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SCHUBERT DECOMPOSITION FOR MILNOR FIBERS OF THE

VARIETIES OF SINGULAR MATRICES

JAMES DAMON1

Abstract. We consider the varieties of singular m × m complex matrices which may be
either general, symmetric or skew-symmetric (with m even). For these varieties we have

shown in another paper that they had compact “model submanifolds” for the homotopy

types of the Milnor fibers which are classical symmetric spaces in the sense of Cartan. In this
paper we use these models, combined with results due to a number of authors concerning the

Schubert decomposition of Lie groups and symmetric spaces via the Cartan model, together
with Iwasawa decomposition, to give cell decompositions of the global Milnor fibers.

The Schubert decomposition is in terms of “unique ordered factorizations” of matrices

in the Milnor fibers as products of “pseudo-rotations”. In the case of symmetric or skew-
symmetric matrices, this factorization has the form of iterated “Cartan conjugacies” by

pseudo-rotations. The decomposition respects the towers of Milnor fibers and symmetric

spaces ordered by inclusions. Furthermore, the “Schubert cycles”, which are the closures of
the Schubert cells, are images of products of suspensions of projective spaces (complex, real,

or quaternionic as appropriate). In the cases of general or skew-symmetric matrices the Schu-

bert cycles have fundamental classes, and for symmetric matrices mod 2 classes, which give a
basis for the homology. They are also shown to correspond to the cohomology generators for

the symmetric spaces. For general matrices the duals of the Schubert cycles are represented

as explicit monomials in the generators of the cohomology exterior algebra; and for symmetric
matrices they are related to Stiefel-Whitney classes of an associated real vector bundle.

Furthermore, for a matrix singularity of any of these types. the pull-backs of these coho-
mology classes generate a characteristic subalgebra of the cohomology of its Milnor fiber.

We also indicate how these results extend to exceptional orbit hypersurfaces, complements

and links, including a characteristic subalgebra of the cohomology of the complement of a
matrix singularity.

Preamble: Motivation from the Work of Brieskorn

After Milnor developed the basic theory of the Milnor fibration and the properties of Milnor
fibers and links for isolated hypersurface singularities, Brieskorn was involved in fundamental
ways in developing a more complete theory of isolated hypersurface singularities. Furthermore
through the work of his many students the theory was extended to isolated complete intersection
singularities.

For isolated hypersurface singularities Brieskorn developed the importance of the intersection
pairing on the Milnor fiber [Br]. This includes the computation of the intersection index for
Pham-Brieskorn singularities, leading to the discovery that for a number of these singularities
the link is an exotic topological sphere. He also demonstrated in a variety of ways that group
theory in various forms plays an essential role in understanding the structure of singularities. This
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includes the relation between the monodromy and the Milnor fiber cohomology by the Gauss-
Manin connection, and including the intersection pairing [Br2]. This includes the relation with
Lie groups, especially for the ADE classification for simple hypersurface singularities, where he
identified the intersection pairing with the Dynkin diagrams for the corresponding Lie groups. He
also gave the structure of the discriminant for the versal unfoldings using the Weyl quotient map
on the subregular elements of the Lie group [Br3]. In combined work with Arnold [Br4], he further
showed that for the simple ADE singularities the complement of the discriminant is a K(π, 1).
He continued on beyond the simple singularities to understand the corresponding structures for
unimodal singularities [Br5], setting the stage for further work in multiple directions.

The approaches which he initiated provide models for approaching questions for highly non-
isolated hypersurface singularities which are used in this paper. For matrix singularities, the
high-dimensional singular set means that the Milnor fiber, complement and link have low con-
nectivity and hence can have (co)homology in many degrees [KMs]. To handle this complexity
for matrix singularities of the various types, Lie group methods are employed to answer these
questions. Partial answers were already given in [D3], including determining the (co)homology
of the Milnor fibers using representations as symmetric spaces. This continues here by obtaining
geometric models for the homology classes, understanding the analogue of the intersection pair-
ing on the Milnor fiber via a Schubert decomposition, determining the structure of the link and
complement, and their relations with the cohomology structure. We see that there is the analogue
of the ADE classification which is given for the matrix singularities by the ABCD classification
for the infinite families of simple Lie groups. We also indicate how these geometric methods
extend to complements and links, including more general exceptional orbit hypersurfaces for
prehomogeneous spaces.

Introduction

In this paper we derive the Schubert cell decomposition of the Milnor fibers of the varieties
of singular matrices for m × m complex matrices which may be either general, symmetric, or
skew-symmetric (with m even). We show that there is a homology basis obtained from “Schu-
bert cycles”, which are the closures of these cells. We further identify these homology classes
with the cohomology. For general matrices we identify the correspondence with monomials of
the generators for the exterior cohomology algebra and for symmetric matrices we identify the
Schubert classes with monomials in the Stiefel-Whitney classes of an associated vector bundle.
We also indicate how these results extend to more general exceptional orbit varieties and for
the complements and links for all of these cases. Furthermore, for general matrix singularities
defined from these matrix types, we define characteristic subalgebras of the cohomology of the
Milnor fibers and complements representing them as modules over these subalgebras.

In [D3] we computed the topology of the exceptional orbit hypersurfaces for classes of preho-
mogeneous spaces which include these varieties of singular matrices. This included the topology
of the Milnor fiber, link, and complement. This used the representation of the complements
and the global Milnor fibers as homogeneous spaces which are homotopy equivalent to compact
models which are classical symmetric spaces studied by Cartan. These symmetric spaces have
representations as “Cartan models”, which can be identified as compact submanifolds of the
global Milnor fibers.

We use the Schubert decomposition for these symmetric spaces developed by Kadzisa-Mimura
[KM] building on the earlier results for Lie groups and Stiefel manifolds by J. H. C. Whitehead
[W], C.E. Miller, [Mi], I. Yokota [Y]. This allows us to give a Schubert decomposition for the
compact models of the Milnor fibers, which together with Iwasawa decomposition provides a
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cell decomposition for the global Milnor fibers in terms of the Schubert decomposition for these
symmetric spaces.

The Schubert decompositions are in terms of cells defined by the unique “ordered factoriza-
tions” of matrices in the Milnor fibers into “pseudo-rotations” of types depending on the matrix
type, and their relation to a flag of subspaces. For symmetric or skew-symmetric matrices, this
factorization has the form of iterated “Cartan conjugacies” by the pseudo-rotations. These are
given by a modified form of conjugacy which acts on the Cartan models.

The Schubert decomposition is then further related to the co(homology) of the global Milnor
fibers. We do so by showing the Schubert cycles for the symmetric spaces are images of products
of suspensions of projective spaces of various types (complex, real, and quaternionic as appropri-
ate). This allows us to relate the duals of the fundamental classes of the Schubert cycles (mod 2
classes for symmetric matrices) to the cohomology classes given for Milnor fibers in [D1]. These
are given for the different matrix types and various coefficients as exterior algebras. In the sym-
metric matrix case the cohomology with Z/2Z coefficients is given as an exterior algebra on the
Stiefel-Whitney classes of an associated real vector bundle. For coefficient fields of characteristic
zero the generators are classes which transgress to characteristic classes of appropriate types.

We further indicate how these methods also apply to exceptional orbit hypersurfaces in [D3]
and how they further extend to the complements of the varieties and their links.

Lastly, we show that for matrix singularities of these matrix types, we can pull-back the
cohomology algebras of the global Milnor fibers to identify characteristic subalgebras of the
Milnor fibers for these matrix singularities. This represents the cohomology of the Milnor fiber
of a matrix singularity of any of these types as a module over the corresponding characteristic
subalgebra. We also indicate how this also holds for the cohomology of the complement.

1. Cell Decomposition for Global Milnor Fibers in Terms of
their Compact Models

We consider the varieties of singular m ×m complex matrices which may be either general,
symmetric, or skew-symmetric (with m even). In [D1] we investigated the topology of these
singularities, including the topology of the Milnor fiber, link and complement. This was done
by viewing them as the exceptional orbit varieties obtained by the representation of a complex
linear algebraic group G on a complex vector space V with open orbit. For example this includes
the cases where V = M is one of the spaces of complex matrices M = Symm or M = Skm (for
m = 2k) acted on by GLm(C) by B · A = BABT , or , M = Mm,m and GLm(C) acts by left
multiplication. Each of these representations have open orbits and the resulting prehomogeneous
space has an exceptional orbit variety E which is a hypersurface of singular matrices.

Definition 1.1. The determinantal hypersurface for the space of m ×m symmetric or general
matrices, denoted by M = Symm or M = Mm,m is the hypersurface of singular matrices defined

by det : M → C and denoted by D(sy)
m for M = Symm, or Dm for M = Mm,m. For the space

of m ×m skew-symmetric matrices M = Skm (for m = 2k) the determinantal hypersurface of

singular matrices is defined by the Pfaffian Pf : Skm → C, and is denoted by D(sk)
m . In the

following we uniformly denote any of these functions as f .

Then, we showed in [D3] that the Milnor fibers for each of these singularities at 0 are diffeo-

morphic to their global Milnor fibers f−1(1) which are denoted by: Fm for general case, F
(sy)
m

for the symmetric case, and F
(sk)
m for the skew-symmetric case. Then, we show in Theorem

3.1 in [D3, §3] that each global Milnor fiber is acted on transitively by a linear algebraic group

and so is a homogeneous space. In particular, Fm = SLm(C), F
(sy)
m ' SLm(C)/SOm(C), and
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F
(sk)
2m ' SL2m(C)/Spm(C). Moreover, these spaces have as deformation retracts spaces which

are symmetric spaces of classical type studied by Cartan: SLm(C) has as deformation retract
SUm; SLm(C)/SOm(C) has as deformation retract SUm/SOm; and SL2m(C)/Spm(C) has as
deformation retract SU2m/Spm. These are compact models for the Milnor fibers and we denote

them as F cm, F
(sy) c
m , and F

(sk) c
2m respectively.

This allowed us to obtain the rational (co)homology (and integer cohomology for the general
and skew-symmetric cases and the Z/2Z cohomology for the symmetric cases), as well as using
the Bott periodicity theorem to compute the homotopy groups in the stable range.

We will now further use the cell decompositions of the symmetric spaces together with Iwasawa
decomposition to give the cell decompositions for the global Milnor fibers. We recall the Iwasawa
decomposition for SLm(C) has the formKAN whereK = SUm, Am consists of diagonal matrices
with real positive entries of det = 1, and Nm is the nilpotent group of upper triangular complex
matrices with 1’s on the diagonal. In particular, this means that the map

SUm ×Am ×Nm → SLm(C)

sending (U,B,C) 7→ U ·B ·C is a real algebraic diffeomorphism. Alternatively Am ·Nm consists
of the upper triangular matrices of det = 1 with complex entries except having real positive
entries on the diagonal. As a manifold it is diffeomorphic to a Euclidean space of real dimension
2
(
m
2

)
+ m − 1. We denote this subgroup of SLm(C) as Solm, which is a real solvable subgroup

of SLm(C).
For any of the preceding cases, let F denote the Minor fiber and Y the compact symmetric

space associated to it. Suppose that Y has a cell decomposition with open cells {ei : I = 1, . . . , r}.
Then, we have the following simple proposition.

Proposition 1.2. With the preceding notation, the cell decomposition of F is given by

{ei · Solm : I = 1, . . . , r}.
Moreover, if the closure ēi has a fundamental homology class (for Borel-Moore homology), then
ei · Solm = ēi · Solm has a fundamental homology class with the same Poincaré dual.

Proof. By the Iwasawa decomposition Y × Solm ' F via (U,B) 7→ U · B. Hence, if for i 6= j,
ei ∩ ej = ∅, then (ei×Solm)∩ (ej ×Solm) = ∅ and (ei ·Solm)∩ (ej ·Solm) = ∅. Also, as Y = ∪iei
is a disjoint union, so also is F = ∪iei · Solm. Third, each ei × Solm is homeomorphic to a
cell of dimension dim R(ei) + 2

(
m
2

)
+ m − 1. Thus, F is a disjoint union of the cells ei · Solm.

Lastly, ēi = ei ∪ji eji where the last union is over cells of dimension less than dim ei. Hence,
¯ei · Solm = ēi · Solm = (ei · Solm) ∪ji (eji · Solm). Hence this is a cell decomposition.

Then, ēi is a singular manifold with open smooth manifold ei. If it has a Borel-Moore
fundamental class, which restricts to that of ei, then so does ei · Solm have a fundamental class
that restricts to that for ei · Solm ' ei × Solm. Then, as ēi is the pull-back of ei · Solm under
the map i : Y → Y × Solm ' F which is transverse to ēi × Solm ' ei · Solm, by a fiber-square
argument for Borel-Moore homology, the Poincaré dual of ei · Solm pulls-back via i∗ to the
Poincaré dual of ēi. As i is a homotopy equivalence, via the isomorphism i∗ the Poincaré duals
agree. �

2. Cartan Models for the Symmetric Spaces

The General Cartan Model.
By Cartan, a symmetric space is defined by a Lie group G with an involution σ : G → G so

that the symmetric space is given by the quotient space G/Gσ, where Gσ denotes the subgroup
of G invariant under σ. Furthermore this space can be embedded into the Lie group G. The
embedding is called the Cartan model. It is defined as follows, where we follow the approach of
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Kadzisa-Mimura [KM] and the references therein. They introduce two subsets M and N of G
defined by:

M = {gσ(g−1) : g ∈ G} and N = {g ∈ G : σ(g−1) = g}.

Then, we have G/Gσ ' M ⊂ N . The inclusion is the obvious one, and the homeomorphism is
given by g 7→ gσ(g−1). Via this homeomorphism, we may identify the symmetric space G/Gσ

with the subset M ⊂ G. The subspace N is closed in G, and it can be shown that M is the
connected component of N containing the identity element. In the three cases we consider, it
will be the case that M = N .

We also note that while M and N are subspaces of G, they are not preserved under products
nor conjugacy; however they do have the following properties.
Further Properties of the Cartan Model:

i) there is an action of G on both M and N defined by g · h = ghσ(g−1) and on M it is
transitive;

ii) the homeomorphism G/Gσ 'M is G-equivariant under left multiplication on G/Gσ and
the preceding action on M ;

iii) both M and N are invariant under taking inverses; and
iv) if g, h ∈ N commute then gh ∈ N .

For Un, g∗ = g−1 so an alternative way to write the action in i) is given by g 7→ h · g ·σ(h∗). We
will refer to this action as Cartan conjugacy.

Then, Kadzisa-Mimura use the cell decompositions for various G to give the cell decomposi-
tions for M and hence the symmetric space G/Gσ. There is one key difference with what we will
do versus what Kadzisa-Mimura do. They give the cell decomposition; however we also want to
represent the closed cells where possible as the images of specific singular manifolds, specifically
products of suspensions of projective spaces of various types and to relate the fundamental ho-
mology classes to corresponding classes in cohomology. Together with the reasoning in §1 and
the identification of the global Milnor fibers with the Cartan models, we will then be able to
give the Schubert decomposition for the global Milnor fibers and identify the Schubert homology
classes with dual cohomology classes.

The Cartan Models for SUm, SUm/SOm, and SU2m/Spm.
For the three cases we consider: SUm , SUm/SOm, SU2m/Spm, we first observe that the

exact sequence of groups (2.1) does not split

(2.1) 1 −−−−→ SUm −−−−→ Um
det−−−−→ S1 −−−−→ 1 .

However, it does split as manifolds Um ' S1 × SUm sending

C 7→ (det(C), I1,m−1(det(C)) · C),

where I1,m−1(det(C)−1) is the m ×m diagonal matrix with 1’s on the diagonal except in the
first position where it is det(C)−1. Thus, topological statements about Um have corresponding
statements about SUm and conversely.

We first give the representation for the symmetric spaces. For SUm we just use itself as a
compact Lie group.

Next, for SU(m)/SO(m) we let the involution σ on SU(m) be defined by C 7→ C. We see
that σ(C) = C is equivalent to C = C. Thus C is a real matrix which is unitary; and hence C
is real orthogonal. As det(C) = 1, we see that SUσm = SOm.

The third case is SU2n/Spn for m = 2n. In this case, the involution σ on SU2n sends

C 7→ JnCJ
∗
n where Jn is the 2n×2n block diagonal matrix with 2×2 diagonal blocks

(
0 1
−1 0

)
.
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As J∗n = JTn = −Jn = J−1
n , then σ(C) = C is equivalent to JnCJn = −C, or as C−1 = C

T

we can rearrange to obtain CTJnC = Jn (or alternatively CJnC
T = Jn), which implies that

C leaves invariant the bilinear form (v, w) = vTJnw (for column vectors v and w) and so is an
element of Spn(C), and so an element of Spn = SU2n ∩ Spn(C).

The corresponding Cartan models are then given as follows. We denote the Cartan models

by respectively: Cm, C(sy)
m , and C(sk)

m .
First, for G = SUm, which is itself a symmetric space, and we let Cm = SUm. In this case,

Cartan conjugacy is replaced by left multiplication.
Second, for SUm/SOm we claim

(2.2) C(sy)
m

def
= {C · CT : C ∈ SUm} = {B ∈ SUm : B = BT } .

The inclusion of the LHS in the RHS is immediate. For the converse, we note that if B ∈ SUm
and B = BT , then by the following Lemma given in [KM] there is an orthonormal basis of
eigenvectors which are real vectors so we may write B = ACA−1 with A an orthogonal matrix
and C a diagonal matrix with diagonal entries λj so that |λj | = 1. Thus, A−1 = AT , and so

B = ADAT ·ADAT with D a diagonal matrix with entries
√
λj .

Lemma 2.1. If B ∈ SUm and B = BT then there is a real orthonormal basis of eigenvectors
for B.

This is a simple consequence of the eigenspaces being invariant under conjugation, which is
easily seen to follow from the conditions. In this case, Cartan conjugacy by A on B is checked
to be given by B 7→ A ·B ·AT .

Third, for SU2n/Spn with m = 2n, we may directly verify

(2.3) C(sk)
m

def
= {C · Jn · CT · J∗n : C ∈ SU2n} = {B ∈ SU2n : (B · Jn)T = −B · Jn} .

Then, Cartan conjugacy by A on B is given by B 7→ A · (B · Jn) · AT · J−1
n , with B · Jn

skew-symmetric for B ∈ C(sk)
m .

Hence, from (2.2), we have the compact model for F
(sy)
m as a subspace is given by

F (sy) c
m = SUm ∩ Symm(C)

and the Cartan model for the symmetric space SUm/SOm is given by F
(sy) c
m itself. Similarly,

from (2.3), we have the compact model for F
(sk)
m with m = 2n as a subspace is given by

F
(sk) c
m = SUm ∩ Skm(C) and the Cartan model for the symmetric space SU2n/Spn is given by

F
(sk) c
m · J−1

n .

Remark 2.2. Frequently for all three cases, we will want to apply a Cartan conjugate for an
element of Un instead of SUn. The formula for the Cartan conjugate remains the same and
the corresponding symmetric spaces are Un, Un/On, and U2n/Spn. By the properties of Cartan
conjugacy, an iteration of Cartan conjugacy by elements Ai ∈ Un whose product belongs to SUn
will be a Cartan conjugate by an element of SUn and preserve the Cartan models of interest to
us.

Tower Structures of Global Milnor fibers and Symmetric Spaces by Inclusion.
Lastly, these global Milnor fibers, symmetric spaces and compact models form towers via

inclusions: i) sending A 7→
(
A 0
0 1

)
for SUm ⊂ SUm+1, Fm ⊂ Fm+1, or F

(sy)
m ⊂ F

(sy)
m+1 which

induce inclusions of the symmetric spaces SUm and SUm/SOm and corresponding global Milnor
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fibers, or ii) sending A 7→
(
A 0
0 I2

)
for the 2 × 2 identity matrix I2 for SUm ⊂ SUm+2 for

m = 2n and the corresponding symmetric spaces SU2n/Spn and Milnor fibers F
(sk)
m ⊂ F

(sk)
m+2.

The Schubert decompositions will satisfy the additional property that they respect the inclusions.
We summarize these results by the following.

Proposition 2.3. For the varieties of singular m×m complex matrices which are either general,
symmetric or skew-symmetric, their global Milnor fibers, representations as homogeneous spaces,
compact models given as symmetric spaces and Cartan models are summarized in Table 1.

Milnor Quotient Symmetric Compact Model Cartan

Fiber F
(∗)
m Space Space F

(∗) c
m Model

Fm SLm(C) SUm SUm F cm
F

(sy)
m SLm(C)/SOm(C) SUm/SOm SUm ∩ Symm(C) F

(sy) c
m

F
(sk)
m ,m = 2n SL2n(C)/Spn(C) SU2n/Spn SUm ∩ Skm(C) F

(sk) c
m · J−1

n

Table 1. Global Milnor fiber, its representation as a homogenenous space,
compact model as a symmetric space, compact model as subspace and Cartan
model.

3. Schubert Decomposition for Compact Lie Groups

We recall the “Schubert decomposition”for compact Lie groups, concentrating on SUn. The
cell decompositions of certain compact Lie groups, especially SOn and Un and SUn were carried
out by C. E. Miller [Mi] and I. Yokota [Y], building on the work of J. H. C. Whitehead [W]
for the cell decomposition of Stiefel varieties. In the case of Grassmannians, the Schubert
decomposition is in terms of the dimensions of the intersections of the subspaces with a given
fixed flag of subspaces. For these Lie groups, elements are expressed as ordered products of
(complex) “pseudo rotations”about complex hyperplanes (or reflections about real hyperplanes
in the case of SOn). The cell decomposition is based on the subspaces of a fixed flag that contain
the orthogonal lines to the hyperplane axes of rotation (or reflection). We will concentrate on
the complex case which is relevant to our situation.

(Complex) Pseudo-Rotations.
We note that given a complex 1–dimensional subspace L ⊂ Cn, we can define a “(complex)

pseudo-rotation”about the orthogonal hyperplane L⊥ as follows. Let x ∈ L be a unit vector. As
L is complex we have a positive sense of rotation through an angle θ given by x 7→ eiθx. We
extend this to be the identity on L⊥. This is given by the following formula for any x′ ∈ Cn:

A(θ,x)(x
′) = x′ − ((1− eiθ) < x′, x >)x .

This is not a true rotation as a complex linear transformation so we refer to this as a “pseudo-
rotation”. Then, A(θ,x) can be written in matrix form as A(θ,x) = (In− (1− eiθ)x · x̄T ) for x an
n-dimensional column vector.

Remark 3.1. In the special case that A(θ,x) has finite order as an element of the group Un, it
is called a “complex reflection”.

We observe a few simple properties of pseudo-rotations:
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i) A(θ,x) only depends on L =< x >, so we will also feel free to use the alternate notation
A(θ,L);

ii) A(θ,x) is a unitary transformation with det(A(θ,x)) = eiθ;

iii) if B ∈ Un, then B ·A(θ,x) ·B−1 = A(θ,Bx) is again a pseudo-rotation; and

iv) A(θ,x) = A(−θ,x̄); A
−1
(θ,x) = A(−θ,x); and AT(θ,x) = A(θ,x̄).

Ordered Factorizations in SUm and Schubert Symbols.
Then, given any B ∈ SUn, we may diagonalize B using an orthonormal basis {v1, . . . , vn} so

if C denotes the unitary matrix with the vi as columns, then we may write B = CDC−1 where
D is a diagonal matrix with diagonal entries λi of unit length so that

∏n
i=1 λi = 1. This can

be restated as saying that B is a product of pseudo-rotations about the hyperplanes < vj >
⊥

with angles θj where λj = eiθj . Thus, B =
∏n
j=1A(θj ,vj). However, we note that as certain

eigenspaces may have dimension > 1, the terms and their order in the product are not unique.
There is a method introduced by Whitehead and used by Miller and Yokota for obtaining a

unique factorization leading to the Schubert decomposition in SUn. The product is rewritten
as a product of different pseudo-rotations whose lines satisfy certain inclusion relations for a
fixed flag leading to an ordering of the pseudo-rotations. We let 0 ⊂ C ⊂ C2 ⊂ · · · ⊂ Cn
denote the standard flag. Then, if L =< x >⊂ Ck and L =< x > 6⊂ Ck−1, we will say
that x and L minimally belong to Ck and introduce the notation x ∈min Ck or L ⊂min Ck. If
x = (x1, x2, . . . , xn) then x ∈min Ck iff xk+1 = · · · = xn = 0 and xk 6= 0. We observe two simple

properties: if x ∈min Ck then x̄ ∈min Ck; and if x′ ∈min Ck′ with k′ < k, then A(θ,x′)(x) ∈min Ck.
Then to rewrite the product in a different form, we proceed, as in the other papers, to follow

Whitehead with the following lemma.

Lemma 3.2. Suppose that we have two pseudo-rotations A(θ,x) and A(θ′,x′) with x ∈min Cm and

x′ ∈min Cm′ .
1) If m > m′, then

(3.1) A(θ,x) ·A(θ′,x′) = A(θ′,x′) ·A(θ,x̃),

where x̃ = A−1
(θ′,x′)(x).

2) If m = m′, and < x >6=< x′ > let W =< x, x′ >, which has dimension 2, and let
L =< x̃ >= W ∩ Cm−1, with x̃ ∈min Ck for k ≤ m − 1. Then, there exist pseudo-
rotations A(θ̃,x̃) and A(θ̃′,x̃′) with x̃ ∈min Ck and x̃′ ∈min Cm such that

(3.2) A(θ,x) ·A(θ′,x′) = A(θ̃,x̃) ·A(θ̃′,x̃′) .

Moreover, for generic x, x′ ∈min Cm, x̃ ∈min Cm−1.

Proof. For 1), by property iii) of pseudo-rotations, A−1
(θ′,x′) · A(θ,x) · A(θ′,x′) is a pseudo-rotation

of the form A(θ,x̃) with x̃ = A−1
(θ′,x′)(x). Also, both A(θ,x) and A(θ′,x′) are the identity on Cm⊥;

hence x̃ ∈min Cm.
For 2), if < x >=< x′ >, then the pseudo-rotations commute. Next, suppose these lines differ

so the complex subspace W spanned by x and x′ is 2-dimensional. Then, dim CW ∩ Cm−1 = 1.
We denote it by L and let it be spanned by a unit vector x̃ with say x̃ ∈min Ck for k ≤ m − 1
(and generically k = m− 1). We note that both pseudo-rotations are the identity on W⊥. Also,
W ⊂ Cm. It is sufficient to consider the pseudo-rotations restricted to W ' C2 with x̃ denoted
by e2 and orthogonal unit vector e1. Then, let (A(θ,x) · A(θ′,x′))

−1(e1) = v. Then, we want a
pseudo-rotation on W that sends e1 7→ v. If v 6= −e1, then reflection about the complex line
spanned by e1 + v, is a pseudo-rotation by π and sends e1 to v. If v = −e1, then reflection
about the complex line spanned by e2 works instead. If we denote this reflection by A(π,x̃′), then
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A(θ,x) ·A(θ′,x′) ·A(π,x̃′) is a unitary transformation which fixes e1 and is hence a pseudo-rotation

about the line < e1 > and so sends e2 = x̃ to eiθ̃x̃ for some angle θ̃. Thus,

A(θ,x) ·A(θ′,x′) = A(θ̃,x̃) ·A(θ̃′,x̃′)

giving the result. �

This allows us to rewrite a product of pseudo-rotations as a product where the lines are
minimally contained in successively larger subspaces of the flag.

Whitehead Algorithm for ordered factorization of Unitary matrices. Given B ∈ SUn, we may

write B =
∏k
j=1A(θj ,xj), with the {xj} an orthonormal set of vectors with say xj ∈min Cmj . Note

that k may be less than n as we may exclude the eigenvectors x′j with eigenvalue 1, which give
A(0,x′j)

= In. Then, we may use Lemma 3.2 to reduce the product into a standard form as follows.

For the sequence (m1,m2, . . . ,mk), we find the largest j so that mj ≥ mj+1. If mj > mj+1,
then by 1) of Lemma 3.2, we may replace A(θj ,xj) · A(θj+1,xj+1) by A(θj+1,xj+1) · A(θj ,x̃j), with
x̃j ∈min Cmj . If instead mj = mj+1, then by 2) of Lemma 3.2, we may instead replace the
product by A(θ′j ,x

′
j)
· A(θ′j+1,x

′
j+1), where x′j+1 ∈min Cmj and x′j ∈min C`, where ` < mj satisfies

(< xj , xj+1 > ∩Cmj ) ⊂min C`.
Then, we relabel the angles and vectors to be (θj , xj), where now mj < mj+1 < · · · < mk.

Then, we may repeat the procedure until we obtain m1 < m2 < · · · < mk. We summarize the
final result of this process.

Lemma 3.3. Given B ∈ SUn, it may be written as a product

(3.3) B = A(θ1,x1) ·A(θ2,x2) · · ·A(θk,xk) ,

with xj ∈min Cmj and 1 ≤ m1 < m2 < · · · < mk ≤ n, and each θi 6≡ 0 mod 2π.

If B has the form given in Lemma 3.3 with m1 > 1, then we will say that B has Schubert
type m = (m1,m2, · · · ,mk) and write m(B) = m. If instead m1 = 1, then as det(B) = 1

B = A(−θ̃,e1) ·A(θ2,x2) ·A(θ2,x2) · · ·A(θk,xk),

where θ̃ ≡
∑k
j=2 θjmod 2π and we instead denote m(B) = (m2, · · · ,mk). For the case of an

empty sequence with k = 0, we associate the unique identity element I. We refer to the tuple
m = (m1,m2, · · · ,mk) as the Schubert symbol of B. It will follow from Theorem 3.7 that this
representation is unique.

There is also an alternative way to obtain a factorization (3.3) where instead xj ∈min Cm
′
j

with a decreasing sequence m′1 > m′2 > · · · > m′k. In fact, if we give a representation for B−1

as in (3.3) with the mi increasing, then taking inverses gives a product of A−1
(θi,xi)

= A(−θi,xi)
in decreasing order. There is a question for a given B ∈ SUn about the relation between the
increasing and decreasing symbols. The relation between these is a consequence of the following
lemma which is basically that given in [KM, Prop. 4.5] and is a consequence of the uniqueness
of the Schubert symbol for one direction of ordering.

Lemma 3.4. Suppose xi ∈min Cmi , for 1 ≤ i ≤ k and m1 < m2 < · · · < mk; and yj ∈min Cm
′
j ,

for 1 ≤ j ≤ k′ and m′1 < m′2 < · · · < m′k. Also, suppose θi, θ
′
i 6≡ 0 mod 2π for each i. Let

Ai = A(θi,xi) and Bj = A(θ′j ,yj)
. If

A1 ·A2 · · ·Ak = Bk′ ·Bk′−1 · · ·B1,

then the following hold:

a) k = k′ and (m1,m2, . . . ,mk) = (m′1, . . . ,m
′
k′);
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b) Ai = B−1
1 ·B−1

2 · · ·B
−1
i−1 ·Bi ·Bi−1 · · ·B1 for 1 ≤ i ≤ k; and

c) Bi = A1 ·A2 · · ·Ai−1 ·Ai ·A−1
i−1 · · ·A

−1
1 for 1 ≤ i ≤ k.

In the cases of k = 1 in b) and c), we let A0 = B0 = Im so they are understood to be A1 = B1.

Proof. We let Ci denote the RHS of the equation in b) but for 1 ≤ i ≤ k′. Since Bi−1 ·Bi−2 · · ·B1

leaves pointwise invariant (Cm′i)⊥, we conclude Bi−1 · Bi−2 · · ·B1(yi) = y′i ∈min Cm′i ; hence by
property iii) for pseudo rotations, Ci = A(θ′i,y

′
i)

. Thus, we have that A has two different Schubert

factorizations with increasing Schubert symbols (m1,m2, . . . ,mk) and (m′1, . . . ,m
′
k′). By the

uniqueness of the Schubert symbols, we obtain a).
Furthermore, by the uniqueness of the Schubert decomposition stated in Theorem 3.7 (for

increasing Schubert decomposition) and Remark 3.8, it then furthermore follows that Ai = Ci for
all i so b) holds. Lastly, the uniqueness of the increasing order Schubert decomposition implies
by taking inverses that we also have uniqueness of decreasing order Schubert decomposition.
Then, the corresponding analogue of the argument for b) yields c). �

We then have the following corollary

Corollary 3.5. If B ∈ SUn, then

m(B) = m(B−1) = m(B) = m(BT ) .

Proof. Given an increasing Schubert factorization B = A1 · A2 · · ·Ak for Ai = A(θi,xi) with

Schubert symbol m = (m1,m2, . . . ,mk), then B−1 = Ak ·Ak−1 · · ·A1 is a Schubert factorization
for decreasing order. This has the decreasing Schubert symbol (mk,mk−1, . . . ,m1), and hence
B−1 has the same increasing Schubert symbol m.

Next, B = A1 · A2 · · ·Ak, and by property iv) of pseudo-rotations Ai = A(−θi,x̄i) so the
Schubert Symbol is the same.

Lastly, as B ∈ SUn, BT = B−1, which combined with the two other properties implies that
it has the same Schubert symbol. �

Remark 3.6. We will use the increasing order for the Schubert symbol to be in agreement with
that used for the Schubert decomposition as in Milnor-Stasheff [MS]. In fact, if A = A1 ·A2 · · ·Ak
for Ai = A(θi,xi) with Schubert symbol m = (m1,m2, . . . ,mk), and we let V = C < x1, . . . , xk >,
then dim CV ∩Cmi = i so V as an element of the Grassmannian Gk(Cn) would also have Schubert
symbol m. In [KM], the decreasing order Schubert symbol is used; however, we easily change
between the two.

We next state the form of the Schubert decomposition given in terms of the Schubert factor-
ization giving the Schubert types for elements of SUn.

Schubert Decomposition for SUn.
In describing the Schubert decomposition for SUn, we are giving a version of that contained

in [W], [Mi], [Y] and summarized in [KM] (but using instead an increasing order).
Given an increasing sequence m1 < m2 < · · · < mk with 1 < m1 and mk ≤ n, which we

denote by m = (m1,m2, . . . ,mk), we define a map

ψm : SCPm1−1 × SCPm2−1 × · · · × SCPmk−1 −→ SUn ,

where SX denotes the suspension of X. This is given as follows:
First, we define a simpler map for m ≤ n, I = [0, 1] and a complex line L ⊂ Cm,

ψ̃m : I × CPm−1 → SUn
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defined by ψ̃m(t, L) = A(2πt,L). Since A(0,L) = A(2π,L) = In independent of L, this descends to

a map ψm : SCPm−1 → SUn. Then, we define

ψm((t1, L1), . . . , (tk, Lk)) = A(−2πt̃,e1) · ψm1(t1, L1) · ψm2(t2, L2) · · ·ψmk(tk, Lk)

= A(−2πt̃,e1) ·A(2πt1,L1) ·A(2πt2,L2) · · ·A(2πtk,Lk) ,(3.4)

where t̃ =
∑k
j=1 tj . We note that the first factor A(−2πt̃,e1) ensures the product is in SUn as in

the splitting for (2.1).
We observe that each I × CPm−1 has an open dense cell

Em = (0, 1)× {x = (x1, . . . , xm, 0, . . . 0) : (x1, . . . , xm) ∈ S2m−1 and xm > 0},

which is of dimension 2m − 1 (as xm =
√

1−
∑m−1
j=1 |xj |2 ). Also, if x = (x1, . . . , xm, 0, . . . 0)

with xm > 0, then x ∈min Cm.
We now introduce some notation and denote

S̃m = SCPm1−1 × SCPm2−1 × · · · × SCPmk−1 ;

also, we consider the corresponding cell

Em = Em1 × Em2 × · · · × Emk ,
and the image Sm = ψm(Em) in SUn. Then, Em is an open dense cell in S̃m with

dim REm =

k∑
j=1

(2mj − 1) = 2|m| − `(m)

for |m| =
∑k
j=1mj and `(m) = k, which we refer to as the length of m. Also, the image

Sm = ψm(Em) consists of elements of SUn of Schubert type m. Furthermore, Sm = ψm(S̃m).
Then the results of Whitehead, Miller and Yokota together give the following Schubert decom-
position of SUn.

Theorem 3.7. The Schubert decomposition of SUn has the following properties:

a) SUnis the disjoint union of the Sm as m = (m1, . . . ,mk) varies over all increasing
sequences with 1 < m1, mk ≤ n, and 0 ≤ k ≤ n− 1.

b) The map ψm : Em → Sm is a homeomorphism.
c) (Sm\Sm) ⊂ ∪m′Sm′ , where the union is over all Sm′ with dimSm′ < dimSm.
d) the Schubert cells Sm are preserved under taking inverses, conjugates, and transposes.

We note that d) follows from Corollary 3.5.
Hence, the Schubert decomposition by the cells Sm is a cell decomposition of SUn. The cells

Sm are referred to as the Schubert cells of SUn. We note that as Sm is the image of the “singular
manifold” S̃m which has a Borel-Moore fundamental class, we can describe in §5 the homology
of SUn in terms of the images of these fundamental classes.

Remark 3.8. There is an analogous Schubert decomposition for Un where the Schubert symbols
can include m1 = 1.

4. Schubert Decomposition for Symmetric Spaces

For the Milnor fibers for the varieties of singular matrices, we have compact models which are
symmetric spaces. To give the Schubert decomposition of these, we use the results of Kadzisa
and Mimura [KM] which modifies the Schubert decomposition given for SUn to apply to the
Cartan models for the symmetric spaces. We have given the Schubert decomposition for SUn in
the previous section so we will consider the form it takes for both SUn/SOn and SU2n/Spn.
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We again use the standard flag 0 ⊂ C ⊂ C2 ⊂ · · · ⊂ Cn and the same notation for pseudo-
rotations as in §3.

Schubert Decomposition for SUn/SOn.

We consider an element of the Cartan model C(sy)
n for SUn/SOn. If B ∈ C(sy)

n we have that
B ∈ SUn and B = BT . By Lemma 2.1, there is an orthonormal basis of real eigenvectors xi for
B. Hence, each < xi >∈ RPn−1. Then B can be written as a product of pseudo-rotations about
complexifications of real hyperplanes C < xi >

⊥. We will refer to such a pseudo-rotation A(θ,x)

for a real vector x as an R-pseudo-rotation. There are two problems in trying to duplicate the
reasoning used for the Schubert decomposition for SUn. First, there is no analogue of Lemma
3.2 for products of R-pseudo-rotations. Second, it need not be true that the ordered product of

R-pseudo-rotations A(θ,xi) is an element of C(sy)
n if the vectors xi are not mutually orthogonal.

The solution obtained by Kadzisa-Mimura is to use instead “ordered symmetric factorizations”
by R-pseudo-rotations. Specifically it will be a product resulting from the successive application

of Cartan conjugates by R-pseudo rotations, which always yields elements of C(sy)
n .

Then, in describing the Schubert decomposition for SUn/SOn, we are giving a version of that
contained in [KM], except we again define maps from products of cones on real projective spaces
whose open cells give the cell decomposition.

Given an increasing sequence m1 < m2 < · · · < mk with 1 < m1 and mk ≤ n, which we
denote by m = (m1,m2, . . . ,mk) we define a map

ψ(sy)
m : (CRPm1−1)× (CRPm2−1)× · · · × (CRPmk−1) −→ SUn ,

with CX = (I ×X)/({0} ×X) for I = [0, 1], denoting the cone on X. This is given as follows:
First, we define a simpler map for m ≤ n, I = [0, 1] and a real line L ⊂ Rm,

ψ̃(sy)
m : CRPm−1 → SUn

defined by ψ̃
(sy)
m (t, L) = A(πt,LC), with LC denoting the complexification of the real line L. Note

this factors through the cone as A(0,LC) = Id, independent of L. We will henceforth abbreviate
this to A(πt,L). Then, we extend this to a map

ψ̃(sy)
m :

k∏
i=1

(CRPmi−1) −→ SUn

defined by

ψ̃(sy)
m ((t1, L1), . . . , (tk, Lk)) = A(−πt̃,e1) · ψm1(t1, L1) · ψm2(t2, L2) · · ·ψmk(tk, Lk)

= A(−πt̃,e1) ·A(πt1,L1) ·A(πt2,L2) · · ·A(πtk,Lk) .(4.1)

where t̃ =
∑k
j=1 tj . We note that the first factor A(−πt̃,e1) ensures the product is in SUn as in

the splitting for (2.1). Then we define
(4.2)

ψ(sy)
m ((t1, L1), . . . , (tk, Lk)) = ψ̃(sy)

m ((t1, L1), . . . , (tk, Lk)) ·
(
ψ̃(sy)
m ((t1, L1), . . . , (tk, Lk))

)T
.

We note that the RHS is the Cartan conjugate of I by ψ̃m((t1, L1), . . . , (tk, Lk)) ∈ SUn and thus

is in the Cartan model C(sy)
n . It can also be obtained by successively applying to I the Cartan

conjugates by the A(πtj ,Lj), for j = k, k − 1, . . . , 1, 0, where we let A(πt0,L0) denote A(−πt̃,e1)

(each of these are, strictly speaking, Cartan conjugates for Un but their product is in SUn).
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We observe that each CRPm−1 has an open dense cell

E(sy)
m = (0, 1)× {x = (x1, . . . , xm, 0, . . . 0) : (x1, . . . , xm) ∈ Sm−1 and xm > 0}

which is of dimension m. Also, if x = (x1, . . . , xm, 0, . . . 0) with xm > 0, then x ∈min Cm.
We now introduce some notation and denote

S̃(sy)
m = (CRPm1−1)× (CRPm2−1)× · · · × (CRPmk−1),

the cell
E(sy)

m = E(sy)
m1
× E(sy)

m2
× · · · × E(sy)

mk
,

and S
(sy)
m = ψm(E

(sy)
m ). Then, E

(sy)
m is an open dense cell in S̃

(sy)
m with

dim RE
(sy)
m = |m| def=

k∑
j=1

mj .

Also, the image S
(sy)
m = ψm(E

(sy)
m ) consists of elements of SUn of real Schubert type m. Fur-

thermore, S
(sy)
m = ψ

(sy)
m (S̃

(sy)
m ). Then the results of Kadzisa-Mimura [KM, Thm 6.7] give the

following Schubert decomposition of SUn/SOn.

Theorem 4.1. The Schubert decomposition of SUn/SOn has the following properties:

a) SUn/SOnis the disjoint union of the S
(sy)
m as m = (m1, . . . ,mk) varies over all increas-

ing sequences with 1 < m1, mk ≤ n, and 0 ≤ k ≤ n− 1.

b) The map ψ
(sy)
m : E

(sy)
m → S

(sy)
m is a homeomorphism.

c) (S
(sy)
m \S(sy)

m ) ⊂ ∪m′S(sy)
m′ , where the union is over all S

(sy)
m′ with dimS

(sy)
m′ < dimS

(sy)
m .

Hence, the Schubert decomposition by the cells S
(sy)
m is a cell decomposition of SUn/SOn.

We refer to the cells S
(sy)
m as the symmetric Schubert cells of SUn/SOn. We also refer to the

factorization given by (4.2) for elements B of S
(sy)
m as the ordered symmetric factorization and

the corresponding Schubert symbol is denoted by m(sy)(B).

Remark 4.2. Unlike the case of SUn, in general the S̃
(sy)
m do not carry a top-dimensional

fundamental class. In the case of a simple Schubert symbol (m1), since L is real, A(π,L) is the

complexification of a real reflection about the real hyperplane L⊥C and hence it is its own inverse
and transpose. This is independent of L. Then,

ψ
(sy)
(m1)(π, L1) = A(−π,e1) ·A(π,L1) ·AT(π,L1) ·A

T
(−π,e1)

= A(−π,e1) ·A(π,L1) ·A−1
(π,L1) ·A

−1
(−π,e1) = Id(4.3)

Thus, ψ
(sy)
(m1)({1} × RPm1−1) = Id and so factors to give a map ψ

(sy)
(m1) : SRPm1−1 → C(sy)

n .

Hence, for the simple Schubert symbol (m1), E
(sy)
(m1) = ψ

(sy)
(m1)(SRP

m1−1) has a fundamental class

which is the image of the fundamental class of SRPm1−1.
For a general symmetric Schubert symbol m = m(sy) = (m1,m2, . . . ,mk), if (SUn/SOn)(`)

denotes the `-skeleton of SUn/SOn, then ψ
(sy)
m composed with the projection does factor through

to give a map

ψ̃(sy) ′
m :

k∏
i=1

SRPmi−1 → (SUn/SOn)/(SUn/SOn)(|m|−1) .

The product again carries a fundamental class and in §5 we see how these images in homology
correspond to generators.
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Schubert Decomposition for SU2n/Spn.
For the Schubert decomposition for SU2n/Spn we will largely follow [KM, §7]; except that for

the geometric properties of Milnor fibers we will emphasize the use of the quaternionic structure
on C2n. We already have the complex structure giving multiplication by i. We extend it to H by
defining multiplication by j by jx = Jnx̄ for x ∈ C2n with x̄ complex conjugation (so kx = ijx).
Then, it is a standard check (see e.g. [GW, §1.4.4]) that this defines a quaternionic action so
C2n ' Hn. For this quaternionic structure, each subspace C2m spanned by {e1, . . . , e2m} is a
quaternionic subspace.

Let < x, y >= xT · ȳ (for column vectors x and y) denote the Hermitian inner product on
C2n. It has the following directly verifiable properties:

i) multiplication by Jn is H-linear;
ii) < jx, jy >= < x, y >; and
iii) (by ii)) both < x, jx >= 0 and < jx, y >= −< x, jy >.

An element B of the Cartan model for SU2n/Spn is characterized from (2.3) by

(BJn)T = −BJn.

so that BJn is an element of SU2n and is skew-symmetric. This has the following consequence,
which is basically equivalent to [KM, Thm 3.4].

Lemma 4.3. If B ∈ C(sk)
2n , the Cartan model for SU2n/Spn, then

a) Bjx = jB∗x; and
b) if B satisfies the condition in a), then the eigenspaces of B are H-subspaces.

Proof. For a), this is a simple calculation.

Bjx = BJnx̄ = −(BJn)T x̄ = −JTn BT x̄ = JnB̄Tx = JnB∗x = jB∗x .

For b), we observe that if Bx = λx, then as B ∈ SU2n, B∗ = B−1 and |λ| = 1 so

Bjx = jB∗x = jB−1x = jλ−1x = Jnλ−1x = λJnx̄ = λjx .

Thus, the λ-eigenspace of B is invariant under multiplication by j. �

We will refer to a B ∈ U2n which satisfies the condition in a) of Lemma 4.3 as being H*-linear.
To factor such a matrix, we use a version of pseudo-rotation for Hn. Given a quaternionic line
L ⊂ C2n, let L⊥ be the quaternionic hyperplane orthogonal to L. We define an H-pseudo-
rotation by an angle θ, Ã(θ,L) which is the identity on L⊥ and is multiplication by eiθ on L.
It is C-linear and can be checked to be H*-linear. If x ∈ L is a unit vector, then by property
iii), {x, jx} is an orthonormal basis for L. Then, Ã(θ,L) can be written as a product of pseudo-
rotations A(θ,x)A(θ,jx), which commute. By the properties of pseudo-rotations, we have the
following properties of H-pseudo-rotations.

i) Ã∗(θ,L) = Ã−1
(θ,L) = Ã(−θ,L);

ii) Ã(θ,L) = Ã(−θ,L̄), where L̄ is the H-line generated by x̄; and

iii) ÃT(θ,L) = Ã(θ,L̄);

iv) det(Ã(θ,L)) = e2iθ;

v) If L ⊥ L′ then Ã(θ,L) and Ã(θ,L′) commute;

vi) Ã(θ,L) is H*-linear.

Proof. All of i) - v) follow directly from the properties of pseudo-rotations. For vi) we observe

that Ã(θ,L) is characterized as a unitary matrix which has L for the eigenspace for eiθ and L⊥
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as the eigenspace for the eigenvalue 1. Thus, for vi), as both L and L⊥ are H-subspaces we see

Ã(θ,L) ≡ Id on L⊥ and for x ∈ L,

Ã(θ,L)(jx) = eiθjx = je−iθx = jÃ−1
(θ,L)(x) .

As Ã∗(θ,L) = Ã−1
(θ,L), we see that Ã(θ,L)(jx) = jÃ∗(θ,L)(x) on each summand L and L⊥; hence they

are equal. �

In addition, we can give a unique representation of Ã(θ,L) as an ordered product of pseudo-
rotations.

Lemma 4.4. Given an H-line L ⊂min C2m, there is a unique unit vector x ∈ L ∩ C2m−1 of
the form x = (x1, . . . , x2m−1, 0) with x2m−1 > 0 so that jx = (x̄2,−x̄1, x̄4,−x̄3, . . . , 0,−x2m−1).

Hence, Ã(θ,L) can be uniquely written A(θ,x) ·A(θ,jx).

Proof. As dim CL = 2. dim C(L ∩ C2m−1) = 1. It is ≥ 1, and otherwise it would be 2, i.e.
L ⊂ C2m−1. Then, under the H-linear projection p : C2m → C2m/C2m−2 the image of L, which
is an H-subspace would have C-dimension 1, a contradiction.

As dim C(L ∩ C2m−1) = 1, and L 6⊂ C2m−2, we may find a unit vector x ∈ L of the form
x′ = (x′1, . . . , x

′
2m−1, 0) with x′2m−1 6= 0. Multiplying x′ by an appropriate unit complex number

we obtain x with x2m−1 > 0. Then, jx is as stated and so is Ã(θ,L). �

Whitehead-Type Ordered Factorization.
For an H*-linear B ∈ U2n, we may initially factor it as a product of H-pseudo-rotations in

a manner similar to the symmetric case as follows. Each eigenspace Vλ of B with λ = eiθ 6= 1
is an H-subspace. We choose the smallest m′1 so that Vλ ∩ C2m′1 6= 0, and hence is an H-line

L
(λ)
1 . We successively repeat this for (L

(λ)
1 )⊥ ∩ Vλ and obtain an orthogonal decomposition

Vλ = L
(λ)
1 ⊕ L(λ)

2 · · ·L(λ)
k′ with L

(λ)
j ⊂min C2m′j and m′1 < m′2 < · · · < m′k′ . Each L

(λ)
j gives an

H-pseudo-rotation Ã
(θ,L

(λ)
j )

. We may do this for each eigenvalue λ 6= 1. Because different Lj

are orthogonal, the corresponding H-pseudo-rotations commute. Thus, we may factor B as a
product of H-pseudo-rotations

(4.4) B = Ã(θ1,L1) · Ã(θ2,L2) · · · Ã(θk,Lk)

where Lj ⊂min C2mj , 1 ≤ m1 ≤ m2 ≤ · · · ≤ mk, and several θj may be equal. However, this is
not an ordered factorization as some of the mj may be equal.

We would like to apply an analogue of the Whitehead Lemma 3.2 to products of H-pseudo-
rotations. However, it is not possible to do so remaining in the category of H-pseudo-rotations.
For example, if B ∈ U2n then B · Ã(θ,L) · B−1 is a unitary transformation with B(L) as the

eigenspace for eiθ and B(L⊥) = (B(L))⊥ as the eigenspace for the eigenvalue 1. While B(L) is
a 2-dimensional complex space, it need not be an H-subspace.

However, there is an alternate way to proceed which uses Lemma 4.4. We may uniquely
decompose each H-pseudo-rotation in (4.4) into a product of pseudo-rotations about orthogonal
planes which thus all commute so that (4.4) may be rewritten

(4.5) B = A(θ1,x1) ·A(θ2,x2) · · ·A(θk,xk) ·A(θk,jxk) · · ·A(θ2,jx2) ·A(θ1,jx1)

Then, we can progressively apply Whitehead’s Lemma to the factors A(θj ,xj) beginning with
the highest j and proceeding left to the lowest to obtain an ordered factorization for the product
involving the A(θj ,xj). Then for each application of Whitehead’s Lemma for these, there is a
corresponding application of it for the A(θj ,jxj) from the left proceeding to the right using the
following lemma.
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Lemma 4.5. Given a relation between pseudo-rotations

(4.6) A(θ,x) ·A(θ′,x′) = A(θ1,x1) ·A(θ2,x2) ,

there is a corresponding relation

(4.7) A(θ′,jx′) ·A(θ,jx) = A(θ2,jx2) ·A(θ1,jx1) .

Proof. First, apply the transpose to each side of (4.6) and then conjugate with Jn to obtain

(4.8) (Jn ·AT(θ′,x′) · J
−1
n ) · (Jn ·AT(θ,x) · J

−1
n ) = (Jn ·AT(θ2,x2) · J

−1
n ) · (Jn ·AT(θ1,x1) · J

−1
n ).

Then, for any pseudo-rotation A(θ,x),

(4.9) Jn ·AT(θ,x) · J
−1
n = Jn ·A(θ,x̄) · J−1

n = A(θ,Jnx̄) = A(θ,jx) .

Thus, applying (4.9) to each product in (4.8) yields (4.7). �

Then, by applying Whitehead’s Lemma successively to appropriate adjacent pairs A(θj ,xj) ·
A(θj′ ,xj′ )

and Lemma 4.5 to the corresponding pairs A(θj′ ,jxj′ )
·A(θj ,jxj) we may rewrite

(4.10) B = A(θ′1,x
′
1) ·A(θ′2,x

′
2) · · ·A(θ′k,x

′
k) ·A(θ′k,jx

′
k) · · ·A(θ′2,jx

′
2) ·A(θ′1,jx

′
1)

with the A(θ′j ,x
′
j)

in increasing order and the A(θ′j ,jx
′
j)

in decreasing order.

Kadzisa-Mimura Ordered Skew-Symmetric Factorization.

In fact, this is the skew-symmetric factorization of B ∈ C(sk)
m given by Kadzisa-Mimura. We

further rewrite (4.10) using the properties of pseudo-rotations σ(A−1
i ) = A(θi,jxi). Hence, B in

(4.10) can be rewritten either as

(4.11) B =
(
A(θ1,x1) ·A(θ2,x2) · · ·A(θk,xk) · Jn ·AT(θk,xk) · · ·A

T
(θ1,x1)

)
· J−1
n

or alternatively for each Aj = A(θj ,xj) as

(4.12) B = A1 ·A2 · · ·Ak · σ(A−1
k ) · · ·σ(A−1

1 ) ,

which is a Cartan conjugate of I and hence belongs to F
(sk) c
m .

What we have not yet considered is the skew-symmetric Schubert symbol associated to this
factorization. We shall do so in giving in the next section the Kadzisa-Mimura algorithm for ob-
taining the ordered skew-symmetric factorization from the full Whitehead ordered factorization.

We next define the maps for the cell decomposition of SU2n/Spn via the Cartan Model

C(sk)
2n . In describing the Schubert decomposition for SU2n/Spn, we are giving a version that

modifies that contained in [KM] to associate to the Borel-Moore fundamental classes of products
of suspensions of quaternionic projective spaces the Borel-Moore fundamental classes of the
“Schubert cycles” obtained as the closures of the Schubert cells. However, unlike the general
and symmetric cases, we cannot directly do this by expressing the closures of Schubert cells as
the images of the products of suspensions of quaternionic projective spaces. Instead we proceed
through intermediate spaces which are products of suspensions of complex projective spaces.

For any m > 0, we define via the quaternionic structure on C2m ' Hm a map

χm : CP 2m−2 → HPm−1

by χm(L) = L+ jL for complex lines L ⊂ C2m−1. For a quaternionic line Q ⊂min Hm, Q has a
unique element x = (x1, . . . , x4(m−1), x4m−3, 0) ∈ S4m−3 ⊂ C2m−1 with x4m−3 > 0. Then,

jx = (x̄2,−x̄1, x̄4,−x̄3, . . . , x̄4(m−1),−x̄4m−5, 0,−x4m−3) .

Hence, the set of such Q are parametrized by the cell E4m−4 in S4m−3 with x4m−3 > 0 (since

x4m−3 =
√

1−
∑4(m−1)
j=1 |xj |2 ). However, this cell also parametrizes the open dense subset of
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L ∈ CP 2m−2 with L ⊂min C2m−1. The map χm acts as the identity on these parametrized cells of
dimension 4m−4, and the complements have lower dimensions. We may then take the suspension
Sχm : SCP 2m−2 → SHPm−1, which now is a homeomorphism on the cell (0, 1) × E4m−4 of
dimension 4m− 3. Thus, Sχm ∗ sends the Borel-Moore fundamental class of SCP 2m−2 to that
of SHPm−1.

Then, given an increasing sequence 1 < m1 < m2 < · · · < mk ≤ n, which we denote by
m(sk) = (m1,m2, . . . ,mk), we may form the product map

χ̃(sk)
m = Sχm1

× Sχm2
× · · · × Sχmk ,

which again sends the Borel-Moore fundamental class of the product SCP 2m1−2×· · ·×SCP 2mk−2

to that of SHPm1−1 × · · · × SHPmk−1.
Then, the correspondence we give between the fundamental homology classes of

SHPm1−1 × · · · × SHPmk−1

and the Schubert cycles will be via the fundamental homology classes of

SCP 2m1−2 × · · · × SCP 2mk−2.

We do so by defining a map

ψ(sk)
m : SCP 2m1−2 × SCP 2m2−2 × · · · × SCP 2mk−2 −→ C(sk)

m .

This is given as follows:

ψ̃(sk)
m : (I × CP 2m1−2)× (I × CP 2m2−2)× · · · × (I × CP 2mk−2) −→ SUn

is defined by

ψ̃(sk)
m ((t1, L1), . . . , (tk, Lk)) = A(−2πt̃,e1) ·A(2πt1,L1) ·A(2πt2,L2) · · ·A(2πtk,Lk)

·A(2πtk, jLk) · · ·A(2πt2, jL2) ·A(2πt1, jL1) ·A(−2πt̃,−e3) ,(4.13)

where t̃ =
∑k
j=1 tj . We note that the product is of the form (4.10) and hence (4.12). Also, the

first and last factors A(−2πt̃,e1) and A(−2πt̃,−e3) ensure the product is in SUn as in the splitting

for (2.1).
Since A(0,L) = A(2π,L) = In independent of a complex line L ⊂ C2m−1, (4.13) descends to a

map

ψ(sk)
m : SCP 2m1−2 × SCP 2m2−2 × · · · × SCP 2mk−2 −→ C(sk)

m .

As remarked above, each SCP 2mj−2 has an open dense cell of dimension 4mj − 3 which we
denote by

E(sk)
mj = (0, 1)× {x = (x1, . . . , x4(mj−1), x4mj−3, 0, . . . 0)

: (x1, . . . , x4(mj−1), x4mj−3), 0) ∈ S4mj−3 and x4mj−3 > 0}

and we conclude H < x >⊂min C2mj .
We now introduce some notation and denote

S̃(sk)
m = SCP 2m1−2 × SCP 2m2−2 × · · · × SCP 2mk−2 .

Also, we consider the corresponding cell E
(sk)
m = E

(sk)
m1 × E

(sk)
m2 × · · · × E

(sk)
mk , and the image

S
(sk)
m = ψ

(sk)
m (E

(sk)
m ) in C(sk)

2n . Then, E
(sk)
m is an open dense cell in S̃

(sk)
m with

dim RE
(sk)
m =

k∑
j=1

(4mj − 3) = 4|m(sk)| − 3k = 4|m(sk)| − 3`(m(sk))
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for |m(sk)| =
∑k
j=1mj (and `(m(sk)) = k). Also, the image S

(sk)
m = ψ

(sk)
m (E

(sk)
m ) consists of

elements of C(sk)
2n of skew Schubert type m. Furthermore, S

(sk)
m = ψ

(sk)
m (S̃

(sk)
m ). Then the results

of Kadzisa-Mimura [KM, Thm 8.7] give the following Schubert decomposition of SU2n/Spn.

Theorem 4.6. The Schubert decomposition of SU2n/Spn has the following properties via the

diffeomorphism SU2n/Spn ' C(sk)
2n :

a) SU2n/Spn is the disjoint union of the S
(sk)
m as m = m(sk) = (m1, . . . ,mk) varies over

all increasing sequences with 1 < m1 < · · · < mk ≤ n, and 0 ≤ k ≤ n− 1.

b) The map ψ
(sk)
m : E

(sk)
m → S

(sk)
m is a homeomorphism.

c) (S
(sk)
m \S(sk)

m ) ⊂ ∪m′S(sk)
m′ , where the union is over all S

(sk)
m′ with dimS

(sk)
m′ < dimS

(sk)
m .

Hence, the Schubert decomposition by the cells S
(sk)
m gives a corresponding cell decomposi-

tion of SU2n/Spn. The cells S
(sk)
m will be referred to as the skew-symmetric Schubert cells of

SU2n/Spn or C(sk)
2n . We note that S

(sk)
m has a Borel-Moore fundamental class which we refer

to as a skew-symmetric Schubert cycle. It is the image of the Borel-Moore fundamental class

of the “singular manifold”S̃
(sk)
m . It corresponds to the Borel-Moore fundamental class of the

associated product of suspensions of quaternionic projective spaces. We describe in §5 the ho-

mology of SU2n/Spn and C(sk)
2n in terms of these skew-symmetric Schubert cycles. Furthermore,

for m = 2n the relation of C(sk)
m with F

(sk) c
m allows us to give a Schubert decomposition for the

Milnor fiber.

Remark 4.7. If in the initial factorization of B ∈ C(sk)
2n given in (4.4) into a product of H-

pseudo-rotations, the orders for all of the L
(λ`)
j are all distinct then 1 < m1 < m2 < · · · < mk.

By the commutativity of the H-pseudo-rotations, we may arrange them in increasing order and
obtain (4.10) without using Whitehead’s Lemma. Hence, the skew-symmetric Schubert symbol
is given by m(sk) = (m1,m2, · · · ,mk), which would be the corresponding Schubert symbol in the
quaternionic Grassmannian. In general, the use of Whitehead’s Lemma has the effect of twisting
the H-lines which then again reappear from the form of the skew-symmetric factorization.

5. Schubert Decomposition for Milnor Fibers

In this section we apply the results giving the Schubert decomposition for the associated
symmetric spaces providing compact models for the global Milnor fibers. We first give the form
that the Schubert decomposition gives for the specific Cartan models, and extending these to
the Milnor fibers themselves. Second, in doing this we give an algorithm due to Whitehead and
Kadzisa-Mimura for identifying for a given matrix in the global Milnor fiber the Schubert cell
to which it belongs. Third, we will see the form that the Schubert decomposition takes for the
global Milnor fibers using Iwasawa decomposition.

Whitehead-Kadzisa-Mimura Algorithm for Identifying Schubert Cells.
The algorithm given by Kadzisa-Mimura [KM] for the ordered factorizations of matrices in the

various Cartan models uses the ordered factorization for SUm based on the work of Whitehead
[W] as developed by Miller [Mi] and Yokota [Y]. They cleverly combine the uniqueness of
the factorization for Um (and SUm) and the Cartan conjugacy for the Cartan models to give
the symmetric, respectively skew-symmetric, factorizations for the cases of SUm/SOm and for
m = 2n, SU2n/Spn. We explain this algorithm as it will apply to the compact models for global
Milnor fibers and then for the global Milnor fibers themselves.
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An element of any of the Cartan models is a matrix B ∈ SUm for appropriate m. Thus, by
Lemma 3.3 we may obtain an ordered factorization by pseudo-rotations except with decreasing
order for B.

(5.1) B = Ak ·Ak−1 · · ·A1 ,

where Aj = A(θj ,xj) with the {xj} a set of unit vectors with xj ∈min Cmj and

1 ≤ m1 < m2 < · · · < mk ≤ m,

and θi 6≡ 0 mod 2π for each i. In addition, if m1 = 1 then the Schubert symbol is
m = (m2, . . . ,mk). Now from (5.1) we describe how to obtain either the symmetric or skew-
symmetric ordered factorizations as obtained by Kadzisa-Mimura.

Ordered Symmetric Factorizations for C(sy). As B ∈ C(sy), σ(B−1) = B. Hence, as

σ(B−1) = B−1 = BT ,

we obtain from (5.1)

Ak ·Ak−1 · · ·A1 = AT1 ·AT2 · · ·ATk .
As each Aj = A(θj ,xj), A

T
j = A(θj ,x̄j) is a pseudo-rotation with x̄j ∈min Cmj . Thus, it follows

by Lemma 3.4 that A1 = AT1 and x1 is real. Let C1 = A
(
θ1
2 ,x1)

. We can write A1 = C1 · C1,

and as A(θ1,x1) is a pseudo-rotation about a real hyperplane, so is C1. Hence, C1 = CT1 and
σ(C1) = C∗1 . Then, from (5.1) since

(5.2) B = Ak ·Ak−1 · · ·A1 ,

we have

C∗1 ·B · σ(C1) = (C∗1 ·Ak ·Ak−1 · · ·A2 · C1) · C1 · σ(C1)

= (C∗1 ·Ak · C1) · (C∗1 ·Ak−1 · C1) · · · (C∗1 ·A2 · C1)

= A
(2)
k ·A

(2)
k−1 · · ·A

(2)
2 ,(5.3)

where each A
(2)
j = C∗1 ·Aj ·C1 is again a pseudo-rotation A

(θj ,x
(2)
j )

, with x
(2)
j = C−1

1 (xj) satisfying

x
(2)
j ∈min Cmj as C1 ≡ Id on (Cm1)⊥.

Also, the LHS of (5.3) is the Cartan conjugate of the symmetric matrix B and so is still
symmetric (and in SUn), except now it is a product of k − 1 pseudo-rotations with Schubert
symbol (mk, . . . ,m2). Thus we can inductively repeat the argument to write.

C∗j · · ·C∗2 · C∗1 ·B · σ(C1) · σ(C2) · · ·σ(Cj) = A
(j+1)
k ·A(j+1)

k−1 · · ·A
(j+1)
j+1

which has Schubert symbol (mj+1, . . . ,mk). After k − 1 steps we obtain

(5.4) C∗k−1 · · ·C∗2 · C∗1 ·Bσ(C1) · σ(C2) · · ·σ(Ck−1) = A
(k)
k ,

with A
(k)
k = A

(θk,x
(k)
k )

for x
(k)
k ∈min Cmk . The last step then allows us to rewrite (5.4) as

(5.5) B = C1 · · ·Ck−1 · Ck · σ(C∗k) · σ(C∗k−1) · · ·σ(C∗1 ) ,

which gives the ordered symmetric factorization.
We obtain as a corollary of the algorithm

Corollary 5.1. If B ∈ F (sy) c
m = C(sy)

m , and has increasing Schubert symbol m = (m1, . . . ,mk),
then the symmetric factorization has the same Schubert symbol m(sy) = m.
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Ordered Skew-symmetric Factorizations for C(sk)
m . The algorithm for C(sk)

m , with m = 2n, is very
similar and depends on the following lemma, see [KM, Lemma 7.2].

Lemma 5.2. If B ∈ (U2n ∩ Skm(C)) · J−1
n , with m = 2n, has a factorization as in (5.1), then:

k is even, m1 is odd, m2 = m1 + 1, and A2 = σ(A∗1).

Here σ(A) = Jn · A · J−1
n and A1 = A(θ1,x1) with x1 ∈min Cm1 , for which we may arrange

x1 = (x1,1, . . . , x1,m1) with x1,m1 > 0. Then, by properties of pseudo-rotations

A2 = σ(A∗1) = A(θ1,jx1)

(hence, A2 · A1 is an H-pseudo-rotation and A1 and A2 commute). We may then rewrite (5.1)
as

A∗1 ·B · σ(A1) = A∗1 ·Ak ·Ak−1 · · ·A3 ·A1 · σ(A∗1) · σ(A1)

= (A∗1 ·Ak ·A1) · (A∗1 ·Ak−1 ·A1) · · · (A∗1 ·A3 ·A1)

= A
(2)
k ·A

(2)
k−1 · · ·A

(2)
3 ,(5.6)

where each A
(2)
j = A∗1 ·Aj ·A1 is again a pseudo-rotation A

(θj ,x
(2)
j )

, with x
(2)
j = A−1

1 (xj) satisfying

x
(2)
j ∈min Cmj as A1 ≡ Id on (Cm1)⊥.

Also, the LHS of (5.6) is the Cartan conjugate of B for which B · Jn is skew-symmetric (and
in U2n); and so it also has these properties, except now it is a product of k− 2 pseudo-rotations
with Schubert symbol (mk, . . . ,m3). Thus we can inductively repeat the argument. After k

2
steps we obtain a factorization in the form

B = A(θ1,x′1) · · ·A(θr,x′r) · σ(A∗(θr,x′r)) · · ·σ(A∗(θ1,x′1)) ,

= A(θ1,x′1) · · ·A(θr,x′r) ·A(θr, jx′r) · · ·A(θ1, jx′1) .(5.7)

Here k = 2r, and each H < x′r >⊂min C2mj . This gives the ordered skew-symmetric factor-
ization. By (4.9) we may write each A(θj ,jx′j)

= Jn · AT(θj ,x′j) · J
−1
n , and then by (4.11) we may

alternately write (5.7) in the form

(5.8) B = A(θ1,x′1) · · ·A(θr,x′r) · Jn ·AT(θr,x′r) · · ·A
T
(θ1,x′1) · J

−1
n .

We obtain as a corollary of the algorithm.

Corollary 5.3. If B ∈ C(sk)
m = F

(sk) c
m · J−1

n (with m = 2n), then it has an increasing Schubert
symbol of the form

m = (2m1 − 1, 2m1, 2m2 − 1, 2m2, . . . , 2mr − 1, 2mr)

with 1 < m1 < m2, · · · < mr ≤ n. Then the ordered skew-symmetric factorization has the
skew-symmetric Schubert symbol m(sk) = (m1,m2, . . . ,mr).

To use the preceding results for the global Milnor fibers, we use in each case the Iwasawa
decomposition, which is given for SLn by the Gram-Schmidt process, to determine the Schubert
cell decomposition.

Global Milnor Fibers for the Variety of Singular m×m-Matrices.
This is the simplest case and was essentially covered in Proposition 1.2. Given B ∈ Fm,

the global Milnor fiber, we have Fm = SLm(C). To obtain its representation in the Iwasawa
decomposition SLm(C) = SUm ·Am ·Nm where Am denotes the group of diagonal matrices with
positive entries, and Nm is the nilpotent group of upper triangular complex matrices with 1’on
the diagonal. We may apply the Gram-Schmidt process to the columns of B to obtain B = A ·C,
whereA is unitary and C is upper triangular with positive entries on the diagonal. As det(B) = 1,
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det(A) is a unit complex number, and det(C) > 0; it follows that both det(A) = det(C) = 1;
thus, C belongs to Solm = Am ·Nm. Then by applying the method of §3 for giving an ordered
factorization for A gives the Schubert symbol for A, which we shall also use for B. Thus, we
may describe the Schubert decomposition for the global Milnor fiber Fm as follows.

Theorem 5.4. The Schubert decomposition of the global Milnor fiber Fm for the variety of m×m
general complex matrices is given, via the diffeomorphism with SLm(C), by the disjoint union of
the Schubert cells Sm ·Solm where the Sm are the Schubert cells of SUm for all Schubert symbols
m = (m1, . . . ,mk) with 1 < m1 < · · · < mk ≤ m.

Global Milnor Fibers for the Variety of Singular m×m-Symmetric Matrices.

If B ∈ F (sy)
m , then we want to relate B to a matrix C ∈ F (sy) c

m = SUm ∩ Symm(C) = C(sy)
m .

As B is symmetric and det(B) = 1, as in [D3, Table 1] we may diagonalize the quadratic form
XT ·B ·X, for column vectors X so there is a C ∈ SLm(C) so that (CX)T ·B · CX = XT ·X.
Thus, CT · B · C = Im or B = (C−1)T · C−1. Then, by Iwasawa decomposition C−1 = A · E,

with A ∈ SUm and E ∈ Solm. Then, B = ET · (AT ·A) · E, and AT ·A ∈ C(sy)
m . If

m = (m1,m2, . . . ,mk)

is the Schubert symbol for Ã = AT ·A, it is also the symmetric Schubert symbol and so

Ã = AT ·A ∈ S(sy)
m

and conversely.
We let SolTm denote the group of lower triangular complex matrices E with positive entries

on the diagonal and det(E) = 1. Then, there is the action of SolTm on C(sy)
m as follows:

SolTm × C(sy)
m → C(sy)

m sending (E, Ã) 7→ E · Ã · ET .

Then, the action applied to each Schubert cell S
(sy)
m gives by Proposition 1.2 the Schubert cell

for F
(sy)
m which we denote by SolTm · (S

(sy)
m ). Combining this with Theorem 4.1 we obtain

Theorem 5.5. The Schubert decomposition of the global Milnor fiber F
(sy)
m for the variety of

m×m symmetric complex matrices is given by the disjoint union of the symmetric Schubert cells

SolTm · (S
(sy)
m ) for S

(sy)
m the symmetric Schubert cells of SUm/SOm for all symmetric Schubert

symbols m(sy) = (m1, . . . ,mk) with 1 < m1 < · · · < mk ≤ m.
Furthermore, the preceding algorithm using ordered factorization gives the symmetric Schubert

symbol for a given matrix in F
(sy)
m .

Global Milnor Fibers for the Variety of Singular m×m Skew-Symmetric Matrices.

For the case of B ∈ F (sk)
m with m = 2n, we follow an analogous argument to the preceding.

We first want to relate B to a matrix C ∈ F (sk) c
m = SUm ∩ Skm(C), and then use the relation

F
(sk) c
m · J−1

n = C(sk)
m to determine the skew-symmetric factorization for C · J−1

n to determine its
skew-symmetric Schubert type.

As B is skew-symmetric with Pf(B) = 1, as in [D3, Table 1] we may block diagonalize the
quadratic form XT ·B ·X, for column vectors X so there is a C ∈ SLm(C) so that

(CX)T ·B · CX = XT · Jn ·X.
Thus, CT ·B · C = Jn or B = (C−1)T · Jn · C−1. Then, we again apply Iwasawa decomposition
C−1 = A · E, with A ∈ SUm and E ∈ Solm. Then,

B = ET · (AT · Jn ·A) · E,
and

Ã = AT · Jn ·A ∈ SUm ∩ Skm(C).
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It follows Ã · J−1
n ∈ C(sk)

m . The Schubert symbol

m = (2m1 − 1, 2m1, 2m2 − 1, 2m2, . . . , 2mk − 1, 2mk)

for Ã·J−1
n is obtained from the ordered factorization of Ã·J−1

n . By (5.8), this may be alternatively

written as a skew-symmetric factorization of Ã

(5.9) Ã = A(θ1,x′1) · · ·A(θk,x′k) · Jn ·AT(θk,x′k) · · ·A
T
(θ1,x′1) .

By Corollary 5.3, m(sk) = (m1,m2, . . . ,mk) is the skew-symmetric Schubert symbol. Then,

under the map C(sk)
m → F

(sk)
m given by right multiplication by Jn, i.e.

Ã · J−1
n 7→ Ã ∈ SUm ∩ Skm(C) = F (sk)

m ,

we have S
(sk)
m mapping diffeomorphically to S

(sk)
m · Jn ⊂ F

(sk)
m . Hence, we again use the action

of SolTm but on F
(sk)
m given by :

SolTm × F (sk)
m → F (sk)

m sending (E, Ã) 7→ E · Ã · ET .

Then, from the action applied to each Schubert cell S
(sk)
m after right multiplication by Jn gives

by Proposition 1.2 the Schubert cell for F
(sk)
m which we denote by SolTm · (S

(sk)
m ·Jn). Combining

this with Theorem 4.1 we obtain

Theorem 5.6. The Schubert decomposition of the global Milnor fiber F
(sk)
m for the variety of

m × m skew-symmetric complex matrices (with m = 2n) is given by the disjoint union of the

skew-symmetric Schubert cells SolTm · (S
(sk)
m · Jn) corresponding to the skew-symmetric Schu-

bert cells S
(sk)
m of C(sk)

m , for all skew-symmetric Schubert symbols m(sk) = (m1, . . . ,mk) with
1 < m1 < · · · < mk ≤ n.

Furthermore, the preceding algorithm using ordered factorization gives the associated skew-

symmetric Schubert symbol for a given matrix in F
(sk)
m .

6. Representation of the Dual Classes in Cohomology

Having given the Schubert decomposition for the global Milnor fibers in terms of the cor-
responding Cartan models, we now consider how the Schubert decomposition corresponds to
the (co)homology of the global Milnor fibers as given in [D3], which was deduced from that
of the corresponding symmetric spaces. We will refer to the closures of the Schubert cells in
each case as Schubert cycles of the appropriate type. We shall see that for both the general
and skew-symmetric cases the Schubert cycles are cycles whose fundamental classes define Z-
homology classes. For the symmetric case, the symmetric Schubert cycles are only mod 2-cycles
which define unique Z/2Z-homology classes. The situation is somewhat similar to that for real
Grassmannians where the Z/2Z-cohomology classes correspond to real Schubert cycles, while
the rational classes are more difficult to identify in terms of the Schubert decomposition.

This identification is made using the standard method (see e.g. [Ma, Chap. IX, §4]) for
computing the (co)homology of a finite CW-complex X with skeleta {X(k)} with coefficient ring
R using the finite algebraic complex Ck({X(k)}) = Hk(X(k), X(k−1);R), with boundary map
given by the boundary map for the exact sequence of a triple. Then, rkR(Ck({X(k)})) equals
the number of cells qk of dimension k. Thus, rkRHk(X;R) ≤ qk with equality iff the closures of
the cells of dimension k give a free set of generators for Hk(X;R). Likewise the cohomology is
computed from the complex Ck({X(k)}) = Hk(X(k), X(k−1);R) using the coboundary map for
the exact sequence of a triple in cohomology.
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Milnor Fiber for the Variety of Singular m×m-Matrices.
We consider the Schubert decomposition for Fm obtained from that for the compact model

F cm = SUm as a result of Theorem 5.4. Then, the homology of SUm can be computed from
the algebraic complex with basis formed from the Schubert cells Sm. By a result of Hopf, the
homology of SUm (which is isomorphic as a graded Z-module to its cohomology) is given as a
graded Z-module by

H∗(SUm;Z) ' Λ∗Z〈s3, s5, . . . , s2m−1〉 ,

where s2j−1 has degree 2j − 1. Then, a count shows that Hq(SUn;Z) is spanned by s2m1−1 ·
s2m2−1 · · · s2mk−1 where 1 < m1 < m2 < · · · < mk ≤ m and q =

∑k
j=1(2mj−1). This equals the

number of Schubert cells Sm of real dimension q. Thus, each Sm defines a Z-homology class of
dimension dim RSm. Together they form a basis for Hq(SUm;Z). Also, ψm(S̃m) = Sm and S̃m

has a top homology class in Hq(S̃m;Z) for q = dim R(S̃m), which we can view as a fundamental

class for S̃m for Borel-Moore homology. We have a similar dimension count in cohomology, so
that the duals of the classes Sm via the Kronecker pairing give a Z-basis for cohomology.

Then, as F cm = SUm and the inclusion im : F cm ↪→ Fm is a homotopy equivalence, we obtain
the following

Theorem 6.1. The homology H∗(Fm;Z) has for a free Z-basis the fundamental classes of the

Schubert cycles, given as images im ∗◦ψm ∗([S̃m]) = ψm ∗(S̃m) = Sm as we vary over the Schubert
decomposition of SUm. The Kronecker duals of these classes give the Z-basis for the cohomology

H∗(SUm;Z) ' Λ∗Z〈e3, e5, . . . , e2m−1〉 .

Moreover, the Kronecker duals of the simple Schubert classes S(m1) are homogeneous generators
of the exterior algebra cohomology.

Proof. The preceding discussion establishes all of the theorem except for the last statement
about the generators of the cohomology algebra. We prove this by induction on m. It is trivially
true for m = 1, 2. Suppose it is true for m < n and let in−1 : SUn−1 ↪→ SUn denote the natural
inclusion A 7→

(
A 0
0 1

)
. The Schubert decomposition preserves the inclusion so that any Sm for

m = (m1,m2, · · · ,mk) with mk < n is contained in the image of in−1 and so is also a Schubert
cell for SUn−1; while if mk = n, then Sm is in the complement of the image of SUn−1. Thus,
if the result is true for SUn−1, the Kronecker duals to the simple S(m1) with m1 < n restrict
via i∗n−1 to the Kronecker duals of the S(m1) with m1 < n viewed as Schubert cells of SUn−1.
Thus, they map to the generators of the exterior algebra Λ∗Z < e3, e5, · · · e2n−3 >. Also, the
Kronecker dual to any Sm with mk = n is zero on any Schubert cell of SUn−1 so by a counting
argument the kernel of i∗n−1, which is the ideal generated by e2n−1, is spanned by the Kronecker
duals of the Schubert cells with mk = n.

Now there is a unique Schubert class of this type of degree 2n − 1, and hence its Kronecker
dual is the added generator which together with the others for S(m1) with m1 < n generate
H∗(SUn;Z). �

There is also the question of identifying the Kronecker dual of the Schubert cycle [Sm] for
m = (m1,m2, · · · ,mk), which we denote by em. We claim it is given up to sign by the cohomol-
ogy class e2m1−1 · e2m2−1 · · · e2mk−1 (where the products denote cup-products). We show this
using the product structure of the group SUm to give a product representation for the closures
of Schubert cells together with the Hopf algebra structure of H∗(SUm).

We let Sm · Sm′ denote the group product in SUm of the closures of Schubert cells Sm and
Sm′ . We also use the simpler notation Sm1

to denote the Schubert cell Sm when m = (m1). In
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particular, we emphasize that

Sm1
= {A(−θ,e1) ·A(θ,x1) : θ ∈ (0, 2π), x1 ∈min Cm1} .

First, as result of Lemma 3.2, we obtain the following version of a lemma due to Whitehead
(see e.g. [KM, Lemma 4.2] or [Mi, Lemma 2.2]).

Lemma 6.2. For Schubert cells in Cm for SUm,

1) If 1 < m1 < m2 ≤ m, then

Sm2
· Sm1

= Sm1
· Sm2

= S(m1,m2) .

2) If 1 < m′ ≤ m, then
Sm′ · Sm′ ⊆ S(m′−1,m′) .

We note that this differs slightly from the above referred to lemmas as each element in Sm1

is a product of two pseudo-rotations, one of which is A(−θ,e1). However, by the lemma, this
pseudo-rotation can also be interchanged with other A(θ,xj), and combined via multiplication
with other A(−θ′,e1). We also note in the lemma that dim RS(m′−1,m′) ≤ 2 · dim RSm′ − 2.

We can inductively repeat this to obtain

Lemma 6.3. For Schubert cells Smj in Cm (for SUm):

1) If m = (m1,m2, . . . ,mr) then

Sm = Sm1
· Sm2

· · ·Smr .
2) If m = (m1,m2, . . . ,mr) and m′ = (m′1,m

′
2, . . . ,m

′
r′) with

{m1,m2, . . . ,mr} ∩ {m′1,m′2, . . . ,m′r′} = ∅,
then

Sm · Sm′ = Sm′′ ,

where m′′ is the union of m and m′ in increasing order.
3) If m = (m1,m2, . . . ,mr) and m′ = (m′1,m

′
2, . . . ,m

′
r′) with

{m1,m2, . . . ,mr} ∩ {m′1,m′2, . . . ,m′r′} 6= ∅,
then

Sm · Sm′ ⊂ C(q)
m ,

where q ≤ dim RSm + dim RSm′ − 2.

Proof. For 1) we consider a product in Sm1
· Sm2

· · ·Smr which has the form

(6.1) B = (A(−θ1,e1) ·A(θ1,x1)) · (A(−θ2,e1) ·A(θ2,x2) · · · (A(−θr,e1) ·A(θr,xr)),

where each xj ∈min Cmj . Then, we may repeatedly apply the Whitehead Lemma to move each
A(−θj ,e1) to the left and obtain a factorization in the form

(6.2) B = A(−θ̃,e1) ·A(θ1,x′1) ·A(θ2,x′2
) · · ·A(θr,x′r)),

where θ̃ =
∑r
j=1 θj and each x′j ∈min Cmj . Hence, B ∈ Sm. Conversely we can reverse the

process beginning with B in (6.2) and obtain a factorization as in (6.1). This gives the equality
for the Schubert cells. Since the closures are compact, we obtain the equality of 1) by taking
closures of the Schubert cells.

Given 1) we may write

(6.3) Sm · Sm′ = (Sm1 · Sm2 · · ·Smr ) · (Sm′1 · Sm′2 · · ·Sm′r′ ).

If {m1,m2, . . . ,mr}∩{m′1,m′2, . . . ,m′r′} = ∅, then we can repeatedly apply a) of the Whitehead
Lemma to move an element of Sm′j across an element of Smi when mi > m′j while preserving
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the order of the mi’s and m′j ’s. We arrive at an ordered factorization with increasing order m′′,
which is the union of m and m′ in increasing order. Taking closures of the Schubert cells then
gives 2).

Finally, for 3), we may begin with (6.3). There are smallest m` = m′k. Then, if m′j < m′k then
it differs from all mi. Hence, we can first move the elements in Sm′j across all of those in Smi as in

the previous case by 2) of Lemma 6.3. Next, we can move elements in Smk′ across those in Smj as
long as mj > m`. Then, we arrive at a factorization where we have successive terms in Sm` and
Smk′ with m` = m′k. Then, we may apply b) of the Whitehead lemma (or 2) of Lemma 6.2) and
obtain a new pair in Sm̃ and Sm` with m̃ ≤ m`−1. This has the effect of reducing the sum of the
Schubert symbol values in the product by at least 1. Also, further application of the Whitehead
Lemma will not increase the sum. Hence, by further application of the Whitehead Lemma we
obtain a product in the union of Schubert cells of dimension q ≤ dim RSm +dim RSm′−2. Thus,
it lies in the q-skeleton of Cm. This gives 3) when we take closures. �

Now we will use the Hopf structure of H∗(SUn) to relate the fundamental classes from the
Schubert decomposition with the cohomology classes via the Kronecker pairing. Let

µ : SUn × SUn → SUn

denote the multiplication map. Then, we can use Lemma 6.3 to determine the effect of µ∗ for
homology using the complex Ck({X(k)}) and then the coproduct map µ∗ for the Hopf algebra.
We obtain as a corollary of Lemma 6.3.

Corollary 6.4. We let sm denote the homology class obtained from ψm ∗([S̃m]) with restriction
to positive orientation for Em. For m = (m1,m2, . . . ,mr) and m′ = (m′1,m

′
2, . . . ,m

′
r′) we let

m = {m1,m2, . . . ,mr} ∩ {m′1,m′2, . . . ,m′r′} and let m′′ = (m′′1 ,m
′′
2 , . . . ,m

′′
r′′) denote the union

of the elements of m and m′ written in increasing order. Then,

(6.4) µ∗(sm ⊗ sm′) =

{
εm,m′ · sm′′ if m = ∅,
0 if m 6= ∅ ,

where εm,m′ is the sign of the permutation which moves (m,m′) to increasing order.

The reason for the factor εm,m′ is that each interchange of two factors S(m1) and S(m2) will

change the orientation by a factor (−1)(2m1−1)(2m2−1) = −1.
From the corollary we obtain a formula for the coproduct µ∗ in terms of the (Kronecker) dual

basis {em} in cohomology to Schubert basis for homology {sm}.

(6.5) µ∗(em) =
∑

(−1)deg(em′ ) deg(em′′ )εm′,m′′ · em′ ⊗ em′′ ,

where the sum is over all disjoint m′ and m′′ whose union in increasing order gives m (and the
terms (−1)deg(em′ ) deg(em′′ ) arise from the property (ϕ⊗ψ)(σ⊗ ν) = (−1)deg(ϕ) deg(ψ)ϕ(σ)ψ(ν)).
Since Sm is a product of odd dimensional cells, deg(em′)(= dim RSm) ≡ `(m) mod 2 and the

sign in (6.5) equals (−1)`(m
′)`(m′′). Also, note the sum includes the empty symbol which denotes

the Schubert cell consisting of just In. In the case of the simple Schubert symbol (m1) we obtain

µ∗(e(m1)) = e(m1) ⊗ 1 + 1⊗ e(m1) .

Hence, all of the e(m1) are independent primitive classes. Then there is the following relation
between the generators of H∗(SUn) and the Schubert classes.

Theorem 6.5. H∗(SUn) is a free exterior algebra with generators e(m) of degrees 2m − 1, for
m = 2, . . . , n. Moreover the Kronecker dual to sm for m = (m1,m2, . . . ,mr) is

em = (−1)β(m)e(m1)e(m2) . . . e(mr),
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where β(m) =
(
`(m)

2

)
(where we denote

(
1
2

)
= 0).

Proof. We already have established the first statement about the algebra generators in Theorem
6.1. We note that it also follows from the Hopf algebra structure. Since the e(m) , form = 2, . . . , n
are primitive generators of degree 2m−1, and H∗(SUn) is a Hopf algebra which is a free exterior
algebra on generators of degrees 2m − 1 for m = 2, . . . , n, it follows by a theorem of Hopf-
Samuelson that H∗(SUn) is the free exterior algebra generated by the primitive elements e(m) ,
for m = 2, . . . , n.

We furthermore claim that the Kronecker dual to the Schubert class sm for

m = (m1,m2, . . . ,mr)

is given by (−1)β(m)e(m1)e(m2) . . . e(mr), which will follow from em = (−1)`(m
′)e(m1)em′ for

m′ = (m2,m3, . . .mr).

We prove this by induction on r. It is already true for r = 1. Next, consider the case of
m = (m1,m2); then ε(m1),(m2) = 1, ε(m2),(m1) = −1 and (−1)`(m1)`(m2) = −1. Then, from (6.5)

(6.6) µ∗(e(m1,m2)) = e(m1,m2) ⊗ 1 − e(m1) ⊗ e(m2) + e(m2) ⊗ e(m1) + 1⊗ e(m1,m2) .

Also, as µ∗ is an algebra homomorphism,

µ∗(e(m1) · e(m2)) = µ∗(e(m1
) · µ∗(e(m2))

=
(
e(m1) ⊗ 1 + 1⊗ e(m1)

)
·
(
e(m2) ⊗ 1 + 1⊗ e(m2)

)
= e(m1) · e(m2) ⊗ 1 + e(m1) ⊗ e(m2) − e(m2) ⊗ e(m1) + 1⊗ e(m1) · e(m2) ,(6.7)

where the signs on the RHS result from both e(m1) and e(m2) having odd degree. Adding (6.7)
and (6.6), we obtain

(6.8) µ∗(e(m1,m2)+e(m1)·e(m2)) =
(
e(m1,m2) + e(m1) · e(m2)

)
⊗1 + 1⊗

(
e(m1,m2) + e(m1) · e(m2)

)
.

This implies that if e(m1,m2) + e(m1) · e(m2) 6= 0, then it is a primitive element independent
from the other primitive elements e(m). This contradicts the Hopf-Samuelson theorem. Thus,
e(m1,m2) = −e(m1) · e(m2).

Suppose by induction the result holds for k < r. Then, for m = (m1, . . . ,mr), let
m′ = (m2, . . . ,mr). First, by (6.5) we have

(6.9) µ∗(em) = em ⊗ 1 + 1⊗ em +
∑

(−1)`(m
′)`(m′′)εm′,m′′ · em′ ⊗ em′′ ,

where the sum is over all m′ = (m′1,m
′
2, . . . ,m

′
k) and m′′ = (m′′1 ,m

′′
2 , . . . ,m

′′
k′) which are both

nonempty, disjoint, and whose union in increasing order is m. Then, by induction we obtain

µ∗(e(m1) · em′) = µ∗(e(m1
) · µ∗(em′)

=
(
e(m1) ⊗ 1 + 1⊗ e(m1)

)
· (em′ ⊗ 1 + 1⊗ em′+∑

(−1)`(m
′′)`(m′′′)εm′′,m′′′ · em′′ ⊗ em′′′

)
,(6.10)

where the sum is over m′′ and m′′′ which are nonempty, disjoint and whose union in increasing
order is m′. In the sum on the RHS of (6.9), we have in addition to the terms em⊗1 and 1⊗em
the four following types of terms :
Four Types of Terms in (6.9):

i) (−1)`(m
′)ε(m1),m′ · e(m1) ⊗ em′ = (−1)`(m

′)e(m1) ⊗ em′
ii) (−1)`(m

′)εm′,(m1) · em′ ⊗ e(m1) = em′ ⊗ e(m1)

iii) (−1)`(m
′′)`(m′′′)εm′′,m′′′ · em′′ ⊗ em′′′ with m1 in m′′

iv) (−1)`(m
′′)`(m′′′)εm′′,m′′′ · em′′ ⊗ em′′′ with m1 in m′′′
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For comparison, we have in addition to the terms (e(m1)em′) ⊗ 1 and 1 ⊗ (e(m1)em′) the corre-
sponding terms from (6.10) which have the following types:
Corresponding Four Types of Terms in (6.10):

i) e(m1) ⊗ em′
ii) (−1)`(m

′)em′ ⊗ e(m1)

iii) (−1)`(m
′′)`(m′′′)εm′′,m′′′ · (e(m1)em′′)⊗ em′′′

iv) (−1)`(m
′′)(−1)`(m

′′)`(m′′′)εm′′,m′′′ · em′′ ⊗ (e(m1)em′′′)

In the first two cases for (6.10), we can view them as a decomposition of m either as ({m1},m′)
or (m′, {m1}). We see that the corresponding coefficients for i) and ii) for (6.10) and (6.9) differ

by a factor (−1)`(m
′). The corresponding terms in iii) and iv) for (6.10) can be viewed as a

decomposition either as ({m1} ∪m′′,m′′′) or (m′′, {m1} ∪m′′′). The corresponding coefficients

will also be shown to differ by the same factor (−1)`(m
′).

For example, for iv) let m̃′′′ = {m1} ∪m′′′. Then,

εm′′,m̃′′′ = (−1)`(m
′′)εm′′,m′′′ , `(m̃′′′) = `(m′′′) + 1;

and by the induction hypothesis em̃′′′ = (−1)`(m
′′′)e(m1) · em′′′ . Then, substituting these values

in iv) for (6.10) yields

(−1)`(m
′′)(−1)`(m

′′)`(m′′′)εm′′,m′′′ · em′′ ⊗ (e(m1)em′′′) =

(−1)`(m
′′)(−1)`(m

′′)`(m̃′′′)(−1)`(m
′′)(−1)`(m

′′)(−1)`(m
′′′)εm′′,m̃′′′ · em′′ ⊗ em̃′′′

= (−1)`(m
′′)`(m̃′′′)(−1)`(m

′′)(−1)`(m
′′′)εm′′,m̃′′′ · em′′ ⊗ em̃′′′

= (−1)`(m
′)
(

(−1)`(m
′′)`(m̃′′′)εm′′,m̃′′′ · em′′ ⊗ em̃′′′

)
(6.11)

A similar, but somewhat simpler, argument works for the terms iii).

Then, we proceed as in the previous case. We compute µ∗(em − (−1)`(m
′)e(m1)em′) from

(6.10) and (6.9) and by the above all terms of types i) - iv) cancel so we obtain

(6.12) µ∗(em − (−1)`(m
′)e(m1)em′) = (em − (−1)`(m

′)e(m1)em′)⊗ 1 + 1⊗ (em − (−1)`(m
′)e(m1)em′).

This again implies that em− (−1)`(m
′)e(m1)em′ is a primitive element if it is nonzero. Hence, it

is zero and so em = (−1)`(m
′)e(m1)em′ . Repeated inductive application of this implies that for

m = (m1,m2, . . . ,mr)

em = (−1)β(m)e(m1) · e(m2) · · · e(mr) .

with β(m) = 1 + 2 + · · ·+ (r − 1) =
(
`(m)

2

)
. �

As a consequence we have determined the Poincaré duals to the Schubert classes.

Corollary 6.6. For each Schubert symbol m = (m1,m2, . . . ,mr) let the ordered complement in
{2, 3, . . . , n} be denoted by m′ = (m′1,m

′
2, . . . ,m

′
n−1−r).

i) The Poincaré dual to the Schubert class
[
Sm

]
in F cn and to the Schubert class

[
Sm · Soln

]
in Fn is given by

(−1)(β(n)+β(m))εm,m′ e(m′1) · e(m′2) · · · e(m′n−1−r)

for n = (2, 3, . . . , n).
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ii) For Schubert symbols m and m′ such that `(m)+ `(m′) = n−1, the intersection pairing
satisfies

(6.13) 〈[Sm], [Sm′ ]〉 =


(−1)(β(n)+β(m)+β(m′))εm,m′ if m′ is the ordered

complement to m,

0 otherwise .

Proof. By Theorem 6.5, the Kronecker dual to
[
Sm

]
is given by

em = (−1)β(m)e(m1) · e(m2) · · · e(mr).

Also, the fundamental class for [SUn] with orientation given by
[
Sn

]
has Kronecker dual

(−1)β(n)e(2) · e(3) · · · e(n).

Then, the Poincaré dual to
[
Sm

]
is given by a cohomology class ν such that

em ∪ ν = (−1)β(n)e(2) · e(3) · · · e(n).

This is satisfied by

ν = (−1)(β(n)+β(m))εm,m′ e(m′1) · e(m′2) · · · e(m′n−1−r) .

In the case of the Schubert class
[
Sm · Soln

]
in Fn, we note that Sm is the transverse inter-

section of F cn = SUn with Sm · Soln in Fn and that the inclusion in : F cn ↪→ Fn is a homotopy
equivalence. Hence, by a fiber square argument, the Poincaré dual in H∗(Fn;Z) to the funda-
mental class of Sm ·Soln for Borel-Moore homology, agrees via i∗n with that for the fundamental
class of Sm in H∗(F cn;Z).

The consequence for the intersection pairing follows from the above and

(6.14) 〈[Sm], [Sm′ ]〉 = 〈em ∪ em′ ,
[
Sn

]
〉.

�

Milnor Fiber for the Variety of Singular m×m-Skew-Symmetric Matrices.

We second consider the case of the global Milnor fiber F
(sk)
m for skew-symmetric matrices

with m = 2n. Then, the homology of SU2n/Spn can be computed from the algebraic complex

with basis formed from the Schubert cells S
(sk)
m . By a result of Cartan (see e.g. Mimura-Toda

[MT, Theorem 6.7]) the homology of SU2n/Spn (which is isomorphic as a graded Z-module to
its cohomology) is given as a graded Z-module by

(6.15) H∗(SU2n/Spn;Z) ' Λ∗Z〈s5, s9, . . . , s4n−3〉 .
where s4j−3 has degree 4j−3. By the universal coefficient theorem this holds as well as a vector
space over a field k of characteristic zero.

Theorem 6.7. The homology H∗(F
(sk) c
m ;Z) for m = 2n has for a free Z-basis the fundamental

classes of the skew-symmetric Schubert cycles, im ∗ ◦ ψ(sk)
m ∗ ([S̃

(sk)
m ]) = ψ

(sk)
m ∗ (S̃

(sk)
m ) = S

(sk)
m as we

vary over the Schubert decomposition of C(sk)
m ' SU2n/Spn. Moreover, the Kronecker duals of

the simple skew-symmetric Schubert cycles S
(sk)
(m1) give homogeneous exterior algebra generators

for the cohomology.

This likewise extends to H∗(F
(sk)
m ;Z) (m = 2n) for Borel-Moore homology with basis given

by the fundamental classes of the global skew-symmetric Schubert cycles SolTm · (S
(sk)
m · Jn) for

F
(sk)
m . The Poincaré duals of these classes form a Z-basis for the cohomology

H∗(F (sk)
m ;Z) ' Λ∗Z〈e5, e9, . . . , e4n−3〉 .
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Proof. The proof follows the same lines as that of Theorem 6.1. Then, a count from (6.15) shows
that Hq(SU2n/Spn;Z) is spanned by s4m1−3 · s4m2−3 · · · s4mk−3, where

1 < m1 < m2 < · · · < mk ≤ n

and q =
∑k
j=1(4mj − 3). By Theorem 5.6 this equals the number of skew-symmetric Schubert

cells S
(sk)
m of real dimension q. Thus, each ψ

(sk)
m (S̃

(sk)
m ) = S

(sk)
m defines a Z-homology class of

dimension dim RS
(sk)
m . Together they form a basis for Hq(SU2n/Spn;Z). That the Kronecker

duals of the simple Schubert cycles S
(sk)
(m1) give algebra generators for the cohomology follows by

the same argument used in Theorem 6.1.

As S̃
(sk)
m has a top homology class in Hq(S̃

(sk)
m ;Z) for q = dim R(S̃

(sk)
m ), we can view it as

a fundamental class for S̃
(sk)
m for Borel-Moore homology. As F

(sk) c
m ' C(sk)

m ' SU2n/Spn by

multiplication by Jn and the inclusion im : F
(sk) c
m ↪→ F

(sk)
m is a homotopy equivalence, we

conclude that these classes form a Z-basis for the cohomology via H∗(F
(sk)
m ;Z) ' H∗(F (sk) c

m ;Z).
Their Poincaré duals then form a Z-basis for the Borel-Moore homology. �

Again there is the question of explicitly identifying the Kronecker dual of the fundamental

class ψ
(sk)
m ∗ ([S̃

(sk)
m ]) with a cohomology class as a polynomial in the cohomology algebra generators

e4j−3, j = 2, . . . , n, and as a consequence explicitly identifying the generators for the cohomology
algebra. We shall comment on this after next considering the symmetric case.

Milnor Fiber for the Variety of Singular m×m-Symmetric Matrices.

We next consider the case of F
(sy)
m . Again the line of reasoning will be similar to the two

preceding cases with the crucial difference that the (co)homology has two different forms for
coefficients Z/2Z or a field of characteristic zero. There is the compact model

F (sy) c
n ' C(sy)

n ' SUn/SOn

for F
(sy)
n . Then, the homology of SUn/SOn can be computed from the algebraic complex with

basis formed from the Schubert cells S
(sy)
m . By a result of Borel and Hopf, see e.g. [Bo] and

see [KM], the homology of SUn/SOn with Z/2Z-coefficients (which is isomorphic as a graded
Z/2Z-vector space to its cohomology) is given as a graded vector space over the field Z/2Z

H∗(SUn/SOn;Z/2Z) ' Λ∗Z/2Z〈s2, s3, . . . , sn〉 ,

where sj has degree j. A count shows that

dim Z/2ZH∗(SUn/SOn;Z/2Z) = 2n−1 .

This is the same as the number of Schubert cells S
(sy)
m , for

1 < m1 < · · · < mk ≤ n

in the cell decomposition of SUn/SOn. Thus, the Schubert cycles S
(sy)
m , which are mod 2-

homology cycles, give a Z/2Z-basis for the homology H∗(SUn/SOn;Z/2Z). In particular the

mod 2-homology cycles S
(sy)
m for which |m| = q give a Z/2Z-basis for Hq(SUn/SOn;Z/2Z) for

each q ≥ 0.
Thus, we conclude by an analogous argument to that used in the preceding two cases

Theorem 6.8. The homology H∗(F
(sy) c
n ;Z/2Z) has for a Z/2Z-basis the Z/2Z fundamental

classes of the symmetric Schubert cycles
[
S

(sy)
m

]
as we vary over the Schubert decomposition of
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C(sy)
n ' SUn/SOn for all symmetric Schubert symbols m(sy) = (m1, . . . ,mk) with

1 < m1 < · · · < mk ≤ n.

Moreover, the Kronecker duals of the simple symmetric Schubert cycles S
(sy)
(m1) are algebra gener-

ators for the exterior cohomology algebra with Z/2Z-coefficients.

This extends to H∗(F
(sy)
n ;Z/2Z) with Z/2Z-basis given by the Borel-Moore mod 2-cycles given

by the global symmetric Schubert cycles
[
SolTm · (S

(sy)
m )

]
for S

(sy)
m over the symmetric Schubert

symbols m(sy). The Poincaré duals of these classes form a Z/2Z-basis for the cohomology.

H∗(F (sy)
m ;Z/2Z) ' Λ∗Z/2Z〈e2, e3, . . . , en〉 .

There are several points to be made regarding this result and that for skew-symmetric matri-
ces.

First, unlike the cases of SUn and SU2n/Spn, the closure of the Schubert cells are not the
images of Borel-Moore homology classes of singular manifolds. As mentioned earlier, if we

consider instead the quotient space F
(sy) c
m /(F

(sy) c
m )(q−1), and |m| = q, then the composition of

the map

ψ̃(sy)
m :

k∏
i=1

(CRPmi−1) −→ SUn/SOn ' F (sy) c
m

with the quotient map prq : F
(sy) c
m → F

(sy) c
m /(F

(sy) c
m )(q−1) factors through to give a map

prq ◦ ψ̃(sy)
m :

k∏
i=1

SRPmi−1 −→ F (sy) c
m /(F (sy) c

m )(q−1) .

As

prq : (F (sy) c
m , (F (sy) c

m )(q−1))→ (F (sy) c
m /(F (sy) c

m )(q−1), ∗),

for ∗ the point representing (F
(sy) c
m )(q−1) in the quotient, is a relative homeomorphism,

prq ∗ : Hq(F
(sy) c
m , (F (sy) c

m )(q−1);Z/2Z) ' Hq(F
(sy) c
m /(F (sy) c

m )(q−1), ∗;Z/2Z) .

Then, the closure S
(sy)
m corresponds via the isomorphism to the image of the fundamental class

of
∏k
i=1(SRPmi−1) under prq ∗ ◦ ψ̃(sy)

m ∗ .
Moreover, as noted earlier for the simple Schubert symbol (m1), there is a factored map

ψ̃
(sy)
(m1) : SRPmi−1 → SUn/SOn ' F (sy) c

m with image S
(sy)
(m1), giving it a Borel-Moore fundamental

homology class for Z/2Z-coefficients.
However, for cohomology with rational coefficients, see e.g. [MT, Chap. 3, Thm 6.7 (2)]

or Table 1 in [D3], many of these Schubert cells do not contribute homology classes. This is
similar to the situation for oriented Grassmannians for Z/2Z versus rational coefficients. This
relation extends further. Over SUn/SOn is a natural n-dimensional real oriented vector bundle
En = (SUn ×SOn Rn) where Rn has the natural representation of SOn. This bundle can be
viewed geometrically as the set of oriented real subspaces V ⊂ Cn with dim RV = n such that
C〈V 〉 = Cn. Then, by e.g. [MT, Chap. 3, Thm 6.7 (3)] the cohomology of SUn/SOn, already
quoted in Theorem 6.8 has ej = wj(En), the j-th Stiefel-Whitney class. This bundle pulls-back

by the homotopy equivalence SUn/SOn ' F (sy) c
n ' F (sy)

n to give an n-dimensional real oriented

vector bundle, which we denote by Ẽn and then

H∗(F (sy)
n ;Z/2Z) ' Λ∗Z/2Z < w2, w3, . . . , wn >
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where wj = wj(Ẽn) for each j = 2, 3, . . . , n. We will see in the next section that this algebra
naturally pulls back to a characteristic subalgebra of Milnor fibers for general symmetric matrix
singularities generated by the Stiefel-Whitney classes of the pull-back of Ẽn to the Milnor fiber.

Although both

H∗(F (sy)
n ;Z/2Z) ' H∗(SUn/SOn;Z/2Z) and H∗(F

(sk)
2n ;Z) ' H∗(SU2n/Spn;Z)

are exterior algebras, neither is a Hopf algebra. Hence, the full argument given for H∗(Fn;Z)
for the relation between the cohomology and the Schubert decomposition cannot be given using
Hopf algebra methods. However, it does suggest the following conjecture is true and constitutes
work in progress.

Conjecture: For both F
(sk) c
n and F

(sy) c
n , the Kronecker duals to the Schubert classes S

(sk)
(m) ,

resp. S
(sy)
(m) for Schubert symbols m(sk), or m(sy) = (m1,m2, . . . ,mr) are given up to sign by

e(m1) · e(m2) · · · e(mr) in the corresponding cohomology algebra.

7. Characteristic Subalgebra in the Cohomology of General Matrix
Singularities

In the preceding section we have identified for the Milnor fibers Fm, F
(sy)
m , and F

(sk)
m (for m

= 2n), their cohomology and the decomposition of their homology using the Schubert decompo-
sition. We see how this applies to the structure of Milnor fibers of general matrix singularities
of each of these types.

Let M denoting any one of the three spaces of complex m ×m matrices which are general
Mm,m(C), symmetric Symm(C), or skew-symmetric Skm(C) with m = 2n. Also, let Dm, resp.

D(sy)
m , or D(sk)

m denote the variety of singular matrices of the corresponding type. We suppose
that each type is defined by H : M → C, which denotes either the determinant det for Dm or

D(sy)
m , or the Pfaffian Pf for D(sk)

m .

Matrix Singularities of a Given Type.
A matrix singularity of any of the given types is defined by a holomorphic germ

f0 : Cs, 0→M, 0,

and the singularity is defined by X0 = f−1
0 (V), 0 where V denotes the appropriate variety of

singular matrices. We impose an additional condition on f which can take several forms based
on forms of K-equivalence preserving V. There is the equivalence defined using the parametrized
action by points in Cs of the group G = GLm(C) acting by C 7→ A · C · AT in the symmetric
or skew-symmetric cases. For the general m × m matrix case, the action of G = GLm(C)
acting by left multiplication suffices for studying the Milnor fiber. However, for the general
equivalence studying the pull-back of Dm the action is given by G = GLm(C)×GLm(C) acting
by C 7→ A · C · B−1 . We denote the equivalence for any of the general, symmetric, or skew-
symmetric cases as KM -equivalence. The second equivalence allows the action of germs of
diffeomorphisms of Cs×M, (0, 0) of the form ϕ(x, y) = (ϕ1(x), ϕ2(x, y)) which preserve Cs×V,
and is denoted KV equivalence. The third is a subgroup of KV which preserves the defining
equation of Cs × V, H ◦ prM , with prM denoting projection onto M . It is denoted KH . See for
example [DP2], [D2], or [D1] for more details about the groups of equivalence and their relations
and the properties of germs which have finite codimension for one of these equivalences. In
particular, for the three classes of varieties of singular matrices, KV and KM equivalences agree.

If f0 has finite KV -codimension, then it may be deformed to ft which is transverse to V in
a neighborhood Bε(0) of 0 ∈ Cs for t 6= 0. Then it is shown in [DM] that one measure of the

vanishing topology of X0 is by the“singular Milnor fiber”X̃t = f−1
t (V) ∩ Bε(0). It is homotopy
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equivalent to a bouquet of real spheres of dimension s− 1. If s < codimM (sing(V)), then this is
the usual Milnor fiber of V0. This condition requires s < 4, resp. 3, resp. 6, for the three types
of matrices.

In the special case that V is a free divisor and holonomic in the sense of Saito [Sa] and satisfies
a local weighted homogeneity condition [DM] or is a free divisor and H-holonomic [D1], then
the singular Milnor number is given by the length of the normal space NKH ef0, which is a
determinantal module.

For the three classes of varieties of singular matrices, the varieties are not free divisors.
Nonetheless, when s ≤ codimM (sing(V)), Goryunov and Mond [GM] give a formula for the
Milnor number which adds a correction term for the lack of freeness given by an Euler charac-
teristic of a Tor complex. Instead, Damon-Pike [DP3] give a formula valid for all s but which
is presently restricted to a limited range of matrices. It is given by a sum of terms which are
lengths of determinantal modules, based on placing the varieties in a tower of free divisors [DP2].

Cohomology Structure of Milnor Fibers of General Matrix Singularities.
We explain how the results in earlier sections provide information about the cohomology of

the Milnor fiber for a matrix singularity X0 for all s.
We consider the defining equation H : CN , 0→ C, 0 for V, where M ' CN for each case. For

V there exists 0 < δ << η such that for balls Bδ ⊂ C andBη ⊂ CN (with all balls centered
0), we let Fδ = H−1(Bδ) ∩ Bη so H : Fδ → Bδ is the Milnor fibration of H, with Milnor fiber
Vw = H−1(w) ∩ Bη for each w ∈ Bδ. By continuity, there is an ε > 0 so that f0(Bε) ⊂ Fδ. By

possibly shrinking all three values, H ◦ f0 : f−1
0 (Fδ)∩Bε → Bδ is the Milnor fibration of H ◦ f0.

Also, by the parametrized transversality theorem, for almost all w ∈ Bδ, f0 is transverse to Vw
and so the Milnor fiber of H ◦ f0 is given by

Xw = (H ◦ f0)−1(w) ∩Bε = f−1
0 (Vw) ∩Bε .

Thus, if we denote f0|Xw = f0,w, then in cohomology with coefficient ring R,

f∗0,w : H∗(Vw;R)→ H∗(Xw;R).

For any of the three types of matrices with (∗) denoting () for general matrices, (sy) for symmetric
matrices, or (sk) for skew-symmetric matrices, we let

A(∗)(f0;R)
def
= f∗0,w(H∗(Vw;R)) ,

which we refer to as the characteristic subalgebra of the cohomology of the Milnor fiberH∗(Xw;R)
of X0. This is an algebra over R, and the cohomology of the Milnor fiber of the matrix singularity
X0 is a graded module over A(∗)(f0;R) (both with coefficients R).

By Theorems 6.1 and 6.7 for the m×m general case or skew-symmetric case (with m = 2n),
for R = Z-coefficients (and hence for any coefficient ring R) A(∗)(f0;R) is the quotient ring of a
free exterior R-algebra on generators e2j−1, for j = 2, 3, . . . ,m, resp. e4j−3 for j = 2, 3, . . . , n.
For the m × m symmetric case there are two important cases where either R = Z/2Z or is a
field of characteristic zero. In the first case, by Theorem 6.8, A(∗)(f0;Z/2Z) is the quotient

ring of a a free exterior algebra on generators ej = wj(Ẽm), for j = 2, 3, . . . ,m, for wj(Ẽm) the

Stiefel-Whitney classes of the real oriented m-dimensional vector bundle Ẽm on the Milnor fiber

of D(sy)
m . Hence, A(∗)(f0;Z/2Z) is a subalgebra generated by the Stiefel-Whitney classes of the

pull-back vector bundle f∗0,w(Ẽm) on Xw.
For the coefficient ring R = k a field of characteristic zero, the symmetric case breaks-up into

two cases depending on whether m is even or odd (see [MT, (2),Thm. 6.7, Chap. 3] or Table 1
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of [D3]).

(7.1) H∗(F (sy)
m ; k) '

{
Λ∗k〈e5, e9, . . . , e2m−1〉 if m = 2k + 1

Λ∗k〈e5, e9, . . . , e2m−3〉{1, em} if m = 2k ,

where em is the Euler class of Ẽm. Hence, in both cases they are graded modules over an exterior
algebra. Hence, the Milnor fiber of X0 has cohomology over a field of characteristic zero which,
via the characteristic subalgebra is a graded module over the exterior algebra in either case of
(7.1).

We summarize these cases with the following.

Theorem 7.1. Let f0 : Cs, 0→M, 0 be a matrix singularity of finite KM -codimension for M the
space of m×m matrices which are either general, symmetric, or skew-symmetric (with m = 2n).
Let V denote the variety of singular matrices. Then,

i) The cohomology (with coefficients in a ring R) of the Milnor fiber of X0 = f−1
0 (V) has

a graded module structure over the characteristic subalgebra A(∗)(f0;R) of f0.
ii) In the general and skew-symmetric cases, A(∗)(f0;R) is a quotient of the free R-exterior

algebra with generators given in Theorems 6.1 and 6.7 .
iii) In the symmetric case with R = Z/2Z, A(sy)(f0;Z/2Z) is the quotient of the free exterior

algebra over Z/2Z on the Stiefel-Whitney classes of the real oriented vector bundle Ẽm
on the Milnor fiber of V.

iv) In the symmetric case with R = k, a field of characteristic zero, A(sy)(f0; k) is a quotient
of the k-algebras in each of the cases in (7.1).

In light of this theorem there are several problems to be solved for determining the cohomology
of the Milnor fiber of the matrix singularity X0 for coefficients R.

Questions for the Cohomology of the Milnor Fibers of Matrix Singularities

1) Determine the characteristic subalgebras as the images of the exterior algebras by de-
termining which monomials map to nonzero elements in H∗(Xw;R).

2) Find the non-zero monomials in the image by geometrically identifying the pull-backs of
the Schubert classes.

3) For the symmetric case with Z/2Z-coefficients, compute the Stiefel-Whitney classes of

the pull-back of the vector bundle Ẽm.
4) Determine a set of module generators for the cohomology of the Milnor fibers as modules

over the characteristic subalgebras.

Transversality to Schubert Cycles.
We can give a first step for these using transversality. We let M denote one of the spaces

of m×m matrices with variety of singular matrices denoted by V. There is a transitive action
on SLm(C) on the global Milnor fibers of the varieties of singular matrices in all three cases.

We let S
(∗)
m denote the Schubert cell in the global Milnor fiber of the corresponding type. For

each Schubert class S
(∗)
m and A ∈ SLm(C), we let A · S(∗)

m denote the image under the action
of A. Also, we let the germ f1 = A−1 · f0 denote the germ obtained by applying the constant
matrix A−1 to f0(x) independent of x. This action preserves the global Milnor fibers of V. Then,
deforming either the Schubert cells or f0 by multiplication by A yields the following.

Lemma 7.2. Given f0 : Cs, 0 → M, 0 of finite KM -codimension, for almost all A ∈ SLm(C)

the germ f0 is transverse to A · S(∗)
m for all Schubert cells S

(∗)
m in a Milnor fiber Vw of V. Then,

for f1 = A−1 · f0 and e′m the Poincaré dual to [S∗m], f∗1 (e′m) is the Poincaré dual of [f−1
1 (S

(∗)
m )].

Then, f1 is KM -equivalent to f0, and f∗0w = f∗1w.
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Proof. As SLm(C) is path-connected, the action of A is homotopic to the identity. Let At be

such a path from Im to A. Hence, [At · S(∗)
m ] = [S

(∗)
m ] for all t.

Next, by the parametrized transversality theorem and the transitive acton of SLm(C) on the

global Mlnor fiber, it follows that f0 is transverse to A · S(∗)
m for almost all A ∈ SLm(C). As

there are only a finite number of Schubert cells, then for almost all A this simultaneously holds

for all of the Schubert cells S
(∗)
m . For such an A with f1 = A−1 · f0, it follows that f1 = A · f0

is transverse to all of the Schubert cells. If e′m denotes the Poincaré dual to [S
(∗)
m ], it is also the

Poincaré dual to [A · S(∗)
m ]. Thus, by a fiber square argument f∗1w(e′m) is the Poincaré dual to

[f−1
1w (A · S(∗)

m )].
Lastly, the family ft = A−1

t ·f0 is a KM -constant family so that f1 = A−1 ·f0 is KM -equivalent
to f0 and f∗0w = f∗1w. �

Remark 7.3. As a simple consequence of this lemma, we may replace f0 by the KM -equivalent

f1 = A−1 · f0 transverse to S
(∗)
m . If s < 1

2codimR(S
(∗)
m ) + 1, then f−1

1w (A · S(∗)
m ) is empty. Hence

f∗0w(e′m) = 0.

Module Structure for the Milnor Fibers.
We make several remarks regarding these questions concerning the module structure. These

involve two cases at opposite extremes, namely s < codimM (sing(X0)) or f0 is the germ of a
submersion. In the first case when s < codimM (sing(V)), X0 has an isolated singularity, and
the singular Milnor fiber for f0 is the Milnor fiber for X0, so the Milnor number and singular
Milnor number agree. Also, f∗0w(e′m) = 0 for all e′m of positive degree; thus

A(∗)(f0, R) = H0(Xw;R) ' R.

As the Minor fiber is homotopy equivalent to a CW-complex of real dimension s − 1, the cor-
responding classes which occur for the Milnor fiber will have a trivial module structure over
A(∗)(f0, R).

Second, if f0 is the germ of a submersion, then the Milnor fiber has the form Vw ×Ck, where
k = s− dim CM and so has the same cohomology, so we conclude that

f∗0 : H∗(Vw;R) ' H∗(Xw;R)

so A(∗)(f0, R) = H∗(Xw;R). Also, there are no singular vanishing cycles. Thus, for these two
cases there is the following expression for the cohomology of the Milnor fiber, where the second
summand has trivial module structure shifted by degree s− 1.

(7.2) H∗(Xw;R) ' A(∗)(f0, R)⊕Rµ[s− 1],

where µ = µV(f0) for V = D(∗)
m the corresponding variety of singular matrices.

We ask whether this holds in general or at least for a large class of matrix singularities.

Question: How generally valid is (7.2) for matrix singularities of the three types?

For this question, we note that for the case of 2 × 3 complex matrices with V denoting the
variety of singular matrices and s = 5, the matrix singularities define Cohen-Macaulay 3-fold
singularities. A stabilization of these singularities gives a smoothing and Milnor fiber. In [DP3,
Thm. 8.4] is given an algebraic formula for the vanishing Euler characteristic, which becomes
the difference of the Betti numbers b3− b2 of the Milnor fiber. While specific calculations in the
Appendix of [DP3] show that the vanishing Euler characteristic typically increases in families
with the KV -codimension, it is initially not clear how this increase is distributed as changes of
b3 and b2. Surprisingly, Frühbis-Krüger and Zach [FZ], [Z] show that for a large class of such
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singularities that b2 = 1. This suggests it may be possible to identify certain classes of m ×m
matrix singularities for which there are contributions from A(∗)(f0, R) for the topology of the
Milnor fiber. This is a fundamental question whose answer along with the preceding ones will
clarify our understanding of the full cohomology of the Milnor fibers of matrix singularities.

8. Extensions to Exceptional Orbit Varieties, Complements, and Links

We indicate in this section how the methods of the previous sections can be extended to
exceptional orbit hypersurfaces for prehomogeneous vector spaces in the sense of Sato, see [So]
and [SK]. This includes equidimensional prehomogeneous spaces, see [D3], in the cases of both
block representations of solvable linear algebraic groups [DP2] and the discriminants for quivers
of finite type in the sense of Gabriel, see [G], [G2], represented as linear free divisors by Buchweitz-
Mond [BM].

Second, we can also apply the preceding methods to the complements of exceptional orbit
hypersurfaces arising as the varieties of singular m×m matrices just considered and the equidi-
mensional prehomogeneous spaces just described. Third, in [D3], the cohomology of the link of
one of these singularities is computed as a shift of the (co)homology of the complement. Thus,
the Schubert classes for the complement correspond to cohomology classes in the link. How-
ever, we explain how the multiplicative cohomology structure of the complement contains more
information than the cohomology of the link.

Exceptional Orbit Hypersurfaces for the Equidimensional Cases.

Block Representations of Linear Solvable Algebraic Groups.
First, for the case of block representations of solvable linear algebraic groups, in [DP, Thm

3.1] the complement was shown to be a K(π, 1)-space where π is a finite extension of Zn (for n
the rank of the solvable group) by the finite isotropy group of the action on the open orbit. The
solvable group is an extension of an algebraic torus by a unipotent group which is contractible.
The resulting cell decomposition follows from that for the torus times the unipotent group. Thus,
the decomposition is that modulo the finite group. In important cases of (modified) Cholesky-
type factorization for the three types of matrices and also m× (m+ 1) matrices the finite group
is either the identity or (Z/2Z)n and the resulting quotient is shown, see [DP, Thm 3.4], to still
be the extension of a torus by a (contractible) unipotent group.

Thus, for these cases the cell decomposition follows from the product decomposition for the
complex torus times the unipotent group, which has as a compact model a compact torus of the
same rank. Moreover, by [DP, Thm 4.1], the cohomology with complex coefficients is an exterior
algebra which has as generators 1-forms defined from the defining equation of the exceptional
orbit hypersurface.

Also, by [DP, Thm 3.2] the Milnor fiber is again a K(π′, 1)-space with π′ a subgroup of π
(for the complement) with quotient Z. Again, by [DP, Thm 3.4] for the cases of (modified)
Cholesky-type factorization of matrices, it is also true that the Milnor fiber for these cases is the
extension of a torus, except of one lower rank, by the unipotent group. Likewise the cohomology
with complex coefficients of the Milnor fiber is again an exterior algebra which has one fewer
generator, as the result of a quotient by a single specified relation.

Discriminants of Quivers of Finite Type.
The quivers are defined by a finite ordered graph Γ having for each vertex vi a space Cni

and for each directed edge from vi to vj a linear map ϕij : Cni → Cnj . Those quivers of finite
type were classified by Gabriel [G], [G2]. The discriminants for the quiver spaces of finite type
were shown by Buchweitz-Mond [BM] to be linear free divisors. As such these discriminants are

exceptional orbit hypersurfaces for the action of the group G = (
∏k
i=1GLni(C))/C∗, where k =
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|Γ|. Since each GLni(C) topologically factors as SLni(C)×C∗, the complement is diffeomorphic

to (
∏k
i=1 SLni(C))×(C∗)k−1. The earlier results for the Schubert decomposition for each SLn(C)

via its maximal compact subgroup SUn and the product cell decomposition for (C∗)k−1 gives a
product Schubert cell decomposition for the complement.

The Milnor fiber has an analogous form (
∏k
i=1 SLni(C)) × (C∗)k−2, and a product Schubert

cell decomposition for the Milnor fiber.
The cohomology of the complement is given by [D3, (5.11)] as an exterior algebra on a specific

set of generators. The cohomology of the Milnor fiber is also an exterior algebra except with
one fewer degree 1 generator, see [D3, (Thm 5.4)]. Furthermore, by Theorem 6.1 relating the
Schubert decomposition for SLn(C) via its maximal compact subgroup SUn with the cohomology
classes, we conclude that for both the complement and the Milnor fiber of the discriminant of
the space of quivers, the closures of the product Schubert cells provide a set of generators for
the homology.

Complements of the Varieties of Singular Matrices.
We can likewise give a Schubert decomposition for the complements of the varieties of m×m

matrices which are general, symmetric or skew-symmetric. We note that in [D3] the complements
were given as GLm(C) for the general matrices, GLm(C)/Om(C) for the symmetric matrices,
and GL2n(C)/Spn(C) for the skew-symmetric case with m = 2n. These have as compact models
the symmetric spaces Um, resp. Um/Om, resp. U2n/Spn. Each of these has a Schubert decom-
position given in [KM]. As remarked in §3, Um has a Schubert decomposition by cells Sm for
m = (m1,m2, . . . ,mr), where m1 may equal 1 and it is not required that

∑r
i=1 θi ≡ 0 mod 2π.

Second, in [KM, §5] is given a Schubert decomposition for Um/Om using for the symmetric

Schubert cell S
(sy)
m the symmetric factorization into pseudo-rotations except again

m(sy) = (m1,m2, . . . ,mr),

where m1 may equal 1 and it is not required that
∑r
i=1 θi ≡ 0 mod π.

Third, in [KM, §7] is given a Schubert decomposition for U2n/Spn using for the skew-

symmetric Schubert cell S
(sk)
m the skew-symmetric factorization into pseudo-rotations except

again m(sk) = (m1,m2, . . . ,mr), where m1 may equal 1 and it is not required that
r∑
i=1

θi ≡ 0 mod 2π.

In the case of Um and U2n/Spn the cohomology with integer coefficients is an exterior algebra
with an added generator of degree 1; and for Um/Om the cohomology with Z/2Z coefficients is
an exterior algebra with an added generator of degree 1. Hence, a counting argument analogous
to that for the Milnor fibers show that the closure of each Schubert class gives a homology
generator for the complement.

Complements of the Varieties of Singular m× n Matrices.
The varieties of singular m×n complex matrices, Vm,n, with m 6= n were not considered earlier

because they do not have Milnor fibers. However, the methods do apply to the complement and
link as a result of work of J. H. C. Whitehead [W]. Let M = Mm,n(C) denote the space
of m × n complex matrices. We consider the case where m > n. The other case m < n is
equivalent by taking transposes. The left action of GLm(C) acts on M with an open orbit
consisting of the matrices of rank n. This is the complement to the variety Vm,n of singular
matrices and can be described as the ordered set of n independent vectors in Cm. Then, the
Gram-Schmidt procedure replaces them by an orthonormal set of n vectors in Cm. This is the
Stiefel variety Vn(Cm) and the Gram-Schmidt procedure provides a strong deformation retract of
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the complement M\Vm,n onto the Stiefel variety Vn(Cm). Thus, the Stiefel variety is a compact
model for the complement. Whitehead [W] computes both the (co)homology of the Stiefel variety
using a Schubert decomposition which he gives. The cohomology for integer coefficients of the
complement of the variety Vm,n is given by:

(8.1) H∗(Mm,n\Vm,n;Z) ' Λ∗Z〈e2(m−n)+1, e2(m−n)+3, . . . , e2m−1〉
with degree of ej equal to j. Again the Schubert decomposition gives for the closure of each
Schubert cell a homology generator.

Cohomology of the Links and Schubert Decomposition of the Complement.
Consider an exceptional orbit variety E of a prehomogeneous vector space V of dim CV = N .

Suppose there is a compact manifold K ⊂ V \E oriented for a coefficients field k, which is a
compact model for the complement V \E . Then the cohomology of the link L(E) is given, see
[D3, Prop. 1.9], by the following formula

Cohomology of the Link L(E):

(8.2) H̃∗(L(E); k) ' ˜H∗(K; k) [2N − 2− dim RK] ,

where the graded vector space ˜H∗(X; k) [r] will denote the vector space H∗(X; k), truncated
at the top degree and shifted upward by degree r. Furthermore, to a basis of vector space
generators of Hq(K; k), q < dim RK, there corresponds by Alexander duality a basis of vector
space generators of H2N−2−q(K; k).

As a consequence of this and the preceding established relations between the Schubert decom-
position (or product Schubert decomposition) of the complement and the homology, we obtain
the following conclusions.

Theorem 8.1. For the following exceptional orbit varieties E there are the following relations
between the Schubert (or product Schubert) decomposition for a compact model of the complement
and the cohomology of the link obtained by shifting the cohomology of the compact model (for
coefficients a field of characteristic zero k unless otherwise stated).

1) For the equidimensional solvable case for (modified) Cholesky-type factorizations of m×m
matrices of all three types or (m+ 1)×m matrices, the cohomology of the link is given
by the shifted cohomology of the compact model torus, see [D3, Thm 4.5]. The closures
of the cells of the product cell decomposition of nonmaximal dimension give a homology
basis which correspond to the cohomology basis of the link after the shift.

2) For the discriminant of the quiver space for a quiver of finite type, the cohomology
of the link is the shifted cohomology of the compact model described above with shift
given by [D3, Thm. 5.4]. The closures of cells of the product Schubert decomposition of
nonmaximal dimension for the complement give a homology basis which correspond after
the shift to the cohomology basis for the link.

3) For the varieties of singular m ×m complex matrices, in the general case or the skew-
symmetric case with m even, the cohomology of the link is the shifted cohomology of the
compact symmetric spaces Um, resp. U2n/Spn (m = 2n) given above with shift given
in [D3, Table 2]. The closures of the Schubert cells of nonmaximal dimension in each
case give a homology basis which corresponds to the cohomology basis of the link after
the shift.

4) For the varieties of singular m ×m complex symmetric matrices, the shifted cohomol-
ogy of H∗(Um/Om;Z/2Z), described above, gives the cohomology of the link for Z/2Z-
coefficients, where the shift is

(
m+1

2

)
−2. The closures of the Schubert cells of nonmaximal
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dimension in the Schubert decomposition give a basis of Z/2Z-homology classes corre-
sponding to the cohomology basis of the link after the shift. For coefficients in a field k
of characteristic zero, the cohomology of Um/Om, is an exterior algebra which depends
on whether m is even or odd and the shifts are given in [D3, Table 2], without a direct
relation with the Schubert decomposition.

5) For the variety of singular m×n complex matrices, Vm,n (with m > n), the cohomology
of the compact model, the Stiefel variety Vn(Cm), for the complement is given by (8.1).
The cohomology of the link is given in (8.2) as the upper truncated and cohomology
H∗(Mm,n\Vm,n,k) shifted by n2 − 2 (as a graded vector space). The closures of the
Schubert cells of nonmaximal dimension give a homology basis for the cohomology of the
link after the shift.

Complements of the Varieties of Matrix Singularities.
Given a matrix singularity f0 : Cs, 0 → M, 0 with V ⊂ M the variety of singular matrices

and X0 = f−1
0 (V). Here M can denote any of the spaces of matrices and of any sizes. In the

preceding, we indicated how the cohomology of the link L(V) is expressed as an upper truncated
and shifted cohomology of the complement M\V. Because of the shift, we showed in [D3] that
the cohomology product structure is essentially trivial. Thus, the link is a stratified real analytic
set whose structure depends upon much more than just the group structure of the (co)homology.
On the other hand, we showed in [D3] that the cohomology structure of the complement is an
exterior algebra, and hence contributes considerably more that just the vector space structure
of the cohomology of the link. This extra cohomology structure captures part of the additional
structure.

Consequently, for the matrix singularity, using the earlier notation, we note that there is
a map of complements f0 : (Bε\X0) → (Bδ\V). Also, Bδ\V ' M\V, which has a compact
model given by either a symmetric space or a Stiefel manifold. Thus, the cohomology of the
complement H∗(Bε\X0;R) is a module over the characteristic subalgebra which is the image of
H∗(Bδ\V;R) under f∗0 . In turn, this is an exterior algebra. Hence, the multiplicative structure
considerably adds to the group structure that would result from the link. This is just as for the
Milnor fiber described earlier.
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