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µ-CONSTANT DEFORMATIONS OF FUNCTIONS ON AN ICIS

R. S. CARVALHO, B. ORÉFICE-OKAMOTO, AND J. N. TOMAZELLA

Abstract. We study deformations of holomorphic function germs f : (X, 0) → C, where

(X, 0) is an ICIS. We present conditions, in terms of the integral closure of the ideal defining the
singular set of f |X , for these deformations to have constant Milnor number, Euler obstruction,

and Bruce-Roberts number.

1. Introduction

Let f : (Cn, 0) → (C, 0) be a holomorphic function germ with an isolated singularity and
F : (C × Cn, 0) → (C, 0) a deformation of f . For each t ∈ C, we denote by ft : (Cn, 0) → (C, 0)
the germ defined by ft(x) = F (t, x); hence F defines a family of function germs ft. Many authors
have studied the properties of such a family and a very important result is to know when the
family has constant topological type. In this direction, we have the Milnor number ([18]), which
is a well-known number related to a function germ. We know that, if n 6= 3, a family ft has
constant topological type if and only if it has constant Milnor number ([15], [27]). The n = 3
case is still an open problem.

However, the problem of determining whether a family has constant Milnor number is not
easy. Greuel [12] presents methods to solve it. More specifically, he shows that the constancy of
the Milnor number in F is equivalent to all the following assertions

(1) ∂F
∂t ∈ J , where J is the integral closure of the Jacobian ideal J =

〈
∂F
∂x1

, . . . , ∂F∂xn

〉
;

(2) ∂F
∂t ∈

√
J , where

√
J denotes the radical of J ;

(3) v(J) = {(t, x) ∈ C× Cn | ∂F∂xi
(t, x) = 0, i = 1, . . . , n} = C× {0} near (0, 0).

Let (X, 0) be a germ of an analytic variety (possibly singular) and f : (Cn, 0) → (C, 0) a
function germ. In [3], Bruce and Roberts generalize the Milnor number taking into account the
variety (X, 0). Many authors call this new invariant the Bruce-Roberts number and denote it
by µBR(X, f). The Bruce-Roberts number generalizes the Milnor number in the sense that the
germ is RX -finitely determined if and only if the Bruce-Roberts number is finite, where RX is
the group of the diffeomorphisms which preserves (X, 0). In [1], Ahmed, Ruas, and Tomazella
study how the results in [12] work for the Bruce-Roberts number.

In [13], Hamm introduces the Milnor number of an isolated complete intersection singularity
(ICIS). The constancy of the Milnor number in a family of ICIS implies the constancy of the
topological type if each member in the family has dimension d 6= 2 (see [23]). If (X, 0) ⊂ (Cn, 0)
is an ICIS and f : (X, 0) → (C, 0) is a holomorphic function germ with isolated singularity, we
can study the Milnor number of f , µ(f |X , 0). By the Lê-Greuel formula (see [16]),

µ(f |X , 0) = µ(X, 0) + µ(X ∩ f−1(0), 0),
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where µ(X, 0) and µ(X ∩ f−1(0), 0) denote the Milnor number of the ICIS defined by Hamm
([13]).

The main goal of this work is to study how Greuel’s result adapts to this singular case, that
is, to deformations of function germs f : (X, 0)→ (C, 0), where (X, 0) ⊂ (Cn, 0) is an ICIS. We
characterize µ-constant deformations of f in terms of the integral closure of the ideal defining
the singular set of f |X .

We present conditions for the constancy of the local Euler obstruction and of the Bruce-
Roberts number. Also, we present a sufficient condition for a family ft to be C0-RX -trivial.

Finally, we analyze the constancy of the Milnor number in a family ft : (Xt, 0)→ (C, 0), where
(Xt, 0) is a deformation of an ICIS (X, 0). In order to do this, we use the strict integral closure
of the module defined by the Jacobian matrix of the map defining the deformation.

2. Preliminary concepts

Let (X, 0) ⊂ (Cn, 0) be the isolated complete intersection singularity (ICIS) defined by a
holomorphic map germ φ : (Cn, 0) → (Cp, 0) and f : (X, 0) → (C, 0) a holomorphic function
germ with isolated singularity. That is, in a sufficiently small neighborhood of 0, the zero set of
the coordinate functions of φ intersected by the zero set of the maximal minors of the Jacobian
matrix of (f, φ) is just 0.

Let Φ: (C × Cn, 0) → (Cp, 0) be a holomorphic deformation of φ such that φ0 = φ, where
φs(x) = Φ(s, x) and x = (x1, . . . , xn). We write X = Φ−1(0), (Xs, 0) := (φ−1

s (0), 0) and assume
that (Xs, 0) is smooth for s 6= 0 sufficiently small. We say that (X , 0) is a smoothing of (X, 0).

Let
f̃ : (X , 0)→ (C, 0)

be a holomorphic function germ such that for all s 6= 0 sufficiently small, the germ

fs : (Xs, 0) → (C, 0)

x 7→ f̃(s, x)

is a Morse function germ.
Inspired by [18], in order to define the Milnor number of f , we take a representative of (X , 0),

X = Φ−1(0), where Φ: B → Cp is defined in a small enough ball B = Bε centered at the origin

in C× Cn, and the representative of f̃ , f̃ : X → C. We define

µ(f |X , 0) = ]S(fs),

where S(fs) is the set of critical points of the representative of fs defined by the representative

of f̃ above.
We remark that this definition of the Milnor number is not original, but we did not find a

good reference for it. One can show that

µ(f |X , 0) = µ(X, 0) + µ(X ∩ f−1(0), 0),

where the numbers on the right side are the Milnor numbers of the ICIS’s as defined in [13]. In
fact, if D = {(s, x) ∈ X | x is a singular point of fs} and π : D → C is the restriction of the
projection on the first coordinate then

µ(f |X , 0) = deg(π).

Therefore

µ(f |X , 0) = e

(
〈s〉, OX ,0

J(fs, φs)

)
,

where OX ,0 is the local ring of (X , 0), J(fs, φs) is the ideal generated by the maximal order
minors of the Jacobian matrix of (fs, φs) (partial derivatives with respect to x only) and e(I,R)
denotes the Hilbert-Samuel multiplicity of the ideal I with respect to the ring R (see [19]).
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Since
OX ,0

J(fs,φs) is a determinantal ring, it is Cohen-Macaulay. Hence (see [17])

e

(
〈s〉, OX ,0

J(fs, φs)

)
= dimC

OX ,0
〈s〉+ J(fs, φs)

.

Thus

µ(f |X , 0) = dimC
OX ,0

〈s〉+ J(fs, φs)

= dimC

On+1

〈Φ〉

〈s〉+ J(fs, φs)

= dimC
On

〈φ〉+ J(f, φ)

= µ(X, 0) + µ(X ∩ f−1(0), 0),

where Om denotes the ring of holomorphic function germs from (Cm, 0) to C and the last equality
follows from the well-known Lê-Greuel formula.

We consider now a family of function germs on the ICIS (X, 0). That is, let

F : (C×X, 0) → (C, 0)
(t, x) 7→ ft(x)

be a (flat) deformation of f such that ft(0) = 0 for t sufficiently small. We say that F is
µ-constant if µ(ft|X , 0) = µ(f |X , 0) for t sufficiently small.

In the case where (X, 0) is regular, the constancy of the Milnor number of ft is proved to be
related to the integral closure of the Jacobian ideal of F , not considering the derivative with
relation to the parameter t, see [12, Theorem 1.1]. In fact, Greuel shows that this family is
µ-constant if and only if

∂F

∂t
∈
〈
∂F

∂x1
, . . . ,

∂F

∂xn

〉
,

where the bar denotes the integral closure of the ideal in OC×X (the local ring of C ×X). We
remember that the integral closure of an ideal I in a ring R is equal to

I := {h ∈ R | ∃ ai ∈ Ii withhk + a1h
k−1 + . . .+ ak−1h+ ak = 0}.

One of the main goals of this work is to generalize Greuel’s result to the case where (X, 0) is
a general ICIS. In order to do this, the next theorem of Teissier, which gives different character-
izations for the integral closure of an ideal, will be very useful.

Theorem 2.1. [26, Proposition 0.4] Let (Y, 0) ⊂ (Cn, 0) be a germ of an analytic variety and
OY the local ring of (Y, 0). If I is an ideal in OY , the following conditions are equivalent

(i) h ∈ I;
(ii) For each system of generators h1, . . . , hr of I, there is a neighborhood U of 0 in Y and a

constant c > 0 such that |h(x)| ≤ c sup{|h1(x)|, . . . , |hr(x)|}, ∀ x ∈ U ;
(iii) For each analytic curve γ : (C, 0) → (Y, 0), h ◦ γ ∈ (γ∗(I))O1, where (γ∗(I))O1 is the

ideal generated by hi ◦ γ, i = 1, . . . , r;
(iv) ν(h ◦ γ) ≥ inf{ν(h1 ◦ γ), . . . , ν(hr ◦ γ)}, for ν being the usual valuation of the complex

curve.

The item (iii) of the previous theorem is usually called the valuation criterion for integral
dependence.

Throughout this paper, we also need to work with integral closure of modules over a ring, as
defined by Gaffney:
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Definition 2.2. [5, Definition 1.3] Suppose (Y, 0) is a complex analytic germ, M a submodule
of OpY,0. Then h ∈ OpY,0 is in the integral closure of M , denoted by MOp

Y,0
, if and only if for all

γ : (C, 0)→ (Y, 0), h ◦ γ ∈ (γ∗(M))O1.

Replacing O1 by its maximal ideal M1, we get the definition of strict integral closure of M ,

which is denoted by M
†
Op

Y,0
(see [4, Definition 1.1]). In this case h ∈M†Op

Y,0
is said to be strictly

dependent on M .

3. Main results

In [12], Greuel presents the following result.

Theorem 3.1. [12, Theorem 1.1] Let f : (Cn, 0)→ (C, 0) be a holomorphic function germ with
isolated singularity. For any deformation F : (C × Cn) → (C, 0) of f the following statements
are equivalent

(1) F is µ-constant;
(2) For every holomorphic curve γ : (C, 0)→ (C× Cn, 0)

ν

(
∂F

∂t
◦ γ
)
> inf

{
ν

(
∂F

∂xi
◦ γ
)
| i = 1, . . . , n

}
,

where ν denotes the usual valuation of a complex curve;
(3) Same statement as in (2) with “ > ” replaced by “ ≥ ”;

(4) ∂F
∂t ∈ J , where J is the integral closure of the Jacobian ideal J =

〈
∂F
∂x1

, . . . , ∂F∂xn

〉
as an

ideal in On+1;

(5) ∂F
∂t ∈

√
J , where

√
J denotes the radical of J ;

(6) v(J) = {(t, x) ∈ C× Cn | ∂F∂xi
(t, x) = 0, i = 1, . . . , n} = C× {0} near (0, 0).

Let (X, 0) ⊂ (Cn, 0) be the ICIS defined by a holomorphic map germ φ : (Cn, 0) → (Cp, 0)
and f : (X, 0)→ (C, 0) a holomorphic function germ with isolated singularity. We consider

F : (C×X, 0) → (C, 0)
(t, x) 7→ ft(x)

a (flat) deformation of f , as defined in the previous section.
We want to study how Greuel’s theorem would work for this case. The ideal J which appears

in Theorem 3.1 is the ideal defining the singular set of each germ ft if we consider t as a constant.
It is therefore natural to look for the ideal defining the singular set of each germ ft : (X, 0)→ C,
that is, the ideal JX generated by the maximal minors of the Jacobian matrix of (F, φ) (with
respect to x only) as an ideal in OC×X .

Here, given a matrix A of size k × l, for each pair of vectors u = (i1, . . . , ir) ∈ {1, . . . , k}r,
v = (j1, . . . , jr) ∈ {1, . . . , l}r, with i1 < · · · < ir and j1 < · · · < jr, we denote by Au,v the
determinant of the submatrix obtained by taking the lines i1, . . . , ir and the columns j1, . . . , jr
of A.

Hence, if M is the Jacobian matrix of (F, φ) (with respect to x only) then JX is the ideal
generated by Mu,v, with u = (1, . . . , p+ 1) and

(1) v = (j1, . . . , jp+1), with j1 < · · · < jp+1 and j1, . . . , jp+1 ∈ {1, . . . , n}.
The assertions of the Theorem 3.1 in this context would be
(1X) F is µ-constant;
(2X) For every holomorphic curve γ : (C, 0)→ (C×X, 0)

ν

(
∂F

∂t
◦ γ
)
> inf{ν(Mu,v ◦ γ), for all v in (1)},



µ-CONSTANT DEFORMATIONS OF FUNCTIONS ON AN ICIS 167

where ν denotes the usual valuation of a complex curve;
(3X) Same statement as in (2X) with “ > ” replaced by “ ≥ ”;
(4X) ∂F

∂t ∈ JX as an ideal in OC×X ;

(5X) ∂F
∂t ∈

√
JX as an ideal in OC×X ;

(6X) v(JX) = {(t, x) ∈ C×Cn |Mu,v(t, x) = 0, for all v in (1)} = C×{0} near (0, 0) in OC×X .
Unfortunately, these assertions are not equivalent in this singular context. But in this section

we show that

(2X) ⇒ (3X) ⇔ (4X) ⇒ (5X),
(4X) ⇒ (1X)⇔ (6X)⇒ (5X),

and present a counterexample for each of the other implications.
By the Lê-Greuel formula,

µ(ft|X , 0) = µ(X, 0) + µ(X ∩ f−1
t (0), 0);

hence in order to decide whether F is a µ-constant family, we only need to check whether or not
µ(X ∩ f−1

t (0), 0) is constant, as we see in the following theorem.

Theorem 3.2. Let (X, 0) ⊂ (Cn, 0) be an ICIS defined by φ : (Cn, 0) → (Cp, 0) (not smooth at
0) and f : (X, 0)→ (C, 0) a holomorphic function germ with isolated singularity. Let
F : (C × X, 0) → (C, 0) be a (flat) deformation of f and G : C × Cn → (C × Cp, 0) the map
defined by G(t, x) = (F (t, x), φ(x)). If ∂F

∂t ∈ JX as an ideal in OC×X then

(1) ∂G
∂t ∈ {xi

∂G
∂xj
| i, j = 1, . . . , n}

OC×X

, where {xi ∂G∂xj
| i, j = 1, . . . , n}

OC×X

denotes the inte-

gral closure of the OC×X-module generated by xi
∂G
∂xj

;

(2) X ∩ f−1
t (0) is an ICIS and µ(X ∩ f−1

t (0), 0) is constant.

Proof. Again, denoting the Jacobian matrix of (F, φ) (with relation to x only) by M and calcu-
lating each minor in JX by the first line, we get, for u = (1, . . . , p+ 1) and v = (j1, . . . , jp+1),

Mu,v =
∂F

∂xj1
Mu1,v1 −

∂F

∂xj2
Mu1,v2 + · · ·+ (−1)p+2 ∂F

∂xjp+1

Mu1,vp+1 ,

where u1 = (2, . . . , p+ 1) and vk = (j1, . . . , ĵk, . . . , jp+1).
Then

(Mu,v, 0, . . . , 0) =

(
p+1∑
l=1

(−1)1+l ∂F

∂xjl
Mu1,vl ,

p+1∑
l=1

(−1)1+l ∂φ1

∂xjl
Mu1,vl , . . . ,

p+1∑
l=1

(−1)1+l ∂φp
∂xjl

Mu1,vl

)
.

Hence

(Mu,v, 0, . . . , 0) ∈
{
xi
∂G

∂xj
| i, j = 1, . . . , n

}
OC×X

.

In fact, this is shown in the proof of [6, Lemma 2.8] but we include it here for the sake of
completeness.

By the hypothesis, ∂F
∂t ∈ JX as an ideal in OC×X then, by Theorem 2.1, for all curve

γ : (C, 0)→ (C×X, 0), ∂F
∂t ◦ γ ∈ 〈Mu,v ◦ γ〉 and therefore(

∂F

∂t
◦ γ, 0, . . . , 0

)
∈ {(Mu,v ◦ γ, 0, . . . , 0)} ⊂

{
xi
∂G

∂xj
◦ γ | i, j = 1, . . . , n

}
OC×X

.

Thus ∂G
∂t ∈ {xi

∂G
∂xj
| i, j = 1, . . . , n}

OC×X

, which concludes (1).
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We prove now (2). By (1),

∂G

∂t
∈ {xi

∂G

∂xj
| i, j = 1, . . . , n}

OC×X

.

Hence, since X ∩ f−1
t (0) ⊂ C×X, we can assume that ∂G

∂t ∈ {xi
∂G
∂xj
| i, j = 1, . . . , n}

O
X∩f−1

t (0)

.

Then {X ∩ f−1
t (0)} is a Whitney regular family (see [5, Theorem 2.5]). In particular,

µ(X ∩ f−1
t (0), 0) is constant (see [7, Theorem 6.1]).

�

Remark 3.3. The first item of Theorem 3.2 means that the family satisfies the Wf condition,
[9, Proposition 2.1], and therefore the family has a rugose trivialization [28, Proposition 4.6].

We are now ready to see how Greuel’s result works in this singular context. In the following
theorem, (1X), (2X), (3X), (4X), (5X) and (6X) are the adaptations of Greuel’s assertions for the
singular context as we described before Theorem 3.2.

Theorem 3.4. Let (X, 0) ⊂ (Cn, 0) be an ICIS defined by φ : (Cn, 0)→ (Cp, 0) and let
f : (X, 0) → (C, 0) be a germ with isolated singularity. Let F : (C × X, 0) → (C, 0) be a (flat)
deformation of f . Then

(2X) ⇒ (3X) ⇔ (4X) ⇒ (5X),
(4X) ⇒ (1X)⇔ (6X)⇒ (5X).

Proof. (2X)⇒ (3X) is trivial. The equivalence (3X)⇔ (4X) is the valuation criterion (Theorem
2.1). Moreover, since JX ⊂

√
JX , (5X) follows directly from (4X). We work now on the other

implications.
We take a representative of (X, 0), X = φ−1(0), where φ : B → Cp is defined in a small enough

ball B = Bε centered at the origin in Cn, and one representative of F , F̃ : D ×X → C, where
D is a small disc around the origin in C. We denote by ft the representative of ft : (X, 0)→ C
determined by F̃ . We write f instead of f0.

(1X) ⇒ (6X):

By the principle of conservation of number, since On+1

〈φ〉+JX is Cohen-Macaulay,

µ(f |X , 0) =
∑

(t,x)∈v(JX)∩({t}×Cn)

µ(ft|X , x),

for t sufficiently small.
From the hypothesis, µ(ft|X , 0) = µ(f |X , 0), therefore µ(ft|X , x) = 0 for all x 6= 0, that is,

v(JX) = C× {0} near (0, 0).
(6X) ⇒ (1X):
Again, it follows from the principle of conservation of number.
(6X)⇒ (5X):
By the hypothesis, ft ∈Mn, where Mn is the maximal ideal in On. Hence

∂F

∂t
|v(JX) =

∂F

∂t
|C×{0} ≡ 0,

that is v(JX) ⊂ v
(
∂F
∂t

)
. Thus ∂F

∂t ∈
√
JX as an ideal in OC×X by Hilbert’s Nullstellensatz

Theorem.
(4X) ⇒ (1X):
By the Lê-Greuel formula, µ(ft|X , 0) = µ(X, 0) + µ(X ∩ f−1

t (0), 0). Moreover, since
µ(X ∩ f−1

t (0), 0) is constant by Theorem 3.2, µ(ft|X , 0) is also constant.
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�

From here to the end of this section, our goal is to present counterexamples for the other
implications.

A good idea is to look for known examples of families with constant Milnor number. For this,
we recall the results of [21] on deformations of weighted homogeneous germs.

We say that a map germ f = (f1, . . . , fp) : (Cn, 0)→ (Cp, 0) is weighted homogeneous of type
(w1, . . . , wn; d1, . . . , dp) with wi, dj ∈ Q+ if for all λ ∈ C− {0},

f(λw1x1, . . . , λ
wnxn) = (λd1f1(x), . . . , λdpfp(x)).

We call dj the weighted degree of fj , which is denoted by wt(fj) and we call wi the weight of
the variable xi. Moreover, if (X, 0) ⊂ (Cn, 0) is the germ of an analytic variety defined by the
zero set of a weighted homogeneous germ φ : (Cn, 0) → (Cp, 0) of type (w1, . . . , wn; d1, . . . , dp),
we say that (X, 0) is weighted homogeneous of type (w1, . . . , wn; d1, . . . , dp).

If f : (Cn, 0)→ (C, 0) is a weighted homogeneous function germ and

ft(x) = f(x) +

k∑
i=1

σi(t)αi(x),

with αi : (Cn, 0) → (C, 0), we say that the deformation ft is non-negative, if the monomials
which appear in each αi have weighted degrees higher than or equal to the one of f .

Theorem 3.5. [21, Theorem 4.4] Let (X, 0) ⊂ (Cn, 0) be a weighted homogeneous ICIS and
f : (Cn, 0)→ C a weighted homogeneous germ with an isolated singularity with the same weights
of (X, 0). Let ft be a deformation of f . If ft is a non-negative deformation, then µ(ft|X , 0) is
constant.

We use this result in the following example to show that (1X) implies neither (2X) nor (3X).
Moreover, this example shows that (5X) implies neither (1X) nor (3X).

Example 3.6. Let (X, 0) ⊂ (C2, 0) be defined by φ(x, y) = xp − yq, with q ≥ 3, and let
f : (X, 0) → (C, 0) be defined by f(x, y) = x. We consider the deformation of f defined by
F (t, (x, y)) = x+ ty. In this case JX = 〈−qyq−1 − ptxp−1〉.

Let γ : (C, 0)→ (C×X, 0) be the curve defined by γ(s) = (0, sq, sp). It is easy to see that

ν

(
∂F

∂t
◦ γ
)

= p and ν((−qyq−1 − ptxp−1) ◦ γ) = (q − 1)p.

Therefore (2X) and (3X) are not true.
On the other hand
(a) If p > q, then φ and f are weighted homogeneous of type (q, p; pq) and (q, p; q), respectively,

and ft is a non-negative deformation of f . Therefore µ(ft|X , 0) is constant by Theorem 3.5. That
is, (1X) is true.

(b) If p < q, then it is not hard to see that µ(f |X , 0) = pq − p and µ(ft|X , 0) = pq − q.
Therefore (1X) is not true. Moreover, ∂F

∂t ∈
√
JX as an ideal in OC×X , that is, (5X) is true.

We show in the next example that (3X) and (5X) do not imply (2X).

Example 3.7. Let (X, 0) ⊂ (C2, 0) be defined by the zero set of φ(x, y) = x2q − yq with q ≥ 2
and f : (X, 0)→ (C, 0) defined by f(x, y) = x2q + yq. Let F be the deformation of f defined by
F (t, (x, y)) = x2q + yq + tx4q−3. In this case

JX = 〈−4q2x2q−1yq−1 − q(4q − 3)tx4q−4yq−1〉.
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Let γ : (C, 0)→ (C×X, 0) be any curve γ(s) = (γ1(s), γ2(s), γ3(s)) such that γ2q
2 −γ

q
3 = 0. Thus

γ2q
2 = γq3 .

Since ∂F
∂t (x, y) = x4q−3, it follows that ν

(
∂F
∂t ◦ γ

)
= (4q − 3)ν(γ2). Furthermore,

ν((−4q2x2q−1yq−1 − q(4q − 3)tx4q−4yq−1) ◦ γ) = ν(−4q2γ2q−1
2 γq−1

3 − q(4q − 3)γ1γ
4q−4
2 γq−1

3 )

= (2q − 1)ν(γ2) + 2(q − 1)ν(γ2)

= (4q − 3)ν(γ2).

Thus (3X) is true. Consequently, (4X) and (5X) are also true.
On the other hand, let γ : (C, 0) → (C × X, 0) be the curve defined by γ(s) = (0, s, s2). In

this case, ν
(
∂F
∂t ◦ γ

)
= 4q− 3 and ν((−4q2x2q−1yq−1− q(4q− 3)tx4q−4yq−1) ◦ γ) = 4q− 3. That

is, (2X) is not true.

4. The Newton Polyhedron and the invariants

We now apply our results to produce examples of families of functions on an ICIS which have
constant Milnor number, although they do not satisfy the hypotheses of Theorem 3.5. For this,
we refer to the results about Newton polyhedron (see [25]).

Let

g(x) =
∑
α∈Zn

aαx
α ∈ On,

where if α = (α1, . . . , αn) we write xα = xα1
1 . . . xαn

n . We define the support of g by

supp g := {α ∈ Zn | aα 6= 0}

and for I an ideal in On, we define supp I :=
⋃
{supp g | g ∈ I}.

The convex hull in Rn+ of the set
⋃
{α+ v | α ∈ supp I, v ∈ Rn+} is called Newton polyhedron

of I and is denoted by Γ+(I). We denote by Γ(I) the union of all compact faces of Γ+(I) .
Let ∆ ⊂ Γ+(I) be a finite set and f(x) =

∑
aαx

α; we define f∆ =
∑
α∈∆ aαx

α.
If ∆ is a face of Γ+(I), we denote by C(∆) the cone of half-rays emanating from 0 and passing

through ∆. We define C[[∆]], the ring of power series with non-zero monomials xα = xα1
1 xα2

2 ·
. . . ·xαn

n such that α = (α1, . . . , αn) ∈ C(∆). When the ideal generated by g1∆, g2∆, . . . , gs∆ has
finite codimension in C[[∆]], we say that the compact face ∆ ⊂ Γ(I) is Newton non-degenerate.
Furthermore, if all compact faces of Γ(I) are Newton non-degenerate, then the ideal I is said to
be Newton non-degenerate.

Equivalently, in [25, p.2]: I is Newton non-degenerate if for each compact face ∆ ⊂ Γ(I), the
equations g1∆(x) = g2∆(x) = . . . = gs∆(x) = 0 have no common solution in (C− {0})n.

Theorem 4.1. [25, Theorem 3.4] Let I = 〈g1, g2, . . . , gs〉 be an ideal of finite codimension in
On. Then I is Newton non-degenerate if and only if Γ+(I) = C(I), where C(I) is the convex
hull in Rn+ of the set

⋃
{m | xm ∈ I}.

Let (X, 0) ⊂ (Cn, 0) be the ICIS defined by a map germ φ : (Cn, 0) → (Cp, 0) and let
f : (X, 0)→ (C, 0) be a holomorphic function germ with isolated singularity.

Let F : (C×X, 0)→ (C, 0) be a deformation of f defined by F (t, x) = f(x)+ tg(x), where g is
a holomorphic function germ such that g(0) = 0. Throughout this section, we use this notation.

Let u = (1, . . . , p+ 1) and for each

(2) v = (j1, . . . , jp+1), with j1 < · · · < jp+1 and j1, . . . , jp+1 ∈ {1, . . . , n},

we denote by Mf
u,v and Mg

u,v the minors of the Jacobian matrix of the map (f, φ) and of the
map (g, φ), respectively, obtained by taking the columns j1, . . . , jp+1. By the multilinearity of
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the determinant, Mu,v = Mf
u,v+ tMg

u,v, where Mu,v is the minor of the Jacobian matrix of (F, φ)
(derivatives with respect to x only).

Since (4X) implies that the family has constant Milnor number, we are interested in more
practical ways to decide when (4X) is true. With the deformation above, it means that g ∈ JX
as an ideal in OC×X .

Lemma 4.2. If g,Mg
u,v ∈ 〈φ〉+ J(f, φ) as an ideal in On+1, for all v defined in (2), then g ∈ JX

as an ideal in OC×X .

Proof. Since Mg
u,v ∈ 〈φ〉+ J(f, φ), we assume by Theorem 2.1 that there is a neighborhood U

of 0 and a constant c > 0 such that

|t||Mg
u,v| ≤ |t|c supu,v{|φ|, |Mf

u,v|}.

Moreover,

sup
u,v
{|φ|, |Mu,v|} = sup

u,v
{|φ|, |Mf

u,v + tMg
u,v|}

≥ sup
u,v
{|φ|, |Mf

u,v|} − |t| sup
u,v
{|φ|, |Mg

u,v|}

≥ sup
u,v
{|φ|, |Mf

u,v|} − |t|c sup
u,v
{|φ|, |Mf

u,v|}

≥ (1− α) sup
u,v
{|φ|, |Mf

u,v|},

where 0 < α < 1 and |t| ≤ α
c .

Therefore there is a constant K > 0 such that

sup
u,v
{|φ|, |Mu,v|} ≥ K sup

u,v
{|φ|, |Mf

u,v|},

for t sufficiently small. Hence, by Theorem 2.1, 〈φ〉+ J(f, φ) ⊆ 〈φ〉+ JX as an ideal in On+1.

Then, by the hypothesis, g ∈ 〈φ〉+ JX as an ideal in On+1. Thus, by Theorem 2.1 for all
γ : (C, 0)→ (C×Cn, 0), g◦γ ∈ 〈φ◦γ,Mu,v◦γ〉. Then, for all γ : (C, 0)→ (C×X, 0) ⊂ (C×Cn, 0),

g ◦ γ ∈ 〈Mu,v ◦ γ〉. Again, follows from Theorem 2.1 that g ∈ JX as an ideal in OC×X .
�

With this, we can see how to know if (4X) is true by looking at Newton polyhedron.

Corollary 4.3. If Γ+(g),Γ+(Mg
u,v) ⊂ C(〈φ〉+ J(f, φ)), for all v defined in (2), then g ∈ JX as

an ideal in OC×X .

Proof. Since Γ+(g),Γ+(Mg
u,v) ⊂ C(〈φ〉+ J(f, φ)), we assume that g,Mg

u,v ∈ 〈φ〉+ J(f, φ) as an
ideal in On+1.

Therefore, by Lemma 4.2, g ∈ JX as an ideal in OC×X .
�

Corollary 4.4. If Γ+(g),Γ+(Mg
u,v) ⊂ Γ+(〈φ〉+ J(f, φ)), for all v as in (2) and 〈φ〉+ J(f, φ) is

Newton non-degenerate, then g ∈ JX as an ideal in OC×X .

Proof. Since 〈φ〉+ J(f, φ) is Newton non-degenerate then, by Theorem 4.1, we have

Γ+(〈φ〉+ J(f, φ)) = C(〈φ〉+ J(f, φ)).

Therefore, by Corollary 4.3, g ∈ JX as an ideal in OC×X .
�
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We apply the results of this section to the construction of families which have constant Milnor
number but do not satisfy the hypothesis of Theorem 3.5.

Example 4.5. Let (X, 0) ⊂ (C3, 0) be defined as the zero set of φ(x, y, z) = (xy, x15 + y10 + z6)
and f : (X, 0)→ (C, 0) defined by f(x, y, z) = x+ z. Let F be the deformation of f defined by
F (t, (x, y, z)) = x+ z + tg(x, y, z), where g(x, y, z) = xy.

The ideal 〈φ〉+J(f, φ) = 〈xy, x15 +y10 +z6, 6xz5 + 10y10−15x15〉 is Newton non-degenerate,
Γ+(g) ⊂ Γ+(〈φ〉+J(f, φ)), and Γ+(Mg

u,v) ⊂ Γ+(〈φ〉+J(f, φ)) as ideals in O4. Thus, by Corollary

4.4, ∂F
∂t ∈ JX as an ideal in OC×X . Therefore, by Theorem 3.4, F is µ-constant.

Example 4.6. Let (X, 0) ⊂ (C3, 0) be defined as the zero set of φ(x, y, z) = x3 + y3 + z4 + xyz
and f : (X, 0)→ (C, 0) defined by f(x, y, z) = xy+z2. We consider the deformation of f defined
by F (t, (x, y, z)) = f(x, y, z) + tg(x, y, z), where g is a polynomial with degree higher than or
equal to 3 different from z3.

We have ∂F
∂t = g and

〈φ〉+J(f, φ) = 〈x3+y3+z4+xyz,−x2y+6y2z+2xz2−4xz3,−xy2+6x2z+2yz2−4yz3,−3x3+3y3〉

is Newton non-degenerate. In addition,

Γ+(g) ⊂ Γ+(〈φ〉+ J(f, φ)) and Γ+(Mg
u,v) ⊂ Γ+(〈φ〉+ J(f, φ)).

Thus, by Corollary 4.4, ∂F
∂t ∈ JX as an ideal in OC×X . Therefore F is µ-constant. Moreover,

the deformation with g = z3 is also µ-constant (we see this in Section 6).

5. Other invariants

Let (X, 0) ⊂ (Cn, 0) be a germ of an analytic variety. We consider two important subgroups
of the R group of diffeomorphisms from (Cn, 0) to (Cn, 0): one is the group RX of the diffeo-
morphisms which preserve (X, 0) and the other is R(X), the group of diffeomorphisms of X. We
know that if the germs f, g : (X, 0)→ (C, 0) are RX -equivalent, then they are R(X)-equivalent,
but the converse is not true.

In the smooth case, we know that a germ f : (Cn, 0)→ (C, 0) is finitely determined if and only
if µ(f) is finite. There is a generalization of this result for the RX -group: f : (Cn, 0)→ (C, 0) is
RX -finitely determined if and only if µBR(X, f) is finite. Here µBR(X, f) is the Bruce-Roberts
number defined in [3] by

µBR(X, f) = dimC
On

Jf (ΘX)
,

where ΘX is the On-module of vector fields in (Cn, 0) which are tangent to (X, 0) and

Jf (ΘX) = 〈df(ξ) | ξ ∈ ΘX〉.

Because of this, it is important to know when a family has constant Bruce-Roberts number.
In [1], Ahmed, Ruas, and Tomazella study the analogue of Theorem 3.1 for the Bruce-Roberts
number assuming that (X, 0) ⊂ (Cn, 0) is a germ of an analytic variety and

F : (C× Cn, 0)→ (C, 0), F (t, x) := ft(x)

is a family of function germs such that µBR(X, ft) is finite. In this case the assertions of Theorem
3.1 would be our (1X),. . . ,(6X) changing JX by Jft(ΘX) and the minors in (2X) by dF (ξi) where
ΘX is generated by ξ1, . . . , ξp. They denote the assertions by (1r),. . . ,(6r)

In [1], it is proved that (2r) ⇒ (3r) ⇔ (4r) ⇒ (5r), (1r) ⇒ (6r) and if the polar curve C is
a Cohen-Macaulay variety, then (6r) ⇒ (1r). Moreover, we can see in [1] that (4r) ⇒ (1r) if
(X, 0) is an isolated hypersurface singularity whose logarithmic characteristic variety LC(X) is
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Cohen-Macaulay (see [3] for the definition of LC(X)). Recently, it was proved that, if (X, 0) is
an isolated hypersurface singularity, then LC(X) is Cohen-Macaulay, see [20].

Another important number related to f : (X, 0)→ (C, 0) is its local Euler obstruction Euf,X(0).
This number is very studied, for instance in [2] and [11]. In [11], Grulha presents the following
theorem, which relates the constancy of the Euler obstruction in a family to the constancy of
the Milnor number (of ICIS) in a family.

Theorem 5.1. [11, Proposition 5.17] Assume that (X, 0) ⊂ (Cn, 0) is an ICIS, and let
F : (C×X, 0)→ C be a family of functions with isolated singularity. We write F (t, x) = ft(x).
Then the following statements are equivalent

(1) Euft,X(0) is constant for the family;

(2) µ(X ∩ f−1
t (0), 0) is constant for the family.

By using this result, we present in the next theorem several applications of our main theorem.

Theorem 5.2. Let (X, 0) ⊂ (Cn, 0) be an ICIS and f : (X, 0) → (C, 0) a germ with isolated
singularity RX-finitely determined. Let F : (C×X, 0)→ (C, 0) be a deformation of f . If ∂F∂t ∈ JX
as an ideal in OC×X , then

(i) F̃ is C0-RX-trivial (and hence F̃ is C0-R(X)-trivial ), where F̃ : (C× Cn, 0) → (C, 0) is

such that F = F̃ |C×X ;

(ii) Euf̃t,X(0) is constant, where f̃t : (Cn, 0)→ (C, 0) is such that ft = f̃t|X ;

(iii) If (X, 0) is a hypersurface with isolated singularity, then µBR(X, f̃t) is constant;

(iv) If (X, 0) is a weighted homogeneous hypersurface with isolated singularity, then µBR(X, f̃t)

is constant and m(f̃t) is constant, where m(f̃t) is the multiplicity of f̃t.

Proof. (i) In [24, Theorem 4.3] it is shown that, if (X, 0) is an ICIS and ∂F
∂t ∈ JF (ΘX), then F̃

is C0-RX -trivial. Therefore, since JX ⊆ JF (ΘX), we have the desired result.
(ii) Follows directly from Theorem 3.4 and Theorem 5.1.
(iii) Just uses JX ⊆ JF (ΘX) and the (4r)⇒ (1r) in [1].
(iv) In [22, Theorem 4.2], it is shown that, if (X, 0) is a weighted homogeneous hypersurface

with isolated singularity, then LC(X) is Cohen-Macaulay. Therefore it follows by (iii) that

µBR(X, f̃t) is constant. Thus m(f̃t) is also constant (see [1, Theorem 4.3]).
�

As an application of (ii) of the Theorem 5.2, the families of Examples 4.5 and 4.6 have constant
Euler obstruction.

6. Deformation of the ICIS

Our final goal in this paper is to study the constancy of the Milnor number if we de-
form both the analytic variety and the function germ. That is, let φ : (Cn, 0) → (Cp, 0) be
a holomorphic map germ and (X, 0) ⊂ (Cn, 0) the ICIS defined by the zero set of φ. Let
Φ: (C × Cn, 0) → (Cp, 0) be a (flat) deformation of φ, defined by Φ(t, x) = φt(x), such that
φ0 = φ and (Xt, 0) := (φ−1

t (0), 0) is an ICIS for t sufficiently small. We write X = Φ−1(0).
Moreover, let f : (X, 0)→ (C, 0) be a holomorphic function germ with isolated singularity and

F : (X , 0) → (C, 0)
(t, x) 7→ F (t, x) = ft(x)

a (flat) deformation of f . Here we study the constancy of the Milnor number µ(ft|Xt
, 0). For

this, let Mu,v be the minor of the Jacobian matrix of (F,Φ) (with respect to x only) and JX the
ideal generated by Mu,v, with u = (1, . . . , p+ 1) and

(3) v = (j1, . . . , jp+1), with j1 < · · · < jp+1 and j1, . . . , jp+1 ∈ {1, . . . , n}.
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We consider G : C × Cn → (C × Cp, 0) defined by G(t, x) = (F̃ (t, x),Φ(t, x)), where

F̃ : C× CN → C is such that F̃ |X = F .

If ∂G
∂t ∈ {xi

∂G
∂xj
| i, j = 1, . . . , n}

OX∩F−1(0)

, then {Xt ∩ ft−1(0)} is Whitney regular (see [5,

Theorem 2.5]). Moreover, we know that if ∂G
∂t ∈ {

∂G
∂xj
| j = 1, . . . , n}

†

OX
, then AF (see [10])

holds for the pair (X0, Y ), where X0 = X − C × {0} and Y = C × {0} (see [8, Lemma 5.1]).

Hence we can ask if ∂G
∂t ∈ {

∂G
∂xj
| j = 1, . . . , n}

†

OX
is related to the constancy of the Milnor

number in the family F .

Theorem 6.1. The following statements are equivalent
(1Xt) F is µ-constant;

(2Xt)
∂G
∂t ∈ {

∂G
∂xj
| j = 1, . . . , n}

†

OX
;

(3Xt) v(JXt) = {(t, x) ∈ C × Cn | Mu,v(t, x) = 0, for all v in (3)} = C × {0} near (0, 0) in
OX .

Proof. (1Xt) ⇔ (3Xt):
This is the proof of (1X) ⇔ (6X) in Theorem 3.4.
(1Xt

) ⇒ (2Xt
):

By the Lê-Greuel formula, µ(ft|Xt
, 0) = µ(Xt, 0) + µ(Xt ∩ f−1

t (0), 0). Thus µ(Xt, 0) and
µ(Xt ∩ f−1

t (0), 0) are constant. Hence AF holds for the pair (X0, Y ) (see [10, Theorem 5.8]).

Therefore ∂G
∂t ∈ {

∂G
∂xj
| j = 1, . . . , n}

†

OX
(see [8, Lemma 5.1]).

(2Xt
) ⇒ (1Xt

):

Since ∂G
∂t ∈ {

∂G
∂xj
| j = 1, . . . , n}

†

OX
, AF holds for the pair (X0, Y ) (see [8, Lemma 5.1]).

Hence the Buchsbaum-Rim multiplicity of the module { ∂G∂xj
| j = 1, . . . , n}

OX
is constant (see

[14, Theorem 3.2]). Thus F is µ-constant (see [14, Lemma 3.3]).
�

Remark 6.2. We remark that, with our hypothesis, ∂G∂t ∈ {
∂G
∂xj
| j = 1, . . . , n}

OX
if and only if

∂G
∂t ∈ {

∂G
∂xj
| j = 1, . . . , n}

†

OX
; see [10, proof of Theorem 5.8] and [8, Lemma 5.1].

We return now to Example 4.6. In that case, if g = z3, then g ∈ JX as an ideal in OC×X

and therefore, by Theorem 3.2, ∂G
∂t ∈ {xi

∂G
∂xj
| i, j = 1, . . . , n}

OC×X

with G = (F, φ). Hence

∂G
∂t ∈ {

∂G
∂xj
| j = 1, . . . , n}

OC×X

. Thus ∂G
∂t ∈ {

∂G
∂xj
| j = 1, . . . , n}

†

OC×X

, by the previous remark.

Therefore, by Theorem 6.1, F is µ-constant.

Example 6.3. Let (X, 0) ⊂ (C3, 0) be defined as the zero set of

φ(x, y, z) = (z − xy, y2 − x3)

and f : (X, 0)→ (C, 0) defined by f(x, y, z) = x. Let Φ be the deformation of φ defined by

Φ(t, (x, y, z)) = (z − xy + tx2, y2 − x3)

and F the deformation of f defined by F (t, (x, y, z)) = x+ tz. Let X = Φ−1(0).
We consider G(t, (x, y, z)) = (F (t, (x, y, z)),Φ(t, (x, y, z))).

It is easy to see that I3((∂G∂t ,
∂G
∂x ,

∂G
∂y ,

∂G
∂z )) ⊂ I3((∂G∂x ,

∂G
∂y ,

∂G
∂z )), where I3((∂G∂t ,

∂G
∂x ,

∂G
∂y ,

∂G
∂z )) de-

notes the minors of order 3 of the matrix whose columns are formed by the vectors ∂G
∂t ,

∂G
∂x ,

∂G
∂y ,

∂G
∂z .
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Hence ∂G
∂t ∈ {

∂G
∂x ,

∂G
∂y ,

∂G
∂z }OX (see [5, Proposition 1.7]). Therefore, by Remark 6.2 and Theorem

6.1, F is µ-constant.
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11. N. de Góes Grulha Jr., The Euler obstruction and Bruce-Roberts’ Milnor number, Q. J. Math. 60 (2009),
No. 3, 291-302.

12. G. M. Greuel, Constant Milnor number implies constant multiplicity for quasihomogeneous singularities,

Manuscripta Math. 56 (1986), No. 2, 159-166. DOI: 0.1007/bf01172153
13. H. Hamm, Lokale topologische Eigenschaften Komplexer Räume, Math. Ann. 191 (1971), 235-252.
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France, Paris (1973), 285-362.

27. J. G. Timourian, Invariance of Milnor’s number implies topological triviality, Amer. J. Math. 99 (1977), No.
2, 437-446. DOI: 10.2307/2373829
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