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ON 1-FORMS ON ISOLATED COMPLETE INTERSECTION CURVE
SINGULARITIES

ALEXANDRU DIMCA' AND GERT-MARTIN GREUEL

To the memory of Egbert Brieskorn

ABsTRACT. We collect some classical results about holomorphic 1-forms of a reduced com-
plex curve singularity. They are used to study the pull-back of holomorphic 1-forms on an
isolated complete intersection curve singularity under the normalization morphism. We won-
der whether the Milnor number p and the Tjurina number 7 of any isolated plane curve
singularity satisfy the inequality 3u < 47.

1. INTRODUCTION

Consider a reduced complex curve singularity (X,0) C (CV,0), defined by an ideal I C Ocn o,
with 7 = r(X,0) branches. Let v : (X,0) — X,0) be the normalization, where (X,0) is the
multi-germ consisting of r smooth branches. We set

= Ox,0 = Oc¢n /1, the local ring of the germ (X, 0);

v.Ox 5, the direct image of the local ring of the multi-germ (X, 0);
Q<1cN,o/19<1cN,o + Oc¢n odI, the holomorphic 1-forms on (X, 0);
V*Qi—“—), the direct image of the holomorphic 1-forms on (X, 0);
wx,p = Emtgc_Nlo((’), Q(]CVNQ), the dualizing module of (X, 0);

Q = H?O}(Q), the torsion submodule of the O-module €.
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Let d: O — Q be the exterior derivation. We have the following maps
dO — 0 — Q= w,

where dO — Q is the inclusion,  — Q is given by the pull-back of forms under the morphism v,
and  — w is the inclusion, if we identify the dualizing module w with the module of Rosenlicht’s
regular differential forms as explained in [BG80]. Then the maps dO — € and Q — w are clearly
injective and T is the kernel of the map Q — Q (cf. [BG80]). We write 2/Q for the cokernel
of the map © — Q and similarly for the other maps. These objects give rise to the following
numerical invariants:
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m = mit(X,0), the multiplicity of (X, 0);

0 = ( ,0) = dimc(O/0), the delta-invariant of (X, 0);
g = u(X,0) =dime(w/dO), the Milnor number of (X, 0);
A = AX,0) =dime(w/Q);

7 = 7(X,0) = dimc(TQ);

T = 7(X, O) = dimC(T}(,O), the Tjurina number of (X, 0).

Here T , is the tangent space of the base space of the semiuniversal deformation of (X,0).
If (X,0) is a plane curve singularity with I = (f), then p = dim¢(O/Jy) (the classical Milnor
number, cf. [BG80, M68]) and 7 = dimc(O/(f) + J¢), where J; is the Jacobian ideal generated
by the partials of f.

The aim of this note is to prove the following.

Theorem 1.1. Let (X,0) be a reduced complete intersection curve singularity. Then the follow-
ing hold.

) r=7=A>6+m~—r,

(2) 7= 6 =dimc(Q2/Q). In particular, one has the equality

dime(Q/Q) =6 —r + 1

if and only if the singularity (X,0) is weighted homogeneous.
(3) 7> p/2 if (X,0) is not smooth.

In the second section we recall a number of classical results on isolated complete intersection
singularities (due to the second author with several co-authors, and written partly in German),
which are somewhat scattered in the literature and apparently not well known. We collect
them here with reference to the original sources. In the third section we give a quick proof of
Theorem 1.1 using the results quoted before and discuss its relations with similar results by
Delphine Pol, see Remark 3.1. In the final section we discuss the possible values of the quotient
p(X,0) = u(X,0)/7(X,0) and ask whether p(X,0) < 4/3 for any plane curve singularity.

We would like to thank Mathias Schulze for a useful remark, see Remark 3.1.

2. THE CLASSICAL RESULTS
We start by recalling the following general result.

Theorem 2.1. ([BG80])
For a reduced curve singularity the following holds.
(1) p=26—r+1,
(2) M>)\>6+m—r
(3) dimg(Q2/dO) = p+ 71" — A,
(4) dime(w/Q) =4,
(5) If (X,0) is smoothable (e.g. if it is a complete intersection) then 7" > X, with equality
iff p = dime(2/dO).

Proof. All these claims are proved in [BG80]. Indeed, (1) is Proposition 1.2.1, (2) is Lemma
6.1.2, (3) appears in the proof of Theorem 6.1.3, (4) in the proof of Proposition 1.2.1, while (5)
is Corollary 6.1.4 together with Corollary 6.1.6 of [BG80]. O

When (X,0) is a complete intersection, we have the following additional properties. Some
of these results are also reproduced in Looijenga’s book [L84], see in particular Section 8.C. In
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the case of plane curves, the reader can also consult the introductory book [W04], in particular
Section 11.6.

Theorem 2.2. ([Gr75] [Gr80]), [GMP85])

Let (X,0) be a reduced complete intersection curve singularity. Then
(1) p=dime(2/dO), dONTHN =0,
(2) T=7"<un,
(3) 7= p iff (X,0) is quasihomogeneous.

Proof. Indeed, (1) is Proposition 5.1, resp. Lemma 4.5 in [Gr75] (for arbitrary positive dimen-
sional isolated complete intersection singularities, resp. for complete intersections with arbitrary
singularities, suitably modified), (2) is Satz 3.1(2a) in [Gr80]. The claim (3) is Corollary 2.2
in [GMP85] (where also a generalization to Gorenstein curves is proved), while the plane curve
case goes back to K. Saito [KST71]. O

3. THE PROOF OF THEOREM 1.1

The sequence
0-TQ—Q/dO0 - w/dO = w/Q—0
is exact by Theorem 2.2 (1) with dim¢(Q/dO) = p = dim¢(w/dO). Hence
7 = dim¢(T9) = dime(w/Q) = .
Claim (1) follows now from Theorem 2.2 (2) and Theorem 2.1 (2). The claim (2) is a consequence
of the exact sequence
0—-Q/Q—=w/Q—w/Q—0
together with (1), Theorem 2.1 (4) and the definition of A. Using (1) and Theorem 2.1 (1) we
get
T>2d+m—r=(qpu+r—-1/24+m—-r=p/24+(m—-1)/24+ (m—1)/2> p/2,

since m > r and m > 1 if (X, 0) is not smooth.

Remark 3.1. It was drawn to our attention by Mathias Schulze that an alternative proof of
the equality in Theorem 1.1 (2) can be obtained from [Poll4, Proposition 3.31]. Assume that
(X,0) is irreducible for simplicity. Let f; = --- = f,, = 0 be the equations for the germ (X, 0)
in (CV,0), with N =n+1 and f; € Ocn g, for i = 1,...,n. Then 7’ is the codimension of the
Jacobian ideal Jx in O, where Jx is the ideal of O, spanned by all the n X n-minors in the
Jacobian matrix (9fi/0x;),_; ,,.i—q ., see [GrT5, Proposition 1.11(iii)]. Delphine Pol shows that
one has the following equality

dt ’
in the local ring O = C{t}, where g is a generator of the conductor ideal Cx. Note that the
codimension of Jx in O is clearly by the above discussion 7+ . Since g, regarded as an element
v (% o)

- in O is given by

of O = C{t}, has order p, it follows that the codimension of g -
p+ dime (2/9).

The claim follows from these formulas. Note that both the proofs given, and the literature used,
by Delphine Pol are quite different from ours.
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Remark 3.2. (1) The equality 7 = 7’ holds more generally if (X, 0) is Gorenstein, which follows
from local duality. For an arbitrary reduced curve singularity (X, 0) the relation between 7 and
7/ is unclear. It is an old and still open question if for a non smooth (X, 0) we have always 7 > 0
(i.e. (X,0) is not rigid) and 7/ > 0 (Berger’s conjecture).

(2) For a plane curve singularity (X, 0) the expression 7 — § appears also as the codimension
of the extended tangent space to the orbit of the parametrization (X,0) — (C2,0) of (X,0) by
the action of the right-left group A of Mather ([GLS07, Proposition I1.2.30(5)]).

4. A REMARK ON THE QUOTIENT pu/T

Assume in this section that we are in the case of plane curve singularities, and we write
J1 = [ to simplify our notation. Let M(f) = Ocz/Js be the Milnor algebra of the singularity
(X,0), where Jy denotes the Jacobian ideal of f. Let (f) denote the principal ideal spanned
by f in M(f) and kerm; denote the kernel of the morphism my; : M(f) — M(f) given by
the multiplication by f. Then we know that (f) C kermy, see [BrS74]. Moreover, one has
dime((f)) = p — 7 and dimc(kermy) = 7. Using this approach, Yonggiang Liu has shown in
[Lil7] that

> 1
T2 gh
He asked there which values can take the quotient
p = p(X,0) = u(X,0)/7(X,0).
The obvious inequality 7 < p and Theorem 1.1 (3) show that
1< p(X,0) <2

when (X,0) is non smooth. It also shows that the inclusion of ideals (f) C kermy is strict when
(X,0) is not a smooth germ.

To construct singularities (X,0) with a large quotient p(X,0) is not easy, since the Tjurina
number 7(X,0) is difficult to compute in general, e.g. since it is not a topological invariant it
cannot be expressed in terms of Puiseux pairs.

Example 4.1. There is a sequence of isolated plane curve singularities (X,,,0) such that the
sequence of rational numbers p(X,,,0) is strictly increasing with limit 4/3. Moreover, the singu-
larities can be chosen to be all either irreducible, or consisting of smooth branches with distinct
tangents.
In the irreducible case, consider the sequence of singularities
(vao) . f _ x2m+1 + xmym+1 4 me =0.

Then the associated projective plane curve of degree d = 2m + 1

C . x2m+1 + mmym+1 + meZ — O
is free with exponents (di,dz) = (m, m), see [DSt17, Theorem 1.1]. This implies that

7 =7(Xpm,0) =7(C) = (d — 1)? — didy = 3m?,

see [DSt17, Equation (2.2)]. Since clearly (X,,,0) is a semi-weighted homogeneous singularity,
it follows that p = p(X,,,0) = 2m(2m — 1), and hence the claim follows in this case.
In the case of singularities consisting of smooth branches with distinct tangents, consider the
sequence
(Xm,O) . f _ I2m+1 + y2m+1 + Im+1ym+1'
Again (X,,,0) is a semi-weighted homogeneous singularity, and from that we get

= (X, 0) = 4m?.
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To determine the Tjurina number, note that the monomials z%® for 0 < a,b < 2m — 1 form
a basis for the Milnor algebra M (f). The Euler formula implies that the monomial z™*1ym+1
belongs to the ideal (f) C M(f). To get a basis for the Tjurina algebra T'(f) = M(f)/(f) of
f, we have to discard from the above basis all the multiples of 2™*1y™*! namely (m — 1)2
elements. It follows that 7 = 7(X,,0) = 4m? — (m — 1)?, which yields the claim in this case as
well.

Question 4.2. Is it true that

p(X,0) = pu(X,0)/7(X,0) <

[SCRIE

for any isolated plane curve singularity?

The answer to this question is positive for semi-quasi-homogeneous singularities (X, 0); see
the recent preprint [AB18].
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