiński,
Anne Pichon and Bernard Teissier.

I wish to thank especially Herwig Hauser for his encouragement on the very first stage of
this writing. In particular the idea of writing an extended introduction with examples was his
proposal (and he also suggested some examples).
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I also wish to thank the participants of the Chair Jean Morlet at CIRM for the fruitful
discussions that helped me to improve the text, in particular the participants of the doctoral
school and more specifically Francisco Castro-Jiménez, Christopher Chiu, Alberto Gioia, Dorin
Popescu, Kaloyan Slavov, Sebastian Woblistin.

Last but not least I thank Mark Spivakovsky who introduced me to this subject 15 years ago
and from whom I learned very much.

Finally I wish to thank the referee for their careful reading of the paper and for their useful
and relevant remarks.

Example 1.1. Let us consider the following curve C := {(t3, t4, t5), t ∈ C} in C3. This curve is
an algebraic set which means that it is the zero locus of polynomials in three variables. Indeed,
we can check that C is the zero locus of the polynomials f := y2 − xz, g := yz − x3 and
h := z2 − x2y. If we consider the zero locus of any two of these polynomials we always get a
set larger than C. The complex dimension of the zero locus of one non-constant polynomial in
three variables is 2 (such a set is called a hypersurface of C3). Here C is the intersection of the
zero locus of three hypersurfaces and not of two of them, but its complex dimension is 1.

In fact we can see this phenomenon as follows: we call a linear algebraic relation between
f , g and h any element of the kernel of the linear map ϕ : C[x, y, z]3 −→ C[x, y, z] defined by
ϕ(a, b, c) := af + bg + ch. Obviously

r1 := (g,−f, 0), r2 := (h, 0,−f), and r3 := (0, h,−g) ∈ Ker(ϕ).

These are called the trivial linear relations between f , g and h. But in our case there are two
more linear relations which are r4 := (z,−y, x) and r5 := (x2,−z, y) and r4 and r5 cannot be
written as a1r1 +a2r2 +a3r3 with a1, a2 and a3 ∈ C[x, y, z], which means that r4 and r5 are not
in the sub-C[x, y, z]-module of C[x, y, z]3 generated by r1, r2 and r3.

On the other hand we can prove, using the theory of Gröbner bases, that Ker(ϕ) is generated
by r1, r2, r3, r4 and r5.

Let X be the common zero locus of f and g. If (x, y, z) ∈ X and x 6= 0, then h = zf+yg
x = 0

thus (x, y, z) ∈ C. If (x, y, z) ∈ X and x = 0, then y = 0. Geometrically this means that X is
the union of C and the z-axis, i.e., the union of two curves.

Now let us denote by CJx, y, zK the ring of formal power series with coefficients in C. We can
also consider linear formal relations between f , g and h that is, elements of the kernel of the
map CJx, y, zK3 −→ CJx, y, zK induced by ϕ. Of course any element of the form

a1r1 + a2r2 + a3r3 + a4r4 + a5r5,

where a1, . . . , a5 ∈ CJx, y, zK, is a linear formal relation between f , g and h.
In fact any linear formal relation is of this form, i.e., the linear algebraic relations generate the

linear formal relations. We can show this as follows: we can assign the weights 3 to x, 4 to y and 5
to z. In this case f , g, h are weighted homogeneous polynomials of weights 8, 9 and 10 and r1, r2,
r3, r4 and r5 are weighted homogeneous relations of weights (9, 8,−∞), (10,−∞, 8), (−∞, 10, 9),
(5, 4, 3), (6, 5, 4) (−∞ is by convention the degree of the zero polynomial). If (a, b, c) ∈ CJx, y, zK3

is a linear formal relation then we can write a =
∑∞
i=0 ai, b =

∑∞
i=0 bi and c =

∑∞
i=0 ci where ai,

bi and ci are weighted homogeneous polynomials of degree i with respect to the above weights.
Then saying that af + bg + ch = 0 is equivalent to

aif + bi−1g + ci−2h = 0 ∀i ∈ N

with the assumption bi = ci = 0 for i < 0. Thus (a0, 0, 0), (a1, b0, 0) and any (ai, bi−1, ci−2), for
2 ≤ i, are in Ker(ϕ), thus are weighted homogeneous linear combinations of r1, . . . , r5. Hence
(a, b, c) is a linear combination of r1, . . . , r5 with coefficients in CJx, y, zK.
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Now we can investigate the same problem by replacing the ring of formal power series by
C{x, y, z}, the ring of convergent power series with coefficients in C, i.e.,

C{x, y, z} :=

 ∑
i,j,k∈N

ai,j,kx
iyjzk / ∃ρ > 0,

∑
i,j,k

|ai,j,k|ρi+j+k <∞

 .

We can also consider linear analytic relations between f , g and h, i.e., elements of the kernel of
the map C{x, y, z}3 −→ C{x, y, z} induced by ϕ. From the linear formal case we see that any
linear analytic relation r is of the form a1r1 + a2r2 + a3r3 + a4r4 + a5r5 with ai ∈ CJx, y, zK for
1 ≤ i ≤ 5. And there is no reason for the ai to be convergent. For instance we can check that

hr1 − gr2 + fr3 = 0.

So if b̂ is a divergent power series we see that (̂bh)r1 − (̂bg)r2 + (̂bf)r3 is a linear formal relation
but not an analytic relation. But we can prove that every linear analytic relation has the form
a1r1 + a2r2 + a3r3 + a4r4 + a5r5 where the ai can be chosen to be convergent power series, and
our goal is to describe how to do this.

Let us remark that the equality r = a1r1 + · · · + a5r5 is equivalent to saying that a1, . . . , a5

satisfy a system of three linear equations with analytic coefficients. This is the first example
of the problem we are interested in: if some equations with analytic coefficients have formal
solutions do they have analytic solutions? The Artin Approximation Theorem yields an answer
to this problem. Here is the first theorem proven by M. Artin in 1968:

Theorem 1.2 (Artin Approximation Theorem). [Ar68] Let F (x, y) be a vector of conver-
gent power series over C in two sets of variables x and y. Assume given a formal power series
solution ŷ(x),

F (x, ŷ(x)) = 0.1

Then, for any c ∈ N, there exists a convergent power series solution y(x),

F (x, y(x)) = 0

which coincides with ŷ(x) up to degree c,

y(x) ≡ ŷ(x) modulo (x)c.

We can define a topology on CJxK, x = (x1, . . . , xn) being a set of variables, by saying that two
power series are close to each other if they are equal up to a high degree. Thus we can reformulate
Theorem 1.2 as follows: formal power series solutions of a system of analytic equations may be
approximated by convergent power series solutions (see Remark 2.3 in the next part for a precise
definition of this topology).

Example 1.3. A special case of Theorem 1.2 and a generalization of Example 1.1 occurs when
F is homogeneous linear in y, say F (x, y) =

∑
fi(x)yi, where fi(x) is a vector of convergent

power series with r coordinates for each i and x and y are two sets of variables. A solution y(x)
of F (x, y) = 0 is a linear relation between the fi(x). In this case the linear formal relations are
linear combinations of linear analytic relations with coefficients in CJxK. In term of commutative
algebra, this is expressed as the flatness of the ring of formal power series over the ring of
convergent powers series, a result which can be proven via Artin-Rees Lemma (see Remark 2.33
in the next part and Theorems 8.7 and 8.8 [Mat89]) and which is much more elementary than
Theorem 2.1.

1To be rigorous one needs to assume that ŷ(0) = 0 to ensure that F (x, ŷ(x)) is well defined. But we can drop
this assumption if F (x, y) is polynomial in y which is the case of most of the examples given in the introduction.
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It means that if ŷ(x) is a formal solution of f(x, y) = 0, then there exist analytic solutions
of F (x, y) = 0 denoted by ỹi(x), 1 ≤ i ≤ s, and formal power series b̂1(x), . . . , b̂s(x), such that
ŷ(x) =

∑
i b̂i(x)ỹi(x). Thus, by replacing in the previous sum the b̂i(x) by their truncation at

order c, we obtain an analytic solution of f(x, y) = 0 coinciding with ŷ(c) up to degree c.
If the fi(x) are vectors of polynomials then the linear formal relations are also linear com-

binations of linear algebraic relations since the ring of formal power series is flat over the ring
of polynomials, and Theorem 1.2 remains true if F (x, y) is linear in y and C{x} is replaced by
C[x].

Example 1.4. A slight generalization of the previous example is when F (x, y) is a vector of
polynomials in y of degree one with coefficients in C{x} (resp. C[x]), say

F (x, y) =

m∑
i=1

fi(x)yi + b(x)

where the fi(x) and b(x) are vectors of convergent power series (resp. polynomials). Here x and
y are multivariables. If ŷ(x) is a formal power series solution of F (x, y) = 0, then (ŷ(x), 1) is a
formal power series solution of G(x, y, z) = 0 where

G(x, y, z) :=

m∑
i=1

fi(x)yi + b(x)z

and z is a single variable. Thus using the flatness of CJxK over C{x} (resp. C[x]), as in Example
1.3, we can approximate (ŷ(x), 1) by a convergent power series (resp. polynomial) solution
(ỹ(x), z̃(x)) which coincides with (ŷ(x), 1) up to degree c. In order to obtain a solution of
F (x, y) = 0 we would like to be able to divide ỹ(x) by z̃(x) since ỹ(x)z̃(x)−1 would be a solution
of F (x, y) = 0 approximating ŷ(x). We can remark that, if c ≥ 1, then z̃(0) = 1 thus z̃(x) is
not in the ideal (x). But C{x} is a local ring. We call a local ring any ring A that has only one
maximal ideal. This is equivalent to saying that A is the disjoint union of one ideal (its only
maximal ideal) and of the set of units in A. Here the units of C{x} are exactly the power series
a(x) such that a(x) is not in the ideal (x), i.e., such that a(0) 6= 0. In particular z̃(x) is invertible
in C{x}, hence we can approximate formal power series solutions of F (x, y) = 0 by convergent
power series solutions.

In the case (ỹ(x), z̃(x)) is a polynomial solution of g(x, y, z) = 0, z̃(x) is not invertible in
general in C[x] since it is not a local ring. For instance set

F (x, y) := (1− x)y − 1

where x and y are single variables. Then y(x) :=

∞∑
n=0

xn =
1

1− x
is the only formal power series

solution of F (x, y) = 0, but y(x) is not a polynomial. Thus we cannot approximate the roots of
F in CJxK by roots of F in C[x].

But instead of working in C[x] we can work in C[x](x) which is the ring of rational functions
whose denominator does not vanish at 0. This ring is a local ring. Since z̃(0) 6= 0, ỹ(x)z̃(x)−1

is a rational function belonging to C[x](x). In particular any system of polynomial equations of
degree one with coefficients in C[x] which has solutions in CJxK has solutions in C[x](x).

In term of commutative algebra, the fact that degree 1 polynomial equations satisfy Theorem
1.2 is expressed as the faithful flatness of the ring of formal power series over the ring of convergent
powers series, a result that follows from the flatness and the fact that the ring of convergent
power series is a local ring (see also Remark 2.12 in the next part).
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Example 1.5 (Implicit Function Theorem). Let F (x, y) be a polynomial in two sets of
variables x = (x1, . . . , xn) and y = (y1, . . . , ym), with F (0, 0) = 0. Let us assume that there
exists a vector of formal power series ŷ(x) ∈ CJxKm solution of F = 0 and vanishing at 0:

F (x, ŷ(x)) = 0.

So by Theorem 1.2 there exists a vector of convergent power series solution of F = 0. But in
general the equation F = 0 has a infinite solution set and the given formal solution has no reason
to be already convergent. For instance if F (x, y) = y1− y2, every vector of the form (ẑ(x), ẑ(x))
where ẑ ∈ CJxK is a solution.

But now let us assume that m = 1 and that ∂F
∂y (0, 0) 6= 0. Since ŷ(0) = 0 and F (0, 0) = 0 we

can apply the Implicit Function Theorem for convergent power series to see that the equation
F = 0 has a unique convergent power series solution vanishing at 0. In particular, the uniqueness
of this solution implies that ŷ is already a vector of convergent power series.

In fact the proof of Theorem 1.2 consists in reducing the problem to a situation where the
Implicit Function Theorem applies.

Example 1.6. The next example we are looking at is the following one: set f ∈ A where
A = C[x] or C[x](x) or C{x} with x a finite set of variables. When do there exist g, h ∈ A such
that f = gh?

First of all, we can take g = 1 and h = f or, more generally, g a unit in A and h = g−1f .
These are trivial cases and thus we are looking for non-units g and h.

Of course, if there exist non-units g and h in A such that f = gh, then f = (ûg)(û−1h) for
any unit û ∈ CJxK. But is the following true: let us assume that there exist ĝ, ĥ ∈ CJxK such
that f = ĝĥ, then do there exist non-units g, h ∈ A such that f = gh?

Let us remark that this question is equivalent to the following: if A
(f) is an integral domain,

is CJxK
(f)CJxK still an integral domain?
The answer to this question is no in general: for example set A := C[x, y] where x and y are

single variables and f := x2 − y2(1 + y). The polynomial f is irreducible since y2(1 + y) is not
a square in C[x, y]. But as a power series we can factor f as

f = (x+ y
√

1 + y)(x− y
√

1 + y)

where
√

1 + y is a formal power series such that (
√

1 + y)2 = 1 + y. Thus f is not irreducible in
CJx, yK nor in C{x, y} but it is irreducible in C[x, y] or C[x, y](x,y).

In fact it is easy to see that x+y
√

1 + y and x−y
√

1 + y are power series which are algebraic
over C[x, y], i.e., they are roots of polynomials with coefficients in C[x, y] (here they are roots
of the polynomial (z − x)2 − y2(1 + y)). The set of such algebraic power series is a subring of
CJx, yK denoted by C〈x, y〉. In general, if x is a multivariable the ring of algebraic power series
C〈x〉 is the following:

C〈x〉 := {f ∈ CJxK / ∃P (z) ∈ C[x][z], P (z) 6= 0, P (f) = 0} .

It is not difficult to prove that the ring of algebraic power series is a subring of the ring of
convergent power series and is a local ring. In 1969, M. Artin proved an analogue of Theorem
2.1 for the rings of algebraic power series [Ar69] (see Theorem 2.16 in the next part). Thus if
f ∈ C〈x〉 (or C{x}) is irreducible then it remains irreducible in CJxK, this is a consequence of this
Artin Approximation Theorem for algebraic power series applied to the equation y1y2−f . Indeed
if f were reducible in C[[x]] there would exist non-units ŷ1, ŷ2 ∈ C[[x]] (i.e., y1(0) = y2(0) = 0)
such that ŷ1ŷ2−f = 0. Then by Artin Approximation Theorem of algebraic power series applied
with c ≥ 1 there would exist ỹ1, ỹ2 ∈ C〈x〉 such that ỹ1ỹ2 = f and ỹi − ŷi ∈ (x)c for i = 1, 2.
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In particular ỹ1(0) = ỹ2(0) = 0 so ỹ1 and ỹ2 are non-unit which contradicts the fact that f is
assumed to be irreducible.

From this theorem we can also deduce that if f ∈ C〈x〉
I (or C{x}

I ) is irreducible, for some ideal
I, it remains irreducible in CJxK

ICJxK .

Example 1.7. Let us strengthen the above question. Let us assume that there exist non-units
ĝ, ĥ ∈ CJxK such that f = ĝĥ with f ∈ A with A = C〈x〉 or C{x}. Then does there exist a unit
û ∈ CJxK such that ûĝ ∈ A and û−1ĥ ∈ A ?

The answer to this question is positive if A = C〈x〉 or C{x}, this is a corollary of the Artin
Approximation Theorem (see Corollary 4.5). But it is negative in general for A = C〈x〉

I or C{x}
I

if I is an ideal as shown by the following example due to S. Izumi [Iz92] (nevertheless it remains
true when A is normal - see Corollary 4.6):

Set A := C{x,y,z}
(y2−x3) . Set ϕ̂(z) :=

∑∞
n=0 n!zn (this is a divergent power series) and set

f̂ := x+ yϕ̂(z), ĝ := (x− yϕ̂(z))(1− xϕ̂(z)2)−1 ∈ CJx, y, zK.

Then we can check that x2 = f̂ ĝ modulo (y2 − x3). Now let us assume that there exists a unit
û ∈ CJx, y, zK such that ûf̂ ∈ C{x, y, z} modulo (y2−x3). Thus the element P := ûf̂−(y2−x3)ĥ

is a convergent power series for some well chosen ĥ ∈ CJx, y, zK. We can check easily that
P (0, 0, 0) = 0 and ∂P

∂x (0, 0, 0) = û(0, 0, 0) 6= 0. Thus by the Implicit Function Theorem for
analytic functions there exists ψ(y, z) ∈ C{y, z}, such that P (ψ(y, z), y, z) = 0 and ψ(0, 0) = 0.
This yields

ψ(y, z) + yϕ̂(z)− (y2 − ψ(y, z)3)ĥ(ψ(y, z), y, z)û−1(ψ(y, z), y, z) = 0.

By substituting 0 for y we obtain ψ(0, z) + ψ(0, z)3k̂(z) = 0 for some power series k̂(z) ∈ CJzK.
Since ψ(0, 0) = 0, the order of the power series ψ(0, z) is positive, hence the previous equality
shows that ψ(0, z) = 0. Thus ψ(y, z) = yθ(y, z) with θ(y, z) ∈ C{y, z}. Thus we obtain

θ(y, z) + ϕ̂(z)− (y − y2θ(y, z)3)ĥ(ψ(y, z), y, z)û−1(ψ(y, z), y, z) = 0

and by substituting 0 for y, we see that ϕ̂(z) = θ(0, z) ∈ C{z} which is a contradiction.
Thus x2 = f̂ ĝ modulo (y2 − x3) but there is no unit û ∈ CJx, y, zK such that ûf̂ ∈ C{x, y, z}

modulo (y2 − x3).

Example 1.8. Using the same notation as in Example 1.6 we can ask a stronger question: set
A = C〈x〉 or C{x} and let f be in A. If there exist g and h ∈ C[x], vanishing at 0, such that
f = gh modulo a large power of the ideal (x), do there exist g and h in A, vanishing at 0, such
that f = gh? We just remark that by Example 1.6 there is no hope, if f is a polynomial and g
and h exist, to expect that g and h ∈ C[x].

Nevertheless we have the following theorem that gives a precise answer to this question:

Theorem 1.9 (Strong Artin Approximation Theorem). [Ar69] Let F (x, y) be a vector
of convergent power series over C in two sets of variables x and y. Then for any integer c there
exists an integer β such that for any given approximate solution y(x) at order β,

F (x, y(x)) ≡ 0 modulo (x)β ,

there exists a convergent power series solution y(x),

F (x, y(x)) = 0

which coincides with y(x) up to degree c,

y(x) ≡ y(x) modulo (x)c.
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In particular we can apply this theorem to the polynomial y1y2− f with c = 1. It shows that
there exists an integer β such that if gh− f ≡ 0 modulo (x)β and if g(0) = h(0) = 0, there exist
non-units g and h ∈ C{x} such that gh− f = 0.

For a given F (x, y) and a given c let β(c) denote the smallest integer β satisfying the above
theorem. A natural question is: how to compute or bound the function c 7−→ β(c) or, at least,
some values of β? For instance when F (x, y) = y1y2 − f(x), f(x) ∈ C[x], what is the value or a
bound of β(1)? That is, up to what order do we have to check that the equation y1y2 − f = 0
has an approximate solution in order to be sure that this equation has non-trivial solutions
(i.e., which are not vanishing at 0)? For instance, if f := x1x2 − xd3 then f is irreducible but
x1x2 − f ≡ 0 modulo (x)d for any d ∈ N, so obviously β(1) really depends on f .

In fact in Theorem 1.9 M. Artin proved that β can be chosen to depend only on the degree
of the components of the vector F (x, y). But it is still an open problem to find effective bounds
on β (see Section 3.4).

Example 1.10 (Arc Space and Jet Spaces). Let X be an affine algebraic subset of Cm,
i.e., X is the zero locus of some polynomials in m variables: f1, . . . , fr ∈ C[y1, . . . , ym] and let
F denote the vector (f1, . . . , fr). Let t be a single variable. For any integer n, let us define Xn

to be the set of vectors y(t) whose coordinates are polynomials of degree ≤ n and such that
F (y(t)) ≡ 0 modulo (t)n+1. The elements of Xn are called n-jets of X.

If yi(t) = yi,0 + yi,1t + · · · + yi,nt
n and if we consider each yi,j as an indeterminate, saying

that F (y(t)) ∈ (t)n+1 is equivalent to the vanishing of the coefficient of tk, for 0 ≤ k ≤ n, in
the expansion of every fi(y(t)). Thus this is equivalent to the vanishing of r(n+ 1) polynomial
equations involving the yi,j . This shows that the jet spaces of X are algebraic sets (here Xn is
an algebraic subset of Cm(n+1)).

For instance if X is a cusp (this example is taken from [Ve06]), i.e., the plane curve defined
as X := {y2

1 − y3
2 = 0} we have

X0 := {(a0, b0) ∈ C2 / a2
0 − b30 = 0} = X.

We have
X1 = {(a0, a1, b0, b1) ∈ C4 / (a0 + a1t)

2 − (b0 + b1t)
3 ≡ 0 modulo t2}

= {(a0, a1, b0, b1) ∈ C4 / a2
0 − b30 = 0 and 2a0a1 − 3b20b1 = 0}.

The morphisms C[t]
(t)k+1 −→ C[t]

(t)n+1 , for k ≥ n, induce truncation maps πkn : Xk −→ Xn by
reducing k-jets modulo (t)n+1. In the example we are considering, the fibre of π1

0 over the point
(a0, b0) 6= (0, 0) is the line in the (a1, b1)-plane whose equation is 2a0a1 − 3b20b1 = 0. This line is
exactly the tangent space at X at the point (a0, b0). The Zariski tangent space at X in (0, 0) is
the whole plane since this point is a singular point of the plane curve X. This corresponds to
the fact that the fibre of π1

0 over (0, 0) is the whole plane.
On this example we show that X1 is isomorphic to the tangent bundle of X, which is a general

fact.
We can easily see that X2 is given by the following equations:

a2
0 − b30 = 0

2a0a1 − 3b20b1 = 0

a2
1 + 2a0a2 − 3b0b

2
1 − 3b20b2 = 0

In particular, the fibre of π2
0 over the point (0, 0) is the set of points of the form (0, 0, a2, 0, b1, b2)

and the image of this fibre by π2
1 is the line a1 = 0. This shows that π2

1 is not surjective.
But, we can show that above the smooth part of X, the maps πn+1

n are surjective and the
fibres are isomorphic to C.
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The space of arcs of X, denoted by X∞, is the set of vectors y(t) whose coordinates are
formal power series satisfying F (y(t)) = 0. For such a general vector of formal power series
y(t), saying that F (y(t)) = 0 is equivalent to saying that the coefficients of all the powers of t
in the Taylor expansion of F (y(t)) are equal to zero. This shows that X∞ may be defined by a
countable number of equations in a countable number of variables. For instance, in the previous
example, X∞ is the subset of CN with coordinates (a0, a1, a2, . . . , b0, b1, b2, . . .) defined by the
infinite following equations: 

a2
0 − b30 = 0

2a0a1 − 3b20b1 = 0

a2
1 + 2a0a2 − 3b0b

2
1 − 3b20b2 = 0

· · · · · · · · ·

The morphisms CJtK −→ C[t]
(t)n+1 induce truncations maps πn : X∞ −→ Xn by reducing arcs

modulo (t)n+1.
In general it is a difficult problem to compare πn(X∞) and Xn. It is not even clear if πn(X∞)

is finitely defined in the sense that it is defined by a finite number of equations involving a finite
number of yi,j . But we have the following theorem due to M. Greenberg which is a particular
case of Theorem 1.9 in which β is bounded by an affine function:

Theorem 1.11 (Greenberg’s Theorem). [Gre66] Let F (y) be a vector of polynomials in m
variables and let t be a single variable. Then there exist two positive integers a and b, such that
for any integer n and any polynomial solution y(t) modulo (t)an+b+1,

F (y(t)) ≡ 0 modulo (t)an+b+1,

there exists a formal power series solution ỹ(t),

F (ỹ(t)) = 0

which coincides with y(t) up to degree n+ 1, that is

y(t) ≡ ỹ(t) modulo (t)n+1.

We can reinterpret this result as follows: Let X be the zero locus of F in Cm and let y(t) be
a (an + b)-jet on X. Then the truncation of y(t) modulo (t)n+1 is the truncation of a formal
power series solution of F = 0. Thus we have

(1) πn(X∞) = πan+b
n (Xan+b), ∀n ∈ N.

A constructible subset of Cn is a set defined by the vanishing of some polynomials and the
non-vanishing of other polynomials, i.e., a set which is a finite union of sets of the form

{x ∈ Cn / f1(x) = · · · = fr(x) = 0, g1(x) 6= 0, . . . , gs(x) 6= 0}
for some polynomials fi, gj . In particular algebraic sets are constructible sets. A theorem of
Chevalley asserts that the projection of an algebraic subset of Cn+k onto Ck is a constructible
subset of Cn, so (1) shows that πn(X∞) is a constructible subset of Cn sinceXan+b is an algebraic
set. In particular πn(X∞) is finitely defined (see [GL-J96] for an introduction to the study of
these sets).

A difficult problem in singularity theory is to understand the behavior of Xn and πn(X∞)
and to relate them to the geometry of X. One way to do this is to define the (motivic) measure
of a constructible subset of Cn, that is an additive map χ from the set of constructible sets to a
commutative ring R such that:
• χ(X) = χ(Y ) as soon as X and Y are isomorphic algebraic sets,
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• χ(X\U) + χ(U) = χ(X) as soon as U is an open set of an algebraic set X,
• χ(X × Y ) = χ(X).χ(Y ) for any algebraic sets X and Y .
Then we are interested in understanding the following generating series:∑

n∈N
χ(Xn)Tn and

∑
n∈N

χ(πn(X∞))Tn ∈ RJT K.

The reader may consult [DL99, Lo00, Ve06] for an introduction to these problems.

Example 1.12. Let f1, . . . , fr ∈ k[x, y], where k is an algebraically closed field and

x := (x1, . . . , xn) and y := (y1, . . . , ym)

are multivariables. Moreover we will assume here that k is uncountable. As in the previous
example let us define the following sets:

Xl := {y(x) ∈ k[x]m / fi(x, y(x)) ∈ (x)l+1 ∀i}.
As we have done in the previous example with the introduction of the variables yi,j , for any l we
can embed Xl in kN(l) for some integer N(l) ∈ N. Moreover Xl is an algebraic subset of KN(l)

and the morphisms k[x]
(x)k+1 −→ k[x]

(x)l+1 for k ≤ l induce truncation maps πkl : Xk −→ Xl for any
k ≥ l.

By the theorem of Chevalley mentioned in the previous example (this is where we need k
to be algebraically closed), for any l ∈ N, the sequence (πkl (Xk))k is a decreasing sequence of
constructible subsets of Xl. Thus the sequence (πkl (Xk))k is a decreasing sequence of algebraic
subsets of Xl, where Y denotes the Zariski closure of a subset Y , i.e., the smallest algebraic set
containing Y . By Noetherianity this sequence stabilizes: πkl (Xk) = πk

′
l (Xk′) for all k and k′

large enough (say for any k, k′ ≥ kl for some integer kl). Let us denote by Fl this algebraic set.
Let us assume that Xk 6= ∅ for any k ∈ N. This implies that Fl 6= ∅. Set Ck,l := πkl (Xk). It is

a constructible set whose Zariski closure is Fl for any k ≥ kl. Thus Ck,l is a finite union of sets
of the form F\V where F and V are algebraic sets. Let F ′l be one of the irreducible components
of Fl and C ′k,l := Ck,l ∩F ′l . Then C ′k,l contains a set of the form F ′l \Vk where Vk is an algebraic
proper subset of F ′l , for any k ≥ kl.

The set Ul := ∩kCk,l contains ∩kF ′l \Vk = F ′l \ ∪k Vk and the latter set is not empty since k
is uncountable, hence Ul 6= ∅. By construction Ul is exactly the set of points of Xl that can
be lifted to points of Xk for any k ≥ l. In particular πkl (Uk) = Ul. If y0 ∈ U0 then y0 may be
lifted to U1, i.e., there exists y1 ∈ U1 such that π1

0(y1) = y0. By induction we may construct a
sequence of points yl ∈ Ul such that πl+1

l (yl+1) = yl for any l ∈ N. At the limit we obtain a
point y∞ in X∞, which corresponds to a power series y(x) ∈ kJxKm solution of f(x, y) = 0.

We have proven here the following result really weaker than Theorem 1.9 but whose proof is
very easy (in fact it is given as an exercise in [Ar69] p. 52. See also Lemme 1.6.7 [Ron05a] where
the above proof is given):

Theorem 1.13. If k is an uncountable algebraically closed field and if F (x, y) = 0 has solutions
modulo (x)k for every k ∈ N, then there exists a power series solution y(x):

F (x, y(x)) = 0.

This kind of argument using asymptotic constructions (here the Noetherianity is the key point
of the proof) may be nicely formalized using ultraproducts. Ultraproducts methods can be used
to prove easily stronger results such as Theorem 1.9 (See Part 3.3 and Proposition 3.30).

Example 1.14 (Ideal Membership Problem). Let f1, . . . , fr ∈ CJxK be formal power series
where x = (x1, . . . , xn). Let us denote by I the ideal of CJxK generated by f1, . . . , fr. If g is
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a power series, how can we detect that g ∈ I or g /∈ I? Because a power series is determined
by its coefficients, saying that g ∈ I will depend in general on an infinite number of conditions
and it will not be possible to check that all these conditions are satisfied in finite time. Another
problem is to find canonical representatives of power series modulo the ideal I that will enable
us to make computations in the quotient ring CJxK

I .
One way to solve these problems is the following. Let us consider the following order on

Nn: for any α, β ∈ Nn, we say that α ≤ β if (|α|, α1, . . . , αn) ≤lex (|β|, β1, . . . , βn) where
|α| := α1 + · · ·+ αn and ≤lex is the lexicographic order. For instance

(1, 1, 1) ≤ (1, 2, 3) ≤ (2, 2, 2) ≤ (3, 2, 1) ≤ (2, 2, 3).

This order induces an order on the sets of monomials xα1
1 . . . xαn

n as follows: we say that xα ≤ xβ
if α ≤ β. Thus

x1x2x3 ≤ x1x
2
2x

3
3 ≤ x2

1x
2
2x

2
3 ≤ x3

1x
2
2x3 ≤ x2

1x
2
2x

3
3.

If f :=
∑
α∈Nn fαx

α ∈ CJxK, the initial exponent of f with respect to the above order is

exp(f) := min{α ∈ Nn / fα 6= 0} = inf Supp(f)

where the support of f is the set Supp(f) := {α ∈ Nn / fα 6= 0}. The initial term of f is
fexp(f)x

exp(f). This is the smallest non-zero monomial in the expansion of f with respect to the
above order.

If I is an ideal of CJxK, we define Γ(I) to be the subset of Nn of all the initial exponents of
elements of I. Since I is an ideal, for any β ∈ Nn and any f ∈ I, xβf ∈ I. This means that
Γ(I) +Nn = Γ(I). Then we can prove (this statement is known as Dickson’s Lemma) that there
exists a finite number of elements g1, . . . , gs ∈ I such that

{exp(g1), . . . , exp(gs)}+ Nn = Γ(I).

Let us mention that Dickson’s Lemma is an immediate consequence of the Noetherianity of the
polynomial ring in n variables since it translates into saying that the monomial ideal defined by
Γ(f) is finitely generated.

Set

∆1 := exp(g1) + Nn and ∆i = (exp(gi) + Nn)\
⋃

1≤j<i

∆j , for 2 ≤ i ≤ s.

Finally, set

∆0 := Nn\
s⋃
i=1

∆i.

For instance, if I is the ideal of CJx1, x2K generated by g1 := x1x
3
2 and g2 := x2

1x
2
2, we can check

that

Γ(I) = {(1, 3), (2, 2)}+ N2

and the sets ∆0, ∆1 and ∆2 are the following ones:
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∆1

∆2

∆0

•
(1, 3)

•
(2, 2)

Set g ∈ CJxK. Then by the Galligo-Grauert-Hironaka Division Theorem [Gal79] there exists
a unique power series q1, . . . , qs, r ∈ CJxK such that

(2) g = g1q1 + · · ·+ gsqs + r

(3) exp(gi) + Supp(qi) ⊂ ∆i and Supp(r) ⊂ ∆0.

The uniqueness of the division comes from the fact the ∆i are disjoint subsets of Nn. The
existence of such a decomposition is proven through the following division algorithm:

Set α := exp(g). Then there exists an integer i1 such that α ∈ ∆i1 .
• If i1 = 0, then set r(1) := in(g) and q(1)

i := 0 for all i.
• If i1 ≥ 1, then set r(1) := 0, q(1)

i := 0 for i 6= i1 and q(1)
i1

:= in(g)
in(gi1 ) .

Finally set g(1) := g −
s∑
i=1

giq
(1)
i − r

(1). Thus we have exp(g(1)) > exp(g). Then we replace g by

g(1) and we repeat the above process.
In this way we construct a sequence (g(k))k of power series such that, for any k ∈ N,

exp(g(k+1)) > exp(g(k)) and g(k) = g −
s∑
i=1

giq
(k)
i − r

(k) with

exp(gi) + Supp(q
(k)
i ) ⊂ ∆i and Supp(r(k)) ⊂ ∆0.

At the limit k −→∞ we obtain the desired decomposition.
In particular, since {exp(g1), . . . , exp(gs)}+Nn = Γ(I), we deduce from this that I is generated

by g1, . . . , gs.
This algorithm implies that for any g ∈ CJxK there exists a unique power series r whose

support is included in ∆0 and such that g − r ∈ I and the division algorithm yields a way to
obtain this representative r.

Moreover, saying that g /∈ I is equivalent to r 6= 0 and this is equivalent to saying that, for
some integer k, r(k) 6= 0. But g ∈ I is equivalent to r = 0 which is equivalent to r(k) = 0 for all
k ∈ N. Thus by applying the division algorithm, if for some integer k we have r(k) 6= 0 we can
conclude that g /∈ I. But this algorithm will not enable us to determine if g ∈ I since it requires
an infinite number of computations.

Now a natural question is what happens if we replace CJxK by A := C〈x〉 or C{x}? Of course
we can proceed with the division algorithm but we do not know if q1, . . . , qs, r ∈ A. In fact by
controlling the size of the coefficients of q(k)

1 , . . . , q
(k)
s , r(k) at each step of the division algorithm,
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we can prove that if g ∈ C{x} then q1, . . . , qs and r remain in C{x} (see [Hir64, Gra72, Gal79,
dJPf00]).

But if g ∈ C〈x〉 is an algebraic power series then it may happen that q1, . . . , qs and r are not
algebraic power series (see Example 5.4 of Section 5). This is exactly an Artin Approximation
problem with constraints in the sense that Equation (2) has formal solutions satisfying the
constraints (3) but no algebraic power series solutions satisfying the same constraints. On
the other hand, still in the case where g and the gi are algebraic power series, there exists
a computable bound depending on the complexity of g and of the gi on the number of steps
required to conclude if g ∈ I or not, even if this bound is too large to be used in practice (see
[Ron15]).

Example 1.15 (Linearization of germs of biholomorphisms). Given f ∈ C{x}, x being
a single variable, let us assume that f(0) = 0 and f ′(0) = λ 6= 0. By the inverse function
theorem f defines a biholomorphism from a neighborhood of 0 in C onto a neighborhood of 0
in C preserving the origin. The linearization problem, firstly investigated by C. L. Siegel, is
the following: is f conjugated to its linear part? That is: does there exist g(x) ∈ C{x}, with
g(0) = 0 and g′(0) 6= 0, such that f(g(x)) = g(λx) or g−1 ◦ f ◦ g(x) = λx (in this case we say
that f is analytically linearizable)?

This problem is difficult and the following cases may occur: f is not linearizable, f is for-
mally linearizable but not analytically linearizable (i.e., g exists but g(x) ∈ CJxK\C{x}), f is
analytically linearizable (see [Ce91]).

Let us assume that f is formally linearizable, i.e., there exists ĝ(x) ∈ CJxK such that
f(ĝ(x))− ĝ(λx) = 0. By considering the Taylor expansion of ĝ(λx):

ĝ(λx) = ĝ(y) +

∞∑
n=1

(λx− y)n

n!
ĝ(n)(y)

we see that there exists ĥ(x, y) ∈ CJx, yK such that

ĝ(λx) = ĝ(y) + (y − λx)ĥ(x, y).

Thus if f is formally linearizable there exists ĥ(x, y) ∈ CJx, yK such that

f(ĝ(x))− ĝ(y) + (y − λx)ĥ(x, y) = 0.

On the other hand if there exists such an ĥ(x, y), by replacing y by λx in the previous equation
we see that f is formally linearizable. This former equation is equivalent to the existence of
k̂(y) ∈ CJyK such that {

f(ĝ(x))− k̂(y) + (y − λx)ĥ(x, y) = 0

k̂(y)− ĝ(y) = 0

Using the same trick as before (Taylor expansion), this is equivalent to the existence of
l̂(x, y, z) ∈ CJx, y, zK such that

(4)

{
f(ĝ(x))− k̂(y) + (y − λx)ĥ(x, y) = 0

k̂(y)− ĝ(x) + (x− y)l̂(x, y, z) = 0

Hence, we see that, if f is formally linearizable, there exists a formal solution(
ĝ(x), k̂(z), ĥ(x, y), l̂(x, y, z)

)
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of the system (4). Such a solution is called a solution with constraints. On the other hand, if
the system (4) has a convergent solution

(g(x), k(z), h(x, y), l(x, y, z)),

then f is analytically linearizable.
We see that the problem of linearizing analytically f when f is formally linearizable is equiv-

alent to find convergent power series solutions of the system (4) with constraints on the support
of the components of the solutions. Because in some cases f may be analytically linearizable
but not formally linearizable, such a system (4) may have formal solutions with constraints but
no analytic solutions with the same constraints.

In Section 5 we will give some results about the Artin Approximation Problem with con-
straints.

Example 1.16. Another related problem is the following: if a differential equation with conver-
gent power series coefficients has a formal power series solution, does it have convergent power
series solutions? We can also ask the same question by replacing “convergent” by “algebraic”.

For instance let us consider the (divergent) formal power series ŷ(x) :=
∑
n≥0

n!xn+1. It is

straightforward to check that it is a solution of the equation

x2y′ − y + x = 0 (Euler Equation).

On the other hand if
∑
n

anx
n is a solution of the Euler Equation then the sequence (an)n

satisfies the following recursion:

a0 = 0, a1 = 1

an+1 = nan ∀n ≥ 1.

Thus an+1 = (n+ 1)! for any n > 0 and ŷ(x) is the only solution of the Euler Equation. Hence
we have an example of a differential equation with polynomial coefficients having a formal power
series solution but no convergent power series solution. We will discuss in Section 5 how to relate
this phenomenon to an Artin Approximation problem for polynomial equations with constraints
(see Example 5.2).

Notation: If A is a local ring, then mA will denote its maximal ideal. For any f ∈ A, f 6= 0,

ord(f) := max{n ∈ N \ f ∈ mnA}.

If A is an integral domain, Frac(A) denotes its field of fractions.
If no other indication is given the letters x and y will always denote multivariables

x := (x1, . . . , xn) and y := (y1, . . . , ym),

and t will denote a single variable. In this case the notation x′ will be used to denote the vector
(x1, . . . , xn−1).

If f(y) is a vector of polynomials with coefficients in a ring A,

f(y) := (f1(y), . . . , fr(y)) ∈ A[y]r,

if I is an ideal of A and y ∈ Am, f(y) ∈ I (resp. f(y) = 0) means fi(y) ∈ I (resp. fi(y) = 0)
for 1 ≤ i ≤ r.
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2. Classical Artin Approximation

In this part we review the main results concerning the Artin Approximation Property. We
give four results that are the most characteristic ones in the story: the classical Artin Approxi-
mation Theorem in the analytic case, its generalization by A. Płoski, a result of J. Denef and L.
Lipshitz concerning rings with the Weierstrass Division Property and, finally, the General Néron
Desingularization Theorem.

2.1. The analytic case. In the analytic case, the first result is due to Michael Artin in 1968
[Ar68]. His result asserts that the set of convergent solutions is dense in the set of formal
solutions of a system of implicit analytic equations. This result is particularly useful, because if
we have some analytic problem that we can express in a system of analytic equations, in order
to find solutions of this problem we only need to find formal solutions and this may be done in
general by an inductive process.

Another way to use this result is the following: let us assume that we have some algebraic
problem and that we are working over a ring of the form A := kJxK, where x := (x1, . . . , xn) and
k is a characteristic zero field. If the problem involves only a countable number of data (which
is often the case in this context), since C is algebraically closed and the transcendence degree of
Q −→ C is uncountable, we may assume that we work over CJxK. Using Theorem 2.1, we may,
in some cases, reduce the problem to A = C{x}. Then we can use powerful methods of complex
analytic geometry to solve the problem. This kind of method is used, for instance, in the recent
proof of the Nash Conjecture for algebraic surfaces (see [FB12, Theorem A] and the crucial use
of this theorem in [FBPP12]) or in the proof of the Abhyankar-Jung Theorem given in [PR12].

Let us mention that C. Chevalley had apparently proven this theorem some years before M.
Artin but he did not publish it because he did not find applications of it [Ra14].

2.1.1. Artin’s result.

Theorem 2.1 (Analytic Artin Approximation Theorem). [Ar68] Let k be a valued field,
i.e., a field equipped with a multiplicative norm, of characteristic zero and let f(x, y) be a vector
of convergent power series in two sets of variables x and y. Assume given a formal power series
solution ŷ(x) vanishing at 0,

f(x, ŷ(x)) = 0.

Then, for any c ∈ N, there exists a convergent power series solution ỹ(x),

f(x, ỹ(x)) = 0

which coincides with ŷ(x) up to degree c,

ỹ(x) ≡ ŷ(x) modulo (x)c.

Remark 2.2. This theorem has been conjectured by S. Lang in [Lan54] (last paragraph p. 372)
when k = C.

Remark 2.3. The ideal (x) defines a topology on kJxK, called the Krull topology, induced by
the following ultrametric norm: |a(x)| := e−ord(a(x)). In this case the small elements of kJxK
are the elements of high order. Thus Theorem 2.1 asserts that the set of solutions in k{x}m of
f(x, y) = 0 is dense in the set of solutions in kJxKm of f(x, y) = 0 for the Krull topology.

Remark 2.4. Let f1(x, y), . . . , fr(x, y) ∈ k{x, y} denote the components of the vector f(x, y).
Let I denote the ideal of k{x, y} generated by the fi(x, y). It is straightforward to see that

f1(x, y(x)) = · · · = fr(x, y(x)) = 0⇐⇒ g(x, y(x)) = 0 ∀g ∈ I
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for any vector y(x) of formal power series vanishing at 0. This shows that Theorem 2.1 is a
statement concerning the ideal generated by the components of the vector f(x, y) and not only
these components themselves.

Sketch of proof of Theorem 2.1. Before giving the complete proof of Theorem 2.1 let us explain
the strategy.

The proof is made by induction on n. Instead of trying to find directly an approximating
convergent solution we will construct a convergent power series y(x) such that

(5) f(x, y) ∈ (δ2(x, y))

with yi(x)−ŷi(x) ∈ (x)c for every i and where δ is a well chosen minor of the Jacobian matrix ∂f
∂y .

Then we will use a generalized version of the Implicit Function Theorem due to J.-C. Tougeron
(see Proposition 2.6 given below) to obtain a convergent solution ỹ(x) of f(x, y) = 0 close to
y(x) (and thus close to ŷ(x)).

The choice of the minor δ will require some technical reductions involving the Jacobian Cri-
terion.

Then to reduce the problem to the situation of (5) we do the following:
We apply a linear change of coordinates xj in order to assume that δ2(x, ŷ) is xn-regular of order
d (see Appendix 6 and Remark 6.8). Thus, by the Weierstrass Preparation Theorem 6.2, the
ideal (δ2(x, ŷ)) is generated by a Weierstrass polynomial of the form

â(x) := xdn + â1(x′)xd−1
n + · · ·+ âd(x

′)

where x′ = (x1, . . . , xn−1) and the âi(x′) are formal power series. Then we divide each component
ŷi(x) by â(x). The remainders of these divisions, denoted by

ŷ∗i (x) :=

d−1∑
j=0

ŷi,j(x
′)xjn,

are polynomials in xn of degree < d with coefficients in kJx′K. Since f(x, ŷ) = 0 ∈ (â) and â(x)
divides the components of ŷ(x)− ŷ∗(x), we have f(x, ŷ∗) ∈ (â).

Now we introduce new variables a0, . . . , ad−1 and yi,j for 1 ≤ i ≤ m and 0 ≤ j < d. Then we
divide the

fk

x, d−1∑
j=0

yi,jx
j
n


by A(ai, xn) := xdn + a1x

d−1
n + · · · + ad ∈ k[xn, a1, . . . , ad]. We denote by

∑d−1
l=0 Fk,lx

l
n, where

Fk,l ∈ k{x′, yi,j , ap}, the remainders of these divisions, so that the relation

f(x, ŷ∗) ∈ (â)

is equivalent to

(6) Fk,l(x
′, ŷi,j(x

′), âp(x
′)) = 0 ∀k, l.

Hence, by the inductive assumption, we can find a convergent power series solution
(yi,j(x

′), ap(x
′)) of (6) close to the given formal solution. This one yields a vector y(x) of

convergent power series such that (5) holds. In order to prove this, one important point is to
show that the ideal generated by δ2(x, y) is equal to the ideal generated by A(ai(x

′), xn). This
requires to modify a bit the previous argument by dividing δ2

(
x,
∑d−1
j=0 yi,jx

j
n

)
by â(x) and by

adding to (6) the condition that the remainder of this division is zero. The details are given in
the proof given below. �
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Proof of Theorem 2.1. The proof is done by induction on n, the case n = 0 being obvious since
the rings of formal or convergent power series in 0 variables are the field k.

Let us assume that the theorem is proven for n− 1 and let us prove it for n.
Let us remark that if Theorem 2.1 is proven for a given integer c then it is obviously true for

every integer ≤ c. This allows us to replace the integer c by any larger integer. In particular at
several steps we will assume that c is an integer larger that some given data independent of c.
• Let I be the ideal of k{x, y} generated by f1(x, y), . . . , fr(x, y). Let ϕ be the k{x}-morphism

k{x, y} −→ kJxK sending yi onto ŷi(x). Then Ker(ϕ) is a prime ideal containing I and if the
theorem is true for generators of Ker(ϕ) then it is true for f1, . . . , fr. Thus we can assume that
I = Ker(ϕ).
• The local ring k{x, y}I is regular by a theorem of Serre (see [Mat89, Theorem 19.3]). Set

h :=height(I). By the Jacobian Criterion (see [To72, ThŐorŔme 3.1] or [Ru93, Lemma 4.2])
there exists a h × h minor of the Jacobian matrix ∂(f1,...,fr)

∂(x,y) , denoted by δ(x, y), such that
δ /∈ I = Ker(ϕ). In particular we have δ(x, ŷ(x)) 6= 0.

By considering the partial derivative of fi(x, ŷ(x)) = 0 with respect to xj we get

∂fi
∂xj

(x, ŷ(x)) = −
r∑

k=1

∂ŷk(x)

∂xj

∂fi
∂yk

(x, ŷ(x)).

Thus there exists a h× h minor of the Jacobian matrix ∂(f1,...,fr)
∂(y) , still denoted by δ(x, y), such

that δ(x, ŷ(x)) 6= 0. In particular δ /∈ I and m ≥ h. From now on we will assume that δ is the
determinant of ∂(f1,...,fh)

∂(y1,...,yh) .
If we denote J := (f1, . . . , fh), ht(Jk{x, y}I) ≤ h by the Krull Haupidealsatz [Mat89, The-

orem 13.5]. On the other hand the Jacobian Criterion [Ru93, Proposition 4.3] shows that
ht(Jk{x, y}I) ≥ rk( ∂(f1,...,fh)

∂(y1,...,yh) ) mod. I, and h = rk( ∂(f1,...,fh)
∂(y1,...,yh) ) mod. I because δ(x, ŷ(x)) 6= 0.

Hence ht(Jk{x, y}I) = h and
√
Jk{x, y}I = Ik{x, y}I . This means that there exists q ∈ k{x, y},

q /∈ I, and e ∈ N such that qfei ∈ J for h+ 1 ≤ i ≤ r. In particular q(x, ŷ(x)) 6= 0.
• Let ỹ(x) be a given convergent solution of f1 = · · · = fh = 0 such that

ỹ(x)− ŷ(x) ∈ (x)c.

If c > ord(q(x, ŷ(x))), then q(x, ỹ(x)) 6= 0 by Taylor formula. Since qfei ∈ J for h + 1 ≤ i ≤ r,
this proves that fi(x, ỹ(x)) = 0 for all i and Theorem 2.1 is proven.

So we can replace I by the ideal generated by f1, . . . , fh.
Thus from now on we assume that r = h and that there exists a h× h minor of the Jacobian

matrix ∂(f1,...,fr)
∂(y) , denoted by δ(x, y), such that δ(x, ŷ(x)) 6= 0. We also fix the integer c and

assume that c > ord(q(x, ŷ(x))).

Lemma 2.5. Let us assume that Theorem 2.1 is true for the integer n − 1. Let g(x, y) be a
convergent power series and let f(x, y) be a vector of convergent power series.

Let ŷ(x) be in (x)kJxKm such that g(x, ŷ(x)) 6= 0 and fi(x, ŷ(x)) ∈ (g(x, ŷ(x))) for every i.
Let c′ be an integer. Then there exists y(x) ∈ (x)k{x}m such that

fi(x, y(x)) ∈ (g(x, y(x))) ∀i

and y(x)− ŷ(x) ∈ (x)c
′
.

• We apply this lemma to g(x, y) := δ2(x, y) with the integers

c′ := c+ d+ 1 and d := ord(δ2(x, ŷ(x))).

Indeed, since f(x, ŷ(x)) = 0, we have fi(x, ŷ(x)) ∈ (δ2(x, ŷ(x))) for every integer i.
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Thus we may assume that there are yi(x) ∈ k{x}, 1 ≤ i ≤ m, such that f(x, y) ∈ (δ2(x, y))
and yi(x)− ŷi(x) ∈ (x)c+d+1, 1 ≤ i ≤ m. Because ord(δ2(x, y)) = d, we have that

f(x, y) ∈ δ2(x, y)(x)c

by Taylor’s formula. Then we use the following generalization of the Implicit Function Theorem
(withm = h) to show that there exists ỹ(x) ∈ k{x}m with ỹ(0) = 0 such that ỹj(x)−ŷj(x) ∈ (x)c,
1 ≤ j ≤ m, and fi(x, ỹ(x)) = 0 for 1 ≤ i ≤ h. This proves Theorem 2.1. �

Proposition 2.6 (Tougeron Implicit Function Theorem). [To72] Let f(x, y) be a vector
of k{x, y}h with m ≥ h and let δ(x, y) be a h× h minor of the Jacobian matrix ∂(f1,...,fh)

∂(y1,...,ym) . Let
us assume that there exists y(x) ∈ k{x}m such that

f(x, y(x)) ∈ (δ(x, y(x)))2(x)c for all 1 ≤ i ≤ h

and for some c ∈ N. Then there exists ỹ(x) ∈ k{x}m such that

fi(x, ỹ(x)) = 0 for all 1 ≤ i ≤ h

ỹ(x)− y(x) ∈ (δ(x, y(x)))(x)c.

Moreover ỹ(x) is unique if we impose ỹj(x) = yj(x) for h < j ≤ m.

Its remains to prove Lemma 2.5 and Proposition 2.6.

Proof of Lemma 2.5. If g(x, ŷ(x)) is invertible, the result is obvious (just take for ỹi(x) any
truncation of ŷi(x)). Thus let us assume that g(x, ŷ(x)) is not invertible. By making a linear
change of variables we may assume that g(x, ŷ(x)) is xn-regular (see Remark 6.8), and by the
Weierstrass Preparation Theorem g(x, ŷ(x)) = â(x)× unit where

â(x) := xdn + â1(x′)xd−1
n + · · ·+ âd(x

′)

where x′ := (x1, . . . , xn−1), d is a positive integer and ai(x′) ∈ (x′)kJx′K, 1 ≤ i ≤ d.
Let us perform the Weierstrass division of ŷi(x) by â(x):

(7) ŷi(x) = â(x)ŵi(x) +

d−1∑
j=0

ŷi,j(x
′)xjn

for 1 ≤ i ≤ m. We set

ŷ∗i (x) :=

d−1∑
j=0

ŷi,j(x
′)xjn, 1 ≤ i ≤ m.

Then by the Taylor formula

g(x, ŷ(x)) = g(x, ŷ∗(x)) mod. â(x)

and
fk(x, ŷ(x)) = fk(x, ŷ∗(x)) mod. â(x)

for 1 ≤ k ≤ r. Thus

(8) g(x, ŷ∗(x)) = fk(x, ŷ∗(x)) = 0 mod. â(x).

Let yi,j , 1 ≤ i ≤ m, 0 ≤ j ≤ d−1, be new variables. We define y∗i :=
∑d−1
j=0 yi,jx

j
n, 1 ≤ i ≤ m.

Let us define the polynomial

A(ai, xn) := xdn + a1x
d−1
n + · · ·+ ad ∈ k[xn, a1, . . . , ad]
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where a1, . . . , ad are new variables. Let us perform the Weierstrass division of g(x, y∗) and
fi(x, y

∗) by A:

(9) g(x, y∗) = A.Q+

d−1∑
l=0

Glx
l
n

(10) fk(x, y∗) = A.Qk +

d−1∑
l=0

Fk,lx
l
n, 1 ≤ k ≤ r

where Q, Qk ∈ k{x, yi,j , ap} and Gl, Fk,l ∈ k{x′, yi,j , ap}.
Then we have

g(x, ŷ∗(x)) =

d−1∑
l=0

Gl(x
′, ŷi,j(x

′), âp(x
′))xln mod. (â(x))

fk(x, ŷ∗(x)) =

d−1∑
l=0

Fk,l(x
′, ŷi,j(x

′), âp(x
′))xln mod. (â(x)), 1 ≤ k ≤ r.

Hence (8) shows that
Gl(x

′, ŷi,j(x
′), âp(x

′)) = 0

and
Fk,l(x

′, ŷi,j(x
′), âp(x

′)) = 0

for all k and l. By the inductive hypothesis, there exist convergent power series yi,j(x′) ∈ k{x′}
and ap(x′) ∈ k{x′} for all i, j and p, such that

Gl(x
′, yi,j(x), ap(x

′)) = 0 and Fk,l(x′, yi,j(x
′), ap(x

′)) = 0

for all k and l, and yi,j(x′)− ŷi,j(x′), ap(x′)− âp(x′) ∈ (x′)c for all i, j and p 2.
Now let us set

a(x) := xdn + a1(x′)xd−1
n + · · ·+ ad(x

′)

yi(x) := a(x)wi(x) +

d−1∑
j=0

yi,j(x
′)xjn

for some wi(x) ∈ k{x} such that wi(x)− ŵi(x) ∈ (x)c for all i (see (7)). It is straightforward to
check that yj(x)− ŷj(x) ∈ (x)c for 1 ≤ j ≤ m. If c > d, the Taylor formula shows that

g(x, y(x))− g(x, ŷ(x)) ∈ (x)c ⊂ (x)d+1.

Thus
g(0, . . . , 0, xn, y(0, . . . , 0, xn))− g(0, . . . , 0, xn, ŷ(0, . . . , 0, xn)) ∈ (xn)d+1.

Since the order of the power series g(0, . . . , 0, xn, ŷ(0, . . . , 0, xn)) is d this implies that the order
of g(0, . . . , 0, xn, y(0, . . . , 0, xn)) is also d. But a(x) divides g(x, y(x)) and it is a Weierstrass
polynomial of degree d. So the Weierstrass Division Theorem implies that g(x, y(x)) equals a(x)
times a unit. Since f(x, y(x)) ∈ (a(x)) by (10) we have

f(x, y(x)) = 0 mod. g(x, y(x)).

�

2Formally in order to apply the induction hypothesis we should have ŷi,j(0) = 0 and âp(0) = 0 which is not
necessarily the case here. We can remove the problem by replacing ŷi,j(x′) and âp(x′) by ŷi,j(x′) − ŷi,j(0) and
âp(x′)− âp(0), and Gl(x

′, yi,j , ap) by G(x′, yi,j + ŷi,j(0), ap + âp(0)) - idem for Fk,l. We skip the details here.
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Proof of Proposition 2.6. We may assume that δ is the first h×h minor of the Jacobian matrix.
If we add the equations fh+1 := yh+1− ỹh+1(x) = 0, . . . , fm := ym− ỹm(x) = 0, we may assume
that m = h and δ is the determinant of the Jacobian matrix J(x, y) := ∂(f1,...,fh)

∂(y) . We have

f (x, y(x) + δ(x, y(x))z) = f(x, y(x)) + δ(x, y)J(x, y(x))z + δ(x, y(x))2H(x, y(x), z)

where z := (z1, . . . , zm) and H(x, y(x), z) ∈ k{x, y(x), z}m is of order at least 2 in z. Let
us denote by J ′(x, y(x)) the adjoint matrix of J(x, y(x)). Let ε(x) be in (x)ck{x}r such that
f(x, y(x)) = δ2(x, y(x))ε(x). Then we have

f(x, y(x) + δ(x, y(x))z) = δ(x, y(x))J(x, y(x)) [J ′(x, y(x))ε(x) + z + J ′(x, y(x))H(x, y(x), z)] .

We define
g(x, z) := J ′(x, y(x))ε(x) + z + J ′(x, y(x))H(x, y(x), z).

Then g(0, 0) = 0 and the matrix ∂g(x,z)
∂z (0, 0) is the identity matrix. Thus, by the Implicit

Function Theorem, there exists a unique z(x) ∈ k{x}m such that

f(x, y(x) + δ(x, y(x))z(x)) = 0.

This proves the proposition. �

Remark 2.7. We make the following remarks about the proof of Theorem 2.1:
i) In the case n = 1 i.e., x is a single variable, set e := ord(δ(x, ŷ(x))). If y(x) ∈ k{x}m

satisfies ŷ(x)− y(x) ∈ (x)2e+c, then we have

ord(f(x, y(x))) ≥ 2e+ c

and
δ(x, y(x)) = δ(x, ŷ(x)) mod. (x)2e+c,

thus ord(δ(x, y(x))) = ord(δ(x, ŷ(x))) = e. Hence we have automatically

f(x, y(x)) ∈ (δ(x, y(x)))2(x)c

since k{x} is a discrete valuation ring (i.e., if ord(a(x)) ≤ ord(b(x)) then a(x) divides
b(x) in k{x}).

Thus Lemma 2.5 is not necessary in this case and the proof is more simple. This fact
will be general: approximation results will be easier to obtain, and sometimes stronger,
in discrete valuation rings than in more general rings.

ii) We did not really use the fact that k is a field of characteristic zero, we just need k to be a
perfect field in order to use the Jacobian Criterion. But the use of the Jacobian Criterion
is more delicate for imperfect fields. This also will be general: approximation results
will be more difficult to prove in positive characteristic. For instance M. André proved
Theorem 2.1 in the case where k is a complete valued field of positive characteristic and
replaced the use of the Jacobian Criterion by the homology of commutative algebras
[An75]. In fact it is proven that Theorem 2.1 is satisfied for a field k if and only if the
completion of k is separable over k [Sc82].

iii) For n ≥ 2, the proof of Theorem [Ar68] uses induction on n. In order to do it we
use the Weierstrass Preparation Theorem. But to apply the Weierstrass Preparation
Theorem we need to make a linear change of coordinates in k{x}, in order to transform
g(x, ŷ(x)) into a power series h(x) such that h(0, . . . , 0, xn) 6= 0. Because of this change
of coordinates the proof does not adapt to prove similar results in the case of constraints:
for instance if ŷ1(x) depends only on x1 and ŷ2(x) depends only on x2, can we find a
convergent solution such that ỹ1(x) depends only on x1, and ỹ2(x) depends only on x2?
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Moreover, even if we were able to make a linear change of coordinates without mod-
ifying the constraints, the use of the Tougeron Implicit Function Theorem may remove
the constraints. We will discuss these problems in Section 5.

Remark 2.8. The Tougeron Implicit Function Theorem has strong applications for finding
normal forms of power series, i.e., to finding local coordinates x′1, . . . , x′n such that a given
power series is a polynomial in some of these new coordinates (see [To68] or [Ku86]). Some
generalizations of this theorem have been proven in [BK16].

Corollary 2.9. Let k be a valued field of characteristic zero and let I be an ideal of k{x}. Let
A denote the local ring k{x}

I , mA its maximal ideal and Â its completion.
Let f(y) ∈ k{x, y}r and ŷ ∈ Âm be a solution of f = 0 in A such that ŷ ∈ mAÂ. Then there

exists a solution ỹ of f = 0 in A such that ỹ ∈ mA and ỹ − ŷ ∈ mcAÂ.

Proof. Let a1, . . . , as ∈ k{x} be generators of I. Let us choose ŵ(x) ∈ kJxKm such that
ŵj(x) = ŷj modulo I for 1 ≤ j ≤ m. Since fi(ŷ) = 0 in A there exist ẑi,k(x) ∈ kJxK, 1 ≤ i ≤ r
and 1 ≤ k ≤ s, such that

fi(x, ŵ(x)) + a1ẑi,1(x) + · · ·+ asẑi,s(x) = 0 ∀i.

By Theorem 2.1 there exist w̃j(x), z̃i,k(x) ∈ k{x} such that

fi(x, w̃(x)) + a1z̃i,1(x) + · · ·+ asz̃i,s(x) = 0 ∀i

and ŵj(x) − w̃j(x) ∈ (x)c for 1 ≤ j ≤ m. Then the images of the w̃j(x) in k{x}
I satisfy the

conclusion of the corollary. �

2.1.2. Płoski’s Theorem. For his PhD thesis, a few years after M. Artin result, A. Płoski strength-
ened Theorem 2.1 by a careful analysis of the proof and a smart modification of it. His result
yields an analytic parametrization of a piece of the set of solutions of f = 0 such that the formal
solution ŷ(x) is a formal point of this parametrization.

Theorem 2.10 (Płoski’s Theorem). [Pł74, Pł15] Let k be a valued field of characteristic
zero and let f(x, y) be a vector of convergent power series in two sets of variables x and y. Let
ŷ(x) be a formal power series solution with ŷ(0) = 0,

f(x, ŷ(x)) = 0.

Then there is a convergent power series solution y(x, z) ∈ k{x, z}m with y(0, 0) = 0, where
z = (z1, . . . , zs) are new variables,

f(x, y(x, z)) = 0,

and a vector of formal power series ẑ(x) ∈ kJxKs with ẑ(0) = 0 such that

ŷ(x) = y(x, ẑ(x)).

Remark 2.11. This result obviously implies Theorem 2.1 because we can choose convergent
power series z̃1(x), . . . , z̃s(x) ∈ k{x} such that z̃j(x) − ẑj(x) ∈ (x)c for 1 ≤ j ≤ s. Then, by
denoting ỹ(x) := y(x, z̃(x)), we get the conclusion of Theorem 2.1.

Example 2.12. Let T be a p × m matrix whose entries are in k{x} and let b ∈ k{x}p be
a vector of convergent power series. Let ŷ(x) be a formal power series vector solution of the
following system of linear equations:

(11) Ty = b.
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By the faithful flatness of kJxK over k{x} (see Example 1.4 of the introduction) there exists a
convergent power series vector solution of (11) denoted by y0(x). Let M be the (finite) k{x}-
submodule of k{x}m of convergent power series solutions of the associated homogeneous linear
system:

Ty = 0.

Then by the flatness of kJxK over k{x} (see Example 1.3 of the introduction) the set of formal
power series solutions is the set of linear combinations of elements ofM with coefficients in kJxK.
Thus if m1(x), . . . ,ms(x) are generators of M there exist formal power series ẑ1(x), . . . , ẑs(x)
such that

ŷ(x)− y0(x) = ẑ1(x)m1(x) + · · ·+ ẑs(x)ms(x).

We define

y(x, z) := y0(x) +

s∑
i=1

mi(x)zi

and Theorem 2.10 is proven in the case of systems of linear equations.

Sketch of the proof of Theorem 2.10. The proof is very similar to the proof of Theorem 2.1. It
is also an induction on n. The beginning of the proof is the same, so we can assume that r = h
and we need to prove an analogue of Lemma 2.5 with parameters for g = δ2 where δ is the first
h × h minor of the jacobian matrix ∂f

∂y . But in order to prove it we need to make a slight but
crucial modification in the proof. First we make a linear change of variables and assume that
δ(x, ŷ(x)) is regular with respect to xn, i.e.

δ(x, ŷ(x)) = (xdn + â1(x′)xd−1
n + · · ·+ âd(x

′))× unit.

We set
â(x) := xdn + â1(x′)xd−1

n + · · ·+ âd(x
′).

(in the proof of Theorem 2.1, â(x) denotes the square of this Weierstrass polynomial!)
Then the idea of Płoski is to perform the Weierstrass division of ŷi(x) by â(x) for 1 ≤ i ≤ h

and by â(x)2 for h < i ≤ m:

(12) ŷi(x) = â(x)ẑi(x) +

d−1∑
j=0

ŷi,j(x
′)xjn, 1 ≤ i ≤ h,

(13) ŷi(x) = â(x)2ẑi(x) +

2d−1∑
j=0

ŷi,j(x
′)xjn, h < i ≤ m.

Let us define

ŷ∗i (x) :=

d−1∑
j=0

ŷi,j(x
′)xjn, 1 ≤ i ≤ h,

ŷ∗i (x) :=

2d−1∑
j=0

ŷi,j(x
′)xjn, h < i ≤ m.

Let M(x, y) denote the adjoint matrix of ∂(f1,...,fh)
∂(y1,...,yh) :

M(x, y)
∂(f1, . . . , fh)

∂(y1, . . . , yh)
=
∂(f1, . . . , fh)

∂(y1, . . . , yh)
M(x, y) = δ(x, y)Ih

where Ih is the identity matrix of size h× h. Then we define

g(x, y) := M(x, y)f(x, y) = (g1(x, y), . . . , gh(x, y))
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where g and f are considered as column vectors. We have

0 = f(x, ŷ(x)) = f
(
x, ŷ∗1(x) + â(x)ẑ1(x), . . . ,ŷ∗h(x) + â(x)ẑh(x),

ŷ∗h+1(x) + â(x)2ẑh+1(x), . . . , ŷ∗m(x) + â(x)2ẑm(x)
)

= f(x, ŷ∗(x)) + â(x)
∂(f1, . . . , fh)

∂(y1, . . . , yh)
(x, ŷ∗(x))

 ẑ1(x)
...

ẑh(x)

+

+â(x)2 ∂(f1, . . . , fh)

∂(yh+1, . . . , ym)
(x, ŷ∗(x))

 ẑh+1(x)
...

ẑm(x)

+ â(x)2Q(x)

for some Q(x) ∈ kJxKh. Hence gk(x, ŷ∗(x)) ∈ (â(x)2) since δ is the determinant of ∂(f1,...,fh)
∂(y1,...,yh) .

As in the proof of Theorem 2.1 we have δ(x, ŷ∗(x)) ∈ (â(x)).
We assume that Theorem 2.10 is proven for n − 1 variables. Thus we can imitate the proof

of Lemma 2.5 to show that there exist convergent power series yi,j(x′, t), ap(x′, t) ∈ k{x, t},
t = (t1, . . . , ts), such that ŷi,j(x

′) = yi,j(x
′, t̂(x′)) and âp(x

′) = ap(x
′, t̂(x′)) for some

t̂(x′) ∈ kJx′Ks and
g (x, y∗(x, t)) ∈ (a(x, t)2)

f(x, y∗(x, t)) ∈ (g (x, y∗(x, t)))

with
a(x, t) := xdn + a1(x′, t)xd−1

n + · · ·+ ad(x
′, t),

y∗i (x, t) :=

d−1∑
j=0

yi,j(x
′, t)xjn for 1 ≤ i ≤ h,

y∗i (x, t) :=

2d−1∑
j=0

yi,j(x
′, t)xjn for h < i ≤ m.

Moreover a(x, t) is the Weierstrass polynomial of δ(x, y∗(x, t)).
Let z := (z1, . . . , zh) and z′ := (z′h+1, . . . , z

′
m) be two vectors of new variables. Let us define

yi(x, t, zi) := a(x, t)zi +

d−1∑
j=0

yi,j(x
′, t)xjn for 1 ≤ i ≤ h,

yi(x, t, z
′
i) := a(x, t)2z′i +

2d−1∑
j=0

yi,j(x
′, t)xjn, h < i ≤ m.

Then we use the following proposition similar to Proposition 2.6 whose proof is given below:

Proposition 2.13. [Pł99]
With the above notation and assumptions there exist convergent power series

zi(x, t, z
′) ∈ k{x, t, z′}, 1 ≤ i ≤ h,

such that

f(x, y1(x, t, z1(x, t, z′)), . . . , yh(x, t, zh(x, t, z′)), yh+1(x, t, z′), . . . , ym(x, t, z′)) = 0.

Moreover there exists a vector formal power series ẑ′(x) such that

yi(x, t̂(x
′), zi(x, t̂(x

′), ẑ′(x))) = ŷi(x) for 1 ≤ i ≤ h,
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yi(x, t̂(x
′), ẑ′i(x)) = ŷi(x) for h < i ≤ m.

Thus we apply this proposition and we define

yi(x, t, z
′) := yi(x, t, zi(x, t, z

′)) = a(x, t)zi(x, t, z
′) +

d−1∑
j=0

yi,j(x
′, t)xjn for 1 ≤ i ≤ h

so that we have
f(x, y(x, t, z′)) = 0,

yi(x, t̂(x
′), zi(x, t̂(x

′), ẑ′(x))) = ŷi(x) for 1 ≤ i ≤ h,
yi(x, t̂(x

′), ẑ′i(x)) = ŷi(x) for h < i ≤ m.
This achieves the proof of Theorem 2.10 with z = (t, z′) and

y(t, z′) = (y1(x, t, z1(x, t, z′)), . . . , yh(x, t, zh(x, t, z′)), yh+1(x, t, z′), . . . , ym(x, t, z′)).

�

Proof of Proposition 2.13. We prove first the existence of the convergent power series zi(x, t, z′).
We have

F (x, t, z′, z) := f
(
x, y∗1(x, t) + a(x, t)z1, . . . , y

∗
h(x, t) + a(x, t)zh,

y∗h+1(x, t) + a(x, t)2z′h+1, . . . , y
∗
m(x, t) + a(x, t)2z′m

)
= f(x, y∗(x, t)) + a(x, t)2 ∂(f1, . . . , fh)

∂(yh+1, . . . , ym)
(x, y∗(x, t))

 z′h+1
...
z′m

+

+a(x, t)
∂(f1, . . . , fh)

∂(y1, . . . , yh)
(x, y∗(x, t))

 z1

...
zh

+ a(x, t)2Q(x, t, z′, z)

where the entries of the vector Q(x, t, z′, z) are in (x, t, z′, z)2.
Since a(x, t) is equal to δ(x, y∗(x, t)) times a unit, by multiplying on the left this equality by

M(x, y∗(x, t)) we obtain that

M(x, y∗(x, t))F (x, t, z′, z) = δ2(x, y∗(x, t))G(x, t, z′, z),

where the entries of the vector G(x, t, z′, z) are convergent series and G(0, 0, 0, 0) = 0. By
differentiation this equality yields

M(x, y∗(x, t))
∂(F1, . . . , Fh)

∂(z1, . . . , zh)
(x, t, z′, z) = δ2(x, y∗(x, t))

∂(G1, . . . , Gh)

∂(z1, . . . , zh)
(x, t, z′, z).

It is easy to check that

det
(
∂(F1, . . . , Fh)

∂(z1, . . . , zh)

)
(x, 0, 0, 0) =

= det
(
∂(f1, . . . , fh)

∂(y1, . . . , yh)

)
(x, 0, 0, 0)a(x, 0)h = δ(x, y∗(x, 0))h+1 × unit.

But det(M(x, y∗(x, t))) = δ(x, y∗(x, t))h−1 thus det
(
∂(G1,...,Gh)
∂(z1,...,zh)

)
(x, 0, 0, 0) is a unit. Hence

det
(
∂(G1,...,Gh)
∂(z1,...,zh)

)
(0, 0, 0, 0) 6= 0. So the Implicit Function Theorem yields unique convergent

power series zi(x, t, z′) ∈ k{x, t, z′}, 1 ≤ i ≤ h, vanishing at 0 such that

G(x, t, z′, z(x, t, z′)) = 0.
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This shows F (x, t, z′, z(x, t, z′)) = 0.
In order to prove the existence of the formal power series ẑ′(x) we make the same computation

where t is replaced by t̂(x′). Thus by the Implicit Function Theorem there exist unique power
series z̃i(x, z′) ∈ kJx, z′K, for 1 ≤ i ≤ h, vanishing at 0 such that

G(x, t̂(x′), z′, z̃(x, z′)) = 0

i.e.
f(x, y1(x, t̂(x′), z̃1(x, z′)), . . . , yh(x, t̂(x′), z̃h(x, z′)),

yh+1(x, t̂(x′),z′), . . . , ym(x, t̂(x′), z′)) = 0.

Thus by uniqueness we have
z(x, t̂(x′), z′) = z̃(x, z′).

Moreover, again by the Implicit Function Theorem, any vector of formal power series ẑ(x)
vanishing at the origin is a solution of the equation

(14) G(x, t̂(x′), z′, z) = 0

if and only if there exists a vector of formal power series ẑ′(x) such that

ẑ(x) = z̃(x, ẑ′(x)).

In particular, because the vector ẑ(x) defined by (12) and (13) is a solution of (14), there exists
a vector of formal power series ẑ′(x) such that

ŷi(x) = a(x, t̂(x′))zi(x, ẑ
′(x)) +

d−1∑
j=0

yi,j(x
′, t̂(x′))xjn for 1 ≤ i ≤ h,

ŷi(x) = a(x, t̂(x′))2ẑ′i(x) +

2d−1∑
j=0

yi,j(x
′, t̂(x′))xjn, h < i ≤ m.

�

Remark 2.14. Let us remark that this result remains true if we replace k{x} by a quotient
k{x}
I as in Corollary 2.9.

Remark 2.15. Let I be the ideal generated by f1, . . . , fr. The formal solution ŷ(x) of f = 0
induces a k{x}-morphism k{x, y} −→ kJxK defined by the substitution of ŷ(x) for y. Then I
is included in the kernel of this morphism thus, by the universal property of the quotient ring,
this morphism induces a k{x}-morphism ψ : k{x,y}

I −→ kJxK. On the other hand, any k{x}-
morphism ψ : k{x,y}

I −→ kJxK is clearly defined by substituting for y a vector of formal power
series ŷ(x) such that f(x, ŷ(x)) = 0.

Thus we can reformulate Theorem 2.10 as follows: Let ψ : k{x,y}
I −→ kJxK be the k{x}-

morphism defined by the formal power series solution ŷ(x). Then there exist an analytic smooth
k{x}-algebra D := k{x, z} and k{x}-morphisms C −→ D (defined via the convergent power
series solution y(x, z) of f = 0) and D −→ kJxK (defined by substituting ẑ(x) for z) such that
the following diagram commutes:

k{x}
ϕ //

��

kJxK

k{x,y}
I

ψ

88

// D := k{x, z}

OO
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We will use and generalize this formulation later (see Theorem 2.26).

2.2. Artin Approximation and the Weierstrass Division Theorem. The proof of The-
orem 2.1 uses essentially only two results: the Weierstrass Division Theorem and the Implicit
Function Theorem. In particular it is straightforward to check that the proof of Theorem 2.1
remains true if we replace k{x, y} by k〈x, y〉, the ring of algebraic power series in x and y, since
this ring satisfies the Weierstrass Division Theorem (cf. [Laf67], see Section 6) and the Implicit
Function Theorem (cf. Lemma 2.29; in fact in general the Weierstrass Division Theorem implies
the Implicit Function Theorem, cf. Lemma 6.4). We state here this very important variant of
Theorem 2.1 (which is in fact valid in any characteristic - see also Remark 2.7 ii):

Theorem 2.16 (Algebraic Artin Approximation Theorem). [Ar69] Let k be a field and
let f(x, y) ∈ k[x, y]p (resp. k〈x, y〉p) be a vector of polynomials (resp. algebraic power series) with
coefficients in k. Assume given a formal power series solution ŷ(x) ∈ kJxKm (resp. vanishing at
0),

f(x, ŷ(x)) = 0.

Then there exists, for any c ∈ N, an algebraic power series solution ỹ(x) ∈ k〈x〉m (resp. vanishing
at 0),

f(x, ỹ(x)) = 0

which coincides with ŷ(x) up to degree c,

ỹ(x) ≡ ŷ(x) modulo (x)c.

In fact in [Ar69] M. Artin gives a more general version of this statement valid for polynomial
equations over a field or an excellent discrete valuation ring R, and proves that the formal
solutions of such equations can be approximated by solutions in the Henselization of the ring of
polynomials over R, in particular in a localization of a finite extension of the ring of polynomials
over R. In the case R = k is a field the Henselization of k[x](x) is the ring of algebraic power
series k〈x〉 (see Lemma 2.29). The proof of the result of M. Artin, when R is an excellent discrete
valuation ring, uses Néron p-desingularization [Né64] (see Section 2.3 for a statement of Néron
p-desingularization). This result is very important since it enables to reduce some algebraic
problems over complete local rings to local rings which are localizations of finitely generated
rings over a field or a discrete valuation ring.

For instance this idea, first used by C. Peskine and L. Szpiro, was exploited by M. Hochster to
reduce problems over complete local rings in characteristic zero to the same problems in positive
characteristic. The idea is the following: let us assume that some statement (T ) is true in positive
characteristic (where we can use the Frobenius map to prove it for instance) and let us assume
that there exists an example showing that (T ) is not true in characteristic zero. In some cases
we can use the Artin Approximation Theorem to show the existence of a counterexample to (T )
in the Henselization at a prime ideal of a finitely generated algebra over a field of characteristic
zero. Since the Henselization is the direct limit of étale extensions, we can show the existence
of a counterexample to (T ) in a local ring A which is the localization of a finitely generated
algebra over a characteristic zero field k. Thus A is defined by a finite number of data and we
may lift this counterexample to a ring which is the localization of a finitely generated ring over
Q, and even over Z[ 1

p1
, . . . , 1

ps
] where the pi are prime integers. Finally we may show that this

counterexample remains a counterexample to (T ) over Z/pZ for all but finitely many primes p
by reducing the problem modulo p (in fact for p 6= pi for 1 ≤ i ≤ s). This is a contradiction
which completes the proof.

This idea was used to prove important results about Intersection Conjectures (in [PeSz73] for
the first time) and Homological Conjectures [Ho74, Ho75] (see [Sc10] 8.6 for more details).
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J. Denef and L. Lipshitz axiomatized the properties a ring needs to satisfy in order to adapt the
proof of the main theorem of [Ar69] due M. Artin. They called such families of rings Weierstrass
Systems. There are two reasons for introducing such rings: the first one is the proof of Theorem
5.18 (i.e., the 1-variable Nested Approximation) and the second one is their use in proofs of
Strong Artin Approximation results via ultraproducts (see Remark 3.29). Previously H. Kurke,
G. Pfister, D. Popescu, M. Roczen and T. Mostowski (cf. [KPPRM78]) introduced the notion
of Weierstrass category which is very similar (see [KP82] for a connection between these two
notions).

Before giving the definition of a Weierstrass System, we need two definitions:

Definition 2.17. Let (A,mA) be a local ring. The completion of A, denoted by Â, is the limit
lim
←−

A
mn

A
. In the case where A is one of the following rings: k[x](x), k〈x〉, k{x} where k is a field,

then Â = kJxK. When A is a field then Â = A since mA = (0).

Definition 2.18. A discrete valuation ring is a Noetherian local domain whose maximal ideal
is principal and different from (0).

The main examples of complete discrete valuation rings are the ring of power series kJxK with
x a single variable and k a field (in this case its maximal ideal is p = (x)), and the ring of p-adic
integers Zp (in this case its maximal ideal is p = (p)).

The rings of algebraic power series k〈x〉 or convergent power series k{x} in one variable x are
Henselian discrete valuation rings.

The rings Z(p), with p prime, and k[x](x), with x one variable, are discrete valuation rings but
they are not Henselian.

Definition 2.19. [DL80] Let k be a field or a discrete valuation ring of maximal ideal p. By
a Weierstrass System of local k-algebras, or a W-system over k, we mean a family of k-algebras
kVx1, . . . , xnW, n ∈ N such that:

i) For n = 0, the k-algebra is k,
For any n ≥ 1, k[x1, . . . , xn](p,x1,...,xn) ⊂ kVx1, . . . , xnW ⊂ k̂Jx1, . . . , xnK
and kVx1, . . . , xn+mW∩ k̂Jx1, . . . , xnK = kVx1, . . . , xnW for m ∈ N. For any permutation
σ of {1, . . . , n}

f ∈ kVx1, . . . , xnW =⇒ f(xσ(1), . . . , xσ(n)) ∈ kVx1, . . . , xnW.

ii) Any element of kVxW, x = (x1, . . . , xn), which is a unit in k̂JxK, is a unit in kVxW.
iii) If f ∈ kVxW and p divides f in k̂JxK then p divides f in kVxW. Here k̂ denotes the

completion of k when k is a discrete valuation ring, i.e., k̂ = lim
←−

k
pn . When k is a field

k̂ = k.
iv) Let f ∈ (p, x)kVxW such that f 6= 0. Suppose that f ∈ (p, x1, . . . , xn−1, x

s
n) but

f /∈ (p, x1, . . . , xn−1, x
s−1
n ). Then for any g ∈ kVxW there exist a unique q ∈ kVxW

and a unique r ∈ kVx1, . . . , xn−1W[xn] with deg xnr < d such that g = qf + r.
v) (if char(k) > 0) If y ∈ (p, x1, . . . , xn)k̂Jx1, . . . , xnKm and f ∈ kVy1, . . . , ymW such that

f 6= 0 and f(y) = 0, there exists g ∈ kVyW irreducible in kVyW such that g(y) = 0
and such that there does not exist any unit u(y) ∈ kVyW with u(y)g(y) =

∑
α∈Nn aαy

pα

(aα ∈ k).
vi) (if char(k/p) 6= 0) Let (k/p)VxW be the image of kVxW under the projection

k̂JxK −→ (k/p)JxK. Then (k/p)VxW satisfies v).
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Proposition 2.20. [DL80] Let us consider a W -system kVxW.
i) For every n ≥, kVx1, . . . , xnW is a Noetherian Henselian regular local ring. In particular

k is a Henselian local ring.
ii) If f ∈ kVx1, . . . , xn, y1, . . . , ymW and g ∈ (p, x)kVx1, . . . , xnWm, f(x, g(x)) ∈ kVxW.
iii) If f ∈ kVxW, then ∂f

∂xi
∈ kVxW.

iv) If kVx1, . . . , xnW is a family of rings satisfying i)-iv) of Definition 2.19 and if all these
rings are excellent, they satisfy v) and vi) of Definition 2.19.

Proof. All these assertions are proven in Remark 1.3 [DL80], except iv).

Proof of iv): let us assume that char(k) = p > 0 and let y ∈ (p, x)k̂JxKm. We denote by I the
kernel of the kVxW-morphism kVx, yW −→ k̂JxK defined by the substitution of y for y and let us
assume that I∩kVyW 6= (0). Since kVxW is excellent, the morphism kVxW −→ k̂JxK is regular (see
Example 7.2). Thus Frac(k̂JxK) is a separable extension of Frac(kVxW) (see Example 7.2), but
Frac

(
kVx,yW
I

)
is a subfield of Frac(k̂JxK), hence Frac(kVxW) −→ Frac

(
kVx,yW
I

)
is separable. This

implies that the field extension Frac(k) −→ Frac
(

kVyW
I∩kVyW

)
is a separable field extension. But if

for every irreducible g ∈ I∩kVyW there existed a unit u(y) ∈ kVyW with u(y)g(y) =
∑
α∈Nn aαy

pα,

the extension Frac(k) −→ Frac
(

kVyW
I∩kVyW

)
would be purely inseparable. This proves that Property

v) of Definition 2.19 is satisfied.
The proof that Property vi) of Definition 2.19 is satisfied is identical. �

Example 2.21. We give here a few examples of Weierstrass systems:
i) If k is a field or a complete discrete valuation ring, the family kJx1, . . . , xnK is a W-system

over k (using Proposition 2.20 iv) since complete local rings are excellent rings).
ii) Let k〈x1, . . . , xn〉 be the Henselization of the localization of k[x1, . . . , xn] at the maximal

ideal (x1, . . . , xn) where k is a field or an excellent discrete valuation ring. Then, for
n ≥ 0, the family k〈x1, . . . , xn〉 is a W-system over k (using Proposition 2.20 iv) since
the Henselization of an excellent local ring is again excellent - see Proposition 8.19).

iii) The family k{x1, . . . , xn} (the ring of convergent power series in n variables over a valued
field k) is a W-system over k.

iv) The family of Gevrey power series in n variables over a valued field k is a W-system
[Br86].

Then we have the following Approximation result (the case of k〈x〉 where k is a field or a
discrete valuation ring is proven in [Ar69], the general case is proven in [DL80] - see also [Rob87]
for a particular case):

Theorem 2.22. [Ar69, DL80] Let kVxW be a W-system over k, where k is a field or a discrete
valuation ring with maximal ideal p. Let f ∈ kVx, yWr and ŷ ∈ (p, x)k̂JxKm satisfy

f(x, ŷ) = 0.

Then, for any c ∈ N, there exists a power series solution ỹ ∈ (p, x)kVxWm,

f(x, ỹ) = 0 such that ỹ − ŷ ∈ (p, x)c.

Moreover let us mention that Theorem 2.10 extends also to Weierstrass systems (see [Ron10b]).

Remark 2.23. Let (mk)k be a logarithmically convex sequence of positive real numbers, i.e.

(15) m0 = 1 and mkmk+2 ≥ m2
k+1 ∀k ∈ N,
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and k = R or C. The set kJxK(mk) is the subset of kJxK defined as follows:

(16) kJxK(mk) =

{∑
α∈Nn

fαx
α ∈ kJxK / ∃C > 0, ∀α, sup

α∈Nn

|fα|
C |α|m|α|

<∞

}
.

By Leibniz’s rule and (15), kJxK(mk) is a subring of kJxK. This ring does not satisfy the Weier-
strass division Theorem but it satisfies Theorem 2.22 and Theorem 2.10 (see [Mo00]). To be
more precise if f and g ∈ kJxK(mk) and f is xn-regular of order d, then for the Weierstrass
division of g by f :

g = fq + r

the series q and r are not in kJxK(mk) in general. Nevertheless if d = ord(f) then q and
r ∈ kJxK(mk) [CC97]. But in the proof of the Artin Approximation Theorem one needs to
divide by a well chosen minor δ(x) that is made xn-regular d by a linear change of coordinates
and d can be chosen such that d = ord(δ(x)) (see Remark 6.8). So the original proof of Artin
adapts also to this case.

2.3. The General Néron Desingularization Theorem. During the 70s and the 80s one of
the main objectives concerning the Artin Approximation Problem was to find necessary and
sufficient conditions for a local ring (A,mA) to have the Artin Approximation Property, i.e.,
such that the set of solutions in Am of any system of algebraic equations (S) in m variables with
coefficients in A is dense for the Krull topology in the set of solutions of (S) in Âm.

Let us recall that the Krull topology on A is the topology induced by the following norm:
|a| := e−ord(a) for all a ∈ A\{0}. The problem was to find a way of proving approximation
results without using the Weierstrass Division Theorem which does not hold for every Henselian
local ring (see Example 2.34).

Remark 2.24. The most important case is when the ring A is Noetherian. So in the following
we only consider this case. But there are also examples of non-Noetherian rings A that satisfy
analogues of the Artin Approximation Property, see [Sc98, M-B07]. See also [To76] for the case
of C∞ real function germs.

Remark 2.25. Let P (y) ∈ A[y] satisfy P (0) ∈ mA and ∂P
∂y (0) /∈ mA. Then, by the Implicit

Function Theorem for complete local rings (see Example 8.16 and Theorem 8.15), P (y) has a
unique root in Â equal to 0 modulo mA. Thus if we want to be able to approximate roots of
P (y) in Â by roots of P (y) in A, a necessary condition is that the root of P (y) constructed by
the Implicit Function Theorem is in A. Thus it is clear that if a local ring A has the Artin
Approximation Property then A has to satisfy the Implicit Function Theorem, in other words
A is necessarily Henselian (see Appendix 8 for a definition of a Henselian ring).

In fact M. Artin conjectured that a sufficient condition would be that A is an excellent
Henselian local ring (see [Ar70, Conjecture (1.3)] or [Ar82] where the result is proven when
A is the ring of convergent power series). The idea emerges soon that in order to prove this
conjecture one should generalize Płoski’s Theorem 2.10 and a theorem of desingularization of A.
Néron [Né64] (see [Ra72, Question 3]). This generalization is the following (for the definitions
and properties of a regular morphism and of an excellent local ring cf. Appendix 7 - for those
concerning smooth and étale morphisms cf. Appendix 8):

Theorem 2.26 (General Néron Desingularization). [Po85, Po86] Let be given ϕ : A −→ B
a regular morphism of Noetherian rings, C a finitely generated A-algebra and ψ : C −→ B a
morphism of A-algebras. Then ψ factors through a finitely generated A-algebra D which is smooth
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over A:
A

ϕ //

��

B

C

ψ
>>

// D

OO

Historically the first version of this theorem has been proven by A. Néron [Né64] under the
assumption that A and B are discrete valuation rings. Then several authors gave proofs of
particular cases (see for instance [Po80, Ar82, Br83b, AD83, AR88, Rot87] - in this last paper
the result is proven in the equicharacteristic zero case) until D. Popescu [Po85, Po86] proved
the general case. Then several authors provided simplified proofs or strengthened this result
[Og94, Sp99, Sw98, StacksProject]. This result is certainly the most difficult to prove among all
the results presented in this paper. We will just give a slight hint of the proof of this result here
because there exist very nice and complete presentations of the proof elsewhere (see [Sw98] or
[StacksProject] for the general case, [Qu97] or [Po00] for the equicharacteristic zero case).

Before explaining the relation with the Artin Approximation Theorem let us give one more
definition. Let (A, I) be the data of a ring A and an ideal I of A. There exists a notion of
Henselian pair for such a couple (A, I) which coincides with the notion of Henselian local ring
when A is a local ring and I is its maximal ideal. One definition is the following: a couple (A, I)
is a Henselian pair if Hensel’s Lemma (with the notation of Proposition 8.18) is satisfied for mA
replaced by the ideal I. The reader may consult [Ra69, Part XI] for details. In what follows the
reader may think about a Henselian pair (A, I) only as a Henselian local ring A whose maximal
ideal is I.

Because A −→ Â is regular when A is an excellent ring (see 7.2), I is an ideal of A and
Â := lim

←−
A
In is the I-adic completion of A, we get the following result:

Theorem 2.27 (General Artin Approximation). Let (A, I) be an excellent Henselian pair
and Â be the I-adic completion of A. Let f(y) ∈ A[y]r and ŷ ∈ Âm satisfy f(ŷ) = 0. Then, for
any c ∈ N, there exists ỹ ∈ Am such that ỹ − ŷ ∈ IcÂ, and f(ỹ) = 0.

Proof. The proof goes as follows: let us set C := A[y]
J where J is the ideal generated by f1, . . . , fr.

The formal solution ŷ ∈ Â defines a A-morphism ϕ̂ : C −→ Â (see Remark 2.15). By Theorem
2.26, since A −→ Â is regular (Example 7.4), there exists a smooth A-algebra D factorizing this
morphism. After a change of variables we may assume that ŷ ∈ mÂ so the morphism C −→ Â

extends to a morphism CmA+(y) −→ Â and this latter morphism factors through Dm where m
is the inverse image of mÂ. The morphism A −→ Dm decomposes as A −→ A[z]mA+(z) −→ Dm

where z = (z1, . . . , zs) and A[z](z) −→ Dm is a local étale morphism [Iv73, Theorem 3.1 III.3].
Let us choose z̃ ∈ As such that z̃−ẑ ∈ mcAÂ

s (ẑ is the image of z in Âs). This defines a morphism
A[z](z) −→ A. Then A −→ Dm

(z1−z̃1,...,zs−z̃s) is local étale and admits a section in A
mc

A
. Since A

is Henselian, this section lifts to a section in A by Proposition 8.12. This section composed
with A[z](z) −→ A defines a A-morphism Dm −→ A, and this latter morphism composed with
C −→ Dm yields a morphism ϕ̃ : C −→ A such that ϕ̃(zi)− ϕ̂(zi) ∈ mcAÂ for 1 ≤ i ≤ m. �

Remark 2.28. Let (A, I) be a Henselian pair and let J be an ideal of A. By applying this result
to the Henselian pair

(
B
J ,

IB
J

)
we can prove the following result (using the notation of Theorem

2.27): if f(ŷ) ∈ JÂ then there exists ỹ ∈ Am such that f(ỹ) ∈ J and ỹ − ŷ ∈ IcÂ.

In fact the General Néron Desingularization Theorem is a result of desingularization which
generalizes Theorem 2.10 to any excellent Henselian local ring as shown in Corollary 2.30 given
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below. In particular it provides a parametrization of a piece of the set f = 0 locally at a given
formal solution. Corollary 2.30 does not appear in the literature but it is useful to understand
Theorem 2.26 when B is the completion of a local domain. Before giving this statement let us
state the following lemma which was first proven by M. Nagata with the extra assumption of
normality [Na62, 44.1]:

Lemma 2.29. If A is an excellent local domain we denote by Ah its Henselization. Then Ah is
exactly the algebraic closure of A in its completion Â. In particular, for an excellent Henselian
local domain A (a field for instance) the ring A〈x〉 of elements of Â[[x]] algebraic over A[x], i.e.,
the ring of algebraic power series with coefficients in A, is the Henselization of the local ring
A[x]mA+(x). Thus A〈x〉 satisfies the Implicit Function Theorem (see Theorem 8.15).

Apparently it is not known if this lemma remains true for excellent local rings which are not
integral domains.

Proof. Indeed A −→ Ah is a filtered limit of algebraic extensions, thus Ah is a subring of the
ring of algebraic elements of Â over A.

On the other hand if f ∈ Â is algebraic over A, then f satisfies an equation

a0f
d + a1f

d−1 + · · ·+ ad = 0

where ai ∈ A for all i. Thus for c large enough there exists f̃ ∈ Ah such that f̃ satisfies the same
polynomial equation and f̃−f ∈ mcA (by Theorem 2.27 and Theorem 8.19). Because ∩cmcA = (0)

and a polynomial equation has a finite number of roots (because Â is a domain - see Proposition
4.1 given in the next chapter), we have f̃ = f for c large enough and f ∈ Ah. �

Then we have the following result that also implies Theorem 2.27 in the same way as Theorem
2.10 implies Theorem 2.1 (see Remark 2.11):

Corollary 2.30. Let A be an excellent Henselian local domain and f(y) ∈ A[y]p where
y = (y1, . . . , ym). Let ŷ ∈ Âm be a solution of f(y) = 0. Then there exist an integer s, a
vector y(z) ∈ A〈z〉 with z = (z1, . . . , zs) and a vector ẑ ∈ Âs such that

f(y(z)) = 0,

ŷ = y(ẑ).

Proof. Let us define C = A[y]/(f). The formal solution ŷ ∈ Âm of the equations f = 0 defines
a A-morphism ψ : C −→ Â such that the following diagram commutes:

A
ϕ //

��

Â

C

ψ

??

Let D be a smooth finitely generated A-algebra given by Theorem 2.26. The A-algebra D has
the form

D = A[z1, . . . , zt]/(g1, . . . , gr)

for some polynomials gi ∈ A[z1, . . . , zt] and new variables z = (z1, . . . , zt). For every j let aj ∈ A
such that the image of zj in Â is equal to aj modulo mA. By replacing zj by zj − aj for every j
we can assume that ψ factors through DmA+(z1,...,zt).
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Since A is an excellent local domain, A[z]mA+(z) is also an excellent local domain and its
Henselization is equal to its algebraic closure in its completion Â[[z]] (see Example 2.29 below).
Thus the Henselization Dh of DmA+(z) is equal to

Dh = A〈z1, . . . , zt〉/(g1, . . . , gr).

But Dh being smooth over A means that the jacobian matrix
(
∂gi
∂zj

)
has maximal rank modulo

mA + (z). Thus by Hensel’s Lemma Dh is isomorphic to A〈z1, . . . , zs〉 for some integer s ≤ t.
Since Â is Henselian, by the universal property of the Henselization ψ factors through Dh, i.e.,
ψ factors through A〈z1, . . . , zs〉:

A
ϕ //

��

Â

C

ψ

==

σ // A〈z〉

τ

OO

where z = (z1, . . . , zs). The morphism τ is completely determined by the images ẑi ∈ Â of the
zi and the morphism σ is uniquely determined by the images yi(z) ∈ A〈z〉 of the yi that are
solution of f = 0. �

Example 2.31. Let A = C{x1, . . . , xn} be the ring of convergent power series in n variables
over C. Let C = A[y1,y2]

(f) where f = y2
1 − y3

2 and let (ŷ1, ŷ2) ∈ Â2 be a solution of f = 0. Since

Â = CJx1, . . . , xnK is a unique factorization domain and ŷ1
2 = ŷ3

2 , ŷ2 divides ŷ1. Let us define
ẑ = ŷ1

ŷ2
. Then we obtain (ŷ1, ŷ2) = (ẑ3, ẑ2).

Conversely any vector of the form (ẑ3, ẑ2), for a power series ẑ ∈ Â, is a solution of f = 0. In
this example the previous corollary is satisfied with s = 1 and y(z) = (z3, z2). Here we remark
that y(z) does not depend on the given formal solution (ŷ1, ŷ2) which is not true in general.

Remark 2.32. In [Rot90], C. Rotthaus proved the converse of Theorem 2.27 in the local case:
if A is a Noetherian local ring that satisfies Theorem 2.27, then A is excellent. In particular
this shows that Weierstrass systems are excellent local rings. Previously this problem had been
studied in [CP81] and [Br83a].

Remark 2.33. Let A be a Noetherian ring and I be an ideal of A. If we assume that
f1(y), . . . , fr(y) ∈ A[y] are linear homogeneous with respect to y, then Theorem 2.27 may be
proven easily in this case since A −→ Â is flat (see Examples 1.3 and 2.12). The proof of this
flatness result uses the Artin-Rees Lemma (see [Mat89, Theorems 8.7 and 8.8]).

Example 2.34. The strength of Theorem 2.27 is that it applies to rings that do not satisfy
the Weierstrass Preparation Theorem and for which the proof of Theorem 2.1 or Theorem 2.22
does not apply. For example Theorem 2.27 applies to the local ring B = A〈x1, . . . , xn〉 where
A is an excellent Henselian local ring (the main example is B = kJtK〈x〉 where t and x are
multivariables). Indeed, this ring is the Henselization of A[x1, . . . , xn]mA+(x1,...,xn). Thus B is
an excellent local ring by Example 7.4 and Proposition 8.19.

This case was the main motivation of D. Popescu for proving Theorem 2.26 (see also [Ar70])
because it implies a nested Artin Approximation result (see Theorem 5.8).

Particular cases of this application had been studied before: see [PP81] for a direct proof that
V Jx1K〈x2〉 satisfies Theorem 2.27, when V is a complete discrete valuation ring, and [BDL83]
for the ring kJx1, x2K〈x3, x4, x5〉.
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Remark 2.35. Let us mention that Theorem 2.26 has other applications than Theorem 2.27 even
if this latter result is our main motivation for presenting the former theorem. For example one
very important application of Theorem 2.27 is the proof of the so-called Bass-Quillen Conjecture
that asserts that any finitely generated projective R[y1, . . . , ym]-module is free when R is a
regular local ring (cf. [Sp99] for instance).

Idea of the proof of Theorem 2.26. The proof of this theorem is quite involved and would re-
quire more machinery than we can present in this paper. The reader interested by the whole
proof should consult [Sw98] or [StacksProject] for the general case, or [Qu97] or [Po00] for the
equicharacteristic zero case.

Let A be a Noetherian ring and C be a A-algebra of finite type, C = A[y1,...,ym]
I with

I = (f1, . . . , fr). We denote by ∆g the ideal of A[y] generated by the h × h minors of the
Jacobian matrix

(
∂gi
∂yj

)
1≤i≤h,1≤j≤m

for g := (g1, . . . , gh) ⊂ I. We define the Jacobian ideal

HC/A :=

√∑
g

∆g((g) : I)C

where the sum runs over all g := (g1, . . . , gh) ⊂ I and h ∈ N. The definition of this ideal may be
a bit scary at first sight. What the reader has to know about this ideal is that it is independent
of the presentation of C and its support is the singular locus of C over A:

Lemma 2.36. For any prime p ∈ Spec(C), Cp is smooth over A if and only if HC/A 6⊂ p.

The following property will be used in the proof of Proposition 2.38:

Lemma 2.37. Let C and C ′ be two A-algebras of finite type and let A −→ C −→ C ′ be two
morphisms of A-algebras. Then

HC′/C ∩
√
HC/AC ′ = HC′/C ∩HC′/A.

The idea of the proof of Theorem 2.26 is the following: if HC/AB 6= B, then we replace C
by a A-algebra of finite type C ′ such that HC/AB is a proper sub-ideal of HC′/AB. Using the
Noetherian assumption, after a finite number of steps we have HC/AB = B. Then we use the
following proposition:

Proposition 2.38. Using the notation of Theorem 2.26, let us assume that we have HC/AB = B.
Then ψ factors as in Theorem 2.26.

Proof of Proposition 2.38. Let (c1, . . . , cs) be a system of generators of HC/A. Then

1 =

s∑
i=1

biψ(ci)

for some bi in B. Let us define

D :=
C[z1, . . . , zs]

(1−
∑s
i=1 cizi)

.

We construct a morphism of C-algebras D −→ B by sending zi onto bi, 1 ≤ i ≤ s. It is
easy to check that Dci is a smooth C-algebra for any i, thus ci ∈ HD/C by Lemma 2.36, and
HC/AD ⊂ HD/C . By Lemma 2.37 used for C ′ = D, since 1 ∈ HC/AD, we see that 1 ∈ HD/A.
By Lemma 2.36, this proves that D is a smooth A-algebra. �

Now to increase the size of HC/AB we use the following proposition:
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Proposition 2.39. Using the notation of Theorem 2.26, let p be a minimal prime ideal of
HC/AB. Then there exists a factorization of ψ : C −→ D −→ B such that D is finitely
generated over A and

√
HC/AB (

√
HD/AB 6⊂ p.

The proof of Proposition 2.39 is done by a decreasing induction on the height of p. Thus
there are two things to prove: first the case where ht(p) = 0 , then the reduction ht(p) = k + 1
to the case ht(p) = k. This last case is quite technical, even in the equicharacteristic zero case
(i.e., when A contains Q, see [Qu97] for a good presentation of this case). In the case where A
does not contain Q there appear more problems due to the existence of inseparable extensions
of residue fields. In this case the André homology is the right tool to handle these problems (see
[Sw98]).

�

3. Strong Artin Approximation

We review here results about the Strong Approximation Property. There are clearly two
different cases: the case where the base ring is a discrete valuation ring (where life is easy!) and
the second case is the general case (where life is less easy).

3.1. Greenberg’s Theorem: the case of a discrete valuation ring. Let V be a Henselian
discrete valuation ring, mV its maximal ideal and K be its field of fractions. Let us denote by V̂
the mV -adic completion of V and by K̂ its field of fractions. If char(K) > 0, let us assume that
K −→ K̂ is a separable field extension (in this case this is equivalent to V being excellent, see
Example 7.2 iii) and Example 7.4 iv)).

Theorem 3.1 (Greenberg’s Theorem). [Gre66] With the above notation and hypotheses, if
f(y) ∈ V [y]r, there exist a, b ≥ 0 such that

∀c ∈ N ∀y ∈ V m such that f(y) ∈ mac+bV

∃ỹ ∈ V m such that f(ỹ) = 0 and ỹ − y ∈ mcV .

Sketch of proof. We will give the proof in the case char(K) = 0. As for the classical Artin
Approximation Theorem this statement depends only on the ideal generated by the components
of f(y). The result is proven by induction on the height of the ideal generated by f1(y), . . . , fr(y).
Let us denote by I this ideal. We will denote by ν the mV -adic order on V :

ν(v) = max{n ∈ N\v ∈ mnV } ∀v ∈ V, v 6= 0

and ν(0) = +∞. This is a valuation by assumption.
Let e be an integer such that

√
I
e ⊂ I. Then f(y) ∈ mecV for all f ∈ I implies that f(y) ∈ mcV

for all f ∈
√
I since V is a valuation ring. So if the theorem is proven for

√
I with the constants

a and b, it is proven for I with the constants ea and eb.
Moreover if

√
I = P1 ∩ · · · ∩ Ps is the prime decomposition of

√
I, then f(y) ∈ mscV for all

f ∈
√
I implies that f(y) ∈ mcV for all f ∈ Pi0 for some i0. So if the theorem is proven for Pi0

with the constants a and b, it is proven for
√
I with the constants sa and sb. This allows us to

replace I by one of its associated primes, namely Pi0 , so we may assume that I is a prime ideal
of V [y].

Let h be the height of I. If h = m+ 1, I is a maximal ideal of V [y] and so it contains some
non-zero element of V denoted by v. Then there is no y ∈ V m such that f(y) ∈ m

ν(v)+1
V for all

f ∈ I. Thus the theorem is true for a = 0 and b = ν(v) + 1 (see Remark 3.6 below).
Let us assume that the theorem is proven for ideals of height h+ 1 and let I be a prime ideal

of height h ≤ m. As in the proof of Theorem 2.1, we may assume that r = h and that a h × h
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minor of the Jacobian matrix of f , denoted by δ, is not in I. Let us define J := I + (δ). Since I
is prime we have ht(J) = h+ 1, so by the inductive hypothesis there exist a, b ≥ 0 such that

∀c ∈ N ∀y ∈ V m such that f(y) ∈ mac+bV ∀f ∈ J
∃ỹ ∈ V m such that f(ỹ) = 0 ∀f ∈ J and ỹj − yj ∈ mcV , 1 ≤ j ≤ m.

Then let c ∈ N and y ∈ V m satisfy f(y) ∈ m
(2a+1)c+2b
V for all f ∈ I. If δ(y) ∈ mac+bV , then

f(y) ∈ mac+bV for all f ∈ J and the result is proven by the inductive hypothesis.
If δ(y) /∈ mac+bV , then fi(y) ∈ (δ(y))2mcV for 1 ≤ i ≤ r. Then the result comes from the

following result. �

Proposition 3.2 (Tougeron Implicit Function Theorem). Let A denote a Henselian local
ring and f(y) ∈ A[y]h, y = (y1, . . . , ym), m ≥ h. Let δ(x, y) be a h × h minor of the Jacobian
matrix ∂(f1,...,fh)

∂(y1,...,ym) . Let us assume that there exists y ∈ Am such that

fi(y) ∈ (δ(y))2mcA for all 1 ≤ i ≤ h
and for some c ∈ N. Then there exists ỹ ∈ Am such that

fi(ỹ) = 0 for all 1 ≤ i ≤ h and ỹ − y ∈ (δ(y))mc
A.

Proof. The proof is completely similar to the proof of Theorem 2.6. �

In fact we can prove the following result whose proof is identical to the proof of Theorem 3.1
and extends Theorem 3.1 to more general equations than polynomial ones:

Theorem 3.3. [Sc80, Sc83] Let V be a complete discrete valuation ring and f(y, z) ∈ V JyK[z]r,
where z := (z1, . . . , zs). Then there exist a, b ≥ 0 such that

∀c ∈ N ∀y ∈ (mV V )m, ∀z ∈ V s such that f(y, z) ∈ mac+bV

∃ỹ ∈ (mV V )m, ∃z̃ ∈ V s such that f(ỹ, z̃) = 0 and ỹ − y, z̃ − z ∈ mcV .

Example 3.4. Let k be some positive integer. Then for any y ∈ V and c ∈ N we have

yk ∈ mkcV =⇒ y ∈ mcV .

Thus for the polynomial f(y) = yk Theorem 3.1 is satisfied by the constants a = k and b = 0.
But let us remark that if yk ∈ m

k(c−1)+1
V we have kν(y) ≥ k(c− 1) + 1 thus ν(y) ≥ c− 1 + 1

k .
But since ν(y) is an integer we have ν(y) ≥ c and y ∈ mcV . Therefore we see here that we can
also choose a = k and b = 1− k which give a smaller bound than the previous one.

Example 3.5. Let us assume that V = CJtK where t is a single variable. Here the valuation ν
is just the t-adic order. Let y1, y2 ∈ V and c ∈ N such that

(17) y2
1 − y3

2 ∈ (t)3c.

If ord(y1) ≥ ord(y2), let us denote by z the power series y1
y2
. Then

y2
1 − y3

2 = (z2 − y2)y2
2 ∈ (t)3c.

Thus
z2 − y2 ∈ (t)c or y2 ∈ (t)c.

In the first case we set

(ỹ1, ỹ2) :=
(
z3, z2

)
=

(
y3

1

y3
2

,
y2

1

y2
2

)
,

in the second case we set
(ỹ1, ỹ2) := (0, 0).



ARTIN APPROXIMATION 143

In both cases we have ỹ2
1 − ỹ3

2 = 0. In the first case

ỹ1 − y1 =

(
y2

1

y2
2

− y2

)
y1

y2
∈ (t)c

and in the second case
ỹ1 − y1 = −y1 ∈ (t)c

since ord(y1) ≥ ord(y2) ≥ c. We also have ỹ2 − y2 ∈ (t)c.
If ord(y1) < ord(y2) we have 3c ≤ ord(y2

1) < ord(y3
2) and we set

(ỹ1, ỹ2) := (0, 0).

Hence
ỹ1 − y1 and ỹ2 − y2 ∈ (t)c.

Thus for the polynomial f(y1, y2) = y2
1 − y3

2 , Theorem 3.1 is satisfied by the constants a = 3 and
b = 0.

Remark 3.6. In the case f(y) has no solution in V we can choose a = 0 and Theorem 3.1
asserts that there exists a constant b such that f(y) has no solution in V

mb
V

.

Remark 3.7. M. Greenberg proved this result in order to study Ci fields. Let us recall that a Ci
field is a field k such that for every integer d every homogeneous form of degree d in more than
di variables with coefficients in k has a non-trivial zero. More precisely M. Greenberg proved
that for a Ci field k, the field of formal power series k((t)) is Ci+1. Previous results about Ci
fields had been previously studied, in particular by S. Lang in [Lan52] where appeared for the
first time a special case of the Artin Approximation Theorem appeared for the first time (see
Theorem 11 and its corollary in [Lan52]).

Remark 3.8. The valuation ν of V defines an ultrametric norm on K (as noticed in Remark
2.3): we define it as ∣∣∣y

z

∣∣∣ := eν(z)−ν(y), ∀y, z ∈ V \{0}.

The norm is ultrametric means that a much stronger version of the triangle inequality holds:

∀y, z ∈ K |y + z| ≤ max{|y|, |z|}.

This norm defines a distance on V m, for any m ∈ N∗, denoted by d(., .) and defined by

d(y, z) := max
1≤k≤m

|yk − zk| .

Then it is well-known that Theorem 3.1 can be reformulated as a Łojasiewicz Inequality (see
[Te12] or [Ron13] for example):

∃a ≥ 1, C > 0 s.t. |f(y)| ≥ Cd(f−1(0), y)a ∀y ∈ V m.

This kind of Łojasiewicz Inequality is well-known for complex or real analytic functions and
Theorem 3.1 can be seen as a generalization of this Łojasiewicz Inequality for algebraic or analytic
functions defined over V . If V = kJtK where k is a field, there are very few known results about
the geometry of algebraic varieties defined over V . It is a general problem to extend classical
results of differential or analytic geometry over R or C to this setting. See for instance [BH10]
(extension of the Rank Theorem), [Reg06] (extension of the Curve Selection Lemma), [Hic05]
(concerning the extension of local metric properties of analytic sets or functions) for some results
in this direction.
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Definition 3.9 (Greenberg’s Function). For any c ∈ N, let us denote by β(c) the smallest
integer such that:
for all y ∈ V m with f(y) ∈ (x)β(c), there exists ỹ ∈ V m with f(ỹ) = 0 and ỹ − y ∈ (x)c.

Greenberg’s Theorem asserts that such a function β : N −→ N exists and is bounded by a
linear function. We call this function β the Greenberg’s function of f .

We can remark that the Greenberg’s function is an invariant of the integral closure of the
ideal generated by f1, . . . , fr:

Lemma 3.10. Let us consider f(y) ∈ V [y]r and g(y) ∈ V [y]q. Let us denote by βf and βg their
Greenberg’s functions. Let I (resp. J) be the ideal of V [y] generated by f1(y), . . . , fr(y) (resp.
g1(y), . . . , gq(y)). If I = J then βf = βg.

Proof. Let I be an ideal of V and y ∈ V m. We remark that

f1(y), . . . , fr(y) ∈ I ⇐⇒ g(y) ∈ I ∀g ∈ I.
Then by replacing I by (0) and mcV , for all c ∈ N, we see that βf depends only on I (see also
Remark 2.4).

Now, for any c ∈ N, we have:

g(y) ∈ mcV ∀g ∈ I ⇐⇒ ν(g(y)) ≥ c ∀g ∈ I

⇐⇒ ν(g(y)) ≥ c ∀g ∈ I
⇐⇒ g(y) ∈ mcV ∀g ∈ I.

Indeed if g ∈ I then we have

gd + a1g
d−1 + · · ·+ ad−1g + ad = 0

for some d ≥ 1 and ai ∈ Ii. If ν(ai(y)) ≥ ic for every i we have that ν(g(y)) ≥ c. This proves
the implication

ν(g(y)) ≥ c ∀g ∈ I =⇒ ν(g(y)) ≥ c ∀g ∈ I.
Thus βf depends only on I. �

In general, it is a difficult problem to compute the Greenberg’s function of an ideal I. It is
even a difficult problem to bound this function in general. If we analyze carefully the proof of
Greenberg’s Theorem, using classical effective results in commutative algebra, we can prove the
following result:

Theorem 3.11. [Ron10a] Let k be a characteristic zero field and V := kJtK where t is a single
variable. Then there exists a function

N2 −→ N
(m, d) 7−→ a(m, d)

which is a polynomial function in d whose degree is exponential in m, such that for any vector
f(y) ∈ k[t, y]r of polynomials of total degree ≤ d with y = (y1, . . . , ym), the Greenberg’s function
of f is bounded by c 7−→ a(m, d)(c+ 1).

Moreover let us remark that, in the proof of Theorem 3.1, we proved a particular case of the
following inequality:

βI(c) ≤ 2βJ(c) + c, ∀c ∈ N
where J is the Jacobian ideal of I (for a precise definition of the Jacobian ideal in general and a
general proof of this inequality let see [Elk73]). The coefficient 2 comes from the use of Tougeron
Implicit Function Theorem. We can sharpen this bound in the following particular case:
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Theorem 3.12. [Hic93] Let k be an algebraically closed field of characteristic zero and V := kJtK
where t is a single variable. Let f(y) ∈ V JyK be one power series. Let us denote by J the ideal
of V JyK generated by f(y), ∂f

∂t (y), ∂f
∂y1

(y), . . . , ∂f
∂ym

(y), and let us denote by βf the Greenberg’s
function of (f) and by βJ the Greenberg’s function of J . Then

βf (c) ≤ βJ(c) + c ∀c ∈ N.

This bound may be used to find sharp bounds of some Greenberg’s functions (see Remark
3.14).

On the other hand we can describe the behaviour of β in the following case:

Theorem 3.13. [De84][DL99] Let V be Zp or a Henselian discrete valuation ring whose residue
field is an algebraically closed field of characteristic zero. Let us denote by mV the maximal ideal
of V . Let β denote the Artin function of f(y) ∈ V [y]r. Then there exists a finite partition of N
in congruence classes such that on each such class the function c 7−→ β(c) is linear for c large
enough.

Hints on the proof in the case the residue field has characteristic zero. Let us consider the fol-
lowing first order language with three sorts:

1) the field (K := Frac(V ),+,×, 0, 1)
2) the group (Z,+, <,≡d (∀d ∈ N∗), 0) (≡d is the relation a ≡d b if and only if a − b is

divisible by d for a, b ∈ Z)
3) the residue field (k := Frac

(
V
mV

)
,+,×, 0, 1)

with both following functions:
a) ν : K −→ Z∗
b) ac : K −→ k (“angular component”)

The function ν is the valuation of the valuation ring V . The function ac may be characterized
by axioms, but here let us just give an example: let us assume that V = kJtK. Then ac is defined
by ac(0) = 0 and ac

(∑∞
n=n0

ant
n
)

= an0
if an0

6= 0.
The second sort (Z,+, <,≡d, 0) admits elimination of quantifiers ([Pr29]) and the elimination

of quantifiers of (k,+,×, 0, 1) is a classical result of Chevalley since k is algebraically closed. J.
Pas proved that the three sorted language admits elimination of quantifiers [Pas89]. This means
that any subset of Kn1 × Zn2 × kn3 defined by a first order formula in this three sorts language
(i.e., a logical formula involving 0, 1, +, × (but not a × b where a and b are integers), (, ), =,
<, ∧, ∨, ¬, ∀, ∃, ν, ac, and variables for elements of K, Z and k may be defined by a formula
involving the same symbols except ∀, ∃.

Then we notice that β is defined by the following formula:

[∀c ∈ N ∀y ∈ Km (ν(f(y)) ≥ β(c)) ∧ (ν(y) ≥ 0) ∃ỹ ∈ Km (f(ỹ) = 0 ∧ ν(ỹ − y) ≥ c)]

∧ [∀c ∈ N ∃y ∈ Km (ν(f(y)) ≥ β(c) + 1) ∧ (ν(y) ≥ 0)

¬∃ỹ ∈ Km (f(ỹ) = 0 ∧ ν(ỹ − y) ≥ c)]
Applying the latter elimination of quantifiers result we see that β(c) may be defined without ∀
and ∃. Thus β(c) is defined by a formula using +, <, ≡d (for a finite set of integers d). This
proves the result.

The case where V = Zp requires more work since the residue field of Zp is not algebraically
closed, but the idea is the same. �

Remark 3.14. When V = C{t}, t being a single variable, it is tempting to link together the
Greenberg’s function of a system of equations with coefficients in C, or even in V , and some
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geometric invariants of the germ of the complex set defined by this system of equations. This
has been done in several cases:

i) In [Eli89], a bound (involving the multiplicity and the Milnor number) of the Greenberg’s
function is given when the system of equations defines the germ of a curve in (Cm, 0).

ii) Using Theorem 3.12 M. Hickel gives the following bound of the Greenberg’s function
β of the germ of a complex hypersurface with an isolated singularity (cf. [Hic93]):
β(c) ≤ bλcc+ c for all c ∈ N, and this bound is sharp for plane curves. Here λ denotes
the Łojasiewicz exponent of the germ, i.e.

λ := inf {θ ∈ R / ∃C > 0 ∃U neighborhood of 0 in Cm,

|f(z)|+
∣∣∣∣ ∂f∂z1

(z)

∣∣∣∣+ · · ·+
∣∣∣∣ ∂f∂zm (z)

∣∣∣∣ ≥ C|z|θ ∀z ∈ U} .
iii) [Hic04] gives the complete computation of the Greenberg’s function of one branch of

plane curve and proves that it is a topological invariant. This computation has been
done for two branches in [Sa12]. Some particular cases depending on the Newton polygon
of the plane curve singularity are computed in [Wa78].

iv) In the case where V is the ring of p-adic integers and the variety defined by f(y) = 0
is non-degenerate with respect to its Newton polyhedron, D. Bollaerts [Bol90] gives a
bound on the infimum of numbers a such that Theorem 3.1 is satisfied for some constant
b. This bound is defined in terms of the Newton polyhedra of the components of f .

Finally we mention the following recent result that extends Theorem 3.1 to non-Noetherian
valuation rings and whose proof is based on ultraproducts methods used in [BDLvdD79] to prove
Theorem 3.1 (see Section 3.3):

Theorem 3.15. [M-B11] Let V be a Henselian valuation ring and ν : V −→ Γ its associated
valuation. Let us denote by V̂ its mV -adic completion, K := Frac(V ) and K̂ := Frac(V̂ ). Let
us assume that K −→ K̂ is a separable field extension. Then for any f(y) ∈ V [y]r there exist
a ∈ N, b ∈ Γ+ such that

∀c ∈ Γ ∀y ∈ V m (ν(f(y)) ≥ ac+ b) =⇒ ∃ỹ ∈ V m (f(ỹ) = 0 ∧ ν(ỹ − y) ≥ c) .

3.2. Strong Artin Approximation: the general case. In the general case (when V is not
a valuation ring) there still exists an approximation function β analogous to the Greenberg’s
function. The analogue of Greenberg’s Theorem in the general case is the following:

Theorem 3.16 (Strong Artin Approximation Theorem). [PP75, Po86] Let A be a
complete local ring whose maximal ideal is denoted by mA. Let f(y, z) ∈ AJyK[z]r, with z :=
(z1, . . . , zs). Then there exists a function β : N −→ N such that the following holds:
For any c ∈ N and any y ∈ (mA.A)m, z ∈ As such that f(y, z) ∈ m

β(c)
A , there exist ỹ ∈ (mA.A)m

and z̃ ∈ As such that f(ỹ, z̃) = 0 and ỹ − y, z̃ − z ∈ mcA.

Remark 3.17. This theorem can be extended to the case where A is an excellent Henselian
local ring by using Theorem 2.27.

Let us also mention that there exists a version of this theorem for analytic equations [Wa75]
or Weierstrass systems [DL80].

In the case of polynomial equations over a field, the approximation function β may be chosen
to depend only on the degree of the equations and the number of variables:

Theorem 3.18. [Ar69, BDLvdD79] For all n,m, d ∈ N, there exists a function βn,m,d : N −→ N
such that the following holds:
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Let k be a field and set x := (x1, . . . , xn) and y := (y1, . . . , ym). Then for all f(x, y) ∈ k[x, y]r

of total degree ≤ d, for all c ∈ N, for all y(x) ∈ kJxKm such that

f(x, y(x)) ∈ (x)βn,m,d(c),

there exists ỹ(x) ∈ kJxKm such that f(ỹ(x)) = 0 and ỹ(x)− y(x) ∈ (x)c.

Remark 3.19. By following the proof of Theorem 3.18 given in [Ar69], D. Lascar proved that
there exists a recursive function β that satisfies the conclusion of Theorem 3.18 [Las78]. But the
proof of Theorem 3.18 uses a double induction on the height of the ideal (like in Theorem 3.1)
and on n (like in Theorem 2.1).

In particular, in order to apply the Jacobian Criterion, we need to work with prime ideals
(at least radical ideals), and replace the original ideal I generated by f1, . . . , fr by one of its
associated primes and then make a reduction to the case of n − 1 variables. But the bounds
on the degree of the generators of such an associated prime may be very large compared to the
degree of the generators of I. This is essentially the reason why the proof of this theorem does
not give much more information about the quality of β than Lascar’s result.

Example 3.20. [Sp94] Set f(x1, x2, y1, y2) := x1y
2
1 − (x1 + x2)y2

2 . Let
√

1 + t = 1 +
∑
n≥1

ant
n ∈ QJtK

be the unique power series such that (
√

1 + t)2 = 1 + t and whose value at the origin is 1. For
every c ∈ N we set y(c)

2 (x) := xc1 and y(c)
1 (x) := xc1 +

∑c
n=1 anx

c−n
1 xn2 . Then

f(x1, x2, y
(c)
1 (x), y

(c)
2 (x)) ∈ (x2)c.

On the other side, the equation f(x1, x2, y1(x), y2(x)) = 0 has no other solution

(y1(x), y2(x)) ∈ QJxK2

but (0, 0). This proves that Theorem 3.16 is not valid for general Henselian pairs because
(QJx1, x2K, (x2)) is a Henselian pair.

Let us notice that L. Moret-Bailly proved that if a pair (A, I) satisfies Theorem 3.16, then
A has to be an excellent Henselian local ring [M-B07]. On the other hand A. More proved that
a pair (A, I), where A is an equicharacteristic excellent regular Henselian local ring, satisfies
Theorem 3.16 if and only if I is m-primary [Mo13].

It is still an open question to know under which conditions on I the pair (A, I) satisfies
Theorem 3.16 when A is a general excellent Henselian local ring.

Remark 3.21. As for Theorem 3.1, Theorem 3.16 implies that, if f(y) has no solution in A,
there exists a constant c such that f(y) has no solution in A

mc
A
.

Definition 3.22. Let f be as in Theorem 3.16. The least function β that satisfies Theorem
3.16 is called the Artin function of f .

Remark 3.23. When f is a vector of polynomials of A[y] for some complete local ring A, then
we can consider the Artin function of f seen as a vector of formal power series in y (i.e., we
restrict to approximate solutions vanishing at 0) or we can consider the Artin function of f
seen as a vector of polynomials (i.e., we consider every approximate solution, not only the ones
vanishing at 0). The two may not be equal in general even if the first one is bounded by the
second one (exercise!). We hope that there will be no ambiguity in the rest of the text.

Remark 3.24. As before, the Artin function of f depends only on the integral closure of the
ideal I generated by f1, . . . , fr (see Lemma 3.10).
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Remark 3.25. (See also Remark 3.26 just below.) Let f(y) ∈ A[y]r and y ∈ (mA)m satisfy
f(y) ∈ mcA and let us assume that A −→ B :=

A[y]mA+(y)

(f(y)) is a smooth morphism. This morphism
is local thus it factors as A −→ C := A[z]mA+(z) −→ B such that C −→ B is étale (see Definition
8.5) and z := (z1, . . . , zs). We remark that y defines a morphism of A-algebras ϕ : B −→ A

mc
A
.

Let us choose any z̃ ∈ As such that zi − z̃i ∈ mcA for all 1 ≤ i ≤ s (zi denotes the image of zi in
A
mc

A
). Then A −→ B

(z1−z̃1,...,zs−z̃) is étale and admits a section in A
mc

A
. By Proposition 8.12 this

section lifts to a section in A. Thus we have a section B −→ A equal to ϕ modulo mcA.
This proves that β(c) = c when A −→ A[y]mA+(y)

(f(y)) is smooth.

On the other hand, we can prove that if β is the identity function then A −→ A[y]mA+(y)

(f(y))

is smooth [Hic93]. This shows that the Artin function of f may be seen as a measure of the
non-smoothness of the morphism A −→ A[y]mA+(y)

(f) .

Remark 3.26. For the convenience of some readers we can express the previous remark in the
setting of convergent power series equations. The proof is the same but the language is a bit
different:
Let f(x, y) ∈ k{x, y}m be a vector of convergent power series in two sets of variables x and y
where y = (y1, . . . , ym). Let us assume that f(0, 0) = 0 and

∂(f1, . . . , fm)

∂(y1, . . . , ym)
(0, 0) is invertible.

Let y(x) ∈ kJxKm be a vector of formal power series vanishing at the origin such that

f(x, y(x)) ∈ (x)c

for some integer c. We can write
y(x) = y0(x) + y1(x)

where y0(x) is a vector of polynomials of degree < c and y1(x) is a vector of formal power series
whose components have order equal at least to c. We set

g(x, z) := f(x, y0(x) + z)

for new variables z = (z1, . . . , zm). Then g(0, 0) = 0 and

∂(g1, . . . , gm)

∂(z1, . . . , zm)
(0, 0) =

∂(f1, . . . , fm)

∂(y1, . . . , ym)
(0, 0) is invertible.

By the Implicit Function Theorem for convergent power series, there exists a unique vector of
convergent power series z(x) vanishing at the origin such that

g(x, z(x)) = 0.

Since

g(x, z(x)) = g(x, 0) +
∂(g1, . . . , gm)

∂(z1, . . . , zm)
(0, 0) · z(x) + ε(x),

where the components of ε(x) are linear combinations of products of the components of z(x),
we have

ord(zi(x)) = ord(gi(x, 0)) ∀i.
Moreover

g(x, 0) = f(x, y0(x)) = f(x, y(x)) modulo (x)c,

thus z(x) ∈ (x)c. Thus ỹ(x) := y0(x) + z(x) is a solution of f(x, y) = 0 with

ỹ(x)− y(x) ∈ (x)c.
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This shows that the Artin function of f(x, y) is the identity function.

3.3. Ultraproducts and Strong Approximation type results. Historically, M. Artin proved
Theorem 3.18 in [Ar69] by a modification of the proof of Theorem 2.1, i.e., by induction on n
using the Weierstrass Division Theorem. Roughly speaking it is a concatenation of his proof
of Theorem 2.1 and of the proof of Greenberg’s Theorem 3.1. Then several authors provided
proofs of generalizations of his result using the same kind of proof but this was not always easy,
in particular when the base field is not a characteristic zero field (for example there is a gap in
the inseparable case of [PP75]).

On the other hand, in 1970 A. Robinson gave a new proof of Greenberg’s Theorem [Rob70]
based on the use of ultraproducts. Then ultraproducts methods have been successfully used to
give more direct proofs of this kind of Strong Approximation type results (see [BDLvdD79] and
[DL80]; see also [Po79] for the general case), even if the authors of these works seemed unaware
of the work of A. Robinson. The general principle is the following: ultraproducts transform
approximate solutions into exact solutions of a given system of polynomial equations defined over
a complete local ring A. So they are a tool to reduce Strong Artin Approximation Problems
to Artin Approximation Problems. But these new exact solutions are not living anymore in
the given base ring A but in bigger rings that also satisfy Theorem 2.27. In the case where
the equations are not polynomial but analytic or formal, this reduction based on ultraproducts
transforms the given equations into equations belonging to a different Weierstrass System (see
Definition 2.19 and Theorem 2.22) which is a first justification to the introduction the Weierstrass
Systems. We will present here the main ideas.

Let us start with some terminology. A filter D (over N) is a non-empty subset of P(N), the
set of subsets of N, that satisfies the following properties:

a) ∅ /∈ D, b) E , F ∈ D =⇒ E ∩ F ∈ D, c) E ∈ D, E ⊂ F =⇒ F ∈ D.

A filter D is principal if D = {F / E ⊂ F} for some non empty subset E of N. An ultrafilter
is a filter which is maximal for the inclusion. It is easy to check that a filter D is an ultrafilter
if and only if for any subset E of N, D contains E or its complement N − E . In the same way
an ultrafilter is non-principal if and only if it contains the filter E := {E ⊂ N / N− E is finite}.
Zorn’s Lemma yields the existence of non-principal ultrafilters.

Let A be a Noetherian ring. Let D be a non-principal ultrafilter. We define the ultrapower
(or ultraproduct) of A as follows:

A∗ :=
{(ai)i∈N ∈

∏
iA}

((ai) ∼ (bi) iff {i / ai = bi} ∈ D)
.

The ring structure of A induces a ring structure on A∗ and the map A −→ A∗ that sends a onto
the class of (a)i∈N is a ring morphism.

We have the following fundamental result that shows that several properties of A are also
satisfied by A∗:

Theorem 3.27 (Łoś Theorem). [CK73] Let L be a first order language, let A be a structure
for L and let D be an ultrafilter over N. Then for any (ai)i∈N ∈ A∗ and for any first order
formula ϕ(x), ϕ((ai)) is true in A∗ if and only if

{i ∈ N / ϕ(ai) is true in A} ∈ D.

Roughly speaking this statement means that any logical sentence involving the special el-
ements and the operations of the language L (for instance 0, 1,+ and × for the language of
commutative rings) along with (, ), =, ∧, ∨, ¬, ∀, ∃, and variables for the elements of the
structure is true in A if and only if it is true in A∗.
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In particular we can deduce the following properties:
The ultrapower A∗ is equipped with a structure of a commutative ring. If A is a field then A∗ is
a field. If A is an algebraically closed field then A∗ is an algebraically closed field. If A∗ is a local
ring with maximal ideal mA then A∗ is a local ring with maximal ideal m∗A defined by (ai)i ∈ m∗A
if and only if {i / ai ∈ mA} ∈ D. If A is a local Henselian ring, then A∗ is a local Henselian ring.
In fact all these properties are elementary and can be checked directly by hand without the help
of Theorem 3.27. Elementary proofs of these results can be found in [BDLvdD79].

Nevertheless if A is Noetherian, then A∗ is not Noetherian in general, since Noetherianity is
a condition on ideals of A and not on elements of A. For example, if A is a Noetherian local
ring, then m∗∞ :=

⋂
n≥0 m

∗
A
n 6= (0) in general. But we have the following lemma:

Lemma 3.28. [Po00] Let (A,mA) be a Noetherian complete local ring. Let us denote A1 := A∗

m∗∞
.

Then A1 is a Noetherian complete local ring of the same dimension as A and the composition
A −→ A∗ −→ A1 is flat.

In fact, since A is excellent and mAA1 is the maximal ideal of A1, it is not difficult to prove
that A −→ A1 is even a regular morphism. Details can be found in [Po00].

Let us sketch the idea of the use of ultraproducts to prove the existence of an approximation
function in the case of Theorem 3.16:

Sketch of the proof of Theorem 3.16. Let us assume that some system of algebraic equations
over an excellent Henselian local ring A, denoted by f = 0, does not satisfy Theorem 3.16.
Using Theorem 2.27, we may assume that A is complete. Thus it means that there exists an
integer c0 ∈ N and, for every c ∈ N, there exists y(c) ∈ Am such that f(y(c)) ∈ mcA and there is
no ỹ(c) ∈ Am solution of f = 0 with ỹ(c) − y(c) ∈ mc0A .

Let us denote by y the image of (y(c))c in (A∗)m. Since f(y) ∈ A[y]r, we may assume that
f(y) ∈ A∗[y]r using the morphism A −→ A∗. Then f(y) ∈ m∗∞. Thus f(y) = 0 in A1. Let us
choose c > c0. Since A −→ A1 is regular, A is Henselian and excellent (because A is complete),
we can copy the proof of Theorem 2.27 to show that for any c ∈ N there exists ỹ ∈ Am such that
f(ỹ) = 0 and ỹ− y ∈ mcAA1. Thus ỹ− y ∈ mcAA

∗. Hence the set {i ∈ N / ỹ− y(i) ∈ mcAA
∗} ∈ D

is non-empty. This is a contradiction. �

Remark 3.29. If, instead of working with polynomial equations over a general excellent Henselian
local ring, we work with a more explicit subring of kJx, yK satisfying the Implicit Function Theo-
rem and the Weierstrass Division Theorem (like the rings of algebraic or convergent power series)
the use of ultraproducts enables us to reduce the problem of the existence of an approximation
function to a problem of approximation of formal solutions of a system of equations by solutions
in a Weierstrass System (see [DL80]). This is also true in the case of constraints.

We can also prove easily the following proposition with the help of ultraproducts (see also
Theorem 1.13 of Example 1.12 in the introduction):

Proposition 3.30. [BDLvdD79] Let f(x, y) ∈ C[x, y]r. For any 1 ≤ i ≤ m let Ji be a subset of
{1, . . . , n}.
Let us assume that for every c ∈ N there exist y(c)

i (x) ∈ C[xj , j ∈ Ji], 1 ≤ i ≤ m, such that

f(x, y(c)(x)) ∈ (x)c.

Then there exist ỹi(x) ∈ CJxj , j ∈ JiK, 1 ≤ i ≤ m, such that f(x, ỹ(x)) = 0.

Proof. Let us denote by y ∈ C[x]∗ the image of (y(c))c. Then f(x, y) = 0 modulo (x)∗∞. It
is not very difficult to check that C[x]∗

(x)∗∞
' C∗JxK as C∗[x]-algebras. Moreover C∗ ' C as k-

algebras (where k is the subfield of C generated by the coefficients of f). Indeed both are field of
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transcendence degree over Q equal to the cardinality of the continuum, so their transcendence
degree over k is also the cardinality of the continuum. Since both are algebraically closed they
are isomorphic over k. Then the image of y by the isomorphism yields the desired solution in
CJxK. �

Let us remark that the proof of this result remains valid if we replace C by any uncountable
algebraically closed field K. If we replace C by Q, this result is no more true in general (see
Example 5.25).

Remark 3.31. Several authors proved “uniform” Strong Artin approximation results, i.e., they
proved the existence of a function β satisfying Theorem 3.16 for a parametrized family of equa-
tions (fλ(y, z))λ∈Λ which satisfy tameness properties that we do not describe here (essentially
this condition is that the coefficients of fλ(y, z) depend analytically on the parameter λ). The
main example is Theorem 3.18 that asserts that the Artin functions of polynomials in n + m
variables of degree less than d are uniformly bounded. There are also two types of proof for
these kind of “uniform” Strong Artin approximation results: the ones using ultraproducts (see
Theorems 8.2 and 8.4 of [DL80] where uniform Strong Artin approximation results are proven
for families of polynomials whose coefficients depend analytically on some parameters) and the
ones using the scheme of proof due to Artin (see [ETo96] where more or less the same results as
those of [BDLvdD79] and [DL80] are proven).

3.4. Effective examples of Artin functions. In general the proofs of Strong Artin Approx-
imation results do not give much information about the Artin functions. Indeed there are two
kinds of proofs: the proofs based on ultraproducts methods use a proof by contradiction and
are not effective, and the proofs based on the classical argument of Greenberg and Artin are not
direct and require too many steps (see also Remark 3.19). In fact this latter kind of proof gives
uniform versions the Strong Artin Approximation Theorem (as Theorem 3.18) which is a more
general result. Thus this kind of proof is not optimal to bound effectively a given Artin function.
The problem of finding estimates of Artin functions was first raised in [Ar70] and only a very
few general results are known (the only ones in the case of Greenberg’s Theorem are Theorems
3.12, 3.13 and Remark 3.14, and Remark 3.19 in the general case). We present here a list of
examples of equations for which we can bound the Artin function.

3.4.1. The Artin-Rees Lemma. The following result has been known for long by the specialists
without appearing in the literature and has been communicated to the author by M. Hickel:

Theorem 3.32. [Ron06a] Let f(y) ∈ A[y]r be a vector of linear homogeneous polynomials with
coefficients in a Noetherian ring A. Let I be an ideal of A. Then there exists a constant c0 ≥ 0
such that:

∀c ∈ N ∀y ∈ Am such that f(y) ∈ Ic+c0

∃ỹ ∈ Am such that f(ỹ) = 0 and ỹ − y ∈ Ic.

This theorem asserts that the Artin function of f is bounded by the function c 7−→ c + c0.
Moreover let us remark that this theorem is valid for any Noetherian ring and any ideal I of
A. This can be compared with the fact that, for linear equations, Theorem 2.27 is true for any
Noetherian ring A and that the Henselian condition is unnecessary in this situation (see Remark
2.33).

Proof. For convenience, let us assume that there is only one linear polynomial:

f(y) = a1y1 + · · ·+ amym.
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Let us denote by I the ideal of A generated by a1, . . . , am. The Artin-Rees Lemma implies that
there exists c0 > 0 such that I ∩ Ic+c0 ⊂ I.Ic for any c ≥ 0.

If y ∈ Am is such that f(y) ∈ Ic+c0 and since f(y) ∈ I, there exists ε ∈ (IcA)m such that
f(y) = f(ε). If we define ỹi := yi − εi, for 1 ≤ i ≤ m, we have the result. �

We have the following result whose proof is similar:

Proposition 3.33. Let (A,mA) be an excellent Henselian local ring, I an ideal of A generated
by a1, . . . , aq and f(y) ∈ A[y]r. Set

Fi(y, z) := fi(y) + a1zi,1 + · · ·+ aqzi,q ∈ A[y, z], 1 ≤ i ≤ r
where the zi,k are new variables and let F (y, z) be the vector whose coordinates are the Fi(y, z).
Let us denote by β the Artin function of f(y) seen as a vector of polynomials of AI [y] and γ the
Artin function of F (y, z) ∈ A[y, z]r. Then there exists a constant c0 such that:

β(c) ≤ γ(c) ≤ β(c+ c0), ∀c ∈ N.

Proof. Let y ∈ A
I

m satisfy f(y) ∈ m
γ(c)
A

A
I

r. Then there exists z ∈ Aqr such that F (y, z) ∈ m
γ(c)
A

(we denote again by y a lifting of y in Am). Thus there exist ỹ ∈ Am and z̃ ∈ Aqr such that
F (ỹ, z̃) = 0 and ỹ − y, z̃ − z ∈ mcA. Thus f(ỹ) = 0 in A

I

r.
On the other hand, let c0 be a constant such that I ∩ mc+c0A ⊂ I.mcA for all c ∈ N (such

constant exists by Artin-Rees Lemma). Let y ∈ Am, z ∈ Aqr satisfy F (y, z) ∈ m
β(c+c0)
A . Then

f(y) ∈ m
β(c+c0)
A + I. Thus there exists ỹ ∈ Am such that f(ỹ) ∈ I and ỹ − y ∈ mc+c0A . Thus

F (ỹ, z) ∈ mc+c0A ∩ I. Then we conclude by following the proof of Theorem 3.32. �

Remark 3.34. By Theorem 2.27, in order to study the behaviour of the Artin function of some
ideal we may assume that A is a complete local ring. Let us assume that A is an equicharacteristic
local ring. Then A is the quotient of a power series ring over a field by Cohen Structure Theorem
[Mat89]. Thus Proposition 3.33 enables us to reduce the problem to the case A = kJx1, . . . , xnK
where k is a field.

3.4.2. Izumi’s Theorem and Diophantine Approximation. Let (A,mA) be a Noetherian local ring.
We denote by ν the mA-adic order on A, i.e.

ν(x) := max{n ∈ N / x ∈ mnA} for any x 6= 0.

We always have ν(x)+ν(y) ≤ ν(xy) for all x, y ∈ A. But we do not have the equality in general.
For instance, if A := CJx,yK

(x2−y3) then ν(x) = ν(y) = 1 but ν(x2) = ν(y3) = 3. Nevertheless we have
the following theorem:

Theorem 3.35 (Izumi’s Theorem). [Iz85, Re89] Let A be a local Noetherian ring whose
maximal ideal is denoted by mA. Let us assume that A is analytically irreducible, i.e., Â is
irreducible. Then there exist b ≥ 1 and d ≥ 0 such that

∀x, y ∈ A, ν(xy) ≤ b(ν(x) + ν(y)) + d.

This result implies easily the following corollary using Proposition 3.33:

Corollary 3.36. [Iz95, Ron06a] Let us consider the polynomial

f(y) := y1y2 + a3y3 + · · ·+ amym,

with a3, . . . , am ∈ A where (A,mA) is a Noetherian local ring such that A
(a3,...,am) is analytically

irreducible. Then there exist b′ ≥ 1 and d′ ≥ 0 such that the Artin function β of f satisfies
β(c) ≤ b′c+ d′ for all c ∈ N.
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Proof. By Proposition 3.33 we have to prove that the Artin function of y1y2 ∈ A[y] is bounded
by a linear function if A is analytically irreducible. Thus let y1, y2 ∈ A satisfy y1y2 ∈ m2bc+d

A

where b and d satisfy Theorem 3.35. This means that

2bc+ d ≤ ν(y1y2) ≤ b(ν(y1) + ν(y2)) + d.

Thus ν(y1) ≥ c or ν(y2) ≥ c. In the first case we define ỹ1 = 0 and ỹ2 = y2, and in the second
case we define ỹ1 = y1 and ỹ2 = 0. Then ỹ1ỹ2 = 0 and ỹ1 − y1, ỹ2 − y2 ∈ mcA. �

Idea of the proof of Theorem 3.35 in the complex analytic case: Let ν denote the local reduced
order of A:

∀x ∈ A, ν(x) = lim
n

ν(xn)

n
.

By a theorem of D. Rees [Re56] there exists a constant d ≥ 0 such that

∀x ∈ A, ν(x) ≤ ν(x) ≤ ν(x) + d.

According to the theory of Rees valuations, there exist discrete valuations ν1, . . . , νk such that
ν(x) = min{ν1(x), . . . , νk(x)} (they are called the Rees valuations of mA - see [HS06]). The
valuation rings associated to ν1, . . . , νk are the valuation rings associated to the irreducible
components of the exceptional divisor of the normalized blowup of mA.

Since νi(xy) = νi(x) + νi(y) for any i, in order to prove the theorem we have to show that
there exists a constant a ≥ 1 such that

∀x ∈ A,∀i, j, νi(x) ≤ aνj(x).

Indeed let x, y ∈ A and assume that ν(x) = νi1(x), ν(y) = νi2(y) and

min
i
{νi(x) + νi(y)} = νi0(x) + νi0(y).

Then we would that

ν(xy) ≤ ν(xy) = min
i
{νi(xy)} = min

i
{νi(x) + νi(y)} = νi0(x) + νi0(y)

≤ aνi1(x) + aνi2(y) = a(ν(x) + ν(y)) ≤ a(ν(x) + ν(y)) + 2ad.

If A is a complex analytic local ring, following S. Izumi’s proof, we may reduce the problem
to the case dim(A) = 2 by using a Bertini type theorem. Then we consider a resolution of
singularities of Spec(A) (denoted by π) that factors through the normalized blow-up of mA. In
this case let us denote by E1, . . . , Es the irreducible components of the exceptional divisor of π
and set ei,j := Ei.Ej for all 1 ≤ i, j ≤ s. Since π factors through the normalized blow-up of mA,
the Rees valuations νi are valuations associated to some of the Ei, let us say to E1, . . . , Ek. By
extension we denote by νi the valuation associated to Ei for any i.

Let x be an element of A. This element defines the germ of an analytic hypersurface whose
total transform Tx may be written Tx = Sx +

∑s
j=1mjEj where Sx is the strict transform of

{x = 0} and mi = νi(x), 1 ≤ i ≤ s. Then we have

0 = Tx.Ei = Sx.Ei +

s∑
j=1

mjei,j .

Since Sx.Ei ≥ 0 for any i, the vector (m1, . . . ,ms) is contained in the closed convex cone C
defined by mi ≥ 0, 1 ≤ i ≤ s, and

∑s
j=1 ei,jmj ≤ 0, 1 ≤ i ≤ s. This cone C is called the Lipman

cone of Spec(A) and it is well-known that it has a minimal element m̃ [Ar66] (i.e., ∀m ∈ C,
m̃i ≤ mi for all 1 ≤ i ≤ s). Thus to prove the theorem, it is enough to prove that C is included
in {m / mi > 0, 1 ≤ i ≤ s}, i.e., every component of m̃ is positive. Let assume that it is not
the case. Then, after renumbering the Ei, we may assume that (m1, . . . ,ml, 0, . . . , 0) ∈ C where
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mi > 0, 1 ≤ i ≤ l < s. Since ei,j ≥ 0 for all i 6= j,
∑s
j=1 ei,jmj = 0 for l < i ≤ s implies that

ei,j = 0 for all l < i ≤ s and 1 ≤ j ≤ l. This contradicts the fact that the exceptional divisor of
π is connected (since A is an integral domain). �

Let us mention that Izumi’s Theorem is the key ingredient in proving the following analogue
of Liouville’s theorem on diophantine approximation:

Corollary 3.37. [Ron06b, Hic08, II08, HII09] Let (A,mA) be an excellent Henselian local do-
main. Let us denote respectively by K and K̂ the fraction fields of A and Â. Let z ∈ K̂\K be
algebraic over K. Then

∃a ≥ 1, C ≥ 0,∀x ∈ A ∀y ∈ A\{0},
∣∣∣∣z − x

y

∣∣∣∣ ≥ C|y|a
where |u| := e−ν(u) and ν is the usual mA-adic valuation.

This result is equivalent to the following:

Corollary 3.38. [Ron06b, Hic08, II08, HII09] Let (A,mA) be an excellent Henselian local do-
main and let f1(y1, y2), . . . , fr(y1, y2) ∈ A[y1, y2] be homogeneous polynomials. Then the Artin
function of (f1, . . . , fr) is bounded by a linear function.

3.4.3. Reduction to one quadratic equation and examples. In general Artin functions are not
bounded by linear functions as in Theorem 3.1. Here is such an example:

Example 3.39. [Ron05b] Set f(y1, y2, y3) := y2
1 − y2

2y3 ∈ kJx1, x2K[y1, y2, y3] where k is a field
of characteristic zero. Let us denote by h(T ) :=

∑∞
i=1 aiT

i ∈ QJT K the power series such that
(1 + h(T ))2 = 1 + T . Let us define for every integer c:

y
(c)
1 := x2c+2

1

(
1 +

c+1∑
i=1

ai
xci2
x2i

1

)
= x2c+2

1 +

c+1∑
i=1

aix
2(c−i+1)
1 xci2 ,

y
(c)
2 := x2c+1

1 ,

y
(c)
3 := x2

1 + xc2.

Then in the ring k(x2

x1
)Jx1K we have

f(y
(c)
1 , y

(c)
2 , y

(c)
3 ) =

(y(c)
1

y
(c)
2

)2

− y(c)
3

 y
(c)
2

2
=

(y(c)
1

y
(c)
2

)2

− x2
1

(
1 +

xc2
x2

1

) y
(c)
2

2

=

(
y

(c)
1

y
(c)
2

− x1

(
1 + h

(
xc2
x2

1

)))(
y

(c)
1

y
(c)
2

+ x1

(
1 + h

(
xc2
x2

1

)))
y

(c)
2

2
.

Thus we see that f(y
(c)
1 , y

(c)
2 , y

(c)
3 ) ∈ (x)c

2+4c for all c ≥ 2. On the other hand, for any

(ỹ1, ỹ2, ỹ3) ∈ kJx1, x2K3

solution of f = 0, we have the following two cases:

1) Either ỹ3 is a square in kJx1, x2K. But supz∈kJxK(ord(y
(c)
3 − z2)) = c.

2) Either ỹ3 is not a square, hence ỹ1 = ỹ2 = 0 since ỹ2
1 − ỹ2

2 ỹ3 = 0. But we have
ord(y

(c)
1 )− 1 = ord(y

(c)
2 ) = 2c+ 1.



ARTIN APPROXIMATION 155

Hence, in any case, we have

sup
(ỹ1,ỹ2,ỹ3)

(min{ord(y
(c)
1 − ỹ1), ord(y

(c)
2 − ỹ2), ord(y

(c)
3 − ỹ3)}) ≤ 2c+ 1,

where (ỹ1, ỹ2, ỹ3) runs over all the solutions of f = 0. This proves that the Artin function f is
bounded from below by a polynomial function of degree 2. Thus Theorem 3.1 does not extend
to kJx1, . . . , xnK if n ≥ 2.

In [Ron06a] another example is given: the Artin function of the polynomial

y1y2 − y3y4 ∈ kJx1, x2, x3K[y1, y2, y3, y4]

is bounded from below by a polynomial function of degree 2. Both examples are the only known
examples of Artin functions which are not bounded by a linear function.

We can remark that both examples are given by binomial equations (and the key fact to study
these examples is that the ring of formal power series is a UFD). In the binomial case we can
find upper bounds of the Artin functions as follows:

Theorem 3.40. [Ron10a, Ron13] Let k be an algebraically closed field of characteristic zero.
Let I be an ideal of kJx1, x2K[y]. If I is generated by binomials of k[y] or if Spec(kJx1, x2K[y]/I)
has an isolated singularity then the Artin function of I is bounded by a function which is doubly
exponential, i.e., a function of the form c 7−→ aa

c

for some constant a > 1.

Moreover the Artin function of I is bounded by a linear function if the approximate solutions
are not too close to the singular locus of I [Ron13]. We do not know if this doubly exponential
bound is sharp since there is no known example of Artin function whose growth is greater than
a polynomial function of degree 2.

In general, in order to investigate bounds on the growth of Artin functions, we can reduce
the problem as follows, using a trick from [Ron10b]. Let us recall that we may assume that
A = kJx1, . . . , xnK where k is a field (see Remark 3.34).

Lemma 3.41. [Be77b] Let A = kJx1, . . . , xnK where k is a field. For any f(y) ∈ A[y]r or AJyKr
the Artin function of f is bounded by the Artin function of

g(y) := f1(y)2 + x1

(
f2(y)2 + x1(f3(y)2 + · · · )2

)2
.

Proof. Indeed, if β is the Artin function of g and if f(ŷ) ∈ m
β(c)
A then g(ŷ) ∈ m

β(c)
A . Thus there

exists ỹ ∈ Am such that g(ỹ) = 0 and ỹi − ŷi ∈ mcA. But since x1 is not a square in A we have
that g(ỹ) = 0 if and only if f(ỹ) = 0. This proves the lemma. �

This allows us to assume that r = 1 and we define f(y) := f1(y). If f(y) is not irreducible,
then we may write f = h1 . . . hs, where hi ∈ AJyK is irreducible for 1 ≤ i ≤ s, and the Artin
function of f is bounded by the sum of the Artin functions of the hi. Hence we may assume
that f(y) is irreducible.

We have the following lemma:

Lemma 3.42. For any f(y) ∈ AJyK, where A is a complete local ring, the Artin function of
f(y) is bounded by the Artin function of the polynomial

P (u, x, z) := f(y)u+ x1z1 + · · ·+ xmzm ∈ B[x, z, u]

where B := AJyK.
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Proof. Let us assume that f(y) ∈ m
β(c)
A where β is the Artin function of P and yi ∈ mA for

every i.
Then, by Lemma 5.1, there exist zi(y) ∈ AJyK, 1 ≤ i ≤ m, such that

f(y) +

m∑
i=1

(yi − yi)zi(y) ∈ (mA + (y))β(c).

Thus there exist u(y), fi(y), zi(y) ∈ AJyK, 1 ≤ i ≤ m, such that

u(y)− 1, zi(y)− zi(y), xi(y)− (yi − yi) ∈ (mA + (y))c, 1 ≤ i ≤ n

and f(y)u(y) +

m∑
i=1

xi(y)zi(y) = 0.

In particular u(y) is invertible in AJyK if c > 0. Let us assume that c ≥ 2. In this case the
determinant of the matrix of the partial derivatives of (xi(y), 1 ≤ i ≤ m) with respect to
y1, . . . , ym is equal to 1 modulo mA + (y), since yi ∈ mA for every i. By Hensel’s Lemma there
exist yj,c ∈ mA such that xi(y1,c, . . . , ym,c) = 0 for 1 ≤ i ≤ m. Hence, since u(yi,c) is invertible,
f(y1,c, . . . , ym,c) = 0 and yi,c − yi ∈ mcA, 1 ≤ i ≤ m. �

Thus, by Proposition 3.33, in order to study the general growth of Artin functions, it is enough
to study the Artin function of the polynomial

y1y2 + y3y4 + · · ·+ y2m+1y2m ∈ A[y]

where A is a complete local ring.

4. Examples of Applications

Artin approximation Theorems have numerous applications in commutative algebra, local
analytic geometry, algebraic geometry, analysis. Most of these applications require extra ma-
terial that is too long to be presented here so we choose to present only basic applications to
commutative algebra of Theorem 2.27 and Theorem 3.16.

Proposition 4.1. Let A be an excellent Henselian local ring. Then A is reduced (resp. is an
integral domain, resp. an integrally closed domain) if and only if Â is reduced (resp. is an
integral domain, resp. an integrally closed domain).

Proof. First of all it is clear that A is reduced (resp. is an integral domain) if Â is reduced (resp.
is an integral domain). Thus for these two properties we only need to prove the converse.

If Â is not reduced, then there exists ŷ ∈ Â, ŷ 6= 0, such that ŷk = 0 for some positive integer
k. Thus we apply Theorem 2.27 to the polynomial yk with c ≥ ord(ŷ) + 1 in order to find ỹ ∈ A
such that ỹk = 0 and ỹ 6= 0. So A is not reduced.

In order to prove that Â is an integral domain if A is an integral domain, we apply the same
procedure to the polynomial y1y2.

Now if Â is an integrally closed domain and f/g ∈ Frac(A) is integral over A, then f/g is
integral over Â and so is in Â. Thus there is ĥ ∈ Â such that f = gĥ. By Theorem 2.27 applied
to the equation f − gy = 0 we see that there is h ∈ A such that f = gh so f/g ∈ A. This shows
that A is integrally closed.

If A is an integrally closed domain, then A is an integral domain. Let

P (z) := zd + â1z
d−1 + · · ·+ âd ∈ Â[z], f̂ , ĝ ∈ Â, ĝ 6= 0

satisfy P
(
f̂
ĝ

)
= 0, i.e., f̂d + â1f̂

d−1ĝ + · · · + âdĝ
d = 0. By Theorem 2.27, for any c ∈ N, there

exist ãi,c, f̃c, g̃c ∈ A such that f̃dc + ã1,cf̃
d−1
c g̃c+ · · ·+ ãd,cg̃

d
c = 0 and f̃c− f̂ , g̃c− ĝ ∈ mcAÂ. Then
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for c > c0, where c0 = ord(ĝ), we have g̃c 6= 0. Since A is an integrally closed domain, f̃c ∈ (g̃c)

for c > c0. Thus f̂ ∈ (ĝ) + mc for every c large enough. By Nakayama Lemma this implies that
f̂ ∈ (ĝ) and Â is integrally closed. �

Proposition 4.2. [KPPRM78, Po86] Let A be an excellent Henselian local domain. Then A is
a unique factorization domain if and only if Â is a unique factorization domain.

Proof. If Â is a unique factorization domain, then any irreducible element of Â is prime. Now let
a ∈ A be an irreducible element of A. By applying Theorem 2.27 to the polynomial P := a−y1y2

we see that a remains irreducible in Â (indeed if a is not irreducible in Â then P has a solution
(ŷ1, ŷ2) where the ŷi are in mÂ - so Theorem 2.27 shows that P has a solution (ỹ1, ỹ2) where the
ỹi ∈ m contradicting the fact that a is irreducible). So a is prime in Â, thus it is prime in A.
Since A is a Noetherian integral domain, this proves that A is a unique factorization domain.

Let us assume that Â is not a unique factorization domain (but it is Noetherian since A
is Noetherian). Thus there exists an irreducible element x̂1 ∈ Â that is not prime. This is
equivalent to the following assertion:

∃x̂2, x̂3, x̂4 ∈ Â such that x̂1x̂2 − x̂3x̂4 = 0

6 ∃ẑ1 ∈ Â such that x̂1ẑ1 − x̂3 = 0

6 ∃ẑ2 ∈ Â such that x̂2ẑ2 − x̂4 = 0

and 6 ∃ŷ1, ŷ2 ∈ mAÂ such that ŷ1ŷ2 − x̂1 = 0.

Let us denote by β the Artin function of

f(y, z) := (x̂1z1 − x̂3)(x̂2z2 − x̂4)(y1y2 − x̂1) ∈ ÂJyK[z].

Since f(y, z) has no solution in (mAÂ)2 × Â2, by Remark 3.21 β is a constant, and f(y, z) has
no solution in (mAÂ)2 × Â2 modulo mβA.

On the other hand, by Theorem 2.27 applied to x1x2 − x3x4, there exists x̃i ∈ A, 1 ≤ i ≤ 4,
such that x̃1x̃2 − x̃3x̃4 = 0 and x̃i − x̂i ∈ mβ+1

A , 1 ≤ i ≤ 4. Hence

g(y, z) := (x̃1z1 − x̃3)(x̃2z2 − x̃4)(y1y2 − x̃1) ∈ ÂJyK[z]

has no solution in (mAÂ)2× Â2 modulo mβA, hence has no solution in (mAA)2×A2. This means
that x̃1 is an irreducible element of A but it is not prime. Hence A is not a unique factorization
domain. �

Proposition 4.3. Let A be an excellent Henselian local ring. Let Q be a primary ideal of A.
Then QÂ is a primary ideal of Â.

Proof. Let f̂ ∈ Â and ĝ ∈ Â\
√
QÂ satisfy f̂ ĝ ∈ QÂ. By Theorem 2.27, for any integer c ∈ N,

there exist f̃c, g̃c ∈ A such that f̃cg̃c ∈ Q and f̃c − f̂ , g̃c − ĝ ∈ mcA. For all c large enough,
g̃c /∈

√
Q. Since Q is a primary ideal, this proves that f̃c ∈ Q for c large enough, hence f̂ ∈ QÂ.

�

Corollary 4.4. Let A be an excellent Henselian local ring. Let I be an ideal of A and let
I = Q1 ∩ · · · ∩Qs be a primary decomposition of I in A. Then

Q1Â ∩ · · · ∩QsÂ
is a primary decomposition of IÂ.

Proof. Since I = ∩si=1Qi, IÂ = ∩si=1(QiÂ) by faithful flatness (or by Theorem 2.27 for linear
equations). We conclude with the help of Proposition 4.3. �
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Corollary 4.5. Let A be an excellent Henselian unique factorization local domain and let f ∈ A.
If ĝ ∈ Â divides f in Â then there exists a unit û ∈ Â such that ûĝ ∈ A.

Proof. By Proposition 4.2 the ring Â is a unique factorization domain. Since ĝ is a product of
irreducible divisors of f in Â it is enough to prove the corollary when ĝ is an irreducible divisor
of f in Â. Moreover the ideal

√
fA is a radical ideal of A, thus it generates a radical ideal of

Â by Proposition 4.1. So we can replace f by a generator of
√
fA and assume that f is square

free.
So the ideal generated by ĝ is a primary component of fÂ and by Corollary 4.4 it is generated

by a primary component of fA. This means that ĝÂ = PÂ where P is a primary component of
fA (in fact a prime ideal associated to fA since f is square free). But the height of P is one
and P is prime, so P is a principal ideal since A is a unique factorization domain. Let g ∈ A be
a generator of P . Then ĝÂ = gÂ so there exists a unit û ∈ Â such that ûĝ = g ∈ A. �

The following result is a generalization of this corollary to integrally closed domains:

Corollary 4.6. [Iz92] Let A be an excellent Henselian integrally closed local domain. If f̂ ∈ Â
and if there exists ĝ ∈ Â such that f̂ ĝ ∈ A\{0}, then there exists a unit û ∈ Â such that ûf̂ ∈ A.

Proof. Let (f̂ ĝ)A = Q1∩· · ·∩Qs be a primary decomposition of the principal ideal of A generated
by f̂ ĝ. Since A is an integrally closed domain, it is a Krull ring and Qi = p

(ni)
i for some prime

ideal pi, 1 ≤ i ≤ s, where p(n) denote the n-th symbolic power of p (see [Mat89, p.88]). In fact
ni := νpi

(f̂ ĝ) where νpi
is the pi-adic valuation of the valuation ring Api

. By Corollary 4.4,
p

(n1)
1 Â ∩ · · · ∩ p

(ns)
s Â is a primary decomposition of (f̂ ĝ)Â. Since νpi are valuations we have

f̂ Â = p
(k1)
1 Â ∩ · · · ∩ p(ks)

s Â =
(
p

(k1)
1 ∩ · · · ∩ p(ks)

s

)
Â

for some non negative integers k1, . . . , ks. Let h1, . . . , hr ∈ A be generators of the ideal

p
(k1)
1 ∩ · · · ∩ p

(ks)
s . Then f̂ =

r∑
i=1

âihi and hi = b̂if̂ for some âi, b̂i ∈ A, 1 ≤ i ≤ r. Thus

r∑
i=1

âib̂i = 1, since Â is an integral domain. Thus one of the b̂i is invertible and we choose û to

be this invertible b̂i. �

Corollary 4.7. [To72] Let A be an excellent Henselian local domain. For f(y) ∈ A[y]r let I
be the ideal of A[y] generated by f1(y), . . . , fr(y). Let us assume that ht(I) = m. Let ŷ ∈ Âm
satisfy f(ŷ) = 0. Then ŷ ∈ Am.

Proof. Set p := (y1 − ŷ1, . . . , ym − ŷm). It is a prime ideal of Â[y] and ht(p) = m. Of course
IÂ ⊂ p and ht(IÂ) = m by Corollary 4.4. Thus p is of the form p′Â where p′ is minimal prime
of I. Then ŷ ∈ Âm is the only common zero of all the elements of p′. By Theorem 2.27, ŷ can
be approximated by a common zero of all the elements of p′ which is in Am. By uniqueness of
such a common zero, we have that ŷ ∈ Am. �

5. Approximation with constraints

We will now discuss the problem of the Artin Approximation with constraints. By constraints
we mean that some of the components of the power series solutions do not depend on all the
variables xi but only on some of them (as in Examples 1.14 or 1.15 of the introduction). In fact
there are two different problems: one is the existence of convergent or algebraic solutions with
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constraints under the assumption that there exist formal solutions with the same constraints -
the second one is the existence of formal solutions with constraints under the assumption that
there exist approximate solutions with the same constraints. We can describe more precisely
these two problems as follows:

Problem 1 (Artin Approximation with constraints):
Let A be an excellent Henselian local subring of kJx1, . . . , xnK and f(y) ∈ A[y]r. Let us assume
that we have a formal solution ŷ ∈ Âm of f = 0 and assume moreover that

ŷi(x) ∈ Â ∩ kJxj , j ∈ JiK
for some subset Ji ⊂ {1, . . . , n}, 1 ≤ i ≤ m.

Is it possible to approximate ŷ(x) by a solution ỹ(x) ∈ Am of f = 0 such that

ỹi(x) ∈ A ∩ kJxj , j ∈ JiK, 1 ≤ i ≤ m?

The second problem is the following one:

Problem 2 (Strong Artin Approximation with constraints):
Let us consider f(y) ∈ kJxK[y]r and Ji ⊂ {1, . . . , n}, 1 ≤ i ≤ m. Is there a function β : N −→ N
such that:
for all c ∈ N and all yi(x) ∈ kJxj , j ∈ JiK, 1 ≤ i ≤ m, such that

f(y(x)) ∈ (x)β(c),

there exist ỹi(x) ∈ kJxj , j ∈ JiK such that f(ỹ(x)) = 0 and ỹi(x)− yi(x) ∈ (x)c, 1 ≤ i ≤ m?

If such a function β exists, the smallest function satisfying this property is called the Artin
function of the system f = 0.

Let us remark that we have already given a positive answer to a similar weaker problem (see
Proposition 3.30).

In general, there are counterexamples to both problems stated in such a generality. But for
some particular cases these two problems have a positive answer. We present here some positive
and negative known results concerning these problems. We will see that some systems yield a
positive answer to one problem but a negative answer to the other one.

5.1. Examples. First of all we give here a list of examples that show that there is no hope, in
general, to have a positive answer to Problem 1 without any more specific hypothesis, even if A
is the ring of algebraic or convergent power series. These examples are constructed by looking
at the Artin Approximation Problem for equations involving differentials (Examples 5.3 and
5.6) and operators on germs of functions (Examples 5.4 and 5.5). To construct these examples,
the following lemma will be used repeatedly (most of the time when A and B are complete,
B = AJyK and I = (0)):

Lemma 5.1. [Be77a] Let (A,mA) be a Noetherian local ring and let B be a Noetherian local
subring of AJyK such that B̂ = ÂJyK. Let I be an ideal of A such that IB ∩ A = I. For any
P (y) ∈ B and ỹ ∈ Am whose components are in mA, P (ỹ) ∈ I if and only if there exists
h(y) ∈ Bm such that

P (y) +

m∑
i=1

(yi − ỹi)hi(y) ∈ IB.
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Proof of Lemma 5.1. By Taylor expansion, we have:

P (y)− P (ỹ) =
∑

α∈Nm\{0}

1

α1! . . . αm!
(y1 − ỹ1)α1 . . . . (ym − ỹm)αm

∂αP (ỹ)

∂yα
.

So if P (ỹ) ∈ IB there exists h(y) ∈ ÂJyKm such that

P (y) +

m∑
i=1

(yi − ỹi)hi(y) ∈ IB.

Since B −→ B̂ = ÂJxK is faithfully flat we may assume that h(y) ∈ Bm (See Example 1.4). This
proves the necessary condition.

On the other hand if P (y) +
∑m
i=1(yi − ỹi)hi(y) ∈ IB, by substitution of yi by ỹi, we get

P (ỹ) ∈ IB ∩A = I. �

Example 5.2. Let us consider P (x, y, z) ∈ kJx, y, zK where k is a field and x, y and z are single
variables and ŷ ∈ (x)kJxK. Then P (x, ŷ, ∂ŷ∂x ) = 0 if and only if there is a formal power series ẑ
such that P (x, ŷ, ẑ) = 0 and ẑ − ∂ŷ

∂x = 0.
We can remark that ∂ŷ

∂x (x) is the coefficient of t in the Taylor expansion of

ŷ(x+ t)− ŷ(x).

So the equation ẑ − ∂ŷ
∂x = 0 is equivalent to the existence of a formal power series ĥ(x, t) such

that
ŷ(x+ t)− ŷ(x) = tẑ(x) + t2ĥ(x, t).

By Lemma 5.1 this is equivalent to the existence of a formal power series k̂(x, t, u) ∈ kJx, t, uK
such that

ŷ(u)− ŷ(x)− tẑ(x)− t2ĥ(x, t) + (u− x− t)k̂(x, t, u) = 0.

We remark that we may even assume that ĥ depends on the three variables x, t and u: even in
this case the previous equation implies that ẑ = ∂ŷ

∂x .
Now we introduce a new power series ĝ(u) such that ĝ(u) = ŷ(u). This equality is equivalent

to the existence of a formal power series l̂(x, u) such that

ĝ(u)− ŷ(x)− (u− x)l̂(x, u) = 0.

Once more we can even assume that l̂ depends on x, u and t.
Finally we see that

P

(
x, ŷ(x),

∂ŷ

∂x
(x)

)
= 0⇐⇒

∃ẑ(x) ∈ kJxK, ĥ(x, t, u), k̂(x, t, u), l̂(x, t, u) ∈ kJx, t, uK, ĝ(u) ∈ kJuK s.t.
P (x, ŷ(x), ẑ(x)) = 0

ĝ(u)− ŷ(x)− tẑ(x)− t2ĥ(x, t, u) + (u− x− t)k̂(x, t, u) = 0

ĝ(u)− ŷ(x) + (u− x)l̂(x, t, u) = 0

Assuming that the characteristic of the base field k is zero, Lemma 5.1 and Example 5.2
enable us to transform any system of equations involving partial differentials and compositions
of power series into a system of algebraic equations whose solutions depend only on some of
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the xi. Indeed we can also perform the same trick as in Example 5.2 to handle higher order
derivatives of g since 1

n!
∂ng
∂xn is the coefficient of tn in the Taylor expansion of

ŷ(x+ t)− ŷ(x).

Thus every equation of the form

P (x, y, y′, . . . , y(n)) = 0

has a formal power series solution ŷ(x) if and only if there exist formal power series

ẑ1(x), . . . , ẑn(x) ∈ kJxK, ĥ(x, t, u), k̂(x, t, u), l̂(x, t, u) ∈ kJx, t, uK, ĝ(u) ∈ kJuK

such that
P (x, ŷ(x), ẑ1(x), . . . , ẑn(x)) = 0

ĝ(u)− ŷ(x)− tẑ1(x)− · · · − tn ẑn(x)

n!
− tn+1ĥ(x, t, u) + (u− x− t)k̂(x, t, u) = 0

ĝ(u)− ŷ(x) + (u− x)l̂(x, t, u) = 0

We can also apply the same trick for differential equations involving power series in several
variables (see for instance Example 5.26).

Let us remark that these transformations preserve the approximate solutions, i.e., every ap-
proximate solution up to degree c of a system of equations involving partial differentials and
compositions of power series provides an approximate solution up to degree c of this system of
algebraic equations whose solutions depend only on some of the xi.

Of course there exist plenty of examples of such systems of equations with algebraic or analytic
coefficients that do not have algebraic or analytic solutions but only formal solutions. These kinds
of examples will enable us to construct counterexamples to Problem 1 as follows:

Example 5.3. Let us consider the following differential equation: y′ = y. The solutions of
this equation are the convergent but not algebraic power series cex ∈ C{x} where c is a complex
number.

On the other hand, by Example 5.2, ŷ(x) is a convergent power series solution of this equation
if and only if there exist

ŷ(x), ẑ(x) ∈ C{x}, ĝ(u) ∈ C{u} and ĥ(x, t, u), k̂(x, t, u), l̂(x, t, u) ∈ C{x, t, u}
such that: 

ẑ(x)− ŷ(x) = 0

ĝ(u)− ŷ(x)− tẑ(x)− t2ĥ(x, t, u) + (u− x− t)k̂(x, t, u) = 0

ĝ(u)− ŷ(x) + (u− x)l̂(x, t, u) = 0

Thus the former system of equations has a nonzero convergent solution

(ŷ, ẑ, ĝ, ĥ, k̂, l̂) ∈ C{x}2 × C{u} × C{x, t, u}3,
but no nonzero algebraic solution in C〈x〉2 × C〈u〉 × C〈x, t, u〉3.

Example 5.4 (Kashiwara-Gabber Example). [Hir77, p. 75] Let us perform the division
of xy by

g := (x− y2)(y − x2) = xy − x3 − y3 + x2y2

as formal power series in C{x, y} with respect to the monomial xy (see Example 1.14 in the
introduction). The remainder of this division can be written as a sum r(x) + s(y) where
r(x) ∈ (x)C{x} and s(y) ∈ (y)C{y} since this remainder has no monomial divisible by xy.
By symmetry, we get r(x) = s(x), and by substituting y by x2 we get the Mahler equation:
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r(x2) + r(x)− x3 = 0.

This relation yields the expansion

r(x) =

∞∑
i=0

(−1)ix3.2i

and shows that the remainder of the division is not algebraic since the gaps in the expansion
of an algebraic power series over a characteristic zero field are bounded. This proves that the
equation

xy − gQ(x, y)−R(x)− S(y) = 0

has a convergent solution (q̂(x, y), r̂(x), ŝ(y)) ∈ C{x, y} × C{x} × C{y} but has no algebraic
solution (q(x, y), r(x), s(y)) ∈ C〈x, y〉 × C〈x〉 × C〈y〉.

Example 5.5 (Becker Example). [Be77b] By a direct computation we can show that there
exists a unique power series f(x) ∈ CJxK such that f(x + x2) = 2f(x) − x and that this power
series is not convergent. But, by Lemma 5.1, we have:

f(x+ x2)− 2f(x) + x = 0

⇐⇒ ∃g(y) ∈ CJyK, h(x, y), k(x, y) ∈ CJx, yK s.t.{
F1 := g(y)− 2f(x) + x+ (y − x− x2)h(x, y) = 0

F2 := g(y)− f(x) + (x− y)k(x, y) = 0.

Then this system of equations has solutions in CJxK × CJyK × CJx, yK2 but no solution in
C〈x〉 × C〈y〉 × C〈x, y〉2, even no solution in C{x} × C{y} × C{x, y}2.

Example 5.6. Set ŷ(x) :=
∑
n≥0

n!xn+1 ∈ CJxK. This power series is divergent and we have

shown in Example 1.16 that it is the only solution of the equation

x2y′ − y + x = 0 (Euler Equation).

By Example 5.2, ŷ(x) is a solution of this differential equation if and only if there exist ŷ(x),
ẑ(x) ∈ C{x}, ĝ(u) ∈ C{u} and ĥ(x, t, u), k̂(x, t, u), l̂(x, t, u) ∈ C{x, t, u} such that:

x̂2z(x)− ŷ(x) + x = 0

ĝ(u)− ŷ(x)− tẑ(x)− t2ĥ(x, t, u) + (u− x− t)k̂(x, t, u) = 0

ĝ(u)− ŷ(x) + (u− x)l̂(x, t, u) = 0

with ŷ1(x1) := ŷ(x1). Thus this system has no solution in

C{x}2 × C{u} × C{x, t, u}3

but it has solutions in
CJxK2 × CJuK× CJx, t, uK3.

Remark 5.7. By replacing f1(y), . . . , fr(y) by

g(y) := f1(y)2 + x1(f2(y)2 + x1(f3(y)2 + · · · )2)2

in these examples as in the proof of Lemma 3.41, we can construct the same kind of examples
involving only one equation. Indeed f1 = f2 = · · · = fr = 0 if and only if g = 0.
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5.2. Nested Approximation in the algebraic case. All the examples of Section 5.1 involve
components that depend on separate variables. Indeed Example 5.2 shows that in general equa-
tions involving partial derivatives yield algebraic equations whose solutions have components
with separate variables.

In the case the variables are nested (i.e., yi = yi(x1, . . . , xs(i)) for some integer i, which is
equivalent to saying that Ji contains or is contained in Jj for any i and j with the notation of
Problems 1 and 2), it is not possible to construct a counterexample based on differential equations
as we did in Section 5.1. In fact in this nested case, for polynomial equations, algebraic power
series solutions are dense in the set of formal power series solution. Moreover we will see, still
in the nested case, that this is no longer true in the analytic case.

First of all in the algebraic case we have the following result:

Theorem 5.8 (Nested Approximation Theorem). [KPPRM78, Po86]
Let (A,mA) be an excellent Henselian local ring and f(x, y) ∈ A〈x, y〉r. Let ŷ(x) be a solution

of f = 0 in (mA + (x))ÂJxKm. Let us assume that ŷi ∈ ÂJx1, . . . , xsiK, 1 ≤ i ≤ m, for integers
si, 1 ≤ si ≤ n (we say that ŷ(x) satisfies a nested condition).

Then, for any c ∈ N, there exists a solution ỹ(x) ∈ A〈x〉m such that for all i,

ỹi(x) ∈ A〈x1, . . . , xsi〉 and ỹ(x)− ŷ(x) ∈ (mA + (x))c.

This result has a lot of applications and is one of the most important results about Artin
Approximation. Its proof is based on General Néron desingularization, more precisely it uses
the fact that the rings AJx1, . . . , xiK〈xi+1, . . . , xn〉 satisfy Theorem 2.27 (see Remark 2.34). The
proof we present here is based on a characterization of the ring of algebraic power series over
a ring of formal power series (see Lemma 5.9) and is different from the classical one even if it
is based on the key fact that the rings AJx1, . . . , xiK〈xi+1, . . . , xn〉 satisfy Theorem 2.27 for any
excellent Henselian local ring B.

We note that before the work of D. Popescu [Po86] this result was already known in the
case where A = k is a field and the integers si equal 1 or n (see [BDLvdD79, Theorem 4.1]
where the result is attributed to M. Artin) and whose proof is based on the fact that the ring
kJx1K〈x2, . . . , xn〉 satisfies the Artin Approximation Theorem (see also the comment following
Theorem 2.22).

Proof of Theorem 5.8. For simplicity we assume that A is a complete local domain (this covers
already the important case where A is a field). We first give the following lemma that may be
of independent interest and whose proof is given below:

Lemma 5.9. Let A be a complete normal local domain, u := (u1, . . . , un), v := (v1, . . . , vm).
Then

AJuK〈v〉 = {f ∈ AJu, vK / ∃s ∈ N, g ∈ A〈v, z1, . . . , zs〉, ẑi ∈ (mA+(u))AJuK, f = g(v, ẑ1, . . . , ẑs)}.

Using this lemma we can prove Theorem 5.8 by induction on n. First of all, since A = B
I

where B is a complete regular local ring (by Cohen Structure Theorem), by using the same trick
as in the proof of Corollary 2.9 we may replace A by B and assume that A is a complete regular
local ring.

Let us assume that Theorem 5.8 is true for n−1. We set x′ := (x1, . . . , xn−1). Then we denote
by y1, . . . , yk the unknowns depending only on x′ and by yk+1, . . . , ym the unknowns depending
on xn. Let us consider the following system of equations

(18) f(x′, xn, y1(x′), . . . , yk(x′), yk+1(x′, xn), ym(x′, xn)) = 0.
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By Theorem 2.27 and Remark 2.34 we may assume that ŷk+1, . . . , ŷm ∈ kJx′K〈x〉. Thus by
Lemma 5.9 we can write

ŷi =
∑
j∈N

hi,j(ẑ)x
j
n with

∑
j∈N

hi,j(z)x
j
n ∈ k〈z, xn〉

and ẑ = (ẑ1, . . . , ẑs) ∈ (x′)kJx′Ks. We can write

f
(
x′, xn, y1, . . . , yk,

∑
j

hk+1,j(z)x
j
n, . . . ,

∑
j

hm,j(z)x
j
n

)
=
∑
j

Gj(x
′, y1, . . . , yk, z)x

j
n,

where Gj(x′, y1, . . . , yk, z) ∈ k〈x′, y1, . . . , yk, z〉 for all j ∈ N. Thus

(ŷ1, . . . , ŷk, ẑ1, . . . , ẑs) ∈ kJx′Kk+s

is a solution of the equations Gj = 0 for all j ∈ N. Since k〈t, y1, . . . , yk, z〉 is Noetherian, this
system of equations is equivalent to a finite system Gj = 0 with j ∈ E where E is a finite
subset of N. Thus by the induction hypothesis applied to the system Gj(x

′, y1, . . . , yk, z) = 0,
j ∈ E, there exist ỹ1, . . . , ỹk, z̃1, . . . , z̃s ∈ k〈x′〉, with nested conditions, such that ỹi − ŷi,
z̃l − ẑl ∈ (x′)c, for 1 ≤ i ≤ k and 1 ≤ l ≤ s, and Gj(x′, ỹ1, . . . , ỹk, z̃) = 0 for all j ∈ E. Hence
Gj(x

′, ỹ1, . . . , ỹk, z̃) = 0 for all j ∈ N.
Set ỹi =

∑
j∈N hi,j(z̃)x

j
n for k < j ≤ m. Then ỹ1, . . . , ỹm satisfy the conclusion of the theorem.

�

Proof of Lemma 5.9. Let us define

B := {f ∈ AJu, vK / ∃s ∈ N, g ∈ A〈v, z1, . . . , zs〉,
ẑi ∈(mA + (u))AJuK, f = g(v, ẑ1, . . . , ẑs)}.

Clearly B is a subring of AJuK〈v〉.
Since AJuK〈v〉 is the Henselization of AJuK[v]mA+(u,v), by Theorem 8.6, there exist

h ∈ (mA + (u, v))AJuK〈v〉 and a monic polynomial P ∈ AJuK[v][T ] in T such that

P (h) = 0,
∂P

∂T
(h) /∈ mA + (u, v)

and
f ∈ AJuK[v, h](mA+(u,v))∩AJuK[v,h].

So there are two polynomials Q, R ∈ AJuK[v, h], R /∈ (mA + (u, v)) ∩AJuK[v, h], with

f = QR−1.

We have
R =

∑
γ,j

(rγ,j + ẑγ,j)v
γhj

where rγ,j ∈ A and ẑγ,j ∈ (mA + (u))AJuK for every γ, j. Let us set

R′ :=
∑
γ,j

(rγ,j + zγ,j)v
γHj

where the zγ,j and H denote new variables. The coefficient r0,0 is a unit in A since
R /∈ mA + (u, v), ẑγ,j ∈ (mA + (u))AJuK for every γ and j, and h ∈ (mA + (u, v))AJuK〈v〉. Then
R′ is a unit in A〈zγ,j , v,H〉 and its inverse is in A〈zγ,j , v,H〉. Moreover R′−1

(ẑγ,j , v, h) = R−1

by uniqueness of the unit. Since the composition of algebraic power series over A is an algebraic
power series over A, this shows that if the lemma is proven for h then it is proven for f by adding
the coefficients of Q from AJuK and the ẑγ,j as new ẑ.
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So we may replace f by h and assume that f ∈ (mA + (u, v))AJuK〈v〉,

P (f) = 0 and
∂P

∂T
(f) /∈ mA + (u, v).

Let us write P =
∑
α,i Pα,iv

αT i for some Pα,i ∈ AJuK.
Let us write

Pα,i = pα,i + ẑα,i

where pα,i ∈ A and ẑα,i ∈ (mA + (u))AJuK.
Let ẑ be the vector whose components are the ẑα,i and set

F :=
∑
α,i

(pα,i + zα,i)v
αT i

for some new variables zα,i. Therefore F (v, T, ẑ) = P . We set F ′ = ∂F
∂T . We have that

F (v, T, 0) = F (v, T, ẑ) = P (f) modulo mA + (u, v, T ),

F ′(v, T, 0) = F ′(v, T, ẑ) =
∂P

∂T
(f) 6= 0 modulo mA + (u, v, T )

since the components of ẑ are in mA + (u) and f ∈ (mA + (u, v))AJuK〈v〉. Thus
F (v, 0, z) = 0 modulo (mA + (v, z))A〈v, z〉,
F ′(v, 0, z) 6= 0 modulo (mA + (v, z))A〈v, z〉.

Hence, by the Implicit Function Theorem 8.15, there exists a unique

g ∈ (mA + (v, z))A〈v, z〉
such that

F (v, g, z) = 0.

So we have that F (v, g(ẑ), ẑ) = 0. But P = F (v, T, ẑ) = 0 has a unique solution T = f in
(mA + (u, v))AJuK〈v〉 by the Implicit Function Theorem. This proves that f = g(ẑ) ∈ B. �

Remark 5.10. There exists a more elementary proof of Theorem 5.8 in the case where f(x, y)
is linear with respect to y, i.e., a proof that does not involve the use of General Néron desingu-
larization Theorem (see [C-JPR15]). It is based on the fact that, for linear equations with one
nest, Theorem 5.8 reduces to Theorem 2.16 (see [BM87, Theorem 12.6]).

There also exists a nested version of Płoski’s Theorem for algebraic power series (or equiva-
lently a nested version of Corollary 2.30): see [Sp99, Theorem 11.4 ] or [BPR17, Theorem 2.1].
This “nested Płoski ’s Theorem” is used in [BPR17] (see also [Mo84] where this idea has first
been introduced, and [BKPR17, Ron17] for subsequent works based on this idea) to show that
any complex or real analytic set germ (resp. analytic function germ) is homeomorphic to an
algebraic set germ (resp. algebraic function germ). In fact it is used to construct a topologically
trivial deformation of a given analytic set germ whose one of the fibers is a Nash set germ, i.e.,
an analytic set germ defined by algebraic power series.

Moreover, using ultraproducts methods, we can deduce the following Strong Nested Approx-
imation result:

Corollary 5.11. [BDLvdD79] Let k be a field and f(x, y) ∈ k〈x, y〉r. There exists a function
β : N −→ N satisfying the following property:
Let c ∈ N and y(x) ∈ ((x)kJxK)m satisfy f(x, y(x)) ∈ (x)β(c). Let us assume that

yi(x) ∈ kJx1, . . . , xsiK, 1 ≤ i ≤ m, for integers si, 1 ≤ si ≤ n.
Then there exists a solution ỹ(x) ∈ ((x)k〈x〉)m of f = 0 with ỹi(x) ∈ k〈x1, . . . , xsi〉 and

ỹ(x)− y(x) ∈ (x)c.
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5.3. Nested Approximation in the analytic case. In the analytic case, Theorem 5.8 is no
longer valid, as shown by the following example:

Example 5.12 (Gabrielov Example). [Ga71] Let

ϕ : C{x1, x2, x3} −→ C{y1, y2}
be the morphism of analytic C-algebras defined by

ϕ(x1) = y1, ϕ(x2) = y1y2, ϕ(x3) = y1y2e
y2 .

Let f ∈ Ker(ϕ̂) be written as f =
∑+∞
d=0 fd where fd is a homogeneous polynomial of degree

d for all d ∈ N. Then 0 = ϕ̂(f) =
∑
d y

d
1fd(1, y2, y2e

y2). Thus fd = 0 for all d ∈ N since y2

and y2e
y2 are algebraically independent over C. Hence Ker(ϕ̂) = (0) and Ker(ϕ) = (0). This

example is due to W. S. Osgood [Os16].

(1)We can remark that “ϕ
(
x3 − x2e

x2
x1

)
= 0”. But x3−x2e

x2
x1 is not an element of C{x1, x2, x3}.

Let us set

fn :=

(
x3 − x2

n∑
i=0

1

i!

xi2
xi1

)
xn1 ∈ C[x1, x2, x3], ∀n ∈ N.

Then

ϕ(fn) = yn+1
1 y2

+∞∑
i=n+1

yi2
i!
, ∀n ∈ N.

Then we see that (n+ 1)!ϕ(fn) is a convergent power series whose coefficients have module less
than 1. Moreover if the coefficient of yk1yl2 in the Taylor expansion of ϕ(fn) is non-zero then
k = n + 1. This means that the supports of ϕ(fn) and ϕ(fm) are disjoint as soon as n 6= m.
Thus the power series

h :=
∑
n

(n+ 1)!ϕ(fn)

is convergent since each of its coefficients has module less than 1. But ϕ̂ being injective, the
unique element whose image is h is necessarily ĝ :=

∑
n(n+ 1)!fn. But

ĝ =
∑
n

(n+ 1)!fn =

(∑
n

(n+ 1)!xn1

)
x3 + f̂(x1, x2),∑

n(n+ 1)!xn1 is a divergent power series and ϕ̂(ĝ(x)) = h(y) ∈ C{y}.
This shows that

ϕ(C{x}) ( ϕ̂(CJxK) ∩ C{y}.
(2) By Lemma 5.1 ϕ̂(ĝ(x)) = h(y) is equivalent to saying that there exist k̂1(x, y), k̂2(x, y),
k̂3(x, y) ∈ CJx, yK such that

(19) ĝ(x) + (x1 − y1)k̂1(x, y) + (x2 − y1y2)k̂2(x, y) + (x3 − y1y2e
y2)k̂3(x, y)− h(y) = 0.

Since ĝ(x) is the unique element whose image under ϕ̂ equals h(y), Equation (19) has no con-
vergent solution g(x) ∈ C{x}, k1(x, y), k2(x, y), k3(x, y) ∈ C{x, y}. Thus Theorem 5.8 is not
true in the analytic setting.
(3) We can modify a little bit the previous example as follows. Let us define

ĝ1(x1, x2) :=
∑
n

(n+ 1)!xn1 and ĝ2(x1, x2) := f̂(x1, x2).

By replacing y1 by x1, y2 by y and x3 by x1ye
y in Equation (19) we see that the equation

(20) ĝ1(x1, x2)x1ye
y + ĝ2(x1, x2) + (x2 − x1y)k̂(x, y)− h(x1, y) = 0.
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has a nested formal solution

(ĝ1, ĝ2, k̂) ∈ CJx1, x2K2 × CJx1, x2, yK

but no nested convergent solution in C{x1, x2}2 × C{x1, x2, y}.

Nevertheless there are, at least, three positive results about the nested approximation problem
in the analytic category. We present them here.

5.3.1. Grauert Theorem. The first one is due to H. Grauert who proved it in order to construct
analytic deformations of a complex analytic germ in the case where it has an isolated singularity.
The approximation result of H. Grauert may be reformulated as: “if a system of complex analytic
equations, considered as a formal nested system, admits an Artin function (as in Problem 2)
which is the Identity function, then it has nested analytic solutions”. We present here the result.

Set x := (x1, . . . , xn), t := (t1, . . . , tl), y = (y1, . . . , ym) and z := (z1, . . . , zp). Let
f := (f1, . . . , fr) be in C{t, x, y, z}r. Let I be an ideal of C{t}.

Theorem 5.13. [Gra72] Let d0 ∈ N and (y(t), z(t, x)) ∈ C[t]m × C{x}[t]p satisfy

f(t, x, y(t), z(t, x)) ∈ I + (t)d0 .

Let us assume that for any d ≥ d0 and for any (y(d)(t), z(d)(t, x)) ∈ C[t]m × C{x}[t]p such that,
y(t)− y(d)(t) ∈ (t)d0 et z(t, x)− z(d)(t, x) ∈ (t)d0 , and such that

f
(
t, x, y(d)(t), z(d)(t, x)

)
∈ I + (t)d,

there exists (ε(t), η(t, x)) ∈ C[t]m × C{x}[t]p homogeneous in t of degree d such that

f(t, x, y(d)(t) + ε(t), z(d)(t, x) + η(t, x)) ∈ I + (t)d+1.

Then there exists (ỹ(t), z̃(t, x)) ∈ C{t}m × C{t, x}p such that

f(t, x, ỹ(t), z̃(t, x)) ∈ I and ỹ(t)− y(t), z̃(t, x)− z(t, x) ∈ (t)d0 .

The main ingredient of the proof is a result of Functional Analysis called “voisinages priv-
ilégiés” and proven by H. Cartan [Ca44, Théorème α]. We do not give the details here but the
reader may consult [dJPf00].

Let us also mention that a completely similar result for differential equations, called Cartan-
Kähler Theorem, has been proven by B. Malgrange and its proof is based on the same tools used
in the proof of Theorem 5.13 (see the appendix of [Mal72]).

5.3.2. Gabrielov Theorem. The second positive result about the nested approximation problem
in the analytic category is due to A. Gabrielov. Before giving his result, let us explain the
context.

Let ϕ : A −→ B be a morphism of complex analytic algebras where A := C{x1,...,xn}
I and

B := C{y1,...,ym}
J are analytic algebras. Let us denote by ϕi the image of xi by ϕ for 1 ≤ i ≤ n.

Let us denote by ϕ̂ : Â −→ B̂ the morphism induced by ϕ. A. Grothendieck [Gro60] and S. S.
Abhyankar [Ar71] raised the following question: Does Ker(ϕ̂) = Ker(ϕ).Â?

Without loss of generality, we may assume that A and B are regular, i.e., A = C{x1, . . . , xn}
and B = C{y1, . . . , ym}.

In this case, an element of Ker(ϕ) (resp. of Ker(ϕ̂)) is called an analytic (resp. formal)
relation between ϕ1(y), . . . , ϕm(y). Hence the previous question is equivalent to the following:
is any formal relation Ŝ between ϕ1(y), . . . , ϕn(y) a linear combination of analytic relations?

This question is also equivalent to the following: may every formal relation between
ϕ1(y), . . . , ϕn(y) be approximated by analytic relations for the (x)-adic topology? In this form
the problem is the “dual” problem to the Artin Approximation Problem.
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In fact this problem is also a nested approximation problem. Indeed let Ŝ be a formal relation
between ϕ1(y), . . . , ϕn(y). This means that Ŝ(ϕ1(y), . . . , ϕn(y)) = 0. By Lemma 5.1 this is
equivalent to the existence of formal power series

ĥ1(x, y), . . . , ĥn(x, y) ∈ CJx, yK

such that

Ŝ(x1, . . . , xn)−
n∑
i=1

(xi − ϕi(y))ĥi(x, y) = 0.

Thus we see that the equation

(21) S −
n∑
i=1

(xi − ϕi(y))Hi = 0

has a formal nested solution

(Ŝ(x), ĥ1(x, y), . . . , ĥn(x, y)) ∈ CJxK× CJx, yKn.

On the other hand if this equation has an analytic nested solution

(S(x), h1(x, y), . . . , hn(x, y)) ∈ C{x} × C{x, y}n,

this would provide an analytic relation between ϕ1(y), . . . , ϕn(y):

S(ϕ1(y), . . . , ϕn(y)) = 0.

Example 5.12 yields a negative answer to this problem by modifying in the following way the
example of Osgood (see Example 5.12):

Example 5.14. [Ga71] Let us consider now the morphism

ψ : C{x1, x2, x3, x4} −→ C{y1, y2}

defined by
ψ(x1) = y1, ψ(x2) = y1y2, ψ(x3) = y1y2e

y2 , ψ(x4) = h(y1, y2)

where h is the convergent power series defined in Example 5.12.
Let ĝ be the power series defined in Example 5.12. Then x4 − ĝ(x1, x2, x3) ∈ Ker(ψ̂). On

the other hand the morphism induced by ψ̂ on CJx1, . . . , x4K/(x4 − ĝ(x1, x2, x3)) is isomorphic
to ϕ̂ (where ϕ is the morphism of Example 5.12) that is injective. Thus we have

Ker(ψ̂) = (x4 − ĝ(x1, x2, x3)).

Since Ker(ψ) is a prime ideal of C{x}, Ker(ψ)CJxK is a prime ideal of CJxK included in
Ker(ψ̂) by Proposition 4.1. Let us assume that Ker(ψ) 6= (0), then Ker(ψ)CJxK = Ker(ψ̂)

since ht(Ker(ψ̂)) = 1. Thus Ker(ψ̂) is generated by one convergent power series denoted by
f ∈ C{x1, . . . , x4} (in unique factorization domains, prime ideals of height one are principal
ideals). Since Ker(ψ̂) = (x4 − ĝ(x1, x2, x3)), there exists u(x) ∈ CJxK, u(0) 6= 0, such that
f = u(x).(x4 − ĝ(x1, x2, x3)). By the uniqueness of the decomposition given by the Weierstrass
Preparation Theorem of f with respect to x4 we see that u(x) and x4 − ĝ(x1, x2, x3) must
be convergent power series, which is impossible since ĝ is a divergent power series. Hence
Ker(ψ) = (0) but Ker(ψ̂) 6= (0).

Nevertheless A. Gabrielov proved the following theorem:
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Theorem 5.15. [Ga73] Let ϕ : A −→ B be a morphism of complex analytic algebras. Let us
assume that the generic rank of the Jacobian matrix is equal to dim( A

Ker(ϕ̂) ). Then

Ker(ϕ̂) = Ker(ϕ).Â.

In particular, the equation (21) satisfies the nested approximation property.

Remark 5.16. A morphism satisfying the hypothesis of Theorem 5.15 is called regular (but
this notion of regularity has nothing to do with Definition 7.1). The morphisms of analytic
spaces being regular on stalks have been widely studied. The reader may consult [BM82, BM87,
BM98, Paw92] for a study of global properties of regular morphisms and the relation with the
composite functions problem in the C∞ case.

Remark 5.17. Let ϕ : C{x1, . . . , xn} −→ C{y1, . . . , ym} be a morphism of complex analytic
algebras. Assume for simplicity that ϕ and ϕ̂ are injective, and let us denote by ϕi(y) the image
of xi for every i. By a Theorem of P. Eakin and G. Harris [EH77] if the generic rank of the
Jacobian matrix is strictly less than n then there exists a divergent formal series ĝ ∈ CJxK\C{x}
such that

ϕ̂(ĝ) = h ∈ C{y}.
Since ϕ̂ is injective h is not the image of convergent power series. So, exactly as in Example 5.12
(2), there exist k̂i(x, y) ∈ CJx, yK for 1 ≤ i ≤ n such that

(22) ĝ(x) +

n∑
i=1

(xi − ϕi(y))k̂i(x, y) = h(y)

but there is no g ∈ C{x}, ki(x, y) ∈ C{x, y}, 1 ≤ i ≤ n, such that

g(x) +

n∑
i=1

(xi − ϕi(y))ki(x, y) = h(y).

In particular if we define ϕ (with n = 3 and m = 2) by

ϕ(x1) = y1, ϕ(x2) = y1y2, ϕ(x3) = y1ξ(y2)

where ξ(y2) is a transcendental power series, exactly as done for Osgood’s Example 5.12, ϕ and
ϕ̂ are injective, but the generic rank of the Jacobian matrix is 2 since m = 2 so the preceding
result of P. Eakin and G. Harris applies. This gives a systematic way to construct examples of
(linear) equations having nested formal solutions but no convergent nested equations.

Sketch of the proof of Theorem 5.15. We give a sketch of the proof given by J.-Cl. Tougeron
[To90]. As before we may assume that A = C{x1, . . . , xn} and B = C{y1, . . . , ym}. Let us
assume that Ker(ϕ).Â 6⊂ Ker(ϕ̂) (which is equivalent to ht(Ker(ϕ)) ≤ ht(Ker(ϕ̂)) since both
ideals are prime). Using a Bertini type theorem we may assume that n = 3, ϕ is injective and
dim( CJxK

Ker(ϕ̂) ) = 2 (in particular Ker(ϕ̂) is a principal ideal). Moreover, in this case we may assume
that m = 2. After a linear change of coordinates we may assume that Ker(ϕ̂) is generated by an
irreducible Weierstrass polynomial of degree d in x3. Using changes of coordinates and quadratic
transforms on C{y1, y2} and using changes of coordinates of C{x} involving only x1 and x2, we
may assume that ϕ1 = y1 and ϕ2 = y1y2. Let us define f(y) := ϕ3(y). Then we have

f(y)d + â1(y1, y1y2)f(y)d−1 + · · ·+ âd(y1, y1y2) = 0

for some âi(x) ∈ CJx1, x2K, 1 ≤ i ≤ d. Then we want to prove that the âi may be chosen
convergent in order to get a contradiction. Let us denote

P (Z) := Zd + â1(x1, x2)Zd−1 + · · ·+ âd(x1, x2) ∈ CJxK[Z].
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By assumption P (Z) is irreducible since Ker(ϕ̂) is prime. J.-Cl. Tougeron studies the algebraic
closure K of the field C((x1, x2)). Let consider the following valuation ring

V :=

{
f

g
/ f, g ∈ CJx1, x2K, g 6= 0, ord(f) ≥ ord(g)

}
,

let V̂ be its completion and K̂ the fraction field of V̂ . J.-Cl. Tougeron proves that the algebraic
extension K −→ K factors into K −→ K1 −→ K where K1 is a subfield of the following field

L :=

{
A ∈ K̂ / ∃δ, ai ∈ k[x] is homogeneous ∀i,

ord
( ai
δm(i)

)
= i, ∃a, b such that m(i) ≤ ai+ b ∀i and A =

∞∑
i=0

ai
δm(i)

}
.

Moreover the algebraic extension K1 −→ K is the extension of K1 generated by all the roots
of polynomials of the form Zq + g1(x)Zq−1 + · · ·+ gq where gi ∈ C(x) are homogeneous rational
fractions of degree ei, 1 ≤ i ≤ q, for some integer e ∈ Q. A root of such a polynomial is called a
homogeneous element of degree e. For example, square roots of x1 or of x1 +x2 are homogeneous
elements of degree 1/2. We have K ∩ L = K1.

In the same way, he proves that the algebraic closure Kan of the field Kan, the fraction field
of C{x1, x2}, can be factorized as Kan −→ Kan1 −→ Kan with Kan1 ⊂ Lan where

Lan :=

{
A ∈ K̂ / ∃δ, ai ∈ k[x] is homogeneous ∀i, ord

( ai
δm(i)

)
= i, A =

∞∑
i=0

ai
δm(i)

∃a, b such that m(i) ≤ ai+ b ∀i and ∃r > 0 such that
∑
i

||ai||ri <∞

}
and ||a(x)|| := max

|zi|≤1
|a(z1, z2)| for a homogeneous polynomial a(x).

Clearly, ξ := f(x1,
x2

x1
) is an element of K since it is a root of P (Z). Moreover ξ may be written

ξ =
∑q
i=1 ξiγ

i where γ is a homogenous element and ξi ∈ Lan ∩ K for any i, i.e., ξ ∈ Lan[γ].
Thus the problem is to show that ξi ∈ Kan1 for any i, i.e., Lan ∩K = Kan1 .

Then the idea is to resolve, by a sequence of blowing-ups, the singularities of the discriminant
locus of P (Z) which is the germ of a plane curve. Let us call π this resolution map. Then the
discriminant of π∗(P )(Z) is normal crossing and π∗(P )(Z) defines a germ of surface along the
exceptional divisor of π, denoted by E. Let p be a point of E. At this point π∗(P )(Z) may factor
as a product of polynomials in Z with analytic coefficients, ξ is a root of one of these factors
denoted by Q1(Z) and this root is a germ of an analytic (multivalued) function at p. Then the
other roots of Q1(Z) are also in Lan[γ′] according to the Abhyankar-Jung Theorem [PR12], for
some homogeneous element γ′. Thus the coefficients of Q1(Z) are in Lan and are analytic at p.

Then the idea is to use the special form of the elements of Lan to prove that the coefficients of
Q1(Z) may be extended as analytic functions along the exceptional divisor E (the main ingredient
in this part is the Maximum Principle). We can repeat the latter procedure at another point p′:
we take the roots of Q1(Z) at p′ and using Abhyankar-Jung Theorem we construct new roots
of π∗(P )(Z) at p′ and the coefficients of Q2(Z) :=

∏
i(Z − σi), where σi runs over all these

roots, are in Lan and are analytic at p′ (notice that the decomposition of P (Z) into irreducible
factors at p′ may be completely different from its decomposition at p). Then we extend the
coefficients of Q2(Z) everywhere along E. Since π∗(P )(Z) has exactly d roots, this process
stops after a finite number of steps. The polynomial Q(Z) :=

∏
(Z − σk), where the σk are the

roots of π(P )(Z) that we have constructed, is a polynomial whose coefficients are analytic in
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a neighborhood of E and it divides π∗(P )(Z). Thus, by Grauert Direct Image Theorem, there
exists a monic polynomial R(Z) ∈ C{x}[Z] such that π∗(R)(Z) = Q(Z). Hence R(Z) divides
P (Z), but since P (Z) is irreducible and both are monic, P (Z) = R(Z) ∈ C{x}[Z] and the result
is proven. �

5.3.3. One variable Nested Approximation. In the example of A. Gabrielov 5.12 (3) we can
remark that there is only one nest and the nested part of the solutions depends on two variables
x1 and x2. In the case this nested part depends only on one variable the nested approximation
property is true. This is the following theorem that we state in the more general framework of
Weierstrass systems:

Theorem 5.18. [DL80, Theorem 5.1] Let k be a field and kVxW be a W-system over k. Let t
be one variable, x = (x1, . . . , xn), y = (y1, . . . , ym+k), f ∈ kVt, x, yWr. Let ŷ1, . . . , ŷm ∈ (t)kJtK
and ŷm+1, . . . , ŷm+k ∈ (t, x)kJt, xK satisfy

f(t, x, ŷ) = 0.

Then for any c ∈ N there exist ỹ1, . . . , ỹm ∈ (t)kVtW, ỹm+1,...., ỹm+k ∈ (t, x)kVt, xW such that

f(t, x, ỹ) = 0 and ŷ − ỹ ∈ (t, x)c.

Example 5.19. The main example is the case where k is a valued field and kVxW is the ring
of convergent power series over k. When k = C this statement is already mentioned as a known
result in [Ga71] without any proof or reference.

But even for algebraic power series this statement is interesting since its proof is really easier
and more effective than Theorem 5.8.

Proof. The proof is very similar to the proof of Theorem 5.8.
Set u := (u1, . . . , uj), j ∈ N and set

kJtK[〈u〉] := {f(t, u) ∈ kJt, uK /∃s ∈ N, g(z1, . . . , zs, u) ∈ kVz, uW,
z1(t), . . . , zs(t) ∈ (t)kJtK such that f(t, u) = g(z1(t), . . . , zs(t), u)}.

The rings kJtK[〈u〉] form a W -system over kJtK [DL80, Lemma 52] (it is straightforward to check
it since kVxW is aW -system over k - in particular, if char(k) > 0, vi) of Definition 2.19 is satisfied
since v) of Definition 2.19 is satisfied for kVxW). By Theorem 2.22 applied to

f(t, ŷ1, . . . , ŷm, ym+1, . . . , ym+k) = 0

there exist ym+1, . . . , ym+k ∈ kJtK[〈x〉] such that

f(t, ŷ1, . . . , ŷm, ym+1, . . . , ym+k) = 0

and yi − ŷi ∈ (t, x)c for m < i ≤ m+ k.
Let us write

yi =
∑
α∈Nn

hi,α(ẑ)xα

with
∑
α∈Nn

hi,α(z)xα ∈ kVz, xW, z = (z1, . . . , zs) is a vector of new variables and

ẑ = (ẑ1, . . . , ẑs) ∈ kJtKs.

We can write

f
(
t, x, y1, . . . , ym,

∑
α

hm+1,α(z)xα, . . . ,
∑
α

hm+k,α(z)xα
)

=
∑
α

Gα(t, y1, . . . , ym, z)x
α,
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where Gα(t, y1, . . . , ym, z) ∈ kVt, y1, . . . , ym, zW for all α ∈ Nn. Thus

(ŷ1, . . . , ŷm, ẑ1, . . . , ẑs) ∈ kJtKm+s

is a solution of the equations Gα = 0 for all α ∈ Nn. Since kVt, y1, . . . , ym, zW is Noetherian, this
system of equations is equivalent to a finite system Gα = 0 with α ∈ E where E is a finite subset
of Nn. Thus by Theorem 2.22 applied to the system Gα(t, y1, . . . , ym, z) = 0, α ∈ E, there exist
ỹ1, . . . , ỹm, z̃1, . . . , z̃s ∈ kVtW such that ỹi − ŷi, z̃j − ẑj ∈ (t)c, for 1 ≤ i ≤ m and 1 ≤ j ≤ s, and
Gα(t, ỹ1, . . . , ỹm, z̃) = 0 for all α ∈ E, thus Gα(t, ỹ1, . . . , ỹm, z̃) = 0 for all α ∈ Nn.

Set ỹi =
∑
α∈Nn

hi,α(z̃)xα for m < i ≤ m + k. Then ỹ1, . . . , ỹm+k satisfy the conclusion of the

theorem.
�

Remark 5.20. The proof of this theorem uses in an essential way the Weierstrass Division
Property (in order to show that kJtK[〈u〉] is a Noetherian local ring, which is the main condition
to use Theorem 2.27. The Henselian and excellent conditions may be deduced quite easily from
the Weierstrass Division Property).

On the other hand, the Weierstrass Division Property (at least in dimension 2) is neces-
sary to obtain this theorem. Indeed if kVxW is a family of rings satisfying Theorem 5.18 and
f(t, y) ∈ kVt, yW is y-regular of order d (t and y being single variables) and g(t, y) ∈ kVt, yW is
another series, by the Weierstrass Division Theorem for formal power series we can write in a
unique way

g(t, y) = q̂(t, y)f(t, y) + r̂0(t) + r̂1(t)y + · · ·+ r̂d−1(t)yd−1

where q̂(t, y) ∈ kJt, yK and r̂i(t) ∈ kJtK for all i. Thus by Theorem 5.18, q̂(t, y) ∈ kVt, yW and
r̂i(t) ∈ kVtW for all i. This means that kVt, yW satisfies the Weierstrass Division Theorem.

For example, let Cn ⊂ kJx1, . . . , xnK be the ring of germs of k-valued Denjoy-Carleman func-
tions defined at the origin of Rn, where k = R or C. One can look at [Th08] for the precise
definitions and properties of these rings. Roughly speaking these are germs of k-valued C∞-
functions whose derivatives at each point of a neighborhood of the origin satisfy inequalities of
the form (16) in Remark 2.23 for some given logarithmically convex sequence of positive num-
bers (mk)k, but we need to require additional properties on (mk)k in order to insure that these
classes of functions are quasi-analytic, i.e., such that the Taylor map is injective. For a given
logarithmically convex sequence m = (mk)k we denote by Cn(m) these rings of function germs.

If k{x1, . . . , xn} 6⊂ Cn(m) it is still an open problem to know if Cn(m) is Noetherian or not
for n ≥ 2 (C1(m) is always a discrete valuation ring, thus it is Noetherian). These rings have
similar properties to the Weierstrass systems: these are Henselian local rings whose maximal
ideal is generated by x1, . . . , xn, the completion of Cn(m) is kJx1, . . . , xnK, for every n Cn(m)
is stable by partial derivatives, by division by coordinates functions or by composition. The
only difference with Weierstrass systems is that Cn(m) does not satisfy the Weierstrass Division
Theorem.

For instance, there exist f ∈ C1(m) and ĝ ∈ kJtK\C1(m) such that f(t) = ĝ(t2) (see the proof
of [Th08, Proposition 2]). This implies that

(23) f(t) = (t2 − y)ĥ(t, y) + ĝ(y)

for some formal power series ĥ(t, y) ∈ kJt, yK, but Equation (23) has no nested solution
(g, h) ∈ C1(m)× C2(m).

On the other hand, if the rings Cn(m) were Noetherian, since their completions are regular
local rings they would be regular. Then, using Example 7.4 iii), we see that they would be
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excellent (see also [ElKh11]). Thus these rings would satisfy Theorem 2.27 but they do not
satisfy Theorem 5.18 since Equation (23) has no solutions in C1(m)× C2(m).

5.4. Other examples of approximation with constraints.

5.4.1. Some examples. We present here some examples of positive or negative answers to Prob-
lems 1 and 2 in several contexts.

Example 5.21 (Cauchy-Riemann equations). [Mi78b] P. Milman proved the following
theorem:

Theorem 5.22. Let f ∈ C{x, y, u, v}r where

x := (x1, . . . , xn), y = (y1, . . . , yn), u := (u1, . . . , um), v := (v1, . . . , vm).

Then the set of convergent solutions of the following system:

(24)



f(x, y, u(x, y), v(x, y)) = 0

∂uk
∂xj

(x, y)− ∂vk
∂yj

(x, y) = 0

∂vk
∂xj

(x, y) +
∂uk
∂yj

(x, y) = 0

is dense (for the (x, y)-adic topology) in the set of formal solutions of this system.

Hints on the proof. Let (û(x, y), v̂(x, y)) ∈ CJx, yK2m be a solution of (24). Let us set z := x+ iy
and w := u + iv. In this case the Cauchy-Riemann equations of (24) are equivalent to saying
that ŵ(z, z) := û(x, y) + iv̂(x, y) does not depend on z. Let ϕ : C{z, z, w,w} −→ CJz, zK and
ψ : C{z, w} −→ CJzK be the morphisms defined by

ϕ(h(z, z, w,w)) := h(z, z, ŵ(z), ŵ(z)) and ψ(h(z, w)) := h(z, ŵ(z)).

Then
f

(
z + z

2
,
z − z

2i
,
w + w

2
,
w − w

2i

)
∈ Ker(ϕ).

Milman proved that

Ker(ϕ) = Ker(ψ).C{z, z, w,w}+ Ker(ψ).C{z, z, w,w}.
Since Ker(ψ) (as an ideal of C{z, w}) satisfies Theorem 2.1, the result follows. �

This proof does not give the existence of an Artin function for this kind of system, since the
proof consists in reducing Theorem 5.22 to Theorem 2.1, and this reduction depends on the
formal solution of (24). Nevertheless in [HR11], it is proven that such a system admits an Artin
function using ultraproducts methods. The survey [Mir13] is a good introduction for applications
of Artin Approximation in CR geometry.

Example 5.23 (Approximation of equivariant solutions). [BM79] Let G be a reductive
algebraic group. Suppose that G acts linearly on Cn and Cm. We say that y(x) ∈ CJxKm
is equivariant if y(σx) = σy(x) for all σ ∈ G. E. Bierstone and P. Milman proved that, in
Theorem 2.1, the constraint for the solutions of being equivariant may be preserved for convergent
solutions:

Theorem 5.24. [BM79] Let f(x, y) ∈ C{x, y}r. Then the set of equivariant convergent so-
lutions of f = 0 is dense in the set of equivariant formal solutions of f = 0 for the (x)-adic
topology.

This result remains true is we replace C (resp. C{x} and C{x, y}) by any field of characteristic
zero k (resp. k〈x〉 and k〈x, y〉).
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Using ultraproducts methods we may probably prove that Problem 2 has a positive answer
in this case.

Example 5.25. [BDLvdD79] Let k be a characteristic zero field. Let us consider the following
differential equation:

(25) a2x1
∂f

∂x1
(x1, x2)− x2

∂f

∂x2
(x1, x2) =

∑
i,j≥1

xi1x
j
2

(
=

(
x1

1− x1

)(
x2

1− x2

))
.

For a ∈ k, a 6= 0, this equation has only the following solutions

f(x1, x2) := b+
∑
i,j≥1

xi1x
j
2

a2i− j
, b ∈ k

which are well defined if and only if a /∈ Q. Let us consider the following system of equations
with constraints (where x = (x1, . . . , x5)):

(26)



y2
8x1y5(x1, x2)− x2y7(x1, x2) =

∑
i,j≥1

xi1x
j
2

y1(x1, x2) = y2(x3, x4, x5) + (x1 − x3)z1(x) + (x2 − x4)z2(x)

y2(x3, x4, x5) = y1(x1, x2) + x5y4(x1, x2)+

x2
5y5(x)+(x3 − x1 − x5)z3(x) + (x4 − x2)z4(x)

y3(x3, x4, x5) = y1(x1, x2) + x5y6(x1, x2)+

x2
5y7(x)+(x3 − x1)z5(x) + (x4 − x2 − x5)z6(x)

y8 ∈ k and y8y9 = 1.

It is straightforward, using the tricks of Lemma 5.1 and Example 5.2, to check that (a, f(x1, x2))
is a solution of the equation (25) if and only if the system (26) has a constrained solution
(y1, . . . , y9, z1, . . . , z6) with y1 = f and y8 = a. Moreover, if (y1, . . . , y9, z1, . . . , z6) is a con-
strained solution of Equation (26), then (y8, y1) is a solution of (25).

Thus (26) has no constrained solution in QJxK. But clearly, (25) has constrained solutions in
Q[x]
(x)c for any c ∈ N and the same is true for (26). This shows that Proposition 3.30 is not valid
if the base field is not C.

Example 5.26. [BDLvdD79] Let us assume that k = C and consider the previous example.
The system of equations (26) does not admit an Artin function. Indeed, for any c ∈ N, there
is ac ∈ Q, such that (26) has a solution modulo (x)c with y8 = ac. But there is no solution in
CJxK with y8 = ac modulo (x), otherwise y8 = ac which is not possible.

Thus systems of equations with constraints do not satisfy Problem 2 in general.

Example 5.27. [Ron08] Let ϕ : C{x} −→ C{y} be a morphism of complex analytic algebras
and let ϕi(y) denote the image of xi by ϕ. Let us denote by ϕ̂ : CJxK −→ CJyK the induced
morphism between the completions. According to a lemma of Chevalley (Lemma 7 of [Ch43]),
there exists a function β : N −→ N such that ϕ̂−1((y)β(c)) ⊂ Ker(ϕ̂) + (x)c for any c ∈ N. It is
called the Chevalley function of ϕ. Using Lemma 5.1 we check easily that this function β satisfies
the following statement (in fact the two statements are equivalent [Ron08]): Let f(x) ∈ CJxK
and hi(x, y) ∈ CJx, yK, 1 ≤ i ≤ n, satisfy

f(x) +

n∑
i=1

(xi − ϕi(y))hi(x, y) ∈ (x, y)β(c).
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Then there exist f̃(y) ∈ CJxK, h̃i(x, y) ∈ CJx, yK, 1 ≤ i ≤ n, such that

(27) g̃(x) +

n∑
i=1

(xi − ϕi(y))h̃i(x, y) = 0

and f̃(x)− f(x) ∈ (x)c, h̃i(x, y)− hi(x, y) ∈ (x, y)c, 1 ≤ i ≤ n.
In particular, Problem 2 has a positive answer for Equation (27), but not Problem 1 (see

Example 5.12). In fact, the conditions of Theorem 5.15 are equivalent to the fact that β is
bounded by a linear function [Iz86].

The following example is given in [Ron08] and is inspired by Example 5.12. Let α : N −→ N
be an increasing function. Let (ni)i be a sequence of integers such that ni+1 > α(ni + 1) for all
i and such that the convergent power series ξ(Y ) :=

∑
i≥1 Y

ni is not algebraic over C(Y ). Then
we define the morphism ϕ : C{x1, x2, x3} −→ C{y1, y2} in the following way:

(ϕ(x1), ϕ(x2), ϕ(x3)) = (y1, y1y2, y1ξ(y2)).

It is easy to prove that ϕ̂ is injective exactly as in Example 5.12. For any integer i we define:

f i := xni−1
1 x3 −

(
xn1

2 xni−n1
1 + · · ·+ x

ni−1

2 x
ni−ni−1

1 + xni
2

)
.

Then

ϕ(f i) = yni
1 ξ(y2)− yni

1

i∑
k=1

ynk
2 ∈ (y)ni+ni+1 ⊂ (y)α(ni+1)

but f i /∈ (x)ni+1 for any i. Thus the Chevalley function of ϕ satisfies β(ni + 1) > α(ni + 1)

for all i ∈ N. Hence lim sup β(c)
α(c) ≥ 1. In particular if the growth of α is too big, then β is not

recursive.

5.4.2. Artin Approximation for differential equations. These examples along with the trick of
Example 5.2 are a motivation to study the Artin Approximation Property for systems of dif-
ferential equations. These examples show that there is no direct generalization of the Artin
Approximation Theorems to differential equations, in the sense that the formal solutions of a
system of differential equations with polynomial coefficients cannot be approximated in gen-
eral by convergent solutions. Nevertheless J. Denef and L. Lipshitz showed that there exist
differential analogues of them in the one variable case. Let us explain this.

Definition 5.28. [DL84] Let R ⊂ kJxK be a differential ring where x is a single variable (i.e., the
differential ∂

∂x : kJxK −→ kJxK send R into R). A power series f is called differentially algebraic
over R if there is a non-zero differential polynomial in one variable over R which vanishes on f .

When R ⊂ kJxK is a differential ring and y = (y1, . . . , ym) is a vector of variables we denote
by R[y, ∂y] the ring of differential polynomials in y, i.e., the ring of polynomials in the countable
number of variables y and yi,n where 1 ≤ i ≤ m and n ∈ N\{(0)}. The differential operator ∂

∂x
extend to R[y, ∂y] by

∂

∂x
yj = yj,1 and

∂

∂x
yj,n := yj,n+1 ∀i, n.

Then we have the following analogue of the Artin Approximation Theorem in the differential
case:

Theorem 5.29. [DL84] Let R ⊂ kJxK be a differential ring and let f(x, y) ∈ R[y, ∂y]r. Let
c ∈ N and y(x) be a formal power series solution

f(x, y(x)) = 0.
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Then there exists a solution ỹ(x), whose components are differentially algebraic over R,

f(x, ỹ(x)) = 0

and ỹ(x)− y(x) ∈ (x)c.

As seen in Example 1.16 a power series differentially algebraic over C[x] is not convergent in
general, but they are always Gevrey power series [Mai03]. But these have also good combinatorial
properties (see [St80] or [DL80] for instance).

Moreover we have the following analogue of the Strong Artin approximation Theorem for
differential equations (see [DL80] for the one variable case and [PR17] for the several variables
case):

Theorem 5.30. [DL80, PR17] Let f(x, y) be a system of differential polynomials in y with
formal power series coefficients over a field k.

(1) If x is a single variable, assume that k is a characteristic zero field which is either
algebraically closed, a real closed field or a Henselian valued field.

(2) If x is a vector of variables, assume that k is a finite field, an uncountable algebraically
closed field or an ultraproduct of fields.

If f = 0 has approximate solutions up to any order then f = 0 has a solution in k[[x]]m.

Remark 5.31. The case when k = C is quite trivial as indicated in Remark 2.11 [DL80].
Let us mention that there are examples of partial differential equations with coefficients in

R[x1, . . . , xn] (resp. Q[x1, . . . , xn]) with n ≥ 2, that do not satisfy the conclusion of Theorem
5.30 (see [DL80]). These show that there is really a difference between the univariate case and
the case of several variables.

Remark 5.32. Let us consider the partial differential equation of Example 5.25 where k = C.
Let us replace a by a function g(x1, x2). The condition for a to be in C is equivalent to saying
that ∂g

∂x1
= ∂g

∂x2
= 0.

Thus for the following system of partial differential equations{
g2x1

∂f
∂x1
− x2

∂f
∂x2

=
∑
i,j≥1 x

i
1x
j
2

∂g
∂x1

= ∂g
∂x2

= 0

Example 5.26 shows that there is no integer β such that every approximate solution (f, g) of
this system up to order β has a solution (f̃ , g̃) such that g̃ − g ∈ (x). Hence the analogue of
the Strong Artin Approximation Theorem 3.16 for partial differential equations is not valid in
general.

6. Appendix A: Weierstrass Preparation Theorem

In this part we set x := (x1, . . . , xn) and x′ := (x1, . . . , xn−1). Moreover R always denotes a
local ring of maximal ideal m and residue field k (if R is a field, m = (0)). A local subring of
RJxK will be a subring A of RJxK which is a local ring and whose maximal ideal is (m+ (x))∩A.

Definition 6.1. If f ∈ RJxK we say that f is xn-regular of order d if the image of f in
RJxK

m+(x′) ' kJxnK has the form u(xn)xdn where u(xn) is invertible in kJxnK.
When R = k is a field this just means that f(0, . . . , 0, xn) = u(xn)xdn where u(xn) is invertible.

Definition 6.2. Let A be a local subring of RJxK. We say that A satifies the Weierstrass
Division Property if for any f , g ∈ A such that f is xn-regular of order d, there exist q ∈ A and
r ∈ (A ∩RJx′K)[xn] such that deg xn

(r) < d and g = qf + r. In this case q and r are unique.
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Definition 6.3. Let A be a local subring of RJxK. We say that A satisfies the Weierstrass
Preparation Property if for any f ∈ A which is xn-regular, there exist an integer d, a unit u ∈ A
and a1(x′), . . . , ad(x

′) ∈ A ∩ (m + (x′))RJx′K such that

f = u
(
xdn + a1(x′)xd−1

n + · · ·+ ad(x
′)
)
.

In this case f is necessarily regular of order d with respect to xn and u and the ai are unique.
The polynomial xdn + a1(x′)xd−1

n + · · ·+ ad(x
′) is called the Weierstrass polynomial of f .

As mentioned in 2.2, the Weierstrass Preparation Property implies the Implicit Function
Theorem:

Lemma 6.4. Let A be a local subring of RJxK, with x a single variable. If A has the Weierstrass
Division Property then A satisfies the Implicit Function Theorem as follows:
Let f(x) ∈ A be such that

f(0) ∈ mA ∩R and f ′(0) /∈ mA ∩R.
Then there is unique a ∈ mA ∩R such that f(a) = 0.

Proof. Let us write f =
∑
k∈N fkx

k with fk ∈ R for every k. Then we have

f(0) = f0 ∈ mA ∩R, f ′(0) = f1 /∈ mA ∩R.
So f is x-regular of order 1. Thus by the Weierstrass Preparation Property there is a unit
u(x) ∈ A, and a ∈ mA ∩R such that

f(x) = u(x) · (x− a).

Since a ∈ mA ∩R, u(a) is well defined, therefore f(a) = 0.
Moreover, if a′ ∈ mA ∩R satisfies f(a′) = 0, we have

(28) f(a′) = f(a) +
∂f

∂x
(a)(a′ − a) +

∑
l≥2

1

l!

∂lf

∂xl
(a)(a′ − a)l.

If a 6= a′, set k = ord(a′ − a) ≥ 1. Since ∂f
∂x (0) /∈ mR and a ∈ mR, we have that ∂f

∂x (a) /∈ mR.
Thus ∂f

∂x (a) is a unit and ∂f
∂x (a)(a′ − a) /∈ mk+1

R . But f(a) = f(a′) = 0 ∈ mk+1
R and∑

l≥2

1

l!

∂lf

∂xl
(a)(a′ − a)l ∈ m2k

A ⊂ mk+1
R .

This is a contradiction in view of (28), therefore a = a′.
�

Lemma 6.5. A local subring A of RJxK satisfying the Weierstrass Division Property satisfies
the Weierstrass Preparation Property.

Proof. If A has the Weierstrass Division Property and if f ∈ A is xn-regular of order d, then we
can write xdn = qf + r where r ∈ (A ∩ RJx′K)[xn] such that deg xn

(r) < d. Thus qf = xdn − r.
Because f is xn-regular of order d, q is invertible in RJxK and r ∈ (m+ (x′)). Thus q /∈ (m+ (x))
and q is invertible in A. Hence f = q−1(xdn − r). �

In fact the converse implication is true under some mild conditions:

Lemma 6.6. [CL13] Let An be a subring of RJx1, . . . , xnK for all n ∈ N such that
i) An+m ∩RJx1, . . . , xnK = An for all n and m,
ii) if f ∈ An is written f =

∑
k∈N fkx

k
n with fk ∈ RJx′K for all k, then fk ∈ An−1 for all k.

iii) An is stable by permutation of the xi.
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Then An has the Weierstrass Division Property if An and An+1 have the Weierstrass Preparation
Property.

Proof. Let f(x) ∈ An be xn-regular of order d. By the Weierstrass Preparation Property for An
we may write

f = u
(
xdn + a1(x′)xd−1

n + · · ·+ ad(x
′)
)

= uP

where u is a unit in An and P ∈ An−1[xn]. Now let g(x) ∈ An and set h := P + xn+1g. Then
h is also xn-regular of order d, thus by the Weierstrass Preparation Property for An+1 we may
write h = vQ where v is a unit and Q a monic polynomial of degre d in xn. Let us write

v =
∑
k∈N

vkx
k
n+1 and Q =

∑
k∈N

Qkx
k
n+1

where vk ∈ An and Qk ∈ An−1[xn] for all k. Since Q is monic in xn of degree d, the polynomial
Q0 is monic in xn of degree d and deg xn

(Qk) < d for k ≥ 1.
We deduce from this that

v0Q0 = P and v1Q0 + v0Q1 = g.

Since Q0 and P are monic polynomials in xn of degree d the first equality implies that v0 = 1
and Q0 = P . Thus the second yields g = v1P +Q1, i.e.

g = v1u
−1f +Q1

and Q1 ∈ An−1[xn] is a polynomial in xn of degree < d. Thus the Weierstrass Division Property
holds. �

Theorem 6.7. The following rings have the Weierstrass Division Property:
i) The ring A = RJxK where R is a complete local ring ([Bou65]).
ii) The ring A = R〈x〉 of algebraic power series where R is a field or a Noetherian Henselian

local ring of characteristic zero which is analytically normal [Laf65, Laf67, Ron15].
iii) The ring A = k{x} of convergent power series over a valued field k (see [Na62] or [To72]

where is given a nice short proof using an invertibility criterion of a linear map between
complete topological groups).

iv) The ring A of germs of C∞-functions at the origin of Rn [Mal67]. In this case A is not
a Noetherian ring.

Remark 6.8. Let f ∈ kJxK where k is an infinite field and let d := ord(f). Let fd be the initial
term of f . Since k is infinite there exists (λ1, . . . , λn−1) ∈ kn−1 such that
c := fd(λ1, . . . , λn−1, 1) 6= 0. So let us consider the linear change of variables defined by

xi 7−→ xi + λixn for i < n

xn 7−→ xn.

Then under this linear change of variables f is transformed into a new power series g whose
initial term has degree d and is of the form

cxdn + ε

where ε ∈ (x1, . . . , xn−1). Thus g is xn-regular. Hence any formal power series may be trans-
formed into a xn-regular power series of degree d = ord(f) by a linear change of variables.

In the case when k is finite, we can also transform any formal power series f into a xn-
regular one but for this we have to use non-linear changes of variables (see [Ar69, Lemma 6.11]).
Moreover after this change of coordinates f is xn-regular of degree bigger than ord(f) (with no
equality in general).
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7. Appendix B: Regular morphisms and excellent rings

We give here the definitions and the main properties of regular morphisms and excellent rings.
For more details the reader may consult [StacksProject, 15.32 and 15.42] or [Mat80].

Definition 7.1. Let ϕ : A −→ B be a morphism of Noetherian rings. We say that ϕ is a
regular morphism if it is flat and if for any prime ideal p of A, the κ(p)-algebra B ⊗A κ(p) is
geometrically regular (where κ(p) :=

Ap

pAp
is the residue field of Ap). This means that B⊗AK is

a regular Noetherian ring for any finite field extension K of κ(p).

Example 7.2. i) If A and B are fields, A −→ B is regular if and only if B is a separable
field extension of A.

ii) If A is excellent (the definition of an excellent ring is given below), for any ideal I of A,
the morphism A −→ Â is regular where Â := lim

←−
A
In denotes the I-adic completion of A

[GD65, 7-8-3].
iii) If V is a discrete valuation ring, the completion morphism V −→ V̂ is regular if and only

if Frac(V ) −→ Frac(V̂ ) is separable. Indeed, V −→ V̂ is always flat and this morphism
induces an isomorphism on the residue fields.

iv) Let X be a compact Nash manifold, let N (X) be the ring of Nash functions on X
and let O(X) be the ring of real analytic functions on X. Then the natural inclusion
N (X) −→ O(X) is regular (cf. [CRS95] or [CRS04] for a survey on the applications
of General Néron Desingularization to the theory of sheaves of Nash functions on Nash
manifolds).

v) Let L ⊂ Cn be a compact polynomial polyhedron and B the ring of holomorphic func-
tion germs at L. Then the morphism of constants C −→ B is regular (cf. [Le95]). This
example and the previous one enable the use of Theorem 2.26 to show global approxi-
mation results in complex geometry or real geometry. The paper [Bi08] also provides a
proof of a global Artin approximation theorem whose proof is based on basic methods
of analytic geometry and not on the General Néron desingularization Theorem. The
papers [Bi09, BP15] give stronger forms of this global Artin approximation theorem.

In the case of the Artin Approximation problem, we will be mostly interested in the morphism
A −→ Â. Thus we need to know what is an excellent ring by Example 7.2 ii).

Definition 7.3. A Noetherian ring A is excellent if the following conditions hold:
i) A is universally catenary.
ii) For any p ∈ Spec(A), the formal fibre of Ap is geometrically regular.
iii) For any p ∈ Spec(A) and for any finite separable extension Frac

(
A
p

)
−→ K, there exists

a finitely generated sub-Ap -algebra B of K, containing A
p , such that Frac(B) = K and

the set of regular points of Spec(B) contains a non-empty open set.

This definition may be a bit obscure at first sight and difficult to catch. Thus we give here
the main examples of excellent rings:

Example 7.4. i) Local complete rings (in particular any field) are excellent. Dedekind
rings of characteristic zero (for instance Z) are excellent. Any ring which is essentially
of finite type over an excellent ring is excellent [GD65, 7-8-3].

ii) If k is a complete valued field, then the ring of convergent power series k{x1, . . . , xn} is
excellent [Ki69].

iii) We have the following result: let A be a regular local ring containing a field of character-
istic zero denoted by k. Suppose that there exists an integer n such that for any maximal
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ideal m, the field extension k −→ A
m is algebraic and ht(m) = n. Suppose moreover that

there exist D1, . . . , Dn ∈ Derk(A) and x1, . . . , xn ∈ A such that Di(xj) = δi,j . Then A
is excellent [Mat80, Theorem 102].

iv) A Noetherian local ring A is excellent if and only if it is universally catenary and A −→ Â
is regular [GD65, 7-8-3 i)]. In particular, if A is a quotient of a local regular ring, then
A is excellent if and only if A −→ Â is regular [GD65, 5-6-4].

Example 7.5. [Na62, Mat80] Let k be a field of characteristic p > 0 such that [k : kp] = ∞
(for instance let us take k = Fp(t1, . . . , tn, . . .) where (tn)n is a sequence of indeterminates). Let

V := kpJxK[k] where x is a single variable, i.e., V is the ring of power series
∞∑
i=0

aix
i such that

[kp(a0, a1, . . .) : kp] < ∞. Then V is a discrete valuation ring whose completion is kJxK. We
have V̂ p ⊂ V , thus [Frac(V̂ ) : Frac(V )] is purely inseparable. Hence V is a Henselian ring by
Remark 8.9 since V̂ is Henselian by Example 8.16.

Since [Frac(V̂ ) : Frac(V )] is purely inseparable, V −→ V̂ is not regular by Example 7.2 and
V is not excellent by Example 7.4 iv).

On the other hand, let f be a power series of the form
∞∑
i=0

aix
i, ai ∈ k such that

[kp(a0, a1, ...) : kp] =∞.

Then f ∈ V̂ but f /∈ V , and fp ∈ V . Thus f is the only root of the polynomial yp − fp. This
shows that the polynomial yp − fp ∈ V [y] does not satisfy Theorem 2.26.

8. Appendix C: Étale morphisms and Henselian rings

The material presented here is very classical and has first been studied by G. Azumaya [Az51]
and M. Nagata [Na53, Na54]. We will give a quick review of the definitions and properties that
we need for the understanding of the rest of the paper. Nevertheless, the reader may consult
[Na62, GD67, Ra70, Iv73, Mi80] for more details, in particular for the proofs we do not give
here.

Example 8.1. In classical algebraic geometry, the Zariski topology has too few open sets.
For instance, there is no Implicit Function Theorem. Let us explain this problem through the
following example:

Let X be the zero set of the polynomial y2−x2(x+1) in C2. On an affine open neighborhood
of 0, denoted by U , X∩U is equal to X minus a finite number of points, thus X∩U is irreducible
since X is irreducible. In the euclidean topology, we can find an open neighborhood of 0, denoted
by U , such that X ∩U is reducible, for instance take U = {(x, y) ∈ C2 / |x|2 + |y|2 < 1/2}. This
comes from the fact that x2(1+x) is the square of an analytic function defined on U ∩ (C×{0}).
Let z(x) be such an analytic function, z(x)2 = x2(1 + x).

In fact we can construct z(x) by using the Implicit Function Theorem as follows. We see that
z(x) is a root of the polynomial Q(x, z) := z2 − x2(1 + x). We have Q(0, 0) = ∂Q

∂z (0, 0) = 0,
thus we can not use directly the Implicit Function Theorem to obtain z(x) from its minimal
polynomial.

Nevertheless let us define P (x, t) := (t + 1)2 − (1 + x) = t2 + 2t − x. Then P (0, 0) = 0 and
∂P
∂t (0, 0) = 2 6= 0. Thus, from the Implicit function Theorem, there exists t(x) analytic on a
neighborhood of 0 such that t(0) = 0 and P (x, t(x)) = 0. If we set z(x) := x(1 + t(x)), we have
z2(x) = x2(1 +x). In fact z(x) ∈ B :=

C[x,t](x,t)

(P (x,t)) . The morphism C[x] −→ B is a typical example
of an étale morphism.
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Definition 8.2. Let ϕ : A −→ B be a ring morphism essentially of finite type. We say that
ϕ is a smooth morphism (resp. étale morphism) if for every A-algebra C along with an ideal
I such that I2 = (0) and any morphism of A-algebras ψ : B −→ C

I there exists a morphism
σ : B −→ C (resp. a unique morphism) such that the following diagram commutes:

A
ϕ //

��

B

ψ

��σ
��

C // C
I

Let us mention that the definition of an étale morphism is not the same depending on the
sources and some authors require that an étale morphism be of finite type (as in [Ra70] or
[StacksProject] for instance). But we are mainly interested in local morphisms A −→ B which
are hardly of finite type, so we prefer to choose this definition. Moreover this allows the étale
neighborhoods (see the definition below) to be étale morphisms, which is not the case if we
impose the finite type condition.

Example 8.3. Let k := R or C and let us assume that A = k[x1,...,xn]
J and B = A[y1,...,ym]

K for
some ideals J and K. Let X be the zero locus of J in kn and Y be the zero locus of K in kn+m.
The morphism ϕ : A −→ B defines a regular map Φ : Y −→ X. Let C := k[t]

(t2) and I := (t). Let
f1(x), . . . , fr(x) be generators of J .

A morphism A −→ C is given by elements ai, bi ∈ k such that fj(a1 +b1t, . . . , an+bnt) ∈ (t)2

for 1 ≤ j ≤ r. We have

fj(a1 + b1t, . . . , an + bnt) = fj(a1, . . . , an) +

(
n∑
i=1

∂fj
∂xi

(a1, . . . , an)bi

)
t mod. (t)2.

Thus a morphism A −→ C is given by a point

x := (a1, . . . , an) ∈ X

(i.e., such that fj(a1, . . . , an) = 0 for all j) and a tangent vector u := (b1, . . . , bn) to X at x (i.e.,

such that
n∑
i=1

∂fj
∂xi

(a1, . . . , an)bi = 0 for all j). In the same way a A-morphism B −→ C
I = k is

given by a point y ∈ Y . Moreover the first diagram is commutative if and only if Φ(y) = x.
Then ϕ is smooth if for every x ∈ X, every y ∈ Y and every tangent vector u to X at x such

that Φ(y) = x, there exists a tangent vector v to Y at y such that Dy(Φ)(v) = u, i.e., if Dy(ϕ)
is surjective. And ϕ is étale if and only if v is unique, i.e., if Dy(Φ) is bijective. This shows that
smooth morphisms correspond to submersions in differential geometry and étale morphisms to
local diffeomorphisms.

Example 8.4. Let ϕ : A −→ BS be the canonical morphism where B := A[x]
(P (x)) and S is a

multiplicative system of B containing ∂P
∂x . If we have a commutative diagram

A
ϕ //

��

BS

ψ

��
C // C

I
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with I2 = (0), the morphism BS −→ C
I is given by an element c ∈ C such that P (c) ∈ I.

Looking for a lifting of ψ is equivalent to find ε ∈ I such that P (c+ ε) = 0. We have

(29) P (c+ ε) = P (c) +
∂P

∂x
(c)ε

since I2 = (0). Since ∂P
∂x is invertible in BS , ∂P

∂x (c) is invertible in C
I , i.e., there exists a ∈ C

such that a∂P∂x (c) = 1 mod. I. Let i := a∂P∂x (c)− 1. Then

a(1− i)∂P
∂x

(c) = 1

since i2 = 0. Thus there exists a unique ε satisfying (29) and ε is given by:

ε = −P (c)a(1− i).

This proves that ϕ is étale. Compare this example with Example 8.1.

Definition 8.5. Morphisms of the form ϕ : A −→ A[x]
(P (x))p

where P (x) is monic, p ∈ Spec(A[x])

contains P (x) but not ∂P
∂x (x) and p ∩ A is maximal are étale morphisms and these are called

standard étale morphisms.

Theorem 8.6. [Iv73, II.2] If A and B are local rings, any étale morphism from A to B is
standard étale.

Example 8.7 (Jacobian Criterion). If k is a field and ϕ : k −→ B := k[x1,...,xn]m
(g1,...,gr) , where

m := (x1− c1, . . . , xn− cn) for some ci ∈ k, the morphism ϕ is smooth if and only if the jacobian
matrix

(
∂gi
∂xj

(c)
)
has rank equal to the height of (g1, . . . , gr). This is equivalent to saying that

V (I) has a non-singular point at the origin. Let us recall that the fibers of submersions are
always smooth.

Definition 8.8. Let (A,mA) be a local ring. An étale neighborhood of A is an étale local
morphism A −→ B inducing an isomorphism between the residue fields.

If A is a local ring, the étale neighborhoods of A form a filtered inductive system and the
limit of this system is called the Henselization of A (cf. [Iv73, III. 6] or [Ra69, VIII]) and is
denoted by Ah.

We say that A is Henselian if A = Ah. The morphism ıA : A −→ Ah is universal among
all the morphisms A −→ B inducing an isomorphism on the residue fields and where B is a
Henselian local ring. The morphism ıA is called the Henselization morphism of A.

Remark 8.9. If A is a local domain, then Frac(A) −→ Frac(Ah) is an algebraic separable
extension. Indeed Ah is the limit of étale neighborhoods of A which are localizations of étale
morphisms by Theorem 8.6, thus Ah is a limit of separable algebraic extensions.

Proposition 8.10. If A is a Noetherian local ring, its Henselization Ah is a Noetherian local
ring and ıA : A −→ Ah is faithfully flat (in particular it is injective). If ϕ : Ah −→ B is an étale
morphism there is a section σ : B −→ Ah, i.e., σ ◦ ϕ = idAh .

Remark 8.11.
i) Let ϕ : A −→ B be a morphism of local rings. We denote by ıA : A −→ Ah and
ıB : B −→ Bh the Henselization morphisms. By the universal property of the Henseliza-
tion the morphism ıB ◦ A : A −→ Bh factors through Ah in a unique way, i.e., there
exists a unique morphism ϕh : Ah −→ Bh such that ϕh ◦ ıA = ıB ◦ ϕ.
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ii) If ϕ : A −→ B is an étale morphism between two local rings, ϕh is an isomorphism. In-
deed ϕ being étale, ıA factors through ϕ, i.e., there exists a unique morphism
s : B −→ Ah such that s ◦ϕ = ıA. The morphism s induces a morphism sh : Bh −→ Ah

as above. Thus we have the following commutative diagram:

A
ϕ //

ıA
��

B

s

}}
ıB
��

Ah
ϕh

// Bh

sh
jj

Since s ◦ ϕ = ıA, (s ◦ ϕ)h = sh ◦ ϕh = idA. On the other hand,

(ϕh ◦ s)h = ϕh ◦ sh = ıhB = idB .

This shows that ϕh is an isomorphism and sh is its inverse.
iii) If ϕ : A −→ B is an étale morphism between two local rings where A is Henselian, the

previous remark implies that ϕ is an isomorphism since ıB : B −→ Bh is injective.

Proposition 8.12. Let A be a Henselian local ring and let ϕ : A −→ B be an étale morphism
that admits a section in A

mc
A

for some c ≥ 1, i.e., a morphism of A-algebras s : B −→ A
mc

A
. Then

there exists a section s̃ : B −→ A such that s̃ = s modulo mc.

Proof. Let m := s−1(mA). Since s is a A-morphism, m ∩ A = mA, m is a maximal ideal of B
and B

m is isomorphic to A
mA

. Because A is Henselian and the morphism ψ : A −→ Bm induced
by ϕ is an étale neighborhood, ψ is an isomorphism. Then ψ−1 composed with the localization
morphism B −→ Bm gives the desired section. �

Remark 8.13. Let (A,mA) be a local ring. Let P (y) ∈ A[y] and a ∈ A satisfy P (a) ∈ mA and
∂P
∂y (a) /∈ mA. If A is Henselian, A −→ A[y]

(P (y)) mA+(y−a) is an étale neighborhood of A, thus it
admits a section. This means that there exists ỹ ∈ mA such that P (a+ ỹ) = 0.

In fact this characterizes Henselian local rings:

Proposition 8.14. Let A be a local ring. Then A is Henselian if and only if for any P (y) ∈ A[y]
and a ∈ A such that P (a) ∈ mA and ∂P

∂y (a) /∈ mA there exists ỹ ∈ mA such that P (a+ ỹ) = 0.

We can generalize this proposition as follows:

Theorem 8.15 (Implicit Function Theorem). Set y = (y1, . . . , ym) and let f(y) ∈ A[y]r

with r ≤ m. Let J be the ideal of A[y] generated by the r × r minors of the Jacobian matrix of
f(y). Assume that A is Henselian, f(0) = 0 and J 6⊂ mA.

A[y]
(y) . Then there exists ỹ ∈ mmA such

that f(ỹ) = 0.

Example 8.16. The following rings are Henselian local rings:
• Any complete local ring is Henselian.
• The ring of germs of C∞ functions at the origin of Rn is a Henselian local ring but it is

not Noetherian.
• The ring of germs of analytic functions at the origin of Cn is a Noetherian Henselian

local ring; it is isomorphic to the ring of convergent power series.
• By Proposition 8.14 any quotient of a local Henselian ring is again a local Henselian

ring.
• The next example shows that the rings of algebraic power series over a field are Henselian.
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Example 8.17. If A = kVx1, . . . , xnW for some Weierstrass system over k, then A is a Henselian
local ring by Proposition 8.14. Indeed, let P (y) ∈ A[y] satisfy P (0) = 0 and ∂P

∂y (0) /∈ (p, x).
Then P (y) has a non-zero term of the form cy, c ∈ k∗. So we have, by the Weierstrass Division
Property,

y = P (y)Q(y) + r

where r ∈ mA. By considering the derivatives with respect to y of both terms of this equality
and evaluating at 0 we see that Q(0) 6= 0, i.e., Q(y) is a unit. Thus Q(r) 6= 0 and P (r) = 0.

We have the following generalization of Proposition 8.14:

Proposition 8.18 (Hensel’s Lemma). Let (A,mA) be a local ring. Then A is Henselian
if and only if for any monic polynomial P (y) ∈ A[y] such that P (y) = f(y)g(y) mod mA for
some monic polynomials f(y), g(y) ∈ A[y] which are coprime modulo mA, there exist monic
polynomials f̃(y), g̃(y) ∈ A[y] such that P (y) = f̃(y)g̃(y) and f̃(y)− f(y), g̃(y)− g(y) ∈ mA[y].

Proof. Let us prove the sufficiency of the condition. Let P (y) ∈ A[y] and a ∈ A satisfy P (a) ∈ mA
and ∂P

∂y (a) /∈ mA. This means that P (X) = (X − a)Q(X) where X − a and Q(X) are coprime
modulo m. Then this factorization lifts to A[X], i.e., there exists ỹ ∈ mA such that P (a+ ỹ) = 0.
This proves that A is Henselian.

To prove that the condition is necessary, let P (y) ∈ A[y] be a monic polynomial

P (y) = yd + a1y
d−1 + · · ·+ ad.

Let k := A
mA

be the residue field of A. For any a ∈ A let us denote by a the image of a in k. Let
us assume that P (y) = f(y)g(y) mod mA for some f(y), g(y) ∈ k[y] which are coprime in k[y].
Let us write

f(y) = yd1 + b1y
d1−1 + · · ·+ bd1 , g(y) = yd2 + c1y

d2−1 + · · ·+ cd2

where b = (b1, . . . , bd1) ∈ kd1 , c = (c1, . . . , cd2) ∈ kd2 . The product of polynomials P = fg
defines a map Φ : kd1 × kd2 → kd, that is polynomial in b and c with integer coefficients, and
Φ(b, c) = a := (a1, . . . , ad). The determinant of the Jacobian matrix ∂Φ

∂(b,c) is the resultant of f(y)

and g(y), and hence is non-zero at (b, c). By the Implicit Function Theorem (Theorem 8.15),
there exist b̃ ∈ Ad1 , c̃ ∈ Ad2 such that P (y) = P1(y)P2(y) where P1(y) = yd1 + b̃1y

d1−1 + · · ·+ b̃d1
and P2(y) = yd2 + c̃1y

d2−1 + · · ·+ c̃d2 . �

Proposition 8.19. [GD67, 18-7-6] Given an excellent local ring A, its Henselization Ah is also
an excellent local ring.
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