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ON THE STRUCTURE OF BRIESKORN LATTICES, II
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To the memory of Egbert Brieskorn

Abstract. We give a simple proof of the uniqueness of extensions of good sections for formal

Brieskorn lattices, which can be used in a paper of C. Li, S. Li, and K. Saito for the proof
of convergence in the non-quasihomogeneous polynomial case. Our proof uses an exponential

operator argument as in their paper, although we do not use polyvector fields nor smooth

differential forms. We also present an apparently simpler algorithm for an inductive calculation
of the coefficients of primitive forms in the Brieskorn-Pham polynomial case. In a previous

paper on the structure of Brieskorn lattices, there were some points which were not yet very

clear, and we give some explanations about these, e.g. on the existence and the uniqueness
of primitive forms associated with good sections, where we present some rather interesting

examples. In Appendix we prove the uniqueness up to a nonzero constant multiple of the

higher residue pairings in some formal setting which is different from the one in the main
theorem. This is questioned by D. Shklyarov.

Introduction

Let f : (X, 0) → (∆, 0) be a holomorphic function on a complex manifold, where ∆ is an open
disk with coordinate t. Assume X0 := f−1(0) has an isolated singularity at 0. We have the
associated Gauss-Manin system Gf and the Brieskorn lattice H ′′f ⊂ Gf , where Gf is a regular

holonomic D∆,0-module on which the action of ∂t is bijective, and H ′′f is a finite submodule over

C{t} and also over C{{∂−1
t }} (the latter comes from the theory of microdifferential operators

[SKK]), see [Br], [Ph], [ScSt], [Sa3], etc. There is a surjection

pr0 : H ′′f →→H ′′f /∂
−1
t H ′′f

∼= Ωf
(
:= Ωn+1

X,0 /df ∧ ΩnX,0
∼= C{x}/(∂f)

)
,

where (∂f) ⊂ C{x} is the Jacobian ideal generated by the partial derivatives ∂xif with
x = (x0, . . . , xn) a local coordinate system of (X, 0), and n := dimX0 = dimX − 1.

For a C-linear section σ0 of pr0, set I0 := Imσ0. We say that σ0 is good in this paper if

(0.1) tI0 ⊂ I0 + ∂−1
t I0, i.e. tσ0 = σ0A0 + ∂−1

t σ0A1

(
A0, A1 ∈ EndC

(
Ωf
))
.

Let V be the filtration of Kashiwara [Ka] and Malgrange [Ma1] on Gf indexed decreasingly by
Q so that the action of ∂tt − α on GrαVGf is nilpotent. It induces the filtration V on H ′′f and

Ωf . A good section is called very good in this paper if it is strictly compatible with V . (It is
called good in [Sa3].) In the weighted homogeneous polynomial case, every good section is very
good (see Proposition 3.1 below) although it does not hold in general. The eigenvalues of A1,
which are called the exponents associated with a good section, do not necessarily coincide with
the usual exponents defined as in [St] unless the section is very good (see Example 4.1 below).
Note that A1 is not necessarily semisimple in general (see [Sa3]). This causes a certain problem
when we have to take an eigenvector of A1 which generates the Jacobian ring over C{x}. It is
needed to construct a primitive form associated with a good section satisfying the orthogonality
condition for the canonical pairing.

http://dx.doi.org/10.5427/jsing.2018.18l
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The existence of a very good section is proved in [Sa3] by using Deligne’s canonical splitting
of the mixed Hodge structure [De] (which is applied to the canonical mixed Hodge structure on
the vanishing cohomology [St]) together with the relation with the Brieskorn lattice as in [ScSt].
Note that very good sections correspond to opposite filtrations to the Hodge filtration on the
vanishing cohomology which are stable by the action of N := log Tu where Tu is the unipotent
part of the monodromy (see [Sa3, Theorem 3.6]). In the weighted homogeneous polynomial
case, N vanishes and the existence of very good sections is trivial so that we do not need to
use the above arguments at all. The orthogonality condition for the higher residue pairings in
[SK1], [SK2] follows from the orthogonality of the corresponding splitting of the Hodge filtration
with respect to the canonical self-pairing of the vanishing cohomology, since the pairings can be
identified with this self-pairing, see [Sa3]. Using the extension argument as below, we can get a
unique primitive form associated with a very good section satisfying the orthogonality condition,
see Remark 3.7 below. However, the existence and the uniqueness of the associated primitive
form do not hold in general unless a good section is very good, see Examples 4.3 and 4.4 below.

Let F : Y → ∆ be a deformation of f with Y = X × S, S = ∆m, and F |X×{0} = f . Here we
assume that the singular locus C of (F, pr) : Y → ∆×S is proper over S. Then the calculation of
the Gauss-Manin system and the Brieskorn lattice can be reduced to the case C∩(X×{0}) = {0}
by shrinking S and restricting to an open neighborhood of each connected component of C. We
have the Gauss-Manin system GF,S and the Brieskorn lattice H ′′F,S ⊂ GF,S , where GF,S is a

regular holonomic D∆×S,0-module on which the action of ∂t is bijective, and H ′′F,S is a finite

submodule over C{t, s} and also over C{s}{{u}} (see (1.1.1) for the latter). Here u := ∂−1
t , and

s = (s1, . . . , sm) is the coordinate system of ∆m ⊂ Cm. Let m0 ⊂ C{s} := C{s1, . . . , sm} be the
maximal ideal generated by the si. There is a surjection

prS : H ′′F,S→→H ′′F,S/∂
−1
t H ′′F,S

∼= ΩF,S
(
:= Ωn+1

Y/S,0

/
dF ∧ ΩnY/S,0

)
,

together with the canonical isomorphisms

GF,S |0 = Gf , H ′′F,S |0 = H ′′f , ΩF,S |0 = Ωf ,

where GF,S |0 := GF,S
/
m0GF,S , etc. For a C{s}-linear section σS of prS , set IS := ImσS . We

say that σS is good if

(0.2) tIS ⊂ IS + ∂−1
t IS , ∂siIS ⊂ IS + ∂tIS .

It is shown by B. Malgrange (see [Ma2], [Ma3]) that any good section σ0 of pr0 can be uniquely
extended to a good C{s}-linear section σS of prS by solving Birkhoff’s Riemann-Hilbert problem
in this case, see also [SK2], [He], [Sab], etc. (Here the orthogonality condition for the higher
residue pairings can be reduced easily to the case S = pt.)

We can also consider the formal Gauss-Manin system Ĝf and the formal Brieskorn lattice Ĥ ′′f ,

which are free modules of rank µ over C((u)) and C[[u]] respectively (where u = ∂−1
t ). They

can be obtained by taking the u-adic completion of Gf and H ′′f as in [Sa2]. There is a natural
projection

p̂r0 : Ĥ ′′f →→ Ĥ ′′f /∂
−1
t Ĥ ′′f

∼= Ωf ,

where the last isomorphism follows from the u-adic completion argument.

We also have the formal Gauss-Manin system ĜF,Ŝ and the formal Brieskorn lattice Ĥ ′′
F,Ŝ

,

which are free modules of rank µ over C((u))[[s]] and C[[u, s]] := C[[u, s1, . . . , sm]] respectively.
There is a natural projection

p̂rŜ : Ĥ ′′
F,Ŝ
→→ Ĥ ′′

F,Ŝ
/∂−1
t Ĥ ′′

F,Ŝ
∼= ΩF,Ŝ ,
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where ΩF,Ŝ is the m0-adic completion of ΩF,S so that ΩF,Ŝ := ΩF,S⊗C{s}C[[s]]. We can define the

notion of good sections σ̂0, σ̂Ŝ in the same way as in the convergent case by using the analogues
of conditions (0.1) and (0.2) where I0 is defined by Im σ̂0, and IS is replaced by IŜ := Im σ̂Ŝ .
We have the following.

Theorem 1. Any good C-linear section σ̂0 of p̂r0 satisfying (0.1) can be extended uniquely to a
good C[[s]]-linear section σ̂Ŝ of p̂rŜ satisfying (0.2) with IS replaced by IŜ := Im σ̂Ŝ.

In fact, this easily follows from an assertion which is irrelevant to the action of t, see Theo-
rem 1.4 below. Theorem 1 does not seem to be stated explicitly in [LLS], although it seems to be
used there in an essential way for the proof of the coincidence with the Malgrange’s construction
[Ma2], [Ma3], which gives the convergence of their extensions of good sections. Here it seems
rather difficult to prove directly the convergent version of Theorem 1 by using the exponential
operator argument without using Malgrange’s result in the convergent case. The advantage of
this method seems to be that one can calculate step by step the coefficients of the Taylor expan-
sion of primitive forms explicitly (see (2.3) below for a special case). However, it is not very clear
how much it is useful for the original purpose of the primitive form, i.e. the associated period
mapping, since the radius of convergence, for instance, does not seem to be calculated easily.
It might be rather difficult to expect it theoretically since the partial Fourier transformation is
used in an essential way.

It seems that Theorem 1 is proved in [LLS] provided that “uniquely” is replaced by “canon-
ically” in the statement. In a more recent version of it, they seem to show the uniqueness
statement in terms of primitive forms together with a rather complicated proof in the weighted
homogeneous case. Actually Theorem 1 can be proved more easily as is shown in the proof of
Theorem 1.4 below by using an exponential operator argument given in [LLS]. However, the
latter argument is a rather amazing one for many complex geometers and their paper is not
necessarily easy to read for non-specialists of mathematical physics. So we present in this paper
a possibly simpler proof without using polyvector fields nor C∞ differential forms and by using
a hopefully more precise argument than [LLS].

As a corollary of the exponential operator argument, we also present an algorithm for an
inductive calculation of the coefficients of primitive forms for Brieskorn-Pham polynomials, which
seems simpler than the one in [LLS] in case of these polynomials. By using it, we can calculate
the coefficients of the first few terms of the Taylor expansion of the primitive forms without
computers in this case, see (2.3) below. (The argument in this paper cannot be applied to the
situation of [DoSa] where the Brieskorn lattices are stable by ∂−1

t , but the V -filtration is stable
by ∂t, instead of ∂−1

t , in their case.)

In Appendix we prove the uniqueness up to a nonzero constant multiple of the higher residue
pairings in some formal setting which is different from the one in Theorem 1 because of the
difference between C((u))[[s]] and C[[s]]((u)). It is written to answer a question of Dmytro
Shklyarov. This uniqueness does not hold for the formal Gauss-Manin systems as in Theorem 1
because of the isomorphism in Proposition 1.3 below which is obtained by using the exponential
operator argument. This shows a clear difference between the two kinds of formal Gauss-Manin
systems.

We thank C. Hertling for useful comments about this paper, D. Shklyarov for a good question
which became a source of Appendix, and C. Li for a good question that led us to a correct
formulation of an algorithm for the inductive calculation of the coefficients of primitive forms.
This work is partially supported by Kakenhi 24540039.
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In Section 1 we review formal Gauss-Manin systems and Brieskorn lattices, and explain an
exponential operator argument as in [LLS]. In Section 2 we present an algorithm for an inductive
computation of the coefficients of the Taylor expansion of primitive forms in the Brieskorn-Pham
polynomial case, which is apparently simpler in this case than the one in [LLS]. In Section 3 we
give some remarks related to good sections and very good sections in the sense of this paper. In
Section 4 we present some interesting examples. In Appendix we show the uniqueness up to a
nonzero constant multiple of the higher residue pairings in some formal setting.

1. Formal Gauss-Manin systems and Brieskorn lattices

In this section we review formal Gauss-Manin systems and Brieskorn lattices, and explain an
exponential operator argument as in [LLS] without using polyvector fields nor C∞ differential
forms, but using more precise arguments.

Notation 1.1. Let f : X → ∆, and F : Y → ∆ be as in the introduction, where Y = X × S
with S = ∆m. We have the microlocal Gauss-Manin system defined by

GF,S := Hn+1C•F,Y with C•F,Y :=
(

Ω•Y/S,0{{u}}[u
−1], ud− dF∧

)
,

where u = ∂−1
t , and n = dimX − 1. Here Ω•Y/S,0{{u}} can be defined by using

(1.1.1) C{y}{{u}} :=
{∑

ν,k aν,k y
νuk ∈ C[[y, u]]

∣∣∑
ν,k |aν,k| r

|ν|+k/k! <∞ (∃ r > 0)
}
,

where y = (y0, . . . , yn+m) is a local coordinate system of Y with yν :=
∏
i y
νi
i and |ν| :=

∑
i νi

for ν = (ν0, . . . , νn+m) ∈ Nn+m+1.

The Brieskorn lattice is defined by

H ′′F,S := Hn+1C
(0),•

F,Y with C
(0),•

F,Y :=
(

Ω•Y/S,0{{u}}, ud− dF∧
)
.

These are obtained by the microlocalization of the usual Gauss-Manin systems and Brieskorn
lattices, see [Ph], [Sa3], etc. (Note that GF,S and H ′′F,S are finite free modules of rank µ over

C{s}{{u}}[u−1] and C{s}{{u}} respectively although it is not used in this paper.)

The action of ∂xj , ∂si can be defined by using the canonical generator δ(t− F ) which is not
explicitly written in C•F,Y to simplify the notation (see also [Sa3]). More precisely δ(t− F ) is a
generator of an E-module CF which is the microlocalization of a D-module BF , and the latter
is the direct image of OY by the graph embedding of F as a D-module. Here E is the ring of
microdifferential operators (see [SKK]). This generator satisfies the relations

(1.1.2)

t δ(t− F ) = F δ(t− F ),

∂xjδ(t− F ) = −(∂F/∂xj) ∂t δ(t− F ),

∂siδ(t− F ) = −(∂F/∂si) ∂t δ(t− F ).

Note that the second relation is compatible with the differential ud−dF∧ of the complex C•F,Y (up

to the multiplication by u), and the latter can be identified with the relative de Rham complex
DRY/S(CF ) up to a shift of complex. These are compatible with the theory of Gauss-Manin
connections on Brieskorn lattices as in [Gre].

We have the formal Gauss-Manin system defined by

ĜF,S := Hn+1Ĉ•F,Y with Ĉ•F,Y :=
(

Ω•Y/S,0((u)), ud− dF∧
)
,

see also [SaSa], etc. for the case S = pt. It has the formal Brieskorn lattice defined by

Ĥ ′′F,S := Hn+1Ĉ
(0),•

F,Y with Ĉ
(0),•

F,Y :=
(

Ω•Y/S,0[[u]], ud− dF∧
)
.
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We also have the bi-formal Gauss-Manin system defined by

ĜF,Ŝ := Hn+1Ĉ•
F,Ŷ

with Ĉ•
F,Ŷ

:=
(

Ω•X,0((u))[[s]], ud− dF∧
)
,

with [[s]] := [[s1, . . . , sµ]], and similarly for Ĥ ′′
F,Ŝ

and Ĉ
(0),•

F,Ŷ
with ((u)) replaced by [[u]].

We can define similarly

Gf,S , Ĝf,S , Ĝf,Ŝ , H ′′f,S , Ĥ ′′f,S , Ĥ ′′
f,Ŝ
,

by replacing F with f in the above definitions, where f is viewed as a trivial deformation.

We also have Ĝf , Ĥ ′′f by replacing Ω•Y/S,0 with Ω•X,0 in the definition of Ĝf,S , Ĥ ′′f,S . There are

canonical isomorphisms

(1.1.3) ĜF,Ŝ
∣∣
0

= Ĝf , Ĥ ′′
F,Ŝ

∣∣
0

= Ĥ ′′f ,

and similar isomorphisms with F replaced by f . Here we set for any C[[s]]-module N

(1.1.4) N |0 := N/m0N = N ⊗C[[s]] C,
where m0 is the maximal ideal of C[[s]]. We also have a canonical injection

(1.1.5) ι : Ĝf ↪→ Ĝf,Ŝ .

There are natural isomorphisms

ΩF,Ŝ = Ĥ ′′
F,Ŝ

/∂−1
t Ĥ ′′

F,Ŝ
, Ωf,Ŝ = Ĥ ′′

f,Ŝ
/∂−1
t Ĥ ′′

f,Ŝ
, Ωf = Ĥ ′′f /∂

−1
t Ĥ ′′f ,

where ΩF,Ŝ , Ωf are as in the introduction, and Ωf,Ŝ = Ωf [[s]]. We have the canonical isomor-

phisms

(1.1.6) ΩF,Ŝ
∣∣
0

= Ωf , Ωf,Ŝ
∣∣
0

= Ωf .

Proposition 1.2. With the above notation, ĜF,Ŝ and Ĥ ′′
F,Ŝ

are finite free modules of rank µ

over C((u))[[s]] and C[[u, s]] = C[[u, s1, . . . , sm]] respectively, where µ is the Milnor number of
f . We have a similar assertion with F replaced by f .

Proof. It is enough to show the assertion for F since the assertion for f is the special case of a
trivial deformation.

Let U• be the m0-adic filtration on Ĉ•F,Y , Ĉ•
F,Ŷ

, i.e.

Uk Ĉ•F,Y = mk0 Ĉ
•
F,Y , etc.

Then Ĉ•
F,Ŷ

is the m0-adic completion of Ĉ•F,Y so that

(1.2.1) Ĉ•
F,Ŷ

=
k
←lim Ĉ•

F,Ŷ
/mk0 Ĉ

•

F,Ŷ
=

k
←lim Ĉ•F,Y /m

k
0 Ĉ

•
F,Y .

Moreover the filtration U induces a strict filtration on the complexes, and the induced filtration
U on the cohomology groups coincides with the m0-adic filtration on these C[[s]]-modules so that

(1.2.2) ĜF,Ŝ =
k
←lim ĜF,Ŝ/m

k
0 ĜF,Ŝ =

k
←lim ĜF,S/m

k
0 ĜF,S ,

(and a similar assertion holds for the corresponding Brieskorn lattices). These are shown by an

argument similar to [Sa1], [Sa2] using the acyclicity of the complexes GrkU Ĉ
•
F,Y except for the

highest degree together with the Mittag-Leffler condition [Gro]. Here the acyclicity follows from
the canonical isomorphisms

(1.2.3) Gr0
U Ĉ

•
F,Y ⊗C GrkU C[[s]]

∼−→ GrkU Ĉ
•
F,Y .
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Taking the cohomology of the last isomorphism and using the strictness of the filtration U ,
we then get the isomorphisms

(1.2.4) Gr0
U ĜF,S ⊗C GrkU C[[s]]

∼−→ GrkU ĜF,S (= GrkU ĜF,Ŝ).

This implies that ĜF,Ŝ is free of rank µ over C((u))[[s]] since Gr0
U ĜF,S = Ĝf is free of rank µ

over C((u)). The argument is similar for Ĥ ′′
F,Ŝ

. This finishes the proof of Proposition 1.2.

Proposition 1.3 (compare to [LLS]). We have the exponential operator

(1.3.1) Ψ := e(F−f)/u : Ĝf,Ŝ → ĜF,Ŝ ,

which is an isomorphism of finite free C((u))[[s]]-modules with inverse given by

(1.3.2) Φ := e(f−F )/u : ĜF,Ŝ → Ĝf,Ŝ .

Moreover, these are compatible with the actions of t and ∂si .

Proof. Since F − f ∈ m0OY,0, we can verify that Ψ and Φ induce C((u))[[s]]-linear morphisms

between the complexes Ĉ•
F,Ŷ

and Ĉ•
f,Ŷ

, and these are inverse of each other. Moreover they

are compatible with the actions of t and ∂si which are defined by using (1.1.2). (For t, set
v := u−1 = ∂t, which gives the Fourier transform of t, i.e. t is identified with −∂v.) This finishes
the proof of Proposition 1.3.

Theorem 1.4. Let σŜ : ΩF,Ŝ → Ĥ ′′
F,Ŝ

be a C[[s]]-linear section of the canonical projection

pF,Ŝ : Ĥ ′′
F,Ŝ
→ ΩF,Ŝ satisfying the condition

(1.4.1) ∂siIŜ ⊂ IŜ + u−1IŜ with IŜ := ImσŜ .

Such a section of pF,Ŝ is uniquely determined by I0 := IŜ
∣∣
0
⊂ Ĝf so that

(1.4.2) IŜ = Ĥ ′′
F,Ŝ
∩Ψ

(
ι
(
I0[u−1]

)
[[s]]
)
.

Proof. By the isomorphism (1.3.1), the assertion is equivalent to

(1.4.3) Φ(IŜ) = Φ
(
Ĥ ′′
F,Ŝ

)
∩ ι
(
I0[u−1]

)
[[s]] in Ĝf,Ŝ .

We will show the inclusion ⊂ together with the assertion that the right-hand side of (1.4.3) is
isomorphic to Φ

(
ΩF,Ŝ

)
by the projection Φ(pF,Ŝ) so that it also gives a section of Φ(pF,Ŝ).

By Propositions 1.2 and 1.3, Ĥ ′′
F,Ŝ

and Φ(Ĥ ′′
F,Ŝ

) are free C[[u, s]]-submodules of ĜF,Ŝ and Ĝf,Ŝ
respectively with rank µ. We have moreover

(1.4.4) mk0 Φ(Ĥ ′′
F,Ŝ

) = Φ(Ĥ ′′
F,Ŝ

) ∩mk0 Ĝf,Ŝ ,

i.e. the inclusion Φ(Ĥ ′′
F,Ŝ

) ↪→ Ĝf,Ŝ is strictly compatible with the m0-adic filtration. This follows

from the injective morphism of short exact sequences

0 → mk0 Φ(Ĥ ′′
F,Ŝ

) → Φ(Ĥ ′′
F,Ŝ

) → Φ(Ĥ ′′
F,Ŝ

)/mk0 Φ(Ĥ ′′
F,Ŝ

) → 0

∩ ∩ ∩
0 → mk0 Ĝf,Ŝ → Ĝf,Ŝ → Ĝf,Ŝ/m

k
0 Ĝf,Ŝ → 0

Here the injectivity of the last vertical morphism is reduced to the case k = 1 by using the
graded quotients GrjU of the m0-adic filtration U together with isomorphisms similar to (1.2.4)

(which hold also for Φ(Ĥ ′′
F,Ŝ

) since it is a finite free C[[u, s]]-module).
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Using again the graded quotients GrjU together with (1.4.4) and isomorphism similar to (1.2.4),
we then get

(1.4.5) Ĝf,Ŝ = Φ(Ĥ ′′
F,Ŝ

)⊕ ι
(
u−1I0[u−1]

)
[[s]],

since
Ĝf = Ĥ ′′f ⊕ u−1I0[u−1] and Φ(Ĥ ′′

F,Ŝ
)/m0Φ(Ĥ ′′

F,Ŝ
) = Ĥ ′′f .

By (1.4.5) we get the isomorphism between the right-hand side of (1.4.3) and Φ
(
ΩF,Ŝ

)
.

It now remains to show

(1.4.6) Φ(IŜ) ⊂ ι
(
I0[u−1]

)
[[s]].

But this follows immediately from condition (1.4.1). In fact, Ĝf,Ŝ is identified with Ĝf [[s]] so

that any element of Ĝf,Ŝ has a Taylor expansion in s, and moreover, the above identification

and Φ are compatible with the iterated actions of the ∂si and also with the restriction to s = 0.
This finishes the proof of Theorem 1.4.

Remarks 1.5. (i) Formal Gauss-Manin systems and formal Brieskorn lattices are treated also
in [LLS] where the use of polyvector fields does not seem to be quite essential for them.

(ii) The commutativity of the projective limit and the cohomology does not seem to be
explained in [LLS]. Here the Mittag-Leffler condition as in [Gro] is usually needed. This point
is not completely trivial even if we have the acyclicity of the complex except for the top degree.
For instance, it is not quite clear whether any surjective morphism of projective systems induces
a surjective morphism by passing to the projective limit, unless we know that the Mittag-Leffler
condition is satisfied for the projective system defined by the kernel, see [Gro]. This might
be applied to the surjection from the top term of the complex to the cohomology, where the
strictness of the last differential is related.

(iii) The construction in [LLS] is slightly different from the one in earlier papers [SK1], [SK2],
where the deformation F of f was defined over a space of dimension µ− 1, instead of µ, and the
value of F together with the natural projection is used in order to define a morphism to a space
S of dimension µ. Note also that one gets a formal Gauss-Manin system of µ + 1 variables in
[LLS], where the relative critical locus C is finite and flat over S, although the image of C in S
is the discriminant locus in [SK1], [SK2], since F is used for the morphism to S.

(iv) It seems to be quite difficult to prove the convergent version of Theorem 1. Even in case
f = xa + yb with 1/a + 1/b < 1/2, for instance, the convergence of the image of a monomial
in x, y by Ψ seems to be quite non-trivial. (Note that, even if we get a divergent power series
by this, it does not contradict the result of Malgrange since the procedure of extending good
sections is not so simple.) Here the calculation seems easier for Φ. It may be possible to show the
convergence in s for each fixed degree part for the variable u provided that we take a standard
representative of the versal deformation of f (i.e. F = f +

∑
i gisi with gi monomial generators

of the Jacobian ring).

(v) It does not seem to be very clear what kind of argument is used for the proof of the
coincidence of the new construction of the higher residue pairings in [LLS] with the old one. It
could be shown, for instance, by using the uniqueness (up to a constant multiple) of the pairing
in the versal unfolding case by generalizing an argument in [Sa3, 2.7] about the duality of simple

holonomic E-modules to the Ê-module case and using the compatibility with the base change by
{0} ↪→ S for the one variable case. Here it does not seem easy to conclude it only by using the
coincidence after taking the graded quotients of the Hodge filtration, since an automorphism of
a filtered Gauss-Manin system of one variable is not necessarily the identity even if it induces the
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identity by taking the graded quotients. (Note that a non-degenerate pairing can be identified
with an isomorphism with the dual up to a shift of filtration. If there are two non-degenerate
pairings, then we can compose one isomorphism with the inverse of the other so that we get an
automorphism.)

(vi) If polyvector fields are used in the theory of primitive forms as in [LLS], one may have
to divide a representative of a primitive form by a holomorphic relative differential form of the
highest degree ΩZ/S in order to get a representative in the polyvector fields. In this case one
might get a “primitive function” rather than a primitive form (and this may be more natural for
the product structure). In the simple singularity case, it is a constant function, and this seems
always possible provided that one can take the relative differential form ΩZ/S to be the primitive
form in the usual sense.

2. Some explicit calculations

In this section we present an algorithm for an inductive computation of the coefficients of the
Taylor expansion of primitive forms in the Brieskorn-Pham polynomial case, which is apparently
simpler in this case than the one in [LLS].

2.1. Primitive forms. In the notation of the introduction, assume F is a miniversal deformation
of f as in [LLS] so that

dimS = µ (:= dimOX,0/(∂f)).

Let σ0 : Ωf ↪→ H ′′f be a good section of pr0 : H ′′f → Ωf in (0.1) satisfying

(2.1.1) SK(ω, ω′) ⊂ Cun+1 for ω, ω′ ∈ Imσ0.

Here u := ∂−1
t , and we denote in this paper the higher residue pairings by

(2.1.2) SK : Gf ×Gf → K := C{{u}}[u−1].

Note that

(2.1.3) SK(ω, ω′) ⊂ C{{u}}un+1 for any ω, ω′ ∈ H ′′f .
This implies a rather strong restriction on H ′′f .

By Malgrange’s theory on Birkhoff’s Riemann-Hilbert problem (see [Ma2], [Ma3]), any good
section σ0 of pr0 : H ′′f →→H ′′f /∂

−1
t H ′′f

∼= Ωf in (0.1) can be uniquely extended to a good C{s}-
linear section

σS : ΩF,S ↪→ H ′′F,S
of

prS : H ′′F,S→→H ′′F,S/∂
−1
t H ′′F,S

∼= ΩF,S ,

as is explained in the introduction. Moreover the good section σ0 is uniquely lifted to a C-linear
morphism

σ∇S : Ωf ↪→ H ′′F,S ,

so that

(2.1.4) Imσ∇S ⊂ ImσS , ∂sj (Imσ∇S ) ⊂ ∂t (ImσS).

In fact, the second condition of (0.2) in the introduction implies an integrable connection on ΩS
(by considering the action of ∂sj on IS mod ∂tIS), and σ∇S is defined by using the flat sections
of this connection so that only the component of the second term ∂tIS in the second condition
of (0.2) remains (see [SK1], [SK2]). Thus the second condition of (2.1.4) holds. Here (2.1.1) is
also extended to the case of σ∇S . Note that, by the uniqueness of the extension in Theorem 1.4,
these constructions are compatible with the formal completion and we have similarly σ∇

Ŝ
, etc.
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Assume there is ζ0 ∈ Ωf which is an eigenvector of A1 in (0.1), and generates Ωf over C{x}.
Set

ζ0 := σ0(ζ0) ∈ H ′′f .
In the weighted homogeneous polynomial case, we have up to a nonzero constant multiple

(2.1.5) ζ0 = [dx0 ∧ · · · ∧ dxn],

where x0, . . . , xn are coordinates such that
∑
i wixi∂xif = f with wi ∈ Q>0. (This follows from

Proposition 3.1 below.)

The primitive form ζS associated with σ0 and ζ0 is then defined by

ζS := σ∇S (ζ0) ∈ H ′′F,S .

Similarly the formal primitive form ζŜ associated with σ0 and ζ0 is defined by

ζŜ := σ∇
Ŝ

(ζ0) ∈ Ĥ ′′
F,Ŝ

.

The latter coincides with the image of ζS in Ĥ ′′
F,Ŝ

by Theorem 1.4 together with a remark after

(2.1.4).

2.2. Relation with the exponential operators Ψ and Φ. In the notation of (2.1) and

Proposition 1.3, the formal primitive form ζŜ is the unique element of Ĥ ′′
F,Ŝ

satisfying

(2.2.1) Φ(ζŜ) = ι(ζ0) mod ι
(
u−1I0[u−1]

)
[[s]],

where I0 := Imσ0, u := ∂−1
t , and ι is as in (1.1.5). In fact, the uniqueness of ζŜ follows from

the direct sum decomposition (1.4.5), and (2.2.1) holds since

Φ(ζŜ)
∣∣
0

= ζŜ
∣∣
0

= ζ0, ∂sjΦ(ζŜ) = Φ(∂sjζŜ) ∈ ι
(
u−1I0[u−1]

)
[[s]],

where the last assertion follows from the proof of Theorem 1.4 together with the second condition
of (2.1.4).

This characterization of formal primitive forms is compatible with the construction in [LLS],
since (2.2.1) is equivalent to

(2.2.2) ζŜ = Ψ
(
ι(ζ0)

)
mod Ψ

(
ι
(
u−1I0[u−1]

)
[[s]]
)
.

2.3. Case of Brieskorn-Pham polynomials. Assume

f :=
∑n
i=0 x

mi
i (mi > 2),

i.e. f is a Brieskorn-Pham polynomial. In this case we can calculate the first few terms of the
coefficients of the Taylor expansion of ζŜ without using a computer program as follows.

Set

Γ := Nn+1 ∩
∏n
i=0 [0,mi − 2],

so that

#Γ =
∏n
i=0 (mi − 1) = µ.

We have the natural coordinates sν of S = Cµ for ν = (ν1, . . . , νn) ∈ Γ. We may assume

(2.3.1) F = f +
∑
ν∈Γ gνsν with gν = xν :=

∏
i x

νi
i (ν ∈ Γ).

Moreover we have the canonical good section σ0 such that

I0 (:= Imσ0) =
∑
ν∈Γ C [gνω0] ⊂ H ′′f with ω0 := dx0 ∧ · · · ∧ dxn.
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In the Brieskorn-Pham polynomial case we have for any ν = (ν0, . . . , νn) ∈ Nn+1

(2.3.2) ∂t [xνω0] =
νi −mi + 1

mi
[xνx−mii ω0] if νi > mi − 1.

This implies

(2.3.3) [xνω0] = 0 in H ′′f if νi + 1 ∈ miN for some i.

(These become more complicated in the general weighted homogeneous polynomial case.)

Let ζS,k be the image of ζS in H ′′F,S/m
k+1
0 H ′′F,S , where m0 is the maximal ideal of OS,0, and k

is a positive integer (which may be determined by the computational ability). Set

Ak :=
{
a = (aν) ∈ NΓ

∣∣ |a| 6 k
}

with |a| :=
∑
ν∈Γ aν .

For a = (aν) ∈ NΓ, define

p(a) =
(
p(a)0, . . . , p(a)n

)
∈ Nn+1 by p(a)i :=

∑
ν∈Γ νiaν ,

so that
ga :=

∏
ν g

aν
ν =

∏
i,ν x

νiaν
i =

∏
i x

p(a)i
i =: xp(a).

Define further

q(a) =
(
q(a)0, . . . , r(a)n

)
, r(a) =

(
r(a)0, . . . , r(a)n

)
in Nn+1,

by the condition

p(a)i = q(a)imi + r(a)i with 0 6 r(a)i < mi (∀ i ∈ [0, n]).

In particular, we have

(2.3.4) q(a)i =

⌊
p(a)i
mi

⌋
.

(Note that bαc := max{k ∈ Z | k 6 α} for α ∈ R.) Set

ea =
∑n
i=0 q(a)i − |a|,

and
A′k :=

{
a ∈ Ak

∣∣ ea > 0, r(a) ∈ Γ
}
.

Note that the last condition r(a) ∈ Γ is equivalent to that r(a)i 6= mi − 1 (∀i).
Using the characterization of ζS,k in (2.2.1), we then get the following Taylor expansion in s

by increasing induction on |ν| :=
∑
i νi 6 k :

(2.3.5) ζS,k =
∑
a∈A′k

ca ∂
−ea
t [ gr(a) s

a ω0 ]
F
∈ H ′′F,S/mk+1

0 H ′′F,S ,

with ca ∈ C, sa :=
∏
ν∈Γ s

aν
ν , and gr(a) = xr(a) by definition. Here [η]

F
for η ∈ Ωn+1

Y/S denotes its

class in H ′′F,S (mod mk+1
0 ). For ω ∈ Ωn+1

X,0 , its class in H ′′f is simply denoted by [ω]. We have

[sνη]
F

= sν [η]
F
,

since the differential of the Gauss-Manin complex is OS-linear. Note, however, that

[sνω]
F
6= sν [ω]

(
i.e., [ω]

F
6= [ω]

)
for ω ∈ Ωn+1

X,0 .

In fact, they belong to different groups H ′′F,S and H ′′f,S or H ′′f . (This is related with a question of

C. Li. It is a source of an error in a previous version where the formula was too much simplified.)

By the characterization (2.2.1) the summation in (2.3.5) is actually taken over

A′′k :=
{
a ∈ Ak

∣∣ ∂|a|t [gaω0] /∈ ∂tI0[∂t]
}
.
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In the Brieskorn-Pham polynomial case we have

(2.3.6) ∂
|a|
t [gaω0] /∈ ∂tI0[∂t] ⇐⇒ ∂

|a|
t [gaω0] ∈ H ′′f \ {0},

by (2.3.2) and (2.3.3). Using the last two formulas again, we then get

A′k = A′′k ,

together with the Taylor expansion (2.3.5) inductively.

The coefficients ca for a ∈ A′k are inductively determined by comparing the coefficients of
both sides of (2.2.1). Since

(2.3.7) e(f−F )∂t = e−
∑
ν∈Γ gνsν∂t =

∏
ν∈Γ e

−gνsν∂t ,

we get by using (2.3.2)

(2.3.8) ca = −
∑

06b<a

(
(−1)|a−b|

cb
(a− b)!

n∏
i=0

q(a,b)i∏
ki=1

r(b)i + p(a− b)i − kimi + 1

mi

)
,

with

q(a, b)i :=

⌊
r(b)i + p(a− b)i

mi

⌋
.

Here b∗c is as in a remark after (2.3.4), (a− b)! :=
∏
ν∈Γ(aν − bν)!, and we have by definition

b 6 a ⇐⇒ bν 6 aν (∀ ν ∈ Γ), and b < a ⇐⇒ b 6 a and b 6= a.

2.4. Example. Assume f = x7
1 + x3

2 and k = 6. Then the sa =
∏
ν s

aν
ν for a ∈ A′k \ {0} are

(2.4.1) s3
(5,1), s(4,1)s

2
(5,1), s6

(5,1), s(4,1)s
5
(5,1), s2

(4,1)s
4
(5,1), s(3,1)s

5
(5,1).

The corresponding gr(a) = xr(a) in (2.3.5) are respectively

(2.4.2) x1, 1, x2
1, x1, 1, 1,

and we have ea = 0 for a ∈ A′k in this case. We denote the corresponding coefficients ca by

(2.4.3) c(1), . . . , c(6).

Using (2.3.8), we first get
c(1) = 1

3! ·
9·2
72·3 = 1

72 ,

c(2) = 1
2! ·

8
72·3 = 22

72·3 ,
and then verify that c(3), . . . , c(6) are respectively equal to

− 1
6! ·

24·17·10·3·4
74·32 + 1

3! ·
1
72 · 10·3

72·3 = − 17·22

74·32 + 5
74·3 = −68+15

74·32 = − 53
74·32 ,

− 1
5! ·

23·16·9·2·4
74·32 + 1

2! ·
1
72 · 9·2

72·3 + 1
3! ·

22

72·3 ·
9·2
72·3 = − 23·24

74·5·3 + 3
74 + 22

74·3 = −368+45+20
74·5·3 = − 101

74·5 ,

− 1
4!·2! ·

22·15·8·4
74·32 + 1

2! ·
1
72 · 8

72·3 + 1
2! ·

22

72·3 ·
8

72·3 = − 11·5·22

74·32 + 22

74·3 + 24

74·32 = (−55+3+4)22

74·32 = − 26

74·3 ,

− 1
5! ·

22·15·8·4
74·32 + 1

2! ·
1
72 · 8

72·3 = − 11·23

74·32 + 22

74·3 = (−22+3)22

74·32 = − 19·22

74·32 .

The conclusion agrees with a calculation in [LLS] using a different algorithm together with a
computer program.

3. Good sections and very good sections

In this section we give some remarks related to good sections and very good sections in the sense
of this paper.
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Proposition 3.1. In the notation of the introduction, any good section of pr0 is very good, if f
is a weighted homogeneous polynomial.

Proof. By definition (see (1.1.2)), A0 in (0.1) is identified with the action of f on the Jacobian
ring C{x}/(∂f), and it vanishes in the weighted homogeneous case. Hence the image of the
section is stable by the action of ∂tt which is identified with A1. So the assertion follows.

The following proposition implies a formula for the dimension of the parameter space of
very good sections satisfying the orthogonality condition for the self-duality in the case N = 0
(including the weighted homogeneous polynomial case), see Corollary (3.3) below.

Proposition 3.2. Let H be a finite dimensional C-vector space with a finite filtration F . Let
S be a self-pairing of H such that S(F pH,F qH) = 0 for p + q = m + 1, and the induced
pairing of GrpFH and GrqFH is non-degenerate for p + q = m, where m ∈ Z is a fixed number.
Assume S is (−1)m-symmetric, i.e. S(u, v) = (−1)mS(v, u). Set ep := dim GrpFH. Then
splittings H =

⊕
kG

k of the filtration F (i.e. FPH =
⊕

k>pG
k) satisfying the condition

S(Gp, Gq) = 0 (p+ q 6= m) are parametrized by C d(H,F,S) with

(3.2.1) d(H,F, S) :=

{∑
p<q<m−p epeq +

∑
p<m/2

(
ep
2

)
if m is even,∑

p<q<m−p epeq +
∑
p<m/2

(
ep + 1

2

)
if m is odd.

Proof. Let S denote the induced pairing of GrpFH × Grm−pF H. We have ep = em−p since S is
non-degenerate. Take bases (vp,i)i∈[1,ep] of GrpFH (p ∈ Z) satisfying

S(vp,i, vm−p,j) = εp δi,j with εp = ±1,

where δi,j = 1 if i = j, and 0 otherwise. Since S(u, v) is (−1)m-symmetric, we have

(3.2.2) εp = (−1)mεm−p.

We can lift vp,i to vp,i ∈ F pH ⊂ H so that

(3.2.3) S(vp,i, vq,j) = εp δp,m−q δi,j (with εp as above).

This will be shown in Lemma 3.4 below. (In the case of polarized Hodge structures as in the
case of Corollary (3.3) below, this easily follows from the Hodge decomposition.)

Set

I :=
{

(p, i) ∈ Z2 | i ∈ [1, ep]
}
,

where [1, ep] = ∅ if ep = 0. Set

J :=
{

((p, i), (q, j)) ∈ I2 | p < q
}
⊂ I2.

Then any splitting of the filtration F is expressed by

(θ(p,i),(q,j)) ∈ CJ ,

since it defines a lift wp,i ∈ F pH of vp,i ∈ GrpFH for each (p, i) by

wp,i := vp,i +
∑

(q,j)∈I, q>p θ(p,i),(q,j) vq,j ∈ F pH,

which is the image of vp,i by the splitting of the canonical surjection

F pH → GrpFH.

Note that the ambiguity of the splitting is given by the vector space

(3.2.4) Hom(GrpFH,F
p+1H),

and its dimension is
∑
q>p epeq for each p.
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The orthogonality condition of the splitting for the pairing S is given by the relations

S(wp,i, wq,j) = 0 for ((p, i), (q, j)) ∈ R,

with

R :=

{{
((p, i), (q, j)) ∈ I2 | p+ q < m, (p, i) 6 (q, j)

}
if m is even,{

((p, i), (q, j)) ∈ I2 | p+ q < m, (p, i) < (q, j)
}

if m is odd.

Here we use the lexicographic order on I, i.e. (p, i) < (q, j) ⇐⇒ p < q or p = q, i < j.

By (3.2.3) we have

S(wp,i, wq,j) =

{
0 if p+ q > m,

εp δi,j if p+ q = m,

and S(wp,i, wq,j) for p+ q < m is given by

(3.2.5)
S(wp,i, wq,j) = εm−q θ(p,i),(m−q,j) + εp θ(q,j),(m−p,i)

+
∑

(r,k)∈I, p<r<m−q εr θ(p,i),(r,k) θ(q,j),(m−r,k).

Here note that we have by (3.2.2)

(3.2.6) εm−q + εp 6= 0 in the case where (p, i) = (q, j) and m is even.

Consider the map

γ : R ↪→ J ((p, i), (q, j)) 7→ ((p, i), (m− q, j)).

We say that θγ((p,i),(q,j)) = θ(p,i),(m−q,j) is the depending parameter of the relation

S(wp,i, wq,j) = 0 for ((p, i), (q, j)) ∈ R.

By (3.2.5), θ(p,i),(m−q,j) appears in S(wp,i, wq,j) as a linear term with a nonzero coefficient, where
(3.2.6) is used in the case (p, i) = (q, j) and m is even. Moreover θ(p′,i′),(m−q′,j′) appearing in
the relation S(wp,i, wq,j) = 0 must satisfy the inequality

p′ + q′ > p+ q.

(In fact, (p′, i′) must coincide with (p, i) or (q, j), and the inequality follows from (3.2.5).) This
implies that θ(p,i),(m−q,j) does not appear in the relations

S(wp′,i′ , wq′,j′) with p′ + q′ > p+ q.

We can now prove by induction on p + q and using (3.2.5) that the values of the depending
parameters are given as polynomials of the remaining parameters

θ(p,i),(q,j) with ((p, i), (q, j)) ∈ J \ γ(R),

which are called independent parameters. Thus splittings of the filtration F , which are orthog-
onal to each other with respect to the pairing S, are parametrized by

CJ\γ(R).

Moreover we have

d(H,F, S) = #
(
J \ γ(R)

)
.

So the assertion follows.

Corollary 3.3 Let f : (X, 0) → (∆, 0) be as in the introduction. Let n = dimX0. Assume
the Milnor monodromy is semisimple. Let nα be the multiplicity of the exponents of f for



BRIESKORN LATTICES 261

α ∈ Q ∩ (0, n) as is defined in [St]. Then very good sections of pr0 in the introduction are
parametrized by C df with df =

∑
|λ|=1, Imλ>0 df,λ and

df,λ :=



∑
p<q<n+1−p npnq +

∑
p<(n+1)/2

(
np
2

)
if λ = 1 and n is odd,∑

p<q<n+1−p npnq +
∑
p<(n+1)/2

(
np + 1

2

)
if λ = 1 and n is even.∑

p<q<n−p np+αnq+α +
∑
p<n/2

(
np+α

2

)
if λ = −1 and n is even,∑

p<q<n−p np+αnq+α +
∑
p<n/2

(
np+α + 1

2

)
if λ = −1 and n is odd.∑

p<q np+αnq+α if |λ| = 1 and Imλ > 0,

where p, q ∈ Z, and λ = e2πiα with α ∈ [0, 1
2 ].

Proof. By [St] there is a canonical mixed Hodge structure on the vanishing cohomologyHn(Ff,0,C),
where Ff,0 is the Milnor fiber of f around 0 ∈ X, and the Hodge filtration F is compatible with
the direct sum decomposition by the eigenvalues of the monodromy T

Hn(Ff,0,C) =
⊕

λ∈C∗ Hλ.

Moreover there are canonical non-degenerate pairings of mixed Hodge structures

(3.3.1) S : H 6=1 ⊗H 6=1 → C(−n), S : H1 ⊗H1 → C(−n− 1),

where H6=1 :=
⊕

λ6=1Hλ, and these are compatible with the action of the monodromy T , i.e.

(3.3.2) S(Tu, Tv) = S(u, v).

So the assumption on S in Proposition 3.2 is satisfied for H6=1 and H1 with m = n and n + 1
respectively. The multiplicities nα of the Steenbrink exponents can be defined by

(3.3.3) nα := dim GrpFHλ with p = [α], λ = e2πiα,

where we use the symmetry of the exponents in [St] i.e.

(3.3.4) nα = nβ if α+ β = n+ 1.

For λ = ±1, the assertion of Corollary (3.3) then follows from Proposition 3.2. If λ 6= ±1, we
get the assertion by using the remark around (3.2.4) together with the duality isomorphism

(3.3.5)
(
Hλ, F [n]

)
= D(Hλ, F ) := HomC

(
(Hλ, F ),C

)
,

which follows from the first non-degenerate pairing in (3.3.1). (In fact, the latter implies that any
splitting of F on Hλ determines uniquely its dual splitting of F on Hλ by using the orthogonality
condition with respect to S.) This finishes the proof of Corollary (3.3).

Lemma 3.4 With the notation in the proof of Proposition 3.2, the vp,i can be lifted to vp,i ∈ F pH
so that (3.2.3) holds.

Proof. We show the assertion by induction on

max{p | GrpFH 6= 0} −min{p | GrpFH 6= 0}.
Set a := min{p | GrpFH 6= 0}, b := max{p | GrpFH 6= 0}, and

H ′ = F a+1H/F bH.

Let S′ be the induced pairing on H ′. By inductive hypothesis, vp,i for p ∈ [a+ 1, b− 1] can be
lifted to v′p,i ∈ F pH ′ ⊂ H ′ so that

S′(v′p,i, v
′
q,j) = εp δp,m−q δi,j (p, q ∈ [a+ 1, b− 1]).

We can lift va,i to va,i ∈ H by induction on i so that

S(va,i, va,j) = 0 (i, j ∈ [1, ea]).
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Note that vb,i is identified with vb,i ∈ F bH = GrbFH, and we have

S(va,i, vb,j) = S(va,i, vb,j) = εa δi,j .

Then we can lift v′p,i to vp,i ∈ F pH for p ∈ [a+ 1, b− 1] so that

S(vp,i, va,j) = 0 (p ∈ [a+ 1, b− 1]).

Here we have

S(vp,i, vq,j) = S′(v′p,i, v
′
q,j) = εp δp,m−q δi,j (p, q ∈ [a+ 1, b− 1]).

So (3.2.3) follows (since S(vp,i, vb,j) = 0 for p > a). This finishes the proof of Lemma 3.4.

Remark 3.5. In the weighted homogeneous polynomial case, it seems that the formula in
Corollary (3.3) is essentially equivalent to a formula for the parameter space of primitive forms
in [LLS]. (Its verification is left to the reader.) Condition (3.2.3) does not seem to be absolutely
necessary for the argument in the proof of Proposition 3.2, since it seems to be enough to assume
(3.2.3) for p+ q > m (which trivially holds) although (3.2.5) becomes more complicated without
assuming condition (3.2.3) for p + q < m, see also [LLS]. Note, however, that the parameter
space does not necessarily coincide with the origin in the case it is 0-dimensional, since it would
imply (3.2.3) also for p+ q < m.

Remark 3.6. We have in general

(3.6.1) V >αµ−1H ′′f = V >αµ−1Gf ,

where αµ is the maximal exponent. In fact, setting F pH ′′f := ∂−pt H ′′f , we have

(3.6.2) GrpFGrαVH
′′
f = 0 for α > αµ + p,

(in particular, for α > αµ − 1 and p 6 −1).

Remark 3.7. It is known that the minimal exponent α1 in the usual sense (i.e. as is defined
in (3.3.3)) has multiplicity 1, and moreover V >α1Ωf ⊂ Ωf is identified with the maximal ideal
of the Jacobian ring C{x}/(∂f), see [DiSa, 4.11] (and also [Sa4], Remark 3.11). Here the
theories of mixed Hodge modules [Sa1] and microlocal b-functions [Sa5] are used. We need the
commutativity of taking the graded quotients GrpF , GrαV and the cohomology functor Hn+1 in
an essential way, since there is no canonical OX -module structure if one takes the cohomology
functor first. (In case α1 < 1, the assertion may also follow from [Va].)

The above assertion implies that there is a unique primitive form associated with any very
good section (in the sense of this paper) satisfying the orthogonality condition for the higher
residue pairings (which follows from the orthogonality condition as in [Sa3, Lemma 2.8]). How-
ever, A1 in (0.1) is not necessarily semisimple as is seen in Example 4.2 below, and there is
not always a primitive form associated with any good section satisfying the orthogonality con-
dition unless the section is very good, see Example 4.3 below. We also have a problem about
the uniqueness of the associated primitive form, see Example 4.4 below. If we assume that the
eigenvalue of the Euler vector field is the minimal exponent, then this may make the existence
of the associated primitive form more difficult in general.

4. Examples.

In this section we present some interesting examples.

Example 4.1. If f is not a weighted homogeneous polynomial, it may be possible that there is
a good section of pr0 which is not very good, see [Sa3]. For instance, consider the case

f = xa + yb + xa−2yb−2 (1/a+ 1/b < 1/2),
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where we have a good section such that the eigenvalues of A1 in (0.1) are

(4.1.1) α′1 := α1 + 1, α′µ := αµ − 1, α′k := αk (k ∈ [2, µ− 1]).

Here α1 6 · · · 6 αµ are the exponents of f as is defined in [St] (see also (3.3.3) above), which
can be expressed in this case by

(4.1.2)
∑
k t

αk =
∑

0<i<a, 0<j<b t
i/a+j/b,

with µ = (a− 1)(b− 1). (Note that α′i 6 α′i+1 does not hold for i = 1 and µ− 1.)

To show (4.1.1), set

(4.1.3) R := C{{∂−1
t }}, K := C{{∂−1

t }}[∂t].
Put

ω(i,j) = xi−1yj−1dx ∧ dy.
By using (1.1.2) restricted to X × {0}, we get

(4.1.4)
t [ω(i,j)]− α(i,j) ∂−1

t [ω(i,j)] = c(i,j) [ω(i+a−2,j+b−2)] in H ′′f ,

with α(i,j) = deg(a,b) ω
(i,j) := i/a+ j/b, c(i,j) ∈ C∗.

These imply that we have free generators vk (k ∈ [1, µ]) of the Gauss-Manin system Gf over K
satisfying

(4.1.5) ∂tt vk = αkvk (k ∈ [1, µ]),

and we have the following free generators of the Brieskorn lattice H ′′f over R :

(4.1.6) v1 + e ∂tvµ, vk (k ∈ [2, µ]) with e ∈ C∗.

More precisely the above calculation implies that

(4.1.7) [ω(i,j)] = vk mod V αk+2−2α1Gf ,

where k is determined by (i, j) ∈ [1, a − 1] × [1, b − 1] with condition i/a + j/b = αk satisfied.
Here V is the filtration of Kashiwara and Malgrange on the Gauss-Manin system Gf as in the

introduction. This is closely related with the modified degree deg(a,b) ω
(i,j) defined above, and

we have

(4.1.8) deg(a,b) ω
(i,j) 6 max

{
α ∈ Q

∣∣ [ω(i,j)] ∈ V αH ′′f
}
,

where the equality holds if (i, j) ∈ [1, a− 1]× [1, b− 1]. In fact, we have by [Sa2]

GrαkV ω(i,j) 6= 0 for (i, j) ∈ [1, a− 1]× [1, b− 1] with αk := i/a+ j/b.

(Here we can also use the µ-constant deformation fs = xa + yb + s xa−2yb−2 (s ∈ ∆∗) together
with the graded quotients of the decreasing filtration defined by deg(a,b) ω > α for ω ∈ Ω2

X .)

Take a good section whose image is spanned by

(4.1.9) v′1 := ∂−1
t v1, v′µ :=

1

e
v1 + ∂t vµ, v′k := vk (k ∈ [2, µ− 1]),

where e ∈ C∗ is as above. Then the eigenvalues of the associated A1 are as in (4.1.1).

Note that the image of v′µ = 1
e v1 + ∂t vµ in the Jacobian ring modulo the maximal ideal does

not vanish (i.e., it generates the Jacobian ring over it), and the other images vanish, where Ω2
X

is trivialized by dx ∧ dy. So r in [SK1], [SK2] seems to be α′µ = αµ − 1 (instead of α1) which
may be bigger than α2 in general. It will be shown in Examples 4.3 and 4.4 below that this can
cause serious problems related with the existence and the uniqueness of the associated primitive
form.
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Example 4.2. It is not very difficult to construct an abstract example of a Brieskorn lattice H ′′f
with a good section such that A1 in (0.1) is non-semi-simple. (The following argument seems to
be easier than the one in [Sa3], Remark after 3.10, where it seems rather difficult to determine
the structure of the Brieskorn lattice for geometric examples.)

Let (H ′, F ) be the underlying filtered C-vector space of a mixed R-Hodge structure endowed
with the self-duality pairing S, an automorphism Ts of finite order, and a nilpotent endomor-
phism N of type (−1,−1), satisfying the usual conditions

S(Tsu, Tsv) = S(u, v), S(Nu, v) + S(u,Nv) = 0, TsN = NTs.

We have the eigenvalue decomposition (H ′, F ) =
⊕

λ (H ′λ, F ) by the action of Ts. Assume for
simplicity

(H ′, F ) = (H ′λ, F )⊕ (H ′
λ
, F ),

for some λ 6= 1,−1. Then (H ′
λ
, F ) is the dual of (H ′λ, F ) up to a shift of filtration by S. Assume

further

(4.2.1) dim GrpFH
′
λ =


1 if p = 1

2 if p = 2,

0 otherwise,

dim GrpFH
′
λ

=


2 if p = 1,

1 if p = 2,

0 otherwise,

together with the non-vanishing (i.e. the surjectivity and the injectivity) of the morphisms

N : Gr2
FH
′
λ→→Gr1

FH
′
λ, N : Gr2

FH
′
λ
↪→ Gr1

FH
′
λ
.

Then we have a splitting of the short exact sequence

(4.2.2) 0→ Gr2
FH
′
λ → H ′λ → Gr1

FH
′
λ → 0,

such that the image of Gr1
FH
′
λ in H ′λ by the splitting is contained in KerN , but does not

coincide with ImN . For H ′
λ
, we take the dual splitting by using S. We will show that this

splitting leads to an example of a good section of an abstract Brieskorn lattice G
′ (0)
f such that

A1 is non-semisimple.

By the above decompositions of H ′, we have a decomposition of regular holonomic DS,0-
modules

(4.2.3) G′ = G′λ ⊕G′λ.

Here G′ is actually defined by the above isomorphism, and G′λ, G′
λ

are unique regular holonomic
DS,0-modules of rank 3 over K together with isomorphisms

(4.2.4) Grβ+k
V G′λ = H ′λ, Grβ

′+k
V G′

λ
= H ′

λ
,

in a compatible way with the actions of ∂tt − β − k, ∂tt − β′ − k, and (2πi)−1N , where

β, β′ ∈ Q ∩ (1, 2) with λ = e−2πiβ , λ = e−2πiβ′ , and the action of ∂−1
t is used for the above

identification. Then there are unique R-submodules G
′ (0)
λ , G

′ (0)

λ
of G′λ, G′

λ
satisfying

(4.2.5) Grβ+p
V G

′ (0)
λ = F 2−pH ′λ, Grβ

′+p
V G

′ (0)

λ
= F 2−pH ′

λ
(∀ p ∈ Z),

where R,K are as in (4.1.3). Moreover G
′ (0)
λ has free generators e1, e2, e3 over R satisfying

(4.2.6) (∂tt− β) e1 = ∂t e3, (∂tt− β) e2 = 0, (∂tt− β − 1) e3 = 0.

(In fact, this follows from the vanishing of GrαVG
′ (0)
λ for α 6= β, β + 1.)
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The above choice of the splitting of (4.2.2) then gives free generators ẽ1, ẽ2, ẽ3 of G
′ (0)
λ over

R defined by

(4.2.7) ẽ1 := e1, ẽ2 := e2, ẽ3 := e3 − c ∂−1
t e2,

where c ∈ C∗. Then we have

(4.2.8) (∂tt− β) ẽ1 = ∂t ẽ3 + c ẽ2, (∂tt− β) ẽ2 = 0, (∂tt− β − 1) ẽ3 = 0.

So the action of t on the generators ẽ1, ẽ2, ẽ3 is expressed as in (0.1) by using the matrices

(4.2.9) A0 =

0 0 0
0 0 0
1 0 0

 A1 =

β 0 0
c β 0
0 0 β + 1


and A1 is non-semi-simple.

Example 4.3. It seems rather complicated to construct an example as in Example 4.2 above
in a geometric way, and we need some more calculations as follows. Here the Thom-Sebastiani
type theorem as in [ScSt] seems quite useful. For instance, set

f = g + h with g = x10 + y3 + x2y2, h = z6 + w5 + z4w3.

Let Gf , H ′′f denote the Gauss-Manin system and the Brieskorn lattice associated to f , and
similarly with f replaced by g, h. Let αf,i be the exponents of f , and similarly for αg,i, αh,i.
Then H ′′g has a basis ui over R (with R as in (4.1.3)) satisfying

(4.3.1) (∂tt− αg,1)ui =

{
∂t u14 if i = 1,

0 if i 6= 1,

where µg = 14, and we assume αg,i 6 αg,i+1. In this case the αg,i are given by∑14
i=1 t

αg,i = t1/2 + t+ t3/2 +
∑9
k=1 t

1/2+k/10 +
∑2
k=1 t

1/2+k/3.

In fact, this equality together with the non-triviality of the action of N on H−1 follows from
a result in [St] for functions with non-degenerate Newton boundary. Then (4.3.1) follows from
[ScSt] together with Remark 3.6, since

(4.3.2) αg,µg − αg,1 = 1.

As for H ′′h , we have a basis (v1, . . . , v20) of Gh over K and free generators v′1, . . . , v
′
20 of H ′′h

over R satisfying (4.1.5) and (4.1.9) as in Example 4.1, where µh = 20, and R,K are as in
(4.1.3). We will denote αj , α

′
j in (4.1.1) by αh,j , α

′
h,j here.

We can actually take any h in Example 4.1 satisfying the following condition:

(4.3.3) αg,i + αh,j = αg,µg + αh,µh − 2 for some i, j > 2,

where g may be replaced by xa
′
+ yb

′
+ x2y2 with 1/a′ + 1/b′ < 1/2. In the case of the above g

and h, condition (4.3.3) holds for (i, j) = (2, 2) as is shown later.

By the Thom-Sebastiani type theorem as in [ScSt], there are canonical isomorphisms

(4.3.4) Gf = Gg ⊗K Gh, H ′′f = H ′′g ⊗R H ′′h ,

such that the action of t on the left-hand side is identified with t⊗ id+ id⊗ t on the right-hand
side. Let wi,j and w′i,j be respectively the element of Gf corresponding to ui⊗ vj and ui⊗ v′j in
Gg ⊗K Gh under the isomorphism (4.3.4). Set

G′f := G′f,λ ⊕G′f,λ ⊂ Gf ,
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with
G′f,λ : = K w1,20 ⊕K w2,2 ⊕K w14,20,

G′
f,λ

: = K w1,1 ⊕K w13,19 ⊕K w14,1,

where λ = exp(−2πi(2/15)), and β = 17/15 in the notation of Example 4.2. In fact, we have

αg,1 = 15/30, αg,2 = 18/30, αg,13 = 42/30, αg,14 = 45/30,
αh,1 = 11/30, αh,2 = 16/30, αh,19 = 44/30, αh,20 = 49/30,

hence
α1,20 = 32/15, α2,2 = 17/15, α14,20 = 47/15,
α1,1 = 13/15, α13,19 = 43/15, α14,1 = 28/15,

and
α′1,20 = 17/15, α′2,2 = 17/15, α′14,20 = 32/15,
α′1,1 = 28/15, α′13,19 = 43/15, α′14,1 = 43/15,

where αi,j := αg,i + αh,j , α
′
i,j := αg,i + α′h,j . Note that

(∂tt− αi,j)kwi,j = 0,

with k = 2 if i = 1, and k = 1 otherwise.

If we consider the image of

Rw′1,20 ⊕Rw′2,2 ⊕Rw′14,20,

by the natural projection G′f→→G′f,λ, then it coincides with

R∂tw1,20 ⊕Rw2,2 ⊕R∂tw14,20.

So the situation is quite close to the one in Example 4.2.

Set

w̃′i,j :=


w′14,20 − c ∂−1

t w′2,2 if (i, j) = (14, 20)

w′13,19 + c′∂−1
t w′1,1 if (i, j) = (13, 19)

w′i,j otherwise.

Here c, c′ ∈ C∗ are chosen appropriately so that w̃′14.20 and w̃′13,19 are orthogonal to each other.
Then w̃′i,j and w̃′i′,j′ are orthogonal to each other unless (i, j) = (15 − i′, 21 − j′). Here we use

the compatibility of the Thom-Sebastiani type isomorphism with the self-duality (i.e. with the
higher residue pairings) up to a constant multiplication. (This can be shown by using the fact
that the discriminant of a deformation of the form F := f +

∑
i xisi is reduced.)

Let G′′f be the orthogonal complement of G′f ⊂ Gf by the self-duality (i.e. the higher residue

pairings). Then the decomposition Gf = G′f ⊕G′′f is compatible with the Brieskorn lattice, and
induces the decomposition

H ′′f = G
′ (0)
f ⊕G ′′ (0)

f .

In fact, we have the direct sum decompositions

Gg = G′g ⊕G′′g with G′g := K u1 ⊕K u14, G′′g :=
⊕

26i613K ui,

Gh = G′h ⊕G′′h with G′h := K v1 ⊕K v20, G′′h :=
⊕

26i619K vi,

which are compatible with the Brieskorn lattices. They induce the decomposition compatible
with the Brieskorn lattice

Gg ⊗K Gh = (G′g ⊗K G′h)⊕ (G′′g ⊗K G′′h)⊕ (G′g ⊗K G′′h)⊕ (G′′g ⊗K G′h).

Then G
′ (0)
f is identified with the direct sum of

G′g ⊗K G′h and a direct factor of G′′g ⊗K G′′h,
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via the isomorphism (4.3.4) in a compatible way with the Brieskorn lattice.

By a calculation similar to (4.2.8), the action of t on the free generators

w̃′1,20, w̃
′
2,2, w̃

′
14,20, w̃

′
1,1, w̃

′
13,19, w̃

′
14,1

of G
′ (0)
f over R can be expressed as in (0.1) by using the matrices

(4.3.5) A0 =


0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
γ 0 0 0 0 0
0 0 0 0 0 0
0 0 γ 1 0 0

 A1 =


β 0 0 0 0 0
c β 0 0 0 0
0 0 β + 1 0 0 0
0 0 0 β′ 0 0
0 0 0 0 β′ + 1 0
0 0 0 0 c′ β′ + 1


where β = 17/15, β′ = 28/15, and γ ∈ C∗. In this case it is rather difficult to get an associated
primitive form. In fact, w̃′1,20 is the unique member of the generators whose class in the Jacobian

ring OX,0/(∂f) generates the ring over it, where Ω2
X is trivialized by dx ∧ dy. However, w̃′1,20 is

annihilated only by (A1 − β)2, and the kernel of A1 − β in the Jacobian ring is generated over
C by the class of w̃′2,2 = w2,2 which is contained in the maximal ideal. (The details are left to
the reader.)

Example 4.4. We first consider an abstract example. LetG be a regular holonomicDS,0-module
which is a free K-module of rank 4 with generators ui (i ∈ [1, 4]) satisfying

∂tt ui = γiui,

with

(4.4.1) 0 < γ1 < γk < γ4 < 1 (k = 2, 3).

Assume ui and uj are orthogonal to each other by the self-duality pairing (i.e. the higher residue
pairings) SK in (2.1.2) unless i+ j = 5. More precisely, assume

SK(ui, uj) = εi δi,5−j ∂
−1
t ,

with εi ∈ C∗ satisfying ε1 = ε2 = −ε3 = −ε4. Note that the above condition implies

γi + γ5−i = 1.

Let c, c′ ∈ C∗. Put

u′i :=


u1 + cu3 + c′u4 if i = 1,

u2 + cu4 if i = 2,

∂−1
t ui if i = 3, 4.

Then

SK(u′i, u
′
j) = ε′i δi,5−j ∂

−2
t (ε′i ∈ C∗).

Set c′′ := c′/c. Define

w1 : = ∂−1
t u1,

w2 : = u′1 − c′′u′2 = u1 − c′′u2 + cu3,

w3 : = ∂−1
t u3,

w4 : = u′1 = u1 + cu3 + c′u4.

Then we have

H ′′f :=
∑4
i=1Ru

′
i =

∑4
i=1Rwi,
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and moreover

SK(wi, wj) = ε′′i δi,5−j ∂
−2
t (ε′′i ∈ C∗).

In this case the action of t on the generators w1, . . . , w4 can be expressed as in (0.1) by using
the matrices

(4.4.2) A0 =


0 ∗ 0 ∗
0 0 0 0
0 ∗ 0 ∗
0 0 0 0

 A1 =


γ1 + 1 0 0 0

0 γ2 0 0
0 0 γ3 + 1 0
0 0 0 γ4


This abstract example can be realized as a direct factor of the Brieskorn lattice associated

with

f = xa + yb + xa−3yb−2 + xa−2yb−2,

if a > b and 3/a+ 2/b < 1 (where the last condition corresponds to (4.4.1)). In fact, setting

g1 := 1, g2 := x, g3 := xa−3yb−2, g4 := xa−2yb−2,

we have
[gi dx ∧ dy] = ui mod V γi+2−γ1−γ2Gf (i = 1, 2),

∂t [gi dx ∧ dy] = ui mod V γi+1−γ1−γ2Gf (i = 3, 4),

where

γ1 = 1/a+ 1/b, γ2 = 2/a+ 1/b, γ3 = 1− 2/a− 1/b, γ4 = 1− 1/a− 1/b.

The argument is similar to the proof of (4.1.7). (The details are left to the reader.) In this
case, both w2 and w4 can be a primitive form associated with the good section whose image is
spanned by the wi.

Appendix: Uniqueness of higher residue pairings in some formal setting

This Appendix is written to answer a question of Dmytro Shklyarov.

Let R = C[[s]] with s = (s1, . . . , sm), and u := ∂−1
t . Let ĜR and Ĥ ′′R respectively denote the

‘formal’ Gauss-Manin system and the ‘formal’ Brieskorn lattice associated with a deformation

F = f+
∑m
i=1 gisi of f ∈ C{x} with an isolated singularity. Here ‘formal’ means that ĜR and Ĥ ′′R

are finite free modules of rank r over R((u)) and R[[u]] respectively. They are endowed with the
actions of t and ∂si or u∂si satisfying the usual relations. (Note that the uniqueness of the higher
residue pairings does not hold over C((u))[[s]] because of the isomorphism in Proposition 1.3. In
fact, C((u))[[s]] is much bigger than R((u)), and has much larger flexibility as is shown by the
proposition.)

The dual of ĜR can be defined by

D(ĜR) := HomR((u))

(
ĜR, R((u))

)
,

where the actions of R((u)), t, and ∂si are given appropriately as usual, see e.g. [Sa3]. Then the
self-duality pairing (i.e. the higher residue pairings) can be identified with an isomorphism of
R((u))〈∂si , t〉-modules

ĜR ' D(ĜR).

So the uniqueness up to a nonzero constant multiple of the higher residue pairings in this formal
setting is equivalent to

(A.1) EndR((u))〈∂si ,t〉(ĜR) = C,
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under the assumption that the discriminant is reduced, e.g. if F is a miniversal deformation
of f . Here the discriminant D is a divisor on (C × Cm, 0) having the coordinates t, s1, . . . , sm,
and D is the image of the relative critical locus defined by the ∂xiF . We can also get D by
using the graded quotients of the filtration on the usual Gauss-Manin system defined by the
usual Brieskorn lattice shifted by the action of ∂−it , where the latter is a coherent sheaf on
(C×Cm, 0). Passing to the completion by the maximal ideal of C{s}, we get the isomorphisms
of R[t]-modules

(A.2) Ĥ ′′R/∂
−k
t Ĥ ′′R

∼= R[t]/(h)k,

where h ∈ C{s}[t] is a defining function of the discriminant D, and Ωn+1
X is trivialized by

dx0 ∧ · · · ∧ dxn.

There is a divisor Σ on (Cm, 0) such that D ⊂ C × Cm is etale over the complement of Σ
by the projection C × Cm → Cm. By Hironaka’s resolution of singularities using blowing-ups
with smooth centers, the assertion can be reduced to the case where Σ is a divisor with normal
crossings. In fact, the pull-back induces an injective morphism of local rings under smooth center
blow-ups of Cm, and we still have the injectivity after taking the formal completion for si and
u. Then, changing the coordinates si appropriately, we may assume that the discriminant D is
defined in (C× Cm, 0) by the function

(A.3) h := tr − sa1
1 · · · samm .

Here we can forget the relation with f, F from now on.

We take the ramified covering

ρ : (Cm, 0) 3 (s̃i) 7→ (si) := (s̃ bii ) ∈ (Cm, 0),

where bi := r/GCD(r, ai). Set ci := ai/GCD(r, ai). Then rci = aibi, and the pull-back of the
equation (A.3) under ρ is given by

h̃ := tr − (s̃ c11 · · · s̃ cmm )r.

We now pass to the localization R̃s̃ := R̃[1/s̃1 · · · s̃m] of R̃ := C[[s̃1, . . . , s̃m]]. This is a finite
etale Galois extension of Rs := R[1/s1 · · · sm] with Galois group G =

∏m
i=1 µbi , where µbi is the

group of roots of 1 of order bi in C. Let ĜR̃s̃ be the pull-back of ĜRs := Rs ⊗R ĜR by ρ. This

can be defined by R̃s̃ ⊗Rs ĜRs since R̃s̃ is finite over Rs. We have the canonical decomposition

(A.4) ĜR̃s̃ =
⊕

λ∈µr ĜR̃s̃,λ,

where µr := {λ ∈ C | λr = 1}. In fact, let F be the decreasing filtration on ĜR̃s̃ defined by

ujĤ ′′
R̃s̃

where Ĥ ′′
R̃s̃

is the localization by s̃1 · · · s̃n of the pull-back by ρ of the formal Brieskorn

lattice. Then we can get the decomposition by taking the inductive limit by p of the projective
limit by q of the canonical decompositions

(A.5) (F p/F q)ĜR̃s̃ =
⊕

λ∈µr (F p/F q)ĜR̃s̃,λ,

which can be defined by setting

(A.6) (F p/F q)ĜR̃s̃,λ = Ker
(
(t− λ s̃ c11 · · · s̃ cmm )q−p : (F p/F q)ĜR̃s̃ → (F p/F q)ĜR̃s̃

)
,

since the discriminant is reduced. In fact, there is a canonical direct sum decomposition

C
[
t, s̃1, . . . , s̃m,

1
s̃1···s̃m

]/(
tr − (s̃ c11 · · · s̃ cmm )r

)q−p
=
⊕

λ∈µr C
[
t, s̃1, . . . , s̃m,

1
s̃1···s̃m

]/(
t− λ s̃ c11 · · · s̃ cmm

)q−p
.



270 M. SAITO

Taking its tensor product with R̃ = C[[s̃1, . . . , s̃m]] over C[s̃1, . . . , s̃m], we then get

(A.7)
(F p/F q)ĜR̃s̃

∼= R̃
[
t, 1
s̃1···s̃m

]/(
tr − (s̃ c11 · · · s̃ cmm )r

)q−p
=
⊕

λ∈µr R̃
[
t, 1
s̃1···s̃m

]/(
t− λ s̃ c11 · · · s̃ cmm

)q−p
,

where the first isomorphism follows from (A.2). (In fact, ρ is flat and the pull-back is an exact
functor.) This implies that the decomposition (A.5) can be obtained by (A.6). (Note that F
cannot be exhaustive if we use the formal Gauss-Manin system as in Theorem 1.)

For θ ∈ EndR((u))〈∂si ,t〉(ĜR), its pull-back θ̃ := ρ∗θ is an endomorphism of ĜR̃s̃ preserving

the decomposition (A.4). (In fact, θ̃ preserves the filtration F up to a shift by some integer k,

i.e., θ̃(F pĜR̃s̃) ⊂ F
p−kĜR̃s̃ for any p.) Moreover θ̃ is compatible with the action of G (since it is

the pull-back of θ by ρ), and G acts on the direct factors of the decomposition (A.4) transitively.
Thus the assertion is reduced to

(A.8) EndR̃s̃((u))〈∂s̃i ,t〉
(ĜR̃s̃,λ) = C.

We can verify (A.8) easily since ĜR̃s̃,λ is a free R̃((u))
[

1
s̃1···s̃m

]
-module of rank 1 by (A.7). So

(A.1) follows.
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