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A HIGHER-DIMENSIONAL GENERALIZATION OF MUMFORD’S

RATIONAL PULLBACK FOR WEIL DIVISORS

STEFAN SCHRÖER

Abstract. Mumford defined a rational pullback for Weil divisors on normal surfaces, which
is linear, respects effectivity, and satisfies the projection formula. In higher dimensions, the

existence of small resolutions of singularities precludes such general results. We single out a

higher-dimensional situation that resembles the surface case and show for it that a rational
pullback for Weil divisors exists, which is also linear, respects effectivity, and satisfies the

projection formula.

Introduction

An important result for the theory of algebraic surfaces is Mumford’s rational pullback [11]:
Let f : X → S is the resolution of singularities for a normal surface S. Then the pullback for
Cartier divisors extends to a unique map

f∗ : Z1(S) −→ Z1(X)Q = Z1(X)⊗Z Q

for Weil divisors that retains the usual properties, namely the map f∗ is linear, respects effectiv-
ity, and satisfies the projection formula. The existence of this pullback relies on the fact that the
intersection matrix N = (Ei · Ej) for the exceptional divisors Ei ⊂ X is negative-definite, with
strictly negative entries along the diagonal and positive off-diagonal entries. Many definitions
and results for smooth surfaces extend to normal surfaces, by using Mumford’s rational pullback.
For example, the Z-valued intersection form for Cartier divisors on proper surfaces extends to a
Q-valued intersection form for Weil divisors.

Despite the importance of a rational pullback, in particular for canonical divisors in the mini-
mal model program, there have been little attempts to generalize Mumford’s rational pullback to
higher dimensions. Indeed, the existence of small resolutions of singularities in dimension d ≥ 3
precludes unconditional results. Nevertheless, de Fernex and Hacon [6] succeeded to construct a
real-valued pullback using valuation theory and asymptotic behavior in a surprising way. In this
general set-up, however, it is not so clear when linearity holds, effectivity is preserved and the
projection formula remains true. The main goal of this paper is to single out a higher-dimensional
situation that sufficiently resembles the surface case and that yields a rational pullback with these
three properties. It might be interesting to combine our results to other forms of pullbacks, for
example the numerical pullback for curves with respect to certain rational maps f : X 99K Z
between Q-factorial projective schemes, as constructed by Araujo [1], Section 4.

We work in the following general set-up: Let S be the spectrum of a noetherian ring R that
is local and normal of dimension d ≥ 2, with closed point z ∈ Z, and f : X → S be a proper
birational morphism with X integral and normal. We do not require a ground field, but for the
sake of exposition we assume that R is excellent. Let Exc(X/R) the exceptional locus, which
can be viewed as the support for the coherent sheaf Ω1

X/R. Our main result is:
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Theorem. (See 1.2) The morphism f : X → S admits a rational pullback provided the following
three conditions hold:

(i) For each point x ∈ X, the local ring OX,x is Q-factorial.
(ii) The exceptional locus Exc(X/R) and the closed fiber f−1(z) coincide as closed sets, and

this is equidimensional of dimension d− 1.
(iii) Its irreducible components E1, . . . , Er all have Picard number ρ = 1.

Here the Picard number ρ = ρ(Ei) denotes the rank of the Picard group modulo numerical
equivalence. Note that the assumptions (i)–(iii) hold in dimension d = 2 for any resolution of
singularities. It is also easy to produce examples in higher dimension, by contracting suitable
Cartier divisors.

The key idea for the above result is to work with the non-symmetric square matrix
N = (Ei ·Cj), where Cj ⊂ Ej are chosen curves. The crucial point is to establish that A = −tN
is an invertible M-matrix, a very useful notion from linear algebra going back to Minkowski that
generalizes positive-definiteness for symmetric matrices to arbitrary square matrices. The theory
of invertible M-matrices is widespread in applied mathematics, but perhaps not so well-known
in pure mathematics. Our approach also relies on some recent contractibility results in [13],
which in turn are based on Cutkosky’s study of graded linear system and his generalization of
big invertible sheaves to non-integral schemes [5].

The paper is organized as follows: In the first section, we recall Mumford’s rational pullback
for surfaces, discuss the problem of extending it to higher dimensions, and state our main result.
The second section contains the proofs.

Acknowledgement. I would like to thank the referee for useful comments. This research
was conducted in the framework of the research training group GRK 2240: Algebro-geometric
Methods in Algebra, Arithmetic and Topology, which is funded by the Deutsche Forschungsge-
meinschaft.

1. Rational pullback

Let R be a local noetherian ring that is normal of dimension d ≥ 2, with residue field
k = R/mR, spectrum S and closed point z ∈ S. For the sake of exposition, I also assume
that the ring R is excellent. Let Z1(S) be the group of Weil Divisors, which is the free abelian
group generated by the prime divisors D ⊂ S. This is an ordered group in the sense of [4],
Chapter VI, where the positive elements D ≥ 0 are the effective divisors D ⊂ X. The same
applies to the group of Q-divisors Z1(S)Q = Z1(S) ⊗ Q and the subgroup of Cartier divisors
Cart(S). Note that throughout we use the term “positive” in Bourbaki’s sense x ≥ 0, and
“strictly positive” for x > 0.

Let f : X → S be a proper birational morphism, where X is integral and normal. For each
point s ∈ S, the fiber f−1(s) is a proper scheme over the field κ(s). Its closed subschemes
that are equidimensional of dimension one are called vertical curves. For each invertible sheaf
L ∈ Pic(X) and each vertical curve C ⊂ f−1(s), s ∈ S we get the intersection number

(L · C) = χ(LC)− χ(OC),

where the Euler characteristics are computed via dimensions of vector spaces over κ(s). If
L = OX(D) for some effective Cartier divisor D ⊂ X not containing C, the integer

(D · C) = (L · C)

becomes the vector space dimension of H0(C,OD∩C), and thus acquires a geometric meaning.
We refer to Kleiman [10] for the general theory of intersection numbers.
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For each effective Cartier divisor D ⊂ S, the subscheme f−1(D) ⊂ X remains an effective
Cartier divisor, because X, S are integral and f : X → S is dominant. This fact yields a pullback
homomorphism for Cartier divisors

(1) f∗ : Cart(S) −→ Cart(X) ⊂ Z1(X),

which is linear, increasing, and satisfies the projection formula. The latter means (L · C) = 0
for each vertical curve C ⊂ f−1(s), s ∈ S. We seek to extend (1) to a rational pullback
f∗ : Z1(S) → Z1(X)Q that is also linear, increasing and satisfies the projection formula. Such
an extension exists a priori on the subgroup of Q-Cartier divisor. The crux here is that we want
to extend further, without making any assumption on the class group Cl(R) = Z1(S)/Cart(S).
However, to make sense of the intersection numbers in the projection formula, we will usually
assume that the local rings OX,x are Q-factorial, that is, the abelian groups Cl(OX,x) are torsion
groups.

Now suppose we are in dimension d = 2. Then the exceptional locus Exc(X/R) = Supp(Ω1
X/R)

coincides with the closed fiber f−1(z), and the underlying reduced closed subscheme E ⊂ X is
equidimensional, of dimension dim(E) = 1. Decompose E = E1 + . . . + Er into irreducible
components. Under the assumption that all local rings OX,x are Q-factorial, we get a Q-valued
intersection matrix N = (Ei ·Ej). This matrix is symmetric and negative-definite, an observation
going back to Mumford [11], Artin [2] and Deligne [7], Exposé X, Corollary 1.9, in various forms
of generality. Mumford used this to define the rational pullback f∗ : Z1(S)→ Z1(X)Q as follows:
For each prime divisor D ⊂ S, the strict transform D′ ⊂ X yields certain intersection numbers
(D′ · Ei) ≥ 0. Since N is invertible, there are unique rational numbers m1/n, . . . ,mr/n with
(nD′ · Ej) = −(

∑
miEi · Ej), for each 1 ≤ j ≤ r. Mumford sets

f∗(D) = D′ +
1

n

∑
miEi

and extends by linearity ([11], Section II (b)). By construction, the projection formula
(f∗(D) ·Ej) = 0 holds. A non-trivial fact from linear algebra ensures that all entries of N−1 are
negative, hence mi/n ≥ 0, so the rational pullback preserves effectivity.

In the general situation d ≥ 2, and write E1, . . . , Er ⊂ Exc(X/R) for the irreducible compo-
nents of dimension dim(Ei) = d− 1. This are precisely those prime divisors on X whose images
on S cease to be a divisor. The existence of a rational pullback can be seen as a problem in
linear programming :

Definition 1.1. Suppose that all local rings OX,x are Q-factorial. We say that f : X → S
admits a rational pullback if for each L ∈ Pic(X) having a global section that does not vanish
along E1, . . . , Er, there are unique rational numbers m1/n, . . . ,mr/n ∈ Q≥0 such that

(L ⊗n · C) = −(
∑

miEi · C)

for all vertical curves C ⊂ f−1(s), s ∈ S.

Indeed, we then define the homomorphism f∗ : Z1(S)→ Z1(X)Q by the formula

(2) f∗(D) = D′ +
1

nn′

∑
miEi,

where D is a prime divisor, D′ is its strict transform, n′ > 0 is an integer such that n′D′ is
Cartier, and the coefficients mi/n arise from the invertible sheaf L = OX(n′D′). Clearly, this
does not depend on the choice of n′, and the map is linear, increasing, and satisfies the projection
formula. If D ⊂ S is an effective Cartier divisor, then f−1(D) = D′ +

∑
miEi is numerically

trivial on all vertical curves. Hence f−1(n′D) coincides with the rational pullback f∗(n′D),
whenever n′D′ ⊂ X is Cartier. Since Z1(X)Q is torsion-free, we already have f−1(D) = f∗(D).
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It follows that the rational pullback extends the usual pullback for Cartier divisors. Conversely,
if such a map f∗ : Z1(S) → Z1(X)Q exists, (2) yields the desired coefficients in Definition 1.1,
by setting L = OX(n′D′).

It seems difficult to verify directly that a morphism f : X → S admits a rational pullback.
The main result of this paper is the following criterion, whose proof will occupy the second
section:

Theorem 1.2. The morphism f : X → S admits a rational pullback provided the following three
conditions holds:

(i) All local rings OX,x are Q-factorial.
(ii) The exceptional locus Exc(X/R) and the closed fiber f−1(z) coincide as closed sets, and

this is equidimensional of dimension d− 1.
(iii) Its irreducible components E1, . . . , Er have Picard number ρ = 1.

Each exceptional divisor Y = Ei is a proper k-scheme. Let Z1(Y ) be the free abelian group
generated by the integral curves C ⊂ Y , and Pic(Y ) × Z1(Y ) → Z be the ensuing intersection
pairing. The radical on the left is Picτ (Y ), the group of numerically trivial invertible sheaves. By
Finiteness of the Base, the residue class group N1(Y ) = Pic(Y )/Picτ (Y ) is finitely generated.
Being torsion-free, it must be free. Its rank ρ ≥ 0 is called the Picard number. Let

N1(Y )×N1(Y )→ Z

be the induced non-degenerate pairing. Then also N1(Y ) is finitely generated and free, of rank
ρ ≥ 0.

In dimension d = 2, we have N1(Ei) = Z, and the conditions of the theorem are automatically
satisfied for any resolution of singularities f : X → S. We thus recover Mumford’s rational
pullback. Actually, it suffices to assume that the local rings OX,x are Q-factorial.

It is not difficult to construct proper birational morphisms f : X → S in arbitrary dimension
d ≥ 2 for which our result applies: Let A be an excellent discrete valuation ring, with residue
field k = A/mA, and consider any projective flat A-scheme Y whose closed fiber Y ⊗A k is
smooth, with Picard number ρ = 1. According to [13], Proposition 1.6, there is an effective
Cartier divisor Z ⊂ Y ⊗A k so that on the blowing-up ϕ : BlZ(Y )→ Y , the strict transform E
of the closed fiber Y ⊗A k admits a contraction ϕ′ : BlZ(Y )→ Y ′ to some projective A-scheme
Y ′.

Such a construction resembles the elementary transformations for projective bundles, and was
already used in [12] for surfaces. Using Bertini, one can arrange things that Z is smooth, hence
the total space BlZ(Y ) is regular. The image z = ϕ′(E) is a closed point. Let R = OY ′,z be
the resulting local ring. With S = Spec(R), the resulting base-change X = BlZ(Y )×Y ′ S yields
a proper birational morphism f : X → S for which Theorem 1.2 applies, and thus admits a
rational pullback f∗ : Z1(S)→ Z1(X)Q.

Let me close this section with a standard example that shows that in dimension d ≥ 3, there
are many important f : X → S that do not admit a rational pullback: Fix a ground field k, and
let R = k[[x, y, u, v]]/(xy − uv). By taking partial derivatives, one sees that S = Spec(R) has
an isolated singularity. The ideal a = (x, u) defines a prime divisor D ⊂ S. On the blowing-up
X = Proj(R[aT ]) the Cartier divisor defined by the canonical inclusion OX(1) ⊂ OX is the
blowing-up of the spectrum of R/a = k[[y, v]] at the origin, as one sees by computing D+(xT )
and D+(uT ). In turn, the exceptional locus Exc(X/R) coincides with the closed fiber f−1(z),
and is is a copy C = P1 of the projective line. In particular, it contains no Cartier divisor.
Hence f : X → S is a small resolution of singularities. The invertible sheaf L = OX(1) for the
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blowing-up is relatively ample, so (L ·C) > 0. Since r = 0, the condition in Definition 1.1 does
not hold.

2. Invertible M-matrices

After some preparation, we now give a proof for Theorem 1.2. Notation is as in the previous
section, in particular f : X → S = Spec(R) is a proper birational morphism, where R is a local
noetherian ring that is normal and of dimension d ≥ 2, and the scheme X is integral and normal.
Let us start with a useful general observation:

Lemma 2.1. There is an effective Cartier divisors D ⊂ S whose strict transform D′ ⊂ X
intersects each of the exceptional divisors E1, . . . , Er.

Proof. Let ηi ∈ Ei be the generic points. Then the local rings OX,ηi are one-dimensional.
According to [8], Corollary 1.6, there is a common affine open neighborhood U ⊂ X for the
points η1, . . . , ηr ∈ X. The complement A = XrU , endowed with the reduced scheme structure,
is an effective Weil divisor that intersects all Ei (confer [9], Chapter II, Proposition 3.1). Its
image f(A) ⊂ S is an effective Weil divisor, with strict transform A. Let a ⊂ R be the resulting
ideal, and choose some non-zero ζ ∈ a. This defines an effective Cartier divisor D ⊂ S containing
f(A). In turn, the strict transform D′ ⊂ X contains A, thus intersects each exceptional divisor
Ei. �

From now on, we suppose that conditions (i)–(iii) from Theorem 1.2 hold. In particular,
each Weil divisor on X is Q-Cartier. Moreover, N1(Ei) ' Z. Actually, there is a canonical
identification:

Proposition 2.2. For each curve C ⊂ Ei, the class [C] ∈ N1(Ei) is non-zero, and for each
further curve C ′ ⊂ Ei, the equation [C] = µ[C ′] defines a ratio µ ∈ Q>0.

Proof. For this, it suffices to treat the case that both curves C,C ′ are irreducible. Since the
proper k-scheme Ei is connected, there is a sequence of irreducible curves

C = C0, C1, . . . , Cn = C ′

with Ci ∩ Ci+1 non-empty. By induction on n ≥ 0, it suffices to treat the case that C ∩ C ′ is
non-empty. Choose an affine open neighborhood U ⊂ X of some intersection point a ∈ C ∩ C ′.
The complement D = XrU is an effective Weil divisor, and the intersections D∩C and D∩C ′
are both zero-dimensional, hence the intersection numbers (D · C) and (D · C ′) are strictly
positive. It follows that both classes [C], [C ′] are non-zero, and that the ratio µ ∈ Q is strictly
positive. �

In turn, the one-dimensional vector spaces N1(Ei)Q are ordered groups whose positive ele-
ments are the µ[C] with µ ≥ 0, where C ⊂ Ei is any curve. For each 1 ≤ i ≤ r, we now choose
some curve Ci ⊂ Ei, and consider the resulting intersection matrix

N = (Ei · Cj) ∈ Matr×r(Q).

Note that this matrix is usually not symmetric, in contrast to the situation in dimension d = 2.
Furthermore, it depends on the choices of curves. It is easy to determine the signs in the
intersection matrix, which are actually independent from the chosen curves:

Lemma 2.3. We have (Ej ·Cj) < 0 for all 1 ≤ j ≤ r, and (Ei ·Cj) ≥ 0 for i 6= j, with equality
if and and only if Ei ∩ Ej = ∅.
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Proof. If Ei ∩ Ej = ∅, the intersection Ei ∩ Cj is also empty, hence (Ei · Cj) = 0. In the case
where i 6= j and Ei ∩ Ej 6= ∅, we may choose the curve Cj ⊂ Xj so that it is not contained in
Ei but intersects Ei. In turn, we have dim(Ei ∩ Cj) = 0, and thus (Ei · Cj) > 0. It remains
to show (Ej · Cj) < 0. Choose some non-zero non-unit ζ ∈ R, with Cartier divisor D ⊂ S,
and decompose f∗(D) = D′ +

∑
miEi, where D′ is the strict transform and the coefficients are

mi > 0. The inclusion D′∩Ej ⊂ Ej is strict, so we may choose the curve Cj ⊂ Ej not contained
in D′. Since f∗(D) becomes numerically trivial on Cj , we have

−mj(Ej · Cj) = (D′ · Cj) +
∑
i 6=j

mi(Ei · Cj).

The intersection numbers on the right are positive, and we are done if at least one is strictly
positive. If r > 1, we find some i 6= j with Ei∩Ej 6= ∅, because f : X → S has connected fibers.
We may choose Cj ⊂ Ej so that it intersects Ei but is not contained in Ei. Thus (Ei · Cj) are
strictly positive. If r = 1 we have j = 1, and the intersection D′ ∩ E1 is non-empty. Now we
choose C1 ⊂ E1 so that it intersects D′ but is not contained in D′. In both cases, one intersection
number on the right is strictly positive. �

Given any real r × r-matrix A = (αij) whose off-diagonal entries are αij ≤ 0, we may write
it in the form A = sE − B, for some scalar s > 0 and some matrix B = (βij) all whose entries
are βij ≥ 0. Here E denotes the unit matrix. Recall that the spectral radius ρ(B) ≥ 0 is the
maximal length occurring for the complex eigenvalues of B. If ρ(B) < s for some scalar s > 0 ,
the matrix A called an invertible M-matrix. Note that if this holds for some s > 0, it also holds
for all s′ ≥ s.

The terminology seems to refer to Minkowski, and such matrices have amazing properties.
Berman and Plemmons give fifty characterizations of invertible M-matrices ([3], Chapter 6,
Theorem 2.3). One of them is condition (I27): There is a column vector t(x1, . . . , xr) ∈ Rr>0 with
Ax ∈ Rr>0. Another one is (N38): The inverse A−1 = (λij) has all entries λij ≥ 0. Note that for
symmetric matrices, the notion boils down to positive-definiteness. We now apply this theory to
the negative transpose of our intersection matrices:

Proposition 2.4. The matrix A = −tN is an invertible M-matrix. In particular, we have
det(N) 6= 0, and all entries of the inverse matrix N−1 are negative.

Proof. Suppose det(N) = 0. Then there is some non-zero Cartier divisor
∑
miEi such that

the resulting invertible sheaf N = OX(
∑
miEi) is numerically trivial on the proper k-scheme

E = E1 ∪ . . . ∪ Er. After passing to some multiple and renumeration, we may assume that
the summands miEi are Cartier, and that the non-zero coefficients are m1, . . . ,ma > 0 and
mb, . . . ,mr < 0, for some 1 ≤ a < b ≤ r + 1. This gives effective Cartier divisors

E′ =

a∑
i=1

miEi and E′′ =

r∑
i=b

(−mi)Ei

whose invertible sheaves become numerically equivalent on E. We have (E′ ·Ci) ≥ 0 for all i > a,
and (E′′ · Ci) ≥ 0 for all i < b. Setting Y = E′, we see that the invertible sheaf L = OX(Y )
is nef on each Ei. On the other hand, the restriction L ∨|Y = OY (−Y ) is a big invertible sheaf,
according to [13], Theorem 1.5. This means that the homogeneous spectrum of the graded ring

R(Y,L ∨|Y ) =
⊕
n≥0

H0(Y,L ⊗−nY )

attains the maximal possible dimension dim(Y ) = d− 1. The notion of big invertible sheaves on
integral schemes is common. However, here it is crucial to work with Cutkosky’s generalization
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[5] to arbitrary proper schemes, because our scheme Y usually is reducible and non-reduced.
Also note that in loc. cit. we worked with schemes that are proper over an excellent discrete
valuation ring, but the arguments literally hold true over our excellent local ring R.

By [5], Lemma 10.1 combined with Lemma 9.1, there is some irreducible component Ej ⊂ Y
such that L ∨|Ej is big. In particular, there is some integer n > 0 and some non-zero global

section σ ∈ H0(Ej ,L ⊗−n|Ej
). Write Z ⊂ Ej for the resulting zero-locus, and choose an

irreducible curve C ′j ⊂ Ej not contained in Z but intersecting Z. It follows that (L ⊗−n ·C ′j) > 0,
contradicting that L |Ej

is nef. Thus det(N) 6= 0.

To understand the inverse matrix A−1 = −tN−1, choose an effective Cartier divisor D ⊂ S
as in Lemma 2.1, and write f∗(D) = D′ +

∑
miEi. Here D′ is the strict transform, and

all coefficients mi and intersection numbers λj = (D′ · Cj) are strictly positive. Moreover,
−(
∑
miEi · Cj) = (D′ · Cj) for each 1 ≤ j ≤ r. In terms of matrix multiplication, this means

(3) (m1, . . . ,mr) · (−N) = (λ1, . . . , λr).

In turn, A = −tN sends the transpose of (m1, . . . ,mr) to the transpose (λ1, . . . , λr), and all
entries of these vectors are strictly positive. According to (I27) in [3], Chapter 6, Theorem 2.3
our A is an invertible M-matrix, and this ensures by (N38) that the entries in A−1 = −tN−1 are
positive. �

Proof of Theorem 1.2. Let L be an invertible sheaf on X having a global section that does
not vanish on any exceptional divisor E1, . . . , Er. The corresponding Cartier divisor D′ ⊂ X
is the strict transform of the Weil divisor D = f(D′). The inclusions D′ ∩ Ei ⊂ Ei are strict,
so we may choose the curves Ci ⊂ Ei so that they are not contained in D′. In turn, we have
λj = (D′ ·Cj) ≥ 0. Condition (i) ensures that each Weil divisor Ei ⊂ X is Q-Cartier, so we may
form the intersection matrix N = (Ei · Cj). By Proposition 2.4, this matrix is invertible, and
the entries of its inverse are negative. The equation

(m1/n, . . . ,mr/n) = (λ1, . . . , λr) · (−N−1)

defines rational numbers mi/n ∈ Q≥0. In turn, we have

(4) (L ⊗n · Cj) = (nD′ · Cj) = nλj = −
∑

mi(Ei · Cj) = −
(∑

miEi · Cj
)
,

and the mi/n ∈ Q≥0 are the only fractions having this property. By condition (ii), any vertical
curve C ⊂ f−1(s) lies over the closed point s = z. If C is contained in Ej , we have [C] = µj [Cj ]
inside N1(Ej) for some ratio µj > 0, according Proposition 2.2. Note that the latter relies on
condition (iii). From equation (4), we infer (L ⊗n · C) = −(

∑
miEi · C). Thus the condition in

Definition 1.1 is fulfilled, in other words, our morphism f : X → S admits a rational pullback. �
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