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MULTIPLICATIVE DE RHAM THEOREMS FOR RELATIVE AND

INTERSECTION SPACE COHOMOLOGY

FRANZ WILHELM SCHLÖDER AND J. TIMO ESSIG

Abstract. We construct an explicit de Rham isomorphism relating the cohomology rings
of Banagl’s de Rham and spatial approach to intersection space cohomology for stratified

pseudomanifolds with isolated singularities. Intersection space (co-)homology is a modified

(co-)homology theory extending Poincaré Duality to stratified pseudomanifolds. The novelty
of our result compared to the de Rham isomorphism given previously by Banagl is, that we

indeed have an isomorphism of rings and not just of graded vector spaces. We also provide a
proof of the de Rham Theorem for cohomology rings of pairs of smooth manifolds which we

use in the proof of our main result.

1. Introduction

We prove that the de Rham approach to intersection space cohomology yields the same
cohomology ring as the spatial approach in analogy to ordinary cohomology on smooth manifolds.
We give an explicit ring isomorphism that integrates smooth forms on the top stratum over
smooth cycles.

In Section 2, we use classical sheaf theory to prove that integration of differential forms on a
smooth manifold over smooth cycles induces a ring isomorphism between the relative de Rham
and singular cohomology rings. To prove the multiplicativity with respect to a cup product
∪ : Hp(M,L)×Hq(M,F ) → Hp+q(M,L ∪ F ) induced by the wedge product of forms we need
submanifolds L,F ⊂M which satisfy the restrictive condition that their union L∪F ⊂M is also
a submanifold. This is trivially fulfilled for L = F , though, and we use the corresponding relative
de Rham result in the second part of the paper, where we prove the existence of a multiplicative
de Rham isomorphism for intersection space cohomology.

Intersection space cohomology is a method, introduced by Banagl in [1], to re-establish
Poincaré duality for singular spaces by assigning a family of so-called intersection spaces I p̄X
indexed by Goresky-MacPherson perversity functions p̄ to an n-dimensional stratified pseudo-
manifold X. The intersection space cohomology HI•p̄ (X) of X is defined to be the reduced
singular cohomology of I p̄X with coefficients in Q or, as in our case, in R. If q̄ is the comple-
mentary perversity of p̄, Poincaré duality holds in the sense that HI•p̄ (X) ∼= HIn−•q̄ (X).

The same duality statement is true for intersection cohomology introduced in [12, 13]. Inter-
section cohomology is Goresky and MacPherson’s original theory to re-establish Poincaré duality
on singular spaces. Note, that intersection cohomology and intersection space cohomology are
not isomorphic but tend to be interchanged by mirror symmetry. The former can be tied up to
type IIA string theory while the latter relates to type IIB.
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In [2], Banagl introduces a description of intersection space cohomology for pseudomanifolds
of stratification depth 1 and with geometrically flat link bundle as the cohomology of a complex
of smooth differential forms on the top stratum or the blowup of X. This enlarges the class
of pseudomanifolds to which intersection space cohomology is applicable. In [3], Banagl and
Hunsicker give a L2−description of intersection space cohomology in the case of stratification
depth 1 and product link bundle. In [10] the second author uses the differential form approach
to define intersection space cohomology for pseudomanifolds of stratification depth 2 with zero
dimensional bottom stratum and geometrically flat link bundle for the intermediate stratum.
De Rham theorems for intersection space cohomology are given in [2] for pseudomanifolds with
isolated singularities and in [9] for pseudomanifolds of depth one with product link bundles. In
both cases, the de Rham isomorphisms are given by integrating differential forms over certain
smooth cycles.

A description of intersection cohomology via smooth differential forms was provided in [8]. A
different approach to intersection cohomology is pursued by Brasselet and Legrand in [5] and [6],
using a complex of differential forms with coefficients in the module of poles. De Rham theorems
similar to the ones for intersection space cohomology are given by Brasselet, Hector and Saralegi
in [4] and [17].

In contrast to intersection cohomology, both approaches to intersection space cohomology
naturally come with a perversity internal cup product. Neither of the above de Rham theorems
clarifies whether the constructed isomorphisms respect this multiplicative structure. This is the
topic of the main part of this paper. We establish an isomorphism of the cohomology rings in
the case of isolated singularities.

As an application of our result, note that intersection space cohomology provides the correct
count of massless 3-branes in type IIB string theory on a conifold [1]. The de Rham description
allows to represent those branes as differential forms and our result represents the intersection
product of the branes as the wedge product of these forms.

For a space X ′ with only isolated singularities the intersection space cohomology coincides by
construction with the intersection space cohomology of the space X obtained by collapsing all
the singularities into a single one. Therefore we only consider the case of one isolated singularity
and can think of a stratified pseudomanifold X of dimension n as

X = cone(i∂) := (X̄ ∪ cone(L))/ ∼ .

Here X̄ is a smooth manifold of dimension n with boundary L and i∂ the inclusion of this
boundary. The relation “∼” glues the bottom of the cone to the boundary of X̄, identifying
the cone coordinate with the collar coordinate of a smooth collar of the boundary. In the more
general context, X̄ is the blowup of the singular space X and L is the link of the singularity.
Let us briefly describe the two approaches to intersection space cohomology.

The spatial approach uses Moore approximation to truncate the links. This technique is
also referred to as spatial homology truncation in [1] and is Eckmann-Hilton dual to Postnikov
approximation. In this process we associate to the link L its degree k spatial (co-)homology
truncation t<kL by homotopy theoretic methods. The space t<kL is a k dimensional CW
complex with (co)homology groups isomorphic to that of L in degrees smaller than k and zero
otherwise. The (co)homology isomorphisms in degrees smaller than k are induced by a continuous
map f : t<kL → L. In [1], Banagl proves that such a (co)homology truncation, together with
the described map f , exists if the link is a simply connected CW complex and k ≥ 1. This
construction involves a choice of a splitting of the boundary map ∂k : Ck(L) → im(∂k), where
C• here and in the rest of the paper denotes the cellular chains and cellular cochains are written
as C• analogously. Importantly the intersection space cohomology, constructed in this way is
independent of the choice of the splitting. The intersection space is defined as the homotopy
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cofiber of the composition g := i∂ ◦ f, with i∂ : ∂X̄ ↪→ X̄ the inclusion of the boundary, i.e.

I p̄X := cone(g) = (X̄ ∪ cone(t<kL))/ ∼ ,

where “∼” glues the bottom of the cone to the boundary by g and k = n−1−p̄(n). Note that due
to the restrictions on the values of the Goresky-MacPherson perversity function p̄ we have that
k ≥ 1 and assume this for the rest of the paper. As explained above the perversity p̄ intersection
space cohomology of X is defined as the reduced singular cohomology of the intersection space,
i.e.

HI•p̄ (X) := H̃•
(
I p̄X

)
,

and has a ring structure given by the cup product of H̃• (I p̄X).
The de Rham approach to intersection space cohomology uses a complex of forms on the top

stratum or the blowup of the pseudomanifold. If we fix a Riemannian metric on L we can define
the degree k cohomology cotruncation of Ω•(L) as a subcomplex by setting

τ≥kΩ•(L) :=


0, for • < k

ker(d∗), for • = k

Ω•(L), for • ≥ k

where d∗ is the Hodge dual of the differential of Ω•(L) in degree k− 1. The choice of the metric
does not affect the cohomology groups we obtain, as demonstrated in [2]. τ≥kΩ•(L) cotruncates
the cohomology of Ω•(L) in the sense that the subcomplex inclusion induces an isomorphism on
cohomology in degrees ≥ k whereas the cohomology of τ≥kΩ•(L) is zero in degrees smaller than
k.

Rather than the original definition as in [2], we adopt the definition in [3] and set

ΩI•p̄ (X̄) := {ω ∈ Ω•(X̄)|i#∂ (ω) ∈ τ≥kΩ•(L)}

where k = n − 1 − p̄(n) as above and i#∂ denotes the pullback of differential forms along i∂ .
We use # to indicate both pullbacks of differential forms and induced maps on cellular cochain
complexes. In practice this should not lead to any confusion and we reserve the notation i∗∂ for the
induced map on cohomology. This distinction is more relevant in our work. Note, that ΩI•p̄ (X̄)

with the restricted wedge product is a sub-DGA of Ω•(X̄). This product turns H•(ΩI•p̄ (X̄)) into
a ring. The final result of this paper is

Theorem 6 (Multiplicative ΩI•p̄ (X̄) de Rham Theorem). The cohomology rings H•(ΩI•p̄ (X̄))

and H•(C̃•(I p̄X)) are isomorphic.

To show this, we construct a de Rham map φ, which is different from the one provided by
Banagl in [2] on cochain level. However, both are related on cohomology as we prove in Section 5.
Observe, that I p̄X is a pushout by construction. In Section 3, we establish that in the category
of cochain complexes, the reduced cochain complex of I p̄X fits into the pullback diagram

C̃•(I p̄X) C̃•(cone(t<kL))

C•(X̄) C•(t<kL).

i#̃0

g#

This is not true in the category of differential graded algebras, though, since the standard quasi-
isomorphism between the algebraic cellular mapping cone of the map g and the reduced cellular
cochain complex of the topological cone of g is not a DGA-morphism. To bypass this problem,

we show that the isomorphism φ1 between C̃•(I p̄X) and the pullback of the above diagram
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induces a ring isomorphism on cohomology. The proof worked out in Section 3.2, is based on
comparing the cohomology rings of the topological mapping cone of g, its mapping cylinder and
the cohomology of ker(g#). We then use the universal property of the pullback to construct our
intersection space de Rham map.

We next describe the maps involved in this construction. In Section 4.1, we combine the
classical de Rham map with several other constructions to get a map Ω•(X̄) → C•(X̄) that
restricts to a map ΩI•p̄ (X̄) → C•(X̄). On the other hand, Lemma 4.2 provides us with a map
that, in combination with the aforementioned de Rham map and the map that is induced by the

inclusion of the boundary of X̄, yields a map ΩI•p̄ (X̄) → C̃•(cone(t<kL)). The construction of
Lemma 4.2 heavily uses the fact that we map from an object that is cotruncated to degree k to
C•(cone(t<kL)) which is essentially truncated to degree k + 1. The latter property forces us to
work with cellular cochains on the spatial side.

A 5-Lemma argument establishes that our map indeed is a quasi-isomorphism. However, a
difficulty arises because the de Rham map only becomes multiplicative at cohomology level. If we
had multiplicativity on cochain level, the pullback construction would have been in the category
of DGAs, the constructed map would have been a DGA homomorphism and accordingly would
have induced a multiplicative map on cohomology, too. Our strategy to deal with this problem
is to factorize the intersection space de Rham map φ into a part that is a DGA homomorphism,
a map ρ̃ that sits between the absolute and relative de Rham map and the isomorphism between
C•(I p̄X) and the true pullback in the diagram above. The maps induced by the DGA homo-
morphism is already multiplicative on representative level and we check the multiplicativity of
ρ̃ on cohomology explicitly by using the results of the first part of this paper. As mentioned
before we also establish that the isomorphism between C•(I p̄X) and the true pullback above is
multiplicative on cohomology.

2. A Multiplicative Relative de Rham Theorem

In this section, we introduce relative de Rham cohomology groups via sheaf cohomology and
then prove that the multiplicative de Rham isomorphism between absolute de Rham and singular
cohomology groups descends to a multiplicative isomorphism between relative groups. This fact
is then used to prove that there is a multiplicative de Rham isomorphism between spatial and
de Rham description of intersection space cohomology.

2.1. Sheaf Theory. We use sheaf cohomology to prove a result about ordinary relative singular
and de Rham cohomology. Basics about sheaves and sheaf cohomology can be found in [7]. We
recall only the notion of supports:

Definition 2.1. (see [7, Def. I-6.1])
Let X be a topological space. A family of supports on X is a family Φ of closed subsets of X
such that

(1) A closed subset of an element of Φ is an element of Φ;
(2) Φ is closed under finite unions.

Φ is a paracompactifying family of supports if in addition

(3) each element of Φ is paracompact.
(4) each element of Φ has a (closed) neighbourhood also contained in Φ.

Examples of supports are the family of all closed subsets of X, and the family consisting of
the empty set. The first is paracompactifying if X is paracompact. If s ∈ A (X) is a global
section of a sheaf A on X, then |s| = {x ∈ X|s(x) 6= 0} denotes its support. The sections of A
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with supports in Φ are defined by

ΓΦ(A ) := {s ∈ A (X)| |s| ∈ Φ}.

In the same way one defines AΦ (X) := {s ∈ A (X)| |s| ∈ Φ} for the presheaves of differen-
tial forms A = Ω• and singular cochains with values in some locally constant sheaf A on X,
A = S•(−; A ). The de Rham and singular cohomology with supports in Φ is then defined by
taking the cohomology groups Hp (Ω•Φ(X)) and Hp (S•Φ(X; A )). The sheaf cohomology groups
with supports in Φ for the sheaf A are defined by taking any injective resolution A → J • of
A and setting

Hr
Φ(X; A ) := Hr (ΓΦ(J •)) .

2.2. Relative Singular Cohomology. Before explaining the notions of relative de Rham co-
homology, we recall the results of [7, Chapter III-1] about relative singular cohomology. For our
purpose, it is sufficient to consider the reals R as base ring for our singular cohomology groups
and therefore all sheaves are sheaves of real vector spaces and all tensor products are taken over
the reals. In this section, let X denote an arbitrary topological space. Later, we specify X to
be a smooth manifold. Let A be a sheaf on X and let Φ be a paracompactifying family of
supports on X. The singular cohomology groups of X with coefficients in A and support in the
paracompactifying family Φ are then defined by

SH
p
Φ(X; A ) := Hp (ΓΦ(S • ⊗A )) ,

where S • = S •(X;R) is the sheafification of singular cochains. Note that these cohomology
groups agree with the regular singular cohomology groups with real coefficients H•S(X;R) for
A = R the constant sheaf and Φ the family of all closed subsets of X. The ordinary, singular
cup product induces a homomorphism

∪ : SH
p
Φ(X; A )⊗ SH

q
Ψ(X; B)→ SH

p+q
Φ∩Ψ(X; A ⊗B)

with the usual properties (see [7, Theorem II-7.1]). If X is HLC (= singular homology locally
connected), e.g. X a manifold or more generally a CW complex, then there is a multiplicative
isomorphism between sheaf cohomology and singular cohomology groups:

(1) θ : H•Φ(X; A )
∼=−→ SH

•
Φ(X; A ) ,

(see [7, pp. 180-181] for a more detailed explanation).
To define relative singular cohomology with coefficients in the sheaf A , let F ⊂ X be a closed

subspace and consider the homomorphism ΓΦ(S •(X;R) ⊗ A ) � ΓΦ|F (S •(F ;R) ⊗ A |F ). It
is a surjection, since the kernel of the epimorphism (S •(X;R) ⊗ A )|F � S •(F ;R) ⊗ A ,
which is induced by a restriction morphism, is an S 0(X;R)|F -module and hence Φ|F -soft.
Therefore, [7, Theorem II 9.9] is applicable.

Let K•Φ(X,F ; A ) denote the kernel of this map and define the relative singular cohomology
groups of the pair (X,F ) with coefficients in A and supports Φ by

SH
•
Φ(X,F ; A ) := H• (K•Φ(X,F ; A )) .

By definition, one gets the usual long exact sequence of a pair.

. . . → SH
p
Φ(X,F ; A )→ SH

p
Φ(X; A )→ SH

p
Φ|F (F ; A |F )

+1−−→ . . .

Let UF = X − F denote the complement of the closed set F and AUF
the extension by zero to

X of the restriction A |UF , see [7, I 2.6]. The morphism

ΓΦ (S •(X;R)⊗AUF
)→ K•Φ(X,F ; A )
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induces an isomorphism on cohomology, which follows by a 5-Lemma argument (see [7, p. 183]
for details). By this isomorphism we can introduce a relative cup product given by the following
composition

SH
p
Φ(X,F ; A )⊗ SH

q
Ψ(X,L; B) SH

p+q
Φ∩Ψ(X,F ∪ L; A ⊗B)

SH
p
Φ(X; AUF

)⊗ SH
q
Ψ(X; BUL

) SH
p+q
Φ∩Ψ(X,AUF

⊗BUL
)

∪

∼=

∪

∼=

The vertical map on the right is induced by the inclusion AUF
⊗BUL

↪→ A ⊗B, F, L ⊂ X are
closed, and UF = X − F,UL = X − L. This coincides with the ordinary relative cup product
in singular cohomology for A = B = R and Φ,Ψ the families of all closed subsets of X. Also,
together with the long exact cohomology sequence for sheaf cohomology of pairs and the maps
θ of (1), this definition gives a multiplicative isomorphism

θ : H•Φ(X,F ; A )
∼=−→ SHΦ(X,F ; A )

for X,F both HLC.
Note that if X,F are smooth manifolds, one can use smooth singular cochains instead of

continuous ones. To see this, let S•∞(X;R) denote the complex of smooth singular cochains with
coefficients in R and let ρ : S•(X;R) � S•∞(X;R) denote the restriction of the complex of all
singular cochains to smooth ones.

Then, one gets a map of sheaves ρ : S •(X;R) ⊗ A → S •∞(X;R) ⊗ A , which we also
denote by ρ. Further, for any sheaf A on X and any family of supports Φ, one gets a map
ρ : ΓΦ (S •(X;R)⊗A ) → ΓΦ (S •∞(X;R)⊗A ) . Note, that for Φ paracompactifying, all the
sheaves S r(X;R) and S r

∞(X;R) are Φ-soft as modules over the sheaf of continuous respectively
smooth real valued functions, which are Φ-soft by a standard partition of unity argument. Hence,
the sheaves S •(X;R) ⊗ A and S •∞(X;R) ⊗ A are resolutions of A by Φ-soft sheaves and ρ
induces an isomorphism on cohomology groups by [7, II-4.2],

ρ∗ : SH
•
Φ(X; A )

∼=−→ ∞
S H

•
Φ(X; A ).

Here, ∞S H
•
Φ(X; A ) = H• (ΓΦ (S •∞(X;R)⊗A )) . Let K•Φ,∞(X,F ; A ) denote the kernel of the

surjection

ΓΦ (S •∞(X;R)⊗A ) � ΓΦ|F (S •∞(F ;R)⊗A |F )

and define the smooth relative singular cohomology groups with values in A by

∞
S H

•
Φ (X,F ; A ) := H•

(
K•Φ,∞(X,F ; A )

)
.

Again, there is a long exact sequence of the pair (X,F ) and we get a cup product on the relative
smooth singular cohomology groups, that coincides with the regular one for A = R and Φ the
family of all closed subsets.

Restriction of singular cochains to smooth chains induces a multiplicative isomorphism on
cohomology as follows from the following commutative diagram

SH
•
Φ(X; AUF

) ∞
S H

•
Φ(X; AUF

)

SH
•
Φ(X,F ; A ) ∞

S H
•
Φ(X,F ; A ) ,

∼=mult

ρ∗

∼=,mult

∼=mult

ρ∗

where the vertical map on the right is a multiplicative isomorphism analogously to the non-
smooth case.
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2.3. Relative de Rham Cohomology. To consider de Rham cohomology, we need smooth
manifolds. We prove a relative version of de Rham’s Theorem for the following pairs of smooth
manifolds (possibly with boundary). Let Mn be a smooth manifold and Fm ⊂M a submanifold
of dimension m which is closed as a subspace (not necessarily as a manifold). The pair (M,F )
might be compact (or M open and F compact, or both non-compact manifolds). We only
consider submanifolds that are closed subsets, since then the relative sheaf cohomology groups
can be replaced by absolute cohomology groups of the complement.

If two different submanifolds Fm, Lm ⊂ M occur, we demand that their union F ∪ L ⊂ M
is also a submanifold. This is relevant later to insure that relative cup products on de Rham
cohomology actually have a well-defined target.

Let A be a sheaf of R−modules on M . The de Rham presheaves on M are given by the
assignments U 7→ Ωr(U), where Ωr(U) is the set of smooth differential r-forms on the open set
U (of M respectively F ). This gives conjunctive monopresheaves and hence sheaves. Let Ωr(M)
denote the so defined sheaf on M and Ωr(F ) the corresponding sheaf on the manifold F . In
contrast, Ωr(M)|F denotes the restriction of the sheaf Ωr(M) to the subspace F . The de Rham
cohomology with coefficients in A is defined as

ΩH
•
Φ(M ; A ) := H• (ΓΦ(Ω• ⊗A )) .

The wedge product ∧ : Ωp(U) ⊗ Ωq(U) → Ωp+q(U), U ⊂ M open, induces a cup product
on ΩH

•
Φ(M ; A ). To define the relative de Rham cohomology groups, we note that the restric-

tion homomorphism i∗ : Ω•(U) → Ω•(U ∩ F ) is surjective and hence induces an epimorphism
(Ω•(M)⊗A ) |F � Ω•(F ) ⊗ A |F of sheaves on F . Since the kernel of this homomorphism is
an Ω0(M)|F−module and hence Φ|F−soft by [7, Theorem II 9.16], we get an epimorphism

ΓΦ (Ω•(M)⊗AF ) = ΓΦ|F ((Ω•(M)⊗A )|F ) � ΓΦ|F (Ω•(F )⊗A |F )

of chain complexes by [7, Theorem II 9.9]. The kernel of Ω•(M) ⊗ A → Ω•(M) ⊗ AF is
Ω•(M)⊗AU , a Φ-soft sheaf, because of [7, II 9.18] and the fact that Ω•(M) is Φ-fine and hence
Φ-soft (for Φ paracompactifying). Then, again by [7, Theorem II 9.9], the map

ΓΦ(Ω•(M)⊗A )→ ΓΦ(Ω•(M)⊗AF )

is also onto. Both epimorphisms combine to an epimorphism

ΓΦ(Ω•(M)⊗A ) � ΓΦ|F (Ω•(F )⊗A |F ).

We let Q•Φ(M,F ; A ) denote the kernel of this epimorphism and define the relative de Rham
cohomology with coefficients in the sheaf A as follows.

Definition 2.2 (Relative de Rham Cohomology). The relative de Rham cohomology of the pair
(M,F ) of smooth manifolds, F ⊂ M closed as a subset, with coefficients in the sheaf A , is
defined by

ΩH
•
Φ(M,F ; A ) := H• (Q•Φ(M,F ; A )) .

As for the relative singular cohomology groups, we want to relate these groups to the absolute
groups and the sheaf-theoretic cohomology groups. To do so, we note that for Φ paracompacti-
fying Ω• ⊗A is a resolution of A by Φ−fine sheaves and hence there is a natural isomorphism

ρ : ΩH
•
Φ(M ; A )→ H•Φ(M ; A ),

which preserves cup products (see [7, II-5.15 and II-7.1] for details). If f ∈ C∞(F,M) is a
smooth map between the smooth manifolds F,M and Φ,Ψ are paracompactifying families on M
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and F respectively, such that f−1Ψ ⊂ Φ and A is a sheaf on F , we get a commutative diagram

(2)

ΩH
•
Φ(M ; A ) H•Φ(M ; A )

ΩH
•
Ψ(F ; f∗A ) H•Ψ(F ; f∗A )

f∗ f∗

in analogy to singular cohomology (compare to the similar diagram for singular cohomology
on [7, p. 182]).

Lemma 2.1. Let j : F ↪→ M be the inclusion of the submanifold F ⊂ M , which is closed as a
subspace. Let Φ be a paracompactifying family of supports on M and let A be a sheaf on M .
Then the map

j∗ : ΩH
•
Φ(M ; AF )→ ΩH

•
Φ|F (F ; A |F )

is an isomorphism and preserves cup products.

Proof. For arbitrary smooth manifolds M and arbitrary sheaves A on M the map

ρ : ΩH
•
Φ(M ; A )→ H•Φ(M ; A )

is an isomorphism that preserves cup products. Since Diagram (2) commutes, it suffices to show
that the map j∗ : H•Φ(M ; AF )→ H•Φ|F (F ; A |F ) is an isomorphism of sheaf cohomology groups

and preserves cup products. But this is essentially the statement of [7, Corollary II-10.2]. �

The exact sequence 0 → AUF
→ A → AF → 0 of sheaves induces an exact sequence

0 → ΓΦ (Ω•(X)⊗AUF
) → ΓΦ (Ω•(X)⊗A ) → ΓΦ (Ω•(X)⊗AF ) . Hence, the first morphism

gives rise to a (trivially multiplicative) map

ΓΦ (Ω•(X)⊗AUF
)→ Q•Φ(M,F ; A ).

Together with the (multiplicative) map

j∗ : ΓΦ (Ω•(X)⊗AF )→ ΓΦ|F (Ω•(F )⊗A |F ) ,

induced by the submanifold inclusion j : F ↪→M, we get a commutative diagram

ΓΦ (Ω•(M)⊗AUF
) ΓΦ (Ω•(M)⊗A ) ΓΦ (Ω•(M)⊗AF )

Q•Φ(M,F ; A ) ΓΦ (Ω•(M)⊗A ) ΓΦ|F (Ω•(F )⊗A |F )

= j∗

We consider the induced diagram on cohomology:

. . . ΩH
p
Φ (M ; AUF

) ΩH
p
Φ (M ; A ) ΩH

p
Φ (M ; AF ) . . .

. . . ΩH
p
Φ(M,F ; A ) ΩH

p
Φ (M ; A ) ΩH

p
Φ|F (F ; A |F ) . . .

=

+1

j∗∼=

+1

By the statement of the last lemma, the last vertical map is an isomorphism. The 5-Lemma
implies that the first vertical map is also an isomorphism, which leaves us with the following
result.

Proposition 2.2. Let (M,F ) be any pair of smooth manifolds, possibly with boundary, where
F ⊂M is closed as a subset, and let Φ be any paracompactifying family of supports and A any
sheaf. Then, there is an isomorphism

ΩH
p
Φ (M ; AUF

)
∼=−→ ΩH

p
Φ(M,F ; A ).
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In particular, this induces a multiplicative structure on ΩH
p
Φ(M,F ; A ), which coincides with the

multiplicative structure induced by the relative wedge product

∧ : Ωp(U,U ∩ L) ⊗ Ωq (U,U ∩ F )→ Ωp+q (U,U ∩ (L ∪ F ))

for A = R, provided L,F ⊂M are two smooth submanifolds that are closed as subsets and such
that L ∪ F ⊂M is also a smooth submanifold.

Proof. What is left is a proof for the last part of the statement. So let A = R and L,F ⊂M be
as in the proposition. Then the map ΓΦ (Ω•(M)⊗A ) � ΓΦ|F (Ω•(F )⊗A |F ) coincides with
the pullback map j∗ : Ω•Φ(M) � Ω•Φ|F (F ). The kernel of this map is the complex Ω•Φ(M,F ) of

the forms on M that vanish on F. The maps RUF
→ R and RUL

→ R of sheaves on M induce
maps of complexes of sheaves Ω•(M) ⊗ RUL

→ Ω•(M) ⊗ R and the same with F instead of L.
These maps induce chain maps ΓΦ (Ω•(M)⊗ RUF

)→ ΓΦ (Ω•(M)⊗ R) ∼= Ω•Φ(M) and the same
map for L instead of F . Since they factor through Ω•Φ(M,F ), respectively Ω•Φ(M,L), and the
differential of these complexes comes from the differential on the total de Rham complexes, we
get the following induced maps.

H0 (ΓΦ (Ω•(M)⊗ RUF
)) = ker d→ ker d|Ω•Φ(M,F ) = ΩH

0
Φ(M,F ),

H0 (ΓΦ (Ω•(M)⊗ RUL
)) = ker d→ ker d|Ω•Φ(M,L) = ΩH

0
Φ(M,L).

Since the cup product

∪ : ΩH
p
Φ(M ;RUF

)⊗ ΩH
q
Φ(M,RUL

)→ Hp+q
Φ (M,RUF

⊗ RUL
)

is induced by the wedge product of forms, we get a commutative diagram

ΩH
0
Φ(M ;RUF

)⊗ ΩH
0
Φ(M ;RUL

) ΩH
0
Φ(M ;RUF

⊗ RUL
)

ΩH
0
Φ(M,F )⊗ ΩH

0
Φ(M,L) ΩH

0
Φ(M,F ∪ L).

∪

ρ ρ

∪

This allows us to apply [7, Theorem II-6.2] to the two natural transformations α⊗β 7→ ρ (α ∪ β)
and α⊗β 7→ ρ(α)∪ ρ(β) from the top left corner of the diagram to the bottom right corner. �

2.4. Relative de Rham Map. In [7, Chapter III-3], Bredon proves that the classical de Rham
map k : Ω•(M) → S•∞(M ;R), defined by integrating forms over smooth chains, induces a
multiplicative homomorphism

k∗ : ΩH
•
Φ (M ; A )→ ∞

S H
•
Φ(M ; A ),

which is an isomorphism for Φ paracompactifying and coincides with the usual de Rham iso-
morphism for A = R. Let F ⊂M be a smooth submanifold, closed as a subspace as above, and
let j : F ↪→M. For each open set U ⊂M we get a commutative diagram

Ω•(U) Ω•(U ∩ F )

S•∞(U ;R) S•∞(U ∩ F ;R)

j|#U

kM kF

j|#U
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where all the maps commute with the corresponding restriction maps. Hence, for any sheaf A
on M this induces a commutative diagram

ΓΦ (Ω• ⊗A ) ΓΦ|F (Ω• ⊗A |F )

ΓΦ (S •∞(M ;R)⊗A ) ΓΦ|F (S •∞(F ;R)⊗A |F ) .

kM kF

This implies that kM factors through the kernels of the horizontal maps. That means it induces
a relative de Rham morphism

(3) k : QΦ (M,F ; A )→ KΦ,∞ (M,F ; A ) .

Theorem 1 (Relative de Rham Theorem). Let (M,F ) be a pair of smooth manifolds, F ⊂ M
closed as a subset, let A be a sheaf on M and Φ a paracompactifying family of supports and let
k : QΦ (M,F ; A )→ KΦ,∞ (M,F ; A ) denote the relative de Rham map. Then, the induced map
on cohomology

k∗ : ΩH
•
Φ(M,F ; A )→ ∞

S H
•
Φ(M,F ; A )

is a multiplicative isomorphism.

Proof. As before, let UF := M − F ⊂ M, which is an open subset of M. We prove that the
following diagram commutes.

(4)

ΩH
•
Φ(M ; AUF

) ∞
S H

•
Φ(M ; AUF

)

ΩH
•
Φ(M,F ; A ) ∞

S H
•
Φ(M,F ; A )

k
∼=

∼= ∼=

k

This will complete the proof, since the vertical maps are clearly multiplicative and the isomor-
phism k on the top is multiplicative by [7, Theorem III 3.1].

Since the absolute de Rham morphism k : ΓΦ (Ω•(M)⊗A )→ ΓΦ (S •∞(M ;R)⊗A ) is natu-
ral, the following diagram commutes.

ΓΦ (Ω•(M)⊗AUF
) ΓΦ (S •∞(M ;R)⊗AUF

)

ΓΦ (Ω•(M)⊗A ) ΓΦ (S •∞(M ;R)⊗A ) .

k

τ τ

k

By definition of the relative de Rham morphism, the following diagram also commutes.

Q•Φ (M,F ; A ) K•Φ,∞ (M,F ; A )

ΓΦ (Ω•(M)⊗A ) ΓΦ (S •∞(M ;R)⊗A ) .

k

σ σ

k
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The diagrams above can be combined as follows.

ΓΦ (Ω•(M)⊗AUF
) ΓΦ (S •∞(M ;R)⊗AUF

)

Q•Φ (M,F ; A ) K•Φ,∞ (M,F ; A )

ΓΦ (Ω•(M)⊗A ) ΓΦ (S •∞(M ;R)⊗A ) .

k

τ τ
k

σ σ

k

By the previous statements, the bottom square and the exterior big square commute. Since
the σ’s are subcomplex inclusions by definition, this gives the desired commutativity of the top
square, which induces Diagram (4) on cohomology. �

Corollary. The composition of the classical relative de Rham map k : Ω•(M,F )→ S•∞(M,F ;R),
defined by integration of relative forms over smooth chains, and Lee’s smoothing operator

s∗ : S•∞(M,F ;R)→ S•(M,F ;R),

see [14, pp. 474 ff], induces a multiplicative isomorphism on cohomology.

s∗ ◦ k∗ : Hr
DR(M,F )

∼=−→ Hr
S,∞(M,F ;R)

∼=−→ Hr
S(M,F ;R).

Proof. This follows from Theorem 1 with A = R and Φ the family of all closed subsets of M
and the results of Section 2.2. In this setting, the relative de Rham map (3) coincides with the
classical relative de Rham map k : Ω•(M,F )→ S•∞(M,F ) defined by

k(ω)(σ) =

∫
∆p

σ∗ω,

for ω ∈ Ωr(M,F ) and any smooth p−simplex σ. Since Lee’s smoothing operator is a chain ho-
motopy inverse of the restriction map ρ : S•(X;R) � S•∞(X;R), which induces a multiplicative
isomorphism on cohomology, s∗ = (ρ∗)−1 is also multiplicative on cohomology. �

3. The cohomology ring of I p̄X

In this section we prove

Theorem 2. The reduced cohomology ring of I p̄X is isomorphic to the cohomology ring of the
pullback Q• in the following diagram.

(5)

Q• C̃•(cone(t<kL))

C•(X̄) C•(t<kL).

q2

q1 i#̃0

g#

Here C̃•(cone(t<kL)) denotes the reduced cellular cochain complex of cone(t<kL), specifically
realized as the cellular cochain complex relative to the cone point C•(cone(t<kL), c). The map
i0 : t<kL→ cone(t<kL) denotes the inclusion of t<kL as the bottom of the cone,

i#̃0 : C̃•(cone(t<kL))→ C•(t<kL)

denotes the composition

C̃•(cone(t<kL)) ↪→ C•(cone(t<kL))
i#0−→ C•(t<kL).

and g : t<kL→ X̄ is the map defining the intersection space.
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The universal property of the pullback is later used to construct the map φ2 : C̄• → Q• which
is the middle part of our intersection space cohomology de Rham map.

Recall that in the spatial picture of intersection space cohomology we are working with cellular
cochains and accordingly the various cochain complexes of topological spaces here are their
cellular cochain complexes. Note that g and i0 are cellular maps. Therefore they induce cochain
maps, and Q• is a cochain complex by construction. On the other side it is in general false
that cellular maps induce multiplicative maps on cochain level and we have to clarify how the
product on Q• and hence H•(Q•) arises. The cup product of cellular cohomology is induced
on cochain level by an Eilenberg-Zilber type map and a cellular approximation to the diagonal,

called cellular diagonal approximation in the following. In Section 3.1 we demonstrate that i#̃0
and g# are DGA homomorphisms for the right choice of products on cochain level. This upgrades
the construction above from the category of cochain complexes to the category of DGAs and Q•

is naturally equipped with an appropriate product.
After this we turn to the proof of Theorem 2. An explicit quasi-isomorphism is given by the

map φ1 in the diagram

(6)

C̃•(I p̄X)

Q• C̃•(cone(t<kL))

C•(X̄) C•(t<kL)

φ1

i#̃
X̄

i#
cone(t<kL)

q2

q1 i#̃0

g#

with icone(t<kL) : cone(t<kL)→ I p̄X the composition

icone(t<kL) : cone(t<kL) ↪→ X̄ t cone(t<kL) �
X̄ t cone(t<kL)

∼
= I p̄X

and i#̃
X̄

: C̃•(I p̄X)→ C•(X̄) the composition

C̃•(I p̄X) ↪→ C•(I p̄X)
i#
X̄−−→ C•(X̄)

where iX̄ : X̄ → I p̄X is the inclusion of X̄ in cone(g) = I p̄X. Note that by choosing the natural
cell structures on the cones I p̄X and cone(t<kL) and their respective tips as base point, one
can quite straight forwardly establish that the diagram commutes. Therefore, φ1 is uniquely
determined by the universal property of the pullback. It is also not hard to establish that φ1 is

a bijection, however it is unclear whether one can equip C̃•(cone(t<kL)) and C̃•(I p̄X) with cup
products such that the map

icone(t<kL) : cone(t<kL) ↪→ X̄ t cone(t<kL) �
X̄ t cone(t<kL)

∼
= I p̄X

induces a DGA morphism. Therefore, we only obtain that φ1 is an isomorphism of cochain
complexes and not of DGAs. Apriori it is not clear, whether φ∗1 respects the multiplication of
the cohomology rings. We establish this property in section 3.2.

3.1. The Product on the Pullback. As explained above, we need to establish that we can

choose products on cochain level such that i#̃0 and g# are DGA homomorphisms. With this
choice of products, the pullback is a pullback in the category of DGAs and Q• is a DGA by
construction. Note that every choice of graded product on C•(cone(t<kL)) restricts to a product

on C̃•(cone(t<kL)) and therefore the inclusion C̃•(cone(t<kL)) ↪→ C•(cone(t<kL)) is a DGA
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homomorphism. It is left to prove that i#0 and g# can be made into multiplicative maps, which
is the content of Proposition 3.1 and Theorem 3, respectively.

The map i0 is a CW subcomplex inclusion and the multiplicativity of its induced map is
covered by the following proposition.

Proposition 3.1. For a CW subcomplex inclusion i : Y ↪−→ Z and a given cellular diagonal
approximation ∆̃Y on Y , we can choose a cellular diagonal approximation ∆̃Z on Z such that
i# : C•(Z)→ C•(Y ) is a DGA homomorphism with respect to the cup products induced by those
diagonal approximations.

Proof. Choosing the canonical cell structure on the CW complexes Y × Y and Z × Z ensures
that for given cells a and b their product a × b is a cell again. Thus the Eilenberg-Zilber type
maps

θY : C•(Y )⊗ C•(Y )→ C•(Y × Y )

and
θZ : C•(Z)⊗ C•(Z)→ C•(Z × Z)

are given by mapping a† ⊗ b† bijectively to (a × b)†. The daggered objects are the respective
cochains in the basis dual to the basis of chains given by the cells. We calculate

(i× i)# ◦ θZ(a† ⊗ b†) = (i× i)#(a× b)† = (i(a)× i(b))†

= θY (i(a)† ⊗ i(b)†) = θY ◦ (i# ⊗ i#)(a† ⊗ b†)
so

(i× i)# ◦ θZ = θY ◦ (i# ⊗ i#).

The relative version of the Cellular Approximation Theorem (cf. [16, p. 76]) assures that we can

extend a cellular diagonal approximation ∆̃Y of Y to a cellular diagonal approximation ∆̃Z of
Z, i.e.

(i× i) ◦ ∆̃Y = ∆̃Z ◦ i.
In conclusion

i# ◦ ∪Z = i# ◦ ∆̃#
Z ◦ θZ

= ∆̃#
Y ◦ (i× i)# ◦ θZ

= ∆̃#
Y ◦ θY ◦ (i# ⊗ i#)

= ∪Y ◦ (i# ⊗ i#) .

So, i induces a DGA homomorphism on cochain level if we define the cup product via the specific
diagonal approximations ∆̃Y and ∆̃Z . �

Next we establish that there are DGA-structures on C•(X̄) and C•(t<kL) such that g induces
a DGA homomorphism, too.

Theorem 3. Given a cellular diagonal approximation ∆̃t<kL on t<kL, we can choose a cellular

diagonal approximation on X̄ such that g# : C•(X̄)→ C•(t<kL) becomes a DGA homomorphism
with respect to the DGA-structures induced by the corresponding cup products. In particular,
g∗ : H•(X̄)→ H•(t<kL) is a ring homomorphism.

Proof. By revisiting the construction of the spatial homology truncation, we see that for k < 3
the map g is the inclusion of the base point [1, Section 1.1.5] and thus the statement of this
proposition is the same as the statement of Proposition 3.1. So let k ≥ 3. Then g = i∂ ◦ f with
f defined as composition of the subcomplex inclusion

i<k : t<kL→ L/k,
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a homotopy equivalence

h : L/k → Lk ,

and a further subcomplex inclusion

ik : Lk → L

(see [1, Proposition 1.6& Section 1.1.6]). We demonstrate in the following how one can choose
the cellular diagonal approximations such that each of these maps induces a multiplicative map
on cochains.

By Proposition 3.1, we can choose a cellular diagonal approximation ∆̃L/k on L/k such that

i<k
# is a DGA homomorphism with respect to the cup products ∪t<kL := ∆̃#

t<kL
◦ θt<kL and

∪L/k := ∆̃#
L/k ◦ θL/k, with θt<kL and θL/k the Eilenberg-Zilber maps as in Proposition 3.1 and

∆̃t<kL the given diagonal approximation on t<kL.

Next, we consider the map h : L/k → Lk. The space L/k is a k dimensional CW complex
with the same (k − 1)-skeleton as Lk. The k cells are glued in such a way that they correspond
to a spacification of a base change in the k-th chain group of Lk. The map h is constructed as
the homotopy inverse of the map

h′ : Lk → L/k

relative to the (k − 1)-skeleton. The map h′ is defined such that it spatially realizes the afore-
mentioned base change. In particular, it induces an isomorphism on the k-th chain and cochain
group and is the identity on all cochain groups of lower (and trivially also all other) cochain
groups. The latter can be formulated as the commutativity of the following diagram.

Lk L/k

Lk−1 Lk−1

h′

id

ik−1

Note, that it is not obvious that the cellular cochain map induced by h is also an isomorphism
a priori. In this setting, it is true, though, as we outline in the following. In formulas, we know
that

h′ ◦ h ' id rel Lk−1.

Thus, there is a cochain homotopy operator s : C•(L/k)→ C•−1(L/k) such that

(7) h# ◦ h′# = id + sd+ ds and i#k−1 ◦ s = 0.

Since (i#k−1)r : Cr(L/k)→ Cr(Lk−1) is an isomorphism for r < k and (i#k−1)r−1 ◦ sr = 0 for all
r ∈ Z, we get that sr = 0 for r ≤ k. Since L/k is a k-dimensional CW-complex, Cr(L/k) = 0 for

r > k and hence, sr = 0 for all r ∈ Z. That implies that h# ◦ h′# = id. By the same argument,

h′
# ◦ h# = id also holds and therefore h# : C•(Lk)→ C•(L/k) is an isomorphism with inverse

(h#)−1 = h′
#
.

Let ∆̃L/k be the cellular approximation used above and set

∇Lk := (h× h) ◦ ∆̃L/k ◦ h′.

Since ∇Lk is cellular, the following calculation shows that ∇Lk is a cellular approximation of the
diagonal ∆Lk of Lk,

∇Lk = (h× h) ◦ ∆̃L/k ◦ h′ ' (h× h) ◦∆L/k ◦ h′ = ∆Lk ◦ h ◦ h′ ' ∆Lk .
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Let ∪Lk = ∇#
Lk ◦ θLk : Cr(Lk)⊗ Cs(Lk)→ Cr+s(Lk) be the resulting cup product on Lk, with

θLk the Eilenberg-Zilber map as before. By this definition, h becomes a DGA homomorphism

since h# ◦ h′# = id,

h# ◦ ∪Lk = h# ◦ h′# ◦ ∆̃#
L/k ◦ (h× h)# ◦ θLk = ∪L/k ◦ (h# ⊗ h#).

Finally apply the homotopy extension and lifting property (cf. [16, p. 75]) to (i∂ ◦ik×i∂ ◦ik)◦∇Lk

and ∆X̄ to obtain a map ∇′
X̄

such that ∇′
X̄
|Lk = ∇Lk and ∇′

X̄
' ∆X̄ . Note that ∇Lk is a

composition of cellular maps. So, the cellular approximation theorem relative to Lk yields a
cellular map ∇X̄ such that ∇X̄ |Lk = ∇Lk and ∇X̄ ' ∆X̄ . The first equation can be re-written
as

∇X̄ ◦ (i∂ ◦ ik) = {(i∂ ◦ ik)× (i∂ ◦ ik)} ◦ ∇Lk .

Setting ∪X̄ := ∇#
X̄
◦ θX̄ , where once again θX̄ is the Eilenberg-Zilber map on X̄, (i∂ ◦ ik)# is an

DGA homomorphism with respect to the cup products ∪X̄ and ∪Lk .

(i∂ ◦ ik)# ◦ ∪X̄ = ∪Lk ◦
(
(i∂ ◦ ik)# ⊗ (i∂ ◦ ik)#

)
We combine the previous results in the following equation.

g# ◦ ∪X̄ = i<k
# ◦ h# ◦ (i∂ ◦ ik)# ◦ ∪X̄ = ∪t<kL ◦ (g# ⊗ g#)

In summary, g# is a DGA homomorphism from (C•(X̄),∪X̄) to (C•(t<kL),∪t<kL) and since
those cup products are induced by cellular diagonal approximations, they induce the regular ring
structure on cohomology and we arrive at the statement of the proposition. �

Remark. Note that after the initial cellular approximation to the diagonal map of t<kL we only
alter the products on the codomains and always work relative to the subcomplex t<kL. Thus it is

possible to choose products such that i#0 and g# simultaneously become DGA homomorphisms.
Therefore, Q• is indeed a pullback in the categories of DGAs.

3.2. φ∗1 is a ring isomorphism. In this section we prove Theorem 2. We establish the isomor-

phism from the reduced cohomology ring H̃•(I p̄X) to H•(Q•) as the following composition of
ring isomorphisms

H̃•(I p̄X) H•(M(g), t<kL) H•(ker(g#)) H•(Q•) .
∼=
p∗

∼=
(r|∗)−1

∼=
incl∗

Here p : M(g)→ cone(g) = I p̄X is the map collapsing t<kL embedded as the top of the mapping
cylinder M(g) to the cone point c ∈ I p̄X, r : M(g) → X̄ is the deformation retraction of the
mapping cone onto its base X̄ and the last map is the sub-DGA inclusion of ker(g#) ⊕ 0 in

Q• where both are thought of as sub-DGAs of C•(X̄) ⊕ C̃•(cone(t<kL)). Note, that, in the
above diagram, (r|∗)−1 is an abbreviation for ((r#|ker(g#))

∗)−1. Later we demonstrate that

φ1 : C̃•(I p̄X) → Q• indeed induces the composition incl∗ ◦ (r|∗)−1 ◦ p∗ on cohomology. We
proceed to establish that all the factors in the composition above are ring isomorphisms.

Proposition 3.2. The map

(8) p∗ : H•(I p̄X, {c})
∼=−→ H•(M(g), t<kL)

is a ring isomorphism.

Proof. By [15, Lemma 3.1, Chapter X], p∗ induces an isomorphism of relative cohomology groups
in all degrees. Further p is a continuous map and thus induces a multiplicative map on cohomol-
ogy by the naturality of the cohomological cup product. Hence p∗ is a ring isomorphism. �
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Recall that under the appropriate choice of products g# : C•(X̄) → C•(t<kL) is a DGA
homomorphism by Theorem 3. Accordingly, ker(g#) is a sub-DGA of C•(X̄). Further note that
the retraction r fits into the following commutative diagram of (cellular) maps

(9)

M(g)

t<kL X̄,

r
it<kL

g

where it<kL : t<kL ↪→ M(g) is the inclusion at the top of the cylinder. For ϕ ∈ ker(g#), the
commutativity of Diagram (9) implies that

i#t<kL
◦ r#(ϕ) = g#ϕ = 0.

Accordingly, r# restricts to a cochain morphism

r#|ker(g#) : ker(g#)→ C•(M(g), t<kL) .

As a deformation retraction, r induces an isomorphism r∗ : H•(X̄)
∼=−→ H•(M(g)) of cohomology

rings but a priori it is not clear that the restriction of r# induces a ring isomorphism

(10) H•(ker(g#))
∼=−→ H•(M(g), t<kL) .

We first establish that r#|ker(g#) is a quasi-isomorphismus in Proposition 3.3 and then in Propo-
sition 3.4 that the induced map on cohomology is multiplicative. Together, this proves that we
indeed have a ring isomorphism on cohomology.

Proposition 3.3. The map

r#|ker(g#) : ker(g#)→ C•(M(g), t<kL)

is a quasi-isomorphism.

Proof. We apply the 5-Lemma to the pair of long exact sequences on cohomology induced by
the following diagram.

0 C•(M(g), t<kL) C•(M(g)) C•(t<kL) 0

0 ker(g#) C•(X̄) C•(t<kL) 0

i#

r#|
ker(g#)

g#

r#

The top row is the usual short exact sequence of relative cochains and the bottom row is exact
since g# is surjective as we establish below. The diagram is obviously commutative and since
the last two vertical maps are either an isomorphism or quasi-isomorphism, the map induced by
r#|ker(g#) is an isomorphism, too.

Let us now establish that g# is surjective. Since the restriction g| : (t<kL)k−1 → X̄ to the
(k− 1)-skeleton is a subcomplex inclusion and t<kL has no cells of dimension greater than k, we
only have to prove, that g#,k : Ck(X̄)→ Ck(t<kL) is surjective. The map factors as follows:

Ck(X̄)
i#,k
∂−−−→ Ck(L)

i#,k
k−−−→ Ck(Lk)

h#,k

−−−→ Ck(L/k)
i#,k
<k−−−→ Ck(t<kL).

Recall from the proof of Theorem 3 that h#,k is an isomorphism and all the other maps are
induced by CW-subcomplex inclusions and henceforth induce surjective cochain maps. Hence,
g# is surjective. �

Now we are left with the proof that r#|ker(g#) induces a multiplicative map on cohomology.
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Proposition 3.4. The map

r#|ker(g#) : ker(g#)→ C•(M(g), t<kL)

induces a multiplicative map on cohomology.

Proof. We know that r maps the (k − 1)-skeleton Lk−1 of the top of the cylinder M(g) to
Lk−1 ⊂ L ⊂ X̄, since the restriction of g| : Lk−1 ↪→ X̄ is a CW-subcomplex inclusion. We
fix a cellular approximation ∇Lk−1 to the diagonal ∆Lk−1 of Lk−1 and then approximate the
diagonals

∆X̄ : (X̄, Lk−1)→ (X̄, Lk−1)× (X̄, Lk−1)

and

∆M(g) : (M(g), Lk−1)→ (M(g), Lk−1)× (M(g), Lk−1)

relative to ∇Lk−1 to obtain cellular maps DX̄ ' ∆X̄ and DM(g) ' ∆M(g). Since

∆X̄ ◦ r = (r × r) ◦∆M(g),

also the following maps are homotopic rel Lk−1.

DX̄ ◦ r ' ∆X̄ ◦ r = (r × r) ◦∆M(g) ' (r × r) ◦DM(g) rel Lk−1.

In detail, there is a cochain homotopy s : C•(X̄×X̄)→ C•−1(M(g)) such that for the inclusions
jk−1 : Lk−1 ↪→ L ↪→ X̄ and

ik−1 : Lk−1 ↪→ L ↪→M(g),

and sLk−1 : C•(Lk−1 ×Lk−1)→ C•−1(Lk−1) the cochain homotopy induced by ∇Lk−1 ' ∆Lk−1

the following holds.

i#k−1 ◦ s = sLk−1 ◦ (jk−1 × jk−1)# and

r# ◦D#

X̄
= D#

M(g) ◦ (r × r)# + dM(g) ◦ s+ s ◦ dX̄×X̄ .

Let ϕ ∈ ker(g#)l and ψ ∈ ker(g#)m be closed. Then the second of the above relations implies
that

r# ◦D#

X̄
(ϕ× ψ) = D#

M(g) ◦ (r × r)#(ϕ× ψ) + dM(g) s(ϕ× ψ) + s dX̄×X̄(ϕ× ψ)

= D#
M(g) ◦ (r × r)#(ϕ× ψ) + dM(g) s(ϕ× ψ).

The last summand in the first line vanishes since ϕ × ψ is closed as the cross product of two
closed forms. In the following, we show that there is a cochain α ∈ Cl+m−1(M(g), t<kL) with
d s(ϕ× ψ) = dα. This statement is equivalent to the multiplicativity of the map

r|∗ : H•(ker(g#))→ H•(M(g), t<kL).

We distinguish the cases l +m ≤ k, l +m = k + 1 and l +m > k + 1.
First, let l + m > k + 1. Then s (ϕ × ψ) is a cochain of degree greater than k. Since t<kL

has no cells of dimension greater than k, it follows automatically that the pullback under the
inclusion it<kL : t<kL ↪→M(g) of s(ϕ× ψ) is zero. Therefore, s(ϕ× ψ) ∈ Cl+m−1(M(g), t<kL)

and we might choose α := s(ϕ× ψ). Now, let l + m ≤ k. The inclusion i′k−1 : Lk−1 ↪→ t<kL of
the (k − 1)-skeleton fits in the following commutative diagram, where, it<kL : t<kL ↪→ M(g) is
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the inclusion of the top of the cylinder as in (9) and jk−1 : Lk−1 ↪→ X̄ is the inclusion of Lk−1

as part of the boundary of X̄.

X̄

Lk−1 t<kL

M(g)

i′k−1

ik−1

jk−1

it<kL

g

The induced map i′#k−1 : Cp(t<kL)
∼=−→ Cp(Lk−1) is an isomorphism on cochains for all p 6= k.

Therefore, we get the following relation.

i#t<kL
s(ϕ× ψ) = (i′#k−1)−1i#k−1s(ϕ× ψ) = (i′#k−1)−1sLk−1(jk−1 × jk−1)#(ϕ× ψ)

= (i′#k−1)−1sLk−1(i′k−1 × i′k−1)#(g × g)#(ϕ× ψ) = 0.

The last equality holds, since (g × g)#(ϕ× ψ) = (g#ϕ)× g#ψ = 0× 0 = 0. As in the previous
case, we can thus set α := s(ϕ× ψ) ∈ Cl+m−1(M(g), t<kL).

Last, we consider the case l + m = k + 1. Recall that Hk(C•(t<kL)) = 0 and

ker(dk) = Ck(t<kL) so the differential dk−1
t<kL

: Ck−1(t<kL) → Ck(t<kL) is surjective. Ac-

cordingly, i#t<kL
s(ϕ× ψ) = dβ, for some β ∈ Ck−1(t<kL). Since the pullback

i#t<kL
: Ck−1(M(g))→ Ck−1(t<kL)

under the CW-subcomplex inclusion it<kL is surjective too, there is a cochain γ ∈ Ck−1(M(g))

with β = i#t<kL
γ and we get the following equation.

i#t<kL
s(ϕ× ψ) = dβ = di#t<kL

γ = i#t<kL
(dγ).

This is equivalent to stating that

s(ϕ× ψ)− dγ ∈ Ck(M(g), t<kL).

We can then set α = s(ϕ× ψ)− dγ, since d (s(ϕ× ψ)− dγ) = d (s(ϕ× ψ)) . �

Proposition 3.3 and 3.4 together establish that r|∗ is a ring isomorphism.

Lemma 3.5. The map

incl : ker(g#) ↪→ Q•, ϕ 7→ (ϕ, 0)

induces a ring isomorphism on cohomology.

Proof. Since Q• was defined as the pullback in diagram (5), it can be explicitely written as

Q• =
{

(ϕ,ψ) ∈ C•(X̄)⊕ C̃•(cone(t<kL))|g#ϕ = i#̃0 ψ
}

The boundary map and cup product on Q• are restrictions of the direct sums of the boundary

maps and cup products in C•(X̄) and C̃•(cone(t<kL)). As established before ker(g#) is a sub-
DGA of C•(X̄). Therefore incl is a sub-DGA inclusion and induces a multiplicative map on
cohomology.



MULTIPLICATIVE DE RHAM THEOREMS FOR RELATIVE COHOM. AND HI 115

To see that incl is a quasi-isomorphism consider the following diagram.

0 Q• C•(X̄)⊕ C̃•(cone(t<kL)) C•(t<kL) 0

0 ker(g#) C•(X̄) C•(t<kL) 0

F

incl qis

g#

The map F sends (ϕ,ψ) 7→ g#ϕ− i#0 ψ and is surjective, since g# is surjective as was established
in the proof of Proposition 3.3. The lower sequence also appeared already in this proof. The
vertical map in the middle is the inclusion as the first factor. It is a quasi-isomorphism, since all
the reduced cohomology groups of the cone of t<kL vanish. Applying the 5-Lemma to the induced
pair of long exact cohomology sequences then proves that incl is a quasi-isomorphism. �

Combining all the results of this section proves Theorem 2. For later purposes, we establish
the following concrete description of that isomorphism.

Theorem 4. The map φ1 induced by the universal property of the pullback in diagram

C̃•(I p̄X)

Q• C̃•(cone(t<kL))

C•(X̄) C•(t<kL)

φ1

i#̃
X̄

i#
cone(t<kL)

q2

q1 i#̃0

g#

induces the ring isomorphism given by the composition

H̃•(I p̄X) H•(M(g), t<kL) H•(ker(g#)) H•(Q•),
∼=
p∗

∼=
(r|∗)−1

∼=
incl∗

where r|∗ is an abbreviation of ((r#|ker(g#))
∗)−1.

Proof. We equip cone(t<kL) with the canonical cell structure induced from the cell structure of
t<kL (see [11, Section 2.3] for more details) and choose the apex of the cone as base point. In
this situation

C̃•(cone(t<kL)) = C•(t<kL)⊕ C•−1(t<kL),

with differential (
dt<kL 0

id#
t<kL −dt<kL[−1]

)
.

Then, for a cochain (b1, b2) ∈ C̃•(cone(t<kL)), we get i#0 (b1, b2) = b1. Analogously to cone(t<kL),
we equip I p̄X = cone(g) with the canonical cell structure induced from the cell structures of
t<kL and X̄ and again choose the apex of the cone as the base point. Thus,

C̃•(I p̄X) = C•(X̄)⊕ C•−1(t<kL),

with differential (
dX̄ 0

g# −dt<kL[−1]

)
.

Due to the canonical choices of the cell structures of the cones, we have

i#cone(t<kL)(a, b) = (g#a, b)

and

i#̃
X̄

(a, b) = a .



116 FRANZ WILHELM SCHLÖDER AND J. TIMO ESSIG

Since

i#̃0 ◦ i
#
cone(t<kL)(a, b) = i#̃0 (g#a, b) = g#a = g# ◦ i#̃

X̄
(a, b) ,

the outer square in the diagram above commutes and the universal property defines the map φ1

uniquely. As mentioned at the beginning of section 3, φ1 is a cochain map by construction but it is
not clear whether it is a DGA homomorphism or whether it at least induces a multiplicative map
on cohomology. We prove now that φ1 induces the same map on cohomology as the composition
that we have constructed previously.

Considering Q• as a subset of C•(X̄)⊕ C̃•(cone(t<kL)) allows us to write

φ1 : C•(X̄)⊕ C•−1(t<kL)→ Q•, (a, b) 7→ (a, (g#a, b))

explicitly. If (a, b) is a closed cochain, it holds that da = 0 and g#a = db. Since

g# : C•(X̄)→ C•(t<kL)

is surjective, we can choose a cochain β ∈ C•(X̄) with g#β = b. Then, (a − dβ, (0, 0)) ∈ Q•

is a representantive of the cohomology class of φ1(a, b), which can be seen by the following
calculation.

(a− dβ, (0, 0)) + d (β, (b, 0)) = (a− dβ, (0, 0)) + (dβ, (db, b)) = (a, (db, b)) = φ1(a, b).

Since g#(a − dβ) = g#a − db = 0, we can write (a− dβ, (0, 0)) = incl(a − dβ). In analogy
to the models used for cellular cochain complexes of cone(t<kL) and I p̄X, the cellular cochain
complex of the mapping cylinder M(g) can be identified with

C•(M(g)) = C•(X̄)⊕ C•−1(t<kL)⊕ C•(t<kL)

with differential (
dX̄ 0 0

g# −dt<kL id

0 0 dt<kL

)
.

The complex relative to the top of the cylinder becomes C•(M(g), t<kL) = C•(X̄)⊕C•−1(t<kL)
with induced differential. The cochain map r# : C•(X̄) → C•(M(g)) maps a ∈ C•(X̄) to
(a, 0, g#a). Therefore, the restriction r# : ker(g#) → C•(M(g), t<kL) maps a ∈ C•(X̄, t<kL)
to (a, 0) ∈ C•(M(g), t<kL). The cochain map

p# : C̃•(I p̄X)→ C•(M(g), t<kL)

becomes p#(a, b) = (a, b). The following calculation then shows that p∗ ([(a, b)]) = r|∗ ([a− dβ])
and thus implies that φ∗1 is the composition of the proposition,

p#(a, b)− r#(a− dβ) = (a, b)− (a− dβ, 0) = (dβ, b) = (dβ, g#β) = d(β, 0) .

�

4. A Multiplicative de Rham Theorem for HI

The goal of this section is to prove that the cohomology rings H•(ΩI•p̄ (X̄)) and H•(C•(I p̄X))
are isomorphic. In Section 4.1, we extend the de Rham map to map from singular cochains to
cellular cochains since we are forced to use cellular cochains in Section 4.3. This is established for
both the absolute and relative case and is then applied in Section 4.2 to construct the first part
ρ̃ of our eventual intersection space cohomology de Rham map φ. For each case we demonstrate
that the maps induce multiplicative maps on cohomology. In Section 3 we established that the
cellular cochains of I p̄X fit up to the isomorphism φ1 into a pullback square. This property is
now used to construct a map φ2 in Section 4.3 that combines with ρ̃ and φ−1

1 into φ. We take
care to construct φ2 as DGA homomorphisms. Accordingly the induced map on cohomology is
multiplicative and so is the induced map of φ. Section 4.4 gives the explicit form of φ on cochain
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level and Section 4.5 establishes that φ is a quasi-isomorphism. Accordingly the induced map is
a ring isomorphism and we have proven our result.

4.1. de Rham Map to Cellular Cochains. Let C•(M) denote the cellular, S•(M) the sin-

gular and Ŝ•(M) the normalized singular chain complex of M , C•(M), S•(M) and Ŝ•(M) the
corresponding cochains complexes and define relative chains and cochains as usual.

In the rest of this article, we work with a de Rham type map ρ : Ω•(M) → C•(M) and the
corresponding relative morphism. M is a smooth manifold, possibly open or with boundary,
with some CW decomposition. In the relative setting, L is a submanifold of M and we choose
CW decompositions such that L ⊂M is a CW-subcomplex. We outline the construction of the
cellular de Rham maps ρ and ρrel and explain why they induce multiplicative isomorphisms on
cohomology.

We can restrict a singular cochain to the nondegenerate simplices and get an element of

Ŝn(M). This defines a restriction operator

restr : Sn(M) � Ŝn(M),

which is clearly multiplicative. The geometric realization ΓM of the non-degenerate singular
simplices of M is a CW complex with one n−cell for each non-degenerate singular n−simplex

and with cellular chain complex C•(ΓM) naturally isomorphic to Ŝ•(M). Further, there is a
weak equivalence γ : ΓM →M . In our setting the Whitehead Theorem implies that γ actually
is a homotopy equivalence. Taking a CW-approximation of the homotopy inverse of γ, which
is still a homotopy equivalence and which we denote by δ : M → ΓM , this gives a cochain

homotopy equivalence δ# : Ŝ•(M) = C•(ΓM) → C•(M) that induces a ring isomorphism on
cohomology. This construction also carries over to the relative case.

The last component of the multiplicative de Rham isomorphism we use henceforth is Lee’s
smoothing operator (see [14, pp. 474 ff]). It is a chain homotopy equivalence

s : S•(M)→ S∞• (M),

where S∞• (M) is the chain complex of smooth singular chains. Given a submanifold L ⊂M, the
operator can be defined in such a way that it commutes with the inclusion of this submanifold
in M . Hence, s induces a quasi-isomorphism of relative chain complexes

s : S•(M,L)
qis−−→ S∞• (M,L).

The induced maps on the absolute and relative cochain complexes are also quasi-isomorphisms
and therefore induce isomorphisms, i.e.

s∗ : H•sing,∞(M)
∼=−→ H•sing(M),

s∗ : H•sing,∞(M,L)
∼=−→ H•sing(M,L).

Since the inverses are induced by the restrictions S•(M)→ S•∞(M) and S•(M,L)→ S•∞(M,L),
which are clearly multiplicative, the induced maps s∗ on cohomology are ring isomorphisms.
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Let us denote the linear dual to s by s†. We define the de Rham maps ρ : Ω•(M)→ C•(M) and
ρrel : Ω•(M,L)→ C•(M,L) by the following commutative diagrams.

Ω•(M) S•∞(M) S•(M)

Ŝ•(M)

C•(M),

ρs

ρ

s†

restr

δ#

where ρs is the classical de Rham map and

Ω•(M,L) S•∞(M,L) S•(M,L)

Ŝ•(M,L)

C•(M,L),

ρs,rel

ρrel

s†

restr

δ#
rel

where ρs,rel is the relative de Rham map of Theorem 1. All the maps we used to define the de
Rham maps ρ and ρrel are DGA morphisms, or at least induce ring isomorphisms on cohomology.
For the classical de Rham maps this follows by [7, Theorem III-3.1] in the absolute case and by
the relative de Rham Theorem in Section 2.4 in the relative case. Hence the maps ρ and ρrel
induce ring isomorphisms on cohomology. This proves the following theorem.

Theorem 5 (Cellular multiplicative relative de Rham Theorem). Let L ⊂ M be a smooth
submanifold of the smooth manifold M . Choose a CW-structure on M such that L ⊂M is also
a CW-subcomplex. Then, the map ρrel induces a ring isomorphism

ρ∗rel : H•dR(M,L)→ H• (C•(M,L)) .

4.2. Multiplicativity of ρ̃. In this section, we construct a map ρ̃ that translates the construc-
tion of ΩI•p̄ (X̄) to cochains of CW complexes. We then use Theorem 5 to prove that ρ̃ induces
a multiplicative map on cohomology.

Recall that

ΩI•p̄ (X̄) := {ω ∈ Ω•(X̄)|i∗∂(ω) ∈ τ≥kΩ•(L)} ,
so the de Rham map ρX̄ on Ω•(X̄) restricts to a map ρX̄ | on ΩI•p̄ (X̄). By the naturality of the
de Rham map its restriction ρX̄ | factors over

C̄• := {x ∈ C•(X̄)|i#∂ (x) ∈ T≥kC•(L)}

with T≥kC
•(L) the naive cotruncation (i.e. 0 in degrees lower than k and C•(L) in degrees

greater than or equal to k). We define ρ̃ to be this factor. So with incl. : C̄• → C•(X̄) the
sub-complex inclusion we have ρX̄ | = incl. ◦ ρ̃.

Note that with the definition

C•(X̄, L) := {x ∈ C•(X̄)|i#∂ (x) = 0}

we have sub-complex inclusions C•(X̄, L) ⊂ C̄• ⊂ C•(X̄), analogously to the inclusions

Ω•(X̄, L) ⊂ ΩI•p̄ (X̄) ⊂ Ω•(X̄).
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Recall that in the proof of Theorem 3 we established that i#∂ is multiplicative and the product
∪X̄ on C•(X̄) from Section 3 restricts to C•(X̄, L). The restriction of ∪X̄ to C̄• is also well-
defined due to the construction of C̄• via cotruncation together with the graded nature of the
cup product. Therefore the inclusions above are sub-DGA inclusions.

Proposition 4.1. The map ρ̃ induces a multiplicative map on cohomology.

Proof. Let ω ∈ ΩIqp̄(X̄) and η ∈ ΩIrp̄(X̄) be two closed forms. Let us consider the case q = 0 and r
arbitrary. The case q arbitrary and r = 0 is analogous. For q = 0, the closed form ω is a constant
function. Recall that k = n− 1− p̄(n) with p̄ a Goresky-MacPherson perversity function. The
definition of these perversity functions directly implies k ≥ 1. Therefore, ΩI0

p̄(X̄) = Ω0(X̄, L)
and ω has to vanish on the boundary. We conclude that ω = 0 and

ρ̃(ω) ∪ ρ̃(η) = 0 ∪ ρ̃(η)

= 0

= ρ̃(0 ∧ η)

= ρ̃(ω ∧ η).

Thus the multiplicativity already holds on cochain level.
Next, consider the case q and r < k. Here, we have ω ∈ Ωq(X̄, L) and η ∈ Ωr(X̄, L). Using

that ρrel is a restriction of ρ̃ we calculate

ρ̃(ω) ∪ ρ̃(η) = ρrel(ω) ∪ ρrel(η)

= ρrel(ω ∧ η) + dx

for some x ∈ Cq+r−1(X̄, L) since ρrel induces a multiplicative map on cohomology if we take the
relative de Rham theorem into account. Since Cq+r−1(X̄, L) ⊂ C̄q+r−1, we have x ∈ C̄q+r−1.
Further, we observe that since ω and η vanish on the boundary, their wedge product does so,
too. So, ρrel(ω ∧ η) = ρ̃(ω ∧ η) and, combing all these facts, we see

[ρ̃(ω) ∪ ρ̃(η)] = [ρ̃(ω ∧ η) + dx] = [ρ̃(ω ∧ η)]

with [. . . ] denoting the cohomology class in the cohomology of C̄•.
Finally, let q ≥ k and r ≥ 1, and in particular q + r ≥ k + 1. We use ΩI•p̄ (X̄) ⊂ Ω•(X̄) and

that ρ̃ is a restriction of ρX̄ to calculate

ρ̃(ω) ∪ ρ̃(η) = ρX̄(ω) ∪ ρX̄(η)

= ρX̄(ω ∧ η) + dx = ρ̃(ω ∧ η) + dx

for some x ∈ Cq+r−1(X̄). The last line follows because the classical de Rham map is mutliplica-
tive on cohomology. We used that if q+ r ≥ k+ 1, then ρ̃ = ρX̄ . Further, Cq+r−1(X̄) = C̄q+r−1

and the multiplicativity also holds in the cohomology of C̄•, analogously as for the case above. �

4.3. Multiplicativity of φ2. In Section 3 and 4.2 we obtained the maps

φ1 : C•(I p̄X)→ Q• and ρ̃ : ΩI•p̄ (X̄)→ C̄•

which induce ring isomorphisms on cohomology. To complete our intersection space cohomology
de Rham map, we construct the connecting piece φ2 : C̄• → Q• via the universal property of
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the pullback Q• applied to the diagram

(11)

C̄• T≥kC
•(L)

Q• C̃•(cone(t<kL))

C•(X̄) C•(t<kL) .

incl

i#∂

φ2 X

q2

q1 i#̃0

g#

We construct the map X : T≥kC
•(L) → C̃•(cone(t<kL)) in Lemma 4.2 and establish the com-

mutativity of the diagram in Lemma 4.3. We also establish that Diagram 11 is a diagram in the
category of DGAs. Therefore φ2 a DGA homomorphism.

Lemma 4.2. There is a DGA homomorphism X : T≥kC
•(L) → C̃•(cone(t<kL)) that satisfies

i#̃0 ◦ X = f#|T≥kC•(L). Recall that we always assume k ≥ 1.

Proof. Note that the naive cotruncation T≥kC
•(L) vanishes in degrees smaller than k and

C̃•(cone(t<kL)) vanishes in degrees greater than k + 1. Accordingly, X is the trivial map in
degrees different from k or k + 1.

To obtain a cochain map we need to choose Xk and Xk+1 such that the diagram

Ck(L) C̃k(cone(t<kL))

Ck+1(L) C̃k+1(cone(t<kL))

Xk

dL dcone

Xk+1

commutes. Using the canonical choice for a cell structure of cone(t<kL) and choosing the cone
point as base point, we again identify

C̃k(cone(t<kL)) = Ck(t<kL)⊕ Ck−1(t<kL)

and

C̃k+1(cone(t<kL)) = 0⊕ Ck(t<kL).

Recall that with this identification, the differential becomes

dcone :=
(

dt<kL 0

idC•(t<kL) −dt<kL[−1]

)
.

Recall that Hk(C•(t<kL)) = 0 and ker(dk) = Ck(t<kL) so the differential

dk−1
t<kL

: Ck−1(t<kL)→ Ck(t<kL)

is surjective. Accordingly, we might choose a linear section x : Ck(t<kL)→ Ck−1(t<kL) of dk−1
t<kL

,
i.e.

dk−1
t<kL

◦ x = id .

We define

Xk := (idCk(t<kL) ⊕ x) ◦ f#,k|T≥kC•(L) ,

and

Xk+1 := 0.
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Here f is the map from the construction of the Moore approximation and f#,k denotes the part
in degree k of the induced cochain map f#. The computation

dkcone ◦ Xk(x) =

(
dkt<kL

◦ f#,k|T≥kC•(L)(x)

f#,k|T≥kC•(L)(x)− dk−1
t<kL

◦ x ◦ f#,k|T≥kC•(L)(x)

)
=

(
0

f#,k|T≥kC•(L)(x)− f#,k|T≥kC•(L)(x)

)
= 0 = Xk+1 ◦ dkL(x)

with x an element of Ck(L) proves the commutativity of the square. Thus X is a cochain map

(we made use of dkt<kL
= 0 and the definition of x as a section of dk−1

t<kL
).

The multiplicativity of X is equivalent to the commutativity of the diagram

T≥kC
q(L)⊗ T≥kCr(L) T≥kC

q+r(L)

C̃q(cone(t<kL))⊗ C̃r(cone(t<kL)) C̃q+r(cone(t<kL))

∪|

X⊗X X

∪

for all combinations of degrees q and r. Here ∪| is the restriction of the cup product of C•(L)

to T≥kC
•(L) and ∪ the cup product on C̃•(cone(t<kL)). If either q < k or r < k then

T≥kC
q(L)⊗ T≥kCr(L) = 0

and the diagram commutes trivially. On the other hand, if q ≥ k, r ≥ k and k > 1 we can infer
that

q + r > k + 1 ≥ dim(cone(t<kL)).

Thus C̃q+r(cone(t<kL)) = 0 and the commutativity of the diagram is given for trivial reasons.
Recall that L is assumed to be simply connected. In this situation t<1L := {pt} and f the
inclusion of the base point constitute a spatial homology truncation of L with k = 1. Accordingly
cone(t<1L) is actually a one dimensional CW complex. On the other hand k = 1 together with
q ≥ k and r ≥ k implies q + r ≥ 2 and thus we get the same situation as in the case with k > 1.
In conclusion, the diagram commutes for all degrees q and r independent of the cut-off value k.
Thus X is not only a cochain map but a DGA homomorphism for all k.

Finally, recall that i#̃0 (b1, b2) = b1, implying i#̃0 ◦ X = f#|T≥kC•(L). �

Let us point out that the proof above and especially the part concerning the multiplicativity
of X abused the fact that the cellular cochain complexes vanish above the dimension of the space.
This is the primary motivation to work with cellular cochains in this article. In order to justify
the construction of φ2 via the universal property of the pullback we prove

Lemma 4.3. The diagram

C̄• T≥kC
•(L)

C̃•(cone(t<kL))

C•(X̄) C•(t<kL) .

incl

i#∂

X

i#̃0

g#

is commutative and products can be chosen such that all maps are DGA homomorphisms.
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Proof. Direct computation yields

i#̃0 ◦ X ◦ i
#
∂ = f#|T≥kC•(L) ◦ i#∂

= f# ◦

{
i#∂ , in degree ≥ k
0 , in degree < k

= f# ◦ i#∂ ◦ incl

= g# ◦ incl

where we used the identity i#̃0 ◦X = f#|T≥kC•(L) from Lemma 4.2, f#|T≥kC•(L) = f# in degrees

≥ k, f#|T≥kC•(L) = 0 in degrees < k, and finally

i#∂ ◦ incl =

{
i#∂ , in degree ≥ k
0 , in degree < k

by the construction of C̄•.

As before we work with products such that g# and i#̃0 simultaneously are DGA homomor-
phisms. In the proof of Theorem 3 we also obtained a cellular diagonal approximation on L

such that i#∂ is multiplicative. Restricting the induced product to T≥kC
•(L) and restricting the

product on C•(X̄) to C̄• makes the map incl and i#∂ : C̄• → T≥kC
•(L) multiplicative. From the

proof of Lemma 4.2 it is clear that X is multiplicative independent of the products we choose on

C•(t<kL) and C̃•(cone(t<kL)). Therefore we have a consistent choice of products. �

4.4. The intersection space cohomology de Rham map φ. We combine the maps ρ̃ :

ΩI•p̄ (X̄) → C̄•, φ2 : C̄• → Q• and φ−1
1 : Q• → C̃•(I p̄X) obtained in Section 4.2, 4.3 and 3,

respectively, into our intersection space cohomology de Rham map φ := φ−1
1 ◦ φ2 ◦ ρ̃. The DGA

homomorphism φ2 induces a multiplicative maps already on the level of representatives and φ−1
1

and ρ̃ induce multiplicative maps on cohomology. Therefore, φ induces a multiplicative map on
cohomology. In Section 4.5, we check that this induced map is indeed is an isomorphism. But
first let us write down the explicit form of φ.

Note that φ−1
1 : Q• → C̃•(I p̄X) is explicitly given by

φ−1
1 (a, (i#∂ a, b)) = (a, b)

and by the pullback construction we have,

φ2(a) = (incl(a),X ◦ i#∂ (a)).

Further recall that

X =

{
0 , deg 6= k

(idCk(t<kL) ⊕ x) ◦ f#,k|T≥kC•(L) , deg = k .

Together we have

φ−1
1 ◦ φ2(a) =

{
(incl(a), 0) , deg(a) 6= k

(incl(a), x ◦ f#,k|T≥kC•(L) ◦ i∗∂(a)) , deg(a) = k
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and finally using that incl ◦ ρ̃ = ρX̄ | by construction we arive at

φ(ω) = φ−1
1 ◦ φ2 ◦ ρ̃(ω)

=

{
(ρX̄ |(ω), 0) , deg(a) 6= k

(ρX̄ |(ω), x ◦ f#,k|T≥kC•(L) ◦ i∗∂ ◦ ρ̃(ω)) , deg(a) = k .
(12)

4.5. φ is a Quasi-Isomorphism. To establish that φ is a quasi-isomorphism we make use of a
5-Lemma argument that is similar to the one given by Banagl in [2, Section 9]. On the de Rham
side the long exact sequence is induced by the following short exact sequence.

Lemma 4.4. [2, Lemma 9.5 adapted to our definition of ΩI•p̄ (X̄)]
The sequence

0 ΩI•p̄ (X̄) Ω•(X̄) τ<kΩ•(L) 0incl. proj.◦i#∂

is exact. Here τ<kΩ•(L) is the orthogonal complement of τ≥kΩ•(L) with respect to the Hodge
inner product on Ω•(L),

incl. : ΩI•p̄ (X̄)→ Ω•(X̄)

is the subcomplex inclusion and

proj. : Ω•(L)→ τ<kΩ•(L)

is orthogonal projection onto τ<kΩ•(L).

Proof. Certainly the inclusion of ΩI•p̄ (X̄) in Ω•(X̄) is injective and thus exactness holds at

ΩI•p̄ (X̄). The maps i#∂ and proj. are surjective and so is their composition. We further observe

that i#∂ ◦ incl.(ΩI•p̄ (X̄)) ⊂ τ≥kΩ•(L) by construction of ΩI•p̄ (X̄) and proj. ◦ i#∂ ◦ incl. = 0 since
proj. is the projection to the orthogonal complement of τ≥kΩ•(L). This gives the exactness in
the middle entry. In conclusion the sequence is exact. �

Now recall that if we equip cone(t<kL) with the canonical cell structure induced from the cell
structure of t<kL and choose the tip of the cone as base point, then

C̃•(I p̄X) = C•(X̄)⊕ C•−1(t<kL) .

This orthogonal decomposition gives rise to the short exact sequence involving the inclusion
of the second summand followed by the projection to the first π1. Note that changing the sign
of the first map preserves the exactness, therefore we have the short exact sequence

(13) 0 C•−1(t<kL) C̃•(cone(t<kL)) C•(X̄) 0I π1

with

I : C•−1(t<kL)→ C•(X̄)⊕ C•−1(t<kL) = C̃•(I p̄X)

b 7→ −(0, b).

We introduce the sign here since it will be necessary to have commutativity later. Let us remark
that while π1 is a cochain map, I is only a cochain map up to sign, however this is enough to
induce a long exact sequence on cohomology.
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This sequences combines with the long exact sequence induced from the short exact sequences
of Lemma 4.4 into the following diagram.

(14)

Hq−1(Ω•(X̄)) Hq−1(τ<kΩ•(L)) Hq(ΩI•p̄ (X̄)) Hq(Ω•(X̄))

Hq−1(C•(X̄)) Hq−1(C•(t<kL)) Hq(C̃•(I p̄X)) Hq(C•(X̄))

ρ∗
X̄ f∗◦ρL|∗ φ∗ ρ∗

X̄

Here ρL| is the restriction of ρL to τ<kΩ•(L).
Let us have a look at the maps in this diagram. In the upper row we have (from left to right)

the induced map of proj. ◦ i#∂ and the connecting homomorphism δ obtained by the zig-zag
construction and the induced map of incl.. Explicitly δ maps a cohomology class represented by
a closed form ω in τ<kΩ•(L) to the cohomology class represented by dω̄. Here ω̄ is an extension

of ω to X̄ (i.e. i#∂ (ω̄) = ω). This implies

(15) i#∂ (dω̄) = di#∂ (ω̄) = dω = 0

since ω is closed. The middle arrow in the lower row is induced by I and the right one by
π1. The connecting homomorphism on the right is given by g∗. To see this recall that by
construction the connecting homomorphism maps a closed cohomology class represented by a
closed cochain x ∈ C•(X̄) to the cohomology class represented by a cochain l ∈ C•(t<kL) such
that I(l) = d(x, l′) with l′ ∈ C•−1(t<kL) arbitrary, so

(0, l) = I(l) = d(x, l′) = (dx, g# ∗ (x)− dl′) = (0, g#(x)− dl′) .
Therefore we have for the cohomology class of l

[l] = [g∗(x)− dl′] = [g#(x)] = g∗[x] .

We want to apply the 5-Lemma to diagram (14) so we check the pre-requisites.

Lemma 4.5. Diagram (14) commutes at least up to a sign and has exact rows.

Proof. The top and bottom rows are exact since they are part of the long exact sequence induced
from the short exact sequence from Lemma 4.4 and the Sequence 13, respectively. In the following
we prove the commutativity of this diagram.

Let us start with the commutativity of the left square. If q − 1 is greater or equal to k, the
cohomology group Hq−1(C•(t<kL)) vanishes and the square commutes trivially. If, however,
q − 1 is smaller than k the projection of Ω•(L) onto τ<kΩ•(L) is the identity and we calculate
explicitly

g∗ ◦ ρ∗X̄ = f∗ ◦ i∗∂ ◦ ρ∗X̄
= f∗ ◦ ρ∗L ◦ i∗∂
= f∗ ◦ ρ∗L ◦ proj.∗ ◦ i∗∂ .

Next, we consider the middle square. For q − 1 greater or equal to k the cohomology group
Hq−1(τ<kΩ•(L)) vanishes and the square commutes for trivial reasons. Making use of Formula
(15), we calculate

φ∗ ◦ δ[ω] = [φ(dω̄)]

=

{
[(ρX̄ |(dω̄), 0)] , deg(ω) 6= k

[(ρX̄ |(dω̄), x ◦ f#,k|T≥kC•(L) ◦ ρ̃L ◦ i#∂ (dω̄))] , deg(ω) = k

= [(ρX̄ |(dω̄), 0)].
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Since we equipped I p̄X with the canonical cell structure and choose the tip of the cone as base
point its reduced chain complex is

C̃•(I
p̄X) = C•(X̄)⊕ C•−1(t<kL)

with differential (
∂X̄ g#

0 −∂t<kL[−1]

)
.

Now take any reduced cellular q cycle (x, l) of I p̄X. Being a cycle implies ∂x = −g#l. Further
we follow the sign convention that for a q − 1 cochain α and a q chain a we have

dα(a) = (−1)qα(∂a).

We use this to calculate

[(ρX̄ |(dω̄), 0)]([x, l]) = ρX̄ |(dω̄)(x)

= dρX̄ |(ω̄)(x)

= (−1)qρX̄ |(ω̄)(∂x)

= (−1)qρX̄ |(ω̄)(−g#l)

= (−1)q+1g# ◦ ρX̄ |(ω̄)(l)

= (−1)q+1f# ◦ i#∂ ◦ ρX̄ |(ω̄)(l)

= (−1)q+1f# ◦ ρL ◦ i#∂ (ω̄)(l)

= (−1)q+1f# ◦ ρL(ω)(l)

= (−1)q+1(0, f# ◦ ρL|(ω))(x, l)

= (−1)qI ◦ f# ◦ ρL|(ω)(x, l)

= (−1)qI∗ ◦ f∗ ◦ ρL|∗[ω]([x, l]).

Thus the middle square is commutative up to a sign.
Finally, we consider the right square.

π1 ◦ φ(ω) =

{
π1 ◦ (ρX̄ |(ω), 0) deg(ω) 6= k

π1 ◦ (ρX̄ |(ω), x ◦ f#,k|T≥kC•(L) ◦ ρ̃L ◦ i#∂ (ω)) deg(ω) = k

= ρX̄ |(ω)

= ρX̄ ◦ incl.(ω)

This proves the commutativity of the square already on cochain level. �

Furthermore, ρL is a quasi-isomorphism and f induces an isomorphism on cohomology in
degrees lower than k. Thus their composition also induces an isomorphism in degrees lower than
k. Restricting to the truncated complex τ<kΩ•(L) yields a quasi-isomorphism f# ◦ ρL|. The
classical de Rham map also induces an isomorphism on cohomology. In conclusion, the 5-Lemma
is applicable and

φ∗ : H•(ΩI•p̄ (X̄))→ H•(C̃•(I p̄X))

is an isomorphism. We established before that φ∗ is multiplicative and thus have proven our
main result.

Theorem 6 (Multiplicative ΩI•p̄ (X̄) de Rham Theorem). The cohomology rings H•(ΩI•p̄ (X̄))

and H•(C̃•(I p̄X)) are isomorphic.
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5. Compatibility with Banagl’s de Rham Theorem for HI

In [2, Section 9], Banagl constructs an alternative de Rham map, which is defined by inte-
grating forms in ΩI•p̄ (X̄) over smooth cycles on the blowup X̄ of X. We recall his construction
and show that his de Rham map is compatible with the de Rham ring isomorphism of Section
4.

Banagl uses a partial smooth model (S∝• (g), ∂) for the mapping cone of the map g : t<kL→ X̄.
This chain complex is defined as S∝r (g) := S∞r

(
X̄
)
⊕Hr−1(t<kL) with the boundary operator

∂ : S∝r (g) → S∝r−1(g) involving Lee’s smoothing operator s : S•(X̄) → S∞• (X̄), defined in [14,
Section 18], and a map q : H•(t<kL) → S•(t<kL), defined as follows. For any r ∈ Z, choose a
completion H ′r of im ∂r+1 in ker ∂r, i.e. im ∂r+1 ⊕H ′r = ker ∂r. Then, choosing a representative
in H ′r for each homology class x ∈ Hr(t<kL) gives rise to a map

q : H•(t<kL)→ H ′• ↪→ ker ∂ ↪→ S•(t<kL),

which satisfies [q(x)] = x ∈ H•(t<kL). Since the definition of the multiplicative de Rham iso-
morphism in this paper makes use of normalized singular chains, we choose q such that its image
is contained in the normalized chains. This is possible since the subcomplex inclusion from the
complex of normalized singular chains to all singular chains is a quasi-isomorphism.

The boundary operator ∂ : S∝r (g) → S∝r−1(g) is then defined as ∂(v, x) := (∂v + sg#q(x), 0).

The partial smooth model S∝• (g) is quasi-isomorphic to the relative cochain complex C̃•(I
p̄X)

by [2, Proposition 9.2]. Since we want to relate the two different de Rham isomorphisms to
each other, we want to give an explicit description of the chain maps that induce this homology

isomorphism. Therefore, let S̄•(g) be the complex defined by S̄r(g) := Ŝr(X̄)⊕Hr−1 (t<kL) with

∂(v, x) = (∂v + g#q(x), 0), where Ŝ•(X̄) denotes the chain complex of nondegenerate singular
chains. It fits into the diagram of quasi-isomorphisms

C̃•(I
p̄X)

γX̄#⊕γt<kL#q
←−−−−−−−−−− S̄•(g)

ŝ⊕id−−−→ S∝• (g).

Here, we use the identification C̃•(I
p̄X) = C•(X̄) ⊕ C•−1(t<kL) as in the proof of Lemma 4.5

and let ŝ : Ŝ•(X̄) ↪→ S•(X̄)
s−→ S∞• (X̄) be the composition of the denoted subcomplex inclusion

and Lee’s smoothing operator. As in Section 4.1, the maps γ denote homotopy equivalences
coming with the geometric realization. The following diagram

Ŝ• (t<kL) Ŝ•(X̄)

C• (t<kL) C•(X̄)

g#

γt<kL# γX̄#

g#

commutes as a special case of a more general commutative diagram that contains the γ#’s and
any cellular continuous map between t<kL and X̄. We show that γX̄#⊕γt<kL#q is a chain map
with the following calculation,

∂
(
γX̄#v, γt<kL#q(x)

)
=
(
g#γt<kL#q(x)− ∂(γX̄#v), ∂γt<kL#q(x)︸ ︷︷ ︸

=γt<kL#(∂q(x))

)
=
(
g#γt<kL#q(x)− ∂(γX̄#v), 0

)
= (γX̄#g#q(x)− γX̄#∂v, 0)

= γX̄# ⊕ γt<kL#q (∂(x, v)) .

It is a quasi-isomorphism by the following argument: All the mapping cone-like complexes fit
into short exact sequences with the complexes contained in the cone on the left and right. The
maps γt<kL#q, γX̄# and their direct sum fit into a diagram of these two short exact sequences.
Since γt<kL#q and γX̄# are quasi-isomorphisms, the 5-Lemma gives that their direct sum is also
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a quasi-isomorphism. The map ŝ⊕ id is a quasi-isomorphism by the same argument. Note, that
this argument can also be used to prove [2, Lemma 9.1].

Since the integral of any smooth differential form over a degenerate simplex vanishes, the de
Rham maps are indifferent to the use of normalized or non-normalized singular simplices, so we
will neglect this distinction in the following. Banagl’s de Rham map is defined as

φB : H•
(
ΩI•p̄ (X̄)

)
→ H• (S∝• (g))

†
,

φB ([ω]) ([(v, x)]) :=

∫
v

ω .

It is noted as Ψp̄ by Banagl, but we call it φB to be consistent with our previous notation of
the de Rham morphisms for intersection space cohomology. φB is an isomorphism, as is shown
in [2, Theorem 9.11]. We adapt this map to the intermediate complex S̄•(g).

φ̄B : H•
(
ΩI•p̄ (X̄)

)
→ Hr

(
S̄•(g)

)†
,

φ̄B ([ω]) ([(v, x)]) :=

∫
sv

ω.

This map is well defined by the same arguments as in [2, Prop. 9.8] and fits into the following
commutative diagram of isomorphisms

(16)

H•
(
ΩI•p̄ (X̄)

)
H• (S∝• (g))

†

H•
(
S̄•(g)

)†
.

φB

φ̄B

(ŝ⊕id)†

The choice made to define the partial smooth complex S∝• (g) corresponds to a choice for the
map x : Ck (t<kL)→ Ck−1 (t<kL) defined in Lemma 4.2, which was used to define φ. We employ
the following choice. First, choose a basis {x1, · · · , xr} of Ck(t<kL). The Moore approximation
or spatial homology truncation, defined in [1, Chapter 1.1], is installed such that the boundary
map ∂k : Ck(t<kL) → Ck−1(t<kL) is injective, hence B := {∂kx1, · · · , ∂kxr} is a basis for
im ∂k ⊂ Ck−1 (t<kL) . The morphism q : Hk−1 (t<kL) → H ′k−1 maps a basis {ξ1, · · · , ξl} of
Hk−1 (t<kL) to the basis {q(ξ1), · · · , q(ξl)} of H ′k−1. Since

γ# : Ŝ• (t<kL)→ C• (t<kL)

is a quasi-isomorphism, the set J := {γ# (qξ1) , · · · , γ# (qξl)} completes B to a basis of ker ∂k−1.
Now choose any completion B ∪ J ∪ {y1, · · · , ys} to a basis of Ck−1 (t<kL) and let{

(∂kxi)
†, (γ#(qξj))

†
, y†k

}
i,j,k

be the corresponding dual basis of Ck−1 (t<kL) . Then, for any 1 ≤ i ≤ r, 1 ≤ j ≤ l, and
1 ≤ k ≤ s, we get

d (γ#(qξj))
†

(xi) = (γ#(qξj))
†

(∂kxi) = 0

as well as

d(y†k)(xi) = y†k(∂kxi) = 0.

In other words, all the cochains (γ#(qφi))
†
, y†j are closed. The cochains (∂kxi)

† are not closed

since d
(
(∂kxi)

†) (xi) = 1. To deduce the desired compatibility result for the different de Rham

maps, we choose the map x : Ck (t<kL) → Ck−1 (t<kL) such that its image is contained in the
span of

{
(∂kx1)†, · · · , (∂kxr)†

}
.
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Remark. Before stating the compatibility theorem, note that we do not write all the decorations
of the different geometric realizations γ in the following. We do so to make the theorem and proof
more readable. We encourage the reader to check which γ is used in the respective situation. For
the sake of readability we will in the following also write φ for the map φ∗.

Theorem 7. Let the map x : Ck (t<kL)→ Ck−1 (t<kL) be chosen as described above. Then the
following diagram of isomorphisms commutes

H•
(
ΩI•p̄ (X̄)

)
H•
(
S̄•(g)

)†
H̃• (I p̄X) H̃• (I p̄X)

†
.

∼=φ

φ̄B

∼=

∼=

∼= (γ#q⊕γ#)†

Here, H̃• (I p̄X) → H̃• (I p̄X)
†

is the standard map, that is induced by evaluating any represen-
tative of a cellular cohomology class on any representative of a homology class.

Proof. Let ω ∈ ΩIqp̄(X̄) and let (v, x) ∈ S̄p(g) be closed. Then

φ̄B ([ω]) ([(v, x)]) =

∫
sv

ω.

On the other hand, equation (12) yields

φ ([ω]) ([(γ#v, γ#qx)])

=

{
0 + ρX̄ |(ω)(γ#v) , p 6= k(
x
(
fk|T≥kC•(L) ◦ ρ̃L ◦ i#∂ (ω)

))
(γ#qx) + (ρX̄ |(ω)) (γ#v) , p = k .

To be precise, the map φ denoted here is the composition of the actual de Rham map φ with

the isomorphism H̃• (I p̄X)
∼=−→ H̃• (I p̄X)

†
. Note that(

x
(
fk|T≥kC•(L) ◦ ρ̃L ◦ i#∂ (ω)

))
∈ span

({
(∂kx1)

†
, · · · , (∂kxr)†

})
,

by our choice for the map x. Our choice of basis for Ck−1 (t<kL) implies(
x
(
fk|T≥kC•(L) ◦ ρ̃L ◦ i#∂ (ω)

))
(γ#qx) = 0,

since it is obviously true, that γ#qx ∈ span {γ#(qξ1), · · · , γ#(qξl)} . The result is the following
equality.

φ ([ω]) ([(γ#v, γ#qx)]) = ρX̄ |(ω)(γ#v).

As we mentioned in Section 4.1, the map γX̄ : ΓX̄ → X̄ is a homotopy equivalence, which maps
the geometric realization of the boundary i∂ : ∂X̄ ↪→ X̄ to this boundary, γX̄ | : Γ∂X̄ → ∂X̄.
This restriction is also a homotopy equivalence. Let δX̄ : X̄ → ΓX̄ be a homotopy inverse
of γX̄ , which maps the boundary ∂X̄ to its realization Γ∂X̄ and H̄ : ΓX̄ → ΓX̄ a homotopy
between δX̄γX̄ and the identity idΓX̄ . Such δ and H exist by the homotopy extension and lifting
property, see [16, Chapter 10.3]. Since the cellular chain complex of the geometric realization
is naturally isomorphic to the singular chain complex of X̄, this homotopy H̄ induces the chain

homotopy H : Ŝ•(X̄) → Ŝ•+1(X̄) between the chain map δX̄#γX̄# : Ŝ•(X̄) → Ŝ•(X̄) and the

identity. The restriction H̄| to Γ∂X̄ induces a chain homotopy H∂ : Ŝ•(∂X̄) → Ŝ•+1(∂X̄)

between δX̄ |# ◦ γX̄ |# : Ŝ•(∂X̄)→ Ŝ•(∂X̄) and the identity such that i∂# ◦H∂ = H∂ ◦ i∂#.
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We then get the following equation, using the definition of the absolute de Rham map ρX̄ of
Section 4.1 (where it is denoted by just ρ).

ρX̄ |(ω)(γX̄#v) =
(
δ#
X̄
s†ρs(ω)

)
(γX̄#v) = ρs(ω)

(
sδX̄#γX̄#v

)
= ρs(ω)

s(v + ∂Hv +H( ∂v︸︷︷︸
=−g#qx

)


=

∫
sv

ω +

∫
s∂Hv

ω −
∫
sHg#qx

ω =

∫
sv

ω,

We made use of (v, x) ∈ S̄p(g) being a cycle as well as of the facts, that∫
s∂Hv

ω =

∫
sHv

dω = 0,

and (using g = i∂f and H ◦ i∂# = i∂# ◦H∂)∫
sHg#qx

ω =

∫
si∂#H∂(f#qx)

ω =

∫
sH∂(f#qx)

i#∂ ω = 0,

because qx = 0 for p ≥ k, while i#∂ ω = 0 for p < k. The conclusion is the statement of the
theorem,

φ ([ω]) ([(γ#v, γ#qx)]) =

∫
sv

ω = φ̄B ([ω]) ([(v, x)]) .

�

Finally, we combine Theorem 7 with Diagram (16) into the following commutative diagram.

H•
(
ΩI•p̄ (X̄)

)

H̃• (I p̄X) H•
(
S̄•(g)

)†
H• (S∝• (g))

†
.

φB
φ̄B

φ

∼= ∼=

Remark. Note, that only H•
(
ΩI•p̄ (X̄)

)
and H̃• (I p̄X) are naturally equipped with a cup product.

The question, if any of the maps besides φ are ring isomorphisms, therefore depends on our choice

of product on H•
(
S̄•(g)

)†
and H• (S∝• (g))

†
. Since all the maps in the diagram are isomorphisms,

they are multiplicative if and only if we choose the products that are obtained by transporting the
naturally defined products via those isomorphisms. All products defined in this way are consistent
due to the commutativity of the diagram.

This means that Banagl’s de Rham isomorphism φB is a ring isomorphism if and only if we

define the cup product ∪∝ on H•(S
∝
• (g)) as the transport of the cup product ∪Ip̄X of H̃• (I p̄X)

via the isomorphism I : H• (S∝• (g))
† ∼=−→ H̃•(I p̄X), i.e.

α ∪∝ β := I−1 (I(α) ∪Ip̄X I(β)) for α, β ∈ H•(S∝• (g))†.

It is unclear though if this cup product on cohomology level comes from a cup product on the
cochain complex S•∝(g), defined in analogy to S∝• (g). A cup product on the standard mapping
cone S•(g) can be defined by

(ψ, µ) ∪ (ξ, ν) := (ψ ∪ ξ, µ ∪ g#ξ).
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The definition of S•∝(g) uses the map q, however, which depends on choices and cannot be
expected to be natural. Therefore, it is open whether this construction also gives a cup product
on the cochain complex S•∝(g).

Acknowledgements. We thank Prof. Dr. Markus Banagl (Universität Heidelberg) for his
input as supervisor of the master thesis of the first author on which parts of this article are
based. The second author wants to thank the Canon Foundation, that supported him during
his stay at the Hokkaido University, Japan, and Prof. Toru Ohmoto for being a generous host.

References

[1] Markus Banagl. Intersection Spaces, Spatial Homology Truncation, and String Theory, volume 1997 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2010. DOI: 10.1007/978-3-642-12589-8 2

[2] Markus Banagl. Foliated stratified spaces and a De Rham complex describing intersection space cohomology.

J. Differential Geom., 104(1):1–58, 2016. DOI: 10.4310/jdg/1473186538
[3] Markus Banagl and Eugenie Hunsicker. Hodge Theory for Intersection Space Cohomology. arχiv: 1502.03960

to appear in Geom. Topol.
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