Journal of Singularities received: 16 June 2015

_ in revised form: 10 February 2018
Volume 17 (2018), 28-57 DOI: 10.5427/jsing.2018.17b

SINGULARITIES AND STABLE HOMOTOPY GROUPS OF SPHERES. II

ANDRAS SzUCS AND TAMAS TERPAI

ABSTRACT. We consider compositions of immersions of n-manifolds into R”*2 with a pro-
jection to a hyperplane, and investigate the cobordism groups of such maps when we allow
only a given finite set of (Morin) singularities. The classifying spaces for these cobordism
groups allow a concrete description. The spectral sequence computing these groups can be
identified with that arising from the filtration of complex projective spaces in the extraordi-
nary homology theory formed by stable homotopy groups. The differentials of this spectral
sequence describe the incidences of the different singularity strata. These incidence classes
are described by elements of the stable homotopy groups of spheres and turn out to have
surprising periodicity properties. The first non-zero such incidence class always belongs to
the image of the J-homomorphism, which is cyclic. Combining the results of Mosher, Adams
and Atiyah the element that describes the incidence can be calculated exactly.

1. INTRODUCTION AND MOTIVATION

Understanding generic smooth maps includes the following ingredients:

a) Local forms: they describe the map in neighbourhoods of points (see Whitney [30], Mather
[15], Arnold [6], [7] and others).

b) Automorphism groups of local forms: they describe the maps in neighbourhoods of singularity
strata (a stratum is a set of points with equal local forms) (see Janich [13], Wall [28], Riményi
[18], Szlics [23], Rimanyi-Sziics [19]).

¢) Clutching maps of the strata: they describe how simpler strata are incident to more compli-
cated ones.

The present paper is devoted to a systematic investigation of ingredient ¢) (for some special
class of singular maps), initiated in the first part of this paper, [17]. While the ingredients a)
and b) were well studied, there were hardly any results concerning c).

The clutchings of strata will be described by some classes of the stable homotopy groups of
spheres, G = @Ows(n). We shall associate an element of G to a singular map (more precisely, to

n

its highest singularity stratum) that will be trivial precisely when the second most complicated
singularity stratum can be smoothed in some sense around the most complicated one. If this
is the case then considering the next stratum (the third most complicated) we define again a
(higher dimensional) element of G, and this will vanish precisely when this (third by complexity)
stratum can be smoothed around the highest one. And so on.

The aim of the paper is computing these classes explicitly. The actual computation is taken
from Mosher’s paper [16], which is purely homotopy theoretic, and is not dealing with any sin-
gularity or any smooth maps. Mosher computes the spectral sequence arising from the filtration
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of CP* by the spaces CP™ in the (extraordinary) homology theory formed by the stable ho-
motopy groups. We show that in a special case of singular maps the classifying spaces of such
singular maps can be obtained from the complex projective spaces by some homotopy theoretical
manipulation. This allows us to identify the clutching classes describing the incidence structure
of the singularity strata with the differentials of Mosher’s spectral sequence.

The relationship between part I ([17]) and the current part IT is the following: part I deals with
one fragment of the same spectral sequence, namely the one generated by the first three columns;
it is however completely independent of the difficult paper [16] by Mosher, which is the key tool
here. Here we identify our spectral sequence with that of Mosher and utilize deep results from
[16]. In particular we manage to get some unexpected periodicity for the differentials, compute
the first nontivial differential explicitly, and this — combined with the geometric interpretation of
the differentials described in [17] — allows us to draw interesting geometric conclusions concerning
the behaviour of singularity strata around the higher strata. Part II relies on part I only weakly,
in particular we use here the commutation of the differentials with the multiplication in the ring
G (see [17, Claim 1]), but it can be derived from a similar property of Mosher’s spectral sequence
once the two sequences are identified.

2. SPECTRAL SEQUENCES

2.1. The Mosher spectral sequence. Let us consider the following spectral sequence: CP>°
is filtered by the subspaces CP". Consider the extraordinary homology theory formed by the
stable homotopy groups 5. The filtration CP? ¢ CP' C ... generates a spectral sequence in
the theory 75. The starting page of this spectral sequence is

E) =15, (S?)=7%(q —p),

containing the stable homotopy groups of spheres. This spectral sequence was investigated by
Mosher [16]. Our first result is that (rather surprisingly) this spectral sequence coincides with
another one that arises from singularity theory; we describe it now.

2.2. The singularity spectral sequence. ([25]) Let
XcX'cXx?*c---cX

be a filtration such that for any i there is a fibration X — B; with fibre X*~!. Then there is a
spectral sequence with E' page given by E} , = 7 14(B,) that abuts to 7.(X). (Indeed, in the
usual construction of a spectral sequence in the homotopy groups one has E},y = Tptq(XP, XP71)
and in the present case this group can be replaced by m,14(B;).)

Such an iterated fibration arises in singularity theory in the following way. Let k be a fixed
positive integer and consider all the germs of codimension k& maps, i.e. all germs

f:(RS,0) — (RTF)0),
where c¢ is a non-negative integer. Two such germs will be considered to be equivalent if

e they are A-equivalent (that is, one of the germs can be obtained from the other by
composing and precomposing it with germs of diffeomorphisms), or
e one of the germs is equivalent to the trivial unfolding (or suspension) of the other, that
is, f is equivalent to f x idg : (R x R, 0) — (RetF x RY).
An equivalence class will be called a singularity or a singularity type (note that germs of maximal
rank, with rank df = ¢, form an equivalence class and this class is also a “singularity”). For any
codimension k& smooth map of manifolds f : M™ — P"** any point € M and any singularity
1 we say that x is an n-point if the germ of f at x belongs to n. There is a natural partial order
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on the singularities: given two singularities  and ¢ we say that < ¢ if in any neighbourhood
of a (-point there is an n-point.

Now let 7 be a sequence of singularities 19, 71, 72, - .. such that for all ¢ in any sufficiently
small neighbourhood of an n; point there can only be points of types ng, ..., 7;,—1. We say that
a smooth map f : M™ — P"t* is a 7-map if at any point = € M the germ of f at x belongs to
7. One can define the cobordism group of 7-maps of n-manifolds into R"** (with the cobordism
being a 7-map of an (n + 1)-manifold with boundary into R"** x [0,1]); this group is denoted
by Cob,(n). In [25] it was shown that there is a classifying space X, such that

Cob;(n) = mpk(X7).

Let 7; denote the set 7; = {no, ..., n;} and denote by X* the classifying space X,,. It was shown
in [25] that X° C X! C ... is an iterated fibration, that is, there is a fibration X* — B; with
fibre X*~1. The base spaces B; have the following description (given in [25]): to the singularity
7; one can associate two vector bundles, the universal normal bundle &; of the stratum formed
by m;-points in the source manifold and the universal normal bundle éi of the image of this
stratum in the target. Let Tg} be the Thom space of the bundle 51 and let FT& be the space
QOOSOOT&- = qlLIgOQquTfi. Then B; = I‘Té. The obtained fibration X;_; «— X; — B; is called

the key fibration of 7;-cobordisms (see [25, Definition 109)).

Let us recall shortly the construction of the bundles & and &;. Let 772 : (R%,0) — (R%+% 0)
be the root of the singularity 7;, i.e. a germ with an isolated 7; point at the origin. Let
Autyroor < Dif f(R%,0) x Dif f(R%** 0) be the automorphism group of this germ, that is, the
set of pairs (¢,v) of diffeomorphism germs of (R%,0) and (R%** 0), respectively, such that
nroot = ¢ onloot oqp~1. Janich [13] and Wall [28] showed that a maximal compact subgroup of
this automorphism group can be defined (and is unique up to conjugacy). Let G, denote this
subgroup. It acts naturally on (R%,0) and on (R%** 0) and these actions can be chosen to
be linear (even orthogonal). We denote by A; and \; the corresponding representations of G;
in GL(¢;) and GL(c; + k) respectively. Now &; and &; are the vector bundles associated to the

universal G;-bundle via the representations \; and \;, i.e. §; = FG; xR and §~i = EG,; xReitk,
X X

Recall also that the space I‘Tgi is the classifying space of immersions equipped with a pullback
of their normal bundle from EZ (such immersions will be called gi—immersions). That is, if we
denote by I'mm?& (m) the cobordism group of immersions of m-manifolds into R™*¢** with the
normal bundle induced from {1—, the following well-known proposition holds:

Proposition 1. ([29], [9])
Imm® (m) = 7Tm+6i+k(FT£i) = 777Sn+ci+k:(T£i)'

Hence there is a spectral sequence in which the starting page is given by the cobordism groups

of &;-immersions: i
By g = Ty g(T&) = Imm (p+q — ci = k)

and that abuts to the cobordism groups of 7-maps. The differentials of this spectral sequence
encode the clutching maps of the singularities that belong to 7. For example, one may take an
isolated 7, singularity g : (D®,S% 1) — (D%*k S§es+k=1). it would correspond to a generator
ts of S |, (T¢,) (which is either Z or Zs). On the boundary dg : %1 — §%T#~1 of the map
g, the ns_1-points are the most complicated and therefore they form a fs,l—immersion. The
cobordism class of this immersion is the image dl(LS) of v under the differential d*. Now assume
that d'(ts) = 0, that is, the n,_;-points of dg form a null-cobordant &, ;-immersion. By [25,
Theorem 8] and [26], any such cobordism can be extended to a 7,_1-cobordism that connects dg
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with a 7,_g-map Oog : M1 — S°+k=1 The n,_s-points of Jyg form a és,g—immersion, and
its cobordism class is the image d?(is) of 15 under the differential d2. If this image is 0, then
again we can change d>g by a cobordism to eliminate 7,_o-points, and so on.

So far we have described two spectral sequences. We will show that in a special case the
second one coincides with the first one, and this will allow us to study the clutchings of the
singular strata.(Our proof of this equality of the two spectral sequences is independent of the
paper [25] to which we referred in this section.)

3. CODIMENSION 2 IMMERSIONS AND THEIR PROJECTIONS

Let v — CP*° be the canonical complex line bundle and let v, be its restriction to CP". Let us
consider an immersion f : M™ 9 R"*2 of an oriented closed manifold. We call f a ~,-immersion
if its normal bundle is pulled back from the bundle «,. Let Imm7 (n) denote the cobordism
group of v,-immersions of n-dimensional manifolds into R"*2. Analogous to Proposition 1, we
have Imm?(n) = 7, ,(CP™+1).

Definition: A smooth map g : M™ — R"*¥ is called a prim map if

e dimkerdg <1, and

e the line bundle formed by the kernels of dg over the set ¥ of singular points of g is
trivialized.

Remark: Note that choosing any smooth function h on the source manifold M of g such that
the derivative of h in the positive direction of the kernels ker dg is positive gives an immersion
f=1(9,h): M 3 R"™* x R, So g is the projection of the immersion f, motivating the name
“prim map”.

The singularity types of germs for which the kernel of the differential is 1-dimensional form
an infinite sequence ¥10 (fold), X510 (cusp), BL110 ete. Let us denote by !+ the symbol
¥ho10 that contains r digits 1. We call a prim map X'~ -prim if it has no singularities of type
¥1s for s > r. The cobordism group of prim X' -maps of cooriented n-dimensional manifolds
into an (n + 1)-manifold N will be denoted by PrimX!'(N), and we will use Prim¥'(n) to
denote Prim¥!tr(S"t1).

Theorem 2.
Prim'(n) 2 75, ,(CP™ ).

The theorem is related to the spectral sequence described in Section 2 in the following way.
Set k=1and n; = Y1 so that 7, = {Eli 1 < r}. Denote by X" the classifying space X prim_r.
of prim 7,.-maps. The main result, implying that the spectral sequences of Section 2 coincide, is
the following:

Lemma 3. The classifying space X" (whose homotopy groups give the cobordism groups of prim
Tr-maps) is
X" =Qrcprtt

Remarks:

(1) Recall that the functor I' turns cofibrations into fibrations. That is, if (Y, B) is a pair
of spaces such that B C Y — Y/B is a cofibration, then I'Y — I'(Y/B) is a fibration
with fibre I'B. The same is true if we apply to a cofibration the functor QI', that is,
QI'Y — QI'(Y/B) is a fibration with fibre QI'B.

(2) Further let us recall the resolvent of a fibration map. If E % B is a fibration then the
sequence of maps F' — E — B can be extended to the left as follows. Turn the inclusion
F — FE into a fibration. Then it turns out that its fiber is 2B, the loop space of B.
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The fiber of the inclusion 2B — F' is QF, the fiber of QF — QB is QF etc. Now start
with the filtration CP° C --- ¢ CP" ¢ CP"*! C -.. ¢ CP® considered by Mosher
and apply QI to it; we get an iterated fibration filtration. So according to Subsection
2.2 we obtain a spectral sequence that clearly coincides with Mosher’s spectral sequence
(obtained from the filtration CP° ¢ CP! C --- C CP*> by applying the extraordinary
homology theory 75, of the stable homotopy groups). By Lemma 3 this also coincides
with the singularity spectral sequence described in Subsection 2.2 for the special case of
prim maps of oriented n-manifolds into R™*1.
Summary: The singularity spectral sequence for codimension 1 cooriented prim maps coin-
cides with the spectral sequence of Mosher.

Remark: Theorem 2 follows obviously from Lemma 3.

Remark: Note that the space of immersions of an oriented n-manifold M into R"*2 (denote
it by Imm(M,R"*2)) is homotopy equivalent to the space of prim maps of M into R"*! (denoted
by Prim(M,R"*1)). Indeed, projecting an immersion M™ &+ R"*2 into a hyperplane one gets a
prim map M"™ — R™*! together with an orientation on the kernel of the differentials. Conversely,
having a prim map g : M™ — R™"! one can obtain an immersion f : M™ 9 R"*2 by choosing
a function h : M — R! that has positive derivative in the positive direction of the kernels of df
and putting f = (g, h). The set of admissible functions h (for a fixed g) is clearly a convex set.

Hence for any M the projection induces a map Imm(M,R"*2) — Prim(M,R"*!) that is
a weak homotopy equivalence since the preimage of any point of Prim(M,R"!) is a convex
set. The space TCP* is the classifying space of codimension 2 immersions. The previous
remark implies that QI'CP* is the classifying space of codimension 1 prim maps. Moreover,
the correspondence of the spaces of immersions and prim maps established above respects the
natural filtrations of these spaces as the following lemma shows.

Lemma 4. a) If an immersion f : M™ 9 R"*2 has the property that its composition with the
projection m : R™"2 — R has no X'i-points for i > r, then the normal bundle of f can be
induced from the canonical line bundle ~,. over CP".

b) The classifying space for the immersions into R"*2 that have ¥'*-map projections in R"T1
18 weakly homotopically equivalent to the classifying space of immersions equipped with a
pullback of their normal bundle from -, (this latter being TCP"™T1).

Remark: Lemma 4 implies that PrimX'*(n) & Imm™(n) = 75, ,(Ty,) = 75, ,(CP™+1),
therefore Theorem 2 holds.

Proof. Let f: M™ 9% R"*2 be an immersion such that the composition g = 7o f : M™ — R*t!
has no X! +!-points. We show that the normal bundle v of f can be induced from the bundle
7. Let v denote the unit vector field 9/9z,, 42 in R"™2; we consider it to be the upward directed
vertical unit vector field. For any @ € M consider the vector v at the point f(z) and project it
orthogonally to the normal space of the image of f (i.e. to the orthogonal complement of the
tangent space df (T, M)). We obtain a section sq of the normal bundle vy — M which vanishes
precisely at the singular points of g. Denote by ¥y the zero-set of sg, ¥1 = 551(0); then ¥ is
a codimension 2 smooth submanifold of M. Let v; be the normal bundle of ¥; in M. Then 14
is isomorphic to the restriction of vy to X; (the derivative of sy establishes an isomorphism).
Consider now the vertical vector field v at the points of ¥; and project it orthogonally to the
fibers of 1. This defines a section s; of the bundle vy, which vanishes precisely at the X''!-points
of the map g (at the singular set of the restriction of the projection 7 to ¥1). Denote this zero-set
by Y5 and its normal bundle in ¥; by v5. Next we consider v at the points of ¥5 and project it
to the fibers of 5, obtaining a section s, of 15 that vanishes precisely at the Z'3-points of ¢, and
so on. If g has no X +1-points, then this process stops at step r because s;_&l(O) will be empty.
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Claim: In the situation above (when s, (0) is empty) the bundle v admits (r 4 1) sections
09, - ..,0. such that they have no common zero: ﬂZT:OJi_l(O) = (.

Proof of the claim: Put og = sg. To define o1, we consider the section s; of the normal bundle
v1 of ¥ in M. This normal bundle v; is isomorphic to the restriction of vy to X1, hence we can
consider s; as a section of vy over ¥;. Extend this section arbitrarily to a section of vy (over
M); this will be 0. Similarly, s is a section of the normal bundle vy of ¥y = 51_1(0) in Xi.
The bundle v; is isomorphic to the normal bundle of ¥; in M restricted to X9, and this bundle
in turn is isomorphic to vy restricted to ¥o. Hence s, can be considered as a section of vy over
Y. Extending it arbitrarily to the rest of M gives us 3. We continue the process and obtain
03, ..., 0. Clearly these sections satisfy NI_yo; ' (0) = Ni_ys;*(0) = 0 as claimed.

Next we define a map ¢ : M — CP" by the formula ¢(z) = [o¢(z) : -+ : 0,(z)], where we
consider all o;(x) as complex numbers in the fiber (v¢), = C. This map is well-defined, since
changing the trivialization of the fiber (vf), (while keeping its orientation and inner product)
multiplies all the values o;(x) by the same complex scalar, hence ¢(z) € CP” remains the same.

Claim: Homg (v, C) = p*y,.

Indeed, we can define a fibrewise isomorphism from Homc(vs,C) to v, over the map ¢ by
sending a fiberwise C-linear map a : vy — C to (a(0y),...,a(0,)) € C™T1. The image of this
map over the point « € M lies on the line ¢(z) and since not all o; vanish at z, the map is an
isomorphism onto the corresponding fiber of (7;)y(z)-

This proves part a) of Lemma 4.

The same argument can be repeated for any cooriented prim X'7-map of an n-dimensional
manifold into an (n+ 1)-dimensional manifold. Thus for any target manifold N we obtain a map
[N, X"] = PrimX'"(N) — [SN,[CP™"1] = [N, QI CP™1].

Recall from Subsection 2.2 that we can also assign to a X!7-map the set of its X'7-points,
which form an immersion such that its normal bundle (in the target space) can be pulled back
from the universal bundle ér. This universal bundle é,, in the case of prim Morin maps is trival
(see [17]), hence T¢, = S*"+1. We will also use the existence of the key fibration mentioned in
Subsection 2.2 that says that this assignment fits into a fibration X! ¢ X" — I'S?+1,

We now prove part b) of Lemma 4 by induction on 7. For r = 0 and any given target manifold
N the two classes of maps are 1-framed codimension 2 immersions into N X R and codimension
1 immersions into IV respectively. The spaces of these maps are weakly homotopically equivalent
by the Compression Theorem [20]. The classifying space for both types of maps is QI'S?. For
a general r, the operation of extracting the X'v-points from a prim map gives us the following
commutative diagram:

PrimXt(N) = [N, X"] [N, TS>+1]
[SN,TCP™+!] = [N, QLCP"+!] —— [N, TS +]

The arrows of this diagram are natural transformations of functors, and thus correspond to maps
of the involved classifying spaces (see [22]Chapter 9, Theorem 9.13.):

Xr FS2r+l
Qrcpr+!t — s+t

By construction this diagram is commutative and the right-hand side map can be chosen to
be the identity map. The horizontal arrows are Serre fibrations with fibers X! and QI'CP"
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respectively. By the commutativity of the diagram fiber goes into fiber:

X 1 c X FSQT‘—‘,— 1

Qrceer ¢ Qreprtt ——= st

Consider the long homotopy exact sequence of the top and the bottom rows. The vertical maps
of the diagram induce a map of these long exact sequences. By the induction hypothesis the
map X"~ ! — QI'CP" is a weak homotopy equivalence. The five-lemma then implies that the
middle arrow is also a weak homotopy equivalence and X" is weakly homotopically equivalent
to QI'CP". This finishes the proof of Lemmas 4 and 3. O

4. STABLE HOMOTOPY THEORY TOOLS

Mosher proved several statements concerning the differentials of his spectral sequence. Since
it coincides with our singularity spectral sequence, Mosher’s results translate into results on
singularities. For proper understanding of the proofs of Mosher (which are highly compressed
and not always complete) we elaborate them here. We start by recalling a few definitions and
facts of stable homotopy theory.

Definition: Given finite CW-complexes X and Y we say that they are S-dual if there exist
iterated suspensions ¥?X and 39Y such that they can be embedded as disjoint subsets of SV
(for a suitable N) in such a way that both of them are deformation retracts of the complement
of the other one.

Definition: Let X be a finite cell complex with a single top n-dimensional cell. X is reducible
if there is a map S™ — X such that the composition S* — X — X/sk,_1X = S™ has degree 1.

Definition: Let X be a finite cell complex with a single lowest (positive) dimensional cell,
in dimension n. Then X is coreducible if there is a map X — S™ such that its composition with
the inclusion S — X is a degree 1 self-map of S™.

Example: if e = B xR" is the rank n trivial bundle, then the Thom space 1€ is coreducible
since the trivializing fibrewise map e} — R™ extends to the Thom space and is identical on S™
(the one-point compactification of a fiber).

Definition: The space X is S-reducible (S-coreducible) if it has an iterated suspension which
is reducible (respectively, coreducible).

Proposition 5. [12, Theorem 8.4] If X and Y are S-dual cell complexes with top and bottom
cells generating their respective homology groups, then X is S-reducible if and only if Y is S-
coreducible.

Lemma 6. If X is a finite S-coreducible cell complex with sk, X =S", then X is stably homo-
topically equivalent to the bouquet S™ V (X/sk, X).

Proof. The product of the retraction r : X — sk, X and the projection p : X — X/sk, X gives
amap [ = (r,p) : X = S" x (X/sk,X). Replacing X by its sufficiently high suspension we
can assume that dim X < 2n — 1. The inclusion S" V (X/sk,X) — S™ x (X/skp,X) is 2n — 1-
connected, so in this case we can assume that f maps X into S" V (X/sk,X). Then f induces
isomorphisms of the homology groups, hence it is a homotopy equivalence. (I
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In what follows, we will encounter cell complexes such that after collapsing their unique
lowest dimensional cell they become (S-)reducible or after omitting their unique top dimensional
cell they become (S-)coreducible. In both of these cases, there is an associated (stable) 2-cell
complex:

Definition: Let X be a cell complex with a unique bottom cell e such that X /e™ is reducible,
with the top cell e"*? splitting off. Then the attaching map of the cell e"*? to X \ e"*? can
be deformed into €™ — one can lift the map S"*% — X/e™ in the definition of reducibility to
a map (D" 9D"td) — (X,em). We define the 2-cellification of X to be the 2-cell complex
Z = Dntd SS” whose attaching map « is a deformation of the attaching map de"*? — X \ e"+9

into e”.
Definition: Let X be a cell complex with a unique top cell e"*? such that X \ e"* is

coreducible, retracting onto the bottom cell e™. We define the 2-cellification of X to be the
2-cell complex Z = D"+% U S™ whose attaching map « is the composition of the attaching map

(a7
et — X\ ent? with the retraction X \ e"td — en.

Note that in both definitions there is a choice to be made: a deformation of the attaching map
of the top cell into the bottom cell has to be chosen in the first definition, and a retraction onto
the bottom cell has to be chosen in the second one. Making different choices can result in (even
stably) different 2-cell complexes, and any of them can be considered as possible 2-cellifications.
Next we show that taking the S-dual space to all possible 2-cellifications of a complex X we
obtain precisely the 2-cellifications of the S-dual complex Dg[X].

Lemma 7. Let X andY be S-dual finite cell complexes with top and bottom homologies generated
freely by the single top and bottom cells e}"’d, e, e$+d and ey’, respectively. Assume that in X,
the cell e?fd is attached only to the bottom cell €% in a homotopically nontrivial way (in other
words, X/e' is reducible). Then

o Y\ et admits a retraction r onto € (that is, Y \ 7% is coreducible);
Y Y ) Y 3

e The set of stable homotopy classes of such retractions r admits a bijection with the set
of stable homotopy classes of maps f : D" US™ — X that induce isomorphisms in
dimensions n and n+ d (here and later DP US? denotes a 2-cell complex); and

o The S-duals of the 2-cellifications of X are precisely the 2-cellifications of Y .

Proof. First we remark that one can identify retractions r of Y\ e$+d onto ey’ with maps
Y — D™t4JS™ that induce isomorphisms of homologies in dimensions m and m + d. Indeed,
any retraction r induces identity on H,,, and extending the retraction by a degree 1 map of the
top cell gives us a map in homology that is an isomorphism in dimensions m and m + d. On
the other hand, any map from Y to a 2-cell complex that induces an isomorphism in homology
in dimensions m and m + d is glued together from a map r : Y \ e$+d — S™ and a map
h: (e, detdy — (D™mF4, 9D™+4) that is homotopic to the identity relative to the boundary.
The map r induces an isomorphism on homology in dimension m, so it is homotopic to a map
that maps (the closure of) e}’ onto S™ homeomorphically. Then reparametrizing S™ we may
assume this homeomorphism to be identical, so 7 is a retraction.

Returning to the proof of the lemma, since e?{rd is attached homotopically nontrivially only
to the bottom cell €%, there exists a map f : D"t US" — X that maps the two cells by degree
1 maps onto the top and the bottom cell of X respectively. The mapping induced in homology
by f is an isomorphism in dimensions n + d and n, so its S-dual Dg(f) induces isomorphisms
in dimensions m and m + d. Hence the restriction of the map Dg(f) to Y \ ef*™ gives a

retraction of Y7\ e;'”d onto the closure of ey’. Conversely, the S-duals of the possible retractions
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r: Y\ eg’,”d — S™ are maps of the form f : D% US™ — X that induce isomorphisms in
homology in dimensions n and n + d.
For any such pair of S-dual maps f and r we have the cofibration

D" US" L X 5 skpia 1 X/e%
and its S-dual cofibration
D™ US™ 2" Y = Dg[X] « Dglsknsg_1X/e%] = skmsqg_1Y/eD

(the equality t being implied by Lemma 9). Since the middle and right-hand side terms are
S-dual in these cofibration sequences, so are the left-hand side terms. That is, the possible
2-cellifications of X and Y are S-dual. O

Later we will need some further technical lemmas.

Lemma 8. The S-dual of a 2-cell complex is also a 2-cell complex, with the same stable attaching
map (up to sign).

Proof. Let A be the 2-cell complex in question, with cells in dimensions n and n+ d, and denote
by B’ = Dg[A4] its S-dual (sufficiently stabilized for all maps in the following argument to be
in the stable range). Then there is a cofibration S” — A — S"*? and S-duality takes it to
a cofibration S™ — B’ — S™*¢ (sufficiently stabilized for the maps of the proof to exist).
The statement of the lemma is trivial if d = 1 and the attaching map of A is homotopic to a
homeomorphism, so we assume that this is not the case, in particular, A has nontrivial homology
in dimension n.

We now construct a 2-cell complex B with cells in dimensions m and m + d as well as a map
f : B — B’ that will turn out to be a homotopy equivalence. Take a map

h: (D™, 9Dy — (B',S™)

that represents a generator of H,,1q(B’/S™) & H,,+4(S™%). We define B as the 2-cell complex
obtained by attaching D™*? to S™ along h|gpm+a; the map h extends to a map f : B — B'.
Comparing the long exact sequences in homology of the pairs (B’,S™) and (B,S™), we see that f
induces isomorphisms of H,(S™) and H, (S™*%) by construction, hence the 5-lemma implies that
H.(f): H.(B) — H.(B’) is also an isomorphism in all dimensions. By Whitehead’s theorem, f
must be a homotopy equivalence. Hence the S-dual of the 2-cell complex A is the 2-cell complex
B.

It remains to show that the attaching map of B is stably homotopic to that of A (or its
opposite, depending on the choice of orientations of the cells). Consider the long exact sequence
of the stable homotopy groups of the cofibration S* — A — S"+¢:

ny ~v n ~ 8 n\ ~v
..._>7r’rsl+d(A7S )=7T§+d(S ) ZZ_”ESLHA(S )= (d—1) = ...

The boundary map 0 takes the generator of Z to the attaching map of A. Taking S-duals,
we obtain the long exact sequence of the stable cohomotopy groups of the cofibration
S™ — B — Smtd.

o (S™) S (B, ST & (S ) 2 7S (d - 1)

Since the S-duality establishes an isomorphism between these two sequences, the boundary map
0 and the coboundary map § coincide. It is hence enough to show that ¢ maps the generator of
Z to the attaching map of B.
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In order to show this, consider the Puppe sequence of the cofibration ™ — B — S™*¢ which
involves the coboundary map 9:

8(idgm
S™ — B — BU Cone(S™) ~ S™+d ( dS—>+d) Cone(B) U Cone(S™) ~ S™T — .

Denote by 8 : S™t4=1 — S™ the attaching map of B. We claim that &(idgm+a) is homo-
topic to the suspension SB. Indeed, denote by g the following map of the sphere S™*¢ into
B U Cone(S™): on the top hemisphere g is a homeomorphism onto the top cell of B, and on
the bottom hemisphere g is the map Cone(B) : Cone(S™*471) — Cone(S™). On the equator
the two partial maps coincide and hence g is a (homotopically) well-defined map. On the top
cell of B this map is 1-to-1, so after identifying B U Cone(S™) with S™*+¢ the map g becomes a
degree 1 self-map of S™+¢ and is hence a homotopy equivalence. Consequently the composition
of g with the collapse of B in B U Cone(S™) is homotopic to the map 6 (idgm+a) from the Puppe
sequence. But this composition map is the quotient of the bottom hemisphere map Cone(S)
after collapsing the boundary S™+¢~! in the source and the boundary S™ in the target, so it is
the suspension Sf, proving our claim. O

Lemma 9. Let X and Y be S-dual finite cell complexes, with the single top cell ex of X
generating the top homology of X and the single bottom cell ey of Y generating the bottom
homology H,,(Y) of Y. Then X \ int exis S-dual to the quotient space Y/ey. (Informally,
omitting the top cell is S-dual to contracting the bottom cell.)

Proof. Let i : X \ int ex — X be the inclusion. The map 4, induced in homology by i is an
isomorphism in all dimensions except the top one, where it is 0. Hence the S-dual of 7 is a
map Dgli] : Y — Dg[X \ int ex] that induces isomorphisms in all homology groups except the
bottom one, where it is 0. This means that the space Dg[X \ int ex] is m-connected and after a
homotopy, we may assume that the map Dgli] maps ey to a single point. Consequently, Dg|i]
factors through the contraction of the bottom cell ey and yields a map Y/ey — Dg[X \ int ex]
that induces an isomorphism in all homologies. Hence Dg[X \ int ex] is homotopy equivalent
to Y/ey, as claimed. O

Lemma 10. Let X be a finite cell complex with a single top cell in dimension n that freely
generates H,(X), and denote by Y its S-dual that has a single bottom cell in dimension m
which freely generates H,,(Y). Let X denote the cell complex which has the same n — 1-skeleton
as X and has a single n-cell whose attaching map is q times the attaching map of the top cell in
X. Similarly, let Y be the quotient of Y by a degree ¢ map of its bottom cell. Then X and Y
are S-dual.

Proof. Denote by Dg [X] the S-dual of X. Since there is a map ¢ : X — X that has degree ¢ on
the top cell and is a homeomorphism on the n — 1-skeleton, its S-dual is a map ¥ : Y — Dg [X'}
that induces an isomorphism on all homology groups except the m-dimensional one, where it is
the multiplication by ¢. Since DS[X | can be chosen to be simply connected and has vanishing
homology in dimensions 1 to m — 1, it is m — 1-connected and without loss of generality we may
assume that it does not contain cells of dimension m — 1 or less. Similarly, we can assume that
Dg [X | has a single cell of dimension m, and the map ¥ sends the bottom cell of Y into the
bottom cell of Dg [X'] Since v restricted to the bottom cell of Y has to be a degree ¢ map, ¥
factorizes through the obvious map 7 : Y — Y and there exists a map ¢ : ¥ — Dg[X] such that
S Yor. The map on homology induced by 1/3 is clearly an isomorphism in all dimensions above
m, and since r and ¥ both induce the multiplication by ¢ on H,,, Hm(qﬂ) is also an isomorphism.
By Whitehead’s theorem, 1@ is a homotopy equivalence between Y and Dg [f( ], proving the claim

of the lemma. O
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5. PERIODICITY

We define the Atiyah-Todd number M}, to be the order of 7,_; in the group J(CP*~1!) (see
8], [5]). Tt can be computed as follows: let p*»(") be the maximal power of the prime p that

divides the positive integer . Then M} = Hp prime p"»Mx) and the exponents satisfy the formula

vp(M}) = max {T +up(r):1<r< \j]jiJ } .
For k < 6 the numbers M}, are the following:
k |1]2] 3 | 4 | 5 | 6
M, [1]2]2%-3]2%.3]20.37.5[20.3%2.5
Note that My, is a multiple of M}, for any k.
Mosher proved that the spectral sequence of Subsection 2.1 is periodic with period My in the
following sense:

Proposition 11. [16, Proposition 4.4] If r < k — 1 then E]; = E[, \/ .., . Moreover, the
k—1

isomorphism Efj_l = B ur jar,, commutes with the differential dF=1.
In particular, d* is (2, 2)-periodic, d? and d* are (24,24)-periodic, etc.
In the proof, we use the groups J(X) that are defined as follows.

Definition: For a topological space X, let J(X) be the set of stable fiberwise homotopy
equivalence classes of sphere bundles S¢, where £ is a vector bundle over X. In particular, if
for bundles £ and ¢ the represented classes [¢] and [¢] in J(X) coincide, then the Thom spaces
T¢ and T¢ are stably homotopically equivalent. The natural surjective map K(X) — J(X) is
compatible with the addition of vector bundles and hence transfers the abelian group structure
of K(X) onto J(X) (see [12]). Note that for any finite cell complex X the group J(X) is finite.

Proof. The definition of the first (k — 1) pages of the spectral sequence of the filtration
CP’ccCP'c---cCPC...

is constructed using the relative stable homotopy groups 75(CP™/CP') (where 0 < m — 1 < k)
and homomorphisms between these groups induced by inclusions between pairs (CP™,CP').
We show that all these groups remain canonically isomorphic if we replace qu((CPm, CP!) by
7r§’+2Mk (CPm+Me CPHM),

It is well-known that the quotient CP™ /CP' is the Thom space of the bundle (I 4 1)y, _;_1.
Similarly CP™*Mx /CP!*Mx is the Thom space of the bundle (I + 1 + Mg)ym—_i—1. Since
M, is the order of J(yx—1) in J(CP*~1), and that is obviously a multiple of the order of
J(Ym—_1-1) in J(CP™ 1) if m —1 -1 < k — 1, one has J(MyVm_i1—1) = 0. The homomor-
phism & ~ J(€) is compatible with the sum of bundles, hence for any bundle & over CP™ /=1
the Thom spaces T'(¢ © Myyy—1—1) and T(¢ @ Myel) = S?MeT¢ represent the same element
in J(CP™~!=1) and hence are stably homotopically equivalent. Therefore the shift of indices
(i,7) — (i + My, j + My) maps the first r pages of the spectral sequence into itself via the canon-
ical isomorphism 75 (X) = 7r§+2Mk(S2M’€X) forr <k -1

q
Let us give a more detailed overview of the isomorphism E7 ; = ET, /. .\, for r <k —1.

Bj; = (CP'/CP'™Y) = P (8%)

1 _ s i+ M, i+M,—1y _ _S 2i+2 M,
By ay g, = Tiyjyan, (CPT7F/CP ) =T jyan, (S )

1 . . . 1
hence E; ;18 canonically isomorphic to Ej, /. M-
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The group Ej, , is defined as the quotient
Zp;  im (P (CP',CP"™") — w3 ,(CP',CP'™1))

T i,J J

Bl im (w5, (Pt cPY) S xS, (P cpic)

0 T -
_im (73 (T =7 4+ 1)) = 7P ;(§%))
im (Wisﬂ-H(T(i + Dyprea) — 7rl-s+j(82’))
Now replacing ¢ by i« + M} and j by j + M} we obtain

im (Wz's+j+2Mk (T(i =7+ 1+ My)yr—1) — 7ris+j+2Mk, (SZHZM’“))

im (Wis+j+1+2Mk (T + 14 My)vr—2) — 7Tis+j+2Mk (SQi+2M’€))

T

EH-Mk J+M, =

But we can replace T'(a + My)ym by S*+Tary,, for any a if m < k, hence we obtain a canonical
isomorphism between E7 ; and E7, .. - This proves the isomorphism of the groups, and
the same argument goes through for the differentials d”. O

This proof relied on a sophisticated theorem of Adams, Atiyah and others that determined the
order of J(yx_1). Next we give a simple independent proof of the fact that d* is (2, 2)-periodic,
elaborating [16, Proposition 5.1]. Recall that d’ , is the map

dy  : mos(CP* JCP ™) — may_1 (CP*~1/CP*7?).

If v, € Z = n3,(CP*/CP*~!) is the positive generator, then d} ,(is) is the (stable) homotopy
class of the attaching map of the 2s-cell of CP*/CP*~2 to the sphere CP*~!/CP*~2. Note

that for any s this map is trivial if and only if CP*/CP*~2 is stably homotopy equivalent to
SZs v 82572.

Lemma 12. In the ring H*(CP$/CP*~2) the cohomological operation Sq? is nontrivial if and
only if s is even.

Corollary: For s even the space CP*/CP*~2 is not stably homotopically equivalent to
S?% v §%72  hence in this case d! ,(s) is not trivial.

Proof of Lemma 12. The projection CP* — CP*/CP*~2 induces isomorphisms of the Zs-cohomology
groups in dimension 2s and 2s — 2. Let us denote by y the generator of the ring H*(CP?;Zs).
Then Sq?y*~! = (s — 1)y® # 0 if s is even. The commutativity of the following diagram finishes

the proof:

H2372(CP5/CP572) Sq H2S((CPS/(CP372)

- -

HQS—Z(CPS) Sq HQS ((CPS)

O

We thus know that for s even di’S(LS) # 0, and it remains to show that under the same
conditions d} +1.5+1(ts+1) = 0. We have established in Part I [17] that the differentials commute
with the composition product. In particular, consider the map d;’sﬂ : E;,erl — E;LSJFI. Its
domain is E! ,,; = 75, ,(CP*/CP*~!) = 75(1) = Zy, with the generator traditionally denoted
by 7 (see [27]). The codomain of the map is 75(2) = Z, and is generated by i o 7. This implies
that d} ., (n) = nod} (ts) =non# 0. But then dl,, .., must vanish as it maps into the
trivial kernel of d;5+1.
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5.1. Periodicity modulo p. In [16], it was stated without proof that a similar result holds
when one considers the spectral sequence only from the point of view of p-components of the
involved groups. We present a proof below. To simplify notation, we will use the convention
ny = p"»(") to denote the p-component of a natural number n.

Proposition. [16, in the text] Ifr < k—1 then E] ; and B M), 540 ’ "
the class of groups of order coprime to p. Moreover, the p-isomorphism Ej ; & Ei+(Mk)p,j+(Mk,)p

My), @€ isomorphic modulo

commutes with the differential d*.

For the reader’s convenience we recall the notion of p-equivalence that shall be used in the
proof.

Definition: A map f : X — Y of simply connected spaces is a p-equivalence if it induces
isomorphisms on the p-components of all homotopy groups. The p-equivalence of spaces is the
finest equivalence relation according to which any two spaces that admit a p-equivalence map
between them are equivalent.

Definition: Equivalently, simply connected spaces X and Y are p-equivalent if their p-
localizations are homotopy equivalent.

In order to imitate the previous proof we define the groups .J,:

Definition: For a topological space X, let J,(X) be the set of stable fiberwise homotopy
p-equivalence classes of sphere bundles S¢, where € is a vector bundle over X. In particular,
if the classes [{] = [(] € Jp(X), then the Thom spaces T'¢ and T'( are stably homotopically
p-equivalent.

Note that the natural map J, : K(X) — J,(X) factors through J : K(X) — J(X) and
transfers the abelian group structure of K (X) and J(X) to J,(X). Indeed, the Cartan sum
operation in K (X) corresponds to taking the fibrewise join in J(X) and J,(X), and inverse
elements exist in J,(X) since they can be found in J(X).

We are tempted to claim that J,(X) is actually just the p-component of J(X) (which we
denote by ngg(X ) and call the “algebraic” J, to distinguish it from the “geometric” J,, defined
above), but we can only show this for the spaces X = CP"; this is however enough to prove
Mosher’s claim.

Lemma 13. J,(CP") = ngg((CP"). In other words, for any two stable vector bundles & and n
over CP"™ the sphere bundles S§ and Sn are stably fiberwise p-equivalent if and only if the class
[€ —n] € J(CP™) has order coprime to p.

Proof of Lemma 13. Denote by = v, — 1 € K(CP™) the rank 0 representative of the stable
class of the tautological bundle. It is known ([1, Theorem 7.2.]) that K(CP") = Z[z]/(z"*!).

For any positive integer ¢ coprime to p we have Jy,(v,) = Jp(7$9) since there is a fibrewise
degree ¢ map from 7, to v2%. Rewriting this in terms of 2 and using 2" *! = 0, we get that for
any such ¢ we have

(1) Jy(1+2) = Jy((1+2)7) = J, (1 + gz + (g) 224t (Z) x") .

We show that we can choose values q1, g2, ..., ¢mn and A1, Ao, ..., Ay in such a way that
considering the equality (1) for ¢ = ¢1, ..., ¢ and forming the linear combination of the
obtained equalities with coefficients Ay, ..., A, yields the equality p®J,(x) = 0 for some positive
integer C. As a consequence, we deduce that the group J,(CP") is a p-primary group.

To do this, observe that the coefficients of 1, =, ..., z™ in the linear combination of the
right-hand side of (1) for ¢ = ¢1,...,¢mn and with coefficients Ay, ..., A\, are the coordinates of
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the image of the column vector (A1, ..., Ap)" under the linear transformation described by the
matrix
1 1 ... 1
q1 q92 ...  dm
M= (%) (%) (%)

) (%) (%)

If we choose m = n+ 1, then M becomes a square matrix and its determinant can be computed.
Indeed, in the jth row for j = 0, ..., n the ith element is the same polynomial of degree j
with leading coefficient 1/j!, evaluated at ¢;. By induction on j, the rows with indices less than
j span linearly all the polynomials of the variable ¢; of degree less than j for any ¢ and hence
adding a suitable linear combination of these rows to the jth row we can turn the jth row into
(%) . Doing this for all j, we do not change the determinant and arrive at the matrix

“/i=1l..m

7!
determinant on the elements q1, ..., ¢mn, SO

j
((q—})) , whose determinant is H?:o 71, times the determinant of the Vandermonde
i=1..m,7=0..n :

Hl§v<u§m+1 (qu - qv)

[ 4!

In particular, if we choose g; = pj + 1, then det M = p(ngl).

Choosing the (integral) vector v = (A1,..., Ay )" to be the first column of the cofactor matrix
of M (which is (det M) - M~1), we have Mv = (det M,0,...,0)!, so when we take the linear
combination of (1) for ¢ = ¢; with coefficient A;, the right-hand sides sum up to J,(det M - 1)
and the left-hand sides sum up to J,(>-, \i(1 + x)) = J, ((det M) - (1 +x)). But J,(1) = 0 by
definition, so we get that (det M) J,(z) = 0. Since (with the choice ¢; = pj +1) the determinant
det M is a power of p, J,(CP") is a p-group.

Using the universal property of the p-component J;lg (CP*), this proves that the natural
projection J(CP*) — J,(CP*) factors through Ja'9(CP¥). On the other hand, no nonzero
element of ngg((CP’“) can vanish in J,(CP¥) by [2, Theorem (1.1)]: if S¢ is fibrewise p-trivial
and hence £ admits a map of degree s to a trivial bundle, where s is coprime to p, then there
exists a nonnegative integer e such that s¢¢ is fibrewise homotopy equivalent to a trivial bundle.
Multiplication by s¢ is an isomorphism in any p-group, hence J(s¢¢) = 0 and consequently
J39(s¢€) = s©J319(€) = 0 implies that J5'9(&) = 0.

det M =

O

Proof of periodicity modulo p. Denote by ¢ the quotient My/(Mg),. Then (p,q) = 1 and
My, = q - (My),. The class of the tautological bundle v4_; in J(CP*¥~!) has order My, so
its image in J,(CP*~1) has order (My),. In particular, we have

Jp((Mk)erk,—l) =0.

Consequently for any bundle & over CP*~1 we have J,(&) = J,(€ + (My),yk—1) and therefore
the Thom spaces T¢ and T'(§ + (Mg),vk—1) are stably homotopically p-equivalent. In particular,
we obtain a p-isomorphism between the groups

w2 (CP™,CP") 2 a3(T((1 + 1) Ym-1-1))

and
aP (CPmH(Me C P (Mp) o 78(T((1+ 14 (Mi)p) Ym—1-1))-
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Hence (analogously to the proof of Proposition 11) E7; and EL_(Mk)p (M) have canonically

isomorphic p-components for r < k — 1. This proves the Proposition. ([

6. IMAGE OF J

Theorem 14. [16, Proposition 4.7(a)] Let v, € n5,(CP*/CP*™') = El = 7 be a generator
and suppose that d*(1s) = 0 for i < k. Then d*(1s) € Effk,s+k71 belongs to the image of
im JCEl o =7R2k=1)inEF .

Remark: by the geometric interpretation of the singularity spectral sequence (Subsection
2.2) the conclusion of Theorem 14 means that under its assumptions, the boundary map of
an isolated X's-t-point can be chosen to be a X!s—*-1-map whose Z's—*-1-set is an immersed
framed (2k — 1)-dimensional sphere. Indeed, im J consists exactly of those stable homotopy
classes which can be represented by a framed sphere.

Proof. Let us recall the definitions of the differentials d;s. For ¢« = 1 it is the boundary map
7S, (CP*,CP*~1) — #S._(CP*~1,CP*~2). If this is zero on an element z € 5 (CP*,CP*~1)
then z comes from 75, (CP%,CP$~2), that is, there is an element x5 € 75, (CP*, CP*~2) such
that its image in 75,(CP*,CP*~1) is 2. Then d?(z) is represented by d(z2), where 0 is the
boundary map 75,(CP*,CP*~%) — 75, | (CP*~2,CP*~3). Analogously, if d"~(z) = 0, then
there is an element z; € 75,(CP*,CP*~*) that is mapped into = by the map

5, (CP*,CP*™%) — 73, (CP*,CP* 1)
and d(r) is represented by d(z;), where 0 is the boundary map
T5,(CP*,CP*™") — 7§, (CP* " ,CP*~"~1).

Hence the condition di(¢;) = 0 for i < k means that in the space CP*/CP*~*~1 the top
dimensional cell is attached to CP*~!/CP*~*~1 by an attaching map that can be deformed into
a map going into the lowest (positive-)dimensional cell of CP*/CP$~%~1. The class d*(1,) will
be the stable homotopy class of the obtained attaching map S?*~! — S2(*=%) Therefore if we fix
the deformation into the lowest cell, then d*(1) can be considered as an element of 75(2k — 1).
Without fixing the deformation the value of d*(¢,) will still be well-defined in E;ﬂ ks k10 which
is the quotient of E!_ kosth—1 = 75(2k — 1) modulo the images of the previous differentials d,
1 < k. For later reference, we summarize the following lemma:

Lemma 15. Assume that d*(15) =0 fori < k. Then in the space CP*/CP*~*~1 the results of
different deformations into the bottom cell of the attaching map of the top cell differ by elements
of the images of the differentials d*, i < k.

From this point of view the vanishing of d’(1s) for i < k means that after contracting
the lowest (positive) dimensional cell to a point in CP*/CP*~*~! (that is, after forming the
space CP*/CP*~*) the top cell splits off stably in the sense that there is a stable map
§%$ - CP*/CP*~* such that composing it with the projection

CP*/CP*™* » CP*/CP*! =§%

gives a stable map S?* — S2* of degree 1. In other words, CP*/CP*~* is S-reducible.

It is well-known that CP*/CP*~* is the Thom space T((s — k + 1)y,_1) of the bundle
(s —k+1)yx_1 over CP*~1. By a result of Atiyah and Adams T(m~y;_1) is S-reducible if
and only if m + k is divisible by the number M}, defined in Section 5 (see [16, Theorem 4.3. ¢)]).

We shall consider the natural CW-structure on CP*/CP*~*~1 that has one cell in each even dimension 0,
2(s—k),2(s—k)+2, ..., 2s.
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Recall ([16] collecting results of Adams and Walker [5]; James; Atiyah and Todd [8]) that

(1) the Thom spaces T'(pyr—1) and T(gyk—1) are S-dual if p+ ¢+ k=0 mod My;
(2) T(nvyk—1) is S-coreducible exactly if n =0 mod Mj; and
(3) T(myg—1) is S-reducible exactly if m + k=0 mod Mj.

Let us return to the proof of the theorem. We have seen that
CP*/CP* " =T ((s —k+1)ve_1)

is S-reducible (hence s + 1 = 0 mod My by property (3)). Let us take an n such that
CPtk/CP" 1 =T ((ny_1)) is S-dual to CP$/CP*~*~1 =T ((s — k)vx), that is,

n+(s—k)+(k+1)=0 mod Myy;.

Assume that s + 1 = tMy mod My41 and correspondingly n = —tM}, mod Mjy4q1. We can
choose n to be greater than k.

Note that the S-dual of CP$/CP*~* is CP"**~1/CP"~! by Lemma 9. Since CP*/CP*~*
is S-reducible, its S-dual CP"+*=1/CP"~! is S-coreducible. Then Lemma 6 together with the
condition n > k imply that CP"**~1/CP"~! is homotopy equivalent to S?" v (CP"*+*~1/CP™).

Since the complex CP*/CP* %=1 becomes S-reducible after collapsing the bottom cell, we
can consider a 2-cellification X = D?* 582(5*’“) formed by the top and bottom cells. There is

amap f: X — CP*/CP* %! inducing isomorphism in the homologies in dimensions 2s and
2(s — k). Recall (see the geometric definition of the differentials in the beginning of the proof of
Theorem 14 and Lemma 15) that here the attaching map o € 75(2k — 1) of X is well-defined
only up to the choice of the deformation of the attaching map of the top cell, that is, up to an
element of the subgroup generated by the images of the lower differentials d*, i = 1,...,k — 1.
Consider the cofibration

(*) X — CP?/CPs~F1 5 cps~t/Ccps*
and its S-dual cofibration
(**) Y« CP"HF/CP*! « CPM TP

By Lemma 8, the space Y is also a 2-cell complex, with the same (stable) attaching map «.
Note that the cofibration (**) demonstrates the S-coreducibility of CP"T*~1/CP"~! since after
omitting the top cell in both CP"*¥/CP"~! and in Y the cofibration (**) gives a retraction of
CPntk=1/CP"~! onto its bottom cell, S>”. The attaching map of Y is the composition of the
attaching map of the top cell of CP™** /CP"~! with this retraction.

Let us denote by pr : CP* — CP¥/CP*~! = S? the projection. Consider the following
diagram (see [16]), where €? denotes the trivial bundle of rank d:

[ny, —e"] € Kc(CPF)
(2) Ka(CP¥) £ Ry (S%)
0 cJ(CP*1) < J(CPF) <" j(s2¥)

Since n is a multiple of My, the restriction of the class [ny;, — €”] € Kc(CP*) to CP*~! represents
the zero class in J(CP*~1). The bottom row of the diagram (2) is exact, so the image of this class
in J(CP*) (namely J(nvy;)) belongs to the image pr*(J(S?*)). The map J : Kg(S*) — J(S?F)
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is surjective by definition, so there exists a (real) vector bundle ¢ over S?* such that the class
[€ — ek £] ¢ Kg(S?*) is mapped by J o pr* = pr* o J to J(nyy, —e™). Hence J(pr*€) = J(ny).
This implies that pr*¢ and n+y, have stably homotopically equivalent Thom spaces, i.e. (possibly
after stabilization to achieve rank ¢ = 2n) we have T(pr*¢) = T'(ny) = CP"k/CP?—L.

Note that the space T(pr*¢) inherits a cell decomposition from CP* in which the top cell
corresponds to (the disc bundle of ¢ over) the top cell of CP*. Omitting this top cell gives us
the Thom space of the bundle (pr*¢) |cpr-1 = pr* (€| (point}), and this space is coreducible in
an obvious way: mapping all the fibers onto the S?” over the 0-cell is a retraction onto this S?7.
Putting back the top cell and composing its attaching map with the retraction we obtain a 2-cell
complex, which is in fact T¢. The attaching map of T'¢ is known to lie in im J (see eg. [10]), so
it only remains to compare it with the attaching map of Y (which is d*(¢,) modulo the images
of the lower differentials). Even though both Y and T¢ are obtained by the same 2-cellification
procedure from stably homotopically equivalent spaces CP"+¥/CP™ and Tpr*¢ respectively,
the construction depended on the choice of a retraction from the definition of coreducibility of
the involved subspaces CP" %=1 /CP"~! and pr*¢|cpr-1, and there is no reason why the two
retractions should coincide.

By Lemma 7, this choice of coreduction of CP"**~!/CP"~! introduces exactly the same
ambiguity in the definition of the 2-cellification of CP"**/CP"~! as the choice of (stable)
reducibility of the S-dual complex CP*/CP*~*, or equivalently the choice of a deformation of
the attaching map of the top cell in CP*/CP* %=1 into the bottom cell. By Lemma 15, this
choice corresponds exactly to changing our map by an element of the images of the previous
differentials im d’, i < k. Hence the attaching map « of the space X lies in the same coset
of (im d* : i < k) as does the attaching map of T¢, which belongs to im J. This finishes the
proof. O

The proof above clarifies the notions behind Mosher’s argument not appearing in [16] explic-
itly, such as 2-cellification and its dependence on the choice of deformations. Below we give a
shorter second proof that hides the geometric machinery within the general framework of spectral
sequences.

Proof. Consider the spectral sequence in stable homotopy associated to the filtration (of length
k+1)
cpsF/cps~Ft ccpsTRtl)cpsTRl c .o c CPs/CP TR
This spectral sequence maps naturally to the spectral sequence of the infinite filtration
cpskjepsitt cepsR et e

of CP>/CP*~*~1 Taking S-duals of all the involved spaces and maps, we obtain a sequence of
maps that we call a cofiltration:

(CPnJrk/(CPnJrk*l s (Cpn+k/(cpn+k72 e (CPn+k/CPn71

and the spectral sequence Ej;, s —k < i < s of the original filtration becomes the spectral
sequence BP9 of this cofiltration in the stable cohomotopy theory, with ET_, ., . identified
with E;"7P~"~4 (in particular, EY'? = 75(p — ¢) if —n — k < p < —n and is 0 otherwise).
Explaining more accurately, let C' be the middle point of the interval [—n, s — k] on the horizontal
axis in the plane. Then reflection in C' transforms the groups Ej; and the differentials d’ of
the original first quadrant spectral sequence into the groups EP¢ and the differentials d; of a
third quadrant spectral sequence. This latter spectral sequence is that of the S-dual cofiltration
in stable cohomotopy, because S-duality maps stable homotopy groups into stable cohomotopy
groups and commutes with homomorphisms induced by mappings. That is, if A - X — X/A is
a cofibration and Dg[A] + Dg[X] + Dg[X/A] is the S-dual cofibration then the exact sequence
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in stable homotopy of the first cofibration is canonically isomorphic to the exact sequence in
stable cohomotopy sequence of the second:

m(A) ——— m(X) ——— 7 (X/4)

|

72 (Ds[A]) —— 73 (Ds[X]) — 72 (Ds[X/A])

In this cohomological spectral sequence the differentials dy, ..., d;_1 going from the column
number —n — k all vanish (because CP"++~1/CP"~! admits a retraction onto CP"/CP"1).
The last differential dj, maps the class of the identity in 75, ,, (CP"*k/CP"*k~1) into the
attaching map of the top cell. Choosing any (cellular) 2-cellification map

(CP’IL—‘,-]C/CPTL—l N 7 — SQn U D2n+2k

induces a map of cofiltrations

CPn+k/(CPn+k—1 (CPn+k/(CPn+k—2 L (CP"J"k/(CP" (CP"""k/(CP"_l

| L | |

Z/sm i 7/ <1 o< zsm Z

and hence it induces a map of the corresponding cohomotopical spectral sequences that is an
isomorphism on column —n — k in the pages ET*, E3*, ..., E;*,, with “the same” differential
dy. That is, the attaching map of Z is a representative of the image dj.t~""%~"=F (where
1~k =n=k ig the positive generator of El_"_k’_"_k 2 7), which coincides with d’%&s, and it
lies in im J. O

Theorem 14 has a p-localized version that we formulate and prove below. Let us consider the
p-localized Mosher’s spectral sequence PE; ;, Pd", that is, the spectral sequence defined by the
p-localization of the usual filtration of CP°. In this spectral sequence the starting groups are the
p-components of those in Mosher’s spectral sequence and the d' differential is the p-component
of that in Mosher’s spectral sequence.

Theorem 16. Let 1, € 75, (CP*/CPs™1) QL) = pE;S = Zp) be a generator and suppose that
Pdi(1s) = 0 for i < k. Then Pd* (1) € pEf_k,H_k_l belongs to the image of

im J, CPEL oy =702k — 1) @ Zy,)
in pEffk,s+k:fl‘

Setup: (the diagram below can help to follow the argument) CP*/CP$~k~1 is S-dual to
CP"tk/CP™ ! (ensured by n + s = 0(My)), and the first nonzero p-localized differential from
E}  is the k-th, that is, n is divisible by (My),, but not by (Mp41), (this latter statement
holds due to Lemma 13 establishing the equivalence of the geometric and algebraic definitions
of J,, which implies that the order of 7 in J,(CP*) is exactly (My),). Then the top cell of

CP3/CP*~*~1is attached to the intermediate cells by maps that are trivial after p-localization.
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CPs/CPs—k-1 S50 x o A= p2ysAeh)

S S[ 5'1
cprhjeprt Ly L g preth) ygn

o

p

T (pr=¢) T¢

The choice of a map f : D* US?~2¢ — CP*/CP**~! inducing isomorphism in homology in
dimensions 2s and 2s — 2k is equivalent to the choice of representative of im dgt in the coset of
the image of all previous differentials going to the same cell (Section 2 and Lemma 15) and is
the same as the choice of the map S?°~! — S25~2% homotopic to the attaching map of the top
cell, see Section 4.

Proof of Theorem 16: We first construct a space X with the same cells as CP*/CP*~F~1,
where the top cell is actually attached (homotopically nontrivially) only to the bottom cell (not
only after p-localization), and a map X — CP*/CP*~*~! that is a p-equivalence. Such a space
and map exist because the attaching map of the top cell to the intermediate cells is homotopically
p-trivial, so there is a multiple (g-tuple, say) of it that is actually trivial, and adding the last cell
with this new attaching map (the attaching map of the top cell multiplied by ¢) we obtain X
and a degree ¢ map from X to CP*/CP*~*~! which is the identity when restricted to the 2s — 2-
skeleton and a p-equivalence when it is restricted to the attached 2s-cell relative to its boundary,
so by the 5-lemma it is a p-equivalence. Denote by A the space formed by the bottom and the
top cells of X (a 2-cellification of X). By Lemma 10, the S-dual of X, which we shall denote by
Y, can be obtained from Dg[CP*/CP*~%=1] = CP"*k/CP"~! by wrapping the bottom cell on
itself by a degree ¢ map.

By Lemma 7, the possible choices of A (that correspond to different representatives of im dj¢
modulo the image of the previous differentials) are S-dual to the possible choices of 2-cellifications
of Y. In addition, choosing the space X differently does not change the image of (the homotopy
class of) the attaching map in the p-component (after dividing it by ¢), since for any two approx-
imations there is a common “refinement” that factors through both maps X — CP"+t*/Cpn—1.
That means that the 2-cellifications of Y (denoted by B in the diagram) have the attaching map
q - dxt modulo the image of the previous differentials and considered in the p-component.

We claim that A is p-equivalent to the Thom space of a vector bundle over the sphere
S?¢. To deduce this, we check that over CP*~! the bundle ny;_; (whose Thom space is
CP™tF=1/CP"1) is p-trivial in the sense that its Thom space is stably p-equivalent to the
Thom space of the trivial bundle. By equivalence of geometric and algebraic definitions of J,
(Lemma 13) it is enough to check that J(n+y,_1) has order coprime to p and hence vanishes when
considered in the p-component of J(CP*~1). Indeed, n is divisible by (M}), and consequently
J(nyk—1) has order coprime to p. Hence the Jy,-image of nyy is the same as that of the pullback
pr*é of a bundle & over S**. From this, we want to conclude that the attaching map in T¢ is
“the same” as the attaching map in the 2-cellification Y. Both T'(pr*¢) and Y are coreducible
after the removal of the top cell: Y by construction/definition. The space T (pr*¢) is coreducible
after removal of its top cell because (pr*€)|cpr-1 is trivial and hence T ((pr*&)|cpr-1) retracts
to Te? = ",

Claim: Let U and V be p-equivalent cell complexes, a single top cell U,14 and V,, 44, re-
spectively, a single bottom cell U,, and V,,, respectively, and assume that H,,4(U) is generated
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by Untd, Hn(U) is generated by U,, H,4+4(V) is generated by V44 and H, (V) is generated
by V,. Assume that both U_ = U \ U,,14 and V_ = V' \ V,, 14 are coreducible, that is, there
exist retractions py : U_ \, U, and py : V_ \( V,,. Then the 2-cellifications of U and V are
p-equivalent modulo the choice of the involved retraction, that is, one can replace the retractions
pu and py by some other retractions p;; and pi, such that the 2-cell complexes formed from U
and V using p}; and p{, are p-equivalent.

Remark: Applying this Claim to U =Y and V = T'(pr*¢) we obtain that the 2-celllifications
B and T¢ are p-equivalent. In particular, the attaching maps of the 2-cellifications coincide
modulo the images of the lower differentials. For T¢ this attaching map belongs to im J, for B
the attaching map is «, which is d*(1s) (modulo lower differentials). Thus Theorem 16 will be
proved as soon as we prove the Claim.

Proof of Claim: Let i : U — V be a p-equivalence. Without loss of generality, it restricts
to a p-equivalence of U_ and V_, and maps U, into V,,. If i|y, were an actual homotopy
equivalence onto V,,, then we could assume that it is in fact a homeomorphism and we could set
pt; =i~ opy oi. With this choice, pj; is a retraction of U_ onto U,, and is compatible with 4 in
the sense that ¢ descends to a map from the 2-cellification of U to the 2-cellification of V. This
map has the same induced maps in H, and H, 4 as ¢ does and is hence a p-equivalence.

In general, i|y, only needs to be a degree ¢ map to V,, for some g coprime to p. Let Cyly
denote the mapping cylinder of i|y,. Define U to be U glued to Cyly along U, (essentially,
wrapping the bottom cell of U onto itself by a degree ¢ map). Then ¢ extends naturally to a
map 7 : U — V, which is still a p-equivalence (checked easily in homology). The retraction py
also extends naturally to U_.=U \ Up+a by postcomposing with ¢|y, . The 2-cellification of U
has an attaching map that is the composition of the attaching map of the 2-cellification of U
with a degree degi|y, map of the bottom cell; this composition does not change the homotopy
p-type of the glued-together space since we compose with a p-equivalence of the bottom cell.

By the first paragraph of the proof the 2-cellifications of U and V are p-equivalent, the
2-cellifications of U and U are also p-equivalent, hence the 2-cellifications of U and V are p-
equivalent as well, finishing the proof.

7. THE EXACT VALUE OF THE FIRST NON-ZERO DIFFERENTIAL

Recall (Subsection 2.2) that vanishing of differentials d*, ..., d*~* on 1, € E} = 75(0) 2 Z
means that taking a germ ¢ : (R?=1) 0) — (R?*~1,0) that has an isolated X's-'-singularity
at the origin, its link map dp : S?*=2 — §25=2 is cobordant (in the class of X!'s=2-maps) to a
Yls—k-tmap Jyp. If d* is the first differential not vanishing on ¢, then the image d*(¢,) belongs
to the image of the subgroup im J C E!, in E*, and consequently the map dy¢ can be chosen
in such a way that the top (i.e. Xs—*-1-) singularity stratum of dy¢ is a sphere S?¢~1.

How to determine the exact value of this element d*.,? Mosher [16] answered this question
using the so-called e-invariants of Adams. Before recalling their precise definitions we collect
some properties of the e-invariants:

(1) There are homomorphisms eg and ec from 7%(2k — 1) — Q/Z.
(2) The invariant er gives a decomposition of 75(2k — 1) in the sense that

52k — 1) = im J @ kereg.

In particular, the restriction eglim ;s is injective.

(3) If k is odd, then ec = eg. If k is even, then ec = 2¢epg.

(4) Different representatives of d*(15) in im J C 7%(2k — 1) may have different values of eg,
but the ec-value is the same for all of them. Hence ec is well-defined on the image of
im J, in particular, ec(d*(4)) is also well-defined.



48 ANDRAS SzZUJCS AND TAMAS TERPAI

(5) The invariant ec is injective on the image of im J in E¥,. Hence the value ec(d*(is))
determines d”(vs) uniquely.

The precise value of ec(d*(4)) is given in the next theorem. Recall that d*(c,) exists if and only
if s + 1 is divisible by M, and d*(14) vanishes if and only if s + 1 is divisible by My, 1.

Theorem 17. ([16, Proposition 4.7]) If s+1 = tM;, modulo My 1, then ec(d*is) = t-uy,, where

k
uy, is the coefficient of z* in the Taylor expansion of (W) .

Mosher’s exposition is rather compressed and hard to understand. We try to repeat here his
argument in a more comprehensible form.

7.1. The definition of the ec-invariant. Given a € 75(2k — 1), denote by X,, the (stable
homotopy type of the) 2-cell complex D?7+2k ?52‘1, where f : S24t2k=1 _, §24 ig a representative

of a. The Chern character induces a map of the short exact sequence corresponding to the
cofibration S?¢ C X, — S?¢t2% in the complex K-theory into that in the rational cohomology
rings:

0<~— K($%) =—— K(X,) =—— K(S?+2%) <0

O%H*(SQQ)%H*( a %H*(SQqJ’_Qk)%O

One can choose generators (;, Cy+r in K(X,) as well as generators y, € H?(X,) and
Yg+rk € HITF(X,,) such that

(3) ch Cork =Ygtk
(4) ch Cq = Yq + AYg+k

Here ) is a rational number that is well-defined up to shifts by integers. The ec-invariant of «
is defined to be

ec(a) =X € Q/Z.

The definition of the er invariant is similar, using real K-theory and then the natural complex-
ification functor Kgr — Kc.

7.2. The computation of ec(d*(1,)). Since d’(1s) =0 for i = 1,...,k — 1, the attaching map
of the top cell of CP*/CP*~*~! can be deformed into the bottom cell. Hence by collapsing this
bottom cell we obtain a reducible space, that is, CP*/CP*~* is reducible. This latter space is
the Thom space T'(s — k+ 1)vk—1. Since T'a7y,—1 is reducible precisely when a + k is divisible by
My, we obtain that s +1 =0 mod M. Similarly d*(.s) = 0 precisely if s +1 =0 mod M.
Define t to satisfy s +1 = tM};, mod Mj1.

As we have seen before, T'(pyr—1) and T(qyx—1) are S-dual if p+ ¢+ k=0 mod Mj. Hence
CPth=1/CP" ! = T'(nyg_1) is S-dual to T((s —k+1)yx_1) = CP*/CP* % if n =0 mod Mj.
Analogously, the S-dual of CP*/CP*~*~! is CP"*k/CP" 1 if n = —tM} mod My .

We just saw that CP*/CP*~* is reducible, hence its S-dual, CP"*t*~1 /CP"~! is coreducible,
that is, it admits a retraction

r: CP"t*=1/,cprt - cpr/cph!

It also follows that for any @ € E¥, there are at most 2 elements in im J C El, that are mapped by the
partially defined map El, — EF, onto z
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onto its bottom cell S§>* = CP"/CP"'. Then CP"**/CP" ! admits a 2-cellification
X = D2k y§?" and a map

f:Ccprtheprt 5 X
that coincides with 7 on CP"*#~1/CP"~! and has degree 1 on the top (2n + 2k)-cell, and the
attaching map « is a representative of d¥(1,). Our aim is to calculate the ec-invariant of a.

Let

p: X — X/S2n _ 82n+2k
be the quotient map, further let w be the generator of K (S?"*2¥) = 7 and denote by y the
generator of H2(CP>). Then 3’ generates H2/(CP"*t*/CP"~1). By definition,

(*) ch p*W _ yn + ec(a)y"+k.

Recall that K(CP"**) = Z[u]/(u"T*+1 = 0), where u is the class of 4,44 — 1. The ring
K(CP"*/CP" ') can be identified with the subring of polynomials divisible by u", that is,
K(Cprtr/cpr=ty = pn - (Z[p] /(! = 0)). In particular, p*w can be written in the form

k
(**) prw ="y wid,
=0

where all w; are integers (depending on n and k) and wy = 1.

Let us denote ch pn = e¥ — 1 by z, then y = log(1 + z). Note that both y and z can be chosen
as generators in the ring of formal power series H**(CP*; Q). Applying ch to both sides of the
equality (**) and replacing the left-hand side by the right-hand side of (*) we obtain

k
Y™ +ec(a)y"Th =2 Z w; 2,
§=0
or equivalently
y\" L
(2) = [ Dowie | (1= ec(a)y” +ec(a)’y™ —...),
§=0

Recall that this equality holds whenever n is divisible by M. Replace y by the corresponding
power series in z. This is possible because y = z + higher powers of z.

n k
(***) (log(1+z)> = ijzj (1 —ec(a)zk +...).
j=0

z

It follows that on the right-hand side of (***) the first k coefficients of 27 (from j =0 to k — 1)
are integers, and the coefficient of z* is —ec () modulo Z. By definition, if n = My, then the
coefficient of z* on the left-hand side is ug. If n is divisible by My 1, then the same argument can
be repeated with k4 1 instead of k& and we obtain that the coefficient of z* has to be an integer;
this means that ec(d¥.s) = ec(a) is 0 modulo Z. In general, when n = tMj,, the left-hand side
of (***) can be expanded as

<log(1 + z)>” _ <<log(1 + z)>M’c>t

) My,
using the multinomial theorem. Since the coefficients of 27 in (W) for j=0,...,k—1

are integers, the same is true for the t-th power, and the coefficient of 2* is tu;, modulo Z.
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On the right-hand side of (***) we see that the coefficient of z* is —ec(a) modulo Z, hence

ec(a) = —tur, mod 1 as claimed. O
For example, the first several values of uy are as follows:
k 1 2 3 4 ) 6 7 8 9
M, | 1 2 24 24 2880 | 2880 | 362880 | 362880 | 29030400
we |1/2 [11/12] 0 |71/120| 0 |61/126| 0 | 17/30 0

Remark: Note that the generator ¢y of the group 75, (CP%,CP*~1) = Z in Mosher’s spec-
tral sequence corresponds in the singularity spectral sequence to the cobordism class of a prim
map 0,1 : (D?72,8%71) — (D?~1 §?572) that has an isolated X's-1-point at the origin
(given by Morin’s normal form of the ¥'s-1 singularity). Its image d*(1s) under the first non-
trivial differential is represented by the submanifold of ¥'s=*-1-points of the “boundary map”
Jos_1 : S*73 — §2572 after eliminating all its higher (than X1s-*-1) singularity strata. The
elimination of the higher strata proceeds in several steps and in this process we have to make
several choices. First we eliminate the £'+-2 singularities by choosing a cobordism of prim 3!'s-2-
maps that joins do,_; with a Xts=3-map 0105 1. Such a cobordism exists because d'(ts) = 0,
hence the immersed %'s-2-stratum is null-cobordant, and by [26] any null-cobordism of this top
stratum extends to a cobordism of the entire map dos_;. Then we eliminate the ¥':-3 singu-
larities by choosing a cobordism of prim X's—3-maps that joins 0;0,_; with a X's—4-map, and
so on. Finally we obtain a prim Xls-*-1-map. Its ©'s—*-1-stratum represents an element a in
75(2k — 1). For some of these choices the class a (representing d*(14)) belongs to im J.

As a corollary of the computation of ec(d*(is)), we have obtained the surprising fact that
whichever representative a € im J C E}, = 75(2k —1) of the element d*(15) we choose, the value
ec(a) is the same. We propose the following explanation of this fact. Consider the following
diagram (part of [16, 8.1.]):

J(CPF) <21 J(S?F)

|
TL(CPR) =~ (87)

Here J}(X) is a quotient group of J(X) defined in an algebraic way (for the reader’s convenience
we sketch the definition in the Appendix). Mosher writes: “elements of J{(S**) are measured
by the invariant ec” and refers to [4]. This means that ec is a well-defined and injective map
from J.(S?*) to Q/Z. Using this we show that all the representatives of d* (i) that belong to
im J C E!, are mapped by ec into the same element of the group Q/Z. Indeed, the diagram
implies that kerp; = kery. The argument of Lemma 18 shows that kerp; is precisely the
indeterminancy of the elements of J(S*) C EL, in E¥, (that is, the representatives in im J C EZ,
of an element of E¥, form a coset of the subgroup kerp;). Hence all the representatives of d* (1)
that belong to im J = J(S?*) will be mapped into the same element in J;(S?*) (namely into the
unique preimage of J(n7y;) in J(CP*)) and only elements that represent d*(t4) will be mapped
there.

To complete the explanation we need one more lemma. Recall (see [12, Chapter 15, Remark
5.3.]) that there exists a classifying space BH for the semigroup H of degree 1 self-maps of
spheres, and for any X one has

(X, BH| = K0p(X).
Here f(top(X ) is the group of stable topological sphere bundles over X up to fiberwise homotopy
equivalence. Note that Kop(S") = 7%(r — 1) = limy_ o0 Tg4r—1(S?). Furthermore let n be again
any sufficiently big natural number with the property that n 4+ s+ 1 is divisible by My1.
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Lemma 18. Consider the map p* : K’top(Szk) — K’top((CPk) induced by the projection
p:CP* — CcP*/CPF ! =§%.

Let us consider the sphere bundle S(nvyy) as an element in Kio,(CP*). Then (p*)~1(S(ny)) is
precisely the set of elements in

fftop(S%) =m°(2k—1) = Ei—k,s—k+1
that represent d* (1) € Effk,sfkwkl'

Proof. The representatives of d*(,) in El k.s—k+1 correspond to the possible choices of defor-
mations of the attaching map of the top cell in CP"**/CP"! into the bottom cell S?" (see
Lemma 15). We have seen that this is the same as the set of 2-cellifications of T'(nvy), and this
in turn is the same as the choices of a retraction of CP"+*~1/CP"~! = T'(ny;_1) onto the fiber
S?". Such a retraction of T(nyz—1) = S (nyk—1 ®e') /S(e') lifts uniquely to a retraction of the
sphere bundle S (n’yk_l D 51), where ¢! is the trivial real line bundle. This latter retraction can
be reinterpreted as a fiberwise homotopy equivalence between the sphere bundles of ny,_q ® '
and the trivial bundle £2"*1; we can therefore consider it to be a topological trivialization (in
Kiop(CP¥=1)) of the sphere bundle S(nyx_1).

In short, the representatives of d*(t,) in E;f,akk+1 are in bijection with the topological
trivializations of S(nyr_1).

Consider the space CP* UCone(CP*~1), the two spaces being glued along CP*~!. This space
is homotopically equivalent to CP*/CP*~! = S?! and the inclusion of CP* into it is (homo-
topically) the standard projection of CP* onto S?*. Take the element S(n7y) € Kiop(CP¥); it
corresponds to a homotopy class of maps CP* — BH, let x denote one map in this class. The
extensions of x to the cone over CP*~! correspond to topological trivializations of the sphere
bundle S(nyi_1). On the other hand, these extensions correspond to choosing a preimage of
S(nyk) € Ktop(CP*) under the map p*, and we obtain that the choice of representative of d* (1)
in Esl_,m_,c_s_1 corresponds to the choice of an element in (p*)~(S(nyx)), as claimed. O

Corollary: The set of those representatives of d¥(i,) that belong to im J = J(S%¥) is in
bijection with the set (p*)~*(J(nyx)) = p; ' (J(ny)).

Proof. From Theorem 14 we know that d*(1,) does have representatives in im J . By restricting
the map p* : Ky0p(S?*) — Kip(CPF) to the elements that can be deformed into BO C BH, we
obtain the map py : J(S?¢) — J(CP*). O

In particular, since ker p; has size at most 2, this means that the images of the previous
differentials going to B , . ., intersect im J in a subgroup of order at most 2 (see property
(3) and footnote to property (5) of e-invariants).

Remark: The entire calculation can also be performed for the spectral sequence formed by
the p-components of the groups of the Mosher spectral sequence. Theorem 16 proves that the
image of the first non-trivial differential from the diagonal of this spectral sequence belongs to
the image of im J,. Indeed, tracing the diagram of Theorem 16, if we calculate ec(c) for the
attaching map « of the 2-cell “resolutions” A and B, then dividing it back by the degree ¢
we obtain a well-defined value in the p-component (im ec)p. The only difference in the actual
computation is that the map CP"**/CP"~! — B is no longer an isomorphism in homology,
but induces the multiplication by ¢ on H*". Hence we have to replace ec(a) throughout the
proof with gec(a), and in the end we divide the resulting value by ¢ to obtain the ec(a) in the
p-component (the division by ¢ may not be meaningful in general, but in the p-component it is).
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Alternatively, we can choose a ¢ coprime to p such that d*(g¢,) makes sense, then calculate
d*(14s) (which makes sense) and divide back by g in the p-localization to arrive at d*(is) (which
only makes sense as Pd*(1,) after localization).

8. GEOMETRIC COROLLARIES
Here we summarize a few geometric corollaries.

8.1. Translation of the results to singularities. The first corollary is just a singularity
theoretical reinterpretation of the homotopy theoretical results and it answers the following
question:

Given non-negative integers n, r; and 72 as well as two stems

aen®(n—2r) and pen(n—2ry—1),

does there exist a prim X'71-1-map f: M™ — R™*! of a compact n-manifold M with boundary
OM such that f|pas is a Xl2-1-map, the set X1m1-1(f) (with its natural framing) represents a,
while $1r2-1(f|5ar) (with the natural framing) represents 3?
Answer: Define k to be the greatest natural number for which M}, divides r +1 (equivalently,
&1, =0foralj=0,...,k—1and d*.,, #0).
a) If ro > 7y — k, then such a map f exists exactly if 8 — «-d"™~"2(s,,) belongs to the image of
the “lower” differentials d}, ., ;
b) In general, with r; and ro arbitrary, the same condition takes the form f = d™ "2« in
E;) 7.2, with the additional requirement that the differential has to be defined on a. In
particular, when ro < r; — k and we make the additional assumption that a = A& for some
A € Z for which d"*~"2(A¢y,) is defined, B has to be equal to & - d™~"2(At,, ) modulo the

image of the lower differentials.

with y =1, ..., r1 —ro.

For example, if ro = r; — 1, then criterion a) states that such a map f exists exactly if

ﬁ:a'dl(bﬁ) :{

where n € 75(1) is the generator.

If ro = r — 2, we can apply criterion b). When 7, is even, then S must lie in the coset
a-d*(tyy) +n-75(n —2ry —2). When r; is odd and we additionally assume that o = 24, then
B must be & - d?(2t,, ).

0 if 1 is even,

an if r1 is odd,

8.2. The p-localization of the classifying space. Recall that X™ = Xp,.;,,,s1- denotes the
classifying space of prim Ylr-maps of cooriented manifolds. Let p be any prime such that
p > r+ 1. For any space Y we denote by (Y), the p-localization of Y. Recall that I' stands for
Qe 5o,

Theorem 19. (X"), ][, (I8+"),,

Remark: Recall (Section 3) that PrimX!~(n) denotes the cobordism group of prim X!r-
maps of oriented n-manifolds into R"*!. Let C, = C(p < r + 1) denote the Serre class of finite
abelian groups that have no p-primary components for p > r + 1. We will denote isomorphism
modulo C, by g: Then

PrimX'(n) & @i_om(n — 2i).

This means prim Y'7-maps considered up to cobordism and modulo small primes look as an
independent collection of immersed framed manifolds of dimensions n, n — 2, ..., n — 2r corre-
sponding to their singular strata.
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Proof: We have seen in Lemma 3 that X" = QI'CP"™*!. Now we use a lemma about the
p-localization of CP™:

Lemma 20. For any p > n + 1 the p-localizations of CP™ and S* VS*V --- Vv §?" are stably
homotopically equivalent.

Proof. Serre’s theorem states that the stable homotopy groups of spheres 7%(m) have no p-
components if m < 2p — 3. Hence after p-localization the attaching maps of all the cells in CP™
will become null-homotopic. (I

Hence we get that
™ o~ 2\ Q22 ~ Ly, yQ2er+l) o~ 2i+1
(X7)p 2 Q (S v .- vEH2) =T (st v verth) = TT(Ts™ ) |
i=0
proving the theorem.

8.3. Odd torsion generators of stable homotopy groups of spheres represented by the
strata of isolated singularities. Example: the odd generator of 7%(3) = Zo4. The isolated
cusp map o3 : (R*,0) — (R?,0) has on its boundary doy : S* — S* a framed null-cobordant fold
curve. Applying a cobordism of prim fold maps to dos that eliminates the singularity curve one
obtains a map without singularities of a 3-manifold into S*. It represents a quadruple of the odd
generator in 75(3).

Example: the odd torsion of 7%(7) = Z15 @ Z16. Consider an isolated Yl -map

f: (R%0) — (R%,0).

Again all the singularity strata of its boundary map df : S7 — S® can be eliminated (after
possibly a multiplication by a power of 2). The obtained non-singular map of a 7-manifold into
S® represents a generator of Zs.

These examples can be produced in any desired amount.

9. EQUIDIMENSIONAL PRIM MAPS

The arguments demonstrated so far can also be applied to the case of codimension 0 prim
maps, both cooriented and not necessarily cooriented. However, the resulting spectral sequences
do not have the same richness of structure as Mosher’s, so we only indicate the differences from
the case of codimension 1 cooriented prim maps.

The analogue of Lemma 4 that identifies the classifying space of codimension 0 (not necessarily
cooriented) prim maps with QI'RP* including the natural filtrations goes through without
significant changes, giving that the codimension 0 classifying space X ppim s (0) is QURP™HL.
Indeed, take a codimension 1 immersion f with a X!~ projection. The vertical vector field
gives us sections of the relative normal line bundles of the singular strata, and collecting these
sections induces the normal bundle of f from the tautological line bundle over RP". This defines
a map from the classifying space of the lifts of prim X!7-maps to the Thom space RP"*! of the
tautological line bundle over RP", and the 5-lemma shows that this map is a weak homotopy
equivalence. For cooriented maps the corresponding bundle from which the normal bundle of f
is induced is the trivial bundle €}, over S” and the classifying space X ;?Toimler (0) turns out to
be QI'Ted, = QT(S™H! v Sh).

In the cooriented case, the spectral sequence obtained this way has first page

1 s s
E, ,=m(q) ®7(0)

We thank D. Crowley for the proof of this lemma.
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and degenerates to 75(0) concentrated in the first column on page E2. In the non-cooriented
case, the spectral sequence has first page Ezl,,q = 7%(q) and abuts to 75(RP>). The differential
d' can be completely understood: it is induced by the attaching map of the top cell of RPI*!
to the top cell of RP?, and this attaching map has degree 0 when ¢ is even and degree 2 when
q is odd. Thus d' is also 0 on the even columns and multiplication by 2 on the odd columns.
Consequently the E? page consists of direct sums of groups Zs, one for each 2-primary direct
summand in the same E'-cell except at row 0, where the groups are alternating 0 and Zo (this
exception comes from the fact that the group 7%(0) = Z is not finite like the rest of the groups
m(q))-

Periodicity goes through in the same way as before, with M}, replaced by |J(RP*~1)| = 2m(¥)
with m(k) = [{1<p<k:p=0,1,2,3,4 mod 8}| (known from [3]).

Conjecture: the first column of E? survives to E>° without further change, in other words,
the differentials d?, d3, ..., ending in the first columns all vanish. This has been observed in the
cells number 0 to 8 of the first column.

APPENDIX: THE DEFINITION OF J{(X)

The famous K-theoretical y¥-operations (k is any natural number) of Adams are defined by
the properties of
a) being group homomorphisms, and
b) satisfying *¢ = ¢ if ¢ is a line bundle.
Now if @ is the K-theoretical Thom isomorphism, then an operation p* is defined by
pr(€) = PP P (1)

for any vector bundle £. After having extended 1* and p* to virtual bundles one can define the
subgroup V(X) < K(X) as follows:

V(X) = {x € K(X):3ye K(X)st. pf(z)= M}

1+y

Then J4(X) < K(X)/V(X).

The definition is motivated by the result (proved by Adams) that every J-trivial element of
K (X) necessarily belongs to V(X). Hence there is a surjection pr : J(X) — J5(X). While
the definition of J(X) is geometric (not algebraic) and consequently it is hard to handle, the
definition of J/,(X) is purely algebraic and therefore much easier to compute. Furthermore, the
two groups often coincide (eg. for X = RP™) or are close to each other (for X = S?* the kernel
ker pr has exponent 2).
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APPENDIX 2: CALCULATED SPECTRAL SEQUENCES
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Ej; page:
11 m(10) = Zg(nop) + I 738 « U 7o & Zoe B Zoyo Zs 0
10 | 7509) = Z3(3, p,no &) el— Lo @ Lo —t>— Zouo Z, 0 0
9 | 75(8) = Zo(P) @ Zole) EF Ty +—1— 7o 0 0 T
8 75(7) = Zoao(o) —— Zs 0 0 Loy ——— Zo
7 75(6) = Zo(1?) 0 0 Zoa Zot=— 7,
6 ™(5) =0 0 T Zs Zs z
5 m(4) =0 Loy 12— Z, = 7, zZ 0
4 75(3) = Zoa(v) ——— Zs 7, Z 0 0
3 m(2) =Zo(n?) —F— 7y, 17 0 0 0
2 m5(1) = Zo(n) 4—+— Z 0 0 0 0
j=1 sESH=2 0 0 0 0 0
i=0 1 2 3 4 5
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2 .
E7; page:
8 ZQ Zlgo ZQ O 0 ZQ4
7 Zig40 Ly 0 0 L2 0
6 Loy 0 0 Zioa 0 0
‘1;,5
5 0 0 YADS 0 0 Z
dZ,4
4 0 Loy - O 0 Z 0
d3,3
3 Z12(2v) 0 0 Z 0 0
P 0 0o | Tz 0 0 0
7=1 0 7 0 0 0 0
1 =0 1 2 3 4 5

Here, d3 , induces the 0 map between the 3-components, while the d3 5 and d 5 differentials
induce epimorphisms in the 3-components.
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