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Andrew du Plessis



This volume contains proceedings of the international workshop Singularities in Aarhus
held in honor of Andrew du Plessis to celebrate his sixtieth birthday. The workshop took
place at the Department of Mathematical Sciences of Aarhus University, Denmark in the
week of August 17-21, 2009. Its main theme was singularity theory, both of varieties and
mappings. The meeting was attended by about sixty participants from all over the world.

The papers in this volume cover a variety of subjects discussed at the workshop. All
the manuscripts have been carefully peer-reviewed. We would like to express our gratitude
to the authors for their contributions as well as to the referees for the high quality job.

We also thank all the participants – especially the speakers – who made the meeting
successful and fruitful. Last but not least, we are very grateful for the financial support
received from the Department of Mathematical Sciences of Aarhus University, from the
grant “Symmetry and Moduli Problems in Topology” allocated by the Danish Agency for
Science, Technology and Innovation, and from the Center for Topology and Quantization
of Moduli spaces (CTQM). The CTQM funding was allocated from the Niels Bohr Visiting
Professorship Grant provided by the Danish National Research Foundation.
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The editors
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Andrew du Plessis: the story so far

It is a great pleasure to celebrate the 60th birthday of Andrew, my long time friend and
collaborator. My personal association with Andrew goes back to 1970, when he arrived in
Liverpool as my research student, having just completed a first degree at Cambridge. Andrew’s
father was also a mathematician, an analyst, then at the University of Newcastle.

Andrew’s arrival coincided with the end of our year long Liverpool Singularities Symposium.
Among the striking new developments reported that year (by Haefliger) was a technique due to
Gromov, dubbed ‘homotopy integration’, for constructing examples of geometric structures.

Andrew set to work to apply this new idea to problems in singularity theory, and in due
course wrote an excellent thesis doing this, which led to his first 3 publications [1, 2, 4]1. During
this period we had close contact, and I came to regard Andrew as friend and collaborator more
than just as student, with several common interests.

When his SERC grant ran out, Andrew obtained a research assistantship at Bangor. This
conveniently allowed him time to complete writing up his work, to explore the mountains of
Snowdonia, and also to visit Liverpool every couple of weeks to participate in our Singulari-
ties Seminar. It was a particularly noteworthy seminar that year, working through a proof of
Mather’s topological stability theorem, and led by Eduard Looijenga: and a year in which we
all learned a lot. The final notes [3] of the seminar remain a key reference in this whole area.

From Bangor, Andrew moved (in 1977) to Aarhus. I was told later that within his first 6
months he had explored the life of the city and had learned to speak, and to lecture in, fluent
Danish; and it was fairly soon that he and Annie got together. Perhaps understandably, there
is a slight gap in his publications at this point.

But then he began a wonderfully productive period, with a series of great ideas. His next
paper [5] obtained the first effective estimates of orders of determinacy of map-germs for right-
left equivalence. The techniques were developed and extended in later papers of Andrew and
collaborators [7, 12, 18], and led to effective classifications of germs of low codimensions, several
of which were published. Unfortunately, the lists available now seem shorter than those that
existed 25 years ago: some may still be buried in piles of paper in Andrew’s office.

In his paper [6], Andrew made ingenious use of known methods to develop a new technique
to study the family of maps with a fixed k−jet: here he proved that all germs except for those
in a subset of infinite codimension are topologically finitely determined.

In [8] he found the conditions (‘semi-nice dimensions’) necessary and sufficient for map-germs
to be finitely C∞−determined (for right-left equivalence) in general, and extended this in [10] to
a global result. Outside these dimensions, he gives a map not homotopic to a C∞−stable map,
and even one not homotopic to a map with all germs finitely determined. He also combined this
with his own early work to find in favourable cases sufficient conditions. In [13] these ideas are
extended to give general results for C1−stability (nice dimensions) and for finite and even for
∞− C1−determinacy (semi-nice dimensions).

Next he began a collaboration with Leslie Wilson and others producing a series of beautiful
papers on right equivalence [11, 14, 16, 19], showing (under mild conditions on f) that:
f is J2

f −R−determined,

f is determined up to R−equivalence by Σf and f |Σf ,
the group of R−symmetries of f is homotopically trivial,
f |Σf is a normalisation of ∆f , and hence:
f is determined up to right equivalence by ∆f .

This suggests a big challenge of finding reasonable conditions under which the homeomorphism

1The references are to the list of Andrew’s publications which folllows.
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type of ∆f determines f up to topological right equivalence.

Andrew continued thinking about topological stability, and in the mid 1980’s came up with a
brilliant idea (disruptive germ classes) for obtaining necessary conditions for stability. This began
our period of close collaboration, which lasted about a dozen years and led to our book [17] on
stability. It was a most enjoyable period, exciting mathematically, with congenial companionship,
(ir)regular meetings at exotic locations, and of course numerous visits to each other at Aarhus
and Liverpool.

The usual pattern was that Andrew and I would talk together, often seeking a way round
a problem, then separate and each try to write something, then discuss what we had written.
When we were not together Andrew would rarely answer letters promptly, but would then send
a huge package of handwritten manuscript which I would write (or later type) out, editing and
modifying it as I went.

At first we had planned a series of related papers: on the whole, I was doing classifications,
Andrew was producing geometrical ideas, and I was typing them up. But once Andrew had built
on Jim Damon’s ideas to obtain a more general argument for sufficiency, it was clear we should
put the work together as a book. The process had its frustrations: every time I thought we
had finished and could send the manuscript off for publication, Andrew came up with another
brilliant idea, which took one or two years to write up, and added a hundred pages to the length
of the manuscript. The book took nearly all our research output for 10 years. Filling in extra
points, and finding a number of applications of the book’s results or ideas, led to several more
years’ work and numerous papers: [15] was an advance summary, papers [20, 24, 25, 28, 32] all
arise directly from topics in the book; [30] is an application of the main result, and another idea
of Andrew’s led to the sequence [21-23, 26, 27, 29, 35-38].

I must mention also Andrew’s more recent collaboration [31, 33] with David Trotman, with
work on stratified transversality, and on a tantalising conjecture that would resolve a number of
problems and strengthen the main results in the book; and there are other significant projects
at various stages of completion.

I conclude with my very best wishes to Andrew for the future.

Terry Wall
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ON THE CONNECTION BETWEEN FUNDAMENTAL GROUPS AND

PENCILS WITH MULTIPLE FIBERS

ENRIQUE ARTAL BARTOLO AND JOSÉ IGNACIO COGOLLUDO-AGUSTÍN

Introduction

The study of the topology of complex projective (or quasiprojective) smooth varieties depends
strongly on the knowledge of the topology of the complement of hypersurfaces in a projective
space. Considering a projection, any smooth projective variety is a covering of a projective
space of the same dimension ramified along a hypersurface. These coverings are measured
by (finite index subgroups of) the fundamental group of the complement of the hypersurface.
Using Lefschetz-Zariski theory, if we take a generic plane section the fundamental group of
the complement does not change. As a consequence, for fundamental group purposes, one can
restrict their attention to the study of complements of curves in the projective plane, as stated
in the foundational paper by O. Zariski [26].

The richness of coverings for a space depends on its fundamental group. This is why we are
mostly interested in curves C ⊂ P2 whose π1(P2 \ C) is non-abelian. The first known example
is probably the curve formed by three lines C := L1 ∪ L2 ∪ L3 intersecting at one point P .
There is an easy way to compute this fundamental group; the pencil of lines through P is
parametrized by P1; this pencil induces an epimorphism of P2 \ C onto P1 \ {p1, p2, p3} (the
punctures corresponding to the three lines). Moreover, this map is a locally trivial fibration
(with fiber isomorphic to C) and hence π1(P2 \ C) ∼= π1(P1 \ {p1, p2, p3}), which is a free group
of two generators.

The first known examples of irreducible curves whose fundamental groups are known to be
non-abelian appeared in [26]. The first one corresponds to a hexacuspidal sextic, with its six
cusps on a conic; the equation of such a curve is of the form f3

2 + f2
3 = 0, where fj is a

homogeneous polynomial of degree j. Its fundamental group is Z/2 ∗ Z/3; in §2 we will see
the relation between this group and the pencil generated by f3

2 = 0 and f2
3 = 0. This kind

of examples have been generalized by various authors replacing (2, 3) by (p, q). In the same
paper, Zariski found the irreducible curve with smallest possible degree having a non-abelian
fundamental group: the tricuspidal quartic. This example and many others appearing in the
literature are also connected with pencils.

The precise connection with pencils can be stated as follows: a pencil defines a dominant
morphism to a quasi-projective curve, inducing an epimorphism at the level of fundamental
groups. The multiplicities of the fibers of the pencil induce an orbifold structure on the quasi-
projective group, and the map defines an epimorphism onto the orbifold fundamental group.
When such an orbifold fundamental group is non-abelian, then the original fundamental group
has a surjection onto a non-abelian group. Such surjections coming from dominant maps will be
referred to as geometric surjections.

The tricuspidal quartic is the only irreducible curve of degree 4 with a non-abelian fundamental
group. The degree-five case was studied by A. Degtyarev [9]; he found exactly two irreducible

Partially supported by MTM2007-67908-C02-01.
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2 E. ARTAL AND J.I. COGOLLUDO

quintics with non-abelian fundamental groups. One of them, also studied by the first author [2],
has an infinite fundamental group. In §2, we will study its relationship with a pencil. The
question whether or not all non-abelian fundamental groups have a geometric surjection onto
an orbifold group naturally arises. A positive result in this direction is given in [8] for certain
roots of the Alexander polynomial. In addition, all the examples studied, up to now, supported
an affirmative answer to this question.

In this paper we will show an explicit example of a non-abelian fundamental group whose
complement admits no geometric surjections. This curve is one of the quintics referred to in the
previous paragraph, which will be called the projective Degtyarev curve throughout this text. As
a brief description, the projective Degtyarev curve has exactly three singular points of type A4;
its fundamental group is finite and non-abelian. In Proposition 4.4, we prove that this group
admits no geometric surjections. Once the group is computed, the proof is rather straightforward;
it depends on the orders of the group and its abelianization and on the properties of orbifold
groups.

If we add a tangent line to one of the singular points of the projective Degtyarev curve, the
complement of the union in P2 is the complement of an affine curve, which will be called the affine
Degtyarev curve. This affine curve has an infinite non-abelian fundamental group and non-trivial
characteristic varieties (see §1 for the definition). Extending results of Arapura and others, it
is known that irreducible components of positive dimension (for the fundamental group of a
quasiprojective variety) are obtained as pull-back of irreducible components of characteristic
varieties of orbifolds. A natural question arises: Is it also true for irreducible components
of dimension 0 (isolated points)? Plenty of computations supported a positive answer: most
quasiprojective groups satisfy the property for irreducible components of any dimension (see §2
for examples). The main Theorem 4.5 of this paper shows that the fundamental group of the
complement of the affine Degtyarev curve does not satisfy this property. This is the only known
example, up to now.

The paper is organized as follows. In §1, the concepts of orbifold and characteristic varieties
are recalled, also some orbifold groups are studied. In §2, we relate non-abelian fundamental
groups of the complements of curves (which are known in the literature) with orbifold morphisms
(via pencils of curves). In §3, we describe Degtyarev curves and, in order to obtain a presentation
for their fundamental groups, we compute a special braid monodromy. The fundamental groups
are obtained in §4, where also the main results of the paper are stated and proved. Finally,
further properties of the affine Degtyarev curve are sketched in §5.

1. Orbifold groups and characteristic varieties

The fundamental groups of oriented Riemann surfaces have been extensively studied. The
fundamental group of a compact Riemann surface of genus g is

πg :=

〈
ai, bi, 1 ≤ i ≤ g

∣∣∣∣∣
g∏
i=1

aibia
−1
i b−1

i

〉
.

If C is a surface with genus g and k > 0 punctures then its fundamental group is free of
rank 2g + k − 1. We are going to extend this family by considering orbifold groups.

In this paper, we will refer to an orbifold Xϕ as an orbifold Riemann surface, that is, a
quasiprojective Riemann surface X with a function ϕ : X → N with value 1 outside a finite
number of points. The finite set Mϕ = {x ∈ X | ϕ(x) > 1} will be called the set of orbifold
points and ϕ(x) is the orbifold index of x ∈Mϕ.
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We may think that a neighborhood of a point P ∈ Xϕ such that ϕ(P ) = n is the quotient
of a disk (centered at P ) by a rotation of angle 2π

n . We will consider that a loop around P is
trivial if its lifting bounds a disk. Following this idea, we define orbifold fundamental groups.

Definition 1.1. For an orbifold Xϕ, let p1, . . . , pn the points such that mj := ϕ(pj) > 1. Then,
the orbifold fundamental group of Xϕ is

πorb
1 (Xϕ) := π1(X \ {p1, . . . , pn})/〈µ

mj

j = 1〉
where µj is a meridian of pj . We denote Xϕ by Xm1,...,mn .

Example 1.2. If X is a compact surface of genus g and type Xm1,...,mn
, then

πorb
1 (Xϕ) =

〈
a1, . . . , ag, b1, . . . , bg, µ1, . . . , µn

∣∣∣∣∣∣
g∏
i=1

[ai, bi] =
n∏
j=1

µj , µ
mj

j = 1 (j = 1, . . . , n)

〉
,

where products are supposed to respect the order. If X is not compact and π1(X) is free of
rank r, then

πorb
1 (Xϕ) =

〈
a1, . . . , ar, µ1, . . . , µn

∣∣ µmj

j = 1 (j = 1, . . . , n)
〉
.

Definition 1.3. A dominant algebraic morphism ρ : Y → X between an algebraic manifold Y
and a Riemann surface X defines an orbifold morphism Y → Xϕ if for all p ∈ X, the divisor
ρ∗(p) has multiplicity ϕ(p), that is, ρ∗(p) = ϕ(p)D, where D is a (possibly non-reduced) divisor
in Y .

Proposition 1.4. Let ρ : Y → X define an orbifold morphism Y → Xϕ. Then ρ induces a
homomorphism ρ∗ : π1(Y ) → πorb

1 (Xϕ). Moreover, if the generic fiber is connected, then ρ∗ is
surjective.

Proof. Let Mϕ := {x ∈ X | ϕ(x) > 1}; we consider the restriction mapping ρ̃ := ρ| : Y \
ρ−1(Mϕ)→ X \Mϕ. This map induces a morphism ρ̃∗ : π1(Y \ ρ−1(Mϕ))→ π1(X \Mϕ) fitting
in the following commutative diagram:

π1(Y \ ρ−1(Mϕ))
ρ̃∗−→ π1(X \Mϕ)

i∗ ↓ ↓ j∗
π1(Y )

ρ∗−→ π1(X).

The vertical mappings are induced by the inclusions. They are both surjective; the kernel of
j∗ is generated by the meridians of the points in Mϕ while the kernel of i∗ is generated by
the meridians of the irreducible components of ρ−1(Mϕ), i.e., the components of the pull-back
divisor ρ∗(Mϕ).

Let us consider an irreducible component D of ρ∗(Mϕ) such that ρ(D) =: x ∈ Mϕ. Let
n := ϕ(x); note that the multiplicity mD of D in ρ∗(Mϕ) is a multiple of n. We can interpret
mD as follows. If µD denotes a meridian of D, then there is a meridian µx of x such that ρ̃∗(µD) =
(µx)mD . Following Definition 1.1, it is easily seen that ρ̃∗ factorizes through a morphism (also
called ρ∗) π1(Y )→ πorb

1 (Xϕ).
The above argument also works if one replaces Mϕ by a finite set M ⊇Mϕ. In particular, one

can choose M to be the bifurcation locus of ρ, i.e., the mapping is a differentiable locally trivial
fibration outside M . If the fiber is generically connected, the long exact homotopy sequence of
this fibration implies the surjectivity of ρ̃∗ (for M). The result follows. �

Definition 1.5. A fundamental group G := π1(Y ) of an algebraic manifold is said to posses
a geometric surjection if Y possesses an orbifold morphism Y → Xϕ whose generic fiber is
connected, and such that πorb

1 (Xϕ) is non-abelian.
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We recall the notion of characteristic varieties and its relationship with orbifolds. We focus
our attention on the characteristic varieties of quasiprojective manifolds, though they can be
defined in general and depend only on the fundamental group. Let X be a connected topological
space X, having the homotopy type of a finite CW -complex, and let G := π1(X,x0), x0 ∈ X
which will be omitted if it is not necessary. Recall that the space of characters of G is

(1.1) H1(X;C∗) = Hom(H1(X;Z),C∗) = Hom(π1(X),C∗) =: TG.

Remark 1.6. Since G is finitely generated, then it is also the case for H1(X;Z). Let n :=
rkH1(X;Z) and TorsG be the torsion subgroup of H1(X;Z). Then TG is an abelian complex
Lie group with |TorsG | connected components (each one is isomorphic to (C∗)n) satisfying the
following exact sequence:

1→ T1
G → TG → TorsG → 1,

where T1
G is the connected component containing the trivial character 1.

For a character ξ ∈ TG, we can construct a local system of coefficients Cξ over X.

Definition 1.7. The k-th characteristic variety of X is the subvariety of TG, defined by:

Vk(X) = {ξ ∈ TG | dimH1(X,Cξ) ≥ k},
where H1(X,Cξ) is the cohomology with coefficients in the local system ξ. In some cases we
will use the notation Vk(G) since it is independent of X as far as π1(X) ∼= G. The definition
also applies to orbifolds replacing π1 by πorb

1 .

The following result is straightforward.

Proposition 1.8. Let ϕ : G → H be a group epimorphism. Then ϕ∗ induces injections TH ∼=
ϕ∗TH ↪→ TG and Vj(H) ∼= ϕ∗Vj(H) ↪→ Vj(G).

Remark 1.9. Let us explain how to compute these invariants. For the sake of simplicity, the
twisted homology, instead of the cohomology, will be computed. Let us consider a finite CW -
complex homotopy equivalent toX; for the sake of simplicity the CW -complex will be denotedX.
Let π : X̃ → X be the maximal abelian covering. Note that X̃ inherits a CW -complex structure.
The group of automorphisms of π is H1(X;Z). The action of this Abelian group endows the chain

complex C∗(X̃;C) with a module structure over the ring Λ := Z[H1(X;Z)]. The differentials of

the complex are Λ-homomorphisms. Moreover, C∗(X̃;C) is a free Λ-module of finite rank. If we
fix a character ξ, C has a natural Λ-module structure which is denoted by Cξ (as the local system

of coefficients). The twisted homology of X is the homology of the C∗(X;C)ξ := C∗(X̃;C)⊗ΛCξ.
Following this interpretation, it is not difficult to prove that the characteristic varieties are
algebraic subvarieties of TG, defined with integer equations.

This i-th jumping loci of C∗(X̃;C) with respect to ⊗Λ Cξ can also be viewed as the zero

locus of the i-th Fitting ideal of H1(X̃;C) or, analogously, the support of the module ∧iH1(X̃;C)
over the ring Λ (see [17]).

Following the theory developed by various authors (Beauville [6], Arapura [1], Simpson [22],
Budur [7], Delzant [11], Dimca [13]), the structure of characteristic varieties for quasiprojective
manifolds can be stated as follows.

Theorem 1.10 ([4]). Let Σ be an irreducible component of Vk(G), k ≥ 1. Then one of the two
following statements holds:

• There exists a surjective orbifold morphism ρ : X → Cϕ and an irreducible component
Σ1 of Vk(πorb

1 (Cϕ)) such that Σ = ρ∗(Σ1).
• Σ is an isolated torsion point.
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Remark 1.11. In general, both G and its characteristic varieties are difficult to compute. For
the complement of hypersurfaces in a projective space, Libgober [17] gave an alternative way
of computing most components of the characteristic varieties from algebraic properties of the
hypersurface without computing G.

Remark 1.12. Characteristic varieties can also be understood from Alexander-invariant point of
view. Following Theorem 1.10, characteristic varieties are determined by finite-degree abelian
coverings.

We compute the invariants for some orbifold groups.

Proposition 1.13. Let G be the orbifold group of P1
2,5,10. Then G is a semidirect product of the

fundamental group of a compact surface of genus 2 and Z/10Z. The torus TG is µ10, the group
of 10-th roots of unity, V1(G) consists of the primitive 10-th roots of unity and V2(G) = ∅.

Proof. Let us consider the short exact sequence associated with the abelianization map (Z/10 :=
〈t | t10 = 1〉 is G/G′). This sequence corresponds to an orbifold morphism, which is a ramified
cyclic covering of degree 10 of P1. The ramification points correspond with the orbifold points
whose ramification indices equal the orbifold index. Using Riemann-Hurwitz one checks that the
covering space is a compact Riemann surface of genus 2. Since the meridian of an orbifold point
of index 10 is of order 10 in G, then the exact sequence splits and we have a semidirect-group
structure.

In order to compute V1(G) we follow the construction outlined in Remark 1.9, applied to the
CW -complex associated with the presentation of G given by 〈x, y | x2 = y5 = (xy)10 = 1〉.
Let us denote p the unique 0-cell, x, y the 1-cells and A,B,C the 2-cells (corresponding to the
relations in the given order). Let us fix a character ξ ∈ TG. It is clear that 1 /∈ V1(G). We can
assume that ζ := ξ(t) 6= 1. The complex C∗(X;C)ξ is given by

0 −→ C3 ∂2−→ C2 ∂1−→ C −→ 0.

The matrix for ∂1 is
(
ζ5 − 1 ζ2 − 1

)
. In particular, dim ker ∂1 = 1. The matrix for ∂2 equalsζ

5 + 1 0
ζ10 − 1

ζ − 1

0 ζ8 − ζ6 + ζ4 − ζ2 + 1 ζ5 ζ
10 − 1

ζ − 1


In order to have non-trivial homology, this matrix must vanish and this happens only when ζ is
a primitive 10-th root of unity. �

Proposition 1.14. Let G be the orbifold group of P1
2,2,5,5. Then G is an extension of Z/10Z by

the fundamental group of a compact surface of genus 4. The torus TG is µ10, the group of 10-th
roots of unity, and both V1(G) and V2(G) consist of the primitive 10-th roots of unity.

Proof. The short exact sequence associated with the abelianization map (G/G′ = Z/10) cor-
responds to a covering of the orbifold as in the proof of Proposition 1.13, and using Riemann-
Hurwitz one obtains that the covering space is a compact Riemann surface of genus 4.

We compute the characteristic varieties as in the proof of Proposition 1.13 for the presentation
of G given by 〈x, y, z | x5 = y5 = z2 = (xyz)2 = 1〉. Let us denote p the unique 0-cell, x, y, z the
1-cells and A,B,C,D the 2-cells (corresponding to the relations in the given order). Let us fix
a character ξ ∈ TG. It is clear that 1 /∈ V1(G). We can assume that ζ := ξ(t) 6= 1. The complex
C∗(X;C)ξ is given by

0 −→ C4 ∂2−→ C3 ∂1−→ C −→ 0.
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The matrix for ∂1 is
(
ζ2 − 1 ζ2 − 1 ζ5 − 1

)
. In particular, dim ker ∂1 = 2. The matrix for ∂2

equals ζ8 − ζ6 + ζ4 − ζ2 + 1 0 0 ζ5 + 1
0 ζ̄8 − ζ̄6 + ζ̄4 − ζ̄2 + 1 0 ζ(ζ5 + 1)
0 0 ζ5 + 1 ζ5 + 1


In order to have non-trivial homology, this matrix must have rank less than 2 and this happens
only when ζ is a primitive 10-th root of unity. Moreover, in that case, the matrix vanishes. �

2. Examples

In this section, we will present a collection of examples of curves with non-abelian fundamental
groups and geometric surjections and its relationship with characteristic varieties.

Remark 2.1. If Y := P2 \ C admits an orbifold morphism Y → Xϕ, then the non-singular
compactification X̄ of X is P1.

Remark 2.2. The easiest examples of curves with non-abelian fundamental groups and geometric
surjections come from hyperplane (or line) arrangements. If a line arrangement A has a point
P of multiplicity k ≥ 3, then the pencil of lines through P defines a morphism ρ : P2 \ A → X,
where X is a k-punctured projective line. We have an epimorphism ρ∗ : π1(P2 \ A) → π1(X)
and the latter is a free group of rank k − 1 (hence non abelian).

The following result is well known for specialists.

Proposition 2.3. The following three assertions are equivalent:

(1) The group π1(P2 \ A) is non abelian,
(2) The arrangement A has a point of multiplicity at least 3,
(3) The group π1(P2 \ A) has a geometric surjection.

Proof. By the remark above, it is obvious that (2) implies (1) and (3). Also, by definition, (3)
implies (1). Hence it is enough to prove that (1) implies (2). Note that, if (2) does not hold,
then A is an arrangement in general position. Either we choose a particular example (e.g. a
real arrangement) and a braid monodromy argument implies immediately the abelianity or we
use Hattori’s topological description of arrangements of hyperplanes in general position [16]. It
is also the starting point of Zariski’s proof of Zariski’s conjecture in [26] (we thank the referee
for pointing this out to us). �

The argument used in Remark 2.2 can be easily generalized when, instead of considering three
(or more) incident lines, one considers three (or more) fibers of any pencil of curves in P2. Of
course, any such example corresponds to curves with at least three irreducible components. The
notion of orbifold allows for wider generalizations of this concept to curves with any number of
irreducible components (for example to irreducible curves).

As stated in the Introduction, the first example of this kind is rather old, see [26]. Let us
consider a conic C2 of equation f2 = 0 and a cubic C3 of equation f3 = 0. Let us assume
that they do not have common components and they are not multiple lines. Let C be a curve
of equation f3

2 − f2
3 . Note that the mapping ρ : P2 \ C → P1 \ {[1 : 1]} given by [x : y :

z] 7→ [f2(x, y, z)3 : f3(x, y, z)2] is well defined (all the base points of the pencil are in C) and
surjective. This mapping induces an orbifold map onto a 1-punctured Riemann sphere with two
orbifold points of multiplicities 2 and 3 (at [0 : 1] and [1 : 0] respectively). Thus according to
Proposition 1.4, one obtains an epimorphism π1(P2 \ C) onto Z/2 ∗ Z/3.
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Proposition 2.4. Let G be the orbifold fundamental group of C2,3. Then, TG = µ6, V1(G)
consists of the 6-th primitive roots of unity and V2(G) = ∅. In particular, any curve with
equation f3

2 − f2
3 = 0 has non-trivial characteristic varieties.

The proof of this Proposition follows easily from the above arguments.

Remark 2.5. For generic choices of f2 and f3 this epimorphism is in fact an isomorphism (this
is actually the case originally considered by Zariski in [26]). However, this is not the case, for
instance, when C is reducible (since b1(P2 \ C) > 1). Even if C is irreducible one may not
necessarily have an isomorphism for several reasons: either there are few non-generic fibers in
the pencil (e.g., a sextic with six cusps and four ordinary nodes) or there are several pencils (a
sextic with nine cusps).

These examples can be generalized if we replace (2, 3) by any coprimes (p, q), see Oka [21],
Némethi [20] and Dimca [12]. In such cases, the fundamental group of a generic curve with
equation fqp + fpq = 0 is Z/p ∗ Z/q. Also Zariski [26] considered another interesting example
where the target orbifold is compact.

Let us consider the tricuspidal quartic C4 with equation f4 = 0. It is not hard to prove that
we can choose

(2.1) f4 := x2y2 + y2z2 + x2z2 − 2xyz(x+ y + z).

and Sing(C4) = {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}. The curve C4 is parametrized by

(2.2) [t : s] 7→ [t2s2 : (t− s)2s2 : t2(t− s)2]

and its singular points correspond to [t : s] = [0 : 1], [1 : 1], and [1 : 0]. Let P ∈ C4 be a smooth
point with parameter α ≡ [α : 1] and let Lt be the tangent line to C4 at P , with equation f1 = 0,
where

(2.3) f1 := (α− 1)3x− α3y + z.

Let C2 be the conic passing through the singular points of C4 and tangent to C4 at P . Since
five (non-degenerate) conditions are imposed, such a conic is unique. As before, let f2 = 0 be
the equation of C2, where

(2.4) f2 := α(α− 1)xy − (α− 1)xz + αyz.

We consider now a cubic C3 having a nodal point at P (one of the branches tangent to C4 at P )
and tangent to C4 at the three cuspidal points. Counting the conditions it is easy to prove that
only one such cubic exists, with equation f3 = 0, where
(2.5)

f3 := − (α− 2) (2α− 1) (α+ 1)xyz−α3xy2 − xz2 − (α− 1)
3
x2y+ yz2 + (α− 1)

3
x2z+α3y2z.

Lemma 2.6. f4f
2
1 = f2

3 − 4f3
2 .

A straightforward computation provides a proof of this Lemma, which easily results in the
following:

Proposition 2.7. The fundamental group of P2\C4 possesses a geometric surjection onto P1
2,2,3.

Remark 2.8. Zariski proved in [26] that π1(P2 \ C4) is a non-abelian group of order 12. The
above mapping induces a central extension of D6 (dihedral group of order 6) whose kernel is
cyclic of order 2. Note that there is an epimorphism from π1(P2 \ (C4 ∪ Lt)) onto the orbifold
group of a 1-punctured Riemann sphere with two multiple points (2, 3). For a generic P it is
possible to prove that π1(P2 \ (C4 ∪ L)) equals B3. There is a particular case corresponding to
the bitangent line Lb. In this case there are two such mappings and π1(P2 \ (C4 ∪ Lb)) is the
Tits-Artin group of a triangle.
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C

C

L

E1

E2
T

Figure 1. Cremona transformation

In [9], Degtyarev proved that only two irreducible curves of degree 5 have non-abelian funda-
mental groups. One of them is extensively studied in §3. The other one was also studied by the
first author in [2]. It is a rigid curve with one point of type A6 and three cuspidal points (it is
the dual curve of the quartic with one A6). Let C5 be this curve (with equation f5 = 0). In [2]
this group was shown to be non-abelian by finding an epimorphism from an actual presentation
of π1(P2 \C5) onto the triangle group of type 2, 3, 7, which is the orbifold group of P1

ϕ with three
multiple points of these orders. In fact, one has the following:

Proposition 2.9. The fundamental group of P2\C5 possesses a geometric surjection onto P1
2,3,7.

Proof. The three summands of Lemma 2.6, which are polynomials of degree six, obviously belong
to a pencil of sextics and, hence, they define a map outside the base points. For a particular
parameter (a primitive 6-th root of unity, Lt = Lb is the bitangent of C4. We are going to
consider the Cremona transformation ρ : P2 99K P2 associated with the net of conics having
three infinitely near points in common with C5 at P , the singular point of type A6. Let us
describe this transformation. After blowing up these three infinitely near points one obtains
a rational surface X with a morphism σ1 : X → P2. Let us denote the three exceptional
components (in order of appearance) by E1, E2, and T , and finally the tangent line of C at P
by L (see Figure 1).

Convention 2.10. For birational morphisms, we keep the notation of a curve for its strict
transform unless otherwise stated.

In X one has E1 ·E1 = −2 and E1 ·E1 = T ·T = L·L = −1. Since L and T are combinatorially
equivalent, one can consider the birational morphism σ2 : X → P2 obtained as the composition
of the contractions of L, E2 and E1. The resulting surface is rational with Euler characteristic 3
and hence it is a projective plane. It is not hard to prove that ρ = σ−1

2 ◦ σ1. Let us denote

C̃ := ρ(C). Note that C̃ is a tricuspidal quartic and T is its unique bitangent line Lb, one point

P̃ comes from the infinitely near point of C at P and the other one Q comes from the other
intersection point of C and L.

We consider the pencil defined by the orbifold map of Proposition 2.7, where the base point
is P̃ . Let C3 be the cubic of equation (2.4) such that 2C3 is in the pencil. Following C3 by σ2

and σ1, C6 := ρ∗(C3) is a sextic with only one singular point at P (with two branches, one of
type A6 and a smooth branch with maximal contact with the singular branch). With the same
ideas, if C2 is the conic of equation (2.5) such that 3C2 is in the pencil, then C4 := ρ∗(C2) is a
quartic with an A6 singular point at P .

Finally ρ∗(C̃ + 2T ) = C + 7L. We have a pencil of degree 12 containing the fibers 2C6, 3C4

and C + 7L. This pencil produces the desired morphism. �
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One can find more examples in the literature: Degtyarev [9], Flenner-Zăıdenberg [14], and
Tono [24]. In what follows, the last two families will be described. We start with some definitions.

Definition 2.11. A Hirzebruch surface is a rational surface X with a morphism π : X → P1

which is a holomorphic (or algebraic) fibration with fiber P1. Such a surface is either Σ0 := P1×P1

or it has a unique section Sn with negative self-intersection −n, n > 0; in that case π is unique
and X is denoted by Σn (Σ1 is the blowing-up of one point in P2).

For any Hirzebruch surface X there is a family of birational maps which are called elementary
Nagata transformations. They are obtained as follows. Let us consider π : X → P1, P ∈ X and
F := π−1(π(P )); we consider the blowing-up σ : X̂ → X of P , with exceptional component F̃ .
Since (F · F )X = 0, we have that (F · F )X̂ = −1. By Castelnuovo criterion, we can blow down

F and we obtain a new Hirzebruch surface X̃ where F̃ is a fiber.

Definition 2.12. An elementary Nagata transformation is said to be positive (resp. negative) if
P belongs (resp. does not belong) to a section with non-positive self-intersection. For a positive
one, one goes from Σn to Σn+1; for a negative one, from Σn to Σn−1.

In [3], the first author computed the fundamental group of Flenner-Zăıdenberg curves and
showed when it is non-abelian using orbifold groups. We show here that this can also be ge-
ometrically proved. In order to construct these curves, we start with a smooth conic C with
two tangent lines L1 and L2, intersecting at some point P . After blowing up P one obtains
π : Σ1 → P1 with exceptional component E. Let L3 be another line in the pencil through P
which intersects C at two points Q1 and Q2. Let us fix two positive integers a, b. After perform-
ing a positive elementary Nagata transformations at the point corresponding to the fiber of L1

and b at the point corresponding to the fiber of L2 one obtains a Hirzebruch surface Σa+b+1. One
can then perform a+ b negative elementary Nagata transformations on the fiber corresponding
to L3 and based at a point in C (say Q2 for the first one). After this process, E can be blown
down which turns our surface into P2. The curve Ca,b obtained has degree d := a + b + 2 and
three singular points of type A2a, A2b, and a third one with local equation ud−2 = vd−1.

Proposition 2.13. The fundamental group of P2 \ Ca,b possesses a geometric surjection onto
P1

2,a+b,c, where c := gcd(2a+ 1, 2b+ 1).

Proof. It is enough to follow the pencil of conics generated by L1 + L2 and C through the
above transformations. We obtain a pencil of curves of degree 2(d − 1), where one fiber is

(2a+ 1)L̃1 + (2b+ 1)L̃2 (they are the lines corresponding to the fibers of L1 and L2). The fiber

containing Ca,b is of the form Ca,b + (d− 2)L̃3. Finally the double line in the pencil becomes a
double curve of degree d− 1. �

In [24], K. Tono describes all rational unicuspidal curves such that its complement in P2 has
logarithmic Kodaira dimension 1. The construction given in [24, Theorem 1] shows that the
complement of these curves have non-abelian fundamental group. Any other known rational
unicuspidal curve has abelian fundamental group (for the complement).

Proposition 2.14. For any Tono’s curve C their fundamental group possesses a geometric
surjection onto P1

µA,µG,n(C), where µA, µG ≥ 2 and the number n(C) is the opposite of the self-

intersection of the strict transform of C after the minimal embedded resolution of its unique
singular point. This number is at least 2.

Proof. It is enough to consider the construction of [24, Theorem 1] where a pencil is obtained
with two multiple fibers µAA and µGG and a reducible fiber of the form C + n(C)B, where B
is either a line (type I) or a smooth conic (type II). �
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Example 2.15. The curves of type I are parametrized by two integers n, s ≥ 2. The curve C
has degree (n + 1)2(s − 1) + 1, where n(C) = n, µA = n + 1 and µG = (n + 1)(s − 1) + 1. For
n = s = 2, we obtain the multiplicities 2, 3, 4; in fact, one can compute that this group is finite.

3. Degtyarev curves

Let us consider a projective Degtyarev curve, i.e., a plane projective curve of degree 5 such that
Sing(C) consists of three points, and for each point P ∈ Sing(C) the germ (C,P ) is topologically
equivalent to an A4-singularity, i.e. with local equation v2 − u5 = 0; note that in this case, the
germs are also analytically equivalent.

Most of the following properties appear in [9] and [19], but we include for the sake of com-
pleteness.

Properties 3.1. Let C ⊂ P2 be a projective Degtyarev curve. Then:

(D1) The curve C is irreducible.
(D2) The tangent line L of C at a singular point P satisfies (L · C)P = 4.
(D3) Two Degtyarev projective curves are projectively equivalent.
(D4) The subgroup of projective transformations preserving C is cyclic of order 3.
(D5) The curve C is autodual.

Proof. Since the three singular points are locally irreducible, (D1) is true. For (D2), note that
4 ≤ (L ·C)P ≤ 5. Let us assume that (L ·C)P = 5; considering L as the line at infinity, C \L is
an affine curve homeomorphic to C. This case is discarded using Zăıdenberg-Lin Theorem [25]
and (D2) results.

In order to prove (D3), there are two approaches. The direct approach consists of computing
the equations of the curve C fixing the position of the singular points and some of their tangent
lines. The second method is quite simple and worth describing here: Let C1, C2 be two projective
Degtyarev curves. By Bézout’s Theorem, the singular points are not aligned; and hence, after
a projective transformation, one may assume that Sing(C1) = Sing(C2) =: S. Assuming that
S := {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}, one can perform a standard Cremona transformation ψ :
P2 99K P2 based on the three singular points and defined by ψ([x : y : z]) = [yz : xz : xy].

Geometrically, this rational map is obtained by blowing-up the three vertices of S (obtaining a
rational surface X`) and then blowing down the strict transforms of the lines joining the points

of S (which have self-intersection −1 in X`). One can easily compute that C̃i := ψ(Ci) is a
tricuspidal quartic. It is well known that there is only one tricuspidal quartic, up to projective
transformation, therefore, after a suitable change of coordinates, one may assume C̃1 = C̃2 =: C̃,
where C̃ is the curve with equation given in (2.1). The tricuspidal quartic satisfies the following

properties. Let Sing(C̃) = {P1, P2, P3}; there are three points Q`1, Q
`
2, Q

`
3 ∈ C̃, ` = 1, 2 such that

Pi, Q
`
j , Q

`
k are aligned for all the possibilities with #{i, j, k} = 3. Let A` be the arrangements

of curves given by C̃ and the lines joining Q`i and Q`j .

The curve C̃ is parametrized as in (2.2) and the singular points P1 = [0 : 1 : 0], P2 = [1 : 0 : 0],
and P3 = [0 : 0 : 1] correspond to [t : s] = [0 : 1], [1 : 1], and [1 : 0]. It is not hard to check that
A` := (α`, 2 + α`,−α`) are affine parameters of (Q`1, Q

`
2, Q

`
3). The last condition implies that

α2
` + α` − 1 = 0. If α1 = α2 then A1 = A2.

The group of projective transformations fixing C̃ is the group of the permutation of the
coordinates. The mapping [x : y : z]

σ7→ [x : z : y] induces [t : s] 7→ [s : t] in the parametrization,
and [x : y : z]

τ7→ [y : z : x] induces [t : s] 7→ [s : s− t].
Let us assume that α1 6= α2 Applying the projective transformation σ, results in two opera-

tions on A`: the permutation (1, 3), and the change of parameters. Thus, σ(A1) = (−α−1
1 , (α1 +

2)−1, α−1
1 ) = A2, which implies σ(A1) = A2.
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Note that any projective transformation sending A1 to A2 lifts to an isomorphism X1 → X2

and this isomorphism induces a projective transformation of the source P2, hence (D3) results.
In order to prove (D4) one can use a similar argument on the projective transformations fixing

C (this last property was communicated to the authors by C.T.C. Wall).
The property (D5) follows from (D2) and Plücker generalized formulæ, see [19]. More pre-

cisely, given a curve D and a point P ∈ D, the order of the curve is the degree of its dual curve
of Ď:

deg(Ď) = deg(D)(deg(D)− 1)−
∑
P∈D

(µ(C,P )− 1 +m(C,P )).

This formula implies that deg(Ď) = 5. The dual of a singular point of type A4 is either of the
same type or of type E8 (in case the tangent line has multiplicity of intersection 5 with the curve
at the singular point). Thus (D5) holds. �

Remark 3.2. Note that any two projective Degtyarev curves are isotopic. Using the direct
approach, we can give a symmetric equation:(

7 + 3
√

5
)

(x3z2 + x2y3 + y2z3) +
(

2
√

5 + 6
)

(x3yz + xy3z + xyz3)+

+2(x3y2 + x2z3 + y3z2) +
(

33 + 11
√

5
)

(x2yz2 + x2y2z + xy2z2) =0.

Note that the permutation of two variables comes from the Galois transformation in Q(
√

5).
The curve also admits an equation with rational coefficients; in that case one of the singular
points has rational coordinates but the other two are conjugate in Q(

√
5):

(3.1)
z2y3−z(33xz+2x2 +8z2)y2 +(21z2 +21xz−x2)(z2 +11xz−x2)y+(x−18z)(z2 +11xz−x2)2 = 0

Properties 3.1 imply that the affine Degtyarev curve is also rigid, i.e. any two affine Degtyarev
curves are projectively equivalent, and in particular, they are isotopic. In order to study its
complement, it is convenient to assume that the line corresponds to the line at infinity and
hence it is enough to consider the complement of the affine curve whose equation is obtained
from (3.1) by taking z = 1.

The fundamental group of the projective Degtyarev curve was computed in [9]. Here we will
compute the fundamental group of the affine curve and also show how to recover the group of
the projective curve. In order to compute the group we will use the braid monodromy associated
with the projection (x, y) 7→ x. Note that the discriminant of the equation (3.1) (with z = 1) is
(up to a constant) x(x2−11x−1)5. Since the three roots are real and the projection is 3 : 1 with
enough real roots, the real picture in Figure 2 contains all the required information to obtain
the braid monodromy (the dotted lines represent the real part of the complex conjugate roots).

The braid monodromy is defined as a representation ∇0 : π1(C \ {0, a+, a−};x0) → B3. The
source is a free group of rank three generated by:

µ+ := α+ · β+ · γ+ · α−1
+ , µ0 := α+ · β+ · α0 · β0 · γ0 · α−1

0 · β
−1
+ · α−1

+ and

µ− := α+ · β+ · α0 · β0 · α− · β− · γ− · α−1
− · β−1

0 · α−1
0 · β

−1
+ · α−1

+ .

Figure 3 shows a geometric basis of π1(C \ {0, a+, a−};x0). The braids are obtained by consid-
ering the way the roots with respect to y move when the parameters move along x. We follow
these conventions:

(B1) In order to draw the braids we consider the projection onto the real axis.
(B2) When two points have the same real part, we perturb the projection such that positive

imaginary parts go to the right and negative imaginary parts go to the left.
(B3) Roots will be numbered from right to left.
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x = 11+5
√

5
2 = a+

F+

x = 0

F0

x = 11−5
√

5
2 = a−

F−

Figure 2. Real picture of the affine Degtyarev curve

x0

α+

β+

γ+
α0

β0

γ0
α−

β−

γ−

Figure 3. Paths in C \ {0, a+, a−}

Paths Braids
α+ 1
β+ σ2

2

γ+ σ3
2

α0 σ−1
1 σ2

β0 1
γ0 σ1

α− 1
β− σ2

2

γ− σ3
2

Table 1. Braids

(B4) The above conventions give a canonical way to identify open braids with closed braids.

Using the standard Artin generators of the braid groups, the braids obtained from following
the paths in C \ {0, a+, a−} shown in Figure 3 are presented in Table 1.

Proposition 3.3. The braid monodromy for the chosen projection of the affine Degtyarev curve
is given by:

∇0(µ+) = σ5
2 , ∇0(µ0) = (σ2

2σ
−1
1 σ2) ∗ σ1, ∇0(µ−) = (σ2

2σ
−1
1 σ2σ1) ∗ σ5

2 = σ2
2 ∗ σ5

1 ,

where a ∗ b := aba−1.
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4. Groups of Degtyarev curves

In order to compute the fundamental groups we apply the Zariski-van Kampen method. Let us
consider the vertical line F of equation x = x0. The set F \C is of the form {x0}×C\{y1, y2, y3},
where y1, y2, y3 ∈ R. We choose a big real number y0 in order to fix (x0, y0) =: p0 as the base
point. The free group π1(F \ C; p0) has a free basis g1, g2, g3 constructed as in Figure 3. The
natural action of B3 on the free group F3 is expressed in this case as

(4.1) g
σj

i :=


gi+1 if i = j,

gi+1 ∗ gi if i = j + 1,

gi if i 6= j, j + 1.

Proposition 4.1. The fundamental group of the affine Degtyarev curve has a presentation

(4.2)
〈
g1, g2, g3

∣∣∣ g∇0(µj)
i = gi, i = 1, 2, 3, j = −, 0,+

〉
.

In this presentation, a meridian of the line at infinity is (up to conjugation)
(
g3(g2g1)2

)−1
. In

particular, a presentation for the projective Degtyarev curve is

(4.3)
〈
g1, g2, g3

∣∣ (4.2), g3 = (g2g1)−2
〉
.

Proof. The first presentation is a consequence of the Zariski-van Kampen method by means of
the braid monodromy. In order to prove the second one may consider a small deformation of
the vertical line F . It will intersect the curve at five points. Three of them are close to (x0, yi),
i = 1, 2, 3, and the other two ones lie in the real branches which go faster to infinity. The
boundary of a big disk in this line is the inverse of a meridian of the line at infinity. �

Remark 4.2. Proposition 4.1 provides right presentations of the group, but they may be quite
cumbersome to work with by hand. Even if one wants to work with them with computer
programs, like GAP[15], the presentations could be intractable. There are several ways around
this problem

(P1) The presentation (4.2) works if we replace the braid monodromy ∇0 for a conjugate. For
example, conjugating the braids in Proposition 3.3 by σ2

2 produces simpler braids and
hence a simpler presentation of the group.

(P2) Instead of finding a good braid to perform the conjugation in (P1) by inspection, one
can try to interpret this conjugation in a geometric way. Changing the base point in
C \ {0, a+, a−} might produce simpler braids. For example choosing a real number
ỹ0 ∈ (a−, 0) as a base point, one obtains the following as braid monodromy (for the new
generators of the group):

(4.4) µ̃+ 7→ (σ−1
2 σ1) ∗ σ5

2 , µ̃0 7→ σ1, µ̃− 7→ σ5
2 .

These braids have been obtained by conjugation of the ones in Proposition 3.3 by
σ2

2σ1σ
−1
2 .

(P3) If g is a meridian of the line at infinity obtained using a braid monodromy ∇0, then, for
a braid monodromy (∇0)τ := τ−1∇0τ = (τ−1) ∗ ∇0, a meridian of the line at infinity
is gτ .

(P4) There is another geometric way to reduce the presentation. Note that among the rela-

tions (gj)
σ5
2 = gj , j = 1, 2, 3, one only needs to keep the relation given by j = 2. First

of all, the relation for j = 1 is trivial; secondly (g3g2)τ = g3g2 and hence one of them is
redundant. In the general case, this can be summarized as follows:
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• Let us consider the action (4.1) (replacing 3 by n) of Bn on the free group with basis
g1, . . . , gn; let us consider a braid τ ∈ Bn which can be decomposed as τ = τ1 ·· · ··τr,
where τj involves only a set of nj consecutive strings and n =

∑r
j=1 nj . Then,

among the relations gτj = gj , we only need to consider s :=
∑r
j=1(nj − 1) = n− r,

disregarding one for each block of strings. Let Jτ be the chosen subset of indices.

• If β = (τ)σ, and τ can be decomposed as above, then the set of relations gβj = gj ,

j = 1, . . . , n, is equivalent to (gσj )τ = gσj , j ∈ J .
For example, in our case the presentation (4.2) can be reduced to have 3 relators.

Proposition 4.3. The group G of the affine Degtyarev curve has a presentation:

(4.5)
〈
x, y

∣∣xyxyx = yxyxy, [x, yxy−1xyxy−1xy] = 1
〉

A presentation of the group GP of the projective Degtyarev curve is obtained from (4.5) by adding
x5 = 1. It turns out that GP is a group of order 320 with the following properties:

(GP1) GP/G
′
P is cyclic of order 5.

(GP2) The center Z(GP) is the Klein group of order 4.
(GP3) The group G/Z(GP) is a semidirect product of (Z/2)4 by Z5, where the action of a

generator of Z5 cyclically permutes a generator system h1, . . . , h5 of order 2 elements of
(Z/2)4 satisfying

∑
hi ≡ 0.

Proof. The presentation of G is obtained using the braid monodromy 4.4 and Remark 4.2(P4),
where x = g1, g2 and y = g3; note that x and y are conjugate. In order to obtain the presentation
of GP the relation of the line at infinity needs to be added. This is a complicated product of five
conjugates of x. If one types this presentation in GAP, the output is that GP has order 320 and
that x is an element of order 5. Also according to GAP, the order of the quotient of G obtained
by adding the relation x5 = 1 is 320. These facts give the presentation of the statement. The
properties of GP are either trivial or easily computed using GAP. �

Proposition 4.4. The group GP possesses no geometric surjections.

Proof. The only properties needed for this are the size of both the group GP and its abelian-
ization. Let us assume that GP possesses a geometric surjection. Since it is finite, the orbifold
group must be finite. The only orbifolds having a finite non-abelian fundamental group are those
of type P1

a,b,c, with 1
a + 1

b + 1
c > 1 (the so-called spherical orbifolds): either P1

2,2,n, n ≥ 3, or

P1
2,3,m, m = 3, 4, 5. Since the order of the orbifold group must divide 320, the only possibilities

are (2, 2, n), where n|160. The group is dihedral and its abelianization is either Z/2 or (Z/2)2.
Since the abelianization of GP is of order 5, the result follows. �

We finish this section with the main result of this paper. We are going to compute the
characteristic varieties of the complement of the affine Degtyarev curve and we will prove that
these components cannot come from the characteristic varieties of an orbifold.

Theorem 4.5. Let TG = C∗ be the character torus of G. Then V1(G) is the set containing 1 and
the 10-th primitive roots of unity, whereas V2(G) = ∅. Therefore there is no geometric surjection
of G onto an infinite orbifold group.

Since finite group orbifolds do not have characteristic varieties, the following Corollary holds.

Corollary 4.6. No irreducible component of V1(G) is obtained as the pull-back of an irreducible
component of the V1(Γ) where Γ is an orbifold group.
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Proof of Theorem 4.5. We are going to change the presentation (4.5), by taking a new generator
t satisfying y = xt:

(4.6)
〈
x, t
∣∣ xtx2tx = tx2tx2t, [x, txt−1xtxt−1xt] = 1

〉
It is clear that 1 ∈ V1(G) \ V2(G) since the non-twisted homology has rank 1. Let us consider a
non-trivial character ξ ∈ TG, which is identified by the image 1 6= ζ of a positive generator of Z.
One can associate a CW -complex with the presentation (4.6) with one 0-cell p, two 1-cells x, t
and two 2-cells A,B (corresponding to the relations). Then, the complex C∗(X;C)ξ with which
to compute the twisted homology is

0 −→ C2 ∂2−→ C2 ∂1−→ C −→ 0.

The matrix for ∂1 is
(
ζ − 1 0

)
. In particular, dim ker ∂1 = 1 and hence V2(G) = 0. The matrix

for ∂2 equals (
0 0

1− ζ + ζ2 − ζ3 + ζ4 (1− ζ + ζ2 − ζ3 + ζ4)(ζ − 1)

)
.

The homology is non trivial if and only if the matrix vanishes and hence V1(G) is as in the
statement.

Since we are working with the complement of an affine (hence projective) curve, if G admits
a geometric surjection onto an infinite orbifold group, the orbifold must be over a rational curve.
Since the abelianization has rank 1, the rational curve must be either C or P1. Any dominant
morphism with target C can be considered as dominant on P1 and we treat only this case.

One needs to consider only orbifolds over P1 whose fundamental groups are infinite, have cyclic
abelianizations and admit the 10-th primitive roots of unity in their characteristic varieties. In
particular, the abelianization must be of the type Z/nZ, where 10 divides n.

Let us prove that any such orbifolds admit dominant morphisms in P1
2,5,10 and P1

2,2,5,5. It
is not hard to prove (see, e.g., [4] for details) that for a prime p, the abelianization of G has
non-trivial p-factors if at least two orbifold points have indices divisible by p. Using the identity
mapping, we obtain dominant morphisms in either the above orbifolds or P1

10,10. We need to

exclude the case where only a dominant morphism in P1
10,10 exists. In this case, P1

10n1,10n2,n3,...,nr
,

gcd(nj , 10) = 1, j = 1, . . . , r. We proved in [4] that no element of order 10 is in the characteristic
varieties of this orbifold, and hence, these orbifolds do not satisfy the claim of the statement.

The properties of V2 allow us to discard P1
2,2,5,5, see Proposition 1.14. Let us assume that there

is a geometric surjection onto the orbifold P1
2,5,10. Proposition 1.13 does not provide a direct

obstruction in terms of V1. Moreover, the kernel of the abelianization map is the fundamental
group K2 of a compact Riemann surface of genus 2, see Proposition 1.13.

Note that (xy)5 = (x2t)5 is a central element and the group K generated by this element
defines an injection in G/G′. Following [10], if G0 := G/K, the groups G′0 and G′ are isomorphic
and hence G′ is finitely presented. Using the Reidemeister-Schreier method, we find the following
presentation:

(4.7) G′ = 〈t0, t1, t2, t3, t4 | tn+1tn+3 = tntn+2tn+4, Bn = Bn+1 〉 ,

where Bn := tnt
−1
n+1tn+2t

−1
n+3tn+4 and x ∗ tn = tn+1. Note that x10 ∗ tn = tn+10 = A ∗ tn,

where A := tntn+2tn+4tn+6tn+8 for any n. This guarantees that the above presentation is finite.
Summarizing, one can deduce that the kernel K1 of the epimorphism onto Z/10 equals Z×G′.
Note that the rank of K1 equals 5 and the rank of K2 equals 4, so no contradiction arises.

According to GAP the next quotients of the lower central series have ranks 5 and 16 for K2,
and 2 and 0 (order 5) for K1 and hence such an epimorphism cannot exist. �
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5. Further properties of the affine Degtyarev curve

The affine Degtyarev curve is related with elliptic fibrations as follows. In order to work in
a projective setting, one can first consider the projective Degtyarev curve, and fix a singular
point P . We will denote by L the tangent line of C at P , and the remaining singular points by
P±. Let σ : Σ1 → P2 be the blow-up of P where E denotes the exceptional component. Strict
transforms will follow Convention 2.10.

Each generic fiber of Σ intersects C at three points. There are four exceptions; three of them
can be seen in Figure 2 and they are denoted by F+, F0, and F−. The fourth one is L, which
intersects C at two points: one is smooth and transversal and the other one is the infinitely
near point of P in E, which is of type A2. In order to separate C and E we perform a positive
elementary Nagata transformation ρ : Σ1 99K Σ2 on the fiber corresponding to L. The fiber
which replaces L is denoted by F∞. Note that F∞ intersects C at two points: one of them
corresponds to the blow-down of L and the other one is a point with a generic tangency. In
particular, the combinatorics of the intersections at F0 and F∞ coincides.

Remark 5.1. Properties 3.1 imply the rigidity of this arrangement of curves in Σ2. In particular,
once the four fibers are ordered the cross-ratio of their images in P1 provides an invariant of
the arrangement. The existence of an automorphism of Σ2 preserving C and exchanging the
two fibers containing the singular points can be easily checked. As a consequence of the cross-
ratio argument, the two tangent fibers must also be exchanged. This automorphism defines a
birational map of P2 which is related to the two solutions in Q(

√
5) exhibited in the proof of

Property 3.1(D3).

Let us consider the minimal resolution Z of the double covering of Σ2 ramified at C + E.
The ruling of Σ2 induces a morphism ρ : Z → P1 such that the generic fiber is elliptic. The
only singular fibers are the preimages of F+, F− (of type I5 in Kodaira notation), F0, and F∞
(of type I1). These elliptic fibrations have been extensively studied in [18]. Once a section is
fixed (e.g. the preimage of E), the set of sections has an abelian group structure (inherited by
the structure on the fibers) which is called the Mordell-Weil group. Note that the involution
associated with the double covering is defined by taking the opposite. It is known that the
Mordell-Weil group of Z is cyclic of order 5.

Let us consider a conic C1 tangent to C both at P and at another singular point and transversal
to the third singular point. The preimage of C1 by the double covering has two irreducible
components which are denoted by E1 and −E1: they are opposite sections in the Mordell-Weil
group. Interchanging the two singular points, one obtains the remaining two sections E2 and
−E2 of Z.

Let us recall that G denotes the fundamental group of the complement of the affine Degtyarev
curve, i.e. P2 \ (C ∪ L) = Σ2 \ (C ∪ E ∪ L∞).

Remark 5.2. Despite Proposition 4.4, note that its affine version, G = π1(P2 \ (C ∪ L)) does
posses a geometric surjection onto the orbifold over P1

2,2,5, since G admits an epimorphism onto
the dihedral group of order 10, see for instance [5].

In order to construct this morphism, we may use the ideas in [23]. The mapping is obtained
by a pencil of rational curves of degree 10, with the following non-reduced fibers:

• A smooth conic C2 of multiplicity 5 such that (C · C2)P+ = 2, (C · C2)P− = 4 and
(C · C2)P = 4.
• A quintic C5 of multiplicity 2 such that (C · C5)P+

= 5 (P+ is a smooth point of C5),
(C · C2)P− = 10 (P− is a singular point of C5 of type A4), and (C · C2)P = 10 (P is a
singular point of C5 of type D6).
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• The curve C+L+2D2 where D2 is a smooth conic such that (C ·D2)P+ = 0, (C ·D2)P− =
5, and (C ·D2)P = 4.

We finish this section by describing some properties of the group G. For a point Q ∈ C, the
local fundamental group πloc

1 (C,Q) of C at Q is π1(BQ \ C), where BQ is a Milnor ball. The
inclusion BQ \ C ↪→ C2 \ C induces a conjugacy class of subgroups (since the base point is not
fixed) which will be called the image of the local fundamental group.

Proposition 5.3. Let P± be the two singular points of the affine Degtyarev curve.

(a) The images of the local fundamental groups at P+ and P− are the whole group G.
(b) The center of G contains an abelian free subgroup of rank 2.

Proof. The property about the image of the local fundamental group at P− is obvious from the
presentation (4.5). For P+ it can be deduced using GAP. As a consequence we obtain two central
elements (the images of the central elements of the local fundamental groups). The last property
can be deduced by studying some quotients of subgroups of G. �
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A0-SUFFICIENCY OF JETS FROM R2 TO R2

HANS BRODERSEN AND OLAV SKUTLABERG

Dedicated to professor Andrew du Plessis on his 60th birthday

Abstract. An r-jet z ∈ Jr(2, 2) is A0-sufficient in E[r](2, 2) if every Cr realization of z

is topologically right-left equivalent to z. We give sufficient conditions for A0-sufficiency

in E[r](2, 2). For a certain class of jets, we prove that our sufficient conditions are also
necessary. Finally, we use the techniques developed in the course of the proofs of these

results to give sufficient conditions for a 1-parameter family of Cr plane-to-plane map-germs

to be topologically trivial.

1. Introduction

Let E[r](n, p) denote the set of Cr-map-germs (Rn, 0)→ (Rp, 0). Let ω : (Rn, 0)→ (Rp, 0) be
an r-jet. We say that ω is A0-sufficient in E[r](n, p) if, for any Cr-germ f : (Rn, 0)→ (Rp, 0) with
jrf(0) = ω, there exist germs of homeomorphisms h : (Rn, 0)→ (Rn, 0) and k : (Rp, 0)→ (Rp, 0)
such that f = k ◦ ω ◦ h.

The study of sufficiency of jets started with the classical papers of Kuiper [7], Kuo [8], [9] and
Bochnak and  Lojasiewicz [3]. In these papers the sufficiency of r-jets in E[r](n, 1) = E[r] and
E[r+1] with respect to R0-equivalence and the sufficiency of r-jets in E[r+1](n, p) with respect to
V-equivalence were studied, and necessary and sufficient conditions for sufficiency were given.
(Two map-germs f , g are R0-equivalent if there exists a germ of homeomorphism h such that
f = g ◦ h, and they are V-equivalent if f−1(0) and g−1(0) are homeomorphic.) In these cases
the necessary and sufficient condition was formulated in terms of a  Lojasiewicz inequality. This
 Lojasiewicz inequality implies that every representative of the jet is, in some sense, non-singular
outside 0.

In this article we will study A0-sufficiency of jets, and we will only consider jets from R2 to R2.
The nice geometric conditions we expect for representatives of such jets are that they only have
fold singularities outside the origin and that they do not have singular double points. We must
therefore put up  Lojasiewicz inequalities avoiding such singularities outside 0, and hopefully such
 Lojasiewicz inequalities will be necessary and sufficient conditions for A0-sufficiency of plane-to-
plane jets. We have however not been able to prove this in general. Let ω : (R2, 0) → (R2, 0)
be a singular r-jet (identified with a polynomial map of degree ≤ r) with singular set Σ(ω).
Assume that ω is not the zero jet and that 0 is not isolated in Σ(ω). Then Σ(ω) is a 1-
dimensional algebraic set. It follows that for small balls B(0, ρ) around 0, 0 is in the closure of
all components of (Σ(ω) − {0}) ∩ B(0, ρ) and the number of such components are independent
of the radius ρ. Let C1, . . . , CN be these components. By the curve selection lemma, we can
find analytic curves γi : [0, ε) → R2 for i = 1, . . . , N with γi(0) = 0 and γi(0, ε) ⊂ Ci. Let
ni = lim

t→0+
γ′i(t)/ ‖γ′i(t)‖. If all the ni are distinct, we say that C1, . . . , CN have different tangent

directions at 0. Assume that C1, . . . , CN have different tangent directions at 0. For such jets, we
prove that there exist two  Lojasiewicz inequalities which together are necessary and sufficient

2000 Mathematics Subject Classification. 14B05, 58A20 (primary), 58A20 (secondary).
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conditions for sufficiency. This result is Theorem 2.2 in Section 2. If we drop the hypothesis
about the tangent directions, we can prove that our inequalities are sufficient conditions, but we
have not suceeded in proving the necessity of both of these inequalities in the general case. For
jets ω such that two components Ci and Cj of Σ(ω) − {0} have the same tangent direction at
0, the distance between points in Ci and Cj may be small compared to the distance to 0. This
makes perturbation arguments complicated.

If we consider jets ω where 0 is isolated in Σ(ω), we can discard the second  Lojasiewicz
inequality, and the first  Lojasiewicz inequality will be a necessary and sufficient condition for
A0-sufficiency. In fact, it turns out that this inequality is a necessary and sufficient condition
for R0-sufficiency in E[r](2, 2) for such jets.

The statement of Theorem 2.2 in Section 2 below is a generalized and improved version of
a theorem announced without proof in the article [5]. Also Theorem 2.3 is announced without
proof in [5].

The article is organized in the following way: In Section 2 we introduce some notation and
formulate the main results of the article. In Section 3 we write down the equations in the jet
space for certain sets of singular 1- and 2-jets, and we find expressions for distance functions
from jets to these singular sets. These distance functions will be used throughout the article.
We also discuss the smoothness of one of these distance functions and we prove Propostion
2.1 and Theorem 2.3 of Section 2. In Section 4 we prove that the two  Lojasiewicz inequalities
formulated in Theorem 2.2 in Section 2 are stable in the sense that all Cr-representatives of
a jet satisfying the inequalities also satisfy similar inequalities. We also derive a number of
geometrical consequences of our  Lojasiewicz inequalities.

In Section 5, we prove that the two  Lojasiewicz inequalities of Theorem 2.2 imply sufficiency
of the jet. In Section 6, we point out that every jet has a nice realization which has at most
only fold singularities outside 0, and avoids singular double points. We then prove that if some
of the inequalities of Theorem 2.2 are not satisfied, then we can find another bad realization
of the jet having singularities which are topologically different from the singularities of the nice
representative. (When we here consider the failure of the second  Lojasiewicz inequality, we
consider only jets ω such that the tangent directions at 0 of the components C1, . . . , CN are
distinct.) This will prove that the  Lojasiewicz inequalities are necessary for sufficiency of the jet
and therefore complete the proof of Theorem 2.2.

In Section 7 we give examples of sufficient and non-sufficient jets.
Finally, in Section 8, we look at germs of one-parameter families of Cr-maps and state sufficient

conditions for such families to be topologically trivial. The conditions are analogous to those
satisfied by one-parameter families of Cr-realizations of sufficient jets.

2. The Main Theorem

Let J1(2, 2) be the set of 1-jets (R2, 0) → (R2, 0). An element z ∈ J1(2, 2) can be identified

with a linear map from R2 to R2 and thus with a matrix

(
a b
c d

)
or (when we find it convenient) a

vector (a, b, c, d) ∈ R4. Let J2(2, 2) be the set of 2-jets (R2, 0)→ (R2, 0). An element z ∈ J2(2, 2)
can be identified with a polynomial map

z(x, y) = (ax+ by + ex2 + 2fxy + gy2, cx+ dy + hx2 + 2ixy + jy2).

Now J2(2, 2) can be identified with R10 by identifying z with the tuple (a, b, . . . , j) and we
can therefore consider the splitting

(L,H) = (Lz, Hz) = ((a, b, c, d) , (e, f, g, h, i, j)) ∈ R4 × R6.
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Consider the set E[r](2, 2) of Cr-germs f : (R2, 0) → (R2, 0). Let r ≥ 2 and let f : U → R2

be a representative of a germ in E[r](2, 2). For p ∈ U we can define j1f(p) ∈ J1(2, 2) and

j2f(p) ∈ J2(2, 2) as the 1- and 2-jet, respectively, of f
(
(x, y) + p

)
− f(p) at (x, y) = 0 . For

any f ∈ E[r](2, 2) we can consequently define germs j1f : (R2, 0)→ J1(2, 2) and j2f : (R2, 0)→
J2(2, 2) and thus define the germ (Lf , Hf ) by (Lf , Hf )(p) = (Lj2f(p), Hj2f(p)). Let Γ ⊂ J2(2, 2)
be defined by

Γ = { (a, . . . , j) | ad− bc = 0,

(
a b
c d

)(
aj − bi− cg + df
−ai+ bh+ cf − de

)
=

(
0
0

)
},

via our identifications. We will see in Section 3 that Γ is the set of singular 2-jets which are not
folds.

Let ω ∈ Jr(2, 2) be a singular jet which we identify with a polynomial map ω : R2 → R2 of
degree ≤ r. Assume that 0 is not isolated in Σ(ω) and that ω is not the zero jet. Since Σ(ω) is
algebraic, it follows that there exists ρ0 > 0 such that when 0 < ρ < ρ0 then (Σ(ω)−{0})∩B(0, ρ)
(where B(0, ρ) ⊂ R2 is the open ball with center 0 and radius ρ) is non-singular, has finitely
many topological components, 0 is in the closure of each component, and the number of such
components is independent of ρ (this follows for example from the results of chapter 2 of [11]).
We denote these components by C1, . . . , CN with no reference to the ball B(0, ρ). As explained
in the introduction, these curves have a well defined tangent direction at the origin.

For each ε > 0, define

Hε =
{
p | d(j1ω(p),Σ) ≤ ε ‖p‖r−1

}
.

Here Σ ⊂ J1(2, 2) is the set of singular 1-jets, d(j1ω(p),Σ) denotes the distance inf{
∥∥j1ω(p)− z

∥∥ | z ∈
Σ}, where ‖·‖ is the usual Euclidean norm when 1-jets are identified with vectors in R4 (when
points in some finite dimensional linear spaces are identified with vectors in Euclidean spaces
‖·‖ will always (unless otherwise stated) denote the Euclidean norm via the identification). For
every ε > 0, Hε is a closed semialgebraic set with Σ(ω) ⊂ Hε (this is a consequence of Proposition
2.2.8 of [1] and the Tarski-Seidenberg Theorem).

We now have the following proposition:

Proposition 2.1. Let r ≥ 2 and ω ∈ Jr(2, 2) be a singular, non-zero jet such that 0 is not
isolated in Σ(ω). Let Γ, ρ0, C1, . . . , CN and Hε be as explained above. Consider the following
condition:

(I) There is a neighbourhood U of 0 and constants C > 0 such that if p ∈ U and (L,H) ∈ Γ,
then

‖Lω(p)− L‖+ ‖Hω(p)−H‖ ‖p‖ ≥ C ‖p‖r−1
.

Assume that condition (I) is satisfied. Then there exists ε0 > 0 such that if ρ0 above is suf-
ficiently small, then the following is satisfied: For each open ball B(0, ρ) ⊂ R2 with center 0
and radius ρ < ρ0, and for each ε, 0 < ε < ε0, (Hε − {0}) ∩ B(0, ρ) has exactly N connected
components, and we can label the components of (Hε − {0}) ∩B(0, ρ) by H1, . . . ,HN , such that
Ci ⊂ Hi.

Now we have:

Theorem 2.2 (Main Theorem). Let r > 2 and let ω ∈ Jr(2, 2) be a jet as described in Propo-
sition 2.1 . Let Γ, C1, . . . , CN and Hε be as defined above and assume that condition (I) of
Proposition 2.1 is satisfied. Let ρ0 and ε0 be as in the conclusion of 2.1. Consider the following
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condition :

(II) There exist ρ > 0 with ρ < ρ0 and ε > 0 with ε < ε0 and a constant C > 0 such that
if Hi and Hj, i 6= j are components of (Hε − {0}) ∩B(0, ρ) and p ∈ Hi ∪ {0} and q ∈ Hj ∪ {0}
then

‖ω(p)− ω(q)‖ ≥ C(‖p‖r−1
+ ‖q‖r−1

) ‖p− q‖ .
Assume also that the condition (II) above is satisfied, then ω is A0-sufficient in E[r](2, 2) .

Moreover, the condition (I) of Proposition 2.1 is a necessary condition for A0-sufficiency in
E[r](2, 2) for all jets in Jr(2, 2) with r > 2, and if we consider singular, non-zero jets ω where 0
is not isolated in Σ(ω), and where all the components C1, . . . , CN of Σ(ω) − {0} have different
tangent directions at 0, then condition (II) above is also a necessary condition for A0-sufficiency
in E[r](2, 2).

Remark 1. One may conjecture that (I) together with (II) is equivalent to A0-sufficiency for all
jets with non isolated critical point at 0. In fact one may sharpen this, and restrict (II) to Σ(ω)
and conjecture that (I) together with this restricted version of (II) is equivalent to A0-sufficiency
for all such jets. In two preprints [12] and [13], the second author has verified this conjecture for
jets where all the components C1, . . . , CN of Σ(ω)−{0} have different tangent directions at 0, for
jets of rank 1 and for weighted homogeneous jets. In fact for homogeneous jets, A0-sufficiency
is equivalent to the geometrical condition that the jets only have fold singularities outside 0 and
have no singular double points. The proofs of these results given in [12] and [13] depend however
heavily on the results and techniques given in this article.

For jets ω where 0 is isolated in Σ(ω) we have the following sufficiency theorem:

Theorem 2.3. Let ω ∈ Jr(2, 2) with r ≥ 2 be a singular jet and assume that there exists a
neighborhood U of 0 such that Σ(ω) ∩ U = {0}. Then ω is R0-sufficient in E[r](2, 2) if and only
if ω satisfies the condition (I) in Proposition 2.1.

Remark 2. Let ω = (f, g). Note that R0-sufficiency is by [2] (or [14]) equivalent to an inequality
d(∇f(p),∇g(p)) ≥ C||p||r−1, in fact in [2] it is proven that this inequality also is equivalent to
A0-sufficiency for jets with an isolated critical point at 0. We will see in Subsection 4.1 below
that this inequality is trivially equivalent to the inequality d(j1ω(p),Σ) ≥ C||p||r−1. The left
hand side of the inequality (I) in Proposition 2.1 is a sort of measure of the distance from the
jet j2ω(p) to the set of singular 2-jets which are not folds. So a priori, this is a much weaker
inequality than the inequality d(j1ω(p),Σ) ≥ C||p||r−1, but we will show in Subsection 4.1 that
these two inequalities actually are equivalent for jets ω with Σ(ω) = {0}, proving Theorem 2.3.
Together with the conclusion of Theorem 2.2 we thus get that R0-sufficiency, A0-sufficiency and
(I) are equivalent conditions for jets in Jr(2, 2) with an isolated critical point at 0.

3. Folds

As remarked above, the left hand side of the inequality (I) of Proposition 2.1 somehow mea-
sures the distance from the 2-jet j2ω(p) to the set of singular jets which are not folds. To see
this we first have to study fold points and make some estimates in both J1(2, 2) and J2(2, 2).

By definition, a mapping F : R2 → R2 has a fold singularity at a point p if j1F (p) ∈ Σ1,
where Σ1 is the set of jets of rank 1, j1F t Σ1 at p and kerDF (p) + TpΣ(F ) = R2. We say
that a jet z = (a, . . . , j) ∈ J2(2, 2) is a fold if the associated polynomial mapping z(x, y) =
(f(x, y), g(x, y)) = (ax+ · · ·+ gy2, cx+ · · ·+ jy2) has a fold singularity at 0.
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We want to describe the set of folds in J2(2, 2) explicitly. Since the Jacobian matrix of z at
0 is

(
a b
c d

)
, ad− bc = 0 is the equation of the singular jets Σ in J1(2, 2). Consider the mapping

(a, b, c, d) 7→ ad − bc. When (a, b, c, d) ∈ Σ1 the gradient of this mapping, (d,−c,−b, a), will be
a normal vector of Σ1 at (a, b, c, d). Then j1z t Σ1 if and only if at least one of ( ∂

∂xj
1z)(0),

( ∂∂y j
1z)(0) is not perpendicular to (d,−c,−b, a), that is

(
ai−bh−cf+de
aj−bi−cg+df

)
6= ( 0

0 ). On the other

hand, we have Jz(x, y) = (∂f∂x
∂g
∂y −

∂f
∂y

∂g
∂x )(x, y), and a direct computation gives us that

∇Jz(0) = 2

(
ai− bh− cf + de
aj − bi− cg + df

)
.

For j1z t Σ1, the vector
(
ai−bh−cf+de
aj−bi−cg+df

)
is therefore a normal vector to Σ(z) at 0. The vector(

aj−bi−cg+df
−ai+bh+cf−de

)
will consequently span T0Σ(z), and the condition kerDz(0) + T0Σ(z) = R2 is

obviously equivalent to

Dz(0)

(
aj − bi− cg + df
−ai+ bh+ cf − de

)
=

(
a b
c d

)(
aj − bi− cg + df
−ai+ bh+ cf − de

)
6=
(

0
0

)
.

Thus we see that the set

Γ = { (a, . . . , j) | ad− bc = 0,

(
a b
c d

)(
aj − bi− cg + df
−ai+ bh+ cf − de

)
=

(
0
0

)
}

is the set of singular 2-jets which are not folds.

3.1. Distance from a jet to Σ in J1(2, 2). Let F,G be nonnegative functions. We will use
the notation F ∼ G if there are constants s, t > 0 such that sF ≤ G ≤ tF . Consider a jet
z ∈ J1(2, 2) identified with a matrix M =

(
a b
c d

)
. By ‖M‖, we mean the standard Euclidean

norm ‖M‖ = (a2 + b2 + c2 + d2)
1
2 . Our first task will be to estimate the distance d(z,Σ) from a

z to Σ ⊂ J1(2, 2).
Suppose X = (A B

C D ) is a singular jet realizing the distance R from
(
a b
c d

)
to Σ. It is clear that

X is an element of Σ1. A normal vector to Σ1 at (A B
C D ) is

(
D −C
−B A

)
, so there is a t with

M −X =

(
a b
c d

)
−
(
A B
C D

)
= t

(
D −C
−B A

)
giving

detM = t

∥∥∥∥(A B
C D

)∥∥∥∥2

, R = |t| ·
∥∥∥∥( D −C
−B A

)∥∥∥∥ =
|ad− bc|∥∥∥∥(A B
C D

)∥∥∥∥ .
Now, suppose ‖( ac )‖ ≥

∥∥( b
d

)∥∥. Since ( a 0
c 0 ) ∈ Σ,

R ≤
∥∥∥∥(a b

c d

)
−
(
a 0
c 0

)∥∥∥∥ =

∥∥∥∥(bd
)∥∥∥∥ ≤ 1√

2

∥∥∥∥(a b
c d

)∥∥∥∥ .
The same argument can be applied if ‖( ac )‖ ≤

∥∥( b
d

)∥∥, so in any case,

R ≤ 1√
2

∥∥∥∥(a b
c d

)∥∥∥∥ .
By the triangle inequality,

(3.1) (1− 1√
2

)

∥∥∥∥(a b
c d

)∥∥∥∥ ≤ ∥∥∥∥(A B
C D

)∥∥∥∥ ≤ (1 +
1√
2

)

∥∥∥∥(a b
c d

)∥∥∥∥ .
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So from this and from the expression for R above, we get that

(3.2) (2−
√

2)
|Jz(x, y)|
‖Dz(x, y)‖

≤ R = d
(
j1z(x, y),Σ

)
≤ (2 +

√
2)
|Jz(x, y)|
‖Dz(x, y)‖

,

and hence,

(3.3)
|Jz(x, y)|
‖Dz(x, y)‖

∼ d
(
j1z(x, y),Σ

)
for every non-zero jet z ∈ Jr(2, 2).

3.2. Distance from a singular jet to Γ in J2(2, 2). Let z = (a, b, . . . , j) ∈ J2(2, 2) with
ad− bc = 0. Let

E = Ez = {ω ∈ Γ|Lω = (a, b, c, d)}.
We want to estimate distance d(z, E), i.e. the distance from a singular 2-jet z to the set of
singular 2-jets with the same linear part as z satisfying the equation

(3.4)

(
L1

L2

)
:=

(
a b
c d

)(
aj − bi− cg + df
−ai+ bh+ cf − de

)
=

(
0
0

)
.

If a = b = c = d = 0, then the distance is 0 of course. Suppose
(
a b
c d

)
is singular and non-zero.

E is the linear subspace R6 with coordinates (e, . . . , j) satisfying(
a b
c d

)(
aj − bi− cg + df
−ai+ bh+ cf − de

)
=

(
(e, f, g, h, i, j) · (−bd, ad+ bc,−ac, b2,−2ab, a2)
(e, f, g, h, i, j) · (−d2, 2cd,−c2, bd,−ad− bc, ac)

)
=

(
0
0

)
So E = sp{v1, v2}⊥, where

v1 = (−bd, ad+ bc,−ac, b2,−2ab, a2)

v2 = (−d2, 2cd,−c2, bd,−ad− bc, ac).
If Hz = (e, f, g, h, i, j), then the distance we are seeking is the length of the projection pE of

(e, f, g, h, i, j) onto E⊥. We notice that since
(
a b
c d

)
is singular, v1 and v2 are linearly dependent,

and assuming that none of them are zero (otherwise, the expressions simplify),

pE =
1

2

(
L1

‖v1‖2
v1 +

L2

‖v2‖2
v2

)
,

and so the distance R is

R = ‖pE‖ =
1

2

(
|L1|
‖v1‖

+
|L2|
‖v2‖

)
.

Suppose sup{a2, b2, c2, d2} ∈ {a2, b2} and put N =
∥∥( a b

c d

)∥∥2
. It is easily seen that

1

16
N2 ≤ (sup{a2, b2, c2, d2})2 ≤ ‖v1‖2 ≤ 12(sup{a2, b2, c2, d2})2 ≤ 12N2,

and we get

(3.5)
1

4
N ≤ ‖v1‖ ≤ 2

√
3N.

In this case, R = |L1|
‖v1‖ and

(3.6)
|L1|

2
√

3N
≤ R ≤ 4|L1|

N
.
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Similarly, if sup{a2, b2, c2, d2} ∈ {c2, d2},

(3.7)
|L2|

2
√

3N
≤ R ≤ 4|L2|

N
.

Notice that the left inequalities in (3.6) and (3.7) hold without the assumptions regarding which
elements are realizing sup{a2, b2, c2, d2}. By adding the left sides of the inequalities (3.6) and

(3.7) we get (|L1|+ |L2|)/(2
√

3N) ≤ 2R. Also, one of the inequalities on the right side of either
(3.6) or (3.7) must hold, so certainly 2R ≤ 8(|L1|+ |L2|)/N . We get

(3.8)

∥∥∥∥(L1

L2

)∥∥∥∥
2
√

3N
≤ |L1|+ |L2|

2
√

3N
≤ 2R ≤ 8

|L1|+ |L2|
N

≤ 16

∥∥∥∥(L1

L2

)∥∥∥∥
N

.

From this we see that

(3.9)

∥∥∥∥(L1

L2

)∥∥∥∥
N

=

∥∥∥∥(a b
c d

)(
aj − bi− cg + df
−ai+ bh+ cf − de

)∥∥∥∥∥∥∥∥(a b
c d

)∥∥∥∥2 ∼ R = d(z, Ez).

In the language of partial derivatives and differentials of a Cr mapping f with p ∈ Σ(f),
inequality (3.9) reads

(3.10) d(Hf (p), Ej2f(p)) ∼

∥∥∥∥Df(p)

( ∂
∂yJf(p)

− ∂
∂xJf(p)

)∥∥∥∥
‖Df(p)‖2

.

3.3. Smoothness of the distance function and proofs of Proposition 2.1 and Theo-
rem 2.3. Let ω ∈ Jr(2, 2). Before we can prove Proposition 2.1, we have to investigate the
smoothness properties of the distance map we are about to define. Let d : R2 → R be the
map p 7→ d(p) = d(j1ω(p),Σ). We want information about where d is smooth. To this end,

let d′ : J1(2, 2) → R be the map A =

(
a b
c d

)
7→ d(A,Σ) = inf{‖A−X‖ |X ∈ Σ}. Let

A =

(
a b
c d

)
∈ J1(2, 2) \ Σ. Consider B = {Y |A − Y ∈ Σ}. Then Y ∈ B if and only if there

exists w ∈ R2 with ‖w‖ = 1 such that Aw = Yw. Since ‖Yw‖ ≤ ‖Y ‖, we get that

inf{‖Aw‖ | ‖w‖ = 1} ≤ d′(A).

On the other hand, let λ = inf{‖Aw‖ | ‖w‖ = 1} and let w = ( uv ) be a unit vector such that
λ = ‖Aw‖. Let Y be the matrix given by Yw = Aw and Y (−vu ) = ( 0

0 ). Then ‖Y ‖ = ‖Aw‖
and it follows that

(3.11) d′(A) = inf{‖Aw‖ | ‖w‖ = 1}.

From this we see that

d′(A) = (inf{|wTATAw| ; ‖w‖ = 1}) 1
2 = (inf{|β| ; β eigenvalue ofATA}) 1

2 .

Calculating the eigenvalues of the symmetric matrix ATA, we find that

d′(A) =
1√
2

√
‖A‖2 −

√
‖A‖4 − 4(detA)2.
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If we want to find an explicit expression for X =

(
x y
z w

)
∈ Σ such that d′(A) = ‖A−X‖, we

can use the method of Lagrange multipliers. The coordinates of X have to satisfy the following
equations:

x− a = λw(3.12)

y − b = −λz(3.13)

z − c = −λy(3.14)

w − d = λx(3.15)

xw − yz = 0.(3.16)

Analyzing this system, we find that if |det(A)| < 1
2 ‖A‖

2
(note that the inequality |det(A)| ≤

1
2 ‖A‖

2
holds for any A), then λ 6= ±1 and then the solution of the above system is given by

(3.17) x =
a+ λd

1− λ2
, y =

b− λc
1− λ2

, z =
c− λb
1− λ2

, w =
d+ λa

1− λ2
.

where λ is given by

λ1 =
−‖A‖2 +

√
‖A‖4 − 4(detA)2

2 detA
or λ2 =

−‖A‖2 −
√
‖A‖4 − 4(detA)2

2 detA
,

and X is given by (3.17) with λ = λ1. From the expression of d′ above we see that d′ is smooth

when detA 6= 0 and |detA| 6= 1
2 ‖A‖

2
. d is consequently smooth on the complement of the set

Σ(ω) ∪ {p | |Jω(p)| = 1
2 ‖Dω(p)‖2}. Denote this complement by V . Let

S = {p = (x, y) ∈ V | ∇d(p) · (y,−x) = 0}.

Then

S = {p ∈ V | d|{q∈V | ‖q‖=‖p‖ } has a stationary point at p}.
From the definition of V and the expression of d′ given above it follows that S is a semialgebraic
set. Now we have the following lemma:

Lemma 3.1. Assume ω satisfies condition (I) of 2.1, then there is a neighborhood U of 0 and
a C > 0 such that

d(p) = d(j1ω(p),Σ) ≥ C ‖p‖r−1

when p ∈ S ∩ U .

Proof. Consider the set

D ={(p,A) ⊂ S × Σ |
∥∥j1ω(p)−A

∥∥ ≤ ∥∥j1ω(q)−B
∥∥

for all q ∈ S with ‖p‖ = ‖q‖ 6= 0 andB ∈ Σ}.

An application of the Tarski-Seidenberg Theorem shows that D is semialgebraic. Assume that
the inequality of the lemma is not satisfied. Then (0, j1ω(0)) ∈ D and the curve selection lemma
implies that we can find an analytic curve γ̃ : [0, δ) → R2 × Σ with γ̃((0, δ)) ⊂ D and γ̃(0) =

(0, j1ω(0)). Let γ̃(t) = (γ(t), A(t)). We must have that
∥∥j1ω(γ(t))−A(t)

∥∥ = o(‖γ(t)‖r−1
).

Let

A(t) =

(
a(t) b(t)
c(t) d(t)

)
.
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Then

j1ω(γ(t))−A(t) = s(t)

(
d(t) −c(t)
−b(t) a(t)

)
‖A(t)‖

where |s(t)| =
∥∥j1ω(t)−A(t)

∥∥. For each t let βt(u) be a curve such that βt(0) = γ(t), ‖β′t(u)‖ =

1 and ‖βt(u)‖ = ‖γ(t)‖ for each u. Let At(u) ∈ Σ be such that d(j1ω(βt(u)),Σ) = At(u). It
is clear that At(u) ∈ Σ1, and since At(u) is given by equation (3.17) with λ = λ1, it is clear
that At(u) is unique and smooth in u for small u. Moreover, At(0) = A(t). By construction,∥∥j1ω(βt(u))−At(u)

∥∥2
must have a stationary point for u = 0. So

d

du

∥∥j1ω(βt(u))−At(u)
∥∥2 |u=0

= 2

(
d

du
j1ω(βt(u))|u=0 −

d

du
At(u)|u=0

)
· (j1ω(γ(t))−A(t)) = 0.

(Here ”·”denotes the standard Euclidean inner product in J1(2, 2) identified with R4 via the
coordinates (a, b, c, d).)

Now, d
duAt(u)|u=0 ∈ TA(t)Σ

1, and since j1ω(γ(t)) − A(t) is a normal vector to TA(t)Σ
1, we

get that (
d

du
j1ω(βt(u))|u=0

)
· (j1ω(γ(t))−A(t)) = 0.

So

(
d

du
j1ω(βt(u))|u=0

)
·

(
d(t) −c(t)
−b(t) a(t)

)
‖A(t)‖

=
(
Dj1ω(γ(t))w(t)

)
·

(
d(t) −c(t)
−b(t) a(t)

)
‖A(t)‖

= 0,

where w(t) is the unit vector d
duβt(u)|u=0.

Let ‖γ(t)‖ ∼ tl and |s(t)| =
∥∥j1ω(γ(t))−A(t)

∥∥ ∼ tq. Then q > l(r − 1). Since we have that

d

dt

∥∥j1ω(γ(t))−A(t)
∥∥2 ∼ t2q−1,

we get that (
d

dt
(j1ω(γ(t))−A(t))

)
· (j1ω(γ(t))−A(t)) ∼ t2q−1

and consequently that

d

dt
(j1ω(γ(t))−A(t)) ·

(
d(t) −c(t)
−b(t) a(t)

)
‖A(t)‖

∼ tq−1.

Since d
dtA(t) ∈ TA(t)Σ

1, and

(
d(t) −c(t)
−b(t) a(t)

)
is a a normal vector to TA(t)Σ

1, we must have

d

dt
(j1ω(γ(t))) ·

(
d(t) −c(t)
−b(t) a(t)

)
‖A(t)‖

∼ tq−1.

Now d
dt (j

1ω(γ(t))) = Dj1ω(γ(t))γ′(t). Let v(t) = γ′(t)
‖γ′(t)‖ . Since ‖γ′(t)‖ ∼ tl−1, we get that

tq−l ∼ (Dj1ω(γ(t))v(t)) ·

(
d(t) −c(t)
−b(t) a(t)

)
‖A(t)‖

= o(tl(r−1)−l) = o(‖γ(t)‖r−2
).
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Let us consider v(t) and w(t) above as two unit vectors in Tγ(t)R2. Since γ(t) is analytic,

v(t) = γ′(t)
‖γ(t)‖ and w(t) ·γ(t) = 0, we must have v(t) ·w(t)→ 0 as t→ 0. Let e1(t) = ∂

∂x ◦γ(t) and

e2(t) = ∂
∂y ◦γ(t), we must then have e1(t) = s1(t)v(t)+p1(t)w(t) and e2(t) = s2(t)v(t)+p2(t)w(t),

where |si(t)| < 2 and |pi(t)| < 2 for small t. From this and from above we get that

(Dj1ω(γ(t))e1(t)) ·

(
d(t) −c(t)
−b(t) a(t)

)
‖A(t)‖

= o(‖γ(t)‖r−2
)

and

(Dj1ω(γ(t))e2(t)) ·

(
d(t) −c(t)
−b(t) a(t)

)
‖A(t)‖

= o(‖γ(t)‖r−2
).

For fixed t, write j2ω(γ(t)) as in Section 2 in the form

j2ω(γ(t)) =
(
ã(t)x+ b̃(t)y + · · ·+ g̃(t)y2, c̃(t)x+ d̃(t)y + · · ·+ j̃(t)y2

)
.

Then

Dj1ω(γ(t))e1(t) = 2

(
ẽ(t) f̃(t)

h̃(t) ĩ(t)

)
.

We thus get that

2

(
ẽ(t) f̃(t)

h̃(t) ĩ(t)

)
·

(
d(t) −c(t)
−b(t) a(t)

)
‖A(t)‖

=2
a(t)̃i(t)− b(t)h̃(t)− c(t)f̃(t) + d(t)ẽ(t)

‖A(t)‖
=o(‖γ(t)‖r−2

).

In a similar way we get that

2
a(t)j̃(t)− b(t)̃i(t)− c(t)g̃(t) + d(t)f̃(t)

‖A(t)‖
= o(‖γ(t)‖r−2

).

Let z̃(t) be the singular 2- jet with Lz̃(t) = (a(t), b(t), c(t), d(t)) and

Hz̃(t) = Hω(γ(t)) =
(
ẽ(t), f̃(t), g̃(t), h̃(t), ĩ(t), j̃(t)

)
. From above it is clear that∥∥∥∥(a(t) b(t)

c(t) d(t)

)(
a(t)j̃(t)− b(t)̃i(t)− c(t)g̃(t) + d(t)f̃(t)

−a(t)̃i(t) + b(t)h̃(t) + c(t)f̃(t)− d(t)ẽ(t)

)∥∥∥∥∥∥∥∥(a(t) b(t)
c(t) d(t)

)∥∥∥∥2 = o(‖γ(t)‖r−2
).

From (3.9) it is then clear that there exists a jet z(t) = (Lz(t), Hz(t)) ∈ Γ with Lz(t) =

(a(t), b(t), c(t), d(t)) such that
∥∥Hω(γ(t))−Hz(t)

∥∥ = o(‖γ(t)‖r−2
). It follows that∥∥Lω(γ(t))− Lz(t)

∥∥+
∥∥Hω(γ(t))−Hz(t)

∥∥ ‖γ(t)‖ = o(‖γ(t)‖r−1
)

contradicting (I). �

Lemma 3.2. Assume ω satisfies condition (I) of 2.1 with neighbourhood U and constant C > 0,
then

‖Dω(p)‖ ≥ C ‖p‖r−1
.
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when p ∈ U .

Proof. It is clear that (0, Hω(p)) ∈ Γ (where 0 is the zero-jet in J1(2, 2)) for each p, so

‖Dω(p)‖ = ‖Lω(p)− 0‖+ ‖Hω(p)−Hω(p)‖ ‖p‖ ≥ C ‖p‖r−1
.

and the lemma follows. �

Proof of Proposition 2.1. Let ω be as in Proposition 2.1 satisfying condition (I). As pointed
out above, the function d is smooth at points p which are not singular and satisfy |Jω(p)| 6=
1
2 ‖Dω(p)‖2. Let the radius ρ0 in the statement of Proposition 2.1 also be chosen so small
that the conclusions of Lemma 3.1 and Lemma 3.2 hold when U = B(0, ρ) and 0 < ρ < ρ0.
From Lemma 3.2 it then follows that if d is not smooth at p and p is a regular point, then

|Jω(p)| = 1
2 ‖Dω(p)‖2 ≥ C

2 ‖Dω(p)‖ ‖p‖r−1
, where C is given in Lemma 3.2. So, if ε < 2−

√
2

2 C,
it follows from inequality (3.2) that d is smooth in (Hε−Σ(ω))∩B(0, ρ) when ρ < ρ0. Also assume
that ε < C where this time C is the constant of Lemma 3.1. It follows that (Hε−{0})∩B(0, ρ)
contains no points in S when ρ < ρ0.

The set (Hε − {0}) ∩ B(0, ρ) is semialgebraic and has consequently finitely many connected
components, and each component Ci is contained in one such component. If ρ0 is chosen small
enough, we may apply Theorem 9.3.6 of [1], and conclude that Hε ∩ B(0, ρ) is homeomorphic
to the cone with vertex 0 and basis Hε ∩ {p | ‖p‖ = ρ}. Since this basis is semialgebraic, and
hence a finite union of closed segments and isolated points, it follows that each component of
(Hε − {0})∩B(0, ρ) is a cone with the vertex 0 removed and with basis either a closed segment
or a point of the circle {p | ‖p‖ = ρ}. Consider such a component Hk of (Hε − {0}) ∩ B(0, ρ)
and a point p ∈ Hk. Assume Hk contains none of the components Ci. If p is an isolated point
in Hk ∩ {q | ‖q‖ = ‖p‖}, then p is a local minimum of the function d|{q | ‖q‖=‖p‖}. If p is not
isolated, then p is a point in Hk ∩ {q | ‖q‖ = ‖p‖} and this set is a 1-dimensional compact curve
which also must contain a local minimum of the function d|{q | ‖q‖=‖p‖} in its interior. Since Hk

does not contain any of the curves Ci, d|{q | ‖q‖=‖p‖} is smooth at this local minimum so this
minimum must be a point in S. From above we have that this is impossible.

If Hk contains two components Ci, Cj of Σ(ω) − {0}, then Hk ∩ {q | ‖q‖ = ‖p‖} contains a
1-dimensional compact curve such that the end-points of this curve are singular points and the
interior points are non-singular. Then the function d|{q | ‖q‖=‖p‖} must have a local maximum
at an interior point of this curve. Again, this point must be a point in S which is impossible.
We therefore conclude that it is impossible that a component of (Hε − {0}) ∩ B(0, ρ) contains
several or no components of Σ(ω)− {0}. This completes the proof of Proposition 2.1. �

Proof of Theorem 2.3. We will need the following lemma.

Lemma 3.3. Let ω be a jet with Σ(ω) = {0} (as a set germ at 0). Consider the following
inequality:
There exist a constant C and a neighbourhood U of 0 such that

(I′) d(p) = d(j1ω(p),Σ) ≥ C ‖p‖r−1

for p ∈ U . Then (I ′) is equivalent with the inequality (I) of Proposition 2.1.

Proof of Lemma 3.3. Assume that the inequality (I′) is not satisfied. Then we can find a se-

quence pn → 0 such that d(j1ω(pn),Σ) = o(‖pn‖r−1
). If p is a point such that |Jω(p)| =
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1
2 ‖Dω(p)‖2, then it follows from the estimates in (3.2) and Lemma 3.2 that

d(j1ω(p),Σ) ≥ (2−
√

2)
|Jω(p)|
‖Dω(p)‖

=

2−
√

2

2
‖Dω(p)‖ ≥ (2−

√
2)

2
C ‖p‖r−1

,

where C is given in Lemma 3.2. It follows from this and the existence of the sequence pn that
the function d|{p | ‖p‖=ρ} must have an absolute minimum at points p where d is smooth, hence in
the set S, when ρ is sufficiently small. Let p be such a point. From Lemma 3.1 it follows however
that if ‖p‖ is small then d(p) ≥ C ‖p‖r−1

for some C independent of p, and since d|{p | ‖p‖=ρ}
attains an absolute minimum at p this contradicts the existence of the sequence pn. So (I′) must
be satisfied.
Let π2

1 : J2(2, 2)→ J1(2, 2) be the canonical projection. Then Γ ⊂ (π2
1)−1(Σ) and from this, the

implication (I′)⇒(I) is obvious. �

Let f and g be the components of ω. As pointed out in Remark 2, it follows from Lemma
3.3 that we only need to prove the equivalence of the inequality d(j1ω(p),Σ) ≥ C ‖p‖r−1

and

the inequality d(∇f(p),∇g(p)) ≥ C ‖p‖r−1
of [2] (or [14]). From Subsection 3.2, we have

d(j1ω(p),Σ) ∼ |Jω(p)|
‖Dω(p)‖ . From the definition in [2], we get that

d(∇f(p),∇g(p)) = min{||∇f(p)− ∇f(p) · ∇g(p)

||∇g(p)||2
∇g(p)||, ||∇g(p)− ∇g(p) · ∇f(p)

||∇f(p)||2
∇f(p)||}.

If say, ‖∇f(p)‖ ≥ ‖∇g(p)‖, then a straightforward calculation shows that

d(∇f(p),∇g(p)) =
|Jω(p)|
‖∇f(p)‖

≥ |Jω(p)|
‖Dω(p)‖

≥ 1√
2
d(∇f(p),∇g(p)),

hence

d(∇f(p),∇g(p)) ∼ |Jω(p)|
‖Dω(p)‖

and consequently

d(∇f(p),∇g(p)) ∼ d(j1ω(p),Σ).

The conclusion of Theorem 2.3 follows from this. �

4. Stability of the Lojasiewicz inequalities

In this section we prove that the Lojasiewicz inequalities (I) of 2.1 and (II) of 2.2 are in some
sense stable under perturbations of the jet by Cr- mappings with r-jet vanishing to r-th order at
0, and we derive some important geometrical consequences of the two Lojasiewicz inequalities.

4.1. Lojasiewicz inequality (I).. From now on, let ω = (f, g) ∈ Jr(2, 2) for some r ≥ 2 and

with 0 not isolated in Σ(ω). Let ω̃ = (f̃ , g̃) be a Cr map with jrω̃(0) = 0. For t ∈ R, put
ωt(p) = ω(p) + tω̃(p) = (ft, gt). Also, let ε > 0 and let U be a neighbourhood of 0 ∈ R2.

Lemma 4.1. Assume that ω satisfies the condition (I) of Proposition 2.1 for some neighbourhood
U of 0 and some constant C > 0. Then there are constants 0 < C ′ < C and ε > 0 and a
neighbourhood U ′ of 0 such that if t ∈ (−ε, 1 + ε), then condition (I) with constant C ′ holds for
ωt in U ′.
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Proof. Let (L,H) ∈ Γ. By the triangle inequality,

‖Lωt(p)− L‖ ≥ ‖Lω(p)− L‖ − |t| ‖Lω̃(p)‖ ≥ ‖Lω(p)− L‖ − (1 + ε) ‖Lω̃(p)‖ ,
and similarly,

‖Hωt(p)−H‖ ≥ ‖Hω(p)−H‖ − (1 + ε) ‖Hω̃(p)‖ .
Hence,

‖Lωt(p)− L‖+ ‖Hωt(p)−H‖ ‖p‖
≥‖Lω(p)− L‖ − (1 + ε) ‖Lω̃(p)‖+ ‖Hω(p)−H‖ − (1 + ε) ‖Hω̃(p)‖) ‖p‖

≥C
2
‖p‖r−1

when U ′ is so small that ‖Lω̃(p)‖
‖p‖r−1 ≤ C

4(1+ε) and ‖Hω̃(p)‖
‖p‖r−2 ≤ C

4(1+ε) . Such a neighbourhood U ′ exists

for any ε > 0 since jrω̃(0) = 0 implies that ‖Lω̃(p)‖ = o(‖p‖r−1
) and that ‖Hω̃(p)‖ = o(‖p‖r−2

).
Putting C ′ = C

2 completes the proof. �

4.2. Stability of Lojasiewicz inequality (II). Let ω and ωt be as in Subsection 4.1, but
assume that r > 2. We assume that ω satisfies condition (I) of Proposition 2.1 and that U ,
C and ε are so small that by Lemma 4.1, (I) also is satisfied for ωt, t ∈ (−ε, 1 + ε). Let
F : U × (−ε, 1 + ε)→ R3 be the 1-parameter unfolding of ω given by (p, t) 7→ (ωt(p), t).

Lemma 4.2. There are constants C ′, ε > 0 such that if t ∈ (−ε, 1+ε) and p ∈ U ∩(Σ(ωt) \ {0}),
then

(4.1)
‖∇Jωt(p)‖
‖Dωt(p)‖

≥ C ′ ‖p‖r−2
.

Proof. For p ∈ U ∩ (Σ(ωt) \ {0}) we can choose H such that (Lωt(p), H) ∈ Γ. Inequality (I)
implies that for t ∈ I = (−ε, 1 + ε),

(4.2) ‖Hωt(p)−H‖ ‖p‖ ≥ C ‖p‖
r−1

.

Choose H of this type, minimizing the distance ‖Hωt(p)−H‖. It follows from Schwartz inequal-
ity and (3.8) that

(4.3)
‖∇Jωt(p)‖
‖Dωt(p)‖

≥

∥∥∥∥Dωt(p)( ∂
∂yJωt(p)

− ∂
∂xJωt(p)

)∥∥∥∥
‖Dωt(p)‖2

≥ 1

8
‖Hωt(p)−H‖ ≥

C

8
‖p‖r−2

.

The lemma follows by choosing C ′ ≤ C
8 . �

Let F0 = F |(U\{0})×(−ε,1+ε). It is easily seen that JF (p, t) = Jωt(p). Thus, Lemma 4.2

implies that 0 is a regular value of JF0 and we can conclude that Σ(F0) is a 2-dimensional Cr−1

submanifold of R3. Define a vector field v on Σ(F ) by

v(p, t) =

{
(0, 0, 1), if p = 0
pT (p,t)

[pT (p,t)]t
, otherwise,

where pT means the projection of k = (0, 0, 1) into the tangent plane of the manifold Σ(F0) and
vt denotes the t-component of any vector v. Notice that vt ≡ 1 on Σ(F ).

Lemma 4.3. ‖v(p, t)− (0, 0, 1)‖ = o
(
‖p‖

)
.
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Proof. In block-form the matrix of DF reads

DF =

(
Dωt ω̃

0 1

)
.

As mentioned above, we see that JF = 0 ⇔ Jωt = 0. Put h(p, t) = Jωt(p). Then Σ(F ) =
h−1(0), and hence, ∇h(p, t) ⊥ T(p,t)Σ(F0).

Let pN (p, t) be the projection of k = (0, 0, 1) onto sp{∇h(p, t)}. The projection pT (p, t) of
k into T(p,t)Σ(F0) is

pT = k− pN = k−
∂h
∂t

‖∇h‖2
∇h.

The t-component of pT equals ‖∇Jωt‖
2

‖∇h‖2 . Thus,

v =
‖∇h‖2

‖∇Jωt‖2
k−

∂h
∂t

‖∇Jωt‖2
∇h.

Using that vt = 1, we get

‖v − k‖ =

∣∣∂h
∂t

∣∣
‖∇Jωt‖

.

Now, ∂h
∂t = ∂

∂tJωt, where

Jωt = Jω + t

(
∂f

∂x

∂g̃

∂y
− ∂f

∂y

∂g̃

∂x
+
∂f̃

∂x

∂g

∂y
− ∂f̃

∂y

∂g

∂x

)
+ t2Jω̃.

From Lemma 3.2 we have that ‖Dω(p)‖ ≥ C ‖p‖r−1
. Since

Jω̃(p) = o(‖p‖r−1 · ‖p‖r−1
)

and (
∂f

∂x

∂g̃

∂y
− ∂f

∂y

∂g̃

∂x
+
∂f̃

∂x

∂g

∂y
− ∂f̃

∂y

∂g

∂x

)
(p) = o(‖p‖r−1

) ‖Dω(p)‖ ,

we can conclude that ∂h
∂t (p, t) = o(‖p‖r−1

) ‖Dω(p)‖. By rearranging the terms of (4.1) we obtain

1

‖∇Jωt(p)‖
≤ ‖p‖2−r

C ′ ‖Dωt(p)‖
.

Combining all this and the fact that ‖Dωt(p)‖ = ‖Dω(p)‖+ o(‖p‖r−1
), we get

‖v(p, t)− (0, 0, 1)‖ =

∣∣∂h
∂t (p, t)

∣∣
‖∇Jωt(p)‖

= o(‖p‖r−1
) · ‖Dω(p)‖ · ‖p‖2−r

C ′ ‖Dωt(p)‖
= o(‖p‖).

�

We are now going to extend the vector field v to a vector field ξ defined and continuous on all
of U × (−ε, 1+ ε). For simplicity, let I = (−ε, 1+ ε) and U0 = U −{0}. Recall that F0 = F |U0×I .

Let q ∈ U0 × I, If q ∈ Σ(F0), we can find an open neighbourhood V of q in R3 and a Cr−1-
diffeomorphism Φ : V → W of V onto an open neighbourhood W of the origin in R3 such that
Φ(V ∩ Σ(F0)) = W ∩ (R2 × {0}). In W , define a vector field vΦ by

vΦ(x, y, z) = DΦ(Φ−1(x, y, 0))v(Φ−1(x, y, 0)).
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Now, put Vq = V and define

wq(p, t) = DΦ−1(Φ(p, t))vΦ(Φ(p, t))

for (p, t) ∈ Vq. When q ∈ U0× I−Σ(F ), put Vq = U0× I−Σ(F ) and define wq = (0, 0, 1) on Vq.
Gluing these locally defined vector fields together by a partition of unity argument and scaling
the resulting vector field such that the t-component becomes identically 1, we get a vector field
ξ defined on U0 × I extending v. If the Vq’s corresponding to points q ∈ Σ(F0) are chosen small
enough, we obtain

(4.4) ‖ξ(p, t)− (0, 0, 1)‖ = o(‖p‖).

We can extend ξ to all of U × I by defining ξ(0, 0, t) = (0, 0, 1).
This new vector field ξ is continuous, and by construction, ξ is Cr−2 on U0 × I. We have

assumed that r > 2, so ξ is at least C1. Thus for every p ∈ U0 × I there is a local flow line
through p. Of course, the curve γ : I → U × I, t 7→ (0, 0, t), is a flow line through every point of
{0}× I. Thus we have local solutions of ξ through every point of U × I. Although ξ itself is not
differentiable on the t-axis we will see that 4.4 is sufficient for ξ to have a continuous flow near
the t-axis. In fact we have:

Lemma 4.4. There is an open neighbourhood U ′ ⊂ U of the origin in R2 and an injective
continuous map φ : U ′ × I → R3 such that ∀ (p, t) ∈ U ′ × I,

φ(p, t) = (ht(p), t), φ(p, 0) = (p, 0) and
∂

∂t
φ(p, t) = ξ(φ(p, t)).

Proof. Equation 4.4 and the differentiability of ξ in U0 × I imply that the Lipschitz condition
of Theorem 2 in [8] is satisfied by ξ. Thus we can find the flow ϕ of Theorem 2 in [8]. From
4.4 and the fact that the t-component of ξ is 1, it clear that if U ′ is small enough the flow line
through each (p, 0), p ∈ U ′ must reach every t-level in I before it reaches the boundary of U × I.
Putting φ(p, t) = ϕ(t, (p, 0)) we get the desired map φ. Since ξ has t-component equal 1, φ can
be written as φ(p, t) = (ht(p), t) for some level-map ht. �

Since ξ is tangent to Σ(F ), we get a map Σ(ω)×{0} → Σ(ωt)×{t} given by (p, 0) 7→ φ(p, t) =
(ht(p), t). This is a homeomorphism of Σ(ω)×{0} onto its image. The map φ therefore induces
homeomorphisms ht|Σ(ω) : Σ(ω)→ Σ(ωt).

Lemma 4.5. Let 0 < δ < ε, then sup
t∈[−δ,1+δ]

‖ht(p)− p‖ = o(‖p‖).

Proof. Suppose there is a constant K > 0 and a sequence {pn} such that ‖pn‖ → 0 and

sup
t∈[−δ,1+δ]

‖ht(pn)− pn‖ > K ‖pn‖ .
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Write φ(p, t) = φp(t) =
(
φ1
p(t), φ

2
p(t), t

)
, ξ(v, t) =

(
ξ1(v, t), ξ2(v, t), 1

)
and pn = (p1

n, p
2
n). Apply-

ing the Mean Value Theorem and equation (4.4), we get that

K ‖pn‖ < sup
t∈[−δ,1+δ]

‖ht(pn)− pn‖

= sup
t∈[−δ,1+δ]

∥∥(φ1
pn(t), φ2

pn(t)
)
− (p1

n, p
2
n)
∥∥

≤ 2(1 + 2δ) sup
t∈[−δ,1+δ]

∥∥∥∥( ∂∂tφ1
pn(t),

∂

∂t
φ2
pn(t)

)∥∥∥∥
= 2(1 + 2δ) sup

t∈[−δ,1+δ]

∥∥(ξ1(φpn(t)), ξ2(φpn(t))
)∥∥

= 2(1 + 2δ)
∥∥(ξ1(vn, tn), ξ2(vn, tn)

)∥∥ = o(‖vn‖)

for (vn, tn) on the curve φpn with∥∥(ξ1(vn, tn), ξ2(vn, tn)
)∥∥ = sup

−δ≤s≤1+δ

∥∥(ξ1(φpn(s)), ξ2(φpn(s))
)∥∥ .

Suppose ‖vn‖ < 2 ‖pn‖. Then we get the contradiction K ‖pn‖ < o(‖pn‖). If this assumption
is wrong, we can find a subsequence of {vn} with ‖vn‖ ≥ 2 ‖pn‖. Let C be the trace of π ◦ φpn ,
where π : R3 → R2 is the projection onto the first two coordinates. We consider the arc length
of C, and see that

1

2
‖vn‖ ≤ ‖vn‖ − ‖pn‖ ≤

∫
C

∥∥(ξ1(φpn(s)), ξ2(φpn(s))
)∥∥ ds

≤ (1 + 2δ)
∥∥(ξ1(vn, tn), ξ2(vn, tn)

)∥∥ = o(‖vn‖)
which is a new contradiction. The lemma follows. �

Lemma 4.6. For small ε > 0, t ∈ I, Σ(ωt) ⊂ Hε in a neighbourhood of the origin in R2.

Proof. From the proof of Lemma 4.3, we get

Jω(p) = Jωt(p) + o(‖p‖r−1
) ‖Dω(p)‖ .

If p ∈ Σ(ωt),
|Jω(p)|
‖Dω(p)‖ = o(‖p‖r−1

), and the lemma follows from (3.3) of Subsection 3.1. �

Remark 3. Let ω̂ be a Cr-realization of ω, then we can define a family ωt = ω+ t(ω̂−ω) of Cr-
realizations such that ω1 = ω̂. Let C1, . . . , CN be the connected components of Σ(ω)\{0}. Since
Σ(ω) \ {0} and Σ(ωt) \ {0} are homeomorphic, Σ(ωt) \ {0} consists of N connected components
for each t. Let ht, t ∈ I be the family of homeomorphisms constructed above. Since h0(Ci) = Ci
and the set {ht(p) | p ∈ Ci, t ∈ I} is connected, it follows from the Lemma 4.6 and Proposition
2.1 that each Σ(ωt) \ {0} has exactly one connected component in each Hi. So if ε > 0 is chosen
so small that the conclusion of 2.1 holds, each such realization ω̂ of ω has exactly one connected
component of Σ(ω̂) \ {0} in each connected component of Hε − {0}.

The corollary below gives a sort of stability property of inequality (II) under perturbation of
the jet by Cr-mappings with r-jet vanishing at 0.

Corollary 4.7. Let the hypothesis be as in Theorem 2.2, and assume that inequality (II) holds
for ω with a constant C > 0. Let ωt be as above. Then there exists a neighbourhood U of
0 ∈ R2 such that if t ∈ [0, 1] and p, q ∈ Σ(ωt) ∩ U are points belonging to different components
of Σ(ωt) \ {0}, then

‖ωt(p)− ωt(q)‖ ≥
C

2
(‖p‖r−1

+ ‖q‖r−1
) ‖p− q‖ .
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The inequality also holds if either p or q is equal 0.

Proof. Write ωt = ω + tω̃. Since jrω̃(0) = 0 we have ‖Dω̃(p)‖ = o(‖p‖r−1
) where this time

‖Dω̃(p)‖ denotes the operator norm. From this follows that

‖ω̃(p)− ω̃(q)‖ =

∥∥∥∥∫ 1

0

Dω̃(sp+ (1− s)q)(p− q) ds
∥∥∥∥

≤ sup
s∈[0,1]

‖Dω̃(sp+ (1− s)q)‖ ‖p− q‖

= o(‖p‖r−1
+ ‖q‖r−1

) ‖p− q‖ .

From Remark (3) we get that, if U is sufficiently small, then there exists i, j, i 6= j such that
p ∈ Hi and q ∈ Hj . From inequality (II) and above it follows that

‖ωt(p)− ωt(q)‖ = ‖(ω(p)− ω(q)) + t(ω̃(p)− ω̃(q))‖
≥ ‖ω(p)− ω(q)‖ − |t| ‖ω̃(p)− ω̃(q)‖

≥ C(‖p‖r−1
+ ‖q‖r−1

) ‖p− q‖ − o(‖p‖r−1
+ ‖q‖r−1

) ‖p− q‖

≥ C

2
(‖p‖r−1

+ ‖q‖r−1
) ‖p− q‖ .

Since ‖ω̃(p)‖ = o(‖p‖r), the last statement of the corollary follows easily from (II) if say, q =
0. �

4.3. Consequences of (I) and (II). The inequalities (I) and (II) from Proposition 2.1 and
Theorem 2.2 have several implications which will be important to us.

Lemma 4.8. If ω ∈ Jr(2, 2) satisfies (I) and (II) in a neighbourhood U of the origin, then there
is a constant K > 0 such that ‖ω(p)‖ ≥ K ‖p‖r for all p in a neighbourhood of the origin.

Proof. Let

A =

{
p | ‖ω(p)‖ = min

‖q‖=‖p‖
‖ω(q)‖ , p, q ∈ U0

}
.

An application of the Tarski-Seidenberg Theorem shows that A is a semi-algebraic set. Hence,
we can apply the curve selection lemma to find an analytic curve β : [0, ε) → R2 with β(0) = 0
and β(0, ε) ⊂ A. Let s be chosen such that ‖β(t)‖ ∼ ts as t → 0. Assume that the lemma
is false. Then ‖ω(β(t))‖ = o(‖β(t)‖r) = o(trs), and differentiation with respect to t gives
‖Dω(β(t))β′(t)‖ = o(trs−1), and since we have that ‖β′(t)‖ ∼ ts−1 we obtain∥∥∥∥Dω(β(t))

β′(t)

‖β′(t)‖

∥∥∥∥ = o(trs−1−s+1) = o(‖β(t)‖r−1
).

Since β′(t)/ ‖β′(t)‖ is a unit vector, it follows from (3.11) of Subsection 3.3 that d(j1ω(β(t)),Σ) =

o(‖β(t)‖r−1
) and we get that β(t) ∈ Hε. From (II) with p = β(t) and q = 0, we get that

‖ω(β(t))‖ ≥ C ‖β(t)‖r, which is a contradiction. �

Corollary 4.9. Suppose (I) and (II) hold. Then there is a neighbourhood U of the origin and
a constant K > 0 such that

‖ωt(p)‖ ≥ K ‖p‖r

for all t ∈ I and p ∈ U .

Proof. This follows easily from Lemma 4.8 since ‖ωt(p)‖ = ‖ω(p)‖+ o(‖p‖r). �
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Remark 4. The hypothesis of Lemma 4.8 can be weakened. In fact, the lemma follows from
inequality (I) alone. This can be seen as follows: If there is a sequence pn → 0 such that
‖ω(pn)‖ = o(‖pn‖r), then we may apply a variant of the technique in the proof of Lemma 4.10
below to show that ω has a Cr- representative which is identically equal 0 along some non-
constant curve starting at 0. Such a representative has singular points different from folds along
this curve, and hence cannot satisfy (I). This will however contradict the conclusion of Lemma
4.1.

Lemma 4.10. Let r > 2. Let ω = (f, g) ∈ Jr(2, 2) be as in the hypothesis of Proposition 2.1 and
assume ω satisfies (I) of Proposition 2.1, then there is a neighbourhood U of 0 and a constant
C > 0 such that for each i either

∀p ∈ Hi, ‖∇f(p)‖ ≥ C ‖p‖r−1

or

∀p ∈ Hi, ‖∇g(p)‖ ≥ C ‖p‖r−1
.

Proof. Assume the lemma is false. Then, by the technique employed in the proof of Lemma 4.8,
there exist analytic curves β(t) and γ(t), t ∈ [0, δ) with β(0) = γ(0) = (0, 0), β(0, δ), γ(0, δ) ⊂ Hi

for sufficiently small δ > 0 such that

(4.5) ‖∇f(β(t))‖ = o(‖β(t)‖r−1
)

and

(4.6) ‖∇g(γ(t))‖ = o(‖γ(t)‖r−1
),

for t > 0. We claim that

(4.7) f(β(t)) = o(‖β(t)‖r).

To see this, assume ‖β(t)‖ ∼ ts and let u be such that |f(β(t))| ∼ tu. Then | ddtf(β(t))| ∼ tu−1,
and also

| d
dt
f(β(t))| = |∇f(β(t)) · β′(t)| ≤ ‖∇f(β(t))‖ · ‖β′(t)‖ = o(tsr−1).

It follows that u− 1 > sr − 1 and the claim follows from this. In the same manner we get

(4.8) g(γ(t)) = o(‖γ(t)‖r).

We consider the curve β, and follow an argument of Kuo’s article [9]. By a suitable rotation
of R2 we can make β tangent to the x-axis at 0. Assume this is the case. By a change of
parameter if necessary, β1(t) = ts and |β2(t)| = o(ts). We make a C1 change of coordinates:

X = x, Y = y − β2(|x| 1s ). In these coordinates, β is the positive X-axis.
Using the Taylor expansion of f about 0, we can write f as a polynomial in Y as follows:

(4.9) f(x, y) = f(X,Y + β2(|X| 1s )) = f̃0(X) + f̃1(X)Y + f̃2(X)Y 2 + · · ·

Putting Y = 0, we get that f̃0(X) = f(X,β2(|X| 1s )) and we see from (4.7) that the function

f0(x) = f̃0(|x|), is a Cr map with jrf0(0) = 0. Differentiating (4.9) with respect to Y and

putting Y = 0, we see that f̃1(X) = ∂f
∂y (X,β2(|X| 1s )), and it follows from (4.5) that the function

f1(x) = f̃1(|x|) is a Cr−1 function with jr−1f1(0) = 0.

Let K = {(x, y) | |y| ≤ |x|, x ≥ 0} ∩ Br(0) where Br(0) is some small open ball around

0. Define F̃ (x, y) = f1(x)(y − β2(|x| 1s )). F̃ is analytic at points (x, y) with x 6= 0. From

(4.5) it follows that dm

dxm f1(x) = o(|x|r−1−m) for m ≥ 0. Furthermore since β2(t) = o(ts),

we get that ∂m

∂xm (y − β2(|x| 1s )) = o(|x|1−m) when m > 0. Also, |y − β2(|x| 1s )| ≤ 2|x| when
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(x, y) ∈ K. Altogether this implies that ∂|m|

∂xm1∂ym2
(F̃ )(p) = o(|(x, y)|r−|m|) with m = (m1,m2)

when p = (x, y) ∈ K − {0}.
Now let Q be the r-th order Taylor field on K with values in R defined by Qm(0) = 0 for

all m and Qm(p) = ∂|m|

∂xm1∂ym2
(F̃ )(p) for all m = (m1,m2) and all p ∈ K \ {0}. It follows from

Lemma 4.11 below that Q is a Cr-Whitney field. Thus, by Whitney’s Extension Theorem Q
has a Cr-extension F defined on a neighbourhood of 0 ∈ R2 such that jrF (0) = 0 (see [10] for
a statement and proof of Whitney’s Extension Theorem).

Apply the same construction to g along γ to obtain g0 and G as Cr-functions both with r-jet
equal 0 at (0). Then define

ω̂ = (f̂ , ĝ) = (f − f0 − F, g − g0 −G).

Then ω̂ is a Cr-realization of ω, and by construction, ∇f̂ = 0 along β(t) and ∇ĝ = 0 along γ(t).
If the traces of β and γ are the same, then obviously ω̂ has singularities which are not folds
along this curve, which contradicts Lemma 4.1. If the traces of β and γ are not intersecting in
a neighbourhood of 0, then we have found a Cr-realization ω̂ of ω such that Σ(ω̂) \ {0} has at
least two connected components in Hi. This will however contradict Remark 3. �

Lemma 4.11. Let U ⊂ Rn be an open set with 0 ∈ U . Let F be a Cr-function defined on U .

Assume that ∂|α|F
∂xα (p) → 0 when p → 0 for each multiindex α with |α| ≤ r. Let K ⊂ {0} ∪ U

be a compact, convex set with 0 ∈ K. Let Q be the r-th order Taylor field on K defined by

Qα(p) = ∂|α|F
∂xα (p) if p 6= 0, and Qα(p) = 0 if p = 0, |α| ≤ r. Then Q is a Cr-Whitney field.

Proof. Let p, q ∈ K. Let m = (m1, . . . ,mn) be a multiindex with |m| ≤ r. Let

RqQ
m(p) = Qm(p)− ∂|m|

∂xm
(
∑
|α|≤r

1

α1! . . . αn!
Qα(q)(x− q)α)

∣∣∣
x=p

.

We must show that RqQ
m(p) = o(‖p− q‖r−|m|) for each such multiindex m. We will only show

this when m = 0 = (0, . . . , 0) since the proof is similar when |m| > 0. Extend F to {0} ∪ U by
putting F (0) = 0. Let p, q ∈ K and define g(t) = F (tp+ (1− t)q). Then g can be extended to a
Cr function on some open interval containing [0, 1] (if q or p is 0 extend g to the zero-function
on (−ε, 0) or (1, 1 + ε) respectively). Note that

g(k)(t) =
∑
|α|=k

k!

α1! . . . αn!
Qα(tp+ (1− t)q)(p− q)α,

for t ∈ [0, 1]. So, by applying an integral version of Taylor’s formula with remainder, we get

RqQ
0(p) = g(1)−

r∑
k=0

1

k!
g(k)(0) =

1

(r − 1)!

∫ 1

0

g(r)(t)(1− t)r−1dt− 1

r!
g(r)(0)

=
1

(r − 1)!

∫ 1

0

(g(r)(t)− g(r)(0))(1− t)r−1dt

=
1

(r − 1)!

∑
|α|=r

(

∫ 1

0

r!

α1! . . . αn!
(Qα(tp+ (1− t)q)−Qα(q))(1− t)r−1dt)(p− q)α.

Now, each Qα is continuous on the compact, convex set K and therefore uniformly continuous,

and from this it follows easily that
∫ 1

0
(Qα(tp+(1−t)q)−Qα(q))(1−t)r−1dt→ 0 when ‖p− q‖ →

0. Since |(p− q)α| ≤ ‖p− q‖r when |α| = r, we thus get that RqQ
0(p) = o(‖p− q‖r). �
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Lemma 4.12. If ω = (f, g) ∈ Jr(2, 2) satisfies the inequalities (I) and (II) in a neighbourhood
U of 0, then there is a smaller neighbourhood U ′ of 0 such that F |Σ(F )∩(U ′×I) is injective.

Proof. It is enough to show that ωt is injective when restricted to Σ(ωt). Consider the component

Hi for some i. By Lemma 4.10 we may assume that ‖∇f(p)‖ ≥ C ‖p‖r−1
for all p in Hi. Then

there is a smaller neighbourhood V of 0 such that ‖∇ft(p)‖ ≥ C
2 ‖p‖

r−1
for all t and p ∈ Hi.

As before, j2ωt(p) is identified with the 10-tuple (a, . . . , j). Σ(ωt) is given by the equation
ad− bc = 0. Suppose ft|Σ(ωt) has an extremum at p ∈ Hi ∩ Σ(ωt). By the method of Lagrange
multipliers, at p,

a = λ · ∂Jωt
∂x

= λ(ai− bh− cf + de)

b = λ · ∂Jωt
∂y

= λ(aj − bi− cg + df).

We have (a, b) = ‖∇ft(p)‖ ≥ C
2 ‖p‖

r−1 6= 0 which implies that λ 6= 0 and hence,(
a b
c d

)(
aj − bi− cg + df

−ai+ bh+ cf − de

)
=

(
0
0

)
.

This means that (Lωt(p), Hωt(p)) ∈ Γ. The conclusion must be that every such p lies outside
some open neighbourhood of the origin, since ωt by assumption satisfies (I). Hence ft and
consequently ωt is injective when restricted to the component of Σ(ωt)\{0} lying in Hi. Together
with Corollary 4.7, this proves the lemma. �

Recall the definition of F0 given above Lemma 4.3. Let M = Σ(F0) and Ω = F (M).

Lemma 4.13. Let U be chosen so small that the conclusions of Lemma 4.1 and Lemma 4.12
hold. Then Ω is a two-dimensional Cr−1 submanifold of the target.

Proof. F |M is an injective continuous map from a compact space to a Hausdorff space, so it
must be a homeomorphism onto its image. So F |M is a topological embedding and by Lemma
4.1, F |M is a Cr−1 immersion, hence a Cr−1 embedding. Thus Ω is a Cr−1 manifold. �

5. Construction of trivializing vector fields in source and target

Let ω ∈ Jr(2, 2) be as in the hypothesis of Proposition 2.1, assume that r > 2 and that ω
satisfies the inequalities (I) and (II) in a neighbourhood U of 0. Let F , M and Ω be as in Section 4,
and assume that the neighborhood U in the definition of M and Ω also is chosen so small that the
conclusion of Corollary 4.9 holds. Clearly, Corollary 4.9 implies that F ((U−U)×I)∩{0}×I = ∅.
It follows that we can find a neighborhood V of 0 in R2 such that (Ω∪({0}×I))∩(V ×I) is closed
in V ×I. Let us change notation and denote Ω∩(V ×I) by Ω. Let (q, t) = (ωt(p), t) = F (p, t) ∈ Ω
for (p, t) ∈ M . Since F |M has rank 2 everywhere, DF (p, t)v ∈ TF (p,t)Ω for all v ∈ R3. With
this in mind, we can define a tangent vector field u on Ω by

u(q, t) = u(F (p, t)) = DF ((p, t))(0, 0, 1) = (ω̃(p), 1).

Since ωt(p) = ω(p) + tω̃(p) and ‖ω̃(p)‖ = o(‖p‖r), it follows from Corollary 4.9 that

‖u(F (p, t))− (0, 0, 1)‖ = o(‖ωt(p)‖) = o(‖q‖).
This equation is similar to the conclusion of Lemma 4.3. Put u|{0}×I = (0, 0, 1). Since Ω is a

Cr−1 manifold in the target, u can be extended to a neighborhood V × I of {0} × I in a way
completely analogous to the way the vector field v, defined in Subsection 4.2, was extended to
all of source. We scale this extended vector field such that the component in the t-direction
becomes 1 and denote this vector field by η. By this construction, η becomes Cr−2 outside the
t-axis, and we get the following lemma which is similar to (4.4).
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Lemma 5.1. ‖η(q, t)− (0, 0, 1)‖ = o(‖q‖).

This lemma implies that η like the vector field ξ constructed in Subsection 4.2 satisfies the
hypothesis of Kuo’s Theorem 3 in [8]. Therefore η has a continuous flow ψ in V × I. Moreover,
since the component of η in the t-direction equals 1, each flow line will live until it reaches either
(V − V )× I or V × {−ε, 1 + ε}. An easy estimate using 5.1 shows that if V1 ⊂ V is sufficiently
small and (q, t) ∈ V1× I then ψ(q,t) will stay close to {0}× I and therefore reach V ×{−ε, 1 + ε}
and therefore cannot have any closure points in (V −V )×I. So when (q, t) ∈ V1×I we can define
the flow ψ(q,t)(s) for s ∈ (−ε− t, 1 + ε− t), especially each flow line through points in V1 × {0}
can be defined on I, and we will get a map k : V1× I → R3 defined by k(q, t) = kt(q) = ψ(q,0)(t).
Each kt is a homeomorphism which maps the 0-level of Ω to the t-level of Ω. Let us choose such
a neighborhood V1 and let U1 ⊂ U be a neighborhood of 0 in R2 such that F (U1 × I) ⊂ V1 × I.
Define a tangent vector field w on M ∩ (U1 × I) by

DF ((p, t))w(p, t) = u(F (p, t)).

This definition is unambiguous because we have required w to be tangential and F |M∩(U1×I) :
M ∩ (U1 × I) → Ω is an immersion. Put w|{0}×I = (0, 0, 1). Outside M ∪ {0} × I, DF is
invertible so we can define an extension ζ of w to all of source by the equation

DF(p,t)ζ(p, t) = η(F (p, t)).

We are now going to show that ζ has a continuous flow. To this end, we will need the lemma
below.

Lemma 5.2. If p ∈ M , then there is a neighbourhood W of p such that for all q ∈ W , F (q) ∈
Ω⇒ q ∈M .

Proof. Let p ∈M . Then p is a fold point and if r ≥ 4, this will follow from the standard normal
form of a fold. When r > 2, there are (for example following the arguments in [15] Section
15), Cr−1-coordinates (x, y, t) around p, (u, v, t) around F (p) in which p = (0, 0, 0) = F (p) and
such that in these coordinates F has the form F (x, y, t) = (x, h(x, y, t), t) where h(x, 0, t) =
∂h
∂y (x, 0, t) = 0 6= ∂2h

∂y2 (0, 0, 0). In these coordinates, Σ(F ) = {y = 0} and F (Σ(F )) = {v = 0}.
The lemma now follows by an easy argument using Taylor’s formula. �

The existence and continuity of the flow of η is given in the following lemma.

Lemma 5.3. Let 0 < δ < ε. Then there exists a neighborhood U2 ⊂ U1 such that ζ has a
continuous flow ϑ(p, t, s) = ϑ(p,t)(s) in the set {(p, t, s) | (p, t) ∈ U2× (−δ, 1 + δ), s ∈ (−δ− t, 1 +
δ − t)}.

Proof. Again, change notation and put M := M ∩(U1×I). Consider {{0}×I,M,U1×I \Σ(F )}
as a stratification of U1 × I. We can think of ζ as a stratified vector field whose restriction to
each stratum is a Cr−2-vector field. These restrictions have each a Cr−2- flow defined on each
stratum. For each p = (x, y, t) ∈ U1 × I, let ϑ(p, s) = ϑp(s) denote the flow through p of the
restriction of ζ to the stratum of p. Let ϑp be defined on its maximal interval of existence. Now
we will prove that this flow is continuous, by using the continuous flow in the target to control
the flow in the source.

To this end, consider the vector field η in the target which also can be considered as a
stratified vector field with respect to the stratification {{0} × I,Ω, (V \ {0}) × I \ Ω}. Since η
has a continuous flow on V × I and each flow line lives until it reaches the boundary of V × I,
each flow line stays in its respective stratum and no flow line can have closure points belonging
to lower dimensional strata. From the equation DF ((p, t))ζ(p, t) = η(F (p, t)), we get that the
flow of ζ is mapped to the flow ψ of η. Let p ∈ (U1 −{0})× I. Then the flow line ϑp is mapped
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to the flow line ψF (p) which is a flow line either in Ω or in (V \{0})× I \Ω, and therefore cannot
have a closure point in {0} × I. It follows that ϑp cannot have a closure point in {0} × I either.
By the same sort of arguments it follows that if F (p) ∈ (V \ {0}) × I \ Ω then ϑp cannot have
a closure point in M either. When p ∈ U1 × I \ Σ(F ) and F (p) ∈ Ω, F (ϑp) is a flow line of η
in Ω. It then follows from Lemma 5.2 that ϑp cannot have a closure point in M either. So, for
each p ∈ U × I, each flow line ϑp does not have closure points in lower dimensional strata and
since the component of ζ in the t-direction equals 1, each flow line ϑp can be continued until it
meets the boundary of U1 × I.

Let U ′ be a neighborhood of 0 ∈ R2 such that U
′ ⊂ U1, and let 0 < δ < ε. We will prove

that there exists another neighborhood Ũ ⊂ Ũ ⊂ U ′ such that flow lines of ζ through points in

Ũ × [−δ, 1 + δ] cannot have closure points in (U ′ − U ′)× [−δ, 1 + δ].
Corollary 4.9 implies that there exists ρ > 0 such that B(0, ρ) × [−δ, 1 + δ] ⊂ V1 × I and

F ((U ′ −U ′)× [−δ, 1 + δ]) ⊂ R3 \ (B(0, ρ)× [−δ, 1 + δ]), where B(0, ρ) is the ball around 0 ∈ R2

with radius ρ. Since the flow ψ of η is continuous, we can find ρ1 < ρ such that when (q, t) ∈
B(0, ρ1)× [−δ, 1 + δ] the flow line ψ(q,t)(s) stays in B(0, ρ)× [−δ, 1 + δ] for s ∈ [−δ− t, 1 + δ− t].
By continuity of F , let Ũ ⊂ U ′ be such that F (Ũ × [−δ, 1 + δ]) ⊂ B(0, ρ1)× [−δ, 1 + δ]. Let

(p, t) ∈ Ũ × [−δ, 1 + δ]. Then the flow ϑ(p,t)(s) is mapped to ψF (p,t)(s) and since the latter flow

stays in B(0, ρ)× [−δ, 1 + δ] for s ∈ [−δ− t, 1 + δ− t] and (U ′−U ′)× [−δ, 1 + δ] is mapped to the
complement of B(0, ρ)× [−δ, 1 + δ], the flow ϑ(p,t)(s) can never meet (U ′ −U ′)× [−δ, 1 + δ] but

must stay in U ′ × [−δ, 1 + δ] when s ∈ [−δ − t, 1 + δ − t]. Putting U2 = Ũ the above argument
shows that ζ has a flow ϑ(x, y, t, s) in

Û = {(p, t, s) | (p, t) ∈ U2 × [−δ, 1 + δ], s ∈ [−δ − t, 1 + δ − t]}.

Since U ′ can be chosen arbitrarily small, the argument also shows that this flow is continuous
in {0} × (−δ, 1 + δ).

Since ζ is a Cr−2 vector field in the open set U1 × I − Σ(F ) and we have seen that the flow
stays in this set until it meets the closure of U1 × I the flow is continuous in this set. Especially
the flow ϑ(p, t, s) is continuous when (x, y, t) ∈ U2× (−δ, 1+δ)−Σ(F ) and s ∈ (−δ− t, 1+δ− t).

We will show that by replacing U2 with a smaller neighbourhood U3, we will get a continuous
flow at all points. To this end, let U3 ⊂ U3 ⊂ U2 be a neighborhhood of 0 of R2 such that
when (p, t) ∈ U3 × [−δ, 1 + δ] then ϑ(p,t)(s) ∈ U2 × [−δ, 1 + δ] for s ∈ [−δ − t, 1 + δ − t]. (Such
a neighbourhood exists since we have seen that the flow ϑ is continuous in {0} × (−δ, 1 + δ).)
It remains to see that ϑ is continuous at points (p, t, s) when (p, t) ∈ U3 × (−δ, 1 + δ) ∩ M ,
and s ∈ (−δ − t, 1 + δ − t). Assume this is not the case. Then there exist such (p, t, s) and a
sequence (pn, tn, sn) → (p, t, s) such that ϑ(pn,tn)(sn) 9 ϑ(p,t)(s). Since the restriction of ζ is

Cr−2 on M and the restriction of the flow therefore is continuous there, we must have (pn, tn) ∈
U3× (−δ, 1 + δ) \M . Since the flow lines in U3× [−δ, 1 + δ] stay in U2× [−δ, 1 + δ], the sequence
ϑ(pn,tn)(sn) is contained in the compact subset U2× [−δ, 1+δ] and we may therefore assume that

it converges to some point (p̃, t+s) ∈ U2×[−δ, 1+δ]. Since the flow in the source is mapped to the
flow in the target and the flow in the target is continuous, we get that F (p̃, t+ s) = F (ϑ(p,t)(s)).

Since the flow line ϑ(p,t)(s) is in M and F |Σ(F ) is 1-1, (p̃, t + s) ∈ U2 × (−δ, 1 + δ) \ Σ(F ).

Since the flow ϑ(p′,t)(s) through points (p′, t) in U2× [−δ, 1 + δ] stays in U1× [−δ, 1 + δ] and can
be defined for s ∈ [−δ − t, 1 + δ − t], ϑ(p̃,t+s)(−s) is defined. Since the flow ϑ is continuous on
U1×I\Σ(F ), (pn, tn) = ϑϑ(pn,tn)(sn)(−sn)→ ϑ(p̃,t+s)(−s). This implies that ϑ(p̃,t+s)(−s) = (p, t)

which is impossible since flow lines in U1 × I \ Σ(F ) never meet M . Putting U2 := U3 we thus
get continuity of the flow ϑ in {(p, t, s) | (p, t) ∈ U2 × (−δ, 1 + δ), s ∈ (−δ − t, 1 + δ − t)}. �
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When r > 4, we only need to check continuity of the flow ϑ at points in the t-axis, the
remaining cases we treat above will follow automatically from the lemma below.

Lemma 5.4. If r > 4, then ζ|U0×I is Cr−4.

Proof. Let p = (xp, yp, tp) ∈ M . Then p is a fold point of ωtp , and by Theorem 15A of [15],
there are suitable centered coordinates H around p and K around F (p) such that (u, v, t) =
K ◦F ◦H(x, y, z) = (x, y2, t). If we look closely into the proof of this theorem we find that K can
be chosen to be Cr−1 and H to be Cr−3. We know that both ζ = (ζ1, ζ2, ζ3) and η = (η1, η2, η3)
are tangential on M and Ω respectively, and hence, ζ2(x, 0, t) = η2(u, 0, t) = 0. Thus, since K
is Cr−1 and η is Cr−2, we can, in the new coordinates, write η2(u, v, t) = vη′(u, v, t) for some
Cr−3 function η′. For y 6= 0, we get from the definition of ζ that

DF(x,y,t)ζ(x, y, t) =

1 0 0
0 2y 0
0 0 1

ζ1(x, y, t)
ζ2(x, y, t)
ζ3(x, y, t)

 =

 η1(x, y2, t)
y2η′(x, y2, t)
η3(x, y2, t)

 .

From this relation we see that ζ2(x, y, t) = 1
2yη
′(x, y2, t). Because ζ2(x, 0, t) = 0, we see that

the same equation must hold also for y = 0. Hence we can conclude that ζ is Cr−3 in our new
coordinates around p, and since DH is Cr−4, ζ is Cr−4 in U0 × I where U has been shrinked as
to be contained in F−1(V ). �

Proof of the sufficiency part of Theorem 2.2. Consider the neighborhood V1 of 0 ∈ R2 and the
homeomorphisms kt defined on V1, in the beginning of this section. Let 0 < δ < ε and let U2 be
the neighborhood of 0 given in Lemma 5.3. Since the flow ϑ(p, t, s) of the vector field ζ can be
defined and is continuous for p ∈ U2, t ∈ (−δ, 1 + δ) and s ∈ (−δ − t, 1 + δ − t), we can define
ht : U2 → R2 by the equation (ht(p), t),= ϑ(p, 0)(t). Since the flow is continuous it is clear that
each ht is a homeomorphism onto its image. Since the flow ϑ is mapped by F = (ωt, t) to the
flow ξ in the target, it follows from the definition of kt that ωt(ht(p)) = kt(ω(p)). For t = 1, this
means precisely that ω and ω1 = ω + ω̃ are A0-equivalent. Since ω̃ was arbitrarily chosen, this
means that ω is A0-sufficient. �

6. Realizations of r-jets

Every r-jet has a quite well behaved realization in the sense to be made precise below. If an r-
jet fails to satisfy (I) or (II), then it has another realization with different topological properties.
We use this to prove the necessity part of Theorem 2.2.

6.1. A nice realization of an r-jet. In this section we show that every r-jet has a realization
which has no singular double points and only fold points and regular points outside the origin.
Let ω : (R2, 0)→ (R2, 0) be an r-jet.

Lemma 6.1. There is some finite determined smooth germ f with jrf = ω.

Proof. This is true because for smooth germs (R2, 0) → (R2, 0), finite determinacy holds in
general. See [6] for details. �

Since f is finitely determined, we can assume that f is a polynomial map. Also, the germ f is
stable outside the origin. From the classification of stable germs we conclude that every singular
point of f |U0

is either a fold or a cusp. Moreover the only singular double points occuring are
double points of folds in general positions, which are isolated.

Lemma 6.2. f has no singular double points and only fold points and regular points outside the
origin.
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Proof. Let

C1 = {p ∈ R2 | p is a cusp point }
and let

C2 = {p ∈ Σ(f) | ∃ q ∈ Σ(f), q 6= p with f(p) = f(q)}.
From the Tarski-Seidenberg Theorem it will follow that both C1 and C2 are semialgebraic sets.
Since C1 and C2 also consists of isolated points, they cannot have 0 in their closure. �

6.2. Bad realizations.

Lemma 6.3. If (I) fails for an r-jet ω ∈ Jr(2, 2), then there is a a Cr-germ g with jrg(0) = ω
having a sequence of distinct cusp points converging to the origin.

Proof. If (I) fails for ω, then there is a sequence (xn) converging to 0 and a sequence (Ln, Hn) ∈ Γ
such that

‖Ln − Lω(xn)‖+ ‖Hn −Hω(xn)‖ ‖xn‖ = o(‖xn‖r−1
).

Define a Taylor field Q on S = {0}∪ (
⋃
n{xn}) with values in R2 by Qm(0) = 0 for all m and

Qm(xn) =


0, m = 0,

Lmn − Lmω (xn), |m| = 1,

Hm
n −Hm

ω (xn), |m| = 2,

0, |m| ≥ 3.

This notation requires some explanation. For instance, let ω = (f, g) and

(Ln, Hn) = (an, bn, . . . , jn).

Then

Q(1,0)(xn) =
(
an −

∂f

∂x
(xn), cn −

∂g

∂x
(xn)

)
Q(0,1)(xn) =

(
bn −

∂f

∂y
(xn), dn −

∂g

∂y
(xn)

)
Q(2,0)(xn) =

(
2en −

∂2f

∂x2
(xn), 2hn −

∂2g

∂x2
(xn)

)
etc. Assuming ‖xn+1‖ < 1

2 ‖xn‖, it is straight forward to verify that Q is a Cr-Whitney field.
Therefore we can find a Cr map extending Q. Let h be one such map. Then jrh(0) = 0 and
also

(6.1) (Lω+h(xn), Hω+h(xn)) = (Ln, Hn).

By construction, j2(ω + h)(xn) ∈ Γ.
Now it is not hard to see that the set of 2-jets in Γ which are transverse to Σ1 is a dense

subset. Recall that whether or not a point is a cusp point is determined by the 3-jet at that
point. It is not hard to see that in the set of 3-jets with a given 2-jet in Γ transverse to Σ1

the subset of 3-jets which are cusps is a dense subset. Therefore we can always suppose that
j2(ω + h)(xn) ∈ Γ is transverse to Σ1, and by perturbing the 3-jet if necessary, we can suppose
the j3(ω + h)(xn) are cusps for all n.

(If ω + h has singularities appearing along (xn) besides simple cusps, then one can define a
new Whitney field providing a Cr perturbation h′ (in fact h′ can be taken to be smooth) with
jrh′(0) = 0 and j2h′(xn) = 0 such that ω+h+h′ has only cusps along (xn). Then g = ω+h+h′

is the desired realization of ω.) �
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Lemma 6.4. Assume ω ∈ Jr(2, 2) satisfies condition (I), but assume condition (II) fails. Also
assume that Σ(ω)−{0} has N connected components C1, . . . , CN with 0 in their closure all with
distinct oriented tangent directions at 0. Then there is a Cr-germ g with jrg(0) = ω having a
sequence of singular double points converging to the origin.

Proof. Assume that (II) fails for ω and let the sets Hi and Hε be defined as before. Then we can
find a sequence εn → 0 and sequences of points (xn) and (yn), both converging to 0 ∈ R2, with
each xn ∈ Hi ∪ {0} and yn ∈ Hj ∪ {0} i 6= j where Hi and Hj are components of Hεn −{0}such
that (II) fails for {xn, yn}. Assume first that xn 6= 0 and yn 6= 0. Then

(6.2) d(j1ω(wn),Σ) = o(‖wn‖r−1
),

for wn = xn, yn and

(6.3) ‖ω(xn)− ω(yn)‖ = o
(
(‖xn‖r−1

+ ‖yn‖r−1
) ‖xn − yn‖

)
.

Then, since d(j1ω(xn),Σ) = o(‖xn‖r−1
), using an argument with The Whitney Extension

Theorem (similar to the one given in the proof of Lemma 6.3), we can find a representative
ω̂ such that ω̂ has singular points along the sequence {xn}. By the results of Subsection 4.2,
we can find a homeomorphism h mapping Σ(ω) to Σ(ω̂) and therefore points pn ∈ Ci such
that h(pn) = xn, and by Lemma 4.5, we get that ‖pn − xn‖ = o(‖pn‖). By the same sort
of argument, there is a point qn ∈ Cj with ‖qn − yn‖ = o(‖qn‖). We may also assume that
‖xn‖ ≥ ‖yn‖ and ‖xn+1‖ < 1

2 ‖yn‖. Notice that because our assumption of the tangent directions
of the components C1, . . . CN and the estimates above, there exists δ > 0 such that for all n,
‖xn − yn‖ > δ ‖xn‖.

Let K = {0}
⋃
n{xn, yn}. For each p ∈ K, let S(p) be the singular matrix closest to Dω(p)

in J1(2, 2) and let M(p) = S(p) − Dω(p). It follows from equation (6.2) that ‖M(wn)‖ =

o(‖wn‖r−1
) for wn = xn, yn. Define a r-th order Taylor field Q on K with values in R2 by

Qm(p) =



0, p = 0

0, p = yn,m = 0

ω(yn)− ω(xn), p = xn,m = 0

Mm(p), |m| = 1

0, |m| ≥ 2

.

Arguments similar to the arguments in [4] show that Q is a Whitney field on K.
Let h be a Cr extension of Q to R2 and let g = ω + h. Since jrh(0) = 0, g is a realization

of ω. For p ∈ K, Dg(p) = Dω(p) + Dh(p) = S(p), so all points of K are singular points. Also
g(yn) = ω(yn) + h(yn) = ω(yn) and g(xn) = ω(xn) + h(xn) = ω(xn) +ω(yn)−ω(xn) = ω(yn) =
g(yn), so (xn) and (yn) are sequences of singular double points converging to zero. If say yn = 0
for all n we can use the same Whitney field and we obtain a representative of ω with singular
zero-points all along the sequence {xn}.

�

Lemma 6.5. If f and g has only regular points and folds outside the origin and there are
homeomorhpisms H and K such that g = K ◦ f ◦H then Σ(g) = H−1(Σ(f)).

Proof. This is clear since regular points and fold points are topologically distinct. �

Lemma 6.6. If r > 2 and f ∈ E[r](2, 2) is a cusp, then f is topologically different from regular
germs and fold germs.
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Proof. Since f has fold singularities close to the origin, f is clearly topologically different from
regular germs. To see that f is topologically different from fold germs, notice that the normal
form of a fold implies that the image of a neighbourhood of a fold is not a neighbourhood of its
target point. We prove that f maps every neighbourhood of 0 to a neighbourhood of 0. This
is easily seen from the normal form of a cusp, but to be able to write f in this form, f has to
have a considerable degree of differentiability (see [15]). Consider j3f(0) as a polynomial map

P (x, y). Then f(x, y) = P (x, y) + o(‖(x, y)‖3). Since P (x, y) is a cusp, we may change smooth

coordinates and write f(x, y) = (x, xy + y3) + o(‖(x, y)‖3). Example 7.2 in Section 7 below
shows that (x, xy + y3) is A0-sufficient in E[3](2, 2), and hence, f is topologically equivalent to

(x, xy + y3). The conclusion follows. �

Proof of the necessity part of Theorem 2.2. Assume that ω ∈ Jr(2, 2) does not satisfy (I). Let
(xn) be the sequence in the proof of Lemma 6.3. Let f be a nice realization of ω in the sense of
Section 6.1 , and let g be the bad realization of Lemma 6.3.

Suppose the germs at 0 of f and g are A0-equivalent germs. Then we can find germs at 0 of
homeomorphisms H and K such that g = K ◦ f ◦H. Let U be a neighbourhood of 0 in which g
and K ◦ f ◦H coincide and choose U so small that f has only fold points and regular points in
U0. Choose N so large that xN ∈ U . Then the germ of g at xN and the germ of f at H(xN ) are
topologically equivalent. This will however contradict the conclusion of Lemma 6.6, since xN is
a cusp point of g and H(xN ) is either a fold point of f or a regular point of f .

Next, assume that (I) holds and (II) fails for ω, and assume that the oriented tangent directions
of the components C1, . . . CN of Σ(ω) \ {0} are all distinct. Let f be as above, but let g be the
realization of Lemma 6.4. Suppose there exist germs of homeomorphisms H : (R2, 0)→ (R2, 0)
and K : (R2, 0) → (R2, 0) such that f ◦ H = K ◦ g and let U be a neighbourhood of 0 where
representatives of the germs are equal. If necessary, choose a smaller U such that f has no singular
double points in U . We can find n large enough to ensure that both xn and yn are contained in
U . According to Lemma 6.5, H maps Σ(g) into Σ(f). We have that K ◦ g(xn) = K ◦ g(yn) but
f ◦ H(xn) 6= f ◦ H(yn) because otherwise H(xn) and H(yn) would be singular double points.
This contradiction finishes the proof. �

7. Examples

Before we give examples of the use of Theorem 2.2, we prove a proposition which is helpful
when trying to verify that a jet is sufficient. To understand where the inequality in the next
proposition comes from, recall the expression from Section 3.2 measuring the distance from
(L,H) ∈ J2(2, 2) with L singular to the set { (J,K) ∈ J2(2, 2) | J = L, (J,K) ∈ Γ }.

Proposition 7.1. Let ω ∈ Jr(2, 2). Then the Lojasiewicz inequality (I) is implied by the fol-
lowing Lojasiewicz inequality:

There is a neighbourhood U of 0 in R2 and a real number C > 0 such that for all p ∈ U ,

(III)

∥∥∥∥Dω(p)

( ∂
∂yJω(p)

− ∂
∂xJω(p)

)∥∥∥∥ ≥ C ‖p‖r−2
.

Proof. Assume that (III) holds for an r-jet ω and that there is a sequence (Ln, Hn) ∈ Γ and a
sequence (pn) of points converging to zero in R2 such that (I) does not hold, that is

(7.1) ‖Lω(pn)− Ln‖+ ‖Hω(pn)−Hn‖ ‖pn‖ = o(‖pn‖r−1
).
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Let us introduce some notation. Let

(Lω(pn), Hω(pn)) = (a(pn), b(pn), . . . , j(pn))

and let
(Ln, Hn) = (an, bn, . . . , jn).

Finally define (a′n, . . . , j
′
n) by a′n = a(pn)− an, b′n = b(pn)− pn, etc. It is easily seen from (7.1)

that
‖(a′n, . . . , j′n)‖ = o(‖pn‖r−2

).

Now, because (Ln, Hn) ∈ Γ,(
an bn
cn dn

)(
anjn − bnin − cngn + fndn
−anin + bnhn + cnfn − dnen

)
=

(
0
0

)
.

By writing a(pn) = an + a′n etc., it is clear that∥∥∥∥(a(pn) b(pn)
c(pn) d(pn)

)(
a(pn)j(pn)− b(pn)i(pn)− c(pn)g(pn) + f(pn)d(pn)
−a(pn)i(pn) + b(pn)h(pn) + c(pn)f(pn)− d(pn)e(pn)

)∥∥∥∥
=

∥∥∥∥(an bn
cn dn

)(
anjn − bnin − cngn + fndn
−anin + bnhn + cnfn − dnen

)
+

(
A
B

)∥∥∥∥ = o(‖pn‖r−2
)

because each term of A and B contains at least one primed factor. But (III) implies that∥∥∥∥(a(pn) b(pn)
c(pn) d(pn)

)(
a(pn)j(pn)− b(pn)i(pn)− c(pn)g(pn) + f(pn)d(pn)
−a(pn)i(pn) + b(pn)h(pn) + c(pn)f(pn)− d(pn)e(pn)

)∥∥∥∥
≥ C ‖pn‖r−2

so we arrive at a contradiction. Thus (I) must hold and the proof is finished. �

Example 7.2. Let ω(x, y) = (x , xy+ yk ) for some integer k > 2. For k = 3 this is the normal
form of a cusp. We want to show that ω is A0-sufficient in E[k](2, 2). A computation gives the
following.

Dω(x, y) =

(
1 0
y x+ kyk−1

)
and

Jω(x, y) = x+ kyk−1.

It is clear that the singular set is a single curve tangent to the y-axis at the origin. So, C1 =
{x+kyk−1 = 0

∣∣ y > 0} and C2 = {x+kyk−1 = 0
∣∣ y < 0} are the two components of Σ(ω)−{0}.

After some computation, we get that close to the origin we have∥∥∥∥Dω(x, y)

( ∂
∂yJω(x, y)

− ∂
∂xJω(x, y)

)∥∥∥∥ =

∥∥∥∥( k(k − 1)yk−2

−x+ (k2 − 2k)yk−1

)∥∥∥∥ ≥ ‖(x, y)‖k−2
.

Hence, ω satisfies (III). By proposition 7.1, ω satisfies (I).
It is more cumbersome to verify (II). Notice that if (x, y) is close enough to the origin and

ε > 0 is sufficiently small, then by (3.2) of Subsection 3.1

Hε = { (x, y) | d(j1ω(x, y),Σ) ≤ ε ‖(x, y)‖k−1 }

⊂ { (x, y) | |Jω(x, y)| ≤ (2 +
√

2)ε

2
‖Dω(x, y)‖ ‖(x, y)‖k−1 }

⊂ { (x, y) | |x+ kyk−1| ≤ (2 +
√

2)ε|y|k−1 } =: H∗ε .

Let
H± = H∗ε ∩ { (x, y) | y ≷ 0 }
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be the two components of H∗ε \ {0}. It is enough to verify (II) for pairs of points in H± ∪{0}. It
is clear from above that if (xn, yn) is a sequence in H∗ε converging to 0, then 2k|yn|k−1 > |xn| >
k
2 |yn|

k−1 provided ε > 0 is sufficiently small.
If k is an even number and p = (x, y) ∈ H+ and q = (x′, y′) ∈ H−, then x and x′ have

opposite signs and the first component of ω becomes dominating and

‖ω(p)− ω(q)‖ =
∥∥(x− x′ , xy + yk − x′y′ − y′k )

∥∥
≥ |x− x′|
= |x|+ |x′|

≥ k

2
(|y|k−1 + |y′|k−1)

≥ (‖p‖k−1
+ ‖q‖k−1

)

≥ (‖p‖k−1
+ ‖q‖k−1

) ‖p− q‖

as long as ‖p‖, ‖q‖ and ε are chosen small enough. The same estimate is valid if either p = (0, 0)
or q = (0, 0).

If k is odd, then p = (x, y) ∈ H+ and q = (x′, y′) ∈ H− may have nearly equal first compo-
nents, but in this case ω separates these points in the second component if the first components
are getting very close. We have

‖ω(p)− ω(q)‖ =
∥∥(x− x′ , xy + yk − x′y′ − y′k )

∥∥
≥ |xy − x′y′| − |yk − y′k| = |xy|+ |x′y′| − |y|k − |y′|k

≥ (
k

2
− 1)(|y|k + |y′|k)

≥ C(‖p‖k + ‖q‖k)

for some C > 0 as long as ‖p‖, ‖q‖ and ε are chosen small enough. If ‖p‖ ≥ ‖q‖ ≥ 1/2 ‖p‖, then

‖p‖k + ‖q‖k ≥ (‖p‖k−1
+ ‖q‖k−1

) ‖q‖ ≥ 1

4
(‖p‖k−1

+ ‖q‖k−1
) ‖p− q‖ ,

and if ‖q‖ ≤ 1/2 ‖p‖, then

‖p‖k + ‖q‖k ≥ ‖p‖k ≥ 1

2
‖p‖k−1 ‖p− q‖ ≥ 1

4
(‖p‖k−1

+ ‖q‖k−1
) ‖p− q‖ .

This shows that ω is A0-sufficient in E[k](2, 2) for every integer k ≥ 3.

Example 7.3. Let ω(x, y) = (xy2 − 1
3x

3 , y2 ). We find

Dω(x, y) =

(
y2 − x2 2xy

0 2y

)
,

and

Jω(x, y) = 2y(y2 − x2).

Since Σ(ω) consists of the lines y = 0, y = x and y = −x, the 6 components of Σ(ω)− {0} has
different tangent directions. But since ω(x, x) = ω(x,−x), (II) of Theorem 2.2 does not hold for
any r. So ω ∈ Jr(2, 2) is not sufficient in E[r](2, 2) for any r.

Example 7.4. Let ω(x, y) = (xy2 − 1
3x

3 , y2 + y3 ). We find

Dω(x, y) =

(
y2 − x2 2xy

0 2y + 3y2

)
,
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and

Jω(x, y) = y(2 + 3y)(y2 − x2).

Since the germ of Σ(ω) at 0 consists of the lines y = 0, y = x and y = −x, Σ(ω) − {0} has 6
components which have different tangent directions at the origin. Consider p = p(t) = (t, t) and
q = q(t) = (t+ t2,−t− t2). p and q are singular points from different components of Σ(ω)−{0}.
We find ‖ω(p(t))− ω(q(t))‖ ∼ |t|4 = o(|t|3) = o(‖p(t)− q(t)‖ (‖p(t)‖2 + ‖q(t)‖2)). This shows
that (II) of Theorem 2.2 does not hold when r = 3, so ω is not sufficient in E[3](2, 2). However,

regarding ω as a jet in J4(2, 2), we will show that (I) of Proposition 2.1 and (II) of Theorem 2.2
will hold when r = 4, so ω will be sufficient as a 4-jet among C4-realizations.

Let pn = (xn, yn) be a sequence converging to (0, 0), and assume that pn ∈ Hε for any ε > 0

when n is large. Then it follows from (3.3) of Subsection 3.1 that |Jω(pn)|
‖Dω(pn)‖ = o(‖pn‖3). It is

enough to consider the following two cases.

Case 1; yn = o(|xn|). Then ‖pn‖ ∼ |xn|, |Jω(pn)| ∼ |yn|x2
n, so |yn|

‖Dω(pn)‖ = o(|xn|). Since

‖Dω(pn)‖ ∼ max{x2
n, |yn|}, we must have ‖Dω(pn)‖ ∼ x2

n and therefore yn = o( |xn|3).
Case 2; There exists ε such that |yn| ≥ ε|xn| for all n. Then we get that ‖Dω(pn)‖ ∼ |yn| and
therefore

|Jω(pn)|
‖Dω(pn)‖

∼ |yn| |y
2
n − x2

n|
|yn|

= |y2
n − x2

n| = o(‖pn‖3).

This will imply that |yn| ∼ |xn|, ‖pn‖ ∼ |xn| and yn = ±xn + o(|xn|2).
We will now prove that (I) of Proposition 2.1 will hold when r = 4. Assume this is not the

case. Then there exist a sequence (pn) in R2, pn → 0, and a sequence (Ln, Hn) ∈ Γ such that

‖Lω(pn)− Ln‖+ ‖Hω(pn)−Hn‖ ‖pn‖ = o(‖pn‖3). Since

‖Lω(pn)− Ln‖ ≥ d(Dω(pn),Σ) ∼ Jω(pn)

‖Dω(pn)‖
,

we must have |Jω(pn)|
‖Dω(pn)‖ = o(‖pn‖3), and from above it follows that we can assume that either

yn = o(|xn|3) or yn = ±xn + o(|xn|2). Let Ln =

(
an bn
cn dn

)
, and put L̃n = Ln − Lω(pn) =

Ln −Dω(pn). Then
∥∥∥L̃n∥∥∥ = o(‖pn‖3). Write

Hω(pn) = (e(pn), f(pn), g(pn), h(pn), i(pn), j(pn))

= (−xn, yn, xn, 0, 0, 1 + 3yn).

Moreover, let Cn = 1
2

( ∂
∂yJω(pn)

− ∂
∂xJω(pn)

)
and let

C̄n =

(
an j(pn)− bn i(pn)− cn g(pn) + dn f(pn)
−an i(pn) + bn h(pn) + cn f(pn)− dn e(pn)

)
.

Let C̃n = C̄n − Cn. Let zn = (Ln, Hω(pn)) ∈ J2(2, 2) and let En = Ezn be the linear subspace
of J2(2, 2) defined in Subsection 3.2. By the estimate (3.9) in Subsection (3.2) we get

(7.2)

o(‖pn‖2) = ‖Hω(pn)−Hn‖ = ‖(Ln, Hω(pn))− (Ln, Hn)‖

≥ d((Ln, Hω(pn)), En) ∼
∥∥Ln(C̄n)

∥∥
‖Ln‖2

.

We can write

Ln(C̄n) = Dω(pn)(Cn) + L̃n(Cn) +Dω(pn)(C̃n) + L̃n(C̃n).
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Assume first that yn = o(|xn|3). Then ‖Dω(pn)(Cn)‖ ∼ x4
n and

∥∥∥L̃n(Cn)
∥∥∥ = o(|xn|5). Moreover

C̃n =

(
o(|xn|3)
o(x4

n)

)
and this implies that

∥∥∥Dω(pn)(C̃n)
∥∥∥ = o(|xn|5) and

∥∥∥L̃n(C̃n)
∥∥∥ = o(x6

n).

Altogether this implies that
∥∥Ln(C̄n)

∥∥ ∼ x4
n. Moreover ‖Ln‖ ∼ ‖Dω(pn)‖ ∼ x2

n, so we get that
‖Ln(C̄n)‖
‖Ln‖2

∼ |xn|0 which contradicts (7.2).

Assume now that yn = ±xn + o(x2
n). In this case ‖Dω(pn)(Cn)‖ ∼ |xn|3,

∥∥∥L̃n(Cn)
∥∥∥ =

o(|xn|5),
∥∥∥Dω(pn)(C̃n)

∥∥∥ = o(|xn|5) and
∥∥∥L̃n(C̃n)

∥∥∥ = o(x6
n). From this we get

∥∥Ln(C̄n)
∥∥ ∼ |xn|3.

Furthermore ‖Ln‖ ∼ ‖Dω(pn)‖ ∼ |xn| so we get that
‖Ln(C̄n)‖
‖Ln‖2

∼ |xn|. Since ‖pn‖ ∼ |xn| this

again contradicts (7.2). Therefore we cannot find a sequence (Ln, Hn) contradicting inequality
(I), and (I) must therefore hold when r = 4.

Now let us assume that inequality (II) does not hold . Then there must exist sequences
pn = (xn, yn) and qn = (un, vn) such that pn, qn ∈ Hε for any ε > 0 when n is large, pn ∈ Hi

and qn ∈ Hj with i 6= j and ‖ω(pn)− ω(qn)‖ = o(‖pn − qn‖ (‖pn‖3 +‖qn‖3)) = o(‖pn‖4 +‖qn‖4).
(Note that it will follow from what we have shown above that ‖pn − qn‖ ∼ (‖pn‖+ ‖qn‖) when
pn ∈ Hi, qn ∈ Hj and i 6= j. This also follows from Lemma 4.5 and the proof of Lemma 6.4).
Since we may assume that pn and qn satisfy Case 1 or Case 2 above, we have to consider several
subcases. Assume first yn = ±xn + o(|xn|2) and vn = ±un + o(|un|2) and xn and un have
different signs. Then

|(xny2
n −

1

3
x3
n)− (unv

2
n −

1

3
u3
n)| = 2

3
|xn|3 +

2

3
|un|3 + o(|xn|4) + o(|un|4) ∼ ‖pn‖3 + ‖qn‖3 .

So we cannot have such a pair of sequences violating (II). The case yn = ±xn + o(|xn|2) and
vn = o(|un|3) where xn and un have the same sign, can be treated in a similar manner and we
get the same conclusion. Consider the case yn = ±xn + o(|xn|2) and vn = o(|un|3) where xn
and un have opposite signs. Then

|(xny2
n −

1

3
x3
n)− (unv

2
n −

1

3
u3
n)| = |2

3
x3
n +

1

3
u3
n|+ o(|xn|4) + o(|un|7).

If |un| > 2|xn| the right hand side of the equation above is dominated by the term | 23 x
3
n+ 1

3 u
3
n| ∼

1
3 |un|

3 ∼ ‖pn‖3 + ‖qn‖3. If |un| ≤ 2|xn| then vn = o(|xn|3) = o(|yn|3). This implies that.

|(y2
n + y3

n)− (v2
n + v3

n)| ∼ |yn|2 ∼ ‖pn‖2 + ‖qn‖2 .
Therefore we cannot find sequences contradicting (II) in this case either.

The next case is |yn| = o(|xn|3) and |vn| = o(|un|3). Then it is clear that such pn, qn
must belong to components Hi and Hj containing the positive and negative part of the x-axis
respectively, and xn and un must consequently have different signs. Then

|(xny2
n −

1

3
x3
n)− (unv

2
n −

1

3
u3
n)| = 1

3
|xn|3 +

1

3
|un|3 + o(|xn|7) + o(|un|7) ∼ ‖pn‖3 + ‖qn‖3 .

Thus, (II) cannot fail along such sequences.
The only case left is when yn = ±xn + o(|xn|2) and vn = ±un + o(|un|2) and xn and un have

the same sign. Since pn and qn belong to different Hi’s, yn and vn must have opposite signs. We
may assume that xn, un, yn > 0 and vn < 0. So xn = yn + o(|yn|2) and un = −vn + o(|vn|2).
Assume that

‖ω(pn)− ω(qn)‖ = o(‖pn‖4 + ‖qn‖4) = o(|yn|4 + |vn|4).

Let p̃n = (yn, yn) and q̃n = (−vn, vn). Then

‖ω(pn)− ω(p̃n)‖ = o(|yn|4) and ‖ω(qn)− ω(q̃n)‖ = o(|vn|4).
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This implies that,

‖ω(p̃n)− ω(q̃n)‖ ∼ |2
3
y3
n +

2

3
v3
n|+ |y2

n + y3
n − v2

n − v3
n| = o(|yn|4 + |vn|4).

So we get that

|y2
n + y3

n − v2
n − v3

n| = |yn − vn| |yn + vn + y2
n + yn vn + v2

n| = o(|yn|4 + |vn|4).

Then since yn and vn have opposite signs, |yn − vn| ∼ |yn|+ |vn|, and we get

|yn + vn + y2
n + yn vn + v2

n| = o(|yn|3 + |vn|3).

But since |y2
n+ yn vn+ v2

n| ∼ |yn|2 + |vn|2 we must then have that |yn+ vn| ∼ |yn|2 + |vn|2. This
will imply that

|2
3
y3
n +

2

3
v3
n| =

2

3
|yn + vn| |y2

n − ynvn + v2
n| ∼ (|yn|4 + |vn|4)

which gives a contradiction. This proves that in any case, we cannot find a pair of sequences
(pn) and (qn) violating (II). So (II) must hold when r = 4. We conclude that ω satisfies the
hypothesis of Theorem 2.2 and hence is sufficient for r = 4.

8. Topological trivialization of 1-parameter families of germs

So far we have studied the perturbation of an r-jet z by an arbitrary Cr mapping h with
jrh(0) = 0. In particular, we have studied the 1-parameter family of Cr map-germs z + th. In
this section we deal with a somewhat different problem. We are going to consider Cr 1-parameter
families αt = (ft, gt) of Cr map-germs αt : (R2, 0)→ (R2, 0). By this we mean that there exists
a Cr map F : U × I → R3 given by F (p, t) = (βt(p), t) such that each βt is a representative of
the germ αt. (We call such F a representative of the family.) The techniques we have developed
in the earlier sections can be used to give some sufficient conditions to decide that such a 1-
parameter family of germs can be topological trivialized, i.e. there are 1-parameter families of
homeomorphisms Ht and Kt such that αt ◦Ht = Kt ◦ α0.

Proposition 8.1. Let r > 2 and let αt = (ft, gt) : (R2, 0)→ (R2, 0) be a Cr 1-parameter family
of Cr germs from the R2 to R2. The following conditions are sufficient for αt to be topologically
trivializable:

There exists a representative F : U×I → R3, F (p, t) = (βt(p), t) having the following properties.

(1) Each βt|U0
has only fold singularities ( recall that U0 = U − { 0} .)

(2) F |Σ(F ) is 1-1.
(3) ‖βt(p)‖ > 0 for (p, t) ∈ U0 × I.
(4)

∥∥∂F
∂t (p, t)− (0, 0, 1)

∥∥ = o(‖βt(p)‖) as p→ 0.

Proof. The proof of this proposition is very similar to the proof of the sufficiency part of Theorem
2.2. We will therefore only sketch this proof refering to the relevant details of that proof.
Property 1 above ensures that M = Σ(F0) is a Cr−1 submanifold of R3 and that F |Σ(F0) is

an immersion. Together with property 2 this also makes N = F (M) a Cr−1 submanifold,
completely analogous to Lemma 4.13. Now we can define a vector field w on N by

w(F (p, t)) = DF(p,t)

(
0
1

)
=

(
∂αt
∂t
1

)
which will be tangent to N because F has rank 2 at every point of M . Also define w(0, 0, t) =
(0, 0, 1). This gives a vector field on all of F (Σ(F )). Property 4 guarantees us that w satisfies
Kuo’s condition. Indeed, the situation is exactly the same as for the vector field u on Ω in
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Section 5. Recall the technique we used to extend u to all of the target. We can use the same
technique to extend w to a vector field µ defined on some open neighbourhoodV × I of {0} × I
in the target, and as in Lemma 5.1 we get

‖µ(q, t)− k‖ = o(‖q‖).
Thus we can integrate µ and get a continuous flow θ(q, t) defined on V × I. The vector field µ
is Cr−2 outside the t-axis, just like the vector fields η and ζ of earlier sections.

The next step is to define a corresponding vector field ν on the source. This is defined to
be the unique vector field whose restriction to M is a tangent vector field and which is mapped
onto µ under DF . We can now use the same arguments as in the proof of Lemma 5.3 to see that

ν has a continuous flow. Let U ′ be a neighborhood of 0 in the source such that U ′ ⊂ U
′ ⊂ U .

Then property 4 give us that if J is a compact interval with J ⊂ I, then F (U
′ − U ′) × J is

bounded away from {0} × I. Using this we can use the continuous flow θ(q, t) in the target to
control the flow in the source, and we can argue exactly as in Lemma 5.3 to obtain the existence
and continuity of the flow of ν. The flows of µ and ν induce the required homeomorphisms, and
the proof is finished. �
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CLASSICAL ZARISKI PAIRS

ALEX DEGTYAREV

Abstract. We compute the fundamental groups of all irreducible plane sextics constituting

classical Zariski pairs.

1. Introduction

A classical Zariski pair is a pair of irreducible plane sextics that share the same combinatorial
type of singularities but differ by the Alexander polynomial [10]. The first example of such a
pair was constructed by O. Zariski [13]. Then, it was shown in [4] that the curves constituting a
classical Zariski pair have simple singularities only and, within each pair, the Alexander polyno-
mial of one of the curves is t2 − t+ 1, whereas the polynomial of the other curve is trivial. The
former curve is called abundant, and the latter non-abundant. The abundant curve is necessarily
of torus type, i.e., its equation can be represented in the form f32 + f23 = 0, where f2 and f3 are
homogeneous polynomials of degree 2 and 3, respectively.

A complete classification of classical Zariski pairs up to equisingular deformation was recently
obtained by A. Özgüner [1]. Altogether, there are 51 pairs, one of them being in fact a triple (as-
suming that the complex orientations of both P2 and of complex curves are taken into account):
the non-abundant curves with the set of singularities E6 ⊕A11 ⊕A1 form two distinct complex
conjugate deformation families. The purpose of this note is to compute the fundamental groups
of (the complements of) the curves constituting classical Zariski pairs. We prove the following
theorem.

1.0.1. Theorem. Within each classical Zariski pair, the fundamental group of the abundant
(respectively, non-abundant) curve is B3/(σ1σ2)3 (respectively, Z6).

This theorem is proved in Section 4, using the list of [1] and a case by case analysis. In
fact, most groups are already known, see [2], [5], [8], [3], and [9], and the few missing curves
can be obtained by perturbing the set of singularities A17 ⊕ 2A1. The construction and the
computation of the fundamental group are found in Sections 2 (the non-abundant curves) and 3
(the abundant curves).

2. The curve not of torus type

2.1. Up to projective transformation, there is a unique curve C ⊂ P2 with the set of singularities

A17 ⊕ 2A1 and not of torus type, see [11]; its transcendental lattice is
[
4 2
2 10

]
. (In the case

under consideration, the transcendental lattice can be defined as the orthogonal complement
NS(Ỹ )⊥ ⊂ H2(Ỹ ), where Ỹ is the minimal resolution of singularities of the double plane ramified

at C. Recall that Ỹ is a K3-surface.) After nine blow-ups, the curve transforms to the union

of two of the three type Ã∗0 fibers in a Jacobian rational elliptic surface with the combinatorial

1991 Mathematics Subject Classification. Primary: 14H45; Secondary: 14H30, 14H50.
Key words and phrases. Plane sextic, Zariski pair, torus type, fundamental group, elliptic surface.
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F1

F+F−

1
23

Figure 1. The skeleton Sk of B̄

type of singular fibers Ã8 ⊕ 3Ã∗0 (in Kodaira’s notation, one fiber of type I9 and three fibers of
type I1). For the equation, consider the pencil of cubics given by

fb(x, y) := b(−x2 − xy2 + y) + (x3 − xy + y3) = 0, b ∈ P1,

and take two fibers corresponding to two distinct roots of b3 = 1/27. (All three roots give

rise to nodal cubics, which are the three type Ã∗0 fibers in the elliptic pencil above. The curve

corresponding to b = ε/3, ε3 = 1, has a node at x = (2/5)ε−1, y = (1/5)ε. The type Ã8 fiber
blows down to the nodal cubic {f0 = 0}.)

2.1.1. Lemma. For the curve C as in 2.1, one has

π1(P2 r C) = 〈p, γ+ | p9 = 1, γ−1+ pγ+ = p4〉.

Proof. Consider the trigonal curve B̄ ⊂ Σ2 with a type A8 singular point. Its skeleton Sk,
see [7], is shown in Figure 1.

Let F1, F± be the type Ã∗0 singular fibers of B̄ (vertical tangents), and let F∞ be the type Ã8

fiber. (Recall that F1, F± are located inside the small loops in Figure 1, whereas F∞ is inside

the outer region.) Consider the minimal resolution of the double covering X̃ → Σ2 ramified at B̄

and the exceptional section E ⊂ Σ2, and denote by tildes the pull-backs of the fibers in X̃.
Consider the nonsingular fiber F over the •-vertex v of Sk next to F1 (shown in grey in

Figure 1), denote πF := π1(F r (B̄ ∪E)), and pick a canonical basis {α1, α2, α3} for πF defined

by the marking of Sk at v shown in Figure 1, see [7]. Then the fundamental group π̃F := π1(F̃rE)

of the punctured torus F̃ r E is obtained from πF by adding the relations α2
1 = α2

2 = α2
3 = 1

and passing to the kernel of the homomorphism πF → Z2, α1, α2, α3 7→ 1. Hence, π̃F is the free
group generated by

p := α1α2 = (α2α1)−1 and q := (α3α2) = (α2α3)−1.

Start with the group

G1 = π1(X̃ r (E ∪ F̃+ ∪ F̃− ∪ F̃∞))

and compute it applying Zariski–van Kampen’s approach [12] to the elliptic pencil on X̃. Let
γ1, γ± be the generators of the free group

π1(P1 r (F1 ∪ F+ ∪ F− ∪ F∞), F )

represented by the shortest loops in Sk starting at v and circumventing the corresponding fibers
in the counterclockwise direction. (We identify fibers of the ruling and their projections to the
base.) Fix a closed disk ∆ in the base and consider a proper section over ∆, i.e., a topological
section of the ruling disjoint from the fiberwise convex hull of B̄, see [7]. Using this proper

section, one can lift these generators to Σ2 r (B̄ ∪ E) and to X̃ r E. Using the same proper
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section, define the braid monodromies m1,m± ∈ AutπF and their lifts m̃1, m̃± ∈ Aut π̃F . In
this notation, the group G1 has the following presentation, cf. [12]:

G1 =
〈
p, q, γ+, γ−

∣∣ p = m̃1(p), q = m̃1(q), γ−1± pγ± = m̃±(p), γ−1± qγ± = m̃±(q)
〉
.

The braid monodromy is computed as explained in [7]; for B̄ it is

m1 = σ2, m+ = σ−31 σ2σ
3
1 , m− = σ−11 σ2

2σ1σ
−2
2 σ1,

where σ1, σ2 are the Artin generators of B3 (we assume that the braid group B3 acts on πF from
the left), and in terms of p and q it takes the form

m̃1 : p 7→ pq, q 7→ q;

m̃+ : p 7→ pqp3, q 7→ p−4q−1p−4q−1p−1;

m̃− : p 7→ (pq)2(p2q)2p, q 7→ p−1q−1(p−2q−1)3p−1q−1p−1.

The very first relation p = pq implies q = 1. Hence also m̃±(q) = 1 and p9 = 1. Thus, one has

(2.1.2) G1 =
〈
p, γ+, γ−

∣∣ p9 = 1, γ−1+ pγ+ = p4, γ−1− pγ− = p7
〉
.

In order to pass to the group π1(P2rB), we need to patch back in one of the nine irreducible

components of the type Ã8 fiber F∞. (The component to be patched in is the proper transform of

the nodal curve {f0(x, y) = 0}.) This operation adds to (2.1.2) an additional relation [∂Γ̃] = 1,

where Γ̃ is a small holomorphic disk in X̃ transversal to the component in question. Using a
proper section again, one can see that in G1 there is a relation [∂Γ̃]−1p? = γ−γ+, where p?

is merely an element of the group π̃F of the fiber (modulo the relations in G1), which we do

not bother to compute. Adding the extra relation [∂Γ̃] = 1 to (2.1.2) and eliminating γ−, one
arrives at the presentation announced in the statement. (Note that 7 = 4−1 mod 9, hence the
order of p remains 9.) �

2.1.3. Corollary. The commutant of the group π1(P2 r C) as in Lemma 2.1.1 is a central
subgroup of order 3.

Proof. The commutant is normally generated by the commutator p−1γ−1+ pγ+ = p3; it is a central
element of order 3. �

2.1.4. Corollary. For any irreducible perturbation C ′ of the curve C as in 2.1, one has π1(P2 r
C ′) = Z6.

Proof. Let G = π1(P2 r C ′). Due to Corollary 2.1.3, the commutant [G,G] is a quotient of Z3,
hence either Z3 or {1}. Furthermore, [G,G] ⊂ G is a central subgroup. On the other hand, since
C is irreducible, G/[G,G] = Z6, and any central extension

{1} → Z3 → G→ Z6 → {1}
of the cyclic group Z6 would be abelian. �

3. The curve of torus type

3.1. Up to projective transformation, there is a unique torus type curve C ⊂ P2 with the set

of singularities A17 ⊕ 2A1, see [11]; its transcendental lattice is
[
2 0
0 2

]
. Similar to 2.1, this curve

blows up to the union of the two type Ã∗0 fibers in a Jacobian rational elliptic surface with the

combinatorial type of singular fibers Ẽ8 ⊕ 2Ã∗0 (in Kodaira’s notation, one fiber of type II∗ and
two fibers of type I1). The curve can be given by the equation

f(x, y) := (y3 + y2 + x2)
(
y3 + y2 + x2 − 4

27

)
= 0,
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and its torus structure is

f(x, y) =
(
y3 + y2 + x2 − 2

27

)2
+
( 3
√

4

9

)3
.

3.1.1. Lemma. Let C be a curve as in 3.1, and let U be a Milnor ball about the type A17 singular
point of C. Then the homomorphism π1(U rC)→ π1(P2rC) induced by the inclusion U ↪→ P2

is surjective.

Proof. In the coordinates ỹ = y/x, z̃ = 1/x, the curve is given by the equation

(ỹ3 + ỹ2z̃ + z̃)
(
ỹ3 + ỹ2z̃ + z̃ − 4

27
z̃3
)

= 0,

the type A17 singular point is at the origin, and each component is inflection tangent to the line
{z̃ = 0} at this point. To compute the group, apply Zariski–van Kampen theorem [12] to the
vertical pencil {z̃ = const}, choosing for the reference a generic fiber F = {z̃ = ε} close to the
origin. On the one hand, one has an epimorphism π1(F rC) � π1(P2rC). On the other hand,
the intersection C ∩ {z̃ = 0} consists of a single 6-fold point; hence, if ε is small enough, all six
points of the intersection C ∩ F belong to U and the generators of π1(F r C) can be chosen
inside U . �

3.1.2. Corollary. Let C ′ be a perturbation of the curve C as in 3.1 with the set of singularities
A14 ⊕A2 ⊕ 2A1. Then π1(P2 r C ′) = B3/(σ1σ2)3.

Proof. Let U be as in Lemma 3.1.1. Then π1(U r C ′) = B3 and, due to the lemma, there is
an epimorphism B3 � π1(P2 r C ′). Since C ′ is necessarily irreducible and of torus type (so
that the abelianization of π1(P2 r C ′) is Z6 and π1(P2 r C ′) factors to B3/(σ1σ2)3), the latter
epimorphism factors through an isomorphism B3/(σ1σ2)3 ∼= π1(P2 r C ′). �

3.1.3. Remark. The other irreducible perturbations of C that are of torus type are considered
elsewhere, see [5]. Their groups are also B3/(σ1σ2)3.

4. Proof of Theorem 1.0.1

4.1. The groups of all but one sextics of torus type occurring in classical Zariski pairs are known,
see [5] for a ‘map’ and further references; all groups are B3/(σ1σ2)3. The only missing curve has
the set of singularities A14 ⊕A2 ⊕ 2A1. Such a curve can be obtained by a perturbation from
a reducible sextic of torus type with the set of singularities A17 ⊕ 2A1 (see Proposition 5.1.1
in [6]), and its group is given by Corollary 3.1.2.

4.2. The fundamental groups of most non-abundant sextics appearing in classical Zariski pairs
are computed in [5], [8], [3], with a considerable contribution from [9]. According to [3], unknown
are the groups of the curves with the sets of singularities

A17 ⊕A1, A14 ⊕A2 ⊕ 2A1, 2A8 ⊕ 2A1, 2A8 ⊕A1.

The first curve can be obtained by a perturbation from a sextic with a single type A19 singular
point. According to [2], its group is abelian. The three other curves are perturbations of the
curve C constructed in 2.1, and their groups are abelian due to Corollary 2.1.4. (Note that the
perturbations exist due to Proposition 5.1.1 in [6], and the resulting curves are unique up to
equisingular deformation due to [1].) �

4.2.1. Remark. A curve C as in 2.1 can also be perturbed to a sextic with the set of singularities
A17 ⊕A1, but the result is reducible.
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SHEAVES ON SINGULAR VARIETIES

ELIZABETH GASPARIM AND THOMAS KÖPPE

Abstract. We prove existence of reflexive sheaves on singular surfaces and threefolds with

prescribed numerical invariants and study their moduli.

1. Motivation

Sheaves on singular varieties have become very popular recently because of their appearance in
Physics, String Theory and Mirror Symmetry. In particular, many open questions about sheaves
on singular varieties have come to light. The corresponding mathematical tools, however, are
waiting to be developed. Our aim in this paper is to entice singularists to develop some basic
techniques needed to approach such questions.

It is extremely common for a physicist or string theorist to start up a lecture by giving a
partition function for a theory, and now even algebraic geometers are quite often doing the
same. It is not just a fashion, but the fact is that this is an extremely efficient way to present
results. The general format of such partition functions is of an infinite sum whose terms contain
integrals over moduli spaces. Here are some examples. We will not need details from these
expressions, just the observation that they all contain integrals over moduli spaces.

Example 1.1. (String Theory) The Nekrasov partition function for N = 2 supersymmetric
SU(r) pure gauge theory on a complex surface X is given by an expression of the form

ZX := Λ(1−r)d·d
∑
n≥0

Λ2rn

∫
Mr,d,n(X)

1 ,

where Mr,d,n(X) is the moduli space of framed torsion-free sheaves or rank r, and Chern classes
c1 = d and c2 = n. For the case of gauge theories with matter, one writes a similar expression
but with more interesting integrands, see [GL].

Example 1.2. (Donaldson–Thomas Theory) For a Calabi–Yau threefold X, the partition func-
tion for Donaldson–Thomas theory is given by:

ZX :=
∑

β∈H2(X,Z)

∑
n∈Z

Qnvβ
∫
[In(X,β)]

vir

1 ,

where In(X,β) is the moduli space of ideal sheaves I fitting into an exact sequence

0 −→ I −→ OX −→ OY −→ 0

and satisfying

χ(OY ) = n

and [Y ] = β ∈ H2(X,Z), where χ is the holomorphic Euler characteristic, see [MNOP].

Key words and phrases. Reflexive sheaves, local holomorphic Euler characteristic, moduli spaces.
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Example 1.3. (Gromov–Witten Theory) For a Calabi–Yau threefold X, the partition function
for degree-β Gromov–Witten invariants is given by

ZX := exp
∑
β 6=0

∑
g≥0

u2g−2vβ
∫

[Mg(X,β)]
vir

1 ,

where Mg(X,β) is the moduli space of genus-g curves representing the class β ∈ H2(X,Z).
There is a precise sense in which this partition function is equivalent to the one in Example 1.2,
see [MNOP].

These examples illustrate the appearance of integrals over moduli spaces of sheaves. Even in
the case of moduli spaces of maps of Example 1.3 the theory is still related to a theory given by
integration over moduli of sheaves. Observe that the definition of moduli spaces itself requires
a choice of numerical invariants: in Example 1.1 the Chern classes and in Example 1.2 the
Euler characteristic. So, we now agree that we are interested in moduli spaces of sheaves on
surfaces and threefolds. Of course, the physics motivation is just a bonus, and we could have
been interested in such moduli spaces for purely geometric reasons, as they are part of classical
algebraic geometry. Now physics dictates that we should consider theories defined over singular
varieties. In fact, some of the most popular categories considered currently by physicists and
string theorists turn out empty in the absence of singularities; such is the case of the Fukaya–
Seidel category and the Orlov category of singularities. Thus we arrive at the conclusion that
we need to understand moduli of sheaves on singular varieties. Both the case of global moduli
of sheaves on projective varieties and the case of local moduli on a small neighborhood of a
singularity are of interest. For the local case there is an added difficulty: What are the correct
numerical invariants to be considered? In this paper we will show that the local holomorphic
Euler characteristic provides a satisfactory invariant for sheaves on local surfaces. For the case
of local threefolds however, the study of numerical invariants is work in progress, and much
remains to be done. The goal of this paper is to describe partial progress in the understanding
of these questions. We define new numerical invariants for the threefold case, and give existence
of sheaves with given local numerical data.
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2. Main Results

In this paper we consider rational surface singularities obtained by contracting a line ` ∼=
P1 inside a smooth surface or threefold. Numerous approaches using numerical invariants or
characteristic classes of some sort have been proposed in the past, see e.g. [Br], and in Section 3
we define numerical invariants, some of which are new, that we need for the present situation.
To set the stage, in Section 4 we recall some of our earlier results for sheaves on singular surfaces.
The results for threefolds presented in Section 5 are new and will appear in more detail in [Kö].

In Section 3 we define the local holomorphic Euler characteristic χ(`,F) of a reflexive sheaf
F . We will present the following results.

Theorem 4.4. Let Mn(Xk) be the moduli of reflexive sheaves on C2
/
Zk with local holomorphic

Euler characteristic equal to n. Then for all n ≥ 0, Mn(Xk) is non-empty.
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Theorem 5.1. For every rank-2 bundle E on W1 := Tot
(
OP1(−1)⊕OP1(−1)

)
with c1(E) = 0

and E|P1 ∼= OP1(−j)⊕OP1(j), the following bounds are sharp:

j − 1 ≤ χ(`, π∗E) = h(E) ≤ (j2 + j)(j − 1)/6 .

Here π : W1 → X is the contraction of the zero section ` and X is the singular threefold xy−zw =
0 in C4.

Theorem 5.7. Let X be the singular threefold xy − zw = 0 in C4. For each j ≥ 2 there exists
a (4j − 5)-dimensional family of rank-2 reflexive sheaves on X with local holomorphic Euler
characteristic j − 1.

For each of the cases j = 0 or 1, our methods produce only the direct images of the split
sheaves; both have local holomorphic Euler characteristic 0.

3. Numerical Invariants

In this section we define numerical invariants for sheaves on a neighborhood of a singularity.
Our first invariant is defined for any dimension, and is particularly adapted to study reflexive
sheaves that are direct images of vector bundles on a resolution. Let π : (Z, `) → (X,x) be a
resolution of an isolated quotient singularity, F a reflexive sheaf on Z and n := dimX. The
following definition is due to Blache, [Bl, Def. 3.9].

Definition 3.1. The local holomorphic Euler characteristic of π∗F at x is

(3.1) χ
(
x, π∗F

)
:= χ

(
`,F

)
:= h0

(
X; (π∗F)∨∨

/
π∗F

)
+
n−1∑
i=1

(−1)i−1h0
(
X; Riπ∗F

)
.

For the case when X is a compact orbifold, Blache [Bl] shows that the global Euler charac-
teristics of X and its resolution are related by

(3.2) χ
(
X, (π∗F)∨∨

)
= χ

(
Z,F

)
+

∑
x∈SingX

χ
(
x, π∗F

)
.

Example 3.2. (Homological dimension 1 ) Consider the case when Z is itself the total space of
a bundle on P1. Then Z has homological dimension one, and the expression on the right-hand
side of (3.1) reduces to two terms, which we call the width and height of F , respectively:

(3.3) w(F) := h0
(
X; (π∗F)∨∨

/
π∗F

)
and h(F) := h0

(
X; R1π∗F

)
.

Hence χ = w + h.

The case when Z is the total space of a negative line bundle on P1 was studied in [BGK1]
and [GKM]. Unfortunately, the width vanishes in higher dimensions.

Lemma 3.3. [BGK1, Lemma 5.2] Let C be a curve of codimension n ≥ 2 in Z and π : Z → X
the contraction of C to a point. Then for any reflexive sheaf F on Z we have

h0
(
X; (π∗F)∨∨

/
π∗F

)
= 0 .

Example 3.4. (Flop) When W1 = Tot
(
OP1(−1) ⊕ OP1(−1)

)
, Lemma 3.3 shows that w = 0.

The height is still a non-trivial invariant, but less powerful than on surfaces.
However, we can define new invariants by restricting to sub-surfaces. We have two divisors

D0 := Tot
(
OP1(−1)⊕ {0})

)
and D∞ := Tot

(
{0} ⊕OP1(−1)

)
, which are both isomorphic to Z1,

and they span the linear system

|D| :=
{
λ0D0 + λ∞D∞ : [λ0 : λ∞] ∈ P1

}
.

Then each Dλ ∈ |D| is isomorphic to Z1, and by restriction to Dλ we can define an entire family
of pairs (w,h).
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We now return to the case when Z is the total space of a vector bundle over ` = P1 and
there is a contraction π : Z → X. We will construct sheaves on X as direct images of bundles
on Z, which we now describe. For simplicity, we consider rank-2 bundles with vanishing c1. The
general case is no more difficult, but more unwieldy to present. When E|` ∼= OP1(−j)⊕OP1(j),
we call the integer j ≥ 0 the splitting type of E. It turns out that the ampleness of the conormal
bundle of ` implies that E is an algebraic extension of line bundles,

(3.4) 0 −→ O(−j) −→ E −→ O(j) −→ 0 .

A line bundle O(n) is uniquely determined as the pullback of OP1(n) from P1, since PicZ ∼=
PicP1. For every j ≥ 0, there is the trivial extension O(−j) ⊕ O(j), which we call the split
bundle of splitting type j. For convenience, we sometimes write Esplit for the split bundle of the
same splitting type as a given bundle E.

The first cohomology of End E is finite-dimensional and furnishes us with our next invariant:

h1
(
Z; End E

)
Naturally, we wish to consider the zeroth cohomology as well. Sadly, this is infinite-dimensional,
so extra effort is required. We consider the mth infinitesimal neighbourhood of `, denoted `(m),
which is a projective scheme. The restriction E(m) := E|`(m) is coherent. For i = 0, 1, we set

ψim(E) := hi
(
`(m); E(m)

)
,

thus ψim takes finite values. We find that the difference ψim(Esplit)−ψim(E) is eventually constant.

Definition 3.5. For i = 0, 1 and m� 0, set

∆i(E) := ψim(Esplit)− ψim(E) .

For h1, of course, this step is needlessly complicated, as the first cohomology is actually finite-
dimensional, but this way the method may be applied to spaces in which the conormal bundle
of ` is not ample.

The two numbers ∆0 and ∆1 are related via the Hilbert polynomial. Recall that for any
coherent sheaf A on a projective scheme S, the Hilbert series

φ(A, n) := χ
(
A(n)

)
:=
∑
i≥0

(−1)ihi
(
S; A(n)

)
is a polynomial of degree dimS. We have

∆0(E)−∆1(E) = φ
(
E(m), 0

)
− φ

(
E

(m)
split, 0

)
.

But the Hilbert polynomials of E(m) and E
(m)
split are the same, as we will show momentarily, and

so we have ∆0 = ∆1, and for computational ease we just stick with h1(End E). The equality of
the Hilbert polynomials, and consequently the fact that the Hilbert polynomial does not see the
extension (3.4), is a consequence of the following result.

Lemma 3.6. Let E be an extension of type (3.4) with splitting type j on either Zk := Tot
(
OP1(−k)

)
or W1 := Tot

(
OP1(−1)⊕OP1(−1)

)
. Then the Hilbert polynomial of E|`m ,

φ
(
E(m), n

)
= χ

(
E(m)(n)

)
:=
∑
i

(−1)ihi
(
`(m); E(n)|`(m)

)
=

{
(m+ 1)(km+ 2 + 2n) on Zk,
1
3 (m+ 2)(m+ 1)(2m+ 3n+ 3) on W1,

is independent of the extension class, and independent of the splitting type j. Similarly, the
Hilbert polynomial of the endomorphism bundle End E|`(m) is 2φ

(
E(m), n

)
.
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w(E) h(E) h1(End E) w(G) h(G) h1(End G)

Z1 6 3 15 1 2 9
Z2 2 2 9 0 2 7
Z3 1 2 7 0 2 6
W1 0 4 35 0 2 17

Table 1. The invariants width, height and h1(End) for the split bundle E and
a generic bundle G of splitting type j = 3 on the spaces Z1, Z2, Z3 and W1.

Proof. By the additivity of the Hilbert polynomial on short exact sequences, the Hilbert poly-
nomials in question are determined by the Hilbert polynomial of the line bundles O`(m)(p) for
all p. Since O`(m)(1) is ample, the higher cohomology of O`(m)(p) vanishes for sufficiently large
p. (We can verify this by direct computation.)

Being a polynomial, the Hilbert polynomial is determined by finitely many values, so it
suffices to compute φ(End E(m), n) = h0

(
`(m); O`(m)(p)

)
for large p. Since E and End E have

filtrations by line bundles, which restrict to filtrations on every infinitesimal neighbourhood `(m),
we compute:

φ
(
E(m), n

)
= φ

(
O`(m)(−j), n

)
+ φ

(
O`(m)(j), n

)
, and

φ
(
End E(m), n

)
= φ

(
O`(m)(−2j), n

)
+ 2φ

(
O`(m) , n

)
+ φ

(
O`(m)(2j), n

)
.

We conclude this proof by computing H0
(
`(m); O(p)

)
. Now we have to consider the spaces

Zk and W1 separately. We pick a chart U with local coordinates (z, u) on Zk and (z, u, v) on
W1, respectively, which transform to (z−1, zku) and (z−1, zu, zv).

On `(m) ⊂ Zk, a section a ∈ O(p)(U) is a function a(z, u) =
∑m
r=0

∑∞
s=0 arsz

sur such that∑
r,s arsz

s−pur is holomorphic in (z−1, zku), i.e. s− p ≤ kr. Thus

a(z, u) =
m∑
r=0

kr+p∑
s=0

arsz
sur ,

which has 1
2 (m+ 1)(km+ 2 + 2p) =: φO(p) coefficients.

On `(m) ⊂ W1, a section a ∈ O(p)(U) is a(z, u, v) =
∑m
t=0

∑m−t
r=0

∑∞
s=0 atrsz

survt such that∑
t,r,s atrsz

s−purvt is holomorphic in (z−1, zu, zv), i.e. s− p ≤ r + t. Thus

a(z, u, v) =

m∑
t=0

m−t∑
r=0

r+t+p∑
s=0

atrsz
survt ,

which has 1
6 (m+ 2)(m+ 1)(2m+ 3p+ 3) =: φ

(
O, p

)
coefficients.

Putting it all together, we have

φ
(
E(m), n

)
= φ

(
O,−j + n

)
+ φ

(
O, j + n

)
,

φ
(
End E(m), n

)
= φ

(
O,−2j + n

)
+ 2φ

(
O, n

)
+ φ

(
O, 2j + n

)
,

which gives the desired functions. �

3.1. Examples of invariants. To make the notion of the numbers we defined above more
concrete, we tabulate examples for the two bundles E = O(−3) ⊕ O(3) (the split bundle of
splitting type 3) and G, the “most generic” bundle of splitting type 3 (which has the lowest
invariants among all bundles of splitting type 3), on the spaces Z1, Z2, Z3 and W1; see Table 1.
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4. Surfaces

Let Zk := Tot
(
OP1(−k)

)
and let E be a rank-2 bundle on Zk with c1(E) = 0 and splitting

type j. Then E is determined by an element p ∈ Ext1
(
O(j),O(−j)

)
as in (3.4). The direct

image π∗(E) is a reflexive sheaf on Xk, and there are bounds for its local holomorphic Euler
characteristic around the singular point x ∈ Xk in terms of j. An efficient algorithm to compute
w,h and χ is given in http://www.maths.ed.ac.uk/~s0571100/Instanton/, hence we can
explicitly calculate the values of these numerical invariants for any such bundle E. We present
here a useful existence result.

Lemma 4.1. Let E be a rank-2 bundle over Zk, k > 1, with c1(E) = 0 and splitting type j < k.
Then

χ(x, π∗E) = j − 1 .

Proof. By [G, Theorem 3.3] it follows that if j < k then E ∼= OZk
(j)⊕OZk

(−j). By definition,
χ(x, π∗E) = w(E) + h(E). Direct computation (see [BGK1]) then shows that w(E) = 0 and
h(E) = j − 1. �

In fact, we can say a lot more.

Lemma 4.2. [BGK1, Corollary 2.18] Let E be a rank-2 bundle over Zk, k > 1, with splitting
type j > 0. Set j = qk + r with 0 ≤ r < q. The following bounds are sharp:

j − 1 ≤ χ(x, π∗E) ≤

{
q2k + (2q + 1)r − 1 if 1 ≤ r < k ,

q2k if r = 0 .

Remark 4.3. Note that every bundle that satisfies the conditions of Lemma 4.1 is split, whereas
in general there are many distinct isomorphism classes of bundles, which attain a whole range of
numerical invariants. The lower bound in Lemma 4.2 is attained by a class of generic bundles,
while the upper bound is obtained by the split bundle of splitting type j, and moreover, the split
bundle is the only bundle to attain the bound when r = 0.

These two lemmas directly imply the following existence result.

Theorem 4.4. Let Mn(Xk) be the moduli of reflexive sheaves on Xk with local holomorphic
Euler characteristic equal to n. Then for all n ≥ 0, Mn(Xk) is non-empty.

4.1. Applications to physics. To illustrate applications to physics, we mention some results
on the existence of instantons. We stress that this particular instance of gaps on instantons
charges presented below was completely new to physicists. In fact, there was a folklore belief
that 1-instantons are always the most common, and that higher instantons of charge k should
decay to k instantons of charge 1 over time. Our results showed that over the spaces Zk with
k ≥ 3 there do not exist any 1-instantons, nevertheless higher charge instantons do exist (of
course we mean mathematical existence proofs).

In [GKM, Proposition 54] we studied the Kobayashi–Hitchin correspondence for the spaces
Zk: We showed that an SU(2)-instanton on Zk of charge n corresponds to a holomorphic SL(2)-
bundle E on Zk with χ(`, E) = n together with a trivialization of E|Z◦

k
, where Z◦k := Zk − `.

A simple observation [GKM, Proposition 4.1] shows that there exists a trivialization of E|Z◦
k

if
and only if n = 0 mod k. This restricts the splitting type of an instanton bundle over Zk to be
of the form nk and lead us to the following existence/non-existence result:

Proposition 4.5. [GKM, Theorem 6.8] The minimal local charge of a non-trivial SU(2)-
instanton on Zk is χmin

k = k − 1. The local moduli space of (unframed) instantons on Zk
with fixed local charge χmin

k has dimension k − 2.

http://www.maths.ed.ac.uk/~s0571100/Instanton/
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This result shows a straightforward passage from the algebraic geometry of bundles on surfaces
to meaningful mathematical physics. Similar results for Calabi–Yau threefolds promise to have
exciting interpretations in string theory and physics, whenever the mathematical background is
constructed.

Remark 4.6. (Gaps of instanton charges) The non-existence of instantons with certain local
charges on the spaces Zk for k > 2 is in stark contrast with what happens in the case k = 1,
where there is no gap [BG, Theorem 0.2].

Open Question 4.7. Theorem 4.2 gives sharp bounds for χ – are the intermediate values
achieved? Given an integer α such that j − 1 < α < q2k, does there exist an instanton bundle
on Zk with splitting type j and χ = α? We have a positive answer for analogous question when
k = 1, all other cases are open.

We illustrate also an application to topology:

Theorem 4.8. [BGK1, Theorem 4.15] If j = qk for some q ∈ N, then the pair (w,h) stratifies
instanton moduli stacks Mj,k into Hausdorff components.

Open Question 4.9. Find invariants that stratify the moduli stacks Mj,k in the case j = nk+r
with r 6= 0 mod k. We know that the pair (w,h) does not provide a fine enough invariant to
stratify the moduli stacks in these cases. Thus, some extra numerical invariant is needed. At
the moment the authors are completely unaware of any suitable candidate.

We find it completely surprising that the case r = 0, whose physics interpretation is known,
turned out to be much simpler to solve. From a topological point of view one should of course
have Hausdorff stratifications for the moduli stacks in all cases.

5. Threefolds

Consider a smooth threefold W containing a line ` ∼= P1. We will focus on the Calabi-Yau
cases

Wi := Tot(OP1(−i)⊕OP1(i− 2) for i = 1, 2, 3.

The existence of a contraction of ` imposes heavy restrictions on the normal bundle [Jim], namely
N`/W must be isomorphic to one of

(a) OP1(−1)⊕OP1(−1) , (b) OP1(−2)⊕OP1(0) , or (c) OP1(−3)⊕OP1(+1) .

Conversely, Jiménez states that if P1 ∼= ` ⊂ W is any subspace of a smooth threefold W such
that N`/W is isomorphic to one of the above, then:

• in (a) ` always contracts,
• in (b) either ` contracts or it moves, and
• in case (c) there exists an example in which ` does not contract nor does any multiple

(i.e. any scheme supported on `) move.

W1 is the space appearing in the basic flop. Let X be the cone over the ordinary double point
defined by the equation xy − zw = 0 on C4. The basic flop is described by the diagram:

(5.1)

W

W+
1W−1

X

p2

  A
AA

AA
A

p1

~~}}
}}

}}

π1   A
AA

AA
A

π2~~}}
}}

}}
//_ _ __ _ _

��
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Here W := Wx,y,z,w is the blow-up of X at the vertex x = y = z = w = 0, W−1 := Zx,z is the
small blow-up of X along x = z = 0 and W+

1 := Zy,w is the small blow-up of X along y = w = 0.
The basic flop is the rational map from W− to W+.

In W2
∼= Z2×C the zero section does not contract to a point (so it must be able to move), but

it is possible to contract it partially and obtain a singular family X2×C, where X2 is the surface
containing an ordinary double-point singularity defined by xy − z2 = 0 in C3. Holomorphic
bundles on W2 have infinite local holomorphic Euler characteristic, but the restriction E|Z2×{0}
has well-defined and finite width and height. Note that in contrast to W1, there are strictly
holomorphic (non-algebraic) bundles on W2, although every rank-2 bundle on W2 is still an
extension of line bundles.

In W3 not even a partial contraction of the zero section is possible. Nevertheless we can still
calculate the width and height of the restriction E|Z3

of a bundle E to a subsurface Z3 ↪→ W3.
Again, on W3 there are strictly holomorphic (non-algebraic) bundles, and moreover, there are
(many) rank-2 bundles which are not extensions of line bundles.

5.1. Bounds and generating functions. We can compute the invariants w(E), h(E) and
h1(End E) directly and algorithmically. We have an implementation of each of the algorithms
for the commutative algebra software Macaulay 2, which led us to discover several formulae for
the bounds of these invariants. Bounds for the local holomorphic Euler characteristic χ = w +h
on surfaces were presented in Section 4; now we turn to the flop space W1, were by Lemma 3.3,
we have χ = h.

Theorem 5.1. For every rank-2 bundle E on W1 with c1(E) = 0 and splitting type j, the
following bounds are sharp:

j − 1 ≤ χ(`, E) = h(E) ≤ (j2 + j)(j − 1)/6 .

Proof. The lower bound is attained by a class of generic bundles, and the upper bound by the
split bundle O(−j)⊕O(j). This can be seen by direct computation as explained in [BGK1] and
[Kö]. �

We also have a concise expression for the numbers h1(End) of the extremal cases, that is
generic and the split bundles of splitting type j.

Definition 5.2. A power series of the form g(z) =
∑∞
j=0 ajz

j is called a generating function for

the sequence (aj)
∞
j=0. Hence, aj =

1

j!

djg

dzj

∣∣∣
z=0

.

Set aX,Ej := h1(X; End E). Then if the base space is X = Zk or W1 and the bundle E over

X is either split or generic of splitting type j, we have generating functions for aX,Ej , as shown
in Table 2. Since the generating function of a sum of two sequences is the sum of the generating
functions, we can easily deduce from this the generating functions for ∆0 and ∆1. We spell out
the inequalities.

Theorem 5.3. For every rank-2 bundle E on W1 with c1(E) = 0 and splitting type j, the
following bounds are sharp:

(j3 + 3j2 − j)/3 ≤ h1(W1; End E) ≤ (4j3 − j)/3

Proof. The lower bound is attained by a generic bundle and the upper bound by the split bundle,
the values are found by direct computation. �
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Space Split bundle Ej Generic bundle Gj

Zk, k = 2n
−z(zn+1 + zn + z + 1)

(z − 1)2(zk − 1) zk+2 − z3 − z2 − z
(z − 1)2(zk − 1)

Zk, k = 2n+ 1
−z(2zn+1 + z + 1)

(z − 1)2(zk − 1)

W1
z(z2 + 6z + 1)

(z − 1)4
z(−z2 + 2z + 1)

(z − 1)4

Table 2. Generating functions for aX,Ej := h1(X; End E) on various spaces for

the split and the generic bundle of splitting type j (data for Gj only valid for

j ≥ k); the value aX,Ej is the jth coefficient in the Taylor series.

5.2. Moduli of sheaves. We consider sheaves on singular varieties obtained as direct images
of bundles on Wi. First we study such bundles and their moduli. The topological structure of
these moduli is not yet well understood. Most numerical invariants defined in Section 3 can be
computed over any Wi; however, the invariants ∆0 and ∆1 in (3.5) are infinite on W2 and W3,
so more refined counterparts are required.

Open Question 5.4. Construct a Hausdorff stratification of the moduli stacks Mn(Wi) of
bundles on Wi with c1 = 0 and χ(`, E) = n.

We obtain a partial understanding of these moduli by looking at first-order deformations, and
this will provide enough bundles for an existence theorem of reflexive sheaves on the correspond-
ing singular varieties.

Proposition 5.5. (First-order deformations ) Set F := O`(−j)⊕O`(j) with ` ⊂Wi.

(1) For any bundle E on Wi with E|` ∼= F , the space of first-order deformations of G is
isomorphic to Cγ1 , where

γ1 := h1
(
`; End(E|`)⊗ I`

/
I2`
)
<∞ .

(2) If I`
/
I2` is ample (i.e. if i = 1), then there exists a vector bundle A on W1 such that

A|` ∼= F .

Proof. The dimension count is standard deformation theory. Existence of extensions to formal
and small analytic neighbourhoods of ` are given by Peternell’s Existence Theorem [Pet]. The
fact that we actually get existence on the entire space W1 rather than just a small neighbourhood
of ` is due to the fact that every bundle on W1 is determined by its restriction to a finite
infinitesimal neighborhood of `. �

Corollary 5.6. (Dimension of moduli ) The moduli space of first order deformations of O(j)⊕
O(−j) over Wi modulo holomorphic isomorphisms is isomorphic to P4j−5.

Proof. It is well known that multiplying the extension class by a non-zero constant does not
change the holomorphic type of the underlying bundle. It turns out that on the first formal
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neighborhood this is the only identification. This was proved for surfaces in [BGK1, Theorem 4.9]
and for Wi, i = 1, 2, 3 in [Kö]. We can then compute γ1 directly as the dimension of the first
cohomology of End

(
OP1(−j)⊕OP1(j)

)
⊗N∗`/Wi

on P1. The End -bundle splits into a direct sum

of line bundles, and the computation is straightforward. �

If instead of the first-order deformations we wish to consider all deformations, then the di-
mension of the deformation space is given by

(5.2) γ :=
∞∑
m=0

h1
(
`; End(E|`)⊗ Symm(I`

/
I2` )
)

,

which is finite when I`
/
I2` is ample, but infinite in general. Though the space of deformations

may be infinite, it turns out that for a fixed j the moduli space Mn(Wi) of holomorphic bundles
E on Wi with χ(`, E) = n = j − 1 has a Zariski-open set of dimension 4j − 5 consisting of of
first-order deformations of O(j) ⊕ O(−j) (cf. Corollary 5.6). Now, using these moduli for the
case of W1, we obtain sheaves on the singular threefold X appearing on the flop diagram (5.1).

Theorem 5.7. Let X be the singular threefold xy − zw = 0 in C4. For each j ≥ 2 there exists
a (4j − 5)-dimensional family of rank-2 reflexive sheaves on X with local holomorphic Euler
characteristic j − 1.

Proof. These reflexive sheaves are obtained as direct images of generic bundles on W1 with
splitting type (−j, j). Combine Corollary 5.6 with the value of χ found for the generic bundle
as given in Table 2. �

For the case of j = 0 or 1 our methods give only the direct images of the split bundles O⊕O
and O(1)⊕O(−1), both have χ = 0.

We stop short of stating a similar theorem for the singular spaces obtained by partial con-
tractions on Wi with i = 2, 3 because strictly speaking the definition of local Euler characteristic
was given for isolated singularities. We do obtain existence of reflexive sheaves on those spaces,
but we do not yet have a good feel for what would be the correct numerical numerical invariants
to use.

Open Question 5.8. Describe the full moduli of reflexive rank-2 sheaves on W1 with c1 = 0
and χ = n, that is, include all sheaves that do not occur as direct images of bundles on W1.

Open Question 5.9. Describe moduli of sheaves with fixed numerical invariants on germs of
singularities.

The latter is of course a very big question, actually infinitely many open questions, starting
with the definition of the correct invariants up to their computation and then construction of
moduli. It is certainly an entire research project for a whole group of singularists. We hope
some singularists get inspired to work on these questions.
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GRAPHS OF STABLE MAPS FROM CLOSED ORIENTABLE SURFACES

TO THE 2-SPHERE

D. HACON, C. MENDES DE JESUS AND M.C. ROMERO FUSTER

Abstract. We prove that any bipartite weighted graph can be associated to some stable map

from a closed orientable surface to the sphere and obtain necessary and sufficient conditions
on a graph to be attached to a fold map of a given degree.

1. Introduction

The local behaviour of stable maps between surfaces was described by Whitney, who deter-
mined the typical singularities that these maps may have, namely fold curves with isolated cusps.
More recently, the work of T. Ohmoto and F. Aicardi [17], based on the Vassiliev-type isotopy
invariants [21], has thrown new light on the study of stable maps from a non local viewpoint.
These invariants are related to the behaviour of the branch sets (or apparent contours) of these
maps.

In order to investigate the global classification of stable maps from surfaces to the plane,
graphs of stable maps were introduced in [12] to provide a combinatorial description of the
topology of the singular set (see §2 for the definition). A natural question is to characterize
graphs of stable maps (for example they are necessarily bipartite). In [13] the special case of
stable maps from the sphere to the plane was studied, with emphasis on fold maps (i.e. those
without cusps). The classification of fold maps between manifolds and possible related homotopy
principles has been addressed by various authors ([1], [2], [8], [19], [20]). In [13] it was shown
that any tree with zero weights is the graph of a stable map from the sphere to the plane. On the
other hand, the vertices of any tree may be labelled alternately positive and negative (i.e the tree
is bipartite). Graphs of fold maps from the sphere to the plane were then characterized as being
trees with an equal number of positive and negative vertices. In [14] it was shown that graphs
of stable maps of closed orientable surfaces to the plane are precisely non negatively weighted
bipartite graphs. As for fold maps, it was shown that the characterization in the spherical
case extends to fold maps all of whose regions are planar (this corresponds to the zero weight
condition).

Potential applications of stable maps such as the global study of Gauss maps on closed sur-
faces, or the determination of linking numbers of closed curves in terms of secant maps lead one
to consider stable maps and fold maps from surfaces to the sphere of arbitrary degree (the degree
zero case being essentially that of maps into the plane). In the present article we characterize
graphs of stable maps in this more general setting. The main results are as follows.

1) Any bipartite graph G with non negatively weighted vertices is the graph of a stable map
of a connected orientable and closed (compact and boundaryless) surface into the 2-sphere of
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arbitrary degree. The Euler characteristic of the surface is 2(χ(G) − g), where g stands for the
sum of all the weights in G.

A bipartite graph is said to be balanced provided the difference V +−V − between the numbers
of positive and negative vertices equals the difference g+ − g− between the sums of the weights
of the positive and the negative vertices.

2) A bipartite graph can be the graph of some fold map from a closed orientable surface to
the plane if and only if it is balanced. Moreover, any bipartite graph can be the graph of some
fold map from a closed orientable surface to the sphere of degree (V + − V −) − (g+ − g−) (in
particular, the degree of a fold map may be deduced from its weighted graph).

The basic techniques used here are surgeries on stable maps (together with the corresponding
modification of the graph) and Quine’s Theorem relating the degree and the number of cusps
(with signs) of stable maps between surfaces ([18]). In §3 reduction and extension of graphs are
defined, based on a suitable interpretation of certain codimension one transitions of stable maps
([17]) and used in §4 and §6 in the characterization of graphs of fold maps.

Finally, we notice that the pair given by the graph and the branch set is not enough to
determine the isotopy class of a stable map from a surface to the plane or the sphere. As
explained in §3, there are examples of non equivalent stable maps sharing both, their graph and
their branch set. In order to distinguish between them we need to add some extra information
which can be encoded in the form of Blank’s words [5, 4, 9, 10] conveniently associated to the
curves of the branch set.

2. Stable maps

We first recall some definitions and basic results. Two smooth maps f and g from a surface
M to a surface N are said to be C∞ right-left equivalent (simply, equivalent) if there are diffeo-
morphisms, l and k, such that g ◦ l = k ◦ f . The maps f and g are isotopic if both the above
diffeomorphisms are isotopic to the identity. A map f is said to be stable if all maps sufficiently
close to f (in the Whitney C∞-topology) are equivalent to f .

A point of the source surface M is a non singular point of f if the map f is a local diffeomor-
phism around that point, and singular otherwise. The singular set Σf of f is the set of singular
points of f , and its image Bf = f(Σf) is called the branch set of f . By Whitney’s theorem [11],
for any stable map f : M → N , its singularities are locally of fold type (x, y) 7→ (x2, y), and of
cusp type (x, y) 7→ (x3 + yx, y); Σf is a union of embedded curves on M and Bf is a union of
smooth curves on N with transverse double points and possibly many cusp points. The non-
singular set (which is immersed into the surface N by the map) consists of finitely many regions.
Given orientations of the surfaces M and N , a region is positive if the map preserves orientation
and negative otherwise. The singular set is the frontier of each half (positive or negative) of the
surface M , i.e. any singular curve lies in the frontier of a positive and a negative region. We
denote by M+ (resp. M−) the union of all the positive (resp. negative) regions including their
boundaries. Clearly, M+ and M− meet in their common boundary, the singular set of f .

Topological information of stable maps f may be conveniently encoded in a weighted graph
from which the pair M,Σf may be reconstructed (up to diffeomorphism) ([13], [14]). The edges
and vertices of the graph correspond (respectively) to the singular curves and the regions (i.e.
the connected components of the non-singular set). An edge is incident to a vertex if and only
if the singular curve corresponding to the edge lies in the frontier of the region corresponding to
the vertex. In other words, given a stable map f : M → N , its graph G(f) is the dual graph of
Σf in M . We attach a label to each vertex of the graph, + (or −) for positive (resp. negative)
regions. Since each component of Σf is the boundary of a positive and of a negative region, the
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signs of the vertices are assigned alternatively, that is, the graph G(f) is bipartite. The weight
gv of a vertex v is defined to be the genus of the corresponding region i.e the genus of the closed
surface obtained by adding disk to the region, one for each boundary curve. Figure 1 shows
different stable maps of zero degree from the torus and bi-torus to the plane and their weighted
graphs.

11 1

1

a)                                                           b)                                                            c) 

Figure 1. Stable maps and their graphs

In the particular case of stable maps from the sphere to the sphere, S. Demoto [7] has studied
the isotopy classes corresponding to a graph with a unique edge and 2 vertices. In this case,
the branch set is a connected closed curve which may have cusps and/or self-intersections. For
d = deg(f) ≥ 2, Demoto proves that when the branch set has no self-intersections the number
of cusps of f is at least 2d. Example c) in Figure 2 illustrates a map f : T → S2 with degree 1
whose graph has exactly one edge and the branch set has 4 self-intersections and no cusps. The
examples a) and b) in Figure 2 correspond respectively to stable maps from the sphere and the
torus to the sphere, whose branch set has no cusps and c) its singular set consists of a unique
curve, whereas the second one has degree 1. The corresponding graphs are shown on the left of
each picture. As we shall see later, the basic examples displayed in Figures 1 and 2 will take an
important role in the proofs of the results of this paper.

a)                                                   b)                                                 c)

1

1

Figure 2. Branch sets with 4 self-intersections and no cusps.

We say that the graph G(f) is of type T (G) = (m,n, g) if it has m edges, n vertices and the
total sum of the weights of its vertices is g (called the total weight of G(f)). We observe that
the following relation holds: g(M) = β1(G(f)) + g, where g(M) denotes the genus of M and
β1(G(f)) the 1st Betti number of the graph.

A cusp is called positive (resp. negative) if its local mapping degree is +1 (resp. −1) with
respect to given orientations.
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Figure 3. Example of negative and positive cusps.

Let f be a stable map between closed surfaces M and N of degree deg(f). In [18] it was
shown that

χ(M)− 2χ(M−) + C = deg(f)χ(N),

where χ denotes the Euler characteristic and C = C+−C−, the number of positive cusps minus
the number of negative cusps.

Lemma 2.1. For a stable map f : M → S2 with C = 0 one has

deg(f) = (V + − V −)− (g+ − g−),

where V + (resp. V −) is the number of positive (resp. negative) regions and g+ (resp. g−) the
genus of M+ (resp. M−).

Proof: It follows from Quine’s formula that χ(M) − 2χ(M−) = 2deg(f). Now, χ(M) =
χ(M+) + χ(M−)− χ(M+ ∩M−) = χ(M+) + χ(M−), and thus

χ(M+)− χ(M−) = 2deg(f). (1)

Then the result follows from the relation χ(M±) = 2(V ± − g± −m). �

3. Surgery of stable maps

One way of constructing a stable map is to glue together two stable maps. In particular, in a
surgery, a pair of disjoint disks in the surface is removed and replaced by a tube, the map then
being extended over the interior of the tube. There are two types of surgery: horizontal and
vertical. These were introduced in [14] for stable maps from surfaces to the plane. The extension
of these definitions for stable maps between closed surfaces in general is straightforward:

a) Horizontal surgery. Given a stable map h between two surfaces M and N , a bridge is
an embedded rectangle β in N which meets the branch set Bh in opposite edges (and nowhere
else) compatibly with the orientation of the branch set as shown in Figure 4(a) (see [16]). The
stable map hβ is constructed as follows. The bridge meets h(M) in two intervals, h(I) and h(J),
say. Choose small disks in M one containing I, the other J and replace their interiors by a
tube (i.e. an annulus), respecting the orientation of M, so as to obtain an oriented surface. As
illustrated in Figure 4(a), the map h may then be extended over the tube to give the required
stable map hβ . In particular, if M is the disjoint union of surfaces P and Q and f and g denote
the restrictions of h to P and to Q, with I in P and J in Q then we obtain the horizontal sum
f +hor g. In other words h = f ∪ g and (f ∪ g)β = f +hor g.

b) Vertical surgery. In this case we take a connected sum by identifying two small non-
singular disks in the domain, one positive and one negative (as in Figure 4 (b)) whose images in
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N coincide. The disks are replaced by a tube which is mapped into the plane, with a singular
curve running around the middle of the tube. Thus the surgery adds a disjoint embedded curve
to the branch set. We denote this sum as f +ver g. It is possible also to perform vertical surgery
using a bridge, but this will not be needed here. Observe that horizontal (resp. vertical) surgery
decreases (resp. increases) the number of edges by one.
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Figure 4. Surgeries: (a) horizontal, (b) vertical.

Figure 4 also shows the effects of the surgeries on the graphs. It is easy to see that if Gi
represents the graphs of fi, i = 1, 2 and G1 +hor G2, G1 +ver G2 respectively represent the graphs
of f1 +hor f2 and f1 +ver f2 , then

• T (G1 +hor G2) = T (G1) + T (G2)− (1, 0, 0),
• T (G1 +ver G2) = T (G1) + T (G2) + (1, 0, 0),

Observe that surgeries do not affect the degree. In particular, the degree of a horizontal or
vertical sum of f and g is the sum of the degrees of f and g. In particular, as illustrated in
Figure 5, taking the horizontal connected sum of any stable map f : M → S2 with g : S2 → S2

having two cusps depicted below increases the degree of f by one but does not change its graph.

-

+
+ +

--
-

+
-

+

-

+

Figure 5. Altering the degree and preserving the graph.

c) Transitions. Apart from connected sums we can also use certain transitions in order to
alter the graph and/or the branch set of a stable map. A codimension one transition corresponds
to a generic homotopy from a given stable map f0 to another stable map f1 which is not right-
left equivalent to f0. In other words, this means a path transverse to all the strata of the the
discriminant hypersurface in the mapping space C∞(M,S2). See [12] or [17] for the description
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of all the possible transitions. The interesting transitions, from our viewpoint, are those altering
the numbers of cusps, or of singular curves, namely the swallowtail, beaks and lips transitions.
Figure 6 and 7 show some examples of swallowtail, lips and beaks transitions on a degree one
map from the sphere to the sphere. Clearly, the transitions do not alter the degree, for the new
map remains in the same pathcomponent of C∞(M,S2).

a)                                          b)                                           c)                                            d)

Figure 6. Lips (a→ b) and beaks (b→ d) transitions on maps of the sphere.

We shall focus our attention into a special combination of transitions that will be useful in
the last section of this paper: The double beaks+double inverse swallowtail. This is obtained
by successive application of beaks transitions in two nearby segments of neighbouring singular
curves (with opposite orientations), followed by successive annihilations of two pairs of cusps
(with opposite signs) trough swallowtail transitions. The effects of this homotopy on the graph
and branch set are shown in Figure 7. We observe that the total number of singular curves
decreases by two, which corresponds to the identification of three successive edges to form one
edge of the new graph (referred to as the reduced graph). In particular, by means of successive
reductions, any odd number of consecutive edges in a tree may be identified to form a single
edge in the reduced tree.
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Figure 7. Double beaks + double inverse swallowtail: Reduction of a graph .

The inverse homotopy, double swallowtail+double beaks, obtained by creating two couples of
cusps in a singular curve by means of two swallowtail transitions, followed by a suitable pair of
beaks transitions has the effect of replacing an edge by three consecutive edges in a new graph
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(referred to as the extended graph). Note that the extended graph depends on the location
where transitions happen. For example, as in Figure 8, given an edge pq, the set H (resp. F)
of edges emanating from p (resp. q) is divided into two subsets Hi (resp. Fi), i = 1, 2, so that
these subsets of edges are distributed to created vertices p1, p1, p2, q2 in the extended graph.
Also the weight of p (resp. q) is divided into two weights of p1, p2 (resp. q1, q2). Conversely, the
homotopy in the opposite direction is a reduction of graphs, which gathers edeges and weights.
Clearly these homotopies do not affect the degree of a map.
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Figure 8. Extensions of a graph.

Observe that the graph of any stable map f : M → S2 is bipartite and that χ(M) =
2χ(G(f))− 2g . In particular, M is the sphere if and only if the graph is a tree with all weights
zero. These considerations lead to

Theorem 3.1. Any bipartite graph with non-negatively weighted vertices is the graph of a stable
map of a surface to the sphere of arbitrary degree.

Proof: It was shown in [14] that any bipartite graph may be realized by a stable map of degree
zero from some surface into the sphere. Since the horizontal surgery in Figure 5 does not change
the graph the map may be taken to have arbitrary positive degree. To get negative degree
compose with the antipodal map of the sphere which does not change the graph. �

Remark 3.2. We observe that the pair (graph, branch set) is in general not enough to determine
the isotopy class of a stable map from a closed surface to the plane or the sphere. A good example
of this is obtained from Milnor’s example of a plane curve with 6 double points which can be seen
as the image of the boundary of a 2-disc by two different immersions. If we define a mapping
f : S2 → IR2 by putting it equal to one of these immersions on the lower hemisphere and to
the other on the upper hemisphere, we obtain a fold map from S2 to IR2. On the other hand,
by choosing the same immersion on both hemispheres we get a new fold map from S2 to IR2

which can be joined by a smooth family of fold maps to the orthogonal projection of the unit
2-sphere in IR3 on the equatorial plane. These two maps although share both, their graph and
their apparent contour, are not equivalent [8]. We thus need some extra information which is
encoded in the set of Blank’s words ([4], [5], [10]) associated to the curves of the branch set. Once
we specify a bijection between the edges of the graph and the curves in the branch set, we can
work separately at each vertex by applying the techniques described in [10] in order to recover the
class of the immersion of a surface with boundary associated to it. A convenient assemblage of
these immersions will lead to a stable map class.

4. Fold Maps

In this section we consider fold maps of surfaces into the plane which, of course, are also
fold maps into the sphere of degree zero. We recall that a fold map is a stable map without
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cusps, so that the branch set consists of curves immersed in the plane. In [13] it was shown
that a necessary and sufficient condition for a graph with zero weights to be the graph of a fold
map (of an orientable surface) is that the number of positive and negative vertices be equal.
We generalize this fact to the case of graphs with arbitrary weights. In fact it immediately
follows from Lemma 2.1 that the graph of fold maps f : M → S2 of degree zero is balanced, i.e.,
V +−V − = g+− g−. Furthermore, the converse is also true (Theorem 4.2 below). To show this,
we begin with the case of trees.

Proposition 4.1. Any balanced tree is the graph of a fold map of a surface into the plane and
hence of degree zero into the sphere.

Proof: The proof is by induction on the total weight g of the tree. The case of trees of total
weight zero was proven in [13]. Let T be a balanced tree of total weight g > 0. Denote by g+

(resp.g−) the sum of the weights of the positive (resp. negative) vertices of T . We may suppose
that g+ > 0. There are two cases to consider: a) g− > 0 and b) g− = 0.

a) We may choose a positive vertex v of weight g1 > 0 and a negative vertex w of weight
g2 > 0 and join them by a path in the tree (necessarily consisting of an odd number of
edges). We may assume that vertices of the path have weight zero (otherwise we could
choose a shorter such path). Let T ′ be the tree obtained by reducing the path to a single
edge vw of T ′. The tree T ′ also has total weight g. An important observation is that
reduction leaves g+, g− and V + − V − unchanged (though not V + or V −). Thus T ′ is
also balanced. Let T ′′ be the tree T ′ with the weights g1 and g2 replaced by g1 − 1 and
g2− 1 (Figure 9a)). Thus T ′′ is also balanced. The total weight of T ′′ is clearly g− 2 so
that, by induction, it is the graph of a fold map of a surface to the plane. The connected
sum (along the singular curve corresponding to the edge vw) of this fold map with the
fold map of the bitorus to the plane illustrated in Figure 1 (c) is a fold map with graph
T ′. By applying a sequence of double swallowtail + double beaks transitions we create
a fold map whose graph is T , as required.
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Figure 9. Decomposition of trees.

b) In this case, V + − V − = g+ > 0 so that V + > V − and g+ < V +. Claim: there exists
an extreme (i.e. belonging to just one edge) positive vertex of weight zero. Proof of
claim: Let L be the number of all positive vertices of weight zero. Then it is easy to see
V + − g+ ≤ L and by the assumption we have V − ≤ L. Now, suppose that there is no
extreme positive vertex of weight zero. Fix a negative vertex n and orient all edges of
the tree to be bound for n. Then to each positive vertex p of weight zero we may assign
a negative vertex z (6= n) so that zp is an edge pointing toward n. Hence V − > L, that
makes a contradiction. This proves the claim. Thus we may choose v a positive extreme
vertex of weight zero. Now g+ > 0 so there exists a positive vertex w of weight g1 > 0.
There is a path from v to w and we may insist that all vertices of this path between v
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and w have weight zero. Since both v and w are positive the length of the path is even
so we may reduce T to a tree T ′ in which v and w are connected by a path of length
two say vuw. As before, T ′ is also balanced. Now letT ′′ be the tree T ′ with the edge
uv removed and the weight of w reduced by one to g1 − 1 (recall g1 > 0). T ′′ is clearly
also balanced and of total weight g − 1. By hypothesis, T ′′ is the graph of a fold map.
Forming the horizontal connected sum with the fold map from the torus to the plane
(illustrated in Figure 2b)) yields a fold map whose graph is T ′. Finally, as before, a
sequence of double swallowtail + double beaks transitions produces a fold map whose
graph is T .

Clearly, in both cases the map f is a fold map from the closed surface M with Euler charac-
teristic χ(M) = 2− 2g to the plane. �

Theorem 4.2. Any bipartite balanced graph is the graph of a fold map from a surface to the
plane.

Proof: As above, it is enough to find some map f : M → IR2 whose graph is the given one. Now
observe that given any bipartite graph one may obtain a tree with the same vertices by removal
of appropriate edges. Moreover, the graph is balanced if and only if the tree is. We then have
from Proposition 4.1 that this tree may be realized by a fold map f : M → IR2, where M is a
closed surface with genus equal to the sum of all the weights in the tree. Finally we can apply
vertical surgeries on f in order to recover the removed edges, where f may be replaced properly
via homotopy of fold maps if necesary. �

We remark that a general result due to Y. Eliashberg (Theorem B, [8]) implies that for
any closed non necessarily connected curve C separating a closed orientable surface M into
pieces M+ and M− with common boundary C, there exists a fold map from M to the plane
whose singular set is C if and only if χ(M+) = χ(M−). We saw in [12] that there is a 1 − 1
relation between topological classes of curves in a surface M and weighted graphs satisfying
the relation χ(M) = 2(χ(G) − g). Since the condition χ(M+) = χ(M−) amounts to say that
the corresponding graph is balanced, we have that Proposition 4.1 can also be obtained from
Eliashberg result. Nevertheless, we emphasize that whereas Eliashberg’s techniques guarantee
the existence of such a map, those presented here furnish a practical method to construct it.

5. Fold maps with prescribed branching data in the plane

It is a well known fact (see [6] or [15]) that the sum of the winding numbers of the boundary
curves of a surface immersed in the plane is equal to the Euler characteristic of the surface.
Since we can view a fold map from a surface to the plane as a union of immersed surfaces with
boundary, with the boundary curves conveniently identified with the singular set of the map, we
can apply this result in order to obtain information on the branch set curves of fold maps from
closed surfaces to the plane.

Lemma 5.1. Any branch curve of a fold map f : M → IR2, whose graph is a (weighted) tree
has odd winding number (i.e., an even number of double points).

Proof: Consider the tree with each edge indexed by one plus the winding number of the corre-
sponding branch curve. At any vertex v, the local sum of the indices must be equal to χ(Rv),
where Rv denotes the region represented by v. Since the graph is a tree there is a vertex v1 which
belongs to just one edge e1. It follows that the index of e1 must be equal to χ(Rv1)+1 = 2−2ω1,
where ω1 is the weight of v1, and thus even. Removing e1 we obtain a subtree for which the
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local sums are also even. By induction on the number of edges of the tree, starting with the case
of one edge, the indices of the subtree are all even. In other words, the winding numbers are all
odd. �

· · ·· · · · · ·· · ·

a)                                                                          b)

Figure 10. Basic plane curves with odd winding numbers.

Figure 10 displays representatives of two different stable isotopy classes (see [3]) with odd
winding number. We shall denote them respectively as curves of type (1, 0) (10 a)) and (0, 1)
(10 b)). By a curve of type (a, b) we shall understand a connected sum of a curves of type (1, 0)
and b curves of type (0, 1). We shall refer to these curves as basic curves. By a curve of type
(0, 0) we understand an embedded circle.

Let T be a weighted tree with vertices {vk}nk=1 and corresponding weights {ωk}nk=1. We can
order the vertices in such a way that {vk}rk=1 are the positive ones and {vk}nk=r+1 the negative.
To each edge vivj , i = 1, · · · , r, j = r+ 1, · · · , n, we associate a variable Iij . We write Ck for the
sum of the indices Ikj for all the edges vkvj containing vk.

Lemma 5.2. The tree T is balanced if and only if the compatibility conditions

Ck = 2− 2ωk

have a unique solution.

Proof: Since T is a tree the number of edges is n−1. The compatibility condition at any vertex
vk is Ck = 2−2ωk. We thus have a linear system of n equations in n−1 variables. On the other
hand, we have the conditions,

r∑
i=1

(Ci − 2− 2ωi) =
∑

Iij − 2n =
n∑

j=1+r

(Cj − 2− 2ωj),

where the middle sum runs over all the edges of T .Thus any equation is a consequence of the
rest. Now fix a vertex ?. For any vertex vk define dk to be the length of the (unique) path in the
tree between vk and ?. Thus d? = 0, dk = 1 if vk? is an edge, for any edge vivj , di and dj differ
by one and, for any vertex vk 6= ? there is a unique edge vkvs such that dk = ds+1. The equation
Ck = 2 − 2ωk determines Iks in terms of the other variables i.e. in terms of the Iij for which
di = dj + 1. For the largest value of dk, Ck is just Iks, for which Iks = 2− 2ωk is, of course, the
unique solution. Thus the equations Ck = 2−2ωk may be solved uniquely for successively smaller
values of dk up to and including d1 = 1. The remaining equation C? = 2− 2ω∗ is a consequence
of the rest. We observe that the solution consists entirely of even integers, corresponding to the
fact (already proved) that the winding numbers must all be odd. �

Proposition 5.3. Any balanced weighted bipartite graph is the graph of a fold map from a
surface M to the plane whose branch set consists of basic curves.

Proof: It is enough to prove the result for a tree, for, given any balanced graph, we may take a
maximal tree which will also be balanced. If the tree is the graph of a fold map then by doing
vertical surgeries on the fold map we realize the original graph by a fold map. The extra curves
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introduced into the branch set are all embedded circles hence basic. For a tree the proof goes
by induction on the total weight. For zero weighted trees it was shown in [13] by using curves
of type (a, 0), a ∈ ZZ. Suppose the assertion is true for any balanced tree of total weight g and
let T be a balanced tree with total weight g+ 1. We proceed as in Proposition 4.1 and consider
the two cases a) and b) and the corresponding reduced trees. We observe that in both cases, the
decomposition of the reduced tree leads to two fold maps:

• f1, whose branch set is made of a curve of type (0, 1) in case a) and of two curves, one
of type (0, 1) and the other of type (0, 0) in case b), and

• f2, whose graph has total weight lesser than g+ 1 and thus, by the induction hypothesis
can be chosen in such a way that all its branch curves are of Type (a, b).

Now observe that their horizontal sum also gives rise to a fold map whose branch curves are
of type (a, b). Moreover, the new branch curves produced in the extension process in order to
obtain f from f1 +hor f2 may also be taken in in the family of curves of type (a, b) as can be
seen in Figure 11. �
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Figure 11. Different extensions of a graph.

It can be shown that given a natural number ω and a subset {i1, · · · , ik} of odd integers
satisfying the relation

(i1 + 1) + · · ·+ (ik + 1) = 2− 2ω,

we can find an immersion of a surface of genus ω and k boundary components whose respective
winding numbers in the plane are {i1, · · · , ik}. This is proven in a similar way than it was
done for discs with holes in [13]. In that case, the family of curves of type (a, 0) was enough to
perform all the image curves. Here we must consider all the possible types (a, b), for the curves
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of type (0, b) contribute to the genus of the considered surface. In fact, for a torus with a unique
boundary curve, we can use the curve (0, 1) (as in Figure 2a)) and if the curve has genus ω,
then the image curves must be chosen of types {(a1, b1), · · · , (ak, bk)}, with ω ≤ b1 + · · · + bk
for different combinations of these curves defining the image of the boundary of surfaces with
non zero genus). Figure 12 illustrates an inductive method for constructing the image of the
boundary of immersed regions having k boundary components with total winding number i, for
all possible compatible integer sets (i1 + 1, · · · , ik + 1), such that i = i1 + · · ·+ ik. This method
runs in a similar way to the one used in [13] for fold maps from S2 to the plane.

In order to construct a fold map corresponding to a given balanced weighted tree we must
conveniently assemble different immersed regions whose boundary curves are mapped into a
proposed branch set (determined by a given graph).

Proposition 5.4. Let f be a fold map all whose branch curves are of type (a, b) and suppose that
v is an extremal vertex with weight ω. Then the region associated to v has a unique boundary
curve whose image by f is of type (0, ω).

Proof: Since v is an extreme vertex, there is a unique edge attached to it in the graph. The
corresponding branch curve is the image of the boundary of the region Rv represented by v.
Supposing that this is a curve of type (a, b), we must have that a = 0, for curves wit a 6= 0 do
not satisfy Blank’s criterium in order to be the image of the boundary of immersed regions in
the plane [9]. On the other hand, the winding number of this branch curve must coincide with
the Euler characteristic of Rv, therefore, 1− 2ω = 1− 2b and we have the required result. �

Remark 5.5. The results of this section can be transported by stereographic projection to fold
maps of degree zero from surfaces to S2.

6. Biased graphs and Fold maps

Given an integer number d we say that a bipartite weighted graph is is biased by d if the
following equality holds

V + − V − = g+ − g− + d,

where V + and V − respectively denote the numbers of vértices with positive, and negative labels,
and g+ and g− the genus of the corresponding regions.

We shall prove now that any bipartite weighted graph G can be the graph of some fold map
whose degree is equal to the bias of G.

Remark 6.1. We observe that, as illustrated in Figure 13 below, a curve of type (0, d), d ≥ 0,
can be the branch set of a fold map of degree d′(≥ 0) from the surface of genus 2d′′ + d′(≥ 0)
into the sphere, where d = d′ + d′′.

Any fold map (of a surface into the sphere) has a bipartite graph and degree (V + − V −) −
(g+ − g−). Conversely,

Theorem 6.2. Any bipartite weighted graph may be realized by a fold map (of a surface into
the sphere).

Proof: We prove it first for a tree biased by d and then use vertical surgeries, as above, to
extend it to any bipartite graph with bias d. Assume that d is positive (resp. negative). Given
such a tree T , let v be one of its vertices that we may suppose is a positive (resp. negative)
vertex. Consider a new weighted tree, Td, obtained from T by adding d to the weight ω of v.
Clearly, Td is a balanced tree. Then it follows from Propositions 4.1 and 5.3 that there is a zero
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Figure 12. Basic curves in the boundary of immersed regions with genus.

a)                                          b)                                           c)

2

2

0

2

1

2

Figure 13. genus versus degree.

degree fold map f : M → S2 whose associated graph is Td, where χ(M) = 2 − 2(g+ + g− + d)
and all the curves in the branch set are of type (a, b). We know from Proposition 5.4 that the
branch curve corresponding to the edge e in Td must be of type (0, ω + d). Now, in view of the
above remark, we can construct a map f ′ : M ′ → S2 with χ(M) = 2− 2(g+ + g−), of degree d,
without changing the graph and the branch set (see Figure 13. �
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CHOW GROUPS AND TUBULAR NEIGHBOURHOODS

HELMUT A. HAMM

Abstract. We will prove theorems of Zariski-Lefschetz type for the analytic Chow groups of

a quasi-projective variety. We will also derive an algebraic analogue, using formal instead of

tubular neighbourhoods.

I. In this paper we will look at the algebraic and analytic Chow groups for complex quasi-
projective varieties.

First, let X be a scheme over C of finite type, k ≥ 0. Then the k-th Chow group Ak(X)
is defined as follows: Ak(X) := Ck(X)/Zk(X). Here Ck(X) is the group of k-cycles in X, i.e.
the free abelian group of formal Z-linear combinations of k-dimensional algebraic subvarieties
(i.e. closed non-empty reduced and irreducible subschemes) of X, and Zk(X) is the subspace of
Z-linear combinations of elements of the form div f , where f ∈M(D)∗, D a (k+ 1)-dimensional
algebraic subvariety of X. Note thatM(D) is the field of rational functions on D and div f the
divisor of f .

See [Fu] I.1.3, where Ak(X) is called the group of k-cycles modulo rational equivalence. It
is reasonable to speak of “Chow groups” because ⊕kAk(X) is called “Chow ring” in the non-
singular case where we have a ring structure indeed.

If X is everywhere of dimension n we have that An−1(X) = Cl(X) := Weil divisor class group
= group of Weil divisors modulo principal divisors.

We can define analytic Chow groups, too, for a complex space. However, in the analytic con-
text Ck(X) is defined using locally finite linear combinations instead of finite linear combinations,
and Zk(X) consist of elements

∑
i

div fi, where (Di)i∈I is a locally finite set of (k+1)-dimensional

analytic subvarieties of X and fi is a non-zero meromorphic function on Di.
Note that this is not the same definition as in [V] but it is at least reasonable in the

following sense: If the complex space X is everywhere of dimension n we have again that
An−1(X) = Cl(X) := Weil divisor class group.

From now on let X be a closed subscheme of PN (C), Y a Zariski-closed subspace of X, and
H a hyperplane. The complex space associated to X will be denoted by Xan. We assume that
X is reduced because this is not an essential restriction.

A Lefschetz type theorem for the Chow groups should compare those of X \Y and X ∩H \Y .
But looking for such a theorem seems to be very difficult. A considerable simplification is ob-
tained in the analytic context if one replaces the hyperplane section by some neighbourhood
(“Zariski-Lefschetz type theorem”). There are two possibilities: first, one can take a fundamen-
tal system of neighbourhoods V of Xan ∩Han \ Y an in Xan \ Y an and compare Ak(Xan \ Y an)
with Ak(V ), or one can take a fundamental system of neighbourhoods U of Xan ∩Han in Xan

and compare Ak(Xan \ Y an) with Ak(U \ Y an). Note that the neighbourhoods U \ Y an of

2000 Mathematics Subject Classification. 14C15, 32C15.
Key words and phrases. Chow groups, Lefschetz theorem.
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Xan ∩Han \ Y an are big compared with V .

The second alternative has already been studied in [H1] in the special case of the Weil divisor
class group: If dim X ≥ 3 everywhere we have Cl(Xan \ Y an) ' Cl(U \ Y an) for some funda-
mental system of neighbourhoods U of Xan ∩Han in Xan, see [H1] Theorem 1.2.

II. The analogue of tubular neighbourhoods in the algebraic context is given by formal com-
pletion. Let X̂ be the formal completion of X along X ∩ H, see [GD] I §10. Then the formal

completion of X \ Y along X ∩H \ Y is given by X̂ \ Ŷ . This is the algebraic analogue of the
neighbourhoods V above (in the limit).

This approach in the algebraic context goes back to A.Grothendieck when he studied the
Picard group. In fact Grothendieck has proved in [G] a Lefschetz theorem for the Picard group
Pic(X \Y ) in the case Y = ∅. This has been generalized in [HL2]. The case where Y is arbitrary
has been studied in [HL1] (smooth case) and [HL3] (general case).

Note that Pic(X \ Y ) ' Cl(X \ Y ) if X \ Y is smooth. This could be used in order to derive
a Lefschetz theorem for the Weil divisor class group, see [HL1] Theorem 1.5: If dim X ≥ 4
everywhere, codimSing X ≥ 2 and H is generic we have that Cl(X) ' Cl(X ∩H).

When working with formal neighbourhoods we have to make precise what we mean by the
dimension: If Ẑ is a closed formal subscheme of PN (C) \ Y , dim Ẑ ≥ k everywhere if for all

closed points z of Ẑ and all associated prime ideals p of OẐ,z we have dim OẐ,z/p ≥ k.

Furthermore, a closed formal subscheme Ẑ of X̂ is called reducible if there are proper formal
closed subschemes such that Ẑ = Ẑ1 ∪ Ẑ2, where J1 · J2 = 0 for the ideal sheaves J1,J2 of Ẑ1,
Ẑ2 in Ẑ. Otherwise, Ẑ is called irreducible, of course.

Note that if Z is a subscheme of PN (C)\Y of pure dimension k, Z∩H 6= ∅, we have dim Ẑ = k,
too.

What is the algebraic analogue of neighbourhoods of the form U \ Y an? It is easier to
give a direct definition of the corresponding Chow group than to define an analogue of the
space itself. Let us start from a different description of Ak(X \ Y ) in the algebraic case: we
have Ak(X \ Y ) ' Ak(X,Y ) := Ck(X)/(Zk(X) + Ck(Y )). The notation might be misleading:
obviously we still have an arrow Ak(X)→ Ak(X,Y ).

Note that Ak(X,Y ) ' Ck(X,Y )/Zk(X,Y ) with Ck(X,Y ) := Ck(X)/Ck(Y ) and Zk(X,Y ) =
Zk(X)/Zk(X)∩Ck(Y ) ' (Zk(X)+Ck(Y ))/Ck(Y ), by the isomorphism theorems of group theory.

Then it is natural to define Ak(X̂, Ŷ ) with X̂, Ŷ instead of X,Y . Now Ak(X̂, Ŷ ) seems to be
the appropriate algebraic analogue of lim

→
Ak(U \ Y an), as we will see from the results.

We have an analogous notion Ak(Xan, Y an) in the analytic context which does not, however,
coincide necessarily with Ak(Xan \Y an) in general because analytic subsets of Xan \Y an do not
necessarily extend to analytic subsets of Xan.

III. Now we have all types of Chow groups which we will use at our disposal and can phrase
our theorems. As often define dim ∅ := −1.

In the analytic context we have:

Theorem 1: The mapping Ak(Xan \Y an)→ lim
→
Ak(U \Y an) is bijective if k ≥ 2 and injective

if k ≥ 1.
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Here U runs through the set of open neighbourhoods of Xan ∩Han in Xan.

Theorem 1’: The mapping Ak(Xan, Y an) → lim
→
Ak(U,U ∩ Y an) is bijective if k ≥ 2 and

injective if k ≥ 1.
Again, U runs through the set of open neighbourhoods of Xan ∩Han in Xan.

Theorem 2: The mappings Ak(Xan \ Y an) → lim
→
Ak(U \ Y an) → lim

→
Ak(V ) are bijective if

k ≥ dim (Y ∩H) + 3 and injective if k ≥ dim (Y ∩H) + 2.
Here U (resp. V ) runs through the set of all open neighbourhoods of Xan∩Han in Xan (resp.

of Xan ∩Han \ Y an in Xan \ Y an).

Similarly, in the algebraic context we obtain:

Theorem 3: The mapping Ak(X \ Y )→ Ak(X̂, Ŷ ) is bijective if k ≥ 2 and injective if k ≥ 1.

Theorem 4: The mappings Ak(X \ Y ) → Ak(X̂, Ŷ ) → Ak(X̂ \ Ŷ ) are bijective if k ≥
dim (Y ∩H) + 3 and injective if k ≥ dim (Y ∩H) + 2.

Remark: In the case Y = ∅ Theorem 1, 1’ and 2 coincide, the same holds for Theorem 3 and 4.

Finally we will compare the algebraic and analytic context, this will make it possible, in par-
ticular, to make Theorem 1’ more precise. See Remark 3.1 below.

From the literature to be used it is evident that the results in the algebraic context go over
to the case of an arbitrary algebraically closed field instead of C.

1. Analytic context: Proof of Theorem 1, 1’ and 2

We can identify PanN (C) \ Han with CN . For R > 0 let UR be the complement of {z ∈
CN ∩ Xan | max |zj | ≤ R} in Xan. The UR form a fundamental system of neighbourhoods of
Xan ∩Han in Xan. Fix R.

First let us prove

Lemma 1.1: a) If k ≥ 2 (resp. k ≥ 1), for every purely k-dimensional (sc. closed) analytic
subset C of UR \ Y an there is exactly (resp. at most) one purely k-dimensional analytic subset
C ′ of Xan \ Y an such that C ′ ∩ UR = C.

b) The mapping Ck(Xan \ Y an)→ Ck(UR \ Y an) is bijective if k ≥ 2 and injective if k ≥ 1.

Proof: a) see Theorem 3.2 in [H1].
b) follows from a).

Lemma 1.2: a) If D is a purely k-dimensional analytic subvariety of Xan \ Y an, k ≥ 2, every
meromorphic function on D ∩ UR extends to a unique meromorphic function on D.

b) Zk(Xan \ Y an)→ Zk(UR \ Y an) is bijective if k ≥ 1.

Proof: a) We modify (and correct) the proof of [H1] Theorem 3.4 which covers the special case
where D can be extended to a subvariety of Xan:
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Let f be a meromorphic function on UR ∩ D, and let p : D̃ → D be the normalization.
Let D̃sing be the singular locus of D̃, D∗ := D \ p(D̃sing), D̃

∗ := p−1(D∗). Let If◦p be the
set of points of p−1(UR ∩ D∗) where f ◦ p is indeterminate. Put D∗∗R := UR ∩ D∗ \ p(If◦p),
D̃∗∗R := p−1(D∗∗R ) and pR := p|D̃∗∗R : D̃∗∗R → D∗∗R . Let W̃ be a sufficiently small neighbourhood of

a point in D̃∗∗R . On W̃ , f ◦p can be written in the form g/h where g, h are holomorphic functions

on W̃ whose germs are relatively prime. Then (g, h) defines a section of O2
D̃
|W̃ ; it generates an

invertible OD̃|W̃ -module which depends only on f . Patching together we obtain an invertible
OD̃∗∗

R
-submodule S of O2

D̃∗∗
R

. Then (pR)∗S is an invertible p∗OD̃|D∗∗R -submodule of p∗O2
D̃
|D∗∗R ,

at the same time we can consider these two sheaves as coherent OD∗∗
R

-modules, too.

It is easy to see that (pR)∗S coincides with its (k − 1)-st gap sheaf relative to p∗O2
D̃
|D∗∗R

(see [S] p. 132): Let W be an open set in D∗∗R and A an analytic subset of W of dimension
≤ k− 1. Let s be a section of p∗O2

D̃
|W such that s|W \A is a section of (pR)∗S. Then s can be

considered as an element of Γ(p−1(W ),O2
D̃

) whose restriction to p−1(W \ A) is a section in S.

The latter can be uniquely extended to an element of Γ(p−1(W ),S) which has to coincide with
s ∈ Γ(p−1(W ),O2

D̃
).

Therefore (pR)∗S can be extended to a coherent OUR∩D-submodule of p∗O2
D̃
|UR ∩ D with

analogous properties, by the subsheaf extension theorem, see [ST], first part of the proof of
Theorem 1b. Note that the resulting sheaf can be considered after trivial extension as a coherent
OUR\Y -module, too.

By Theorem 3.3 of [H1] the subsheaf above can be uniquely extended to a coherent OX\Y -

submodule of p∗O2
D̃

which coincides with its (k − 1)-st relative gap sheaf; note that k − 1 ≥ 1
because k ≥ 2. Of course, it must be the trivial extension of a coherent OD-submodule T of
p∗O2

D̃
.

There is a discrete subset Σ of D such that T |D \Σ is even a p∗OD̃|D \Σ-module: note that
we have a multiplication mapping p∗OD̃ ⊗OD T → p∗O2

D̃
whose image is contained in T if we

restrict to UR∩D. Then use Lemma 3.1 of [H1]. (Note that X ⊂ Y should be replaced by X \Y
there.)

Now T |D \ Σ is finite as a OD\Σ-module, hence as a p∗OD̃|D \ Σ-module. As such it is
coherent, and its restriction to UR ∩D is invertible outside some analytic subset of codimension
≥ 2. Therefore T |D\Σ is an invertible p∗OD̃|D\Σ-module, too, outside some analytic subset of
codimension ≥ 2, after enlarging Σ if necessary: Otherwise there would be an irreducible analytic
subset of D \ Σ of dimension ≥ k − 1 > 0 where T is not invertible. Note that this irreducible
subset could be continued to an analytic subset of D, by the theorem of Remmert-Stein ([GR]
Theorem V D 5). Then use Lemma 3.1 of [H1] again.

Let D∗∗ be the subset of D∗ \Σ where T is invertible. If (g, h) is a local generator we obtain
using g/h a meromorphic function on D∗∗ which can be uniquely continued to a meromorphic
function on D∗ \Σ, hence on D \Σ and finally on D, by the Kontinuitätssatz [KK] 53.A.9. This
gives the desired extension of f .

b) Suppose that f is a meromorphic function on D, where D is a purely (k + 1)-dimensional
analytic subset of UR \ Y an. By Lemma 1.1a), there is exactly one purely (k + 1)-dimensional
analytic subset D′ of Xan \ Y an such that D′ ∩UR = D. By a) we may extend f to exactly one
meromorphic function on D′. The rest is clear.

Proof of Theorem 1: First assume that k ≥ 2. By Lemma 1.1b), the mapping Ck(Xan \
Y an) → Ck(UR \ Y an) is bijective. By Lemma 1.2b), Zk(Xan \ Y an) → Zk(UR \ Y an) is
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bijective. This implies that Ak(Xan \Y an)→ Ak(UR \Y an) is bijective, hence Ak(Xan \Y an)→
lim
→
Ak(U \ Y an), too.

Now assume only k ≥ 1. Then we know that Ck(Xan \ Y an) → Ck(UR \ Y an) is injective,
whereas Zk(Xan \ Y an) → Zk(UR \ Y an) is bijective. This implies that Ak(Xan \ Y an) →
Ak(UR \ Y an) is injective, hence Ak(Xan \ Y an)→ lim

→
Ak(U \ Y an), too.

Proof of Theorem 1’: We apply Lemma 1.1 and Lemma 1.2 in the case Y = ∅. According to
Lemma 1.1 we have that for every purely k-dimensional analytic subset C of UR there is exactly
(resp. at most) one purely k-dimensional analytic subset C ′ of Xan such that C ′ ∩ UR = C. If
no irreducible component of C is contained in Y an we know that the same holds for C ′, too. So
we obtain that Ck(Xan, Y an)→ Ck(UR, Y

an ∩ UR) is bijective (resp. injective).
Similarly, if k ≥ 1 and D is an analytic subvariety of X of dimension k + 1, we can extend

D to exactly one analytic subvariety of Xan of dimension k + 1, and if f is meromorphic on D
we can extend f to D′. Again, if D is not contained in Y an, D′ is not contained in Y an, too.
Therefore Zk(Xan, Y an) ' Zk(UR, UR ∩ Y an). Altogether we obtain Theorem 1’.

Now let us turn to the proof of Theorem 2. Suppose that k ≥ dim (Y ∩H)+2, so k ≥ dim Y +1,
and that U is an open neighbourhood of Xan ∩Han in Xan. As we will see in Proposition 3.2,
Ak(Xan) ' Ak(Xan \ Y an); with the same techniques we have Ak(U) ' Ak(U \ Y an).

Therefore we can suppose in the proof of Theorem 2 that Y ⊂ H. Furthermore we can assume
Y 6= ∅ because otherwise Theorem 2 coincides with Theorem 1 and 1’.

Let Ak be the sheaf of purely k-dimensional analytic subsets on Xan: if W is open in Xan let
Γ(W,Ak) be the set of all closed purely k-dimensional analytic subsets of W . If A is a locally
closed subset of Xan we have Γ(A,Ak) = lim

→
Γ(W,Ak) where W runs through the set of all open

neighbourhoods of A in Xan: this follows from [Go] II 3.3 Corollaire 1.

Lemma 1.3: The mapping Γ(Xan ∩ Han,Ak) → Γ(Xan ∩ Han \ Y an,Ak) is bijective if
k ≥ dim Y + 3 and injective if k ≥ dim Y + 2.

Proof: We may suppose X = PN . It is sufficient to show that the mapping

Γ(Xan ∩Han \ (Y ′)an,Ak)→ Γ(Xan ∩Han \ (Y ′′)an,Ak)

is bijective resp. injective if Y ′′ ⊂ Y ′ ⊂ Y and Y ′ \ Y ′′ is smooth of dimension l ≤ dim Y .
Let j : Xan ∩Han \ (Y ′)an → Xan ∩Han \ (Y ′′)an be the inclusion. Then it suffices to show

that the mapping

j∗(Ak|Xan ∩Han \ (Y ′)an)→ Ak|Xan ∩Han \ (Y ′′)an)

is bijective resp. injective.
We have to show this at every point of (Y ′)an ∩ Han \ (Y ′′)an. Choose local coordinates

z1, . . . , zN centered at this point such that Y ′an is locally described by zl+1 = . . . = zN = 0 and
Han by zN = 0. Fix ε0 = δ0 > 0 sufficiently small. For 0 < ε, δ < ε0 put Wε,δ := {z | |zj | <
ε0, j = 1, . . . , l, ε < max(|zl+1|, . . . , |zN−1|) < ε0, |zN | < δ}. Let (εν)ν≥1, (δν)ν≥1 be strictly
monotonously decreasing sequences of positive real numbers which converge to 0, where ε1 ≤
ε0, δ1 ≤ δ0, and put W :=

∞⋃
ν=1

Wεν ,δν . Note that the closures of the sets W obtained in this way
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form a fundamental system of neighbourhoods of {z | |zj | ≤ ε0, j = 1, . . . , N, (zl+1, . . . , zN−1) 6=
0, zN = 0} in {z | |zj | ≤ ε0, j = 1, . . . , N, (zl+1, . . . , zN ) 6= 0}.

Now it is sufficient to show: Every purely k-dimensional closed analytic subset of W admits
exactly (resp. at most) one extension to a closed analytic subset of {z | |zj | < ε, j = 1, . . . , N −
1, |zN | < δ1}. (*)

Here we proceed similarly as in the proof of Lemma 9 in [H2]. The essential point is
the following: Every purely k-dimensional analytic subset of {z | |zj | < ε0, j = 1, . . . , l, εν <
max(|zl+1|, . . . , |zN−1|) < ε0, δν+2 < |zN | < δ1} admits exactly (resp. at most) one extension
to a purely k-dimensional analytic subset of {z | |zj | < ε0, j = 1, . . . , l,max(|zl+1|, . . . , |zN−1|) <
ε0, δν+2 < |zN | < δ1}.

But this is just a consequence of [S] Theorem 2.18 resp. Lemma 2.17.
By induction, this makes it possible to extend every purely k-dimensional analytic subset

of W to exactly (resp. at most) one purely k-dimensional analytic subset of W ∪ {z | |zj | <
ε0, j = 1, . . . , N − 1, δν < |zN | < δ1} ∪ {z | |zj | < ε0, j = 1, . . . , N − 1,max(|zj+1|, . . . , |zN−1| >
εν , |zN | < δ1}, hence of {z | |zj | < ε0, j = 1, . . . , N − 1, |zN | < δ1} \ Y ′, or of {z | |zj | < ε0, j =
1, . . . , N − 1, |zN | < δ1}, by the extension theorem of Remmert-Stein ([GR] Theorem V D 5).
This implies (*).

As a consequence we obtain the following Lefschetz type theorem:

Theorem 1.4: The mapping Γ(Xan \ Y an,Ak) → Γ(Xan ∩ Han \ Y an,Ak) is bijective if
k ≥ dim Y + 3 and injective if k ≥ dim Y + 2.

Proof: By Lemma 1.1, Γ(Xan,Ak) ' Γ(Xan ∩Han,Ak). Using Lemma 1.3 we conclude that
Γ(Xan,Ak)→ Γ(Xan∩Han\Y an,Ak) is bijective (resp. injective). By the theorem of Remmert-
Stein ([GR] Theorem V D 5), Γ(Xan,Ak) ' Γ(Xan \ Y an,Ak).

Now let us look at meromorphic functions:

Lemma 1.5: If k ≥ dim Y + 3 and D is a k-dimensional subvariety of X we have that
Γ(Dan ∩Han,MDan) ' Γ(Dan ∩Han \ Y an,MDan).

Proof: Replacing Y by Y ∩D we may assume that Y ⊂ D.
Let us take up the notations of the proof of Lemma 1.3. Then it is sufficient to show:

j∗(Mk|Dan ∩Han \ (Y ′)an) 'Mk|Dan ∩Han \ (Y ′′)an

Again, it suffices to show that every meromorphic function on W ∩Dan extends (uniquely) to
a meromorphic function on Dan ∩ {z | |zj | < ε0, j = 1, . . . , N − 1, |zN | < δ1}. The essential
point is to show that every meromorphic function on Dan ∩ {z | |zj | < ε0, j = 1, . . . , l, εν <
max(|zl+1|, . . . , |zN−1|) < ε0, δν+2 < |zN | < δ1} admits exactly one meromorphic extension on
Dan ∩ {z | |zj | < ε0, j = 1, . . . , l,max(|zl+1|, . . . , |zN−1|) < ε0, δν+2 < |zN | < δν}. (**)

If we have this we proceed as in the proof of Lemma 1.3: Every meromorphic function on
Dan∩W admits exactly one meromorphic extension toDan∩{z | |zj | < ε0, j = 1, . . . , N−1, |zN | <
δ1} \ Y ′, hence to Dan ∩ {z | |zj | < ε0, j = 1, . . . , N − 1, |zN | < δ1}, by the Kontinuitätssatz, see
[KK] 53.A.9.

In order to prove (**) we proceed as in the proof of Lemma 1.2, case k ≥ 3. The essential
point is to show the following lemma:
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Lemma 1.6: Let G be a coherent analytic sheaf on {z | |zj | < ε0, j = 1, . . . , l,max(|zl+1|, . . . , |zN−1|) <
ε0, δν+2 < |zN | < δ1} and F a coherent analytic subsheaf of G|{z | |zj | < ε0, j = 1, . . . , l, εν <
max(|zl+1|, . . . , |zN−1|) < ε0, δν+2 < |zN | < δ1}. Assume that for all open subsets W of
{z | |zj | < ε0, j = 1, . . . , l, εν < max(|zl+1|, . . . , |zN−1|) < ε0, δν+2 < |zN | < δ1} and all ana-
lytic subsets A of W with dim A ≤ l + 1 the following holds:

Every section of G|W whose restriction to W \A belongs to F|W \A is a section of F|W .
Then F extends uniquely to a coherent analytic subsheaf of G with the analogous property.

Proof: Apply [S] Theorem 4.5, p. 156, with n = l + 1.

Therefore we get the following Lefschetz theorem for meromorphic functions:

Theorem 1.7: If k ≥ dim Y + 3 and D is a k-dimensional subvariety of X not contained in Y
we have that Γ(Dan \ Y an,MDan) ' Γ(Dan ∩Han \ Y an,MDan).

Proof: By the theorem of Remmert-Stein, we have Γ(Dan,MDan) ' Γ(Dan \Y an,MDan). The
rest follows from Lemma 1.2 and 1.5.

Proof of Theorem 2: By Theorem 1.4, Ck(Xan \ Y an)→ lim
→
Ck(V ) is bijective (resp. injec-

tive).
Furthermore, Theorem 1.7 implies that Zk(Xan \ Y an) ' lim

→
Zk(V ).

This implies that the mapping Ak(Xan \ Y an)→ lim
→
Ak(V ) is bijective (resp. injective). By

Theorem 1 we have Ak(Xan\Y an) ' lim
→
Ak(U\Y an). Note that we have assumed Y ⊂ H,Y 6= ∅.

2. Algebraic context: Proof of Theorem 3 and 4

Here we need the following two lemmas:

Lemma 2.1: If k ≥ dim Y +3, for every k-dimensional formal subvariety (i.e. non-empty closed

irreducible reduced formal subscheme) C of X̂ \ Ŷ there is exactly one subvariety C ′ of X \ Y
such that Ĉ ′ = C.

Proof: Existence: C is also a formal subvariety of P̂N (C) \ Ŷ . Then apply Corollary 6 of [F1]
with Y instead of Z: there is an extension of C to a closed subscheme C ′ of PN (C) \ Y , “ex-

tension” means that Ĉ ′ = C. Replacing C ′ by C ′ ∩X if necessary we may suppose that C ′ is a
closed subscheme of X \Y . We may take C ′ to be reduced. If we take an irreducible component

C ′0 with Ĉ ′0 6= ∅ we get that Ĉ ′0 = C, so there is an extension to a subvariety of X \ Y . The
uniqueness is clear.

Lemma 2.2: If D is a (k + 1)-dimensional subvariety of X \ Y , k ≥ dim Y + 2, every rational

function on D̂ extends to a (unique) rational function on D.

Proof: This follows from [F1] Corollary 3 with Y instead of Z.

Proof of Theorem 3: Apply Lemma 2.1 and 2.2 with Y := ∅.
First suppose that k ≥ 1. If C ′ is a k-dimensional subvariety of X not contained in Y we

have that C ′ ∩ H 6= ∅, so Ĉ ′ 6= ∅, end Ĉ ′ 6⊂ Ŷ because otherwise C ′ ⊂ Y . This implies that
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Ck(X\Y )→ Ck(X̂, Ŷ ) is injective. By Lemma 2.1 and 2.2 we obtain that Zk(X\Y )→ Zk(X̂, Ŷ )
is bijective. So we obtain injectivity.

Now suppose k ≥ 2. By Lemma 2.1 and 2.2, for every k-dimensional formal subvariety C of
X̂ not contained in Ŷ there is exactly one subvariety C ′ of X such that Ĉ ′ = C; in fact, we have
C ′ ⊂ X \ Y . Similarly, if f is a rational function on a (k + 1)-dimensional formal subvariety C

of X̂ \ Ŷ , we have a unique subvariety D′ of X \ Y with D̂′ = D and a unique rational function
on D′ which induces f . In total we obtain bijectivity.

Proof of Theorem 4: Using Lemma 2.1 and 2.2 we get that Ck(X \ Y ) → Ck(X̂ \ Ŷ ) is

bijective (resp. injective) and that Zk(X \ Y )→ Zk(X̂ \ Ŷ ) is bijective. Note that a subvariety

C ′ of X \ Y of dimension ≥ dimY + 2 must intersect H \ Y , so Ĉ ′ 6= ∅ in X̂ \ Ŷ . We conclude

that Ak(X \ Y )→ Ak(X̂ \ Ŷ ) is bijective (resp. injective).

Furthermore, Ak(X \ Y ) ' Ak(X̂, Ŷ ) by Theorem 3. So we obtain Theorem 4.

3. Remarks on the comparison of the analytic and algebraic context

The comparison is especially simple in the case of Ak(X,Y ) and the corresponding analytic
object. If we pass to the formal context it seems that the following assertion (*) is considered
as a consequence of GAGA theory, see [F2] p. 737 resp. [B] §10, p. 115:

a) For every formal analytic subvariety C of X̂an there is exactly one formal subvariety C ′ of X̂
such that (C ′)an = C.

b) Let D be a formal subvariety of X̂. Every formal meromorphic function f on Dan is rational,
i.e. there is a (unique) formal rational function g on D such that gan = f . (*)

Remark 3.1: Adopting (*) we have a commutative diagram

Ak(X,Y ) −→ Ak(X̂, Ŷ )
↓' ↓'

Ak(Xan, Y an) → lim
→
Ak(U,U ∩ Y an) → Ak(X̂an, Ŷ an)

where all arrows are bijective if k ≥ 2 resp. injective if k ≥ 1.
Here U runs through the set of open neighbourhoods of Xan ∩Han in Xan.

Proof: By Chow’s theorem ([GR] Theorem V D 7), analytic subvarieties of Xan are algebraic.
Therefore it is easy to see that Ck(X,Y ) ' Ck(Xan, Y an). Now let D be a subvarity of X. By
Hurwitz’ theorem, see [Fi] 4.7, every meromorphic function on Dan is rational, i.e. comes from
a (unique) rational function on D. Therefore Zk(X,Y ) ' Zk(Xan, Y an). Altogether, the left
vertical arrow is bijective.

By (*) it is easy to see that Ck(X̂, Ŷ ) ' Ck(X̂an, Ŷ an) and Zk(X̂, Ŷ ) ' Zk(X̂an, Ŷ an), so the
right vertical is bijective, too.

The upper arrow is bijective (resp. injective) by Theorem 3.
So the composition of the lower horizontal mappings is bijective (resp. injective).
By Theorem 1’, the first lower horizontal arrow is bijective (resp. injective). If k ≥ 2 we

obtain our statement. But in order to treat the case k = 1 we need that the second lower
horizontal arrow is injective in this case, too. This can easily be proved: Let k ≥ 1. Every
purely k-dimensional analytic subvariety C ′ of UR is uniquely determined by its completion Ĉ ′,
so Ck(UR, UR ∩ Y an)→ Ck(X̂an, Ŷ an) is injective, and Zk(UR, UR ∩ Y an) ' Zk(X̂an, Ŷ an): the

injectivity is clear, the surjectivity comes from that of Zk(Xan, Y an)→ Zk(X̂an, Ŷ an): we have
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Zk(Xan, Y an) ' Zk(X,Y ) ' Zk(X̂, Ŷ ) ' Zk(X̂an, Ŷ an). This makes the proof of Theorem 1’
superfluous!

It is plausible that we should have a connection between the algebraic and analytic case with
respect to Theorem 2 and 4, too. First notice:

Proposition 3.2: If k ≥ dim Y + 1 we have a commutative diagram

Ak(X) ' Ak(X \ Y )
↓' ↓'

Ak(Xan) ' Ak(Xan \ Y an)

Proof: By the theorem of Remmert-Stein ([GR] Theorem V D 5), irreducible analytic subsets
of Xan \Y an of dimension ≥ dim Y +1 extend to Xan. By Chow ([GR] V D 7), analytic subsets
of Xan are algebraic.

Of course, Zariski-closed subsets of X \ Y extend to X.
On the other hand, if D is an irreducible subvariety of X of dimension ≥ dim Y + 2, ev-

ery meromorphic function on Dan \ Y an is meromorphic on Dan by the Kontinuitätssatz [KK]
53.A.9. Meromorphic functions on Xan are rational by Hurwitz’ Theorem, see [Fi] 4.7. Note
that rational functions on X \ Y coincide wth those on X.

Now let us state the following conjecture:

Conjecture 3.3: The mapping Ak(X̂ \ Ŷ )→ Ak(X̂an \ Ŷ an) is bijective if k ≥ dim (Y ∩H) + 3
and injective if k ≥ dim (Y ∩H) + 2.

Remark 3.4: Suppose that Conjecture 3.3 holds. Then we have a commutative diagram

Ak(X \ Y ) −→ Ak(X̂ \ Ŷ )
↓ ↓

Ak(Xan \ Y an) → lim
→
Ak(V ) → Ak(X̂an \ Ŷ an)

where all arrows are bijective if k ≥ dim (Y ∩H) + 3 resp. injective if k ≥ dim (Y ∩H) + 2.
Here V runs through the set of all open neighbourhoods of Xan ∩Han \ Y an in Xan \ Y an.

Proof: By Proposition 3.2, the left vertical is bijective. Now Conjecture 3.3 yields that the
right vertical is bijective (resp. injective).

The upper horizontal is bijective (resp. injective) because of Theorem 4.
So the composition of the lower horizontal mappings is bijective (resp. injective).
Now suppose k ≥ dim Y ∩H + 3. Then the first mapping in the lower horizontal is bijective,

by Theorem 2. Altogether this implies that all arrows are bijective.
However we can argue in a simpler way which would lead (if Conjecture 3.3 holds) to a new

proof of Theorem 2 and allows to treat the case k = dim Y ∩H + 2, too: It is easy to see that
the second arrow in the lower horizontal is injective for k ≥ dim Y ∩H + 2.

Every purely k-dimensional analytic subset C of V is uniquely determined by its completion
Ĉ, so lim

→
Ck(V )→ Ck(X̂an \ Ŷ an) is injective. Also, lim

→
Zk(V )→ Zk(X̂an \ Ŷ an) is surjective:

this follows from Zk(Xan \ Y an ' Zk(X \ Y ) ' Zk(X̂ \ Ŷ ) ' Zk(X̂an \ Ŷ an). This yields the
desired injectivity.
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The mandala of Legendrian dualities for pseudo-spheres in

Lorentz-Minkowski space and “flat” spacelike surfaces

Shyuichi Izumiya and Kentaro Saji

Abstract

Using the Legendrian dualities between surfaces in pseudo-spheres in Lorentz-Minkowski
4-space, we study various kind of flat surfaces in pseudo-spheres. We consider a surface in
the pseudo-sphere and its dual surface. Flatness of a surface is defined by the degeneracy
of the dual surface similar to the case for the Gauss map of a flat surface in the Euclidean
space. We study singularities of these flat surfaces and dualities of singularities.

1 Introduction

It has been shown in [25] that a theorem of Legendrian dualities for pseudo-spheres in Lorentz-
Minkowski space which gives a commutative diagram between contact manifolds defined by the
dual relations. This theorem has been generalized into pseudo-spheres in semi-Euclidean space
with general index in [10]. Such a commutative diagram is called a mandala of Legendrian
dualities now [10, 26]. The mandala of Legendrian dualities is very useful for the study of
the differential geometry on submanifolds in pseudo-spheres. Especially, it works well even for
spacelike hypersurfaces in the lightcone where the induced metric is degenerate[25].

In this paper we consider various kinds of flatness of surfaces in pseudo-spheres in Lorentz-
Minkowski space. In Euclidean space, a flat surface is characterized by the degeneracy of the
Gauss map. For example, a surface is a part of a plane if the Gauss map is constant. Moreover,
a surface is a developable surface if the image of the Gauss map is a point or a curve (i.e., all
points of the surface are singularities of the Gauss map). We remark that the dual surface of a
surface plays similar roles to those of the Gauss map of the surface [24, 31]. According to these
facts on the Euclidean case, the Legendrian dual of a surface in pseudo-sphere is considered
to be a kind of the Gauss map of the surface. In this sense a surface in a pseudo-sphere is
“flat”if the Legendrian dual is singular at any point of the surface. Especially, we consider
the case when the Legendrian dual is a curve in a pseudo-sphere. In [22] we have studied
a surface in Hyperbolic space whose lightcone dual is a curve. In this case the surface is
called a horo-flat surface. Moreover, such surfaces are one-parameter families of horo-cycles.
Therefore, we call it a horo-flat horocyclic surface. Horo-flat surfaces are “flat”surfaces in the
sense of a new geometry in Hyperbolic space[5, 6, 17, 18, 19, 22] which is called “Horospherical
Geometry”. In this paper we consider surfaces with similar properties as horo-flat horo-cyclic
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surfaces in other pseudo-spheres. These surfaces can be obtained by the aid of the mandala
of Legendrian dualities. One of the main results in this paper is to give classifications of the
singularities of these surfaces and show dualities among singularities. Therefore, the mandala
of Legendrian dualities still remains on the singularities level. As a consequence, these surfaces
are frontals which are the projection images of isotropic maps into the total contact manifold
of a Legendrian fibration. If the isotropic map is a Legendrian immersion, the frontal is called
a wave front (or, simply a front).

Singularities of wave fronts have been originally investigated by Zakalyukin[34, 35]. See [2]
for the detail. He has shown that generic singularities of wave front surfaces are the cuspidal
edge and the swallowtail. It is known that generic singularities of frontal surfaces are the
cuspidal cross cap in addition to the above two fronts [14, 15].

Here, the cuspidal edge is a map germ ((R2;u, v),0)→ (R3,0) defined by (u, v) 7→ (u, v2, v3)
at the origin, the swallowtail is a map germ ((R2;u, v),0) → (R3,0) defined by (u, v) 7→
(u, 3v4 + u2v, 4v3 + 2uv) and the cuspidal cross cap is a map germ ((R2;u, v),0) → (R3,0)
defined by (u, v) 7→ (u, v2, uv3) at the origin. Furthermore, the dual surfaces have the more
degenerate singularities which called the cuspidal lips or the cuspidal beaks and the cuspidal
butterfly. The cuspidal lips (resp. cuspidal beaks) is a map germ ((R2;u, v),0) → (R3,0)
defined by (u, v) 7→ (u,−2v3 + u2v, 3v4 − u2v2) (resp. (u, v) 7→ (u,−2v3 − u2v, 3v4 − u2v2)).
The cuspidal butterfly is a map germ ((R2;u, v),0) → (R3,0) defined by (u, v) 7→ (u, 5v4 +
2uv, 4v5 + uv2 − u2). We can draw the pictures of these singularities here.

cuspidal edge swallowtail cuspidal cross cap

cuspidal lips cuspidal beaks cuspidal butterfly

Figure 1.

We study singularities of maps up to A-equivalence among map germs. Here, map germs
f1, f2 : (R2,0) → (R3,0) are A-equivalent if there exist diffeomorphism germs φ1 : (R2,0) →

93



(R2,0) and φ2 : (R3,0) → (R3,0) such that φ2 ◦ f1 = f2 ◦ φ1 holds. In Section 8 we give
criteria to detect the map-germs in the above list of frontals. In order to give classifications of
“flat”surfaces we construct a basic Lorentzian invariant in Section 6. We give characterizations
of the above singularities of our surfaces by using such invariants (cf., Theorems 8.6, 8.8, 8.9,
8.10, 8.11, 8.13 and 8.14).

On the other hand, there are many investigations on linear Weingarten surfaces in pseudo-
spheres ([1, 8, 11, 12, 27]). The mandala of Legendrian duality is deeply related to linear
Weingarten surfaces. By using the mandala of Legendrian dualities, we can unify the notion
of linear Weingarten surfaces in different pseudo-spheres. (cf. Theorem 5.2)

We assume throughout the whole paper that all the maps and manifolds are C∞ unless
the contrary is explicitly stated.

2 Basic concepts and notations

In this section we prepare basic notions on Minkowski space. For detailed properties, see [29].
Let Rn+1 = {(x0, x1, . . . , xn)|xi ∈ R, i = 0, 1, . . . , n} be an (n + 1)-dimensional vector space.
For any vectors x = (x0, . . . , xn), y = (y0, . . . , yn) in Rn+1, the pseudo scalar product of x
and y is defined by 〈x,y〉 = −x0y0 +

∑n
i=1 xiyi. The space (Rn+1, 〈, 〉) is called Minkowski

(n+ 1)-space and denoted by Rn+1
1 .

We say that a vector x in Rn+1 \ {0} is spacelike, lightlike or timelike if 〈x,x〉 > 0,= 0
or < 0 respectively. The norm of the vector x ∈ Rn+1 is defined by ‖x‖ =

√
|〈x,x〉|. For a

non-zero vector n ∈ Rn+1
1 and a real number c, the hyperplane with pseudo normal n is given

by
HP (n, c) = {x ∈ Rn+1

1 |〈x,n〉 = c}.

We say that HP (n, c) is a spacelike , timelike or lightlike hyperplane if n is timelike, spacelike
or lightlike respectively.

We have the following three kinds of pseudo-spheres in Rn+1
1 : The hyperbolic n-space is

defined by
Hn(−1) = {x ∈ Rn+1

1 | 〈x,x〉 = −1},

the de Sitter n-space by
Sn1 = {x ∈ Rn+1

1 |〈x,x〉 = 1 }

and the (open) lightcone by

LC∗ = {x ∈ Rn+1
1 \ {0}|〈x,x〉 = 0 }.

For any x1,x2, . . . ,xn ∈ Rn+1
1 , we define a vector x1 ∧ x2 ∧ · · · ∧ xn by

x1 ∧ x2 ∧ · · · ∧ xn =

∣∣∣∣∣∣∣∣∣∣∣

−e0 e1 · · · en
x1

0 x1
1 · · · x1

n

x2
0 x2

1 · · · x2
n

...
... · · ·

...
xn0 xn1 · · · xnn

∣∣∣∣∣∣∣∣∣∣∣
, (2.1)
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where e0, e1, . . . , en is the canonical basis of Rn+1
1 and xi = (xi0, x

i
1, . . . , x

i
n). We can easily

check that
〈x,x1 ∧ x2 ∧ · · · ∧ xn〉 = det(x,x1, . . . ,xn), (2.2)

so that x1 ∧ x2 ∧ · · · ∧ xn is pseudo orthogonal to any xi (i = 1, . . . , n).

3 A mandala of Legendrian dualities for pseudo-spheres

We now review some properties of contact manifolds and Legendrian submanifolds. Let N be
a (2n + 1)-dimensional smooth manifold and K be a tangent hyperplane field on N . Locally
such a field is defined as the field of zeros of a 1-form α. The tangent hyperplane field K is non-
degenerate if α∧(dα)n 6= 0 at any point of N. We say that (N,K) is a contact manifold if K is a
non-degenerate hyperplane field. In this case K is called a contact structure and α is a contact
form. Let φ : N −→ N ′ be a diffeomorphism between contact manifolds (N,K) and (N ′,K ′).
We say that φ is a contact diffeomorphism if dφ(K) = K ′. Two contact manifolds (N,K) and
(N ′,K ′) are contact diffeomorphic if there exists a contact diffeomorphism φ : N −→ N ′. A
submanifold i : L ⊂ N of a contact manifold (N,K) is said to be Legendrian if dim L = n
and dix(TxL) ⊂ Ki(x) at any x ∈ L. We say that a smooth fiber bundle π : E −→M is called
a Legendrian fibration if its total space E is furnished with a contact structure and its fibers
are Legendrian submanifolds. Let π : E −→ M be a Legendrian fibration. For a Legendrian
submanifold i : L ⊂ E, π◦i : L −→M is called a Legendrian map. The image of the Legendrian
map π ◦ i is called a wavefront set of i which is denoted by W (L). For any z ∈ E, it is known
that there is a local coordinate system (x, p, y) = (x1, . . . , xm, p1, . . . , pm, y) around z such
that π(x, p, y) = (x, y) and the contact structure is given by the 1-form α = dy −

∑m
i=1 pidxi

(cf. [2], 20.3).
In [25] we have shown the basic duality theorem which is a fundamental tool for the study

of spacelike hypersurfaces in Minkowski pseudo-spheres. We consider the following four double
fibrations:
(1) (a) Hn(−1)× Sn1 ⊃ ∆1 = {(v,w) | 〈v,w〉 = 0 },

(b) π11 : ∆1 −→ Hn(−1),π12 : ∆1 −→ Sn1 ,
(c) θ11 = 〈dv,w〉|∆1, θ12 = 〈v, dw〉|∆1.

(2) (a) Hn(−1)× LC∗ ⊃ ∆2 = {(v,w) | 〈v,w〉 = −1 },
(b) π21 : ∆2 −→ Hn(−1),π22 : ∆2 −→ LC∗,
(c) θ21 = 〈dv,w〉|∆2, θ22 = 〈v, dw〉|∆2.

(3) (a) LC∗ × Sn1 ⊃ ∆3 = {(v,w) | 〈v,w〉 = 1 },
(b) π31 : ∆3 −→ LC∗,π32 : ∆3 −→ Sn1 ,
(c) θ31 = 〈dv,w〉|∆3, θ32 = 〈v, dw〉|∆3.

(4) (a) LC∗ × LC∗ ⊃ ∆4 = {(v,w) | 〈v,w〉 = −2 },
(b) π41 : ∆4 −→ LC∗,π42 : ∆4 −→ LC∗,
(c) θ41 = 〈dv,w〉|∆4, θ42 = 〈v, dw〉|∆4.
Here, πi1(v,w) = v, πi2(v,w) = w, 〈dv,w〉 = −w0dv0 +

∑n
i=1 widvi and 〈v, dw〉 =

−v0dw0 +
∑n
i=1 vidwi.
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We remark that θ−1
i1 (0) and θ−1

i2 (0) define the same tangent hyperplane field over ∆i which
is denoted by Ki. The basic duality theorem is the following theorem:

Theorem 3.1. Under the same notations as the previous paragraph, each (∆i,Ki) (i =
1, 2, 3, 4) is a contact manifold and both of πij (j = 1, 2) are Legendrian fibrations. More-
over those contact manifolds are contact diffeomorphic to each other.

Since the proof of the theorem was given in [25], we do not give the detailed proof here.
We only remark that (∆1,K1) can be canonically identified with the unit tangent bundle
S(THn(−1)) over Hn(−1) with the canonical contact structure ([7, 9]). Moreover, the contact
structure Ki (i = 2, 3, 4) can be canonically induced by the following constructions. We
consider smooth mappings (i 6= j ; (i, j = 1, 2, 3, 4)) Ψij : ∆i −→ ∆j defined by

Ψ12(v,w) = (v,v + w), Ψ21 = (v,w − v),

Ψ13(v,w) = (v + w,w), Ψ31(v,w) = (v −w,w)

Ψ14(v,w) = (v −w,v + w), Ψ41(v,w) =

(
v + w

2
,
w − v

2

)
,

Ψ23(v,w) = (w,w − v), Ψ32(v,w) = (v −w,v),

Ψ24(v,w) = (2v −w,w), Ψ42(v,w) =

(
v + w

2
,w

)
,

Ψ34(v,w) = (v − 2w,v), Ψ43(v,w) =

(
w,−v −w

2

)
.

We can easily show that Ψij are contact diffeomorphisms such that Ψ−1
ij = Ψji for any i, j =

1, 2, 3, 4. For example, we have

Ψ∗12θ21 = 〈dv,v + w〉|∆1 = (〈dv,v〉+ 〈dv,w〉)|∆1 = 〈dv,w〉|∆1 = θ11

and

Ψ∗41θ11 =

〈
d

(
v + w

2

)
,
v −w

2

〉
|∆4

=
1

4
(〈dv,v〉 − 〈dv,w〉+ 〈dw,v〉 − 〈dw,w〉)|∆4

=
1

4
(−2〈dv,w〉)|∆4 = −1

2
〈dv,w〉|∆4 = −1

2
θ41.

Therefore Ψ12 : (∆1,K1) −→ (∆2,K2) and Ψ41 : (∆4,K4) −→ (∆1,K1) are contact diffeo-
morphisms. By the similar calculations, we can show that the other Ψij are also contact diffeo-
morphisms. We call these Legendrian dualities a mandala of Legendrian dualities (cf.,[10, 26])
because we can explain the situation as the following diagram:
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∆3

Ψ31

WW......................................

Ψ32

oo

Ψ34

[[88888888888888888888888888

∩ ∩

Hn(−1)× LC∗ LC∗ × Sn
1

The mandala of Legendrian dualities

The above mandala has the similar structure as the real mandala of Buddhism which is a
religious picture of the universe. In the real mandala, the central Buddha is the symbol of
the sun (the light). In the above diagram the central contact manifold is corresponding to the
light, so that the analogous structure exists. This is the reason why we call the above diagram
the mandala of Legendrian dualities. The mandala was generalized into the case for pseudo-
spheres in general semi-Euclidean space[10]. Moreover, it can be extended into infinitely many
Legendrian dualities[26].

4 Local differential geometry of spacelike hypersurfaces
in pseudo-spheres

In this section we consider differential geometry of hypersurfaces in pseudo-spheres as an
application of the mandala of Legendrian dualities. We remark that it is deeply related to the
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previous theory on the differential geometry of submanifold in the hyperbolic space[17]. We
now give a quick review on the theory. Let X : U −→ Hn(−1) be an embedding from an
open region U ⊂ Rn−1 and denote that M = X(U). We define the unit normal vector field
e : U −→ Sn1 along M in Hn(−1) by

e(u) =
X(u) ∧Xu1

(u) ∧ · · · ∧Xun−1
(u)

‖X(u) ∧Xu1
(u) ∧ · · · ∧Xun−1

(u)‖
.

Therefore it satisfies that

〈X(u), e(u)〉 = 〈Xui
(u), e(u)〉 = 〈X(u), eui

(u)〉 = 0,

where i = 1, . . . , n − 1 and Xui
= ∂X/∂ui. Since 〈e(u), eui

(u)〉 = 0, the above relations
mean that eui(u) is tangent to M at p = X(u). Therefore de(u) can be considered as a
linear transformation on TpM. We call the linear transformation Ap = −de(u) : TpM −→
TpM the de Sitter shape operator of M = X(U) at p = X(u). Moreover, if we consider
L±(u) = X(u) ± e(u), then L±(u) are lightlike vectors. By the identification of M with U
through X, dX(u) can be identified with 1TpM . Therefore we have a linear transformation
dL±(u) : TpM −→ TpM with dL±(u) = 1TpM ± de(u). We call the linear transformation
S±p = −dL±(u) : TpM −→ TpM the hyperbolic shape operator of M = X(U) at p = X(u).
The de Sitter Gauss-Kronecker curvature of M = X(U) at p = X(u) is defined to be
Kd(u) = detAp and the lightcone Gauss-Kronecker curvature of M = X(U) at p = X(u) is
K±` (u) = detS±p . In [17] we have investigated the geometric meanings of the lightcone Gauss-
Kronecker curvature from the contact viewpoint. One of the consequences is that the lightcone
Gauss-Kronecker curvature estimates the contact of hypersurfaces with hyperhorospheres. It
has been also shown that the Gauss-Bonnet type theorem holds on the normalized lightcone
Gauss-Kronecker curvature [18].

On the other hand, we can interpret the above construction by using the Legendrian
duality theorem (Theorem 3.1). For any regular hypersurface X : U −→ Hn(−1), we have
〈X(u),L±(u)〉 = −1. Therefore, we can define embeddings L±2 : U −→ ∆2 by L±2 (u) =
(X(u),L±(u)). Since 〈Xui(u),L±(u)〉 = 0, each of L±2 is a Legendrian embedding.

It has been shown that π21 : ∆2 −→ Hn(−1) is a Legendrian fibration. The fiber is the
intersection of LC∗ with a spacelike hyperplane (i.e., an elliptic hyperquadric). Therefore the
intersection of the fiber with the pseuod-normal plane (i.e., a timelike plane) in Rn+1

1 of M
consists of two points at each point of M. This is the reason why we have such two Legendrian
embeddings. However, one of the results in the theory of Legendrian singularities (cf., the
appendix) asserts that the Legendrian submanifold is uniquely determined by the wave front
set at least locally. Here, M = X(U) = π21 ◦L±4 (U) are the wave front sets of L±2 (U) through
the Legendrian fibration π21. Therefore each of the Legendrian embeddings L±2 is uniquely
determined with respect to M = X(U). It follows that we have a unique pair of lightcone
Gauss images L± = π22 ◦ L±2 . Moreover, we have a Legendrian embedding L1 : U −→ ∆1

defined by L1(u) = (X(u), e(u)). It follows from the mandala of Legendrian dualities that we
have

L3(u) = Ψ13 ◦ L1(u) = (L+(u), e(u)), L4(u) = Ψ14 ◦ L1(u) = (L−(u),L+(u)).

We write L2(u) = L+
2 (u). Eventually, we have Legendrian embeddings Li : U −→ ∆i (i =

1, 2, 3, 4) such that Ψij ◦ Li = Lj . In this case we started the embedding X : U −→ Hn(−1).
However, we have no reasons why we do not start a spacelike embedding into Sn1 or LC∗.
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According to the above arguments, we consider the following situations. Let L1 : U −→ ∆1

be a Legendrian embedding and denote that L1(u) = (Xh(u),Xd(u)). By using the contact
diffeomorphism Ψ14, we have a Legendrian embedding L4 : U −→ ∆4 defined by L4(u) =
Ψ14 ◦L1(u). We denote that L4(u) = (X`

−(u),X`
+(u)), so that we have the following relations:

X`
−(u) = Xh(u)−Xd(u), X`

+(u) = Xh(u) + Xd(u), (4.1)

Xh(u) =
X`

+(u) + X`
−(u)

2
, Xd(u) =

X`
+(u)−X`

−(u)

2
.

We also denote that L2 = Ψ12 ◦L1 : U −→ ∆2 and L3 = Ψ13 ◦L1 : U −→ ∆3, so that we have

L2(u) = (Xh(u),X`
+(u)), L3(u) = (X`

+(u),Xd(u)). (4.2)

Since Ψij (i, j = 1, 2, 3, 4) are contact diffeomorphisms, Li(U) (i = 1, 2, 3, 4) are Legendrian
submanifolds. By definition, L1(U) is a Legendrian submanifold in ∆1 if and only if

〈Xh(u),Xd(u)〉 = 〈Xh(u),Xd
ui

(u)〉 = 〈Xh
ui

(u),Xd(u)〉 = 0

for i = 1, . . . , n− 1. Therefore if we suppose that Xh is an embedding, then Xd can be con-
sidered as the Gauss map of Mh = Xh(U) and −dXd(u) is the corresponding Weingarten
map. If Xd is an embedding, then Xh can be considered as the Gauss map of Md = Xd(U)
and −dXh(u) is the corresponding Weingarten map. It follows that we can define the corre-
sponding curvatures. The situations are the same as for the other Li(U). We now summarize
the situations. We denote that MH = Xh(U) and MD = Xd(U). If Xh is an embedding,
we call Xd the de Sitter Gauss image of hypersurface MH in the hyperbolic space Hn(−1).
Moreover, we define (SHd )p = −dXd(u) : TpM

H −→ TpM
H where p = Xh(u). We also call

(SHd )p the de Sitter Weingarten map of hypersurface MH in the hyperbolic space Hn(−1) at

p = Xh(u). Then we have de Sitter principal curvatures κHd,i(u) (i = 1, . . . , n− 1) defined as

the eigenvalues of (SHd )p and the de Sitter Gauss-Kronecker curvature KH
d (u) = det(SHd )p of

MH at p = Xh(u).
On the other hand, if Xd is an embedding, we call Xh the hyperbolic Gauss image of

spacelike hypersurface MD in the d Sitter space Sn1 . Moreover, we define (SDh )p = −dXh(u) :

TpM
D −→ TpM

D where p = Xd(u). We also call (SDh )p the hyperbolic Weingarten map of

spacelike hypersurface MD in the de Sitter space Sn1 at p = Xd(u). Then we have hyperbolic
principal curvatures κDh,i(u) (i = 1, . . . , n − 1) defined as the eigenvalues of (SDh )p and the

hyperbolic Gauss-Kronecker curvature KD
h (u) = det(SDh )p of MD at p = Xd(u). If both

the mappings Xh,Xd are embeddings, then we define gDij (u) = 〈Xh
i (u),Xh

j (u)〉, gHij (u) =

〈Xd
i (u),Xd

j (u)〉 and h∆1
ij (u) = −〈Xd

i (u),Xh
j (u)〉 = 〈Xd

ij(u),Xh(u)〉 = 〈Xd(u),Xh
ij(u)〉. We

respectively call gHij , g
D
ij and h∆1

ij a hyperbolic first fundamental invariant of MD, a de Sitter

first fundamental invariant of MH and a ∆1-second fundamental invariant. In this case we
can identify TpM

H with T ′pM
D for p = Xh(u) and p′ = Xd(u). By definition, the principal

directions of (SHd )p and (SDh )′p are the same. We have the following Weingarten type formulae.

Proposition 4.1. Let L1 : U −→ ∆1 be a Legendrian embedding with L1(u) = (Xh(u),Xd(u)).
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(1) Suppose that Xh : U −→ Hn(−1) is an embedding. Then we have

Xd
ui

= −
n−1∑
j=1

(
hD
)j
i
Xh
uj
.

(2) Suppose that Xd : U −→ Hn(−1) is an embedding. Then we have

Xh
ui

= −
n−1∑
j=1

(
hH
)j
i
Xd
uj
.

Here,
(

(hH)ji

)
= (h∆1

ij )(gHij )−1 and
(

(hD)ji

)
= (h∆1

ij )(gDij )
−1.

The proof of the above formulae is given by the same arguments as those for the Weingarten
type formula in [17], so that we omit it. We remark that κHd,i(u) and κDh,i(u) are the eigenvalues

of
(

(hH)ji

)
and

(
(hD)ji

)
respectively. We have the following relation between κHd,i(u) and

κDh,i(u).

Corollary 4.2. Suppose that both the mappings Xh,Xd are embeddings. In this case we
have the relation κHd,i(u)κDh,i(u) = 1 (i = 1, . . . n − 1). Here κHd,i(u) and κDh,i(u) are principal
curvatures corresponding to the same principal direction.

Proof. Since both the mappings Xh,Xd are embeddings, KH
d (u) 6= 0 and KD

h (u) 6= 0. By the

Weingarten type formulae,
(

(hD)ji

)
is the inverse matrix of

(
(hH)ji

)
, so that the eigenvalues

have the above relations. 2

We say that πi1 ◦ Li and πi2 ◦ Li are ∆i-dual each other if Li : U −→ ∆i is an isotropic
mapping with respect to Ki.

5 Linear Weingarten surfaces

Galvez, Martinez and Milan has investigated the linear Weingarten surfaces using the Weier-
strass type representation formula [12]. In this section, we discuss linear Weingarten surfaces
and their hyperbolic Gauss maps from our point of view. In this section, we identify the
Minkowski 4-space with the 2 × 2 Hermitian matrices. For the detailed description, see [12,
Section 2]. A surface f : U → H3

+(−1) is called a linear Weingarten surface if the mean
curvature HH

d = (κH1 + κH2 )/2 and the de Sitter Gauss-Kronecker curvature KH
d satisfies

2a(HH
d − 1) + b(KH

d − 1) = 0, a, b ∈ R, a+ b 6= 0.

If a + b 6= 0 holds, it is called a linear Weingarten surface of Bryant type. In [22], we have
investigated “horo-flat” horospherical surfaces in H3

+(−1). It is linear Weingarten surfaces of
non-Bryant type, we have considered them as surfaces whose hyperbolic Gauss map degen-
erates to a curve in the de Sitter space (see [22, Section 4]). This means that a horo-flat
horospherical surface is the dual surface of a curve in the de Sitter space. In [12], Galvez, Mar-
tinez and Milan showed the following representation formula for linear Weingarten surfaces of
Bryant type.
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Theorem 5.1. [12, Theorem 2] Let V ⊂ C be a simply connected domain. Fix a meromorphic
map A : V −→ SL(2,C) satisfying

A−1dA =

(
0 ω
dh 0

)
,

where h is a meromorphic function and ω a holomorphic one-form. If

σ = (a+ b)

(
(1 + ε|h|2)2|ω|2 − (1− ε)2|dh|2

(1 + ε|h|2)2

)
is positive definite then f = A(Ω+)A∗ is a linear Weingarten surface. Moreover, the hyperbolic
Gauss map ν of f is given by ν = A(Ω−)A∗ where

Ω± =

1± ε2|h|2

1 + ε|h|2
∓εh

∓εh ±(1 + ε|h|2)

 , respectively, ε = a/(a+ b), and 1 + ε|h|2 > 0.

By the construction of Legendrian dualities (4.1) and (4.2), we can obtain the dual surfaces
in S3

1 and LC∗ by taking ν : U → S3
1 and f ± ν : U → LC∗:

f + ν = A

2
1

1 + ε|h|2
0

0 0

A∗, f − ν = A

2
ε2|h|2

1 + ε|h|2
−2εh̄

−2εh 2(1 + ε|h|2)

A∗. (5.1)

In [3], Aledo and Espinar showed a Weierstrass type representation formula for linear
Weingarten surfaces of Bianchi type. A spacelike surface f : U → S3

1 is a linear Weingarten
surface if the mean curvature HD

h and the hyperbolic Gauss-Kronecker curvature KD
h satisfy

2A(HD
h − 1) +B(KD

h − 1) = 0, A, B ∈ R.

If A+B 6= 0 holds, it is called Bianchi type. As a consequence of the duality theorem, we can
interpret the relationship between linear Weingarten surfaces in H3

+(−1) and S3
1 .

Theorem 5.2. Let L1 : U → ∆1 be a Legendrian immersion. Suppose that both of π11 ◦ L1 :
U → H3

+(−1) and π12 ◦ L1 : U → S3
1 are immersions. Then π11 ◦ L1 = Xh is a linear

Weingarten surface of Bryant type if and only if π12 ◦L1 = Xd is a linear Weingarten surface
of Bianchi type.

Proof. Let κHd,i (i = 1, 2) be the de Sitter principal curvatures of MH = Xh(U) at p = Xh(u).

and κDh,i (i = 1, 2) the hyperbolic principal curvatures of MD = Xd(U) at p′ = Xd(u).

By Corollary 4.2, we have the relations κHd,iκ
D
h,i = 1. Since KH

d (u) = κHd,1κ
H
d,2 and 2HH

d =

κHd,1 + κHd,2, we have

2a(HH
d − 1) + b(KH

d − 1) = a(κHd,1 + κHd,2 − 2) + b(κHd,1κ
H
d,2 − 1).

We also have another relation

2A(HD
h − 1) +B(KD

d − 1) = A(κDh,1 + κDh,2 − 2) +B(κDh,1κ
D
h,2 − 1).
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Since κHd,i = 1/κDh,i, we have

2a(HH
d − 1) + b(KH

d − 1) = a

(
1

κDh,1
+

1

κDh,2
− 2

)
+ b

(
1

κDh,1κ
D
h,2

− 1

)

=
1

κDh,1κ
D
h,2

(
a(κDh,1 + κDh,2 − 2) + (−2a− b)(κDh,1κDh,2 − 1

)
=

1

κDh,1κ
D
h,2

(
2a(HD

h − 1) + (−2a− b)(KD
h − 1)

)
.

If we put A = a,B = −(2a+ b), then 2a(HH
d −1)+ b(KH

d −1) = 0 if and only if 2A(HD
h −1)+

B(KD
h − 1) = 0. Moreover, A+B = 0 if and only if a+ b = 0. This completes the proof.

This theorem shows that we can bring the representation formula for a surface in H3
+(−1)

to representation formulae for surfaces in S3
1 and LC∗, and get new surfaces. Remark that

we have interesting families of surfaces in the lightcone obtained by taking the dual of linear
Weingarten surface of non-Bryant type. In fact, the Gauss map ν of a linear Weingarten
surface f given in Theorem 5.1 is a linear Weingarten surface in S3

1 . Furthermore, surfaces
f ± ν given in (5.1) belong to this class of surfaces. Theorem 5.2 says that Theorem 5.1 also
can be considered representation formula for these families of surfaces. Kokubu and Umehara
investigated the topological properties of linear Weingarten surfaces giving a variant of this
representation formula [27].

6 The Legendrian dualities for “flat”spacelike surfaces

In this section we study general properties of spacelike surfaces in pseudo-spheres which are ∆i-
duals of spacelike curves in pseudo-spheres. Let a0 : I −→ H3

+(−1) be a smooth mapping and
ai : I −→ S3

1 (i = 1, 2) be smooth mappings from an open interval I with 〈ai(t),aj(t)〉 = 0 if
i 6= j. We define a unit spacelike vector a3(t) = a0(t)∧a1(t)∧a2(t), so that we have a pseudo-
orthonormal frame {a0,a1,a2,a3} of R4

1. We have the following fundamental invariants:

c1(t) = 〈a′0(t),a1(t)〉 = −〈a0(t),a′1(t)〉, c4(t) = 〈a′1(t),a2(t)〉 = −〈a1(t),a′2(t)〉,
c2(t) = 〈a′0(t),a2(t)〉 = −〈a0(t),a′2(t)〉, c5(t) = 〈a′1(t),a3(t)〉 = −〈a1(t),a′3(t)〉,
c3(t) = 〈a′0(t),a3(t)〉 = −〈a0(t),a′3(t)〉, c6(t) = 〈a′2(t),a3(t)〉 = −〈a2(t),a′3(t)〉.

It can be written in the following form:
a′0(t)
a′1(t)
a′2(t)
a′3(t)

 =


0 c1(t) c2(t) c3(t)

c1(t) 0 c4(t) c5(t)
c2(t) −c4(t) 0 c6(t)
c3(t) −c5(t) −c6(t) 0



a0(t)
a1(t)
a2(t)
a3(t)

 =: C(t)


a0(t)
a1(t)
a2(t)
a3(t)

 .

We remark that C(t) is an element of the Lie algebra so(3, 1) of the Lorentzian group SO0(3, 1).
If {a0(t),a1(t),a2(t),a3(t)} is a pseudo-orthonormal frame field as the above, the 4×4-matrix
determined by the frame defines a smooth curve A : I −→ SO0(3, 1). Therefore we have the
relation that A′(t) = C(t)A(t). For the converse, let A : I −→ SO0(3, 1) be a smooth curve,
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then we can show that A′(t)A(t)−1 ∈ so(3, 1). Moreover, for any smooth curve C : I −→
so(3, 1), we apply the existence theorem on the linear systems of ordinary differential equations,
so that there exists a unique curve A : I −→ SO0(3, 1) such that C(t) = A′(t)A(t)−1 with an
initial data A(t0) ∈ SO0(3, 1). Therefore, a smooth curve C : I −→ so(3, 1) might be identified
with a pseudo-orthonormal frame in H3

+(−1). Let C : I −→ so(3, 1) be a smooth curve with
C(t) = A′(t)A(t)−1 and B ∈ SO0(3, 1), then we have C(t) = (A(t)B)′(A(t)B)−1. This means
that the curve C : I −→ so(3, 1) is a Lorentzian invariant of the pseudo-orthonormal frame
{a0(t),a1(t),a2(t),a3(t)}. In the followings of this section, we construct dual surfaces of a
lightlike curve ` satisfying ||`′|| 6= 0 by using this frame.

6.1 ∆2, ∆3 and ∆4-dual surfaces of `

Let ` be a lightlike curve satisfying ||`′|| 6= 0 and set a3 := `′/||`′||. Then a3 is spacelike. Since
`(t) ∈ (a3(t))⊥, we have curves a0 and a2 satisfying 〈a0,a0〉 = −1, 〈a2,a2〉 = 1, ` = a0 + a2

and a0,a2,a3 are pseudo-orthonormal each other. If we define a1 = a0∧a2∧a3, then we have
a pseudo-orthonormal frame {a0,a1,a2,a3} satisfying c2 ≡ 0, c1 − c4 ≡ 0 and c36(t) 6= 0 for
any t, where ≡ 0 means that the function is constantly equal to zero. Thus, we may assume
that ` = a0 +a2, c2 ≡ 0, c1 − c4 ≡ 0 and c36(t) 6= 0 for any t, this means that `′ = c36a3 6= 0.

(1) ∆2-dual surface of `: In order to obtain the ∆2-dual surface of `, we consider a hight
function F : H3

+(−1)×I −→ R defined by F (X, t) = 〈X, `(t)〉+1. There exist x0, x1, x2, x3 ∈ R
such that X = x0a0 + x1a1 + x2a2 + x3a3. Then the discriminant set DF of F is

DF =

{
X ∈ H3

+(−1)

∣∣∣∣ ∃t ∈ I, F (X, t) =
∂F

∂t
(X, t) = 0

}
= {X ∈ H3

+(−1) | ∃t ∈ I,−x0 + x2 + 1 = 0, x3 = 0}.

Since X ∈ H3
+(−1), we have

X = a0(t) + sa1(t) +
s2

2
`(t)

for x1 = s, which we write Xh
` (s, t).

By the above construction, (Xh
` (s, t), `(t)) : I × R→ ∆2 is an isotropic map with respect

to the contact structure defined in Theorem 3.1, so that Xh
` (s, t) and `(t) are ∆2-dual each

other.
Since c2 ≡ c1− c4 ≡ 0 hold, the surface Xh

` is horo-flat in the sense of [22]. Moreover if we
assume c3 ≡ 0, then the singular value of Xh

` is a0(t). We also consider the ∆1 and ∆2-dual
surfaces of a0. By the same computations as those of the previous paragraph for obtaining
the surface Xh

` , and assumptions c2 ≡ c3 ≡ 0 instead of c2 ≡ c1− c4 ≡ 0, we have the ∆1-dual
surface Xd

h and the ∆3-dual surface X`
h of a0 as follows:

Xd
h(s, t) := cos sa2(t) + sin sa3(t) and X`

h(s, t) := a0(t) + cos sa2(t) + sin sa3(t).

In [22], we introduced these surfaces Xh
` and X`

h by the same construction as the above and
investigated the geometric properties and singularities of them. It has been shown in [22] that
Xh
` is a linear Weingarten surface of non-Bryant type.
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(2) ∆3-dual surface of `: We consider a hight function F : S3
1 × I −→ R defined by

F (X, t) = 〈X, `(t)〉 − 1. By the same computations as those for detecting Xh
` (s, t), the

discriminant set is given by

X = a2(t) + sa1(t)− s2

2
`(t),

which we write Xd
` (s, t). Like as in the case for Xh

` , we consider the dual surfaces of a2 here.
By exactly the same calculations as those in the previous cases, and assumptions c2 ≡ c6 ≡ 0
instead of c2 ≡ c1 − c4 ≡ 0, the ∆1-dual surface Xh

d of a2(t) and the ∆3-dual surface X`
d of

a2(t) are parameterized by

Xh
d(s, t) := cosh sa0(t) + sinh sa3(t) and X`

d(s, t) := a2(t) + cosh sa0(t) + sinh sa3(t).

(3) ∆4-dual surface of `: We consider a hight function F : LC∗ × I −→ R defined by
F (X, t) = 〈X, `(t)〉 + 2. Putting x1 = 2s and by exactly the same computations as those of
the previous two cases. we have

X = a0(t)− a2(t) + 2sa1(t) + s2`(t),

which we write X`
`(s, t). We study geometric properties of X`

`(s, t) in section 7 and investigate
the singularities in section 8. Like as in the case of Xh

` and Xd
` , we consider the dual surfaces

of `− := a0 − a2. Under the condition c2 ≡ c1 + c4 ≡ 0, the ∆2-dual surface Xh
`− of `−(t),

the ∆3-dual surface Xd
`− of `−(t) and the ∆4-dual surface X`

`− of `−(t) are parameterized by

Xh
`−(s, t) = a0(t) + sa1(t) +

s2

2
`−(t),

Xd
`−(s, t) = −a2(t) + sa1(t)− s2

2
`(t),

X`
`−(s, t) = a0(t) + a2(t) + 2sa1(t) + s2`−(t).

Since we can obtain these surfaces Xh
`−, Xd

`− and X`
`− by translating a2 7→ −a2, geometric

properties of these surfaces are completely the same as those of Xh
` , Xd

` and X`
`. Here we

explain the meanings of the superscript and the subscript. For example, Xh
` means this

surface is the dual surface of a curve in the lightcone and lies in the hyperbolic 3-space. Since
surfaces Xh

` , Xd
` and X`

` are one-parameter families of parabolas, we call these surfaces
parabollatic surfaces. If we adopt the word “parabolic” instead of the word “parabollatic”, it
might be confused with other notions. Now, we summerize the correspondences between these
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curves and surfaces:

LC∗ ⊃ `(t)←→ Xh
` (s, t) = a0(t) + sa1(t) +

s2

2
`(t) ⊂ H3

+(−1)

LC∗ ⊃ `(t)←→ Xd
` (s, t) = a2(t) + sa1(t)− s2

2
`(t) ⊂ S3

1

LC∗ ⊃ `(t)←→ X l
`(s, t) = a0(t)− a2(t) + 2sa1(t) + s2`(t) ⊂ LC∗

H3
+(−1) ⊃ a0(t)←→ Xd

h(s, t) = cos sa2(t) + sin sa3(t) ⊂ S3
1

H3
+(−1) ⊃ a0(t)←→ X`

h(s, t) = a0(t) + cos sa2(t) + sin sa3(t) ⊂ LC∗

S3
1 ⊃ a2(t)←→ Xh

d(s, t) = cosh sa0(t) + sinh sa3(t) ⊂ H3
+(−1)

S3
1 ⊃ a2(t)←→ X`

d(s, t) = a2(t) + cosh sa0(t) + sinh sa3(t) ⊂ LC∗.

(6.1)

6.2 Dualities of “flat”surfaces

By using the equations for the pseudo-orthonormal frame, we have

(Xh
` )′(s, t) = sc1a0 + c1a1 + sc4a2 +

(
c3 + sc5 +

s2

2
c36

)
a3

(Xh
` )s(s, t) = sa0 + a1 + sa2,

where ( )′ means ∂/∂t and ( )s means ∂/∂s. It follows that we have〈
Xh
` (±s, t),Xd

` (∓s, t)
〉
≡ 0,〈

(Xh
` )′(±s, t),Xd

` (∓s, t)
〉
≡ 0 and

〈
(Xh

` )s(±s, t),Xd
` (∓s, t)

〉
≡ 0.

This implies that (Xh
` ,X

d
` ) : I × R → ∆1 is an isotropic map with respect to K1. Therefore

Xh
` and Xd

` are ∆1-dual each other. Since Xh
` (s, t) is a linear Weingarten surface of non-

Bryant type, Xd
` (s, t) is a linear Weingarten surface of non-Bianchi type by Theorem 5.2.

By the same calculation, we can show that the ∆2-duality between Xh
` (±s, t) and X`

`(±s, t),
and the ∆3-duality between Xd

` (±s, t) and −X`
`(∓s, t) under the assumptions c2(t) ≡ 0,

c1(t) − c4(t) ≡ 0. These assumptions mean that a kind of flatness of Xh
` (s, t),Xd

` (s, t) and
X`
`(s, t). For Xh

` (s, t), such a flatness is called horo-flat in [22].

Furthermore, under the conditions c2 ≡ c3 ≡ 0 (resp. c2 ≡ c6 ≡ 0), we have
〈
Xd
h,X

`
h

〉
≡ 1

(resp.
〈
Xh
d ,X

`
d

〉
≡ −1) and

〈
Xd
h, dX

`
h

〉
≡ 0 (resp.

〈
Xh
d , dX

`
d

〉
≡ 0). Hence Xd

h and X`
h

are ∆3-dual (resp. Xh
d and X`

d are ∆2-dual) each other. By Theorem 5.2 and the mandala
of Legendrian dualities, the surface X`

`(s, t) corresponds to the linear Weingarten surfaces of
non-Bryant type in H3

+(−1) and of non-Bianchi type in S3
1 .

Thus we have the following diagram which expresses the duality for flat surfaces in pseudo-
spheres:

105



(
a0 + sa1 + (s2/2)`, a2 − sa1 − (s2/2)`

)

∈

∆1

∆2

∈(
a0 + sa1 + (s2/2)`, `

)

∆4

∈(
a0 − a2 + 2sa1 + s2`, `

)

∆3

∈(
`, −a2 + sa1 + (s2/2)`

)
,
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If we start from a curve ` in the lightcone, we have the following diagram of dualities:

a0 + sa1 + (s2/2)`

∈

H3
+(−1)

S3
1

∈

−a2 + sa1 + (s2/2)`

LC∗

∈

`

LC∗

∈

a0 − a2 + 2sa1 + s2`.
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∆1-dual
∆2-dual

∆3-dual

∆2-dual

∆4-dual

∆3-dual

Also we can have the diagram on dualities starting from a0 and a2:
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a0

∈

H3
+(−1)
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-�cos sa2 + sin sa3

∈

S3
1

a0 + cos sa2 + sin sa3

∈

LC∗
∆1-dual ∆2-dual

∆3-dual

and

a2
∈

S3
1

�
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���
�
�
�
�
�	

@
@
@
@
@
@R@
@

@
@
@

@I

-�cosh sa0 + sinh sa3

∈

H3
+(−1)

a2 + cosh sa0 + sinh sa3.

∈

LC∗
∆1-dual ∆3-dual

∆2-dual

We can also have a diagram starting from the curve `− = a0 − a2. However, the situation is
the same as the case for `, so that we omit it.

7 Fundamental properties of parabollatic surfaces

In section 6, we construct the dual surfaces of ` which are called parabollatic surfaces. The
analogous notion in Euclidean space is ruled surfaces given by one-parameter families of lines
in R3. For the study of singularities and geometric properties of ruled surfaces, the striction
curve plays a crucial role ([16]). The striction curve is a curve on the ruled surface which
contains the singularities of the surface. Similarly, an analogous notion of the striction curve
also plays a crucial role for one-parameter families of circles ([23]). Since surfaces Xh

` , Xd
` and

X`
` are one-parameter families of parabolas, we try to find the analogous notion of striction

curves of ruled surfaces. Here, we only consider the surfaces Xh
` , Xd

` and X`
`. We remark

that surfaces Xd
h,X

`
h,X

h
d and X`

d have similar properties as the circular surfaces [23]. We
shall investigate these surfaces in the forthcoming paper.

7.1 The striction curve of Xd
`

Let A = (a0,a1,a2,a3) : I → SO0(3, 1) be a pseudo-orthonormal frame defined in Section 6.
The ∆3-dual surface Xd

` of ` is defined by

Xd
` ,A(s, t) := a2(t) + sa1(t)− s2

2
`(t).

For any t, the curve s 7→ Xd
` ,A(s, t) is a parabola. The each parabola called the generating

parabola.
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On the other hand, for any curve

a2(t) = a2(t) + s(t)a1(t)− s(t)2

2
`(t) (7.1)

on the Xd
` , we define

a0(t) =

(
1 +

s(t)2

2

)
a0(t)− s(t)a1(t) +

s(t)2

2
a2(t),

a1(t) = −s(t)a0(t) + a1(t)− sa2(t) and a3(t) = a3(t)

(7.2)

then Xd
` ,A(s− s(t), t) = Xd

` ,A(s, t) holds. Moreover, we define invariants C(t) by the formula

A
′
(t) = C(t)A(t), then we have

c1 =

(
1− s(t)2

2

)
c1 − s′(t) +

s(t)2

2
c4 − s(t)c2

c2 = s(t)c1 + c2 − s(t)c4

c3 = c3 − s(t)c5 +
s(t)2

2
c36

c4 =
−s(t)2

2
c1 − s(t)c2 +

(
1 +

s(t)2

2

)
c4 − s′(t)

c5 = c5 − s(t)c36

c6 = c6 + s(t)c5 −
s(t)2

2
c36.

It follows that
c1 − c4 = c1 − c4

and
c1 − c4 = c2 = 0 if and only if c1 − c4 = c2 = 0.

This means that the condition c1 − c4 = c2 = 0 is invariant under the adopted coordinate
changes. Here, a reparameterization (s, t) 7→ (S, T ) of Xd

` ,A is said to be adopted if S = s−s(t)
and T = t. We have the following proposition.

Proposition 7.1. Let Xd
` ,A be a parameterization of a parabollatic surfaces of the form

Xd
` ,A(s, t) = a2 + sa1 −

s2

2
`

such that c1 − c4 never vanish. Then ImageXd
` ,A has an adopted reparameterization of the

form

Xd
` ,A(s, t) = a2 + sa1 −

s2

2
`

satisfying 〈a0
′,a2〉 = 0 for any t.
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Proof. Let us define

s(t) =
−c2(t)

c1(t)− c4(t)

and define curves a0,a1,a2 by (7.1) and (7.2). Then c2 ≡ 0 holds. We do not need to say
that Xd

` ,A and Xd
` ,A have the same image. Thus the condition of the proposition holds. 2

A curve Xd
` ,A(s(t), t) on the surface is called striction curve if 〈a′0(t),a2(t)〉 ≡ 0 holds.

Proposition 7.1 implies that we can take a2 as the striction curve. Singularities of parabollatic
surfaces are located on the striction curve. For any parabollatic surfaces satisfying c1−c4 6= 0,
there exists a unique striction curve.

Proposition 7.2. Let Xd
` ,A be a parabollatic surface with the striction curve a2 and c1−c4 6=

0. If (s0, t0) is a singular point, then s0 = 0 namely, x0 is located on the striction curve.
Moreover, if (0, t0) is a singular point, them the generating parabola at t0 is tangent to the
striction curve.

Proof. Direct calculation and a′2 = −c4a1 yield the conclusion. 2

7.2 The striction curve of X`
`

In this section, we study general properties of dual surfaces of `. Let A = (a0,a1,a2,a3) :
I → SO0(3, 1) be a pseudo-orthonormal frame defined in Section 6. The dual surface X`

` of `
is defined by

X`
`,A(s, t) := a0(t)− a2(t) + 2sa1(t) + s2`(t).

For any curve, a0 − a2(t) = a0 − a2(t) + 2s(t)a1(t) + s2`(t) on X`
`,a, we define

a0(t) = a0 + s(t)a1 +
s(t)2

2
`, a1(t) = a1 + s(t)`(t),

a2(t) = a2 − s(t)a1 −
s(t)2

2
` and a3(t) = a3(t)

(7.3)

then X`
`,A(s− s(t), t) = X`

`,A(s, t) holds. Moreover, we define invariants C(t) by the formula

A
′
(t) = C(t)A(t), then we have

c1 = −s(t)
2

2
(c1 − c4) + c1 + s′(t) + sc2

c2 = −s(t)c1 + c2 + s(t)c4

c3 = c3 + s(t)c5 +
s(t)2

2
c36

c4 = −s(t)
2

2
c1 + s(t)c2 +

s(t)2

2
c4 + s′(t)

c5 = c5 − s(t)c36

c6 = c6 − s(t)c5 −
s(t)2

2
c36
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Thus it follows that
c1 − c4 = c1 − c4

and
c1 − c4 = c2 = 0 if and only if c1 − c4 = c2 = 0.

A reparameterization (s, t) 7→ (S, T ) of X`
`,A is said to be adopted if S = s− s(t) and T = t.

We have the following proposition.

Proposition 7.3. Let X`
`,A be a parameterization of a parabollatic surfaces of the form

X`
`,A(s, t) = a0 − a2 + 2sa1 + s2`

such that c1 − c4 never vanish. Then ImageX`
`,A has an adopted reparameterization of the

form
X`
`,A(s, t) = a0 − a2 + 2sa1 + s2`

satisfying 〈a0
′,a2〉 ≡ 0.

Proof. Let us define

s(t) =
c2(t)

c1(t)− c4(t)

and define curves A as (7.1) and (7.2). Then c2 ≡ 0 holds. We do not need to say that X`
`,A

and X`
`,A have the same image. Thus the condition of the proposition holds. 2

A curve on the surface X`
`,A(s(t), t) is called striction curve if 〈a′0(t),a2(t)〉 ≡ 0 holds.

Proposition 7.3 implies that one can take a2 as the striction curve. Singularities of parabollatic
surfaces are located on the striction curve.

Proposition 7.4. Let X`
`,A be a parabollatic surface with the striction curve a2 and c1−c4 6=

0. If (s0, t0) is a singular point, then s0 = 0 namely, x0 is located on the striction curve.
Moreover, if (0, t0) is a singular point, then the generating parabola at t0 is tangent to the
striction curve.

Proof. For a parabollatic surface X`
`,A, point (s0, t0) is a singular point if and only if

c2(t0)− s0(c1(t0)− c4(t0)) = 0 and c3(t0)− c6(t0) + 2s0c5(t0) + s2
0c36(t0) = 0.

Thus if a0 − a2 is the striction curve, them s0 = 0 and c3(t0)− c6(t0) = 0 holds. Moreover, if
c3(t0) − c6(t0) = 0, then the parabola is tangent to the striction curve at (0, t0). Because of
a′0 − a′2 = −c2(a0 − a2) + (c1 + c4)a1. 2

Singularities of these surface are studied in Section 8. Although we can construct dual
surfaces from `−, their geometric properties are the same as those of dual surfaces constructed
from `, so that we omit the study of their striction curves.
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8 Singularities of flat parabollatic surfaces

8.1 Criteria for singularities of frontals

All surfaces investigating here have an isotropic lift to some contact manifold. They are
called frontals which are originally investigated by Zakalyukin[34, 35]. In order to investigate
singularities of concretely parameterized surfaces, the identification problem for singularities
are important. Let f0 be a given map germs. The identification problem for f0 is to find a
condition such that a map germ f satisfies the condition if and only if f is A-equivalent to
f0. We call the condition a criterion for f0. Such criteria are given by many people now.
Simple criteria for the cuspidal edge and the swallowtail were given by Kokubu, Rossman,
Saji, Umehara and Yamada [28]. Other criteria for singularities for frontals are investigated in
[13, 32, 22]. Here, we briefly review the criteria for frontals. Let π : E →M be a Legendrian
fibration from a five-dimensional contact manifold E to a three-dimensional manifold M . A
C∞-map f : U → M is called a frontal (resp. front) if there exists an isotropic lift (resp.
Legendrian immersion) Lf : U → E, where U ⊂ R2 be an open set. Recall that the image
of the Legendrian submanifold is called the wavefront set (see Section 3). By the generalized
Darboux theorem (cf., [2], 20.3), any Legendrian fibration E →M is locally equivalent to the
standard fibration PTR3 → R3. Therefore, we assume that E →M is PTR3 → R3 and that f
is a C∞ map germ (U, p)→ (R3, f(p)). Taking the fiber component, let us denote Lf = (f, [ν]).
The discriminant function of a frontal f is defined by λ(u, v) = det(fu, fv, ν)(u, v) using the
coordinate system (u, v) on U , where fu = ∂f/∂u, for example. A singular point p of f is
non-degenerate if dλ(p) 6= 0 holds. Let p be a non-degenerate singular point of a frontal f . In
this case, there exists a smooth parameterization γ(t) : (−ε, ε) → U , γ(0) = p of S(f) near
p. Moreover, there exists a smooth vector field η(t) along γ satisfying that η(t) generates the
kernel of dfγ(t). We call this vector field the null vector field. Now we define a function φf (t)
on γ by

φf (t) = det
(
(f ◦ γ)′, ν ◦ γ, dν(η)

)
(t) (8.1)

Using these notations, the following criteria have been obtained.

Theorem 8.1. [28, 13] Let f : U → R3 be a frontal and p a non-degenerate singular point
of f and γ : (ε, ε) → U , γ(0) = p be a smooth parameterization of S(f) near p. Then the
following assertions hold.

• If ηλ(p) 6= 0 then f to be a front near p if and only if φf (0) 6= 0 holds.

• The map germ f at p is A-equivalent to the cuspidal edge if and only if f to be a front
near p and ηλ(p) 6= 0 hold.

• The map germ f at p is A-equivalent to the swallowtail if and only if f to be a front
near p, ηλ(p) = 0 and ηηλ(p) 6= 0.

• The map germ f at p is A-equivalent to the cuspidal cross cap if and only if ηλ(p) 6= 0,
φf (0) = 0 and φ′f (0) 6= 0.

Here, ηλ : U → R means the directional derivative of λ by the vector field η̃, where
η̃ ∈ X(U) is an extended vector field of η to U . Moreover, we have the following criterion for
the cuspidal butterfly.
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Theorem 8.2. Let f : U → R3 be a frontal and p a non-degenerate singular point of f
and γ : (ε, ε) → U , γ(0) = p be a smooth parameterization of S(f) near p. Then the map
germ f at p is A-equivalent to the cuspidal butterfly if and only if f to be a front near p and
ηλ(p) = ηηλ(p) = 0 and ηηηλ(p) 6= 0.

A proof of this theorem is given in the appendix. Next we consider a degenerate singularity.
Let p be a degenerate singularity of a front f . If rank(df)p = 1, then there exists a non-zero
vector field η near p such that if q ∈ S(f) then η(q) generates the kernel of df(q). A criterion
for the degenerate singularity is given as follows.

Theorem 8.3. [22] Let f be a front and p a degenerate singular point of f Then the following
assertions hold.

• The map germ f at p is A-equivalent to the cuspidal lips if and only if rank(df)p = 1
and det Hessλ(p) > 0.

• The map germ f at p is A-equivalent to the cuspidal beaks if and only if rank(df)p = 1,
det Hessλ(p) < 0 and ηηλ(p) 6= 0.

In order to study singularities of a front in pseudo-Riemannian space, we introduce the
following notion.

Definition 8.4. ([13]) A lift Lg : U → T ∗N of a C∞-map g : U → N to be admissible if
g never intersect to the zero-section and g∗(TpU) ⊂ ker(Lg(p)), where ker(Lg(p)) ⊂ Tg(p)N is
the kernel of a linear map Lg(p).

Using this notion, a criterion for the cuspidal cross cap is stated as follows.

Theorem 8.5. ([13, Theorem 1.4]) Let g : U → N be a front and Lg : U → T ∗N be
an admissible lift of g. Let D be an arbitrary linear connection on N . Suppose that γ(t)
(|t| < ε) is a singular curve on U passing through a non-degenerate singular point p = γ(0),
and ξg : (−ε, ε)→ TN is an arbitrarily fixed vector field along γ such that
(1) L(ξg) vanishes on U and
(2) ξg is transversal to g∗(TpU) at p.
We define a function ψg(t) by

ψg(t) = L
(
Dg
η(t)ξg

(
γ(t)

))
, (8.2)

where η(t) is a null vector field on the singular curve parameterized by t. Then the germ g at
p is A-equivalent to the cuspidal cross cap if and only if ψg(0) = 0 and ψ′g(0) 6= 0 hold, and
η(0) is transversal to γ′(0).

8.2 Singularities of dual surfaces of `

In this subsection, we apply the criteria in Subsection 8.1 for describing the conditions of
singularities of dual surfaces of `. We assume that c2 ≡ c1 − c4 ≡ 0 in this section.

Theorem 8.6. The singular set of Xh
` is S(Xh

` ) = {(s, t) | 2c3(t) + 2sc5(t) + s2c36(t) = 0}
and Xh

` is a frontal for any p0 = (s0, t0) ∈ S(Xh
` ). Then we have the following assertions:

112



• If c36(t0) 6= 0 holds, then Xh
` to be a front near p0.

• Xh
` at p0 is A-equivalent to the cuspidal edge if and only if c36 6= 0 and αhl := −2c1(c5 +

sc36) + 2c′3 + 2sc′5 + s2c′36 6= 0 hold at p0.

• Xh
` at p0 is A-equivalent to the swallowtail if and only if c36 6= 0, c5 + sc36 6= 0, αhl = 0

and c1(αhl )s + (αhl )′ 6= 0 hold at p0.

• Xh
` at p0 is A-equivalent to the cuspidal butterfly if and only if c36 6= 0, c5 + sc36 6= 0,

αhl = 0, c1(αhl )s + (αhl )′ 6= 0 and c21(αhl )ss + 2c1(αhl )′s + c′1(αhl )s + (αhl )′′ = 0 hold at p0.

• Xh
` at p0 is A-equivalent to the cuspidal lips (resp. cuspidal beaks) if and only if c36 6=

0, c5 + sc36 = 0, 2c′3 + 2sc′5 + s2c′36 = 0 and detHh
` > 0 (resp. detHh

` < 0 and
−2c1(c36 + c′5 + sc′36) + (−2c1(c5 + sc36) + c′3 + sc′5 + s2c′36)′ 6= 0) hold at p0, where

Hh
` =

(
2c36 2c′5 + 2sc′36

2c′5 + 2sc′36 2c′′3 + 2sc′′5 + s2c′′36

)
.

• Xh
` at p0 is A-equivalent to the cuspidal cross cap if and only if c36 = 0, c1c5 6= 0 and

c′36 6= 0 hold at p0.

Remark 8.7. Surfaces Xh
` satisfying c3 ≡ 0 be a horo-flat horo-cyclic surfaces which is

investigated in [22]. Substituting c3 ≡ 0 in the formulae of Theorem 8.6, we have [22, Theorem
6.2].

Theorem 8.8. The singular set of Xd
` is S(Xd

` ) = {(s, t) | − 2c6(t)− 2sc5(t) + s2c36(t) = 0}
and Xd

` is a frontal for any (s0, t0) ∈ S(Xd
` ). Then we have the following assertions:

• If c36(t0) 6= 0 holds, then Xd
` to be a front near p0.

• Xd
` at p0 is A-equivalent to the cuspidal edge if and only if c36 6= 0 and αdl := 2c1(c5 −

sc36) + 2c′6 + 2sc′5 − s2c′36 6= 0 hold at p0.

• Xd
` at p0 is A-equivalent to the swallowtail if and only if c36 6= 0, c5 − sc36 6= 0, αdl = 0

and c1(αdl )s + (αdl )
′ 6= 0 hold at p0.

• Xd
` at p0 is A-equivalent to the cuspidal butterfly if and only if c36 6= 0, c5 − sc36 6= 0,

αdl = 0, c1(αdl )s + (αdl )
′ = 0 and c21(αdl )ss + 2c1(αdl )

′
s + c′1(αdl )s + (αdl )

′′ 6= 0 hold at p0.

• Xd
` at p0 is A-equivalent to the cuspidal lips (resp. cuspidal beaks) if and only if c36 6=

0, 2c′6 + 2sc′5 − s2c′36 = 0, c5 − sc36 = 0 and detHd
` > 0 (resp. detHd

` < 0 and

c1(−2c1c36 + 2c′5 − 2sc′36) +
(
2c1(c5 − sc36) + 2c′6 + 2sc′5 − s2c′36

)′ 6= 0) hold at p0, where

Hd
` =

(
−2c36 2c′5 − 2sc′36

2c′5 − 2sc′36 2c′′6 + 2sc′′5 − s2c′′36

)
.

• Xd
` at p0 is A-equivalent to the cuspidal cross cap if and only if c36 = 0, c1c5 6= 0 and

c′36 6= 0 hold at p0.
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Theorem 8.9. The singular set of X`
` is S(X`

`) = {(s, t) | c3(t)(s2 + 1) + 2sc5(t) + c6(t)(s2−
1) = 0} and X`

` is a frontal for any (s0, t0) ∈ S(X`
`). Then we have the following assertions:

• If c36(t0) 6= 0 holds, then X`
` to be a front near p0.

• X`
` at p0 is A-equivalent to the cuspidal edge if and only if c36 6= 0 and αll := −2c1(c5 +

sc36) + c′3(s2 + 1) + 2sc′5 + c′6(s2 − 1) 6= 0 hold at p0.

• X`
` at p0 is A-equivalent to the swallowtail if and only if c36 6= 0, c5 + sc36 6= 0, α`l = 0

and −c1(α`l )s(α
`
l )
′ 6= 0 hold at p0.

• X`
` at p0 is A-equivalent to the cuspidal butterfly if and only if c36 6= 0, c5 + sc36 6= 0,

α`` = 0, −c1(α``)s(α
`
`)
′ = 0 and c21(α``)ss − 2c1(α``)

′
s − c′1(α``)s + (α``)

′′ 6= 0 hold at p0.

• X`
` at p0 is A-equivalent to the cuspidal lips (resp. cuspidal beaks) if and only if c36 6= 0,

c′3(s2 + 1) + 2sc′5 + c′6(s2 − 1) = 0 , c5 + sc36 = 0 and detH`
` > 0 (resp. detH`

` < 0 and

−c1
(
− 2c1c36 + 2(c5 + sc′36)

)
+
(
− 2c1(c5 + sc36) + c′3(s2 + 1) + 2sc′5 + c′6(s2 − 1)

)′ 6= 0)
hold at p0, where

H`
` =

(
2c36 2c′5 + 2sc′36

2c′5 + 2sc′36 c′′3(s2 + 1) + 2sc′′5 + c′′6(s2 − 1)

)
.

• X`
` at p0 is A-equivalent to the cuspidal cross cap if and only if c36 = 0, c1c5 6= 0 and

c′36 6= 0 hold at p0.

8.3 Singularities of dual surfaces of a0

In this subsection, we apply the criteria in Subsection 8.1 for describing the conditions of
singularities of dual surfaces of a0. We assume that c2 ≡ c3 ≡ 0.

Theorem 8.10. The singular set of Xd
h is S(Xd

h) = {(s, t) | c4(t) cos s+ c5(t) sin s = 0} and
Xd
h is a frontal for any p0 = (s0, t0). Then we have the following assertions:

• If c1 6= 0 holds, then Xd
h to be a front near p0.

• Xd
h at p0 is A-equivalent to the cuspidal edge if and only if c1 6= 0 and αdh := −c6(c4 sin s−

c5 cos s)− (c′4 cos s+ c′5 sin s) 6= 0 holds at p0.

• Xd
h at p0 is A-equivalent to the swallowtail if and only if c1 6= 0, −c4 sin s+ c5 cos s 6= 0,

αdh = 0 and −c6(αdh)s + (αdh)′ 6= 0.

• Xd
h at p0 is A-equivalent to the cuspidal butterfly if and only if c1 6= 0, −c4 sin s +

c5 cos s 6= 0, αdh = 0, −c6(αdh)s+(αdh)′ = 0 and c26(αdh)ss−2c6(αdh)′s−c′6(αdh)s+(αdh)′′ 6= 0
holds at p0.

• Xd
h at p0 is A-equivalent to the cuspidal lips (resp. cuspidal beaks) if and only if c1 6= 0,

c′4 cos s + c′5 sin s = 0, c4 sin s − c5 cos s = 0, and detHd
h > 0 (resp. detHd

h < 0 and
−c6(αdh)s + (αdh)′ 6= 0) hold at p0, where

Hd
h =

(
−c4 cos s− c5 sin s c′4 sin s− c′5 cos s
c′4 sin s− c′5 cos s c′′4 cos s+ c′′5 sin s

)
.
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• Xd
h at p0 is A-equivalent to the cuspidal cross cap if and only if c1 = 0, c5c6 6= 0 and

c′1 6= 0 hold at p0.

Theorem 8.11. The singular set of X`
h is S(X`

h) = {(s, t) | c1(t)−c4(t) cos s−c5(t) sin s = 0}
and X`

h is a frontal for any p0 = (s0, t0). Then we have the following assertions:

• If c1(t0) 6= 0 holds, then X`
h to be a front near p0.

• X`
h at p0 is A-equivalent to the cuspidal edge if and only if c1 6= 0 and α`h := −c6(c4 sin s−

c5 cos s) + c′1 − c′4 cos s− c′5 sin s 6= 0 holds at p0.

• X`
h at p0 is A-equivalent to the swallowtail if and only if c1 6= 0, c4 sin s− c5 cos s 6= 0,

α`h = 0 and −c6(α`h)s + (α`h)′ 6= 0 holds at p0.

• X`
h at p0 is A-equivalent to the cuspidal butterfly if and only if c1 6= 0, c4 sin s−c5 cos s 6=

0, α`h = 0 and −c6(α`h)s+(α`h)′ = 0 and c26(α`h)ss−2c6(α`h)′s− c′6(α`h)s+(α`h)′′ 6= 0 holds
at p0.

• X`
h at p0 is A-equivalent to the cuspidal lips (resp. cuspidal beaks) if and only if c1 6= 0,

c4 sin s − c5 cos s = 0, c′1 − c′4 cos s − c′5 sin s = 0 and detH`
h > 0 (resp. detH`

h and
−c6(α`h)s + (α`h)′ 6= 0) holds at p0, where

H`
h =

(
c4 cos s+ c5 sin s c′4 sin s− c′5 cos s
c′4 sin s− c′5 cos s c′′1 − c′′4 cos s− c′′5 sin s

)
.

• X`
h at p0 is A-equivalent to the cuspidal cross cap if and only if c1 = 0, c5c6 6= 0 and

c′1 6= 0 hold at p0.

Remark 8.12. Surfaces X`
h satisfying c6 ≡ 0 is called a hyperbolic-flat tangent lightcone

circular surface which was investigated in [22]. Substituting c6 ≡ 0 in the formulae of Theorem
8.11, we have [22, Theorem 8.2].

8.4 Singularities of dual surfaces of a2

In this subsection, we apply criteria in Subsection 8.1 for describing the conditions of singu-
larities of dual surfaces of a2. In this section, we assume that c2 ≡ c6 ≡ 0.

Theorem 8.13. The singular set of Xh
d is S(Xh

d) = {(s, t) | c1(t) cosh s − c5(t) sinh s = 0}
and Xh

d is a frontal for any p0 = (s0, t0). Then we have the following assertions:

• If c4 6= 0 holds, then Xh
d is a front near p0.

• Xh
d at p0 is A-equivalent to the cuspidal edge if and only if c4 6= 0 and αhd := −c3(c1 sinh s−

c5 cosh s) + c′1 cosh s− c′5 sinh s 6= 0 hold at p0.

• Xh
d at p0 is A-equivalent to the swallowtail if and only if c4 6= 0, c1 sinh s− c5 cosh s 6= 0

and αhd = 0 and −c3(αhd)s + (αhd)′ 6= 0 hold at p0.

• Xh
d at p0 is A-equivalent to the cuspidal butterfly if and only if c4 6= 0, c1 sinh s −

c5 cosh s 6= 0 and αhd = −c3(αhd)s + (αhd)′ = 0, −c3(αhd)s + (αhd)′ = 0 and c23(αhd)ss −
2c3(αhd)′s − c′3(αhd)s + (αhd)′′ 6= 0 hold at p0.
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• Xh
d at p0 is A-equivalent to the cuspidal lips (resp. cuspidal beaks) if and only if c4 6= 0,

c1 sinh s − c5 cosh s = 0, c′1 cosh s − c′5 sinh s = 0 detHh
d > 0 (resp. detHh

d < 0 and
−c3(αhd)s + (αhd)′ 6= 0) hold at p0, where

Hh
d =

(
c1 cosh s− c5 sinh s c′1 sinh s− c′5 cosh s
c′1 sinh s− c′5 cosh s c′′1 cosh s− c′′5 sinh s

)
.

• Xh
d at p0 is A-equivalent to the cuspidal cross cap if and only if c4 = 0, c3c5 6= 0 and

c′4 6= 0 hold at p0.

Theorem 8.14. The singular set of X`
d is S(X`

d) = {(s, t) | −c4(t)+c1(t) cosh s−c5(t) sinh s =
0} and X`

d is a frontal for any p0 = (s0, t0) ∈ S(X`
d). Then we have following assertions:

• If c4 6= 0 holds, then X`
d is a front near p0.

• X`
d at p0 is A-equivalent to the cuspidal edge if and only if c4 6= 0 and α`d := −c3(c1 sinh s−

c5 cosh s)− c′4 + c′1 cosh s− c′5 sinh s 6= 0 hold at p0.

• X`
d at p0 is A-equivalent to the swallowtail if and only if c4 6= 0, c1 sinh s−c5 cosh s 6= 0,

α`d = 0 and −c3(α`d)s + (α`d)
′ 6= 0 hold at p0.

• X`
d at p0 is A-equivalent to the cuspidal butterfly if and only if c4 6= 0, c1 sinh s −

c5 cosh s 6= 0 c1 sinh s − c5 cosh s 6= 0, α`d = 0 −c3(α`d)s + (α`d)
′ = 0 and c23(α`d)ss −

2c3(α`d)
′
s − c′3(α`d)s + (α`d)

′′ 6= 0 holds at p0.

• X`
d at p0 is A-equivalent to the cuspidal lips (resp. cuspidal beaks) c4 6= 0, c1 sinh s −

c5 cosh s = 0, −c′4 + c′1 cosh s − c′5 sinh s = 0 and detH`
d > 0 (resp. detH`

d < 0 and
−c3(α`d)s + (α`d)

′ 6= 0) hold at p0, where

H`
d =

(
c1 cosh s− c5 sinh s c′1 sinh s− c′5 cosh s
c′1 sinh s− c′5 cosh s −c′′4 + c′′1 cosh s− c′′5 sinh s

)
.

• X`
d at p0 is A-equivalent to the cuspidal cross cap if and only if c4 = 0, c3c5 6= 0 and

c′4 6= 0 hold at p0.

We now give proofs of these theorems.

Proof of Theorem 8.9. Since(
X`
`

)
s

= 2sa0 + 2a1 + 2sa2(
X`
`

)′
= 2sc1a0 + 2c1a1 + 2c1a2 +

(
c3(s2 + 1) + 2sc5 + c6(s2 − 1)

)
a3,

we have S(X`
`) = {(s, t) | c3(t)(s2 +1)+2sc5(t)+c6(t)(s2−1) = 0}. Furthermore, an isotropic

map (X`
`, `) : U → ∆4 is a Legendrian immersion if and only if c36 6= 0 on S(X`

`). In this
case X`

` is a front near p0. Since a0 and a2 are linearly independent to TLC∗, we can choose
the discriminant function λ as

λ = det

((
X`
`

)
s
,
(
X`
`

)′
,a0,a2

)
= −2((s2 + 1)c3(t) + 2c5(t) + 2sc6(t)).
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Since the kernel direction of dX`
` on singular set is η = −c1∂s+∂t and we can take a transversal

vector field ∂s, we have

ηλ = −2c1(c5 + sc36) + c′3(s2 + 1) + 2sc′5 + c′6(s2 − 1)
ηηλ = −c1

(
− 2c1c36 + 2(c5 + sc′36)

)
+
(
− 2c1(c5 + sc36) + c′3(s2 + 1) + 2sc′5 + c′6(s2 − 1)

)′
Hessλ =

(
2c36 2c′5 + 2sc′36

2c′5 + 2sc′36 c′′3(s2 + 1) + 2sc′′5 + c′′6(s2 − 1)

)
Hence we have all assertions of Theorem 8.9 except the case for the condition for the cuspidal
cross cap. We give the proof of the condition for the cuspidal cross cap as follows: Let us
define a lift ω : U → T ∗LC∗ by

ωp(v) = 〈v, `(p)〉 , v ∈ TX`
` (p)LC

∗, p ∈ U.

Then ω does not have intersection with the zero section. Since (π ◦ ω)∗(z) = dX`
`(z) for any

vector z ∈ TpU , we have
〈
`, dX`

`

〉
= θ4(a3,X

`
`) = 0. Thus we have (π ◦ ω)∗(TpU) ⊂ kerωp.

This means that ω is the admissible lift of X`
`. Under the assumption that c36(t0) = 0,

λs(s0, t0) 6= 0 if and only if c5(t0) 6= 0. Then S(X`
`) can be parameterized as (s(t), t) for some

function s(t). Putting ξ(t) = a3(t), then ξ is a non-zero vector field along X`
`|S(X`

` ). Since〈
ξ,X`

`

〉
= 0, vector field ξ satisfies the conditions of Theorem 8.5. Therefore the function

ψX`
`
(t) is equal to 〈ηξ, `〉 (t) = −c36(t). On the other hand, if λs(s0, t0) = 0 and λ′(s0, t0) 6= 0,

then (X`
`, (s0, t0)) is not A-equivalent to the cuspidal cross cap. This completes the proof of

Theorem 8.9. 2

We can give the proofs of Theorems 8.6, 8.8, 8.10, 8.11, 8.13 and 8.14 by the same arguments
as those of the above proof. We only state the fundamental data here, and omit the detailed
proof. The discriminant function λ, null vector field η, the one-form ω and the vector field ξ
for each dual surfaces are shown in the Table 1.

Surface λ η ω ξ

Xh
` 2c3 + 2sc5 + s2c36 (−c1, 1) 〈∗, `〉 a3

Xd
` −2c6 − 2sc5 + s2c36 (c1, 1) 〈∗, `〉 a3

Xd
h c4 cos s+ c5 sin s (−c6, 1) 〈∗,a0〉 a1

X`
h c1 − c4 cos s− c5 sin s (−c6, 1) 〈∗,a0〉 a1

Xh
d c1 cosh s− c5 sinh s (−c3, 1) 〈∗,a2〉 a1

X`
d −c4 + c1 cosh s− c5 sinh s (−c3, 1) 〈∗,a2〉 a1

Table 1: Fundamental data to recognize the conditions of singularities of dual surfaces

9 Dualities of singularities

Comparing Theorems 8.6, 8.8 and 8.9, when singular point is always (0, t), with Theorems
8.10, 8.11, 8.13 and 8.14 we observe a certain duality between the swallowtail and the cuspidal
cross cap. It can be summerized as follows.
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Remark 9.1. The conditions that singular set is equal to the curve (0, t) is

• c3 ≡ 0 for Xh
` ,

• c6 ≡ 0 for Xd
` ,

• c3 − c6 ≡ 0 for X`
`

• c4 ≡ 0 for Xd
h

• c1 − c4 ≡ 0 for X`
h,

• c1 ≡ 0 for Xh
d ,

• c1 − c4 ≡ 0 for X`
d.

Moreover, if c2 ≡ c3 ≡ c1 − c4 ≡ 0, then Xh
` at (0, t0) is A-equivalent to the swallowtail if

and only if c6 = 0 and c1c
′
6 6= 0 at t0. This condition is the same as the condition that X`

h at
(0, t0) is A-equivalent to the cuspidal cross cap. Furthermore, Xh

` at (0, t0) is A-equivalent to
the cuspidal cross cap if and only if c1 = 0 and c6c

′
1 6= 0 at t0. This condition is the same as

the condition that X`
h at (0, t0) is A-equivalent to the swallowtail. Like as these arguments,

we have the same type condition of singular points for dual surfaces when the singular set is
equal to (0, t).

We can summerize this situation on the Table 2. In the table, S means the singular set.

duality S = {(0, t)} cuspidal edge swallowtail cuspidal cross cap

Xh
` c2 ≡ 0 c3 ≡ 0 c6 6= 0, c6c5 6= 0, c1c5 6= 0,

c1 − c4 ≡ 0 c1c5 6= 0 c1 = 0, c′1 6= 0, c6 = 0, c′6 6= 0,

Xd
` c2 ≡ 0 c6 ≡ 0 c3 6= 0, c3c5 6= 0, c1c5 6= 0,

c1 − c4 ≡ 0 c1c5 6= 0 c1 = 0, c′1 6= 0 c3 = 0, c′3 6= 0,

X`
` c2 ≡ 0 c3 − c6 ≡ 0 c36 6= 0, c36c5 6= 0, c1c5 6= 0,

c1 − c4 ≡ 0 c1c5 6= 0 c1 = 0, c′1 6= 0 c36 = 0, c′36 6= 0,

Xd
h c2 ≡ 0 c4 ≡ 0 c1 6= 0 c1c5 6= 0 c5c6 6= 0

c3 ≡ 0 c5c6 6= 0 c6 = 0, c′6 6= 0 c1 = 0, c′1 6= 0

X`
h c2 ≡ 0 c1 − c4 ≡ 0 c1 6= 0 c1c5 6= 0 c5c6 6= 0

c3 ≡ 0 c5c6 6= 0 c6 = 0, c′6 6= 0 c1 = 0, c′1 6= 0

Xh
d c2 ≡ 0 c1 ≡ 0 c4 6= 0 c4c5 6= 0 c3c5 6= 0

c6 ≡ 0 c3c5 6= 0 c3 = 0, c′3 6= 0 c4 = 0, c′4 6= 0

X`
d c2 ≡ 0 c1 − c4 ≡ 0 c4 6= 0 c4c5 6= 0 c3c5 6= 0

c6 ≡ 0 c3c5 6= 0 c3 = 0, c′3 6= 0 c4 = 0, c′4 6= 0

Table 2: Dualities of condition for singularity.

We can observe there are some dual relations of conditions for singularities of the swallowtail
and the cuspidal cross cap on each dual points of surfaces. Furthermore, the condition of
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holding the duality and that the singular set is {(0, t)} are the same between Xh
` and X`

h

(resp. between Xd
` and X`

d):

Xh
`

taking singular value−−−−−−−−−−−−−→ a0

∆2-dual

x y∆2-dual

`
taking singular value←−−−−−−−−−−−−− X`

h

and

Xd
`

taking singular value−−−−−−−−−−−−−→ a2

∆3-dual

x y∆3-dual

`
taking singular value←−−−−−−−−−−−−− X`

d.

Like as the remark, a duality between the swallowtail and the cuspidal cross cap have
been pointed out in many researches, for example, [33, 13, 22]. In this section, we give an
interpretation for this duality. Firstly, we prove the following lemma.

Lemma 9.2. Let Mi (i = 1, 2) be three dimensional manifolds and ∆ ⊂ M1 × M2 a five
dimensional submanifold with the contact structure. Assume that the canonical projection
π1 : ∆ → M1 is a Legendre fibrations. If an isotropic map L1 = (f1, ν1) and a frontal
f2 : U → M2 satisfies that p is a non-degenerate singular point of both fi (i = 1, 2) and
ν1 degenerates a curve such that ν1 = f2 ◦ σ, where σ is a submersion U → S(f). If the
null direction of f1 does not parallel to the kernel of σ, then the following two conditions are
equivalent.

• L1 is a Legendrian immersion.

• The null direction of f2 at p is transversal to S(f1).

Proof. Since p is a non-degenerate singular point, L1 is a Legendrian immersion if and only
if the directional derivative η1ν1 does not vanish. this is equivalent to the condition that
df2(η1)(σ) does not vanish. This is equivalent to that the tangential direction of S(f1) does
not parallel to η2. This is equivalent to the condition that η2 is transversal to S(f1). This
completes the proof. 2

Theorem 9.3. Let p be a non-degenerate singular point of a frontal f . Then we have the
following criteria of singularities by using the function ψf defined in (8.2).

(1) If ψf (p) 6= 0, then f at p is A-equivalent to the cuspidal edge.

(2) Assume that f is a front. If ψf (p) = 0 and (d/dt)ψf (p) 6= 0, then f at p is A-equivalent
to the swallowtail.

(3) Assume that the null direction at p is transversal to S(f). If ψf (p) = 0 and (d/dt)ψf (p) 6=
0, then f at p is A-equivalent to the cuspidal cross cap.

Proof. Since the conditions are independent of the choice of coordinates, we take the coor-
dinate system (u, v) satisfying S(f) = {v = 0}. Under this conditions, ψf is proportional to
φf , where φf is defined in (8.1). Firstly, we prove (1). The condition φf 6= 0 implies that fu
and ην are linearly independent. Since ν points the kernel direction of df , this implies that f
to be a front. Moreover, we have fu 6= 0, this implies that η does not tangent to S(f). By
Theorem 8.1, we have (1).

Next, we assume that f to be a front and φf = 0 at p. Then this condition implies
fu(p) = 0, namely, η tangents S(f) at p. Thus we can take a function β(u) such that
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η(u) = ∂/∂u+β(u)∂/∂v, β(0) = 0. By Theorem 8.1, f at p is A-equivalent to the swallowtail
if and only if β′(0) 6= 0. On the other hand, (d/dt)φf (p) 6= 0 implies that det(fuu, ν, νu)(p) 6= 0.
Since fv, ν and νu are linear independent at p, this is equivalent to 〈fuu, fv〉 (p) 6= 0. Since η is
the null vector field on the u-axis, fu+β(u)+fv = 0 holds on the u-axis. Thus 〈fuu, fv〉 (p) 6= 0
implies β′(0) 6= 0. This completes the proof. The assertion (3) directly holds from Theorem
8.1. 2

We can give the alternative proof of Theorem 8.11 in the special case of c1 − c4 ≡ 0 and
c5 6= 0.

Proof of Theorem 8.11. If c2 ≡ c3 ≡ c1 − c4 ≡ 0, and c5(t0) 6= 0, then by Theorem 8.6
X`
h at (t0, 0) is A-equivalent to the swallowtail if and only if c6 6= 0, c1 = 0 and c′1 6= 0 at

t0. Furthermore, X`
h at (t0, 0) is A-equivalent to the cuspidal cross cap if and only if c1 6= 0,

c6 = 0 and c′6 6= 0 at t0.
Under the assumptions c2 ≡ c3 ≡ c1 − c4 ≡ 0 and c5(t0) 6= 0, it holds that S(Xh

` ) =
S(X`

h) = {(t, 0)} near (t0, 0). Hence we can apply Lemma 9.2 and Theorem 9.3. This means
that the conditions for the swallowtail and the cuspidal cross cap of the dual surface are
obtained by only interchanging the conditions for the cuspidal cross cap and the swallowtail
of the original surface. Thus we have that X`

h at (t0, 0) is A-equivalent to the cuspidal cross
cap if and only if c6 6= 0, c1 = 0 and c′1 6= 0 at t0. Furthermore, X`

h at (t0, 0) is A-equivalent
to the swallowtail if and only if c1 6= 0, c6 = 0 and c′6 6= 0 at t0. This is the same as Theorem
8.11 under the assumption c1 − c4 ≡ 0. 2

A A criterion for the cuspidal butterfly

In this section, we give a proof of Theorem 8.2. The main tool for the proof is the notion
of generating families. Let G : (Rk × Rn,0) −→ (R,0) be a function germ which we call an
unfolding of g(q) = G(q,0). We say that G is a Morse family of hypersurfaces if the mapping

∆∗G =

(
G,

∂G

∂q1
, . . . ,

∂G

∂qk

)
: (Rk × Rn,0) −→ (R× Rk,0)

is non-singular, where (q, x) = (q1, . . . , qk, x1, . . . , xn) ∈ (Rk × Rn,0). In this case we have a
smooth (n− 1)-dimensional submanifold

Σ∗(G) =

{
(q, x) ∈ (Rk × Rn,0)

∣∣∣∣ G(q, x) =
∂G

∂q1
(q, x) = · · · = ∂G

∂qk
(q, x) = 0

}
and the map germ ΦG : (Σ∗(G),0) −→ PT ∗Rn defined by

ΦG(q, x) =

(
x,

[
∂G

∂x1
(q, x) : · · · : ∂G

∂xn
(q, x)

])
is a Legendrian immersion germ. The fundamental result of Arnol’d-Zakalyukin [2, 34] assets
that all Legendrian submanifold germs in PT ∗Rn are constructed by the above method. We
call G a generating family of ΦG(Σ∗(G)). Therefore the wave front of ΦG(Σ∗(G)) is

W (ΦG)=

{
x ∈ Rn

∣∣∣∣∃q ∈ Rk such that G(q, x) =
∂G

∂q1
(q, x) = · · · = ∂G

∂qk
(q, x) = 0

}
.
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We also write DG = W (ΦG) and call it the discriminant set of G.
We now introduce an equivalence relation among Legendrian submanifold germs. Let

i : (L, p) ⊂ (PT ∗Rn, p) and i′ : (L′, p′) ⊂ (PT ∗Rn, p′) be Legendrian submanifold germs.
Then we say that i and i′ are Legendrian equivalent if there exists a contact diffeomorphism
germ H : (PT ∗Rn, p) −→ (PT ∗Rn, p′) such that H preserves fibers of π and that H(L) = L′.

Since the Legendrian lift i : (L, p) ⊂ (PT ∗Rn, p) is uniquely determined on the regular part
of the wave front W (i), we have the following simple but significant property of Legendrian
immersion germs[35]:

Proposition A.1. Let i : (L, p) ⊂ (PT ∗Rn, p) and i′ : (L′, p′) ⊂ (PT ∗Rn, p′) be Legendrian
immersion germs such that the representative of both the regular sets of the projections π ◦ i
and π ◦ i′ are dense. Then i and i′ are Legendrian equivalent if and only if wave front sets
W (i) and W (i′) are diffeomorphic as set germs.

The assumption in the above proposition is a generic condition for i and i′.
We can interpret the Legendrian equivalence by using the notion of generating families.

We denote En the local ring of function germs (Rn,0) −→ R with the unique maximal ideal
Mn = {h ∈ En | h(0) = 0 }. Let G1, G2 : (Rk × Rn,0) −→ (R, 0) be function germs. We
say that G1 and G2 are P -K-equivalent if there exists a diffeomorphism germ Ψ : (Rk ×
Rn,0) −→ (Rk × Rn,0) of the form Ψ(q, x) = (ψ1(q, x), ψ2(x)) for (q, x) ∈ (Rk × Rn,0)
such that Ψ∗(〈G1〉Ek+n

) = 〈G2〉Ek+n
. Here Ψ∗ : Ek+n −→ Ek+n is the pull back R-algebra

isomorphism defined by Ψ∗(h) = h ◦Ψ .
Let Ḡ : (Rk ×Rn,0) −→ (R,0) be a function germ. We say that Ḡ is a K-versal unfolding

of g = Ḡ|Rk × {0} if for any unfolding G : (Rk × Rm,0) −→ (R,0) of g (i.e., G(q,0) = g(q)),
there exists a map germ φ : (Rm,0) −→ (Rn,0) such that φ∗Ḡ and G are P -K-equivalent,
where φ∗Ḡ(q, u) = Ḡ(q, φ(u)). For an unfolding G(t, x) of a function g(t) of one-variable, we
have the following useful criterion on the K-versal unfoldings in (cf., [4], 6.10): We say that g
has an Ar-singularity at t0 if g(p)(t0) = 0 for all 1 ≤ p ≤ r, and g(r+1)(t0) 6= 0. We have the
following lemma

Lemma A.2. Let G be an unfolding of g and g(t) has an Ar-singularity (r ≥ 1) at t0. We
denote the (r − 1)-jet of the partial derivative ∂G/∂xi at t0 by

j(r−1)

(
∂G

∂xi
(t, x0)

)
(t0) =

r−1∑
j=0

αji(t− t0)j

for i = 1, . . . , n. Then G is a K-versal unfolding if and only if the r×n matrix of coefficients
(αji) has rank r (r ≤ n).

It follows from the above lemma that the function germ defined by

tr+1 + x1t
r−1 + x2t

r−2 + · · ·+ xr−1t+ xr

is a K-versal unfolding of g(t) = tr+1. One of the main results in the theory of Legendrian
singularities is the following theorem:

Theorem A.3. Let G1, G2 : (Rk×Rn,0) −→ (R, 0) be Morse families of hypersurfaces. Then
ΦG1

and ΦG2
are Legendrian equivalent if and only if G1 and G2 are P -K-equivalent.
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As a corollary of Proposition A.1 and Theorem A.3, we have the following proposition.

Proposition A.4. Let G1, G2 : (Rk × Rn,0) −→ (R, 0) be Morse families of hypersurfaces.
Suppose that both the regular sets of the representative of projections π◦ΦG1

, π◦ΦG2
are dense.

Then (W (ΦG1
), 0) and (W (ΦG2

), 0) are diffeomorphic as set germs if and only if G1 and G2

are P -K-equivalent.

The following Lemma roles the key of the proof for the criteria. Two function germs
gi : (R,0) → (R, 0) (i = 1, 2) are R-equivalent if there exists a diffeomorphism germ α :
(R, 0)→ (R, 0) such that α ◦ g1 = g2 holds.

Lemma A.5. Let g : ((R; t),0) → (R, 0) be a function germ such that R-equivalent to t5.
If an unfolding G : ((R × R3; t, x, y, z),0) → (R, 0) of g is a Morse family and a function
Ḡ(t, x, y, z, w) = G(t, x, y, z) + wt3 is a K-versal unfolding of g, then G(t, x, y, z) is P -K-
equivalent to t5 + xt2 + yt+ z.

Proof. Since the condition does not depend on the parameter transformation of t, we can
assume that g(t) = t5. Moreover, since the map t5 +wt3 + xt2 + yt+ z is the versal unfolding
of t5, there is a diffeomorphism (φ1, φ2, φ3, φ4) : R4 → R4 such that G is P -K-equivalent to

t5 + φ1(x, y, z, w)t3 + φ2(x, y, z, w)t2 + φ3(x, y, z, w)t+ φ4(x, y, z, w).

Since G = G + wt3 is a K-versal unfolding, and the condition of lemma only depend on the
P -K-equivalent class, we can rechoose (x, y, z) such that G is P -K-equivalent to

t5 + φ1(x, y, z, w)t3 + xt2 + yt+ z.

Furthermore, since G is a versal unfolding and ∂φ1/∂w(0) = 0, we rechoose w such that G is
P -K-equivalent to

t5 + (w − h(x, y, z))t3 + xt2 + yt+ z

for some function h. Summerizing up these argument, we can assume that G is

Gh(t, x, y, z) := t5 + (w − h(x, y, z))t3 + xt2 + yt+ z.

We have the following Zakalyukin’s lemma

Lemma A.6. [35, Theorem 1.4] Let V : (R × R4,0) → (R, 0) be a K-versal unfolding of the
form

V(t, x, y, z, w) = t5 + wt3 + xt2 + yt+ z (A.1)

and σ : (R4,0)→ (R, 0) be a function germ with (x, y, z, w)-variables such that ∂σ/∂w(0) 6= 0.
Then there exists a diffeomorphism germ Θ : (R4,0)→ (R4,0) such that

Θ(DV) = DV and σ ◦Θ(x, y, z, w) = w.

Let us continue to prove of Lemma A.5. We apply Lemma A.6 to V of (A.1) and w −
h(x, y, z). Then there exists a diffeomorphism germ Θ such that

Θ(DV) = DV and (w − h(x, y, z)) ◦Θ(x, y, z, w) = w.
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We define a diffeomorphism germ

Ψ(x, y, z, w) = (x, y, z, w − h(x, y, z)),

then it holds that Ψ∗V = Gh. Define a new diffeomorphism germ Θ̃ by Θ̃ = Ψ ◦ Θ then we
have

Θ̃(DV) = Ψ ◦Θ(DV) = Ψ(DV) = DGh
.

Hence DV and DG are diffeomorphic. On the other hand, let us define π : (R4,0)→ (R, 0) by
π(x, y, z, w) = w. Since

π ◦ Θ̃(x, y, z, w) = π ◦Ψ ◦Θ = (w − h(x, y, z)) ◦Θ = w,

we have π ◦ Θ̃ = π. Since the set of regular points of DV is dense, by the Zakalyukin theorem
([35], see also [28, Appendix]), there exist a diffeomorphism germ Ξ : R×R4 → R×R4 of the
form

Ξ(t, x, y, z, w)
=
(
ξ(t, x, y, z, w), ζ1(x, y, z, w), ζ2(x, y, z, w), ζ3(x, y, z, w), ζ4(w)

)
such that Ξ∗(〈V〉E1+4

) = 〈Gh〉E1+4
.

If we restrict the above map to w = 0, we complete the proof Lemma A.2. 2

Using these results, we give the criterion of the A4-singularity of wave fronts.
Let f : (R2,0) → (R3,0) be a front and ν be the normal vector field of f . Let 0 be a

non-degenerate singular point of f . Needless to say, the conditions of Theorem 8.2 do not
depend on the choice of coordinates and choice of ν. One can prove the following lemma.

Lemma A.7. One can choose the coordinate systems (u, v) of (R2,0) and (X1, X2, Z) of
(R3,0) satisfying

• η ≡ ∂v.

• f(u, v) = (f1(u, v), f2(u, v), u) and (f1)u(0) = (f2)u(0) = 0.

• ν(0) = (1, 0, 0).

Under this coordinate system, we prove that if f : R2 → R3 satisfies ηλ = ηηλ = 0 and
ηηηλ 6= 0 at 0 then f at 0 is A-equivalent to the cuspidal butterfly.

Proof of Theorem 8.2. Let us fix a small number u and consider a family of plane curves
Γu(v) = Γ(u, v) = (f1(u, v), f2(u, v), u) in the plane Πu = {(X1, X2, Z)|Z = u} and show that
these are fronts near 0. Denote ν = (ν1, ν2, ν3) and put

[Nu(v)] = [(ν1(u, v), ν2(u, v), 0)] .

Then [Nu(v)] is well-defined near 0. We put

γ(u, v) = (f1(u, v), f2(u, v)) and n(u, v) = (ν1(u, v), ν2(u, v)).

Then, since 〈γ′(u, v), n(u, v)〉 ≡ 0, (γ, [n]) is an isotropic map for all u, where ′ denotes ∂/∂v
and 〈·, ·〉 is the canonical inner product of R3. Since ν′3(0), we have n′(0) 6= 0. This implies
that for each u near 0, (γ, [n]) is a Legendrian immersion germ.
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We define two functions Ψ : R× R3 −→ R and ψ : R −→ R as follows:

Ψ(v,X1, X2, Z) = n1(Z, v)(X1 − f1(Z, v)) + n2(Z, v)(X2 − f2(Z, v)), ψ(v) = Ψ(v, 0, 0, 0).

Then we have DΨ = f(U). Hence by Lemma A.6 and the arguments in the above, it is
sufficient to prove that ψ has an A4-singularity and Ψ satisfies the conditions of Lemma A.5.
In the following context, we put Z = u.

Lemma A.8. It holds that f ′(0) = f ′(0) = f ′′′(0) = 0, f ′′′′(0) 6= 0 and (f)′(0) = (f)′′(0) =
(f)′′′(0) = 0, (f)′′′′(0) 6= 0.

Proof. Since ∂v is the null vector field, so that we have f ′(0) = 0 and S(f) = {fv = 0}.
By ηλ = 0, since (∂v =)η0 ∈ T0S(f), it holds that f ′′(0) = 0. Furthermore, by λ′′(0) = 0
and f ′(0) = f ′′(0) = 0, we have λ′′(0) = det(fu, f

′′′, ν)(0). Hence it holds that f ′′′(0) ∈
span {fu(0), ν(0)}.

On the other hand, we have 〈fu, f ′′′〉 (0) = 〈(0, 0, 1), (∗, ∗, 0)〉 = 0. Differentiating 〈ν, f ′〉 =
0, we have 〈ν, f ′′〉 = 〈ν, f ′〉′−〈ν′, f ′〉 and 〈ν, f ′′′〉 = 〈ν, f ′′〉′−〈ν′, f ′′〉. Hence 〈ν, f ′′〉 ≡ 0 holds
on S(f). Since η0 ∈ T0S(f), it holds that 〈ν, f ′′〉′ (0) = 0 and 〈ν, f ′′′〉 (0) = 0. Thus we have
f ′′′(0) = 0.

Since λ′′′(0) 6= 0 and f ′(0) = f ′′(0) = f ′′′(0) = 0, it holds that 0 6= λ′′′(0) = det(fu, f
′′′′, ν)(0).

In particular, f ′′′′(0) 6= 0 holds.

To prove Theorem 8.2, firstly we show that ψ has the A4-singularity at 0. Differenti-
ating

〈
(f)′, n

〉
≡ 0 and by Lemma A.8, we have

〈
(f)′′′′, n

〉
(0) = 0 and 4

〈
(f)′′′′, n′

〉
(0) +〈

(f)′′′′′, n
〉

(0) = 0.
By these formulae and Lemma A.8, we have ψ′(0) = ψ′′(0) = ψ′′′(0) = 0, ψ′′′′(0) =

−
〈
n, (f)′′′′

〉
(0) = 0 and ψ′′′′′(0) = −

〈
n′, (f)′′′′

〉
(0).

On the other hand, since n, n′ is linearly independent at 0 and
〈
n, (f)′′′′

〉
(0) = 0, we have〈

n′, (f)′′′′
〉

(0) 6= 0⇐⇒ (f)′′′′(0) 6= 0⇐⇒ f ′′′′(0) 6= 0.

Hence ψ has the A4 singularity at 0.
Next, we show that (Ψ,Ψ′,Ψ′′) is non-singular. If this is satisfied, Ψ satisfies the condition

of Lemma A.5 namely, Ψ is a Morse family and Ψ(v,X1, X2, u) +wv3 is a K-versal unfolding
of ψ. Remark that the discriminant set of an unfolding t5 + xt2 + yt + z of a function t5 is
diffeomorphic to the image of the canonical cuspidal butterfly (u, v) 7→ (u, 5v4 + 2uv, 4v5 +
uv2− u2) at 0 as set germs. Therefore by Proposition A.4 and Lemma A.5, we can show that
f at 0 is A-equivalent to the cuspidal butterfly.

Since ΨX(0) = −n1(0),ΨY (0) = −n2(0) and Ψu =
∑
i=1,2 〈(ni)u, Xi − fi〉 − 〈ni, (fi)u〉, it

holds that Ψu(0) = 0. By a direct calculation, we have Ψ′X(0) = −n′1(0),Ψ′Y (0) = −n′2(0) and
Ψ′u =

∑
i=1,2 〈(ni)′u, Xi − fi〉−〈ni, f ′〉−〈n′i, (fi)u〉−〈ni, (fi)′u〉. Since 〈ni, (fi)′u〉 =

〈
n, (f)′

〉
u
−〈

nu, (f)′
〉

= 0 holds at 0, we have Ψ′u(0) = 0.
Thus it is sufficient to prove that the matrix

∂(Ψ, Ψ′, Ψ′′)/∂t
∂(Ψ, Ψ′, Ψ′′)/∂X1

∂(Ψ, Ψ′, Ψ′′)/∂X2

∂(Ψ, Ψ′, Ψ′′)/∂u

 (0) =


0 0 0
n1 n′1 ∗
n2 n′2 ∗
0 0 Ψ′′u

 (0)
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is of full rank. Hence we show that Ψ′′u(0) 6= 0.
Differentiating

〈
n, (f)′

〉
≡ 0 by u and v, and by Lemma A.8, we have〈

n, (f)′′u
〉

(0) =
〈
n′, (f)′u

〉
(0). (A.2)

Differentiating Ψ by u and v two times, and by Lemma A.8 and (A.2), we have

Ψ′′u(0) = −
〈
n′, (f)′u

〉
(0).

On the other hand, since
〈
n, (f)′u

〉
(0) = 0,〈

n′, (f)′u
〉

(0) 6= 0⇐⇒ (f)′u(0) 6= 0⇐⇒ f ′u(0) 6= 0.

holds. By λu(0) 6= 0 and fv(0) = 0, we have

0 6= λu(0) = det(fu, f
′
u, ν)(0).

In particular, f ′u(0) 6= 0 holds. This implies the desired result.
The converse pert of the theorem is obvious since the conditions and assertions of Theorem

8.2 are independent of the choice of coordinates and the choice of ν, and the canonical A4

singularity satisfies the condition of theorem.

Remark that since 0 is a non-degenerate singular point, we have the parameterization γ(t)
of S(f). Take the null vector field on γ as η(t). Define a function of t by

µ(t) = det(γ′(t), η(t)).

One can easily show that µ(0) = µ′(0) = 0 and µ′′(0) 6= 0 and ηλ(0) = ηηλ(0) = 0 and
ηηηλ(0) 6= 0 are equivalent, as a corollary, the following assertion holds.

Corollary A.9. A front germ f at 0 is A-equivalent to the A4-singularity if and only if 0 is
a non-degenerate singular point and µ(0) = µ′(0) = 0 but µ′′(0) 6= 0 holds.
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A Short Note on Hauser’s Kangaroo Phenomena and

Weak Maximal Contact in Higher Dimensions

Anne Frühbis–Krüger

Abstract

Currently there are several approaches to resolution of singularities in positive char-
acteristic all of which have hit some obstruction. One natural idea is to try to construct
new meaningful examples at this point to gain a wider range of experience. To produce
such examples we mimic the characteristic zero approach and focus on cases where it
fails. In particular, this short note deals with an example-driven study of failure of
maximal contact and the search for an appropriate replacement.

1 Introduction

Hypersurfaces of maximal contact are one of the key concepts in Hironaka’s inductive proof
of desingularization in characteristic zero, but unfortunately they need not even exist locally
in positive characteristic as e.g. Narasimhan’s example [13] shows. In [5] and [9] Hauser re-
places hypersurfaces of maximal contact by the characteristic-free notion of hypersurfaces of
weak maximal contact, i.e. hypersurfaces which maximize the order of the subsequent coef-
ficient ideal, but which do not necessarily contain the equiconstant points after all sequences
of blowing ups in permissible centers. In the corresponding approach ([8], [10]) to resolution
of surface singularities in positive characteristic, this modification of the concept of maximal
contact turns out to be sufficient to enter into an approach in the flavour of Hironaka’s origi-
nal induction on the dimension of the ambient space. To obtain desingularisation of surfaces
along those lines, this is, of course, not the only change to the characteristic zero arguments;
important further modifications to certain components of the desingularisation invariant are
required. Considering higher dimensions, however, the first step toward a construction of a
desingularization similar to the characteristic zero approach or even toward new meaningful
examples illustrating the obstructions against it again needs to be a reconsideration of the
right generalization of maximal contact.

For readers convenience, we briefly recall some key concepts in section 2. Here one focus
will be on the question of recognition of a potential kangaroo. In section 3, we start by con-
sidering an example where the original definition of weak maximal contact does not suffice
for the description of a kangaroo phenomenon and then suggest a slightly modified version
which is suitable for any dimension and not just surfaces. Using this new notion of a flag of
weak maximal contact, section 4 is then devoted to examples of the different roles which the
hypersurfaces originating from the flag can play in the course of a sequence of permissible
blowing ups.
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2 Basic facts and definitions

A section of just a few pages is obviously not sufficient to even give a brief overview of the
tools and general philosophy of algorithmic desingularization, let alone all the delicacies of
the case of positive characteristic. On the other hand, more than just 5 pages would be by
far too long compared to the following two sections. Hence we do not attempt this here,
but only very briefly sketch the idea of the characteristic zero resolution process to give a
context, subsequently recalling the notions of hypersurfaces of weak maximal contact and
of kangaroo points in positive characteristic. For additional background information on the
characteristic zero case, we would like to point to more thorough discussions in section 4.2
of [6] from the practical point of view and in [5] embedded in a detailed treatement of the
resolution process. For a detailed introduction to characteristic p phenomena and kangaroo
points see [8].

2.1 The philosophy of the characteristic zero approach

In Hironaka’s original work [11] and in all algorithmic approaches based on it, e.g. [3],[1],[5],
the general approach is that of a finite sequence of blow-ups at appropriate non-singular
centers. The very heart of these proofs is the choice of center which is controlled by a tuple
of invariants assigned to each point; it is of a structure similar1 to the following one

(ord, n; ord, n; . . . )

with lexicographic comparison, the upcoming center being the set of maximal value of the
invariant. Here ord stands for an order of an appropriate (auxiliary) ideal (see below), n for
a counting of certain exceptional divisors. At each ’;’ a new auxiliary ideal of smaller am-
bient dimension, a coefficient ideal, is created by means of a hypersurface of maximal contact.

To fix notation, let W be a smooth equidimensional scheme over an algebraically closed
field K of characteristic zero and X ⊂ W a subscheme thereof. We now immediately focus
on one affine chart U with coordinate ring R and denote the maximal ideal at x ∈ U by mx.
The order of the ideal IX = 〈g1, . . . , gr〉 ⊂ R at a point x ∈ U is defined as

ordx(I) := max{m ∈ N| I ⊂ mm
x }.

In characteristic zero, the order of the non-monomial part of an ideal can never increase un-
der blow-ups which makes it a good ingredient for the controlling invariant of the resolution

1In the case of Bierstone and Milman, the very first entry is a finer invariant, the Hilbert-Samuel function.
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process whose decrease marks the improvement of the singularities.

For the descent in ambient dimension, hypersurfaces of maximal contact are required;
these locally contain all points of maximal order, satisfy certain normal crossing conditions
and continue to contain all points at which the maximal order did not yet drop after any
permissible sequence of blow-ups. In characteristic zero, they always exist locally and can
be computed in a rather straight-forward way. The construction of the coefficient ideal for I
at X w.r.t. a hypersurface of maximal contact Z = V (z) is then performed in the following
way:

CoeffZ(I) =

ordx(I)−1∑
k=0

I
k!

k−i

k

where Ik is the ideal generated by all polynomials which appear as coefficients of zk in
some element of I. Given this notion of coefficient ideal, it is possible to rephrase the
condition on a hypersurface of maximal contact from ’containing all points of maximal order’
to ’maximizing the order of the non-monomial part of the arising coefficient ideal under all
choices of hypersurfaces’.

2.2 Weak maximal contact and kangaroos

In positive characteristic, there are well known examples of failure of maximal contact in the
sense that eventually the equiconstant points will leave the strict transform of any chosen
smooth hypersurface (see [13]). Using the characteristic free formulation of the first condi-
tion for maximal contact, i.e. that it should maximize the order of the non-monomial part of
the subsequent coefficient ideal, and dropping the condition that this should hold after any
permissible sequence of blow-ups, we obtain Hauser’s definition of weak maximal contact. In
this way, Hauser and Wagner [10] then allow passage to a new hypersurface of weak maximal
contact, if the previously chosen one happens to fail to have the maximizing property at some
moment in the resolution process.

Additionally there are examples (see [12]) in which the order of the non-monomial part of
the first coefficient ideal can increase under a sequence of blow-ups in positive characteristic.
In [8] Hauser shows that these two phenomena are closely related in the sense that both arise
in the same rather rare settings and gives an explicit criterion for the possibility of such a
phenomenon, which he calls a kangaroo point focusing on the point where this occurs. In
this article, we often choose to refer to this as a kangaroo phenomenon, emphasizing the fact
that not the point itself is in the center of interest, but the deviation from the characteristic
zero case. Using the same notation for W , X etc. as in the previous section, we now recall
Hauser’s definition:

Definition 1 ([8]) Let π : W ′ −→ W be a blow-up at a permissible center Z, and x ∈ Z
a point of maximal order c for IX . Denoting the weak transform of X under π by X ′, let
x′ ∈ X ′ ∩ π−1(x) be a point at which ordx′(IX′) = c. Then x′ is called a kangaroo point, if
the order of the non-monomial part of the coefficient ideal of IX at x w.r.t. a hypersurface
of weak maximal contact is less than the order of the non-monomial part of the coefficient
ideal of IX′ w.r.t. a (possibly newly chosen) hypersurface of weak maximal contact.
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Definition 2 Generalizing Hauser’s notion of a kangaroo point, we shall call a blowing up,
at which such an increase in order occurs for one of the coefficient ideals at some level in the
descent of ambient dimension, a kangaroo phenomenon.

Remark 3 ([8]) A kangaroo point can only occur, if the following conditions are satisfied:

(a) the order c of the ideal IX at x does not exceed the order of IX′ at x′ and is divisible
by the charateristic of the ground field.

(b) The order of the non-monomial part of the coefficient ideal is a multiple of c. 2

(c) The exceptional multiplicities of the coefficient ideal need to satisfy a certain numerical
inequality (whose specification would need to much room here).

This remark does not yield a sufficient criterion of detection of kangaroos. However, if a
kangaroo phenomenon occurs, then its effect is an increase of order of the non-monomial part
of the coefficient ideal by means of leaving at least two exceptional divisors at the same time
and a suitable change of hypersurface of weak maximal contact (see examples in sections 3
and 4 for details).

Combining the above observations of Hauser with well-known observations by Hironaka
and Giraud, condition (a) can be made a bit more precise. To this end, we need to recall
another singularity invariant, the ridge (french: la fâıte). Following the exposition of [14], let
us consider the tangent cone CX,x of IX at x and the largest subgroup scheme AX,x of the
tangent space TW,x satisfying the conditions that it is homogeneous and leaves the tangent
cone stable w.r.t. the translation action. AX,x is called the ridge of the tangent cone of IX
at x.

It is a well-known, important fact that the ridge can be generated by additive polynomials,
i.e. by polynomials of the form

n∑
i=1

aix
pe

i

where p is the characteristic of the underlying field. In characteristic zero the ridge is always
generated by polynomials of degree one; in positive characteristic the occurrence of a ridge not
generated by polynomials of degree one marks a point for which the reasoning of characteristic
zero might break down. Following the exposition of [2] the ridge can also be phrased as the
smallest set of additive polynomials {p1, . . . , pr} generating the smallest algebra k[p1, . . . , pr]
such that

IX = (IX ∩ k[p1, . . . , pr])k[x].

Combining this with Hauser’s condition (a), we obtain a refined version for hypersurfaces,
which, of course, still requires ordx′(IX′) = c = ordx(IX) and, additionally, that the ridge
must at least have one generator in higher degree, i.e. in some degree pe. This sharpens the

2For kangaroo phenomena, this condition should analogously read ’one of the coefficient ideals occurring
in the descent of ambient dimension’.
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condition of divisibility of the order by a p-th power to the fact that some variable actually
only occurs as p-th powers in the tangent cone and is implicitly already present in [8]. Ac-
cording to Hauser’s condition (b), the degree of the non-monomial part of the first coefficient
ideal is required to be a multiple of the degree c. In contrast to condition (a), this can not
be made more precise by simply adding the condition that the ridge of the non-monomial
part of this coefficient ideal is not generated in degree 1, because higher order generators
of the coefficient ideal might introduce lower degree polynomials into the ridge which allow
dropping of certain contributions arising from the lowest order generators of the ideal. To
illustrate the role of the ridge, we give 3 examples:

Example 1 Over a field K of characteristic 3, consider an affine chart U = A4
K (with

variables named x, y, z, w) which already results from a sequence of 2 blow-ups and contains
exceptional divisors E1 = V (w) and E2 = V (z), born from the first and second blow-up
respectively. (These two blow-ups are indeed necessary for the possibility of an occurrence of
a kangaroo point after the subsequent blowing up, according to Hauser’s technical condition
(c) which was not formulated explicitly in the previously stated remark.)
Locally at the coordinate origin of this chart, consider the three subvarieties of A4

K defined
by the following ideals:

• IX1 = 〈x3 + z14w10(z6 − w6)〉
This is the strict transform3 of 〈x3 + z13− zw18〉 under the two blow-ups. The ridge of
IX1

can obviously be described by {x3}, the non-monomial part of its first coefficient
ideal is

〈z12 + z6w6 + w12〉,

with ridge {z3, w3}.
After blowing up again at the origin, we obtain (in the E3 = V (w)-chart) the strict
transform

IX′1 = 〈x3 + z14w27(z6 − 1)〉

which after a coordinate change znew = z − 1 and a passage to a new hypersurface
of weak maximal contact V (x + z2neww

9) = V (xnew) reads as Itransf. = 〈x3new +
z6neww

27(−znew + h.o.t.)〉. Since znew does not correspond to an exceptional divisor,
this has a non-monomial part of the first coefficient ideal of the form

〈z14new + h.o.t.〉.

This ideal is of order 14 as compared to the corresponding order 12 before the last
blowing up which clearly indicates the occurrence of a kangaroo point.

• IX2
= 〈x2y + z14w10(z6 − w6)〉

This is the strict transform of 〈x2y+z13−zw18〉 under the two blow-ups.4 The ridge of

3Actually this is the weak transform of IX1
which in the principal ideal case happens to coincide with the

strict transform.
4Here we are actually already deviating a bit from Hauser’s original definition, because we consider an

initial part involving 2 variables and then descend in ambient dimension in one step of 2 to V (x, y) seen as
a hypersurface in V (x) which is in turn a hypersurface in A4. This is possible by collecting all coefficients of
monomials of the form xayb with a + b = k into the ideal Ik; for more details on this see e.g. [7], where this
has been used in a very explicit way.
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IX2 is obviously {x, y}, the non-monomial part of its coefficient ideal w.r.t. the descent
in ambient dimension to V (x, y) is

〈z12 + z6w6 + w12〉

as before with ridge {z3, w3}.
After blowing up again at the origin, we obtain (in the E3 = V (w)-chart) the strict
transform

IX′2 = 〈x2y + z14w27(z6 − 1)〉

for which even a coordinate change znew = z − 1 cannot lead to a kangaroo point,
because no suitable passage to new hypersurfaces of weak maximal contact killing the
term z6neww

27 is available. This could already be expected at the beginning due to the
fact that the ridge of IX2

is generated in degree 1.

The third example is of a different flavor and only serves to illustrate, how higher order
generators of the ideal might influence the ridge in a way which is not desirable for the
consideration of coefficient ideals:

• IX3
= 〈x3 + z14w10(z6 − w6), z30w17(y19 + y5z7w3)〉

This is the weak transform of 〈x3 + z13 − zw18, y5z18 + y19w〉 under the two blow-ups.
The ridge of IX3 is obviously {x3, y, z, w}, whereas only the hypersurface V (x) can be
chosen as hypersurface of weak maximal contact. The non-monomial part of the first
coefficient ideal is

〈z12 + z6w6 + w12, (z6 − w6)(z16w7(y19 + y5z7w3)),
z32w14(y38 − y24z7w3 + y10z14w6)〉.

The ridge can be computed to be {y, z, w}, e.g. by the algorithm of [2].
After blowing up again at the origin, we obtain (in the E3 = V (w)-chart) the weak
transform

IX′3 = 〈x3 + z14w27(z6 − 1), . . . 〉

which after a coordinate change znew = z − 1 and a passage to a new hypersurface of
weak maximal contact V (x+ z2neww

9) = V (xnew) has the same first generator of order
14 as in example 1, the second generator does not have effect on the order of the non-
monomial part of the first coefficient ideal as can be checked by explicit computation.
Comparing this to the first example, we see that the higher order generator, which
does not actually influence the order of the non-monomial part of the coefficient ideal,
masked the situation in the computation of the ridge.

From these three examples, we see the usefulness of the ridge for anticipating kangaroo
points in the case of hypersurfaces, whereas in the case of ideals this may be hidden by
contributions of higher order generators. However, if we only consider the ridge of the ideal
which is generated precisely by the lowest-order generators of the original ideal (instead of
the ridge of the whole ideal), then there is hope to use this new ridge for ideals and maybe
even to slightly sharpen item (b) in Hauser’s condition for kangaroo points.

133



Remark 4 These considerations already suggest a strategy for finding interesting examples
by constructing hypersurfaces for which the ridge is not generated in degree 1 and, addition-
ally, at least once during the iterated descents in ambient dimension the ridge of the ideal
generated by the lowest order generators (denoted from now on as n-ridge for short) of the
non-monomial part of the respective coefficient ideal is also not generated in degree one. In
the experiments, which lead to the examples of the subsequent sections, an additional heuris-
tic in the choice of hypersurfaces of weak maximal contact was used: When given the choice
between different hypersurfaces, more precisely between linearly independent initial parts of
possible hypersurfaces, we try to minimize the degree of the generator of the ridge/n-ridge
corresponding to the chosen hypersurface. The reasoning behind this heuristic is to force the
unpleasant, but interesting behaviour into the lowest possible ambient dimension and hence
keep a clearer view of the occurring phenomena.

Remark 5 Similar examples to those of the subsequent sections can easily be constructed
in any positive characteristic. For section 3 this is straight forward, for section 4 it is best
achieved by starting in the middle, i.e. precisely where the first kangaroo has just occurred
and construct from there by blowing down and blowing up.

3 In higher dimension not all hypersurfaces of weak max-
imal contact are suitable

The following example shows that the property of maximizing the order of the non-monomial
part of the upcoming coefficient ideal is not sufficient to properly cover all kangaroo phenom-
ena in higher dimensions. It is stated in characteristic 2 to allow considerations in rather low
degrees, but similar examples can be constructed for any positive characteristic.

Example 2 We consider a sequence of three blow ups of the hypersurface V (x2 + w3 +
y25 +yz16) ⊂ A4

K , char(K) = 2, K = K. At each step the respective maximal orders, chosen
hypersurfaces of weak maximal contact and coefficient ideals are specified. In the presence of
exceptional divisors, we make use of Bodnar’s trick [4], which allows skipping the intersection
with exceptional divisors in intermediate levels of the descent in ambient dimension, if we
have normal crossing between the upcoming hypersurface of weak maximal contact and the
exceptional divisors.

To keep the whole rather lengthy sequence of blowing ups more readable, we only give rather
scarce comments. A more commented version of a single blowing up step was already stated
at the end of the previous section.

original hypersurface:
I = 〈f〉 = 〈x2 + w3 + y25 + yz16〉
• in ambient space A4

K

I = 〈x2 + w3 + y25 + yz16〉
The maximal order 2 is attained at V (x, y, z, w).
The ridge of this ideal corresponds to {x2}.
As hypersurface of weak maximal contact we may use H1 = V (x) ⊂ A4

K .
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• in ambient space H1

IH1 = 〈w3 + y25 + yz16〉.
The maximal order of 3 is then again attained at the origin of H1.
The n-ridge (in the short-hand notation introduced in section 2) is {w}
As hypersurface of weak maximal contact we now use
H2 = V (x,w) ⊂ H1 ⊂ A4

K .

• in ambient space H2

IH2
= 〈y50 + y2z32〉 = 〈(y25 + yz16)2〉.

The maximal order of 34 is again attained at the origin ofH2 and the n-ridge is {y2, z32}.

• The only possible choice of center is V (x, y, z, w).

As a sideremark to the coefficient ideal in ambient space H2: Here it becomes evident that
there are 2 mechanisms which can cause the n-ridge to have generators in higher degree: on
one hand, it may be an honest generator in higher degree, on the other hand, it might have
arisen from taking powers of contributing ideals Ik when forming the coefficient ideal (see
section 2). However, taking powers can not accidentally cause the degree of a generator of
the ridge to drop. Hence the degree of the generators of the ridge can still be used as a
rather weak indicator for the possibility of new phenomena in characteristic p. Moreover, a
higher degree generator of the n-ridge arising from mechanism 2 is only likely to occur, if the
contributing ideals Ik are principal, because otherwise mixed products of generators would
exist in the set of generators of the power of Ik.

after first blowing up, chart E1 = V (y):
Istrict = 〈x2 + yw3 + y23 + y15z16〉
• in ambient space A4

K

Istrict = 〈x2 + y(w3 + y22 + y14z16)〉
The maximal order is again 2, attained at the origin and the ridge is again {x2}. We
can keep the strict transform of H1 as our hypersurface of weak maximal contact.
(As {E1, H1strict} has normal crossings, we may use Bodnàr’s trick [4] and hand the
exceptional divisor down to the lower dimension instead of intersecting with it at this
point.)

• in ambient space H1strict

The non-monomial part of the coefficient ideal5 is 〈w3 + y22 + y14z16〉.
The maximal order of 3 is again attained at the origin and the n-ridge is {w} as before.
We may also use the strict transform of H2 again for the descent in ambient dimension.
(Here we have normal crossing of {E1, H1strict, H2strict} and can again use Bodnàr’s
trick.)

• in ambient space H2strict

non-monomial part of coefficient ideal: 〈y16 + z32〉 = 〈(y8 + z16)2〉
maximal order 16 attained at the origin
n-ridge: {y16}

5As taking the coefficient ideal and subsequently calculating the controlled transform under the blowing
up on one hand and calculating the weak transform of the ideal followed by computing the new coefficient
ideal on the other hand are known (e.g. [5]) to lead to the same ideal, we won’t go into details on this point.
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• It is easy to check that here again the choice of center has to be the origin.

after second blowing up, chart E2 = V (z):
Istrict = 〈x2 + yz2w3 + y23z21 + y15z29〉

• in ambient space A4
K

Istrict = 〈x2 + yz2(w3 + y22z19 + y14z27)〉
maximal order: 2 at V (x, zw, yz)
ridge: {x2}
hypersurface of weak maximal contact: strict transform of H1

({E1strict, E2, H1strict} n.cr.)

• in ambient space H1strict

non-monomial part of coefficient ideal: 〈w3 + y14z19(y8 + z16)〉
maximal order: 3 at V (w, yz)
n-ridge: {w}
hypersurface of weak maximal contact: strict transform of H2

({E1strict, E2, H2strict} n.cr.)

• in ambient space H2strict

non-monomial part of coefficient ideal: 〈y16 + z16〉 = 〈(y8 + z8)2〉
maximal order: 16 at V (y + z)
n-ridge: {y16 + z16}

• center needs to be V (x, y, z, w) as the locus of maximal order after the second descent
in ambient dimension is not normal crossing with the exceptional divisors

after third blowing up, chart E3 = V (z):
Istrict = 〈x2 + yz4w3 + y23z42 + y15z42〉

• in ambient space A4
K

Istrict = 〈x2 + yz4(w3 + y22z38 + y14z38)〉
maximal order: 2 at V (x, zw)
ridge: {x2}
hypersurface of weak maximal contact: strict transform of H1

(E1 does not meet this chart, {E2strict, E3, H1strict} n.cr.)

• in ambient space H1strict

non-monomial part of coefficient ideal: 〈w3 + y12z42(y8 + 1)〉
maximal order: 3 at V (w, yz(y + 1)) n-ridge: {w}
hypersurface of weak maximal contact: strict transform of H2

({E2strict, E3, H2strict} n.cr.)

• in ambient space H2strict

non-monomial part of coefficient ideal: 〈y16 + 1〉 = 〈(y8 + 1)2〉
maximal order: 16 at V (y + 1)

Changing the hypersurface for the first descent in ambient dimension from H1strict to V (x+
(y+1)4z21), however, we may increase the order of the coefficient ideal in ambient dimension
2. For simplicity of notation, we first make a coordinate change which translates the point
of maximal order to the coordinate origin:
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• in ambient space A4
K

〈x2 + z4(w3 + yneww
3 + y8newz

38 + y9newz
38 + h.o.t.)〉

maximal order 2 at V (x, zw)
ridge: {x2}
new hypersurface of weak maximal contact: H ′1 = V (x+ y4z21)
(E1 does not meet this chart, {E2strict, E3, H

′
1} n.cr.)

• in ambient space H ′1
non-monomial part of coefficient ideal: 〈w3 + y9newz

38 + h.o.t.〉
maximal order 3 at V (w, ynewz)
n-ridge: {w}
hypersurface of weak maximal contact: H ′2 = V (w)
({E2strict, E3, H

′
2} n.cr.)

• in ambient space H ′2
non-monomial part of the coefficient ideal: 〈y18new + h.o.t.〉
maximal order: 18 exceeds previous order 16
kangaroo phenomenon

Here the new phenomenon is that the change of the hypersurface of weak maximal contact
was not forced by the first coefficient ideal, but by one of the later ones which would not be
covered by the standard definition of weak maximal contact.

In the light of the previous example, we suggest a slightly modified version of weak
maximal contact:

Definition 6 Consider a given point x of a scheme X (possibly in the presence of an excep-
tional divisor E) and pass to an affine chart U containing this point. We call a flag

H = H1 ⊃ H2 ⊃ · · · ⊃ Hs

admissible at x, if the following properties hold:

(a) H1 is a smooth hypersurface in the ambient space U . Hi+1 is a smooth hypersurface in
Hi.

(b) Hi is a hypersurface of weak maximal contact for the coefficient ideal obtained by descent
of the ambient space through H1, . . . ,Hi−1.

(c) x ∈ Hs.

H is called a flag of weak maximal contact for IX at x if it maximizes the resolution invariant
lexicographically among all choices of admissible flags at x.

This definition obviously behaves well under passage to a coefficient ideal w.r.t. H1 by
omitting the first entry H1 from H to obtain the new flag HH1 . This is again a flag of
maximal contact, since conditions (a)-(c) and maximality follow trivially from the respective
conditions on H. Hence considering a flag of weak maximal contact instead of a hypersurface
of weak maximal contact does not change any of the key properties, but allows more flexibility
for dealing with lower level kangaroos.
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4 Two different kinds of double kangaroos

It is a well known fact that the situation in positive characteristic can only differ from the
one in characteristic zero in rather special situations. Hauser studied such phenomena in
great detail in [8] by considering precisely the two levels involved in a kangaroo point. For
surfaces, he and Wagner extended these considerations to a general treatment of the purely
inseparable case in [10]. The situation in higher dimension differs from this easiest case in
the sense that there might be more than just two levels at which the ridge is not generated
in degree 1 at some time during the process of blowing ups. The following two examples
illustrate three different roles of the different levels of the flag of weak maximal contact in
such a setting.

Definition 7 Let H be a flag of weak maximal contact for an ideal IX ⊂ W at the point x
which we assume for simplicity to be the origin of our coordinate chart. We denote the i-th
coefficient ideal, which arises when descending to Hi, by Ji ⊂ OHi

. If the ideal generated by
the lowest order generators of Ji−1 is not a principal ideal, Hi is called

• neutral, if the degree 1 part of the generator of the principal ideal IHi ⊂ OHi−1,0 is in
the C-span of the degree 1 elements of the ridge/n-ridge of Ji−1.

• active, if it is the Hi of lowest index i which is not neutral.

• dormant, if it is neither active nor neutral.

If, on the other hand, the ideal generated by the lowest order generators of Ji−1 is principal, it

is of the form g
b!

b−k for some k < b and we change the notions of neutral, active and dormant
by replacing the ridge/n-ridge of Ji−1 by the one of 〈g〉.

Remark 8 1. According to Hauser’s description of the process leading to kangaroo points,
at least one active Hi and one dormant Hj are necessary to produce a kangaroo phe-
nomenon.

2. If the ideal generated by the lowest order generators of Ji−1 is not principal, there is
at least one ideal among the contributing Ik, of which the ideal generated by its lowest
order generators is itself not principal, e.g. generated by f1 and f2. Hence taking
the b!

b−k -th power of of this Ik upon forming the coefficient ideal, we obtain all mixed

products of the form fa1 f
b
2 , a + b = b!

b−k . This implies that higher degree generators of
the n-ridge can only occur if they would also occur for 〈f1, f2〉.
If on the other hand, the ideal generated by the lowest order generators of Ji−1 is

principal, the generator is of the form g
b!

b−k for some k and hence masks the true
situation of the (n-)ridge of g. This is the reason for the special treatment of this case
in the above definition.

Both of the following examples were constructed in a straight forward way, combining two
occurrences of kangaroos at two different levels. Similar examples can be constructed in any
positive characteristic and for any ambient dimension exceeding 4. However, these examples
involve several blow-ups between the first and the second occurrence, basically making a
fresh start after the first. Here no effort is made to reduce this number of blow-ups, since the
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context of this article is the study of the roles of the hypersurfaces of weak maximal contact.

To keep these rather lengthy examples more readable, we only state the blow-ups, the
weak transform at each step and the flag of weak maximal contact, whenever the latter
changes, but omit all data which is related to coefficient ideals, since these can easily be
computed for these examples.

Example 3 In this example, a hypersurface in A5
K , charK = 3, we shall see 2 occurrences

of kangaroo points on two different levels of coefficient ideals. For both occurrences, the
active hypersurface of weak maximal contact is the first one in the flag. Note that the two
blowing ups with chart E = V (y) after the first kangaroo are only used for setting up the
degrees for the following kangaroo.6

• before 1st blowing up
I = 〈w3 + y6z3v2 + x9y8 + x18y2 + x18v2〉
Flag:
V (w) active, V (w, v) neutral, V (w, v, z) dormant, V (w, v, z, y) neutral

• after blowing up at the origin, chart Enew = V (x)
I = 〈w3 + x8(y6z3v2 + x6y8 + x9y2 + x9v2)〉

• after blowing up at the origin, chart Enew = V (y)
I = 〈w3 + x8y16(z3v2 + x6(x3 + y3) + x9v2)〉
Flag: V (w) active, V (w, v) neutral, V (w, v, z) dormant, V (w, v, z, y) dormant

• after blowing up at the origin, chart Enew = V (x)
I = 〈w3 + x26y16(z3v2 + x4 + x4y3 + x6v2)〉
coordinate change: ynew = yold + 1, wnew = wold + x10y
I = 〈w3 + x26((y − 1)16(z3v2 + x6v2)− x4y4 + h.o.t.)〉
Flag in new coordinates:
V (w) active, V (w, v) neutral, V (w, v, z) dormant, V (w, v, z, y) neutral
Kangaroo at 3rd coefficient ideal

• after blowing up at the origin, chart Enew = V (x)
I = 〈w3 + x28((xy − 1)16(z3v2 + x3v2)− x3y4 + h.o.t.)〉

• after blowing up at the origin, chart Enew = V (v)
I = 〈w3 + x28v30(z3 + x3 − x4yv2 + h.o.t.)〉

• after blowing up at the origin, chart Enew = V (y)
I = 〈w3 + x28y58v30(x3 + z3 − x4y4v2 + h.o.t.)〉

• after blowing up at the origin, chart Enew = V (y)
I = 〈w3 + x28y116v30(x3 + z3 − x4y7v2 + h.o.t.)〉

6Whenever we write ’h.o.t.’ we want to indicate that there are further terms of higher degree, which are
irrelevant for the further considerations. In this case only the first non-relevant term is stated, even if this
does not happen to be the term originating from the previous first non-relevant term
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• after blowing up at the origin, chart Enew = V (z)
I = 〈w3 + x28y116z174v30(1 + x3 − xy7z10v2 + h.o.t.)〉
coord. change: xnew = xold + 1, ynew = yold + 1, wnew = wold + z58v10x3

I = 〈w3 + z174v30(x4 + x3y + h.o.t)〉
Flag: V (w), V (w, x), . . .
Kangaroo at 1st coefficient ideal

Example 4 In this example, again in the same affine space as before, we shall see 2 occur-
rences of kangaroo points on two different levels of coefficient ideals. For the first occurrence,
a dormant hypersurface of weak maximal contact acts as the active one, for the second it
is the top-level active hypersurface of weak maximal contact. This example again basically
consists of two regular kangaroo phenomena in a row, occurring on two different levels, but
in a different flavor than example 4.

• before first blowing up
I = 〈w3 + xy9z9v + x7y20v + x34y2v + x46v〉
Flag:
V (w) active, V (w, v) neutral, V (w, v, z) dormant, V (w, v, y, z) neutral

• after blowing up at the origin, chart Enew = V (x)
I = 〈w3 + x17(y9z9v + x8y20v + x17y2v + x27v)〉

• after blowing up at the origin, chart Enew = V (y)
I = 〈w3 + x17y33(z9v + x8y10v + x17yv + x27y9v)〉
Flag: V (w) active, V (w, v) neutral, V (w, v, z) dormant, V (w, v, y, z) dormant

• after blowing up at the origin, chart Enew = V (x)
I = 〈w3 + x57y33(z9v + x9y10v + x9yv + x27y9v)〉
coord. change: ynew = yold + 1, znew = zold + xy
I = 〈w3 + x57(y − 1)33(z9v + x9y10v − x27v + x27y9v)〉
Flag in new coordinates:
V (w) active, V (w, v) neutral, V (w, v, z) dormant, V (w, v, y, z) neutral
Kangaroo at 3rd coefficient ideal

• after blowing up at the origin, chart Enew = V (x)
I = 〈w3 + x64(xy − 1)33(z9v + x10y10v − x18v + x27y9v)〉

• after blowing up at the origin, chart Enew = V (x)
I = 〈w3 + x71(x2y − 1)33(z9v + x11y10v − x9v + x27y9v)〉

• after blowing up at the origin, chart Enew = V (v)
I = 〈w3 + x71(x2yv3 − 1)33v78(z9 − x9 + h.o.t)〉
Flag: V (w) active, V (w, z) dormant, V (w, x, z) dormant, . . .

• after blowing up at the origin, chart Enew = V (y)
I = 〈w3 + x71y155v78(x2y6v3 − 1)33(z9 − x9 + h.o.t)〉
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• after blowing up at the origin, chart Enew = V (y)
I = 〈w3 + x71y310v78(x2y6v3 − 1)33(z9 − x9 + h.o.t)〉

• after blowing up at the origin, chart Enew = V (z)
I = 〈w3 + x71y310v78z465(x2y6v3z16 − 1)33(1− x9 + h.o.t.)〉
coord. change: xnew = xold − 1, ynew = yold + 1, wnew = wold − v26z155x3
Kangaroo at 1st coefficient ideal

In both examples the relevant order of the first respectively second coefficient ideal
dropped significantly after the first kangaroo phenomenon, but before the occurrence of
the kangaroo on this level. The examples have been constructed to illustrate roles of hy-
persurfaces of maximal contact in multiple kangaroos and not to specifically illustrate the
increase in order. Nevertheless the observed behaviour raises several questions, which seem to
be natural starting points for further experiments in the search for new meaningful examples:

• Is it possible to find an occurrence of two kangaroo phenomena whose ’distance’ is less
than 3 blow ups?

• Is it possible to find an occurrence of two kangaroo phenomena for which the drop
of order between the first and the second kangaroo does not outweigh the increase of
order?

• If one of the previous question has an affirmative answer, what is the smallest dimension
in which this occurs?

References

[1] Bravo,A., Encinas,S., Villamayor,O.:A Simplified Proof of Desingularisation and Appli-
cations, Rev. Math. Iberoamericana 21 (2005), 349–458.

[2] Berthomieu,J., Hivert,P., Mourtada,H.:Computing Hironaka’s invariants: Ridge and Di-
rectrix, arXiv hal-00492824 (2010)

[3] Bierstone,E., Milman,P.:Canonical Desingularization in Characteristic Zero by Blowing
up the Maximum Strata of a Local Invariant, Invent.Math. 128 (1997), pp. 207–302.
DOI: 10.1007/s002220050141
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WHITNEY STRATIFIED MAPPING CYLINDERS

CLAUDIO MUROLO

To Andrew du Plessis for his 60th birthday.

Abstract. In this paper we investigate (b)-regularity for stratified mapping cylinders CW ′ (W )

of a stratified submersion f : W → W ′ between two Whitney stratifications. We show how

Goresky’s condition (D) for f is sufficient to obtain (b)-regularity of CW ′ (W ).
Revisiting some ideas of Goresky we give different proofs, a finer analysis and new equiv-

alent properties.

1. Introduction.

Let X = (A,Σ) be a stratified set of support A and stratification Σ (see §2 for the definition)

contained in a Euclidean space RN . A substratified object of X is a stratified space W =
(W,ΣW ), where W is a subset of A, such that each stratum in ΣW is contained in a single
stratum of X . In this paper we study the (b)-regularity of the stratified mapping cylinder
M(fW ) of a stratified surjective submersion fW :W →W ′ when W and W ′ are (b)-regular.

Since fW :W →W ′ is surjective, M(fW ) will be a cone that we will denote by CW ′(W ).

Our motivation comes from the works of Goresky [6, 7] which followed his thesis [5].

In 1976 and 1978 Goresky [5, 6] proved an important triangulation theorem for Thom-Mather
abstract stratified sets X . The proof was obtained by a double induction on k ≤ dimX , first
by triangulating, for each k-stratum X of X , a boundary k-manifold Xo

d ⊆ X, and then using
a stratified mapping cylinder CW ′(W ) to glue a triangulation of Xo

d with a triangulation of a

submanifold of the singular part ∂X = X −X = tX′<XX ′ of X. This method allowed one to
extend the triangulation to the part X −Xo

d of X near the singularity ∂X of X.
Such mapping cylinders produce cellular (but not necessarily triangulated) stratified sets.
In this context to know how to obtain Whitney (i.e. (b)-) regularity of such mapping cylinders

would be very useful in order to obtain a proof of the following:

Conjecture 1. 1. Every compact Whitney stratified space X admits a Whitney cellularisation.

This would be also a first important step of a possible proof of the celebrated Thom conjecture:

Conjecture 1. 2. Every compact Whitney stratified space X admits a Whitney triangulation.

Let us recall that in 2005 M. Shiota proved that semi-algebraic sets admit a Whitney triangu-
lation [16] and more recently M. Czapla announced a new proof of this result [2] as a corollary
of a more general triangulation theorem for definable sets. On the other hand, our motivation
being the applications to Goresky’s geometric homology theory, we are interested in the stronger
Conjectures 1.1 and 1.2 for stratifications having C1-strata.

In 1981 Goresky defines for a Whitney stratification X , two geometric homology and cohomo-
logy theories WHk(X ) and WHk(X ) whose cycles and cocycles are substratified Whitney objects
of X and proves the following representation theorems ([7], Theorems 3.4. and 4.7) :

Key words and phrases. Stratified sets and maps, Whitney Condtions (a) and (b), regular cellularisations.
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Theorem 1. 1. If X = (M, {M}) is the trivial stratification of a compact C1-manifold M , the
homology representation map Rk : WHk(X )→ Hk(M) is a bijection.

Theorem 1. 2. If X = (A,Σ) is a compact Whitney stratification, the cohomology representa-
tion map Rk : WHk(X )→ Hk(A) is a bijection.

Here the Goresky maps Rk and Rk are the analogues of the Thom-Steenrod representation
maps between the differential bordism of a space and its singular homology.

In 1994 such theories were improved by the author of this paper by introducing a sum opera-
tion in WHk(X ) and WHk(X ), geometrically meaning transverse union of stratified cycles [12,
13], with which the bijections Rk and Rk become group isomorphisms.

The possibility of constructing Whitney cellularisations of Whitney cycles and cocycles using
mapping cylinders ([7], Appendices 1,2,3) was the main tool of Goresky to obtain two such
important representation theorems.

We underline here that in the homology case the main result Rk : WHk(X ) → Hk(M) was
established only when X = (M, {M}) is a trivial stratification of a compact manifold M and that
the complete homology statement for X an arbitrary compact (b)-regular stratification remains
a famous problem of Goresky, still unsolved ([7] p.178) :

Conjecture 1. 3. If X = (A,Σ) is a compact Whitney stratification, the homology representa-
tion map Rk : WHk(X )→ Hk(A) is a bijection.

Hovewer, the proof of Conjecture 1.3 would follow as a corollary if one proves Conjecture 1.1.

In conclusion Whitney regularity of the mapping cylinders of stratified submersions would
play an extremely important role in answering affirmatively the Conjectures 1.1, 1.2 and 1.3.

The content of the paper is the following.

In §2 we review the most important classes of regular stratifications concerned by our analysis:
the abstract stratified sets of Thom-Mather [17, 8, 9], and the Whitney (b)-regular stratifications
[19], and we briefly recall the relation between them.

Then we recall the definition of condition (D), introduced by Goresky in his thesis [5, 6] for
stratified submersions f|W :W ⊆M →W ′ ⊆M , as a technical tool to obtain (b)-regularity of
stratified mapping cylinders, and recall the results of Goresky of 1976-81 [5, 7] about it.

In §3 we study relations between condition (D) and stratified mapping cylinders.
The section is an exploration of some ideas of Goresky [5, 7] of which we give a finer analysis,

different proofs, and some new equivalent properties.

For X = (A,Σ) a Whitney stratification, we consider the important case in which the stratified
submersion f|W : W ⊆ M → W ′ ⊆ M is the restriction of a projection πX : TX → X on a
stratum X of an system of control data F = {(πX , ρX) : TX → X × R}X∈Σ of X [8, 9].

The stratified mapping cylinder of πX |W has then as embedded model the cone CW ′(W )

equipped with its natural stratification
⊔
S⊆W , S′=πX(S)

[
S t CoS′(S) t S′

]
(Proposition 3.4).

First, in Proposition 3.5 we explain what incidence relations in CW ′(W ) are always (b)-
regular, then using a convenient horizontal distribution {D(y)}y in Theorem 3.3 and in Corollary
3.1.3) we prove that, if πX |W : W → πX(W ) satisfies Condition (D), all remaining incidence
relations R′ < CoS′(S) (with R < S in W ) are (a)-regular, and thanks to this in Proposition 3.6
and Theorem 3.4 we prove that the naturally stratified cone CW ′(W ) is a Whitney (b)-regular
stratification.



WHITNEY STRATIFIED MAPPING CYLINDERS 145

In Corollary 3.2 we conclude that if W is a Whitney cellularisation of a compact subset
W ⊆ SX(1) ⊆ TX(1) such that πW is cellular then CW ′(W ) is a Whitney cellularisation too.

2. Stratified Spaces and Maps and Condition (D).

We recall that a stratification of a topological space A is a locally finite partition Σ of A into
C1 connected manifolds (called the strata of Σ) satisfying the frontier condition : if X and Y
are disjoint strata such that X intersects the closure of Y , then X is contained in the closure
of Y . We write then X < Y and ∂Y = tX<YX so that Y = Y t

(
tX<YX

)
= Y t ∂Y and

∂Y = Y − Y (t = disjoint union).
The pair X = (A,Σ) is called a stratified space with support A and stratification Σ.
The k-skeleton of X is the stratified space Xk = (Ak,Σ|Ak) of support Ak = tdimX≤kX.

A stratified map f : X → X ′ between stratified spaces X = (A,Σ) and X ′ = (B,Σ′) is a
continuous map f : A → B which sends each stratum X of X into a unique stratum X ′ of X ′,
such that the restriction fX : X → X ′ is C1.

A stratified submersion is a stratified map f such that each fX : X → X ′ is a C1-submersion.

2.1. Regular Stratified Spaces and Maps. Extra conditions may be imposed on the strat-
ification Σ, such as to be an abstract stratified set in the sense of Thom-Mather [17, 8, 9] or,
when A is a subset of a C1 manifold, to satisfy conditions (a) or (b) of Whitney [19], or (c) of
K. Bekka [1] or, when A is a subset of a C2 manifold, to satisfy conditions (w) of Kuo-Verdier
[20], or (L) of Mostowski [15].

In this paper we will consider essentially Whitney (i.e. (b)-regular) stratifications :

Definition 2. 1. Let Σ be a stratification of a subset A ⊆ RN , X < Y strata of Σ and x ∈.
One says that X < Y is (b)-regular (or that it satisfies Condition (b) of Whitney) at x if for

every pair of sequences {yi}i ⊆ Y and {xi}i ⊆ X such that limi yi = x ∈ X and limi xi = x and
moreover limi TyiY = τ and limi [yi−xi] = L in the appropriate Grassmann manifolds (here [v]
denotes the vector space spanned by v) then L ⊆ τ .

The pair X < Y is called (b)-regular if it is (b)-regular at every x ∈ X.
Σ is called a (b)-regular (or a Whitney) stratification if all X < Y in Σ are (b)-regular.

For a C1-retraction π : U → X defined on a neighbourhood U of x, one says that X < Y is
(bπ)-regular at x (or that it satisfies Condition (bπ) at x) if L = limi [yi − π(yi)] implies L ⊆ τ .

One says that X < Y is (a)-regular at x (or that it satisfies Condition (a) at x) if TxX ⊆ τ .

We recall that X < Y is (b)-regular (at x) if and only if it is (a)- and (bπ)-regular (at x) for
some C1-retraction π : Ux → X defined in a neighbourhood U of x [18].

Most important properties of Whitney stratifications follow because they are in particular
abstract stratified sets [8, 9]. It is then helpful to recall the definition below.

Definition 2. 2. (Thom-Mather 1970) Let X = (A,Σ) be a stratified space.
A family F = {(πX , ρX) : TX → X × [0,∞[)}X∈Σ is called a system of control data (SCD) of

X if for each stratum X ∈ Σ we have that:

1) TX is a neighbourhood of X in A (called a tubular neighbourhood of X);
2) πX : TX → X is a continuous retraction of TX onto X (called projection on X);
3) ρX : TX → [0,∞[ is a continuous function : X = ρ−1

X (0) (called distance function from X)

and, furthermore, for every pair of adjacent strata X < Y , by considering the restriction maps
πXY = πX|TXY and ρXY = ρX|TXY , on the subset TXY = TX ∩ Y , we have that :

5) the map (πXY , ρXY ) : TXY → X×]0,∞[ is a C1-submersion (it follows in particular that :
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dimX < dimY );
6) for every stratum Z of X such that Z > Y > X and for every z ∈ TY Z ∩ TXZ

the following control conditions are satisfied :
i) πXY πY Z(z) = πXZ(z) (called the π-control condition)
ii) ρXY πY Z(z) = ρXZ(z) (called the ρ-control condition).

In what follows we will pose TX(ε) = ρ−1
X ([0, ε[) ,∀ ε ≥ 0, and without loss of generality will

assume TX = TX(1) [8, 9].

The pair (X ,F) is called an abstract stratified set if A is Hausdorff, locally compact and
admits a countable basis for its topology.

Since one usually works with a unique SCD F of X , in what follows we will omit F .

If X is an abstract stratified set, then A is metrizable and the tubular neighbourhoods
{TX}X∈Σ may (and will always) be chosen such that: “TXY 6= ∅ ⇔ X ≤ Y ” and “TX ∩ TY 6=
∅ ⇔ X ≤ Y or X ≥ Y ” (where both implications ⇐ automatically hold for each {TX}X) as in
[8, 9], pp. 41-46.

The notion of system of control data of X , introduced by Mather, is very important because it
allows one to obtain good extensions of (stratified) vector fields [8, 9] which are the fundamental
tool in showing that a stratified (controlled) submersion f : X → M into a manifold, satisfies
Thom’s First Isotopy Theorem : the stratified version to Ehresmann’s fibration theorem [17, 8,
9, 3]. Moreover by applying it to the projections πX : TX → X it follows in particular that X
has a locally trivial structure and so also a locally trivial topologically conical structure.

Since Whitney (b)-regular) stratification are abstract stratified sets [8, 9], they are locally
trivial.

2.2. Condition (D) and Goresky’s results. The following definition was introduced by
Goresky first in [5] (1976) and [7] (1981).

Definition 2. 3. Let f : M → M ′ be a C1 map between C1-manifolds and W ⊆ M and
W ′ ⊆ M ′ Whitney stratifications such that the restriction fW : W → W ′ is a surjective
stratified submersion (so f takes each stratum Y of W to only one stratum Y ′ = f(Y ) of
W ′ = f(W )).

One says that f : M →M ′ satisfies condition (D) with respect to W and W ′ and we will say
for short that the restriction fW :W →W ′ satisfies the condition (D) if the following holds :

for every pair of adjacent strata X < Y of W and every point x ∈ X and every sequence
{yi}i ⊆ Y such that limi yi = x ∈ X and moreover limi TyiY = τ and limi Tf(yi)Y

′ = τ ′ in the
appropriate Grassmann manifolds then f∗x(τ) ⊇ τ ′.

Later on we will also consider given, with the obvious restricted meaning of the definition
2.3, what one intends by : “f : M → M ′ satisfies condition (D) with respect to X < Y ” and
“f : M →M ′ satisfies condition (D) with respect to X < Y at x ∈ X” (“at x ∈ X < Y ”).

In the whole of the paper we will denote Y ′ = f(Y ) and y′ = f(y) , ∀ y ∈ Y .

Two simple examples of f satisfying and not-satisfying the condition (D) are the following.

Example 2. 1. Let M be the horizontal plane M = {z = 1} ⊆ R3, M ′ = L(0, 1, 0) = y-axis ⊆
R3 and f : M →M ′ the standard projection f(x, y, z) = y.

Let W be the stratified space of support the half parabola W = {y = x2, x ≥ 0} ∩M in M
and stratification ΣW = {R,S} where R = {(0, 0, 1)} and S = W ∩ {x > 0}. Then R < S.
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Let W �be the strat�ed space of support the half y-axis, W�= M�� { y � 0} in M�and
strati�cation �W �= { R�, S�} where R�= { (0, 0, 0)} and S�= M��{ y > 0} . Then R�< S�.

Then for every sequence { sn } n �S such that limn sn = (0, 0, 1)�R one has :
�= limn TsnS = x-axis�ker f� and ��= limn Ts�nS

�= y-axis. Thus f�(�) ����.
Hence fW :W � W �does not satis�es the condition (D) at (0, 0, 1)�R < S.

Example 2. 2. Let consider the same strati�ed spaces of the example 2.1 but using now
W = { y = tan(x), x � 0} �M the half graph of the tangent map in M .

Then for every sequence { sn } n �S such that limn sn = (0, 0, 1)�R one has :
�= limn TsnS = L(1, 1, 0) ��ker f� and ��= limn Ts�nS

�= the y-axis line. Thus f�(�) � ��

Hence fW :W � W �satis�es the condition (D) at (0, 0, 1)�R < S.

Below Figure 1a represents the case of Example 2.1 while Figure 1b the case of Example 2.2

Figure 1a of Example 2.1 Figure 1b of Example 2.2

An important case in which condition (D) is satis�ed is given by the following ([5] 3.7.4):

Example 2. 3. Let h : RN � Rl × 0k be a surjective submersion and H �RN and H��Rl × 0k

linear cellular complexes such that the restriction hH : H � H�= f(H ) is a cellular map.
Then hH : H � H�satis�es the condition (D).

Proof. Obviously, H and H�are Whitney strati�cations whose strata are their linear cells.
Let R < S be cells of H , { si } i �S a sequence such that limi si = r �R �S, and let us

denote R�= h(R), S�= h(S) and s�i = h(si) and r�= h(r).
Since S and S�are linear cells, then TsiS and Ts�iS

�are always the same two vector subspaces

independently of i�N : namely [S]�RN and [S�]�Rl × 0k.
So limi TsiS = [S] and limi Ts�iS

�= [S�].

Similarly since h : S � S�is a cellular map, it is the restriction of a linear a�ne map and
then h�si : TsiS � Ts�iS

� is independently of i �N always the same linear surjective map

H : [S] � [S�].
Thus

h�r(lim
i
TsiS) = h�r([S]) = H([S]) = [S�] = lim

i
Ts�iS

�= lim
i
h�si([s]) .
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Example 2. 4. Let f : M � M�be a surjective C1-submersion and h and h�two C1 cellulari-
sations of two subsets K �M and K��M�making the following diagram

H h� K �M

g ∼ ∼ f

H� h�� K��M�.

commutative where g : H � H�is a cellular map of cellular complexes.
Then fK : K � K�satis�es the condition (D).

Proof. Since h is a C1 cellularisation of K, then by de�nition [6], �p�� in a simplex � < �

of H , the map h admits a C1 extension �h, a di�eomorphism on a neighbourhood Up of p in the
a�ne plane spanned by the linear cell �.

Similarly, h�being a C1 cellularisation of K�it admits a C1 extension �h�, a di�eomorphism
on a neighbourhood Up�of p�= g(p) in the a�ne plane spanned by the linear cell ��= g(�).

Therefore, �q = h(p) �K (h a bijection), with the two isomorphisms (�h�p)
�1 and �h��p� one

has:

f�q = �h��p��g�p �(�h�p)
�1 .

Finally, since by Example 2.3 g satis�es Condition (D) at p��< �, then f satis�es Condition

(D) at q = f(p)�f(�) < f(�).

The main reason for which Goresky introduced Condition (D) is that it provided the (b)-
regularity for the natural strati�cations on the mapping cylinder of a strati�ed submersion.

Proposition 2. 1. Let � : E � M�be a C1 riemannian vector bundle and M = S�M� the
τ-sphere bundle of E. If W �M , W �= �(W )�M�are two Whitney strati�cations such that
�W :W � W �is a strati�ed submersion which satis�es condition (D), then the closed strati�ed
mapping cylinder

CM�(W ) =
�

Y�W

�
(CM�(Y )≥ �M�(Y ))≤�M�(Y )≤Y

�
is a Whitney (i.e. (b)-regular) strati�ed space.

Proof. [7] Appendix A.1. Lemma (i).

Our work in § 3 will be essentially to give a new proof, together with a �ner analysis, of the
following important statement which is the key property in proving the Proposition below :

Proposition 2. 2. Every Whitney strati�cationW with conical singularities and conical control
data admits a Whitney cellularisation.

Proof. [7] Appendix A.2. Proposition.

Propositions 2.1 and 2.2 are the main properties which allowed Goresky to prove Proposition
below and, thanks to this, his two homology representation theorems, Theorem 1.1 and Theorem
1.2, recalled in the introduction.

Proposition 2. 3. Every Whitney strati�cation W in a manifold M is � cobordant� in M to
one W �having conical singularities and control data, and which is hence (b)-regular.
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Proof. [7] Appendix A.3. Proposition.

We end this section recalling that a detailed account of condition (D) including new analytic
su�cient conditions in terms of limits of a new distance function between tangent spaces is given
in [14].

3. Condition (D) and stratified mapping cylinders.

Let X = (A,�) be a Whitney strati�ed space with strati�cation �and support A closed in

RN.
In this section we consider the important case in which f| W :W �M � W ��M is obtained

as the restriction of a projection �X : TX � X on a stratum X of an SCD F = { (�X , σX) :
TX � X × R} X�� of X .

For our analysis it will be convenient to add to the strati�cation X all strata of RN ≥A.
The connected components of RN ≥ A being N -manifolds this will again give a Whitney

strati�cation, namely again X of A⊇(RN ≥A) = RN and then we will not lose generality.

It is well known that each neighbourhood TX of an SCD of X can be obtained as a tubular
neighbourhood of X in RN and �X : TX � X as a C1 map [8].

On the other hand TX remains equipped with the induced Whitney strati�cation by its
intersections with all strata Y > X of X ; that is : TX = ≤Y�XTXY (as usual TXY = TX �Y ).

Similarly the τ-sphere bundle S�X = σ�1
X (τ) of TX , remains equipped with a natural induced

Whitney strati�cation S�X = ≤Y >XS�XY where S�XY = S�X �Y .
Let consider then for f : M � M�the restriction map f = �X | S�X : S�X � X between the

C1-manifolds M = S�X and M�= X which is a C1-submersion [8].

We will consider for W a Whitney strati�cation of a compact set W �S�X stratifying �X as
de�ned below.

De�nition 3. 4. Let W = (W,��) be a Whitney strati�cation of a compact set W �S�X .
We will say that W strati�es �X if the image W�= �X(W ) has a natural Whitney strat-

i�cation W �= ≤S�S�(where S�= �X(S), and S ranges over all strata of W ) which makes
�X | W :W � W �a strati�ed surjective submersion (denoted �W ).

We will investigate the condition (D) for the restriction fW = �W :W �S�X � W ��X.

A very important example occurs when W is a Whitney triangulation of S�X ≥⊇X�<XT�X�for
which the restriction �X | : S�X ≥⊇X�<XT�X�� X ≥⊇X�<XT�X� is a PL map [5] : this case will
be treated in Corollary 3.2.

Let l = dimX. The analysis of condition (D) at a point x�R for every stratum R of W is
local and invariant by C1-di�eomorphisms, hence starting from now we will suppose [18] that

τ = 1, X = Rl × 0k (l + k = N) and �X = �, σX = σ are the standard data :

σ(z) =
�
z2
l+1 + · · · + z2

N

�1
2 , �(z) = (z1, ..., zl, 0

k) where z = (z1, ..., zN )�RN .

Thus S�X = S1
X = { z �RN | z2

l+1 + · · · + z2
N = 1} = Rl × Sk�1 and the C1-submersion

f = �X | S�X is the canonical projection : Rl × Sk�1 � Rl × 0k (also denoted �X).

In particular W will be a Whitney strati�cation �S1
X = Rl × Sk�1 stratifying �X .

With these hypotheses the closed cone with straight lines in RN :

CW �(W ) = { tp+ (1≥ t)�(p) | p�W , t�[0, 1] } ,



150 CLAUDIO MUROLO

with its natural strati�cation, gives a di�erential model of the strati�ed mapping cylinder of the
strati�ed submersion �W :W � W �as follows.

For every subset H �S1
X , written H�= �X(H) let us denote by :

CH�(H) =
�
tp+ (1≥ t)�(p) | p�H , t�[0, 1]

�

CoH�(H) =
�
tp+ (1≥ t)�(p) | p�H , t�]0, 1[

�
respectively the closed and the open cone of H induced by �.

The natural strati�cation of CW �(W ) is then given by :

CW �(W ) =
�
S�W

�
S ≤CoS�(S)≤S�

�
.

Proposition below says that CW �(W ) can be strati�ed as the strati�ed image of an appropriate
globally C1 strati�ed map F which makes it into a di�erential model of the strati�ed mapping
cylinder M(�W ) = (W × [0, 1]≤W �)

�
� (z, 0) ⊆ �(z)��.

Proposition 3. 4. Let F be the map

F : S1
X × [0, 1] � CX(S1

X) , F (z, t) = tz + (1≥ t)z� , z�= �X(z) .

1) F is a homotopy satisfying F0(z) = 1S1
X

(z) and F1(z) = �X | S1
X

(z) whose restriction o�

F (S1
X × { 0} ) = X, that is F| : S1

X × ]0, 1] � CX(S1
X)≥X = CoX(S1

X)≤S1
X , is a C1-isotopy.

2) CW �(W ) = F (W �× [0, 1]) .

Proof. Immediate.

Looking at the regularity of the incidence relations in CW �(W ) we have :

Proposition 3. 5. Let W be a Whitney strati�cation in S1
X = Rl × Sk�1 which strati�es the

canonical projection �X : S1
X � X = Rl × 0k and let W �= �X(W ).

For every pair of strata R < S of W , by denoting S�= �X(S), R�= �X(R), the cone

CR��S�(R⊇S) =
�
R≤CoR�(R)≤R�

�
≤
�
S ≤CoS�(S)≤S�

�
satis�es (b)-regularity for all incidence relations < below :

R < S � W � S1
X

� �
CoR�(R) < CoS�(S) �CW �(W ) � RN
� �
R� < S� � W � � X .
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Figure 2

Proof. Since W and W �are Whitney (b)-regular strati�cations the pair of strata R < S in
W and R�< S�in W �are trivially (b)-regular.

Since the proofs of (b)-regularity for the pairs R�< CoR�(R) and S�< CoS�(S) are obviously
the same and this also holds for the pairs R < CoR�(R) and S < CoS�(S) it will be su�cient to
prove the (b)-regularity of the following adjacent pairs of strata :

R S

�
CoR�(R) < CoS�(S)

�
S�.

The restriction of the C1-homotopy F to S1
X × ]0, 1] (namely again F ) :

F : S1
X × ]0, 1] � CX(S1

X)≥X , F (z, t) = �(z) + t(z ≥ �(z))

is a C1 di�eomorphism of manifolds with boundary such that :

CoS�(S) = F (S × ]0, 1[) , S = F (S × { 1} ) and CoR�(R) = F (R × ]0, 1[) .

Hence the (b)-regularity of

R < CoS�(S) , S < CoS�(S) and CoR�(R) < CoS�(S)

follows via F respectively by the (b)-regularity in RN of

R < S × ]0, 1[ , S < S × ]0, 1[ and R × ]0, 1[< S × ]0, 1[.

Then, it only remains to prove that S�< CoS�(S) is (b)-regular.

It is well known that (b)-regularity is satis�ed for a pair of strata S�< Y if and only if
(a)-regularity and (b�S�Y )-regularity are satis�ed for the restriction �S�Y : TS��Y � S�of a
C1-retraction �S�: TS�� S�de�ned on a neighbourhood TS�of S�[18].

We will show then that S�< Y = CoS�(S) is (a)- and (b�S�Y )-regular.

(a)-regularity. For every point z �S1
X , by denoting z = (x, x�) with x�Rl and x��Rk then

�(z) = (x, 0k) and z ≥ �(z) = (0l, x�) and F (x, x�, t) = (x, tx�). Similarly for every v �Rl+k,
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v = (u, u′), and at every point (z, t) = (x, x′, t) ∈ S1
X×]0, 1[ the image of the differential map F

F∗(z,t) : T(z,t)(S
1
X × [0, 1]) → TF (z,t)CX(S1

X)

is given by :

F∗(z,t)(v, λ) =

1Rl 0 0

0 t · 1Rk x′

 ·
u
u′

λ

 = (u, tu′) + λ(0, x′) =

= π(v) + t(v − π(v)) + λ(z − π(z)) .

By considering the submanifold Yt = F (S × {t}) of Y = CoS′(S) = F (S×]0, 1[) and a point
y = F (s, t) ∈ Yt ⊆ Y one finds :

TF (s,t)Yt = F∗(s,t)
(
T(s,t)(S × {t})

)
= F∗(s,t)(TsS × {0}) =

{
F∗(s,t)(v, 0) | v ∈ TsS

}
with

F∗(s,t)(v, 0) = (tu, u′) = π(v) + t(v − π(v))

and so for every s0 ∈ S, if s′0 = π(s0), F being a C1 map at (s0, 0) one has :

lim
(s,t)→(s0,0)

TF (s,t)Yt = lim
(s,t)→(s0,0)

F∗(s,t)(TsS×{0}) = F∗(s0,0)(TsS×{0}) = π∗s0(Ts0S) = Ts′0S
′.

Consequently, for each point s0 ∈ S :

lim
(s,t)→(s0,0)

T(s,t) C
o
S′(S) ⊇ lim

(s,t)→(s0,0)
TF (s,t)Yt = Ts′0S

′

which proves the (a)-regularity S′ < CoS′(S).

(bπS′Y )-regularity. To prove that S′ < CoS′(S) is (bπS′Y )-regular, it is natural to take for πS′

the restriction of the canonical projection π : RN → Rl × 0k, and denote it again by π.

Let us consider a sequence {F (sn, tn)}n ⊆ CoS′(S) such that limn F (sn, tn) = s′0 ∈ S′ and
there exist both limits of lines and tangent spaces :

L = lim
n
F (sn, tn)π(F (sn, tn)) ∈ G1

n and τ = lim
n
TF (sn,tn) C

o
S′(S) ∈ Ghn , (h = dimS + 1) .

Then {sn} ⊆ S is a convergent sequence, limn sn = s0 ∈ S, such that if s′n = π(sn) then
limn s

′
n = s′0 = π(s0) and limn tn = 0.

Since CoS′(S) = F (S×]0, 1[) = CS′(S)−S∪S′, with S′ = π(S) and π(F (sn, tn)) = π(sn) = s′n,

then for every line Ln = F (sn, tn)π(F (sn, tn)) we have :

Ln = F (sn, tn)π(F (sn, tn)) = sn s′n = [sn − s′n] ,

where [v] denotes the vector subspace spanned by v ∈ RN , so that

L = lim
n
Ln = lim

n
[sn − s′n] = [s0 − s′0] .

On the other hand, for every n ∈ N, by decomposing in a direct sum

T(sn,tn) S×]0, 1[ = TsnS × R = TsnS × {0} + {0h} × R
one also has :
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F�(sn,tn)

�
T(sn,tn)S × ]0, 1[

�
= F�(sn,tn)

�
TsnS × { 0} ) + F�(sn,tn)

�
{ 0h } × R

�
=

�
�(v) + tn(v ≥ �(v)) | v �TsnS

�
+
�
ρ(sn ≥ s�n) | ρ �R} =

as in the previous proof of (a)-regularity :

= TF (sn,tn)Ytn + [sn ≥ s�n] .

Finally, since

lim
n

(TF (sn,tn)Ytn + [sn ≥ s�n]) � lim
n
TF (sn,tn)Ytn + lim

n
[sn ≥ s�n] ,

one �nds :

� = lim
n

TF (sn,tn) C
o
S�(S) = lim

n
F�(sn,tn)

�
T(sn,tn))S × ]0, 1)[

�
=

= lim
n

�
TF (sn,tn)Ytn + [sn ≥ s�n]

�
� Ts�0S

� + [s0 ≥ s�0] .

This proves �� L and concludes the proof of (b�)-regularity of S�< CoS�(S).

If we consider as in Proposition 3.5 for �S��Y : Y ⊇S�� S�the restriction of � : RN �
Rl × 0 and similarly for the distance function to S�the restriction of the standard distance

σ(z1, ..., zN ) =
�
z2
l+1 + · · · + z2

N

�1
2 , then the strati�cation of only two strata S�< CoS�(S) = Y

remains equipped with an SCD { (�S�, σS � )} . With such an SCD one can consider the canonical

distribution DS�Y : S�⊇Y � GdimS�

N relative to the (a)-regular pair of strata S�< Y = CoS�(S) =
F (S × ]0, 1[) as de�ned in [10, 11], by the subspace of TyY closest to Ts�S

� :

DS�Y (y) =� (ker(�S�Y , σS�Y )�y ; ker σS�Y�y)

where the notation � (U, V ) means the orthogonal complement of a vector subspace V in a

vector space U and V �U �RN are considered with the standard Euclidian scalar product.

Remark 3. 1. By Proposition 3.5, S�< CoS�(S) is (a)-regular, hence the canonical distribution

DS�Y (y) relative to S�< CoS�(S) = Y satis�es : limy� s��S�DS�Y (y) � Ts�S�[10, 11].

Now, for every t�]0, 1], the di�eomorphism

Ft : S = Y1 � Yt = F (S × { t} ) , y = Ft(s) = F (s, t) = �(s) + t(s≥ �(s))

induces (as in the proof of 3.3) an isomorphism between the tangent spaces and their subspaces

Ft�s : TsS � TyYt , Ft�s(v) = �(v) + t(v ≥ �(v)) .

By considering for the Whitney strati�cation W �S1
X = Rl × Sk�1 stratifying the canonical

projection �X : S1
X = Rl × Sk�1 � X = Rl × 0k (i.e. such that the map �W : W �

W �= �X(W ) is a strati�ed surjective submersion) and for each stratum S of W the canonical
distribution { D(s)} s of �W | S (see also [14] § 3) de�ned by, D(s) =� (ker �X | S�s , TsS) , we have :
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Lemma 3. 1. The strati�cation S�< Y = CS�(S), with the SCD { (�S�Y , σS�Y )} , satis�es:

1) Each hypersurface Yt = Ft(S) of Y , coincides with the hypersurface σ�1
S�Y (t) : Yt = σ�1

S�Y (t).

2) If y = F (s, 1), so that y = s�Y1 = S the distributions D(s) = DS�Y (y) coincide.

3) Ft : S � Yt, carries the distribution D(s) into DS�Y (y) :

Ft�s(D(s)) = DS�Y (y) .

Figure 3

Proof 1). If y = F (s, �)�Y , being y ≥ �(y) = �(s≥ �(s)) and | | s≥ �(s)| | = 1 one has :

σS�Y (y) = | | y ≥ �(y)| | = | | �(s≥ �(s))| | = � · | | s≥ �(s)| | = � and so :

y �Yt ◦ �= t ◦ σS�Y (y) = t ◦ y �σ�1
S�Y (t) .

Proof 2). If y = F (s, 1), so s = y and S = Y1 = σ�1
S�Y (1)�Y (by i)) one has :

TsS = TyY1 = Tyσ
�1
S�Y (1) = kerσS�Y�y �TyY

and since �X | S = �S�Y | Y1
we also have

ker �X | S�s = ker �S�Y | Y1�y = ker �S�Y�y �TyY1 = ker �S�Y�y �kerσS�Y�y

so that, using again TsS = kerσS�Y�y, one concludes :

D(s) =� (ker �X | S�s, TsS) =� (ker �S�Y�y �kerσS�Y�y ; kerσS�Y�y) = DS�Y (y) .

Proof 3). First remark that, for every point y = F (t, s) and vector v �D(s), one has :
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Ft�s(v)�Ft�s(TsS) = TF (t,s)Ft(S) = TyYt = Tyσ
�1
S�Y (t) = ker σS�Y�y

By ker ��s � ker �S�Y�y � ker �S�Y�y �kerσS�Y�y it follows :

�(v)�Rl × 0 = (ker ��s)
� �(ker �S�Y�y)�

and since v ≥ �(v)�ker �S�Y�y = (kerσS�Y�y)� we �nd :

Ft�s(v) = �(v)≥ t(v ≥ �(v))�(ker �S�Y�y)� + (kerσS�Y�y)� = (ker �X�y �kerσS�Y�y)�

and �nally thanks to Ft�s(v)�kerσS�Y�y we deduce that Ft�s(v) also lies in :

[ker �X�y�kerσS�Y�y]� �kerσS�Y�y �� (ker �S�Y�y� kerσS�Y�y , kerσS�Y�y) = DS�Y (y) .

In conclusion Ft�s(D(s)) �DS�Y (y) and having the same dimension (by 2)) they coincide.

Proposition 3.5 proves the (b)-regularity of each pair of adjacent strata of the cone CR��S�(R⊇
S) except for R�< CoS�(S).

Therefore, to have �nally the global (b)-regularity of a cone CW �(W ) one needs to obtain the
(b)-regularity of the pair R�< CoS�(S) for each stratum R�= �X(R) and R < S.

This property will be described in terms of condition (D) in Theorem below.

Theorem 3. 3. Let W be a Whitney strati�cation in S1
X = Rl × Sk�1 stratifying the canonical

projection �X : S1
X = Rl × Sk�1 � X = Rl × 0k and let W �= �X(W ).

Let R < S be two strata of W and r �R, S�= �X(S), R�= �X(R) and s�= �X(s), �s�S.

The following conditions are equivalent :

1) �W :W � W �satis�es the condition (D) at r �R < S ;

2) �X�r(limiD(si)) � limi �X�si(D(si)) for every sequence { si } i �S : limi si = r �R < S.

3) The cone CR��S�(R ⊇S) has the strata S�< Y = CoS�(S) such that the canonical distri-
bution DS�Y (y) satis�es : for every sequence { yi = F (si, ti)} i �Y such that limi yi = r��R�
limiDS�Y (yi) � limi �S�Y�yi(DS�Y (yi)) .

Proof. Let { si } �S be a sequence such that limi si = r �R and both limits limi TsiS = �
and limi ��si(TsiS) = ��exist in the appropriate Grassmann manifolds.

Since W strati�es �X : W � W � then the restriction �S : S � �X(S) = S� is a C1

submersion and in particular Ts�iS
�= ��si(TsiS).

(1 ◦ 2). It is (1 ◦ 4) of Theorem 4.1 [14] for the strati�ed submersion �W :W � W �.

(2 ◦ 3). Statement 2) above is obviously intended for every sequence { si } �S such that both
limits limiD(si) = D and limi ��si(D(si)) = D�exist in the appropriate Grassmann manifold
and similarly for the limits in the statement 3).

By Lemma 3.1 DS�Y (yi) = Fti�si(D(si)) and because the homotopy F : id ⊆ � is a C1 map
such that F0 = �X , if (r, 0) = limi(si, ti) we have :

lim
i
DS�Y (yi) = lim

i
Fti�si(D(si)) = F0�r(lim

i
D(si)) = �X�r(lim

i
D(si)) .

By the submersivity of �X | S : S � S�and of �S�Y : Y � S�([11]), for every i we have both:
�X�si(D(si)) = Ts�iS

�= �S�Y�yi(DS�Y (yi)) and in conclusion :
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�X�r(lim
i
D(si)) � lim

i
�X�si(D(si)) 
� lim

i
DS�Y (yi) � lim

i
�S�Y�yi(DS�Y (yi)) .

Corollary 3. 1. Let W be a Whitney strati�cation in S1
X = Rl × Sk�1 stratifying the canonical

projection �X : S1
X = Rl × Sk�1 � X = Rl × 0k and let W �= �X(W ).

Let R < S be two strata of W and r �R, S�= �X(S), R�= �X(R) and s�= �X(s), �s�S.
If the strati�ed submersion �W :W � W �satis�es condition (D) at r �R < S then :

1) The cone CR��S�(R⊇S) has strata Y = CoS�(S) > S�such that for every sequence of points
{ yi = F (si, ti)} �Y such that limi yi = r��R�one has lim

i
DS�Y (yi) � Tr�R�.

2) The cone CR��S�(R ⊇S) has the strata Y = CoS�(S) > S�such that for every sequence of
points { yi = F (si, ti)} �Y such that limi yi = r��R�one has limi TyiY � limi Ts�iS

�.

3) The cone CR��S�(R⊇S) has the pair of strata Y = CoS�(S) > R�which is (a)-regular.

Proof 1). By hypothesis the strati�ed submersion �W :W � W �satis�es the condition (D)
at r �R < S so by Theorem 3.3 :

lim
i
DS�Y (yi) � lim

i
�S�Y�yiDS�Y (yi) = lim

i
Ts�iS

�

and moreover R�< S�being (a)-regular by hypothesis on W �one also has

lim
i
Ts�iS

� � Tr�R
� and so lim

i
DS�Y (yi) � Tr�R

�.

Proof 2). From the proof of 1) one has : limi TyiY � limiDS�Y (yi) � limi Ts�iS
�.

Proof 3). Thanks to 2) and 1), �{ yi = F (si, ti)} �Y such that limi yi = r��R�one has :

lim
yi� r�

TyiY � lim
i
DS�Y (yi) � lim

i
Ts�iS

� � Tr�R
�.

Proposition 3. 6. Let W be a Whitney strati�cation in S1
X = Rl × Sk�1 stratifying the

canonical projection �X : S1
X = Rl × Sk�1 � X = Rl × 0k and let W �= �X(W ).

Let R < S be two strata of W and r �R, S�= �X(S), R�= �X(R) and s�= �X(s), �s�S.

If the strati�ed submersion �W :W � W �satis�es the condition (D) at r �R < S then the
following conditions are equivalent :

1) The cone CR��S�(R⊇S) is (a)-regular at r��R�< CoS�(S).

2) The cone CR��S�(R⊇S) is (b)-regular at r��R�< CoS�(S).

Proof. 1) � 2). As in Proposition 3.5 we use that condition (b) holds if and only if the
conditions (a) and (b�R�) hold for some C1-retraction �R�de�ned on an open neighbourhood of
R�.

The proof reduces then to proving that (b�R�) holds with respect to the pair R�< Y = CoS�(S).
As in Proposition 3.5 if y = ts+ (1≥ t)s��Y , �S�(y) = s�since CoS�(S) is a cone, then :

y �S�(y) = [s≥ s�] .
Let us �x a sequence { yi = tisi + (1≥ t)s�i } i �Y converging to a point r��R�< S�such that

both limits exist in the appropriate Grassmann manifolds :

�= lim
i
TyiC

o
S�(S) and L = lim

i
yi �R�(yi) = lim

i
[yi ≥ �R�(yi)] .
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Splitting every vector yi ≥ �R�(yi) in the following orthogonal sum :

yi ≥ �R�(yi) = (yi ≥ s�i) + (s�i ≥ �R�(yi))

every 1-dimensional vector space yi �R�(yi) = [yi ≥ �R�(yi)] is contained in the 2-dimensional
vector space spanned by the two orthogonal 1-dimensional vector space as follows :

yi �R�(yi) = [yi ≥ �R�(yi)] � [yi ≥ s�i] + [s�i ≥ �R�(yi)] .
Obviously limi yi = r�if and only if limi ti = 0, limi si = r and so limi s

�
i = r�. Hence :

lim
i

[yi ≥ s�i] = [r ≥ r�] .

By hypothesis, R�< S�being (b)-regular the condition (b�R�) holds with respect to R�< S�,
up to taking a subsequence if necessary, such that limi[s

�
i ≥ �R�(yi)] exists in G1

N , we have :

lim
i

[s�i ≥ �R�(y�i)] � lim
i
Ts�iS

�.

Every [yi ≥ s�i] � [s�i ≥ �R�(yi)] being orthogonal, then

lim
i

�
[yi ≥ s�i] + [s�i ≥ �R�(yi)]

�
= lim

i
[yi ≥ s�i] + lim

i
[s�i ≥ �R�(yi)]

and by Theorem 3.3, since the strati�ed submersion �W : W � W �satis�es condition (D)
at r �R < S then limi Ts�iS

��limiDS�Y (yi). Therefore one �nds :

lim
i
yi �R�(yi) � lim

i

�
[yi ≥ s�i] + [s�i ≥ �R�(yi)]

�
=

= lim
i

[yi≥s�i] + lim
i

[s�i≥�R�(yi)] � lim
i
, [yi≥s�i] + lim

i
DS�Y (yi) =

and �nally, again since [yii ≥ s�i] � DS�Y (yi) are orthogonal for every i one concludes :

= lim
i

�
[yi ≥ s�i] + DS�Y (yi)

�
� lim

i
TyiY .

That is R�< Y = CoS�(S) satis�es the condition (b�R�) at r��R�.

Proof. 2) � 1). The (b)-regularity always implies the (a)-regularity [19, 3].

We �nd then the following equivalent version of Goresky� s result Proposition 2.1 :

Theorem 3. 4. Let W be a Whitney strati�cation in S1
X = Rl × Sk�1 which strati�es the

canonical projection �X : S1
X = Rl × Sk�1 � X = Rl × 0k and let W �= �X(W ).

If �W :W �S1
X � W �= �X(W )�X satis�es the condition (D), then :

1) The closed cone CW �(W ) = { tp+ (1≥ t)�(p) | p�W , t�[0, 1] } is (a)-regular.

2) The closed cone CW �(W ) = { tp+ (1≥ t)�(p) | p�W , t�[0, 1] } is (b)-regular.

Proof. Every incidence relation in CW �(W ) comes from some strata R < S of W in a cone
CR��S�(R⊇S)�CW �(W ) as treated in Proposition 3.5, Corollary 3.1 and Proposition 3.6.

By Proposition 3.5, all incidence relations on CR��S�(R ⊇S) are (a)- and (b)-regular except
possibly for the pairs R�< CoS�(S).
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Since by hypothesis �W : W �S1
X � W �= �X(W ) �X satis�es the condition (D), every

pair R�< CoS�(S) is (a)-regular by Corollary 3.1 and so also (b)-regular by Propostion 3.6.

We also �nd, when W and W �are Whitney triangulations (or cellularisations), the following
important corollary which is helpful as an approach to Conjectures 1.1 and 1.2. :

Corollary 3. 2. If W and W �are Whitney triangulations (resp. cellularisations) of compact
sets W �SX(1) and W��X such that �X | W :W � W �is a simplicial (resp. cellular) map,
then the strati�ed closed cone CW �(W ) is a Whitney cellularisation of CW�(W ).

Proof. Since �X | W : W � W �is a simplicial (resp. cellular) map, thanks to Example 2.4 it
satis�es Condition (D) and so the closed cone CW �(W ) is (b)-regular thanks to Theorem 3.4.

Condition (D) for � | W :W � W �is however su�cient for (b) regularity but not necessary :

Example 3. 5. Let us consider a quarter of the Whitney umbrella :

CW �(W ) =
�

(x, y, z)�R3 | yz2 = x2 , x � 0 , z � 0
�

where W = R≤S and W �= R�≤S�are strati�ed by :

R = { (0, 0, 1)} < S = half parabola�SX(1) ;
R�= { (0, 0, 0)} < S�= { 0} × [0,+� [× { 0} �X = { 0} × R × { 0} .

Then as in Example 2.1, � | W : W � W �does not satisfy condition (D), but R�= { 0} is a

point, so R�< Y = CoS�(S) is automatically (a)� regular and easily also (b)-regular.

Figure 4
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SINGULARITIES OF ONE-PARAMETER PEDAL UNFOLDINGS OF

SPHERICAL PEDAL CURVES

T. NISHIMURA

Abstract. In this paper, we present the concept of one-parameter pedal unfoldings of a

pedal curve in the unit sphere S2, and we classify their generic singularities with respect to
A-equivalence.

1. Introduction

Let I be an open interval containing zero, and let S2 be the unit sphere in Euclidean space
R3. A C∞ map r : I → S2 is called a spherical unit speed curve if

∥∥dr
ds (s)

∥∥ is 1 for any s ∈ I.

For a given spherical unit speed curve r : I → S2, we put

t(s) =
dr

ds
(s), n(s) = r(s)× t(s),

where r(s) × t(s) denotes the vector product of r(s) and t(s). The construction clearly shows
that the vector t(s) is perpendicular to the vector r(s) and that the vector n(s) is perpendicular
to both r(s) and t(s). The map n : I → S2 is called the spherical dual of r; the singularities of
spherical dual curves are Legendrian singularities that are relatively well investigated [1, 2, 3, 4,
5, 21].

For a point P ∈ S2, let EP denote the set {X ∈ S2 | P · X = 0}, where P · X denotes the
scalar product of P and X. For a given spherical unit speed curve r : I → S2, consider a point
P of S2 − {±n(s) | s ∈ I}, where n is the spherical dual of r. The spherical pedal curve relative
to the point P for a given spherical unit speed curve r : I → S2 is a curve obtained by mapping
s ∈ I to the nearest point in En(s) from P . The pedal curve relative to P for r is denoted by
pedr,P , and the point P is called the pedal point of the pedal curve pedr,P . Note that all points
in En(s) are equidistant from ±n(s); hence, the point P must lie outside {±n(s) | s ∈ I} to
satisfy the definition of pedr,P . The classification of singularities of spherical pedal curves can
be found in literature [17, 18, 19].

Suppose that the location of the pedal point P moves smoothly, depending on one-parameter
λ ∈ J , where J is an open interval containing zero in R. In other words, suppose that there exist
an open interval J containing zero and a C∞ immersion P : J → S2. Then, the pedal unfolding
of the pedal curve pedr,P (0) can be defined as the map Un-pedr,P : I × J → S2 × J , given by

Un-pedr,P (s, λ) = (pedr,P (λ)(s), λ).

Two C∞ map-germs f, g : (Rn, 0)→ (Rp, 0) are said to be A-equivalent if there exist germs of
C∞-diffeomorphisms h1 : (Rn, 0)→ (Rn, 0) and h2 : (Rp, 0)→ (Rp, 0) such that f ◦ h1 = h2 ◦ g.
For a spherical unit speed curve germ r : (I, 0)→ S2, we put κ(s) = n(s) ·t′(s), where t′ denotes
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Key words and phrases. spherical pedal curve, pedal unfolding, cross-cap, S±k singularity, Chen-Matumoto-
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Table 1. Normal forms of A-simple monogerms (R2, 0)→ (R3, 0) ([15])

Germ Name
f(s, λ) = (s, s2, λ) Immersion
f(s, λ) = (s3 + λs, s2, λ) Cross-cap (S0)
f(s, λ) = (s3 ± λk+1s, s2, λ), (k ≥ 1) S±k
f(s, λ) = (λ2s± s2k+1, s2, λ), (k ≥ 2) B±k
f(s, λ) = (λs3 ± λks, s2, λ), (k ≥ 3) C±k
f(s, λ) = (λ3s+ s5, s2, λ) F4

f(s, λ) = (λs+ s3k−1, s3, λ), (k ≥ 2) Hk

the derivative of t. Then, the point r(0) is called the inflection point (resp., ordinary inflection
point) if κ(0) = 0 holds (resp., κ(0) = 0 and κ′(0) 6= 0 hold). For any k ≥ 0, a C∞ immersed
curve germ P : (J, 0)→ S2 is said to have (k+1)-point contact with r : (I, 0)→ S2 at P (0) = r(0)
if P (0) = r(0), F ◦ P (0) = (F ◦ P )′(0) = · · · = (F ◦ P )(k)(0) = 0, and (F ◦ P )(k+1)(0) 6= 0 hold
for any neighbourhood U of r(0) and any non-singular C∞ function F : U → R such that
F ◦ r(s) = 0 (for details on (k + 1)-point contact, see [5]). It can be clearly seen that a C∞

immersed curve germ P : (J, 0)→ S2 has 1-point contact with r : (I, 0)→ S2 at P (0) = r(0) if
and only if P and r are transverse at P (0) = r(0).

Theorem 1. Let I, J be open intervals containing 0 ∈ R, and let r : I → S2 be a spherical
unit speed curve such that r(0) is not an inflection point. Furthermore, let P : J → S2 be a C∞

immersion. Then, the following hold:

(1) The germ of pedal unfolding Un-pedr,P : (I × J, (0, 0)) → S2 × J is immersive if and
only if P (0) 6= r(0).

(2) The germ of pedal unfolding Un-pedr,P : (I × J, (0, 0))→ S2 × J is A-equivalent to the
cross-cap in Table 1 if und only if P (0) = r(0) and P, r are transverse at P (0) = r(0).

(3) The germ of pedal unfolding Un-pedr,P : (I × J, (0, 0))→ S2 × J is A-equivalent to S±k
in Table 1 if and only if P (0) = r(0) and P has (k + 1)-point contact with r at 0 ∈ J
(k ≥ 1).

(4) The A-equivalence classes of map-germs B±k , C
±
k , F4, and Hk in Table 1 can never be

realized as singularities of the pedal unfolding Un-pedr,P .
(5) The germ of pedal unfolding Un-pedr,P : (I × J, (0, 0)) → S2 × J is A-equivalent to

the cuspidal edge in Table 2 if and only if P (0) = r(0) and (P (J), P (0)) coincides with
(r(I), r(0)) as set-germs.

If k is even, then it can be clearly seen that S+
k is A-equivalent to S−k [15]. On the other

hand, S+
k is not A-equivalent to S−k if k is odd. Figure 2 shows that the curvature of r at

zero is greater than the curvature of P at zero if and only if the pedal unfolding Un-pedr,P is
A-equivalent to S−k . Since S±1 has been investigated independently in [6], it is reasonable to

classify the A-equivalence class of S±1 as Chen-Matumoto-Mond singularity.

Theorem 2. Let I, J be open intervals containing 0 ∈ R, and let r : I → S2 be a spherical unit
speed curve such that r(0) is an ordinary inflection point. Furthermore, let P : J → S2 be a C∞

immersion. Then, the following hold:

(1) The germ of pedal unfolding Un-pedr,P : (I × J, (0, 0))→ S2 × J is A-equivalent to the
cuspidal edge in Table 2 if and only if P (0) 6∈ En(0).
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Figure 1. Cross-cap. Left: λ = −ε, Center: λ = 0, Right: λ = ε.

Figure 2. S−1 . Left: λ = −ε, Center: λ = 0, Right: λ = ε.

Table 2.

Germ Name
g(s, λ) = (s3, s2, λ) Cuspidal edge
g+0 (s, λ) = (s5 + λs3, s2, λ) Cuspidal cross-cap (Cuspidal S0)
g±k (s, λ) = (s5 ± λk+1s3, s2, λ), (k ≥ 1) Cuspidal S±k

(2) The germ of pedal unfolding Un-pedr,P : (I × J, (0, 0)) → S2 × J is A-equivalent to the
cuspidal cross-cap in Table 2 if und only if P (0) ∈ En(0)−{r(0)} and P is transverse to
En(0) at P (0).

(3) The germ of pedal unfolding Un-pedr,P : (I × J, (0, 0)) → S2 × J is A-equivalent to
cuspidal S±k (k ≥ 1) in Table 2 if and only if P (0) ∈ En(0) − {r(0)} and P has (k + 1)-
point contact with En(0) (k ≥ 1).

As in the case of S±k singularities, it can be clearly seen that cuspidal S+
k singularity is A-

equivalent to cuspidal S−k singularity if k is even. On the other hand, cuspidal S+
k singularity

is not A-equivalent to cuspidal S−k singularity if k is odd. Figure 4 shows that for a sufficiently
small positive real number ε, there exists a positive real number δ such that the union of tangent
lines ∪s∈(−ε,ε)En(s) contains the images P ((−δ, δ)) if and only if the map-germ Un-pedr,P :

(I×J, (0, 0))→ S2×J is A-equivalent to cuspidal S−k singularity. Since map-germ g+0 singularity
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Figure 3. Cuspidal cross-cap. Left: λ = −ε, Center: λ = 0, Right: λ = ε.

Figure 4. Cuspidal S−1 . Left: λ = −ε, Center: λ = 0, Right: λ = ε.

is known as the normal form of the cuspidal cross-cap (see [11]), it is reasonable to classify the
A-equivalence class of the map-germ gk,± (resp., g1,±) as cuspidal S±k singularity (resp., cuspidal
Chen-Matumoto-Mond singularity).

It can be clearly seen that the cuspidal edge, cuspidal cross-cap, and cuspidal S±k are not
finitely A-determined (but finitely K-determined) by the Mather-Gaffney geometric character-
ization of finite determinacy, even though S±k singularity is (k + 2)-A-determined [15] (for the
definition of finite determinacy and Mather-Gaffney geometric characterization, see [23]). Thus,
in order to prove Theorems 1 and 2 in a unified manner, it is difficult to directly use the standard
techniques of the finite determinacy theory developed in [8, 9, 10, 13, 14, 15, 20, 23].

On the other hand, Saji succeeded in obtaining simple criteria for Chen-Matumoto-Mond
singularity and cuspidal S±k -singularities [22]. Although Saji’s criteria are useful, the criteria for

S±k singularities (k ≥ 2) have not been provided by him; therefore, Saji’s criteria are not suited
to our purpose. In this study, we plan to develop a unified method for proving Theorems 1 and
2; hence, we adopt a recognition criterion for map-germs that appear as singularities of pedal
unfoldings. It is important to note that this criterion has already been presented in a suitable
form in [15].

The preliminary work required to prove Theorems 1 and 2 is presented in Section 2. Theorems
1 and 2 are proved in Sections 3 and 4, respectively.
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2. Preliminaries

2.1. Spherical pedal curves. Let I, S2, and r : I → S2 be an interval containing zero, the
unit sphere in R3, and a spherical unit speed curve respectively. Furthermore, let t : I → S2,
n : I → S2 be map-germs, as described in Section 1. Then, we have the following Serret-Frenet
type formula.

Lemma 2.1 ([17]).  r′(s)
t′(s)
n′(s)

 =

 0 1 0
−1 0 κ(s)
0 −κ(s) 0

 r(s)
t(s)
n(s)

 .

By Lemma 2.1, the dual curve germ n : (I, 0)→ S2 is non-singular at 0 if and only if κ(0) 6= 0.
By using Lemma 2.1 recursively, we obtain the following:

Lemma 2.2. (1) Suppose that κ(0) 6= 0. Then, the properties r(0) ·n′(0) = 0, r(0) ·n′′(0) 6=
0, and t(0) · n′(0) 6= 0 hold.

(2) Suppose that κ(0) = 0 and κ′(0) 6= 0. Then, the properties r(0) ·n′(0) = r(0) ·n′′(0) = 0,
r(0) · n(3)(0) 6= 0, t(0) · n′(0) = 0, and t(0) · n′′(0) 6= 0 hold.

Let P be a point of S2 − {±n(s) | s ∈ I}.

Lemma 2.3 ([17]). The pedal curve of r relative to the pedal point P is given by the following
expression:

pedr,P (s) =
1√

1− (P · n(s))2
(P − (P · n(s))n(s)).

Let ΨP be the C∞ map from S2 − {±P} to S2, given by

ΨP (X) =
1√

1− (P ·X)2
(P − (P ·X)X).

The map ΨP , which has been introduced and used in [17, 18, 19] (the hyperbolic version of
ΨP has been introduced and investigated independently in [12]), has the following distinctive
properties :

(1) X ·ΨP (X) = 0 for any X ∈ S2 − {±P}.
(2) ΨP (X) ∈ RP + RX for any X ∈ S2 − {±P}.
(3) P ·ΨP (X) > 0 for any X ∈ S2 − {±P}.

By property 3, ΨP (S2 − {±P}) lies inside the open hemisphere centered at P . By properties 1
and 2, ΨP (EP ) = P . Let the open hemisphere centered at P be denoted by HP , and put BP =
π(S2−{±P}), where π : S2 → P 2(R) is the canonical projection. Since ΨP (X) = ΨP (−X), the

map ΨP canonically induces the map Ψ̃P : BP → HP . Then, by Lemma 2.3, pedr,P is factored
into three maps as follows:

pedr,P (s) = Ψ̃P ◦ π ◦ n(s).

Let p : B → R2 be the blow up centered at the origin in R2.

Lemma 2.4 ([17]). Let P be a point of S2. Then, there exist C∞ diffeomorphisms h1 : BP → B

and h2 : HP → R2 such that the equality h2 ◦ Ψ̃P = p ◦ h1 holds, and the set π(EP ) is mapped
to the exceptional set of p by h1.
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2.2. Criterion for recognition problem due to Mond. Let T : R2 → R2 be the linear
transformation of the form T (s, λ) = (−s, λ). Two C∞ function germs p1, p2 : (R2, 0) → (R, 0)
are said to be KT -equivalent if there exist a germ of C∞ diffeomorphism h : (R2, 0)→ (R2, 0) of
the form h ◦ T = T ◦ h and a C∞ function-germ M : (R2, (0, 0)) → R of the form M ◦ T = M ,
M(0, 0) 6= 0 such that p1 ◦ h(s, λ) = M(s, λ)p2(s, λ) ([15]).

Theorem 3 ([15]). Two C∞ map-germs of the following form

fi(s, λ) = (spi(s
2, λ), s2, λ) where pi(s

2, λ) 6∈ m∞2 , (i = 1, 2)

are A-equivalent if and only if the function-germs pi(s
2, λ) are KT -equivalent.

Note that Theorem 3 provides a criterion for the A-equivalence of C∞ map-germs of the
forms (s, λ) 7→ (ϕ(s, λ), s2, λ) (ϕ : (R2, 0) → (R, 0) is a C∞ function-germ) on the basis of the
Malgrange preparation theorem (for the Malgrange preparation theorem, see [4, 23]).

3. Proof of Theorem 1

Since r(0) is not an inflection point, the dual germ n : (I, 0)→ S2 is a C∞ immersive germ.

Proof of assertion 1 of Theorem 1.
Suppose that P (0) does not belong to En(0). Then, by Lemma 2.4, the restriction ΨP (0)|S2−{±P (0)}−EP (0)

is C∞ immersive. Thus, by Lemma 2.3, the map-germ pedr,P (0) : (I, 0) → S2 is also C∞ im-

mersive. Therefore, the map-germ Un-pedr,P : (I × J, (0, 0)) → S2 × J is also C∞ immersive.
Next, suppose that P (0) ∈ En(0) − r(0). Then, the image of the dual n and EP (0) intersect

transeversely at n(0). Thus, by Lemmata 2.3 and 2.4, the map-germ pedr,P (0) : (I, 0) → S2

is C∞ immersive. Therefore, the map-germ Un-pedr,P : (I × J, (0, 0)) → S2 × J is also C∞

immersive.
Conversely, suppose that the map-germ Un-pedr,P : (I×J, (0, 0))→ S2×J is C∞ immersive.

Then, in particular, the map-germ pedr,P (0) : (I, 0) → S2 is also C∞ immersive. In order to
conclude the proof of assertion 1 of Theorem 1, it is sufficient to show that the assumption
P (0) = r(0) implies a contradiction. The assumption P (0) = r(0) implies that the image of n is
tangent to EP (0) at n(0). By Lemma 2.4, the map-germ pedr,P (0) : (I, 0)→ S2 must be singular;
this is a contradiction. 2

Proof of assertion 5 of Theorem 1.
Suppose that both P (0) = r(0) and (P (J), P (0)) = (r(I), r(0)) as set-germs hold. Then, for

any λ ∈ J , pedr,P (λ) : (I, 0)→ S2 is A-equivalent to the ordinary cusp s 7→ (s3, s2) by [17] (also,
see [19]). Thus, by using the Malgrange preparation theorem and Theorem 3, the map-germ
Un-pedr,P : (I × J, (0, 0))→ S2 × J is A-equivalent to the cuspidal edge (s, λ) 7→ (s3, s2, λ).

Conversely, suppose that the map-germ Un-pedr,P : (I×J, (0, 0))→ S2×J is A-equivalent to
the cuspidal edge. Then, in particular, for any sufficiently small λ0 ∈ J , there exists a sufficiently
small s0 ∈ I such that the map-germ pedr,P (λ0) : (I, s0) → S2 is singular. Since r(0) is not an

inflection point, by Lemma 2.4, EP (λ0) = S2 ∩ (Rt(s0) + Rn(s0)). Therefore, P (λ0) = r(s0). 2

Proof of assertions 2 and 3 of Theorem 1.
By composing an appropriate rotation without the loss of generality, it can be assumed that

r(0) = (0, 1, 0), t(0) = (0, 0, 1), n(0) = (−1, 0, 0). For a point Q of S2, put H(Q) = {X ∈
S2 | Q ·X ≥ 0}, and let αn(0) : H(n(0))−En(0) → {−1} ×R2 be the central projection relative
to n(0). Then, by Lemma 2.2, the germ of composition αn(0) ◦ n is of the form

αn(0) ◦ n(s) =
(
s+ ϕ1(s), s2 + ϕ2(s)

)
(ϕj(s) = o(sj)).
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Since ϕ2(s) = o(s2), the map-germ given by h

(
s
√

1 + ϕ2(s)
s2

)
= s is a well-defined germ of local

C∞ diffeomorphism. Thus, there exists a C∞ map-germ ϕ̃1 : (I, 0)→ R such that

αn(0) ◦ n ◦ h(s) =
(
s+ ϕ̃1(s), s2)

)
(ϕ̃1(s) = o(s)).

Let αP (0) : H(P (0)) − EP (0) → R × {1} × R be the central projection relative to P (0). By the
form mentioned above and Lemma 2.4, the germ of composition αP (0) ◦pedr,P (0) is A-equivalent
to a map-germ of the following form:

s 7→
(
(s+ ϕ̃1(s))s2, s2

)
.

Next, we investigate the influence of moving the pedal points P (λ). Suppose that P (0) = r(0)
and P has (k + 1)-point contact with r at 0 ∈ J (k ≥ 0). In other words, suppose that there
exist a sufficiently small neighborhood U of r(0) in S2 and a C∞ function F : U → R such
that F ◦ r(s) ≡ 0 (∀s ∈ I ∩ r−1(U)), F ◦ P (0) = (F ◦ P )′(0) = · · · = (F ◦ P )(k)(0) = 0,
and (F ◦ P )(k+1)(0) 6= 0. Since r : I → S2 is a unit speed curve, it can be assumed that
F is non-singular provided that I (resp., U) is a sufficiently small neighborhood of 0 (resp.,

r(0)). Then, there exists a sufficiently small neighborhood Ũ ⊂ U of r(0) such that for any

X ∈ Ũ , the integral curve of −grad(F ) starting from X lies within Ũ until it reaches the image
of the unit speed curve r(I). Let this reaching point be denoted by γ(X) and define the map

Γ : Ũ → I as Γ(X) = r−1 ◦γ(X). Then, (Ũ , (Γ, F )) can be used as a chart at r(0) since the map

(Γ, F ) : Ũ → I ×R is non-singular. By using the chart (Ũ , (Γ, F )) and by the proof of assertion
5 of Theorem 1, the germ of composition(

s, λ) 7→ (αP (0) ◦ pedr,P (λ) ◦ h(s), λ
)

is A-equivalent to a map-germ of the following form:

(a) (s, λ) 7→
(
(s+ ϕ̃1(s))

(
s2 ± F ◦ P (λ)

)
, s2 ± F ◦ P (λ), λ

)
.

Furthermore, by the Malgrange preparation theorem and Theorem 3, a map-germ of the form
(a) must be A-equivalent to the map-germ f±k (s, λ) =

(
s
(
s2 ± λk+1

)
, s2, λ

)
.

Conversely, we suppose that the germ of pedal unfolding Un-pedr,P : (I × J, (0, 0))→ S2 × J
is A-equivalent to S±k (k ≥ 0), P (0) = r(0) and that P does not have (k+ 1)-point contact with
r at 0 ∈ J . Then, by the proof presented above, for any positive integer `, P does not have

(`+1)-point contact with r at 0 ∈ J . In particular, there exists a C∞ immersion P̃ : J → S2 such

that P̃ is sufficiently near P under the Whitney C∞ topology, and P̃ has (k + 2)-point contact
with r at 0 ∈ J . By the proof of the implication described above, it can be concluded that
S±k singularity is adjacent to S±k+1 singularity; however, this contradicts the adjacency diagram
given in [15]. 2

Proof of assertion 4 of Theorem 1.

Suppose that the map-germ Un-pedr,P : (I × J, (0, 0)) → S2 × J is A-equivalent to one
of B±k , C

±
k , F4, and Hk. Then, by assertions 1, 2, and 3 of Theorem 1, the given immersion

P : J → S2 must satisfy not only P (0) = r(0) but also the condition that for any positive
integer `, P does not have (`+ 1)-point contact with r at 0 ∈ J . Thus, for any positive integer `,

there exists a C∞ immersion P̃ : J → S2 such that P̃ is sufficiently near P under the Whitney

C∞ topology, and P̃ has the (` + 1)-contact with r at 0 ∈ J . Hence, it can be concluded that
one of B±k , C

±
k , F4, and Hk singularity is adjacent to S±` singularity for any positive integer `;

however, this contradicts the adjacency diagram given in [15]. 2
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4. Proof of Theorem 2

Since r(0) is an ordinary inflection point, by Lemma 2.2 and the Malgrange preparation
theorem, the dual germ n : (I, 0)→ S2 is A-equivalent to the ordinary cusp s 7→ (s3, s2).

Proof of assertion 1 of Theorem 2.
Suppose that P (0) does not belong to En(0). Then, for any sufficiently small λ0 ∈ J , P (λ0)

lies outside En(0). This implies that by Lemma 2.4, the map-germ ΨP (λ0) at n(0) is non-singular.

Thus, by Lemma 2.3, the map-germ pedr,P (λ0) : (I, 0)→ S2 is also A-equivalent to the ordinary

cusp. Therefore, by Theorem 3, the map-germ Un-pedr,P : (I×J, (0, 0))→ S2×J is A-equivalent
to the cuspidal edge.

Conversely, suppose that the map-germ Un-pedr,P : (I × J, (0, 0)) → S2 × J is A-equivalent
to the map-germ g(s, λ) = (s3, s2, λ); we show that P (0) ∈ En(0) implies a contradiction under
this assumption. The property P (0) ∈ En(0) implies that n(0) ∈ EP (0). Since the dual germ

n : (I, 0) → S2 is A-equivalent to the ordinary cusp s 7→ (s3, s2), by Lemma 2.4, n(0) ∈ EP (0)

implies that j3(Un-pedr,P )(0) is not A3-equivalent to j3g(0). This contradicts the assumption
that Un-pedr,P : (I × J, (0, 0)) → S2 × J is A-equivalent to the map-germ g(s, λ) = (s3, s2, λ).
2

Proof of “if” parts of assertions 2 and 3 of Theorem 1.
Since P (0) belongs to En(0) − {r(0)}, by composing an appropriate rotation without the

loss of generality, it can be assumed that n(0) = (−1, 0, 0) and P (0) = (0, 0, 1). Let αn(0) :

H(n(0))− En(0) → {−1} × R2 be the central projection relative to n(0). Then, by Lemma 2.2,
the germ of composition αn(0) ◦ n is of the form

αn(0) ◦ n(s) = (as2 + bs3 + ϕ1(s), cs2 + ds3 + ϕ2(s)),

where bc 6= 0 and ϕj(s) = o(s3). Since c 6= 0, there exists a germ of C∞ diffeomorphism
h : (I, 0)→ (I, 0) such that

αn(0) ◦ n ◦ h(s) = (ãs2 + b̃s3 + ϕ̃1(s), s2),

where b̃ 6= 0 and ϕ̃1(s) = o(s3). Let αP (0) : H(P (0))−EP (0) → R2×{1} be the central projection
relative to P (0). By the form mentioned above and Lemma 2.4, the germ of composition αP (0) ◦
pedr,P (0) is A-equivalent to a map-germ of the following form:

s 7→
(

(ãs2 + b̃s3 + ϕ̃1(s))s2, s2
)
.

Next, we investigate the influence of moving the pedal points P (λ). Suppose that P (0) = r(0)
and P has (k+1)-point contact with En(0) at 0 ∈ J (k ≥ 0). Since En(0) is defined by the equation
n(0) ·X = 0, the assumption of (k + 1)-point contact implies that n(0) · P (0) = n(0) · P ′(0) =
· · · = n(0) · P (k)(0) = 0 and n(0) · P (k+1)(0) 6= 0. Then, as in the proof of assertions 2 and 3 of
Theorem 1, the germ of composition

(s, λ) 7→ (αP (0) ◦ pedr,P (λ)(s), λ)

is A-equivalent to the germ of the following form:

(b) (s, λ) 7→
((
ãs2 + b̃s3 + ϕ1(s)

) (
s2 ± n(0) · P (λ)

)
, s2 ± n(0) · P (λ), λ

)
.

Furthermore, by the Malgrange preparation theorem and Theorem 3, a map-germ of the form
mentioned in (b) must be A-equivalent to the map-germ g±k (s, λ) =

(
s3(s2 ± λk+1), s2, λ

)
. 2
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The “only if” parts of assertions 2 and 3 of Theorem 2 can be proved as follows. Put g̃(s, λ) =
s2, g̃0(s, λ) = s4 + λs2, g̃±2i+1(s, λ) = s4 ± λ2i+2s2, and g̃+2i(s, λ) = s4 + λ2i+1s2. Then, it can be

clearly seen that any two distinct elements of the following set are not KT -equivalent.{
g̃, g̃0, g̃

+
1 , g̃

−
1 , g̃

+
2 , g̃

+
3 , g̃

−
3 , · · ·

}
.

Hence, by Theorem 3, any two distinct elements of the set of the cuspidal edge, cuspidal cross-
cap, cuspidal S+

1 , cuspidal S−1 , cuspidal S+
2 , cuspidal S+

3 , cuspidal S−3 · · · are not A-equivalent.
Furthermore, by Theorem 3 and the form of g0, g

±
1 , g

±
2 , · · · in Table 2, the following adjacency

diagram is obtained.

(c) · · · −→ cuspidal Sk −→ · · · −→ cuspidal S1 −→ cuspidal S0.

Proof of “only if” parts of the assertions 2, 3 of Theorem 2.
As in the proof of the “only if” parts of assertions 2 and 3 of Theorem 1, we suppose that Un-

pedr,P : (I × J, (0, 0))→ S2 × J is A-equivalent to cuspidal S±k (k ≥ 0), P (0) ∈ En(0) − {r(0)},
and P does not have (k + 1)-point contact with En(0) at 0 ∈ J . Then, by the “if” parts of
assertions 2, 3 of Theorem 2, for any non-negative integer `, P does not have (` + 1)-point
contact with En(0) at 0 ∈ J . In particular, for any non-negative integer `, there exists a C∞

immersion P̃ : J → S2 such that P̃ is sufficiently near P under the Whitney C∞ topology,

and P̃ has (` + 1)-point contact with En(0) at 0 ∈ J . Hence, it can be concluded that cuspidal

S±k singularity is adjacent to cuspidal S±` singularity for any positive integer `; however, this
contradicts diagram (c).

Next, suppose that Un-pedr,P : (I × J, (0, 0)) → S2 × J is A-equivalent to cuspidal S±k
(k ≥ 0) and P (0) = {r(0)}. In this case, the tangent cone of n(I) at n(0) coincides with
EP . Thus, by Lemma 2.4, j2(Un-pedr,P )(0) is not A2-equivalent to j2g±k (0); this contradicts
the assumption that Un-pedr,P : (I × J, (0, 0)) → S2 × J is A-equivalent to the map-germ
g±k (s, λ) = (s5 ± λk+1s3, s2, λ). 2

Remarks
It is possible to adopt the criteria given in [16] or an argument similar to that given in [7] to
prove Theorems 1 and 2. However, the criteria in [16] are too general to be directly applied to
our study, and the argument in [7] seems to be somewhat ad hoc. Thus, in order to apply them
to our study, considerable preliminary work is required, the proofs of which are time-consuming
and complicated. On the other hand, Theorem 3 is the most suitable criterion for our study.
Moreover, the calculations with respect to KT -equivalence are relatively straightforward; hence,
by using Theorem 3, we can prove both Theorem 1 and Theorem 2 in a coherent and unified
manner.
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GEOMETRY OF IRREDUCIBLE PLANE QUARTICS AND THEIR

QUADRATIC RESIDUE CONICS

HIRO-O TOKUNAGA

Dedicated to Professor Du Plessis on his sixtieth birthday.

Abstract. Let D be an irreducible plane curve in P2. In this article, we first introduce a notion
of a quadratic residue curve modD, and study quadratic residue conics C mod an irreducible
quartic curve Q. As an application, we study a dihedral cover of P2 with branch locus C +Q

and give two examples of Zariski pairs as by-products.

Introduction
In this article, we study the geometry of irreducible plane quarticQ and a smooth conic C which

is tangent to Q with even order at each point in C ∩Q. The geometry of a smooth plane quartic
and its bitangent lines is a classical object and well studied by many mathematicians from various
points of view. We hope that this article adds another interesting topic to geometry of plane
quartics. All varieties throughout this paper are defined over the field of complex numbers, C. In
order to explain our motivation and results on the above subject, let us start with introducing
some notions and definitions.

Let Σ be a smooth projective surface. Let f ′ : Z ′ → Σ be a double cover of Σ, i.e., Z ′ is a normal
surface and f ′ is a finite surjective morphism of degree 2. We denote its canonical resolution by
µ : Z → Z ′ (see [7] for the canonical resolution). Note that µ is the identity if Z ′ is smooth. We
put f := f ′ ◦ µ. We denote the involution on Z induced by the covering transformation of f ′ by
σf . The branch locus ∆f ′ of f ′ is the subset of Σ consisting of points x such that f ′ is not locally
isomorphic over x. Similarly we define the branch locus ∆f of f . Note that ∆f ′ = ∆f .

Definition 0.1. Let D be an irreducible curve on Σ. We call D a splitting curve with respect to
f if f∗D is of the form

f∗D = D+ +D− + E,

where D+ ̸= D−, σ∗
fD

+ = D−, f(D+) = f(D−) = D and Supp(E) is contained in the exceptional
set of µ. If the double cover f : Z → Σ is determined by its branch locus ∆f , i.e., any double
cover with branch locus ∆f is isomorphic to Z ′ over Σ, and D is a splitting curve with respect to
f , we say that “∆f is a quadratic residue curve mod D”.

Remark 0.1.

• Note that if Σ is simply connected, then any double cover of Σ is determined by its branch
locus.

• In our previous results on dihedral covers and their application to the study of the topology
of the complements of plane curves, we see that splitting curves play important roles and
that it is indispensable to know their properties of them. (see [2], [17], [18], for example).
This is our first motivation to study splitting curves.

• Our terminology comes from elementary number theory. Let m be a square free positive
integer, let p be an odd prime with p ̸ |m and let OQ(

√
m) be the integer ring of Q(

√
m). It
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is well known that the ideal (p) generated by p in OQ(
√
m) satisfies the following properties

(See [8, Proposition 13.1.3], p.190, for example):
– If m is a quadratic residue mod p, then (p) = p1p2, where pi (i = 1, 2) are distinct

prime ideals.
– If m is not a quadratic residue mod p, then (p) is a prime ideal.

Suppose that f : Z → Σ is uniquely determined by ∆f . Likewise the Legendre symbol in
elementary number theory, we here introduce a notation to describe if ∆f is a quadratic residue
mod D or not. For an irreducible curve D on Σ, we put

(∆f/D) =

{
1 if ∆f is a quadratic residue curve mod D
−1 if ∆f is not a quadratic residue curve mod D

As P2 is simply connected, any double cover of P2 is just determined by its branch locus. On
the other hand, any reduced plane curve B of even degree can be the branch locus of a double
cover. Hence for any irreducible plane curve D, one can consider (B/D).

In this article, we consider the case when any point x ∈ B ∩D is a smooth point of both B and
D. For such a case, if the intersection multiplicity at some point in B ∩D is odd, then we infer
that (B/D) = −1. This leads us to introduce a notion of even tangential curve.

Definition 0.2. Let D1 and D2 are reduced divisors on a smooth projective surface without any
common irreducible component. We say that D1 and D2 are even tangential or D1 (resp. D2) is
even tangential to D2 (resp. D1) if

(i) For ∀P ∈ D1 ∩D2, P ̸∈ Sing(D1) ∪ Sing(D2), and
(ii) the intersection multiplicity of D1 and D2 at P , IP (D1, D2), is even for ∀P ∈ D1 ∩D2.

Note that we do not pay attention to ♯(D1 ∩D2) to define even tangential curves.

Now our basic problem can be formulated as follows:

Problem 0.1. Let B be a reduced plane curve of even degree.

(i) Find an even tangential curve D to B and determine the value of (B/D).
(ii) What can we say about the topology of P2 \ (B +D) from the value of (B/D)?

As a first step, we consider the case when B is a smooth conic C. Suppose that D is an
irreducible plane curve which is even tangential to C. We easily see the following:

• If degD = 1, 2, we have (C/D) = 1.
• If degD = 3, we have

(i) (C/D) = −1 if D is smooth, and
(ii) (C/D) = 1 if D is a nodal cubic.
Note that there is no even tangential cuspidal cubic to C.

Hence the case of degD = 4 seems to be the first interesting case. Now let us restate our exact
problems which we consider in this article:

Problem 0.2. Fix an irreducible quartic Q.

(i) Find even tangential conics C to Q and determine the value (C/Q).
(ii) Does the value (C/Q) affect the topology of P2 \ (C +Q)?

In this article, we first consider Problem 0.2 (i) and give a formula to determine (C/Q) (see
Theorem 2.1). We next count the number of even tangential conics passing through a smooth
point x on Q. Now our result is as follows:

Theorem 0.1. Choose a smooth point x of Q and let lx be the tangent line to Q at x. There exist
finitely many (possibly no) even tangential conics C to Q through x and we have the following
table:
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• ΞQ: the set of types of singularities of Q. Note that Q has at worst simple singularities
and we use the notation in [3] in order to describe the type of a singularity.

• lx ∩Q: This shows how lx meets Q. We use the following notation to describe it.
– s: Ix(lx, Q) = 2 or 3, and lx meets Q transversely at other point(s).
– b: lx is either bitangent line through x or Ix(lx, Q) = 4.
– sb: Ix(lx, Q) = 2 and lx passes through a double point of Q.

• ETC: the set of even tangential conics passing through x and ♯ETC denotes its cardinality.
• QRETC: the set of even tangential conics passing through x with (C/Q) = 1 and ♯QRETC
denotes its cardinality.

• We omit cases of (ΞQ, lx∩Q) which do not occur. For example, the case of (ΞQ, lx∩Q) =
(A6, b) is omitted, as such a case does not occur.

No. ΞQ lx ∩Q ♯ETC ♯QRETC
1 A6 s 0 0
2 A6 sb 0 0
3 E6 s 0 0
4 E6 b 0 0
5 A5 s 1 1
6 A5 b 1 1
7 A5 sb 0 0
8 D5 s 1 1
9 D5 b 0 0
10 D4 s 3 3
11 D4 b 0 0
12 A4 +A2 s 0 0
13 A4 +A2 sb 0 0
14 A4 +A1 s 0 0
15 A4 +A1 b 0 0
16 A4 +A1 sb 0 0
17 A4 +A1 sb 0 0
18 A3 +A2 s 1 1
19 A3 +A2 sb 0 0
20 A3 +A2 sb 1 1
21 A3 +A1 s 2 2
22 A3 +A1 b 1 1
23 A3 +A1 sb 1 1
24 A3 +A1 sb 0 0
25 3A2 s 0 0
26 3A2 b 0 0
27 2A2 +A1 s 0 0
28 2A2 +A1 b 0 0
29 2A2 +A1 sb 0 0
30 A2 + 2A1 s 1 1
31 A2 + 2A1 b 0 0
32 A2 + 2A1 sb 0 0
33 A2 + 2A1 sb 1 1
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No. ΞQ lx ∩Q ♯ETC ♯QRETC
34 3A1 s 4 4
35 3A1 b 1 1
36 3A1 sb 2 2
37 A4 s 3 0
38 A4 b 1 0
39 A4 sb 1 0
40 A3 s 7 1
41 A3 b 2 0
42 A3 sb 4 1
43 2A2 s 3 0
44 2A2 b 3 0
45 2A2 sb 1 0
46 A2 +A1 s 6 0
47 A2 +A1 b 3 0
48 A2 +A1 sb 3 0
49 A2 +A1 sb 2 0
50 2A1 s 13 1
51 2A1 b 6 0
52 2A1 sb 7 1
53 A2 s 15 0
54 A2 b 6 0
55 A2 sb 10 0
56 A1 s 30 0
57 A1 b 15 0
58 A1 sb 20 0
59 ∅ s 63 0
60 ∅ b 36 0

Note that there exist both quadratic and non-quadratic residue even tangential conics to Q for
the cases 40, 42, 50 and 52. These cases are interesting when we consider Problem 0.2 (ii). In
fact, we study dihedral covers of P2 whose branch loci are C + Q, and have the following result
(see §3 for the notations on dihedral covers):

Theorem 0.2. Let Q be an irreducible quartic, let C be an even tangential conic to Q and let
fC : ZC → P2 be a double cover with ∆fC = C. If there exists a D2p-cover π : S → P2 with
∆π = C +Q for an odd prime p ≥ 5, then we have the following:

(i) D(X/P2) = ZC
∼= P1 × P1, i.e., π is branched at 2C + pQ.

(ii) (C/Q) = 1. Moreover, if we put f∗
CQ = Q+ +Q−, then Q+ ∼ Q− ∼ (2, 2).

Conversely, if the second condition holds, then there exist D2n-covers πn : Sn → P2 branched
at 2C + nQ for any n ≥ 3.

Since both of degC and degQ are even, we infer that there exists a (Z/2Z)⊕2-cover of P2 with
branch locus C +Q. Hence, from Theorem 0.2, we have the following corollaries:

Corollary 0.1. If there exists a D2p-cover of P2 with ∆π = C + Q for some odd prime p ≥ 5,
then there exists a D2n-cover P2 with ∆π = C +Q for any n ≥ 2.
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Corollary 0.2. (i) Let p be an odd prime ≥ 5. If there exists an epimorphism from the funda-
mental group π1(P2 \ (C +Q), ∗) to D2p, then (C/Q) = 1 and Q+ ∼ Q−.

(ii) If there exists an epimorphism π1(P2 \(C+Q), ∗) to D2p, then there exists an epimorphism
π1(P2 \ (C +Q), ∗) to D2n for any n ≥ 2.

This paper consists of 5 sections. In §1, we start with preliminaries on theory of elliptic surface.
We prove Theroem 0.1 in §2. In §3, we give a summary on branched Galois covers, mainly dihedral
covers. We prove Theorem 0.2 in §4. In §5, we consider an application of Theorem 0.2 and give
two examples of Zariski pairs.

Acknowledgement. Most of this article was written during the author’s visit to Ruhr Uni-
versität Bochum under the support of SFB/TR 12. The author thanks Professor A. Huckleberry
for his arrangement and hospitality. The author also thanks the organizers of the symposium
“Singularities in Aarhus” for giving the author an opportunity to give a talk on the subject in
this article. Finally he thanks the referee for valuable comments on the first version of this article.

1. Preliminaries on elliptic surfaces

1.1. Elliptic surfaces. We review some general facts on elliptic surfaces. For details, we refer
to [9], [10] and [14]. Let φ : E → C be an elliptic surface over a smooth projective curve C with
a section O. Throughout this article, we always assume that

(i) φ is relatively minimal and
(ii) there exists at least one singular fiber.

Let NS(E) be the Néron-Severi group of E and let Tφ be the subgroup of NS(E) generated by
O and all the irreducible components of fibers of φ. Tφ has a canonical basis as follows:

O, a general fiber f, and {Θv,1, . . . ,Θv,mv−1}v∈Rφ , where

• Rφ := {v ∈ C | φ−1(v) is reducible.}, and
• we label the irreducible components of φ−1(v) as follows: Θv,0,Θv,1, . . . ,Θv,mv−1, Θv,0O =
1.

Let MW(E) be the Mordell-Weil group, the group of sections, of E , O being the zero sections.
Under these circumstances, we have

Theorem 1.1. [14, Theorem 1.3] There is a natural isomorphism

MW(E) ∼= NS(E)/Tφ.

Also in [14], a symmetric bilinear form ⟨ , ⟩, called the height pairing, on MW(E) is defined by
using the intersection pairing as follows:

For any s ∈ MW(E), ⟨s, s⟩ ≥ 0 and = 0 if and only if s is a torsion. More explicitly, for
s1, s2 ∈ MW(E), ⟨s1, s2⟩ is given by

⟨s1, s2⟩ = χ(OE) + s1O + s2O − s1s2 −
∑
v∈Rφ

Corrv(s1, s2),

where Corrv(s1, s2) is given by

Corrv(s1, s2) = (s2Θv,1, . . . , s2Θv,mv−1)(−A−1
v )

 s1Θv,1

·
s1Θv,mv−1

 ,

and Av is the intersection matrix (Θv,iΘv,j) (1 ≤ i, j ≤ mv − 1). As for explicit values of
Corrv(s1, s2), see Table 8.16 in [14].
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1.2. A “reciprocity” between sections and trisections on rational ruled surfaces. Let
Σd be the Hirzebruch surface of degree d (d: even positive integer). We denote its section with
self-intersection number −d and its fiber of the ruling by ∆0,d and Fd, respectively. Let Γd be an
irreducible curve on Σd such that

(1) Γd ∼ 3(∆0,d + dFd) and
(2) Γd has at worst simple singularities.

Let ∆ be a section on Σd such that (i) ∆ ∼ ∆0,d + dFd and (ii) ∆ and Γd are even tangential.

Let p′d : S′
d → Σd be the double cover with branch locus ∆0,d + Γd and µd : Sd → S′

d be the
canonical resolution and put pd := p′d ◦ µd. Since ∆0,d + Γd meets a general fiber Fd

∼= P1 in 4
distinct points, one can easily see that Sd has an elliptic fibration φd : Sd → P1 over P1. Moreover,
by its construction, we infer that

(a) φd is relatively minimal,
(b) the preimage of ∆0,d gives a section which we denote by O, and
(c) ∆ gives rise to two sections s+∆ and s−∆ of φd.

Let MW(Sd) be the group of sections , the Mordell-Weil group, of φd, where O is the zero
element. Let qd : Wd → Σd be a double cover with branch locus ∆0,d + ∆. Note that qd is
uniquely determined by ∆0,d +∆ as Σd is simply connected and that Wd

∼= Σd/2. Then we have

Theorem 1.2.
((∆0,d +∆)/Γd)) = (−1)ε(s

+
∆)

where, for a section s ∈ MW(Sd), ε(s) is defined as follows:

ε(s) =

{
0 ∃so ∈ MW(Sd) such that s = 2so
1 ̸ ∃so ∈ MW(Sd) such that s = 2so

Note that ε(s+∆) = ε(s−∆) as s+∆ = −s−∆ on MW(Sd).

Proof. It is enough to show

((∆0,d +∆)/Γd)) = 1 ⇔ s±∆ ∈ 2MW(Sd).

(⇒) As we have seen, Wd
∼= Σd/2. We choose affine open subsets V ⊂ Wd(∼= Σd/2), and U ⊂ Σd

as follows:

(i) Both U and V are C2.
(ii) We choose affine coordinates (t, u) and (t̃, ζ) of U and V , respectively, in such a way that

qd is given by
qd : (t̃, ζ) 7→ (t, u) = (t̃, ζ2 + f(t)),

where f(t) is a polynomial of degree ≤ d. Note that with respect to these coordinates
(t, u) and (t̃, ζ), ∆ ∩ U : u − f(t) = 0, ∆0,d corresponds to the section given by u = ∞
and the involution σqd is given by (t̃, ζ) 7→ (t̃,−ζ).

Since ((∆0,d+∆)/Γd) = 1, q∗dΓd is of the form Γ++Γ−. Since σ∗
qd
Γ+ = Γ−, σ∗

qd
∆0,d/2 = ∆0,d/2

and σ∗
qd
Fd/2 = Fd/2, Γ

+ ∼ Γ− ∼ 3(∆0,d/2 + d/2Fd/2). Hence we may assume

Γ+ : F (t̃, ζ) = ζ3 + a1(t̃)ζ
2 + a2(t̃)ζ + a3(t̃) = 0

Γ− : −F (t̃,−ζ) = ζ3 − a1(t̃)ζ
2 + a2(t̃)ζ − a3(t̃) = 0,

where deg ak(t̃) ≤ kd/2. Since ζ2 = u− f(t), t = t̃, we have

F (t̃, ζ) = (a1(t)u− a1(t)f(t) + a3(t)) + (u− f(t) + a2(t))ζ.
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As q∗dΓ = Γ+ + Γ−, we may assume that Γd is given by

−F (t̃, ζ)F (t̃,−ζ) = (a1(t)u− a1(t)f + a3(t))
2 − (u− f(t) + a2(t))

2(u− f(t)) = 0.

On the other hand, over U is S′
d is given by

S′
d|p′

d
−1 : y2 = (a1(t)u− a1(t)f + a3(t))

2 − (u− f(t) + a2(t))
2(u− f(t)),

and the above equation considered as a Weierstrass equation of the generic fiber, Sd,η, of φd. By
our construction, s±∆ is given by

s±∆ : (f(t),±a3(t)).

Put

s±o : (∓(f(t)− a2(t)),±(a1(t)a2(t)− a3(t)).

Then s±o ∈ MW(Sd) and by the definition of the group law, we have

2s±o = s±∆.

(⇐) We use the affine open subsets of Σd and Wd as before. Suppose that Γd is given by

Γd : FΓd
(t, u) = u3 + c1(t)u

2 + c2(t)u+ c3(t) = 0

where ck(t)(i = 1, 2, 3) are polynomials of degrees ≤ kd. Then S′
d over U is given by y2 = FΓd

(t, u)
and, as we have seen, this equation can be regarded as a Weierstrass equation of the generic fiber
Sd,η. Since s+∆O = 0 and pd(s

+
∆) = ∆, s+∆ ∈ MW(Sd) is given by

s+∆ : (u, y) = (f(t), g(t)),

where g(t) is a polynomial of degree ≤ 3d/2. Let so ∈ MW(Sd) such that 2so = s+∆. Since so is a
C(P1)(= C(t))-rational point of Sd,η, there exist fo(t), go(t) ∈ C(t) such that

so : (u, y) = (fo(t), go(t)).

Since s+∆O = 0, by [9, Theorem 9.1], we infer that soO = 0. Therefore fo(t), go(t) ∈ C[t] and
deg fo ≤ d,deg go ≤ 3d/2. Now let

y = α(t)u+ β(t), α(t), β(t) ∈ C(t)

be the tangent line of the elliptic curve Sd,η over C(t) at so. By the definition of the group law
on Sd,η, we have

F (t, u) = (α(t)u+ β(t))2 + (u− fo(t))
2(u− f(t)).
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As F (t, u), f, fo ∈ C[t, u], we infer that α(t), β(t) ∈ C[t]. Thus we may assume that Γd ∩ U is
given by

(α(t)u+ β(t))2 + (u− fo(t))
2(u− f(t)) = 0.

As q∗dΓd on V is given by

(α(t)u+ β(t))2 + (u− fo(t))
2ζ2

= {(α(t)u+ β(t)) +
√
−1(u− fo(t))ζ} × {(α(t)u+ β(t))−

√
−1(u− fo(t))ζ},

Γd is splitting with respect to qd, i.e., ((∆0,d +∆)/Γd) = 1. �

Remark 1.1. Theorem 1.2 can be generalized to the case when Sd has a hyperelliptic fibration
under some restriction. See [19].

1.3. Double covers of P2 branched along quartics and rational elliptic surfaces. An
elliptic surface E is said to be rational, if E is a rational surface. Hence it is an elliptic surface
over P1. Analogously to [17], we associate a rational elliptic surface EQ

x to a reduced quartic Q in
P2 with a distinguished smooth point x ∈ Q as follows:

Let ν1 : P2
x → P2 be a blowing-up at x. We denote the proper transform of the tangent line

lx at x by lx,1, and the exceptional curve of ν1 by Ex,1. We next consider another blowing up

ν2 : P̂2 → P2
x at lx,1 ∩ Ex,1, and denote the proper transforms of lx,1, Ex,1 and the exceptional

curve of ν2 by lx, Ex,1, and Ex,2, respectively. Let f ′ : E ′ → P̂2 be a double cover with branch

locus Ex,1 and Q, where Q is the proper transform of Q with respect to ν2 ◦ν1. Let µQ
x : EQ

x → E ′

be the canonical resolution of E ′ and put fQ
x := f ′◦µQ

x . Then we see that EQ
x satisfies the following

properties:

(i) The pencil Λx of lines through x induces a relatively minimal elliptic fibration φQ
x : EQ

x →
P1.

(ii) The preimage of Ex,1 gives rise to a section O of φQ
x , and the generic fiber has a group

structure, O being the zero element. Moreover the covering transformation of EQ
x coincides

with the involution induced by the inversion of the group law.
(iii) The preimages of Ex,2 and lx in EQ

x are irreducible components of singular fibers. The

types of the singular fiber cointainig the preimages of Ex,2 and lx are as follows:

I2 lx meets Q at x and at another two distinct points.
III lx is a 3-fold tangent point.
I3 lx is a bitangent line.
IV lx is a 4-fold tangent point.

In (n ≥ 4) lx passes through a singular point of type An(n ≥ 1).

We use here Kodaira’s notation ([9]) in order to describe the types of singular fibers.
The following picture describes the case that lx is a 3-fold tangent line at x.



178 HIRO-O TOKUNAGA

Q

lx

ν1 ◦ ν2 Ex,1

lx

Q

Ex,2

fQ
x

fQ
x

−1
(Q)

(iv) Other singular fibers of EQ
x correspond to lines in Λx not meeting Q at 4 distinct points.

We refer to [11, Table 6.2] for details.

Remark 1.2. Note that any rational elliptic surface E with at least one reducible singular fiber
is obtained above. Namely E = EQ

x for some Q and a smooth point x on Q.

1.4. The Mordell-Weil lattices of EQ
x . In this subsection, we give a table of types of singu-

larities of Q, the relative position of lx and Q, and the Mordell-Weil lattices of EQ
x . We first note

that MW(EQ
x ) has no 2-torsion, since we assume that Q is irreducible. Also we omit cases which

never occur. As for the structure of the Mordell-Weil lattices for rational elliptic surfaces, we refer
to [12] and to [15] for the correction of the misprints in [12]. Let us explain notations used in the
table.

• ΞQ and lx ∩Q are the same as those in the table Theorem 0.1
• RQ,x: the subgroup of NS(EQ

x ) generated by {Θv,1, . . . ,Θv,mv−1}v∈R
φ
Q
x

. Note that RQ,x is

isomorphic to a direct sum of root lattices of A-D-E type, and we describe RQ,x as a direct sum
of them.

• MW(EQ
x ): the lattice structure of MW(EQ

x ). To describe them, we use the notation in [12].
Namely •∗ means the dual lattice of the lattice • and ⟨m⟩ denotes a lattice of rank 1, Zx with
⟨x, x⟩ = m. Also a matrix means the intersection matrix with respect to a certain basis. Note
that the lattice structure is determined by RQ,x as MW(EQ

x ) has no 2-torsion.

• MW0(EQ
x ): the narrow part of MW(EQ

x ), i.e., the subgroup of MW(EQ
x ) consisting of sections

s with sΘv,0 = 1.
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No. ΞQ lx ∩Q RQ,x MW(EQ
x ) MW0(EQ

x )
1 A6 s A6 ⊕A1 ⟨1/14⟩ ⟨14⟩
2 A6 sb A8 Z/3Z {0}
3 E6 s E6 ⊕A1 ⟨1/6⟩ ⟨6⟩
4 E6 b E6 ⊕A2 Z/3Z {0}
5 A5 s A5 ⊕A1 A∗

1 ⊕ ⟨1/6⟩ A1 ⊕ ⟨6⟩
6 A5 b A5 ⊕A2 A∗

1 ⊕ Z/3Z A1

7 A5 sb A7 ⟨1/8⟩ ⟨8⟩
8 D5 s D5 ⊕A1 A∗

1 ⊕ ⟨1/4⟩ A1 ⊕ ⟨4⟩
9 D5 b D5 ⊕A2 ⟨1/12⟩ ⟨12⟩
10 D4 s D4 ⊕A1 (A∗

1)
⊕3 A⊕3

1

11 D4 b D4 ⊕A2
1

6

(
2 1
1 2

) (
4 −2
−2 4

)
12 A4 +A2 s A4 ⊕A2 ⊕A1 ⟨1/30⟩ ⟨30⟩
13 A4 +A2 sb A4 ⊕A4 Z/5Z {0}

14 A4 +A1 s A4 ⊕A⊕2
1

1

10

(
2 1
1 3

) (
6 −2
−2 4

)
15 A4 +A1 b A4 ⊕A2 ⊕A1 ⟨1/30⟩ ⟨30⟩
16 A4 +A1 sb A4 ⊕A3 ⟨1/20⟩ ⟨20⟩
17 A4 +A1 sb A6 ⊕A1 ⟨1/14⟩ ⟨14⟩
18 A3 +A2 s A3 ⊕A2 ⊕A1 A∗

1 ⊕ ⟨1/12⟩ A1 ⊕ ⟨12⟩
19 A3 +A2 sb A4 ⊕A3 ⟨1/20⟩ ⟨20⟩
20 A3 +A2 sb A5 ⊕A2 A∗

1 ⊕ Z/3Z A1

21 A3 +A1 s A3 ⊕A⊕2
1 (A∗

1)
⊕2 ⊕ ⟨1/4⟩ A⊕2

1 ⊕ ⟨4⟩
22 A3 +A1 b A3 ⊕A2 ⊕A1 A∗

1 ⊕ ⟨1/12⟩ A1 ⊕ ⟨12⟩
23 A3 +A1 sb A5 ⊕A1 A∗

1 ⊕ ⟨1/6⟩ A1 ⊕ ⟨6⟩
24 A3 +A1 sb A3 ⊕A3 ⟨1/4⟩⊕2 ⟨4⟩⊕2

25 3A2 s A⊕3
2 ⊕A1 ⟨1/6⟩ ⊕ Z/3Z ⟨6⟩

26 3A2 b A⊕4
2 (Z/3Z)⊕2 {0}

27 2A2 +A1 s A⊕2
2 ⊕A⊕2

1 ⟨1/6⟩⊕2 ⟨6⟩⊕2

28 2A2 +A1 b A⊕3
2 ⊕A1 ⟨1/6⟩ ⊕ Z/3Z ⟨6⟩

29 2A2 +A1 sb A4 ⊕A2 ⊕A1 ⟨1/30⟩ ⟨30⟩
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No. ΞQ lx ∩Q RQ,x MW(EQ
x ) MW0(EQ

x )

30 A2 + 2A1 s A2 ⊕A⊕3
1 A∗

1 ⊕
1

6

(
2 1
1 2

)
A1 ⊕

(
4 −2
−2 4

)
31 A2 + 2A1 b A⊕2

2 ⊕A⊕2
1 ⟨1/6⟩⊕2 ⟨6⟩⊕2

32 A2 + 2A1 sb A4 ⊕A⊕2
1

1

10

(
2 1
1 3

) (
6 −2
−2 4

)
33 A2 + 2A1 sb A3 ⊕A2 ⊕A1 A∗

1 ⊕ ⟨1/12⟩ A1 ⊕ ⟨12⟩
34 3A1 s A⊕4

1 (A∗
1)

⊕4 A⊕4
1

35 3A1 s A2 ⊕A⊕3
1 A∗

1 ⊕
1

6

(
2 1
1 2

)
A1 ⊕

(
4 −2
−2 4

)
36 3A1 sb A3 ⊕A⊕2

1 (A∗
1)

⊕2 ⊕ ⟨1/4⟩ A⊕2
1 ⊕ ⟨4⟩

37 A4 s A4 ⊕A1
1
10

 3 1 −1
1 7 3
−1 3 7

  4 −1 1
−1 2 −1
1 −1 2


38 A4 b A4 ⊕A2

1
15

(
2 1
1 8

) (
8 −1
−1 2

)
39 A4 sb A6

1
7

(
2 1
1 4

) (
4 −1
−1 2

)
40 A3 s A3 ⊕A1 A∗

3 ⊕A∗
1 A3 ⊕A1

41 A3 b A3 ⊕A2
1
12

 7 1 2
1 7 2
2 2 4

  2 0 −1
0 2 −1
−1 −1 4


42 A3 sb A5 A∗

2 ⊕A∗
1 A2 ⊕A1

43 2A2 s A⊕2
2 ⊕A1 A∗

2 ⊕ ⟨1/6⟩ A2 ⊕ ⟨6⟩
44 2A2 b A⊕3

2 A∗
2 ⊕ Z/3Z A2

45 2A2 sb A4 ⊕A2
1
15

(
2 1
1 8

) (
8 −1
−1 2

)

46 A2 +A1 s A2 ⊕A⊕2
1

1
6


2 1 0 −1
1 5 3 1
0 3 6 3
−1 1 3 5




4 −1 0 1
−1 2 −1 0
0 −1 2 −1
1 0 −1 2


47 A2 +A1 b A⊕2

2 ⊕A1 A∗
2 ⊕ ⟨1/6⟩ A2 ⊕ ⟨6⟩

48 A2 +A1 sb A4 ⊕A1
1
10

 3 1 −1
1 7 3
−1 3 7

  4 −1 1
−1 2 −1
1 −1 2


49 A2 +A1 sb A4 ⊕A1

1
12

 7 1 2
1 7 2
2 2 4

  2 0 −1
0 2 −1
−1 −1 4


50 2A1 s A⊕3

1 D∗
4 ⊕A∗

1 D4 ⊕A1

51 2A1 b A2 ⊕A⊕2
1

1
6


2 1 0 −1
1 5 3 1
0 3 6 3
−1 1 3 5




4 −1 0 1
−1 2 −1 0
0 −1 2 −1
1 0 −1 2


52 2A1 sb A3 ⊕A1 A∗

3 ⊕A∗
1 A3 ⊕A1
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No. ΞQ lx ∩Q RQ,x MW(EQ
x ) MW0(EQ

x )
53 A2 s A2 ⊕A1 A∗

5 A5

54 A2 b A⊕2
2 (A∗

2)
⊕2 A⊕2

2

55 A2 sb A4 A∗
4 A4

56 A1 s A⊕2
1 D∗

6 D6

57 A1 b A2 ⊕A1 A∗
5 A5

58 A1 sb A3 D∗
5 D5

59 ∅ s A1 E∗
7 E7

60 ∅ b A2 E∗
6 E6

2. Proof of Theorem 0.1

We keep the same notations as before. Our result will be proved case-by-case. Let us start
with the following lemma.

Lemma 2.1. Let C be an even tangential conic to Q through x. The preimage of C in EQ
x consists

of two sections s+C and s−C such that

(i) ⟨s+C , s
+
C⟩ = ⟨s−C , s

−
C⟩ = 2

(ii) s+CO = s−CO = 0

(iii) s+CΘv,0 = s−CΘv,0 = 1 for all v ∈ RφQ
x
, i.e, s±C ∈ MW0(EQ

x ).

Coversely, for any section s in MW(EQ
x ) satisfying two of the above three properties, the image

of s in P2 is an even tangential conic to Q.

Proof. We first note that two of the properties (i), (ii) and (iii) imply the remaining. This follows
from the formula

⟨s, s⟩ = 2 + 2sO −
∑
v∈Rφ

Corrv(s, s)

for the rational elliptic surface EQ
x and s ∈ MW(EQ

x ).

Let C be the proper transform of C in P̂2. Since C is tangent to Q at each intersection point
and C∩Ex,1 = ∅, the preimage of C in EQ

x consists of 2 irreducible components s+C and s−C so that

s±CO = 0. Since C meets the proper transform of a general member in Λx at one point, both s+C
and s−C are sections of φQ

x : EQ
x → P1. The property (iii) follows from the fact that C meets Ex,2

and C does not pass through singularities of Q. Now the property (i) is straightforward from the
explicit formula for ⟨ , ⟩.

Conversely, suppose that we have a section s satisfying two of the properties (i), (ii) and (iii).
Let Cs be the image of s in P2. By our construction of EQ

x , we infer that Cs is a conic tangent to
Q at x. Since Cs is also the image of σ∗

fQ
x
s, we infer that Cs is an even tangent conic to Q. �

Theorem 2.1. Let C be an even tangential conic to Q and let s+C be the section as above.

(C/Q) = (−1)ε(s
+
C),

where the symbol ε(s+C) is the same as that defined in Theorem 1.2.

Proof. Let P̂2 as before. Since lx is a (−1) curve, by blowing down lx, we obtain Σ2 with the
following properties:

(i) The image of Q is a trisection ΓQ ∼ 3(∆0,d + 2F ).
(ii) Singularities of ΓQ are the same as those of Q except the A1 singularity caused by blowing

down lx.
(iii) The image of Ex,1 = ∆0,d.
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(iv) The image of C is a section ∆C such that ∆C ∼ (∆0,d + 2F ) and ∆C is even tangent to
ΓQ.

Let fo : Zo → Σ2 be the induced double cover by fC : ZC → P2, i.e., the C(ZC)-normalization
of Σ2. One easily see that ∆fo = ∆+∆C .

ZC EQ
x Zo

P2 P̂2 Σ2

? ? ?
� -

Since ∆C is the image of C, it is also the image of s±C . Hence we infer that

(C/Q) = 1 ⇔ (∆0,d +∆C/ΓQ) = 1.

Hence by Theorem 1.2, we infer that (C/Q) = 1 if and only if s+C ∈ 2MW(EQ
x ). �

Remark 2.1. Suppose that s+C ∈ 2MW(EQ
x ). Let so be an element in MW(EQ

x ) such that

2so = s+C . By Lemma 2.1 (i), we have ⟨so, so⟩ = 1/2. Hence if MW(EQ
x ) has no section s with

⟨s, s⟩ = 1/2, there is no quadratic residue even tangential conic to Q through x.

Lemma 2.2. Let Q̃ be the normalization of Q and we denote the genus of Q̃ by g(Q̃).

(i) No even tangential conic to Q is quadratic residue modQ if g(Q̃) ≥ 2.

(ii) All even tangential conic to Q are quadratic residue modQ if g(Q̃) = 0.

Proof. (i) Let C be an even tangential conic to Q and suppose that (C/Q) = 1. Let fC : ZC → P2

be a double cover with ∆fC = C. Then f∗
CQ is of the form Q+ + Q−. Since ZC = P1 ×

P1,Pic(ZC) ∼= Z ⊕ Z and the covering transformation induces an involution (a, b) 7→ (b, a) on
Pic(ZC), we infer that Q+ ∼ Q− ∼ (2, 2). Since Q+, Q− and Q are birationally equivalent, we

have g(Q̃) ≤ 1 and the result follows.

(ii) Since the induced double cover on Q̃ is unramified, (C/Q) = 1. �
Now we easily have the following theorem:

Theorem 2.2. Let Q be an irreducible quartic. Choose a smooth point x ∈ Q and let EQ
x be the

rational elliptic surface as in §1. Then we have the following:
(i) Let ETC be the set of conics passing through x. Then

♯ETC = ♯{s ∈ MW(EQ
x ) | ⟨s, s⟩ = 2, sO = 0}/2

= ♯{s ∈ MW0(EQ
x ) | ⟨s, s⟩ = 2}/2

(ii) Let QRETC be the set of even tangential conics passing through x with (C/Q) = 1. Then

♯QRETC = ♯{s ∈ 2MW(EQ
x ) | ⟨s, s⟩ = 2, sO = 0}/2

= ♯{s ∈ 2MW(EQ
x ) ∩MW0(EQ

x ) | ⟨s, s⟩ = 2}/2

Proof. Our statements (i) and (ii) are immediate from Lemma 2.1 and Theorem 2.1. �
We now prove Theorem 0.1 case-by-case. We first compute ♯ETC. By Lemma 2.1, it is enough

to see the number of sections s in the narrow part MW0(EQ
x ) of MW(EQ

x ) with ⟨s, s⟩ = 2.
For the lattices of A-D-E types, it is nothing but the number of roots, and the following table

is well known (see [6])

An Dn (n ≥ 4) E6 E7

n(n+ 1) 2n(n− 1) 72 126
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From the above table and that in §2, our statement on ♯ETC is straightforward except for the
cases 11, 14, 30, 32, 35, 37, 38, 39, 41, 45, 46, 48, 49, 51. For the rank 2 cases among the exceptional
cases, our statement follows easily by direct computation. For the cases of rank > 2, we make use
of [12, Lemma 3.8], which is as follows: 4 −1 1

−1 2 −1
1 −1 2

 ∼= A⊥
1 in A4,


4 −1 0 1
−1 2 −1 0
0 −1 2 −1
1 0 −1 2

 ∼= A⊥
1 in A5

 2 0 −1
0 2 −1
−1 −1 2

 ∼= A⊥
2 in D5

where the terminology •⊥ in � means that we embed a lattice • into � and •⊥ is the orthogonal
complement of • in �. Also, by [12, Lemma 3.8], the embedding is determined up to isomorphism.
Hence we just count the number of roots which are orthogonal to the embedded lattices. To be
more precise, we explain the case A⊥

1 in A5. We first consider the realization of A5 as follows:

A5 = {(x1, . . . , x6) |
∑
i

xi = 0, xi ∈ Z} ⊂ R6

and the pairing is induced from the Euclidean metric
∑

i x
2
i in R6. Under these circumstances, the

roots are given by a vector (1,−1, 0, 0, 0, 0) and those obtained by permutations of the coordinates.
We fix an embedding of A1 given by Z(1,−1, 0, 0, 0, 0) ⊂ A5. Then roots in A⊥

1 are

(0, 0,±1,∓1, 0, 0) (0, 0,±1, 0,∓1, 0) (0, 0,±1, 0, 0,∓1)
(0, 0, 0,±1,∓1, 0) (0, 0, 0,±1, 0,∓1) (0, 0, 0, 0,±1,±1).

Since the remaining cases are similar, we omit them. Thus we have a list for ♯ETC.
We now go on to compute ♯QRETC. We first note that ♯QRETC = 0 if ♯ETC = 0. In the

following, we only cosider the case of ♯ETC ̸= 0.
Since Q is irreducible, MW(EQ

x ) has no 2-torsion. Hence for each s ∈ 2MW(EQ
x ), there exists a

unique so ∈ MW(EQ
x ) such that 2so = s. For distinct C1, C2 ∈ QRETC, s+C1

and s+C2
are distinct

in MW0(EQ
x ). Hence it is enough to compute

♯{so ∈ MW(EQ
x ) | ⟨so, so⟩ = 1/2, 2so ∈ MW0(EQ

x )}
Now Theorem 0.1 follows from the following claim:

Claim. Suppose that ♯ETC ≠ 0. If MW(EQ
x ) has an A∗

1 as a direct summand, then two
generators ±s̃ of A∗

1 are sections such that ⟨s̃, s̃⟩ = 1/2, 2s̃ ∈ MW0(EQ
x ). Conversely if there exists

so ∈ MW(EQ
x ) such that ⟨so, so⟩ = 1/2, 2so ∈ MW0(EQ

x ), then Zso(∼= A∗
1) is a direct summand of

MW(EQ
x ).

Proof of Claim. Suppose that A∗
1 is a direct summand of MW(EQ

x ) and let s̃ be a section such
that Zs̃ = A∗

1. Then ⟨s̃, s̃⟩ = 1/2 and 2s̃ ∈ MW0(EQ
x ) by [14, Theorem 9.1].

We now go on to show the converse. Let so be a section with ⟨so, so⟩ = 1/2, 2so ∈ MW0(EQ
x ).

As for the dual lattices of A-D-E type, we have the following table:

Type A∗
n D∗

n (n ≥ 4) E∗
6 E∗

7

Minimum norm n
(n+1) 1 4

3
3
2

Hence we easily see that MW(EQ
x ) has an A∗

1 direct summand except for the cases 37, 38, 39,
41, 45, 46, 48, 49 and 51. We see that there is no section s with ⟨s, s⟩ = 1/2 for these exceptional
cases.



184 HIRO-O TOKUNAGA

Cases 38, 39 and 45. In these cases, the paring ⟨ , ⟩ takes its value in 1/15Z (Cases 38 and 45),
and 1/7Z (Case 39), where 1/mZ = {a/m | a ∈ Z}. Hence there is no section s with ⟨s, s⟩ = 1/2.

Cases 37 and 48. Let s be any element of MW(EQ
x ). In these cases,

⟨s, s⟩ = 2(1 + sO)− k1(5− k1)

5
− 1

2
k2,

where k1 ∈ {0, 1, 2, 3, 4}, k2 ∈ {0, 1}. Hence we infer that there is no s with ⟨s, s⟩ = 1/2.

Cases 41 and 49. Let s be any element of MW(EQ
x ). In these cases,

⟨s, s⟩ = 2(1 + sO)− k1(4− k1)

4
− 2

3
k2,

where k1 ∈ {0, 1, 2, 3}, k2 ∈ {0, 1}. Hence we infer that there is no s with ⟨s, s⟩ = 1/2.

Cases 46 and 51. Let s be any element of MW(EQ
x ). In these cases,

⟨s, s⟩ = 2(1 + sO)− 2

3
k1 −

1

2
k2 −

1

2
k3,

where k1, k2, k3 ∈ {0, 1}. Hence we infer that there is no s with ⟨s, s⟩ = 1/2.

After checking each case we see that so generates an A∗
1 direct summand.

3. Preliminaries from theory of Galois covers

3.1. Galois covers. In this subsection, we summarize some facts and terminologies on Galois
covers. For details, see [1, §3]. Let X and Y be normal projective varieties. We call X a cover
if there exists a finite surjective morphism π : X → Y . Let C(X) and C(Y ) be rational function
fields of X and Y , respectively. If X is a cover of Y , then C(X) is an algebraic extension of C(Y )
with deg π = [C(X) : C(Y )]. Let G be a finite group. A G-cover is a cover π : X → Y such that
C(X)/C(Y ) is a Galois extension with Gal(C(X)/C(Y )) ∼= G. For a cover π : X → Y , the branch
locus ∆π of π is a subset of Y as follows:

∆π = {y ∈ Y | π is not locally isomorphic over y}.

If Y is smooth, ∆π is an algebraic subset of pure codimention 1 ([21]). Let π : X → Y be a G-cover
of a smooth projective variety Y . Let ∆π = ∆π,1+. . .+∆π,r denote the irreducible decomposition
of ∆π. We say that π : X → Y is branched at e1∆π,1 + . . . + er∆π,r(ei ≥ 2, i = 1, . . . , r) if the
ramification index along ∆π,i is ei for each i.

Let B be a reduced divisor on a smooth projective variety Y and B = B1 + . . . + Br denote
its irreducible decomposition. It is known that the existence of a G-cover π : X → Y at

∑
i eiBi

can be characterized as follows:

Theorem 3.1. There exists a G-cover of Y branched at
∑

i eiBi if and only if there exists an
epimorphism ϕ : π1(Y \ B, ∗) → G such that for each meridian γi of Bi, the image of its class
[γi], ϕ([γi]), has order ei.

3.2. Dihedral covers. Let D2n be the dihedral group of order 2n (n ≥ 3) given by ⟨σ, τ | σ2 =
τn = (στ)2 = 1⟩. In [17], we developed a method to deal with D2n-covers, and some variants of
the results in [17] have been studied since then. We summarize here some results which we need
later. Let us start with introducing some notation in order to explain them.

Let π : X → Y be a D2n-cover. By its definition, C(X) is a D2n-extension of C(Y ). Let C(X)τ

be the fixed field by τ . We denote the C(X)τ - normalization by D(X/Y ). We denote the induced
morphisms by β1(π) : D(X/Y ) → Y and β2(π) : X → D(X/Y ). Note that X is a Z/nZ-cover of
D(X/Y ) and D(X/Y ) is a double cover of Y such that π = β1(π) ◦ β2(π):
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X

D(X/Y )

Y
?

π

Q
QQs
β2(π)

�
��+ β1(π)

Generic D2n-covers. A D2n-covers π : S → Σ is said to be generic if ∆(π) = ∆(β1(π)). As
for conditions for the existence of generic D2n-covers with prescribed branch loci, we have the
following:

Let B be a reduced divisor on Σ with at worst simple singularities. Suppose that there exists a
double cover f ′

B : Z ′
B → Σ with branch locus B and let µB : ZB → Z ′

B be the canonical resolution.
We define the subgroup RB of NS(ZB) as follows:

RB := ⊕b∈Sing(B)Rb,

where Rb is the subgroup in NS(ZB) generated by the exceptional divisor of the singularity

f ′−1
B (x). Then we have the following result:

Theorem 3.2. [1, Theorem 3.27] Let p be an odd prime and suppose that ZB is simply connected.
There exists a generic D2p-cover π : S → Σ with branch locus B if and only if NS(ZB)/RB has
p-torsion.

Let R∨
b = HomZ(Rb,Z). Rb can be regarded as a subgroup of R∨

b by using the intersec-
tion pairing. Since the torsion subgroup of NS(ZB)/RB can be considered as a subgroup of
⊕b∈Sing(B)R

∨
b /Rb, we have the following corollary:

Corollary 3.1. If there exists no b such that p|♯(R∨
b /Rb), then there exists no generic D2p-cover

with branch locus B.

Non-generic D2n-covers. A D2n-cover is said to be non-generic if ∆(β1(π)) is a proper
subset of ∆(π). We consider a non-generic D2n-cover of Σ under the following setting:

Let B = B1 +B2 be a reduced divisor on Σ such that:

(i) there exists a double cover f ′
B1

: Z ′
B1

→ Σ with ∆f ′
B1

= B1, and

(ii) B2 is irreducible.

Let fB1 : ZB1 → Σ be the canonical resolution of Z ′
B1

.

Proposition 3.1. [1, Proposition 3.31] Suppose that Σ is simply connected and the preimage of
the strict transform of B2 consists of two distinct irreducible components B+

2 and B−
2 . If there

exist an effective divisor D and a line bundle L on ZB1
satisfying conditions

(i) D = B+
2 +D′; D′ and σ∗

fB1
D′ have no common components,

(ii) Supp(D′ + σ∗
fB1

D′) is contained in the exceptional set of µf ′
B1

and

(iii) D − σ∗
fB1

D ∼ nL (n ≥ 3), where ∼ denotes linear equivalence,

then there exists a D2n-cover π : S → Σ branched at 2B1 + nB2 such that ∆β1(π) = B1.

Corollary 3.2. If σ∗
fB1

B+
2 ∼ B−

2 and there exists a D2n-cover of Σ branched at 2B1 + nB2 for

any n ≥ 3.

Proposition 3.2. [1, Proposition 3.32] Under the notation above, if a D2n-cover π : S → Σ
branched at 2B1 + nB2 exists, then the following holds:
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(i) D(S/Σ) = Z ′
B1

. The preimage of the porper transform of B2 in ZB1
consists of two

irreducible components, B±
2 .

(ii) There exist effective divisors D1 and D2, and a line bundle L on ZB1 such that

• Supp(D1 + σ∗
fB1

D1 +D2) is contained in the exceptional set of µ,

• D1 and σ∗
fB1

D1 have no common components,

• if D2 ̸= ∅, then n is even, D2 is reduced, and D′ = σ∗
fB1

D′ for each irreducible component

D′ of D2, and
• (B+

2 +D1 +
n
2D2)− (B−

2 + σ∗
fB1

D1) ∼ nL.

Corollary 3.3. If a D2n-cover π : S → Σ branched at 2B1 + nB2 exists, then B2 is a splitting
curve with respect to fB1 .

4. Proof of Theorem 0.2

We first note that there are 3 possibilities for β1(π) : D(S/P2) → P2:

Case 1. D(S/P2) = ZC , β1(π) = fC .

Case 2. D(S/P2) = Z ′
Q, β1(π) = f ′

Q.

Case 3. D(S/P2) = Z ′
C+Q, β1(π) = f ′

C+Q.

Note that f ′
• : Z• → P2 denotes a double cover with branch locus •. We show that our

statements (i) and (ii) hold for Case 1 and neither Cases 2 nor 3 occur.

Case 1. In this case, π is branched at 2C + pQ. Hence, by Corollary 3.3, we infer that
(C/Q) = 1. Put f∗

CQ = Q+ +Q−. By Proposition 3.2, Q+ −Q− is p-divisible in Pic(ZC). Since
Q+ + Q− ∼ (4, 4), Q+ is linearly equivalent to either (3, 1), (1, 3) or (2, 2). Hence, Q+ ∼ Q− ∼
(2, 2) if p ≥ 3.

Case 2. Let Σ2, ∆C and ΓQ be the Hirzebruch surface of degree 2 and the divisors obtained as
in §2. By considering the C(S)-normalization of Σ2, we have a D2p-cover branched at 2(∆0,d +
ΓQ) + p∆C . As in [18], we reduce our problem on the existence of D2p-covers to that on a linear
equation on MW(EQ

x ). By [18, Proposition 4.1], the following proposition is straightforward:

Proposition 4.1. If there exists a D2p-cover of P2 branched at pC + 2Q, then s+C ∈ pMW(EQ
x ).

Let so be an element in MW(EQ
x ) such that pso = s+C . Then we have ⟨so, so⟩ = 2/p2. On the

other hand, by the table in §1, the value of ⟨so, so⟩ ∈ 1/(23 · 3 · 5 · 7)Z. Therefore Case 2 does not
occur.

Case 3. Our statement may follow from the results in [13]. However, we prove our statement
without using the fact that ZB is a K3 surface. Put B = C + D. In this case, the canonical
resolution of D(S/P2) is ZB . Hence by Theorem 3.2, NS(ZB)/RB has p-torsion. By Corollary 3.1
and Theorem 0.1, it is enough to show that there exists no D10-cover in the case when Q has one
A4 singularity and C is an even bitangential conic to Q. Let D be an element of NS(ZB) such that
D gives rise to 5-torsion in NS(ZB)/RB. By using the intersection pairing, D can be regarded as
an element of R∨

B = ⊕b∈Sing(B)R
∨
b . Since R

∨
b can be embedded into Rb ⊗Q canonically, D can be

expressed as an element in ⊕b∈Sing(B)Rb ⊗Q. Let bo be the unique A4 singularity, and put

D ≈Q
∑

b∈Sing(Q)

Db, Db ∈ Rb ⊗Q
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and let γ(Db) be the class of Db in R∨
b /Rb. Since the type of singularity of B other than bo is

either A3, A7, A11 or A15, γ(Db) = 0 if b ̸= bo. As R∨
bo
/Rbo is generated by

1

5
(4Θ1 + 3Θ2 + 2Θ3 +Θ1),

we have

D −
∑

b∈Sing(B)\{bo}

Db ≈Q
k

5
(4Θ1 + 3Θ2 + 2Θ3 +Θ1) mod RB,

for some k ∈ {±1,±2}. Here we label the irreducible components as follows:

Θ1

Θ2

Θ3 Θ4

By modifyingD with an element in RB suitably, we may assumeD ≈Q k/5(4Θ1+3Θ2+2Θ3+Θ1).
This shows that

D2 = −4k2

5
.

This leads us to a contradiction, as D2 ∈ Z. Therefore Case 3 does not occur.

The remaining part of Theorem 0.2 is immediate from Corollary 3.2. �

Remark 4.1.

(1) (C/Q) = 1 is not enough for the existence of D2n-covers. In fact, for Q with 3A1 singu-
larities, there exists an even tangential conic C such that (C/Q) = 1 but Q+ ̸∼ Q− (see
[2]).

(2) By [13], there exists an irreducible quartic Q with one A5 singularity and an even tan-
gential conic C to Q such that

• C ∩Q = {x1, x2}, Ix1(C,Q) = 2, Ix2(C,Q) = 6, and
• NS(ZB)/RB has 3-torsion.

By Theorem 3.2, there exists a D6-cover branched at 2(C +Q). In this case, (C/Q) = 1,
but Q+ ̸∼ Q−. In fact, if Q+ ∼ Q−, then Q+ is a rational curve with one singularity
whose type is either A1 or A2. This singularity must give rise to another singularity of
Q, which is impossible.

5. Application to the study of Zariski pairs

Let (B1, B2) be a pair of reduced plane curves. We call (B1, B2) a Zariski pair if

(1) both of B1 and B2 have the same combinatorial type (see [1] for the precise definition of
combinatorial type), and

(2) there exists no homeomorphism h : P2 → P2 such that h(B1) = B2.

In the case of an irreducible quartic Q and its even tangential conic, the combinatorial type of
C +Q is determined by ΞQ, ♯C ∩Q and IP (C,Q) for each P ∈ C ∩Q.

As an application of the previous sections, we have



188 HIRO-O TOKUNAGA

Proposition 5.1. Let Q1 and Q2 be irreducible quartics and let C1 and C2 be their even tangential
conics, respectively. Suppose that Ci +Qi (i = 1, 2) have the same combinatorial type.

(i) If (C1/Q1) = 1 and (C2/Q2) = −1, then (C1 +Q1, C2 +Q2) is a Zariski pair.

(ii) If (Ci/Qi) = 1 (i = 1, 2), Q+
1 ∼ Q−

1 and Q+
2 ̸∼ Q−

2 , then (C1 +Q1, C2 +Q2) is a Zariski
pair.

Proof. (i) As C1 + Q1 and C2 + Q2 have the same combinatorial type, ΞQ1 = ΞQ2 . Since
(C1/Q1) = 1 and (C2/Q2) = −1, by Theorem 0.1, we see that ΞQ1 = ΞQ2 = 2A1 or A3.
Therefore Q+

1 ∼ Q−
1 ∼ (2, 2). Hence by Corollary 0.2, we infer that π1(P2 \ (C1 + Q1), ∗) ̸∼=

π1(P2 \ (C2 +Q2), ∗), i.e., (C1 +Q1, C2 +Q2) is a Zariski pair.

(ii) Our statement is immediate from [2, Proposition 2].
�

An example for Proposition 5.1 (ii) can be found in [2]. We end this section by giving examples
for Proposition 5.1 (i). Let EQ

x be the rational elliptic surface corresponding to either No. 40 or
No.50 in Theorem 0.1. Choose sections s1 and s2 in MW(EQ

x ) in such a way that

• ⟨si, si⟩ = 2, siO = 0 (i = 1, 2) and
• s1 ∈ 2MW(EQ

x ), while s2 ̸∈ 2MW(EQ
x ).

By Lemma 2.1, there exist even tangential conics Cs1 and Cs2 arising from s1 and s2, respectively.
By Theorem 2.1, we have (Cs1/Q) = 1 and (Cs2/Q) = −1. Hence if Cs1 and Cs2 intersects Q
in the same manner, we have an example for Proposition 5.1 (i). Now we go on to give explicit
examples.

Example 5.1. (cf. [16, Example, p.198]) Let Q be an irreducible quartic given by the affine
equation

f(t, u) = u3 + (271350− 98t)u2 + t(t− 5825)(t− 2025)u+ 36t2(t− 2025)2 = 0.

By taking homogeneous coordinates, [U, T, V ], of P2 in such a way that u = U/V, t = T/V , we
easily see that [1, 0, 0] is a smooth point of Q. Choose [1, 0, 0] as the distinguished point x. We
easily see that the tangent line lx is given by V = 0, and Ix(lx, Q) = 3. The elliptic surface
φQ
x : EQ

x → P1 corresponding to Q and x is given by a Weierstrass equation

y2 = f(t, u).

By [16, Example, p.198], EQ
x satisfies the following properties:

(i) φQ
x has 3 reducible singular fibers over t = 0, 2025,∞, whose types are: I2 over t = 0, 2025

and III over t = ∞. This implies Q has 2A1 as its singularities.
(ii) MW(EQ

x ) ∼= D∗
4 ⊕A∗

1 .

Choose three sections of EQ
x given by [16] as follows:

so : (0, 6t2 − 12150t), s̃1 : (−32t, 2t2 − 6930t), s̃2 : (−20t, 4t2 − 4500t).

For these sections, so ∈ A∗
1 and s̃i ∈ D∗

4 (i = 1, 2) and we have

⟨so, so⟩ =
1

2
, ⟨s̃i, s̃i⟩ = 1 (i = 1, 2), ⟨s̃1, s̃2⟩ = 0,

and there is no other section s with ⟨s, s⟩ = 1/2 other than ±so.
The sections given by s1 := 2so and s2 := s̃1 + s̃2 are

s1 =

(
1

144
t2 +

1231

72
t− 5143775

144
,− 1

1728
t3 − 2335

576
t2 +

13493375

576
t− 29962489375

1728

)
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s2 =

(
1

36
t2 +

435

2
t− 921375

4
,− 1

216
t3 − 1181

24
t2 − 41625

8
t+

373156875

8

)
.

Since s2 ∈ D∗
4 , we infer that s1 is 2-divisible, while s2 is not 2-divisible. Also, both s1 and s2 do

not meet the zero section O and ⟨s1, s1⟩ = ⟨s2, s2⟩ = 2. Let C1 and C2 be conics given by

C1 : u =
1

144
t2 +

1231

72
t− 5143775

144

C2 : u =
1

36
t2 +

435

2
t− 921375

4
.

We infer that C1 and C2 are the even tangent conics corresponding to s1 and s2, respectively.
It is a straightforward computation that, for each i, Ci is tangent to Q at four distinct points.
Hence (C1 +Q,C2 +Q) is an example for Proposition 5.1 (i).

Example 5.2. (cf. [16, Example, p. 210]) Let Q be an irreducible quartic given by the affine
equation

f(t, u) = u3 + (25t+ 9)u2 + (144t2 + t3)u+ 16t4 = 0.

We take a homogeneous coordinate [U, T, V ] as in the previous example. With this coordinate
[1, 0, 0] is a smooth point and choose [1, 0, 0] as the distinguished point x. The tangent line lx is
again given by V = 0 and Ix(lx, Q) = 3. The elliptic surface φQ

x : EQ
x → P1 corresponding to Q

and x is given by a Weierstrass equation

y2 = f(t, u).

Note that we change the equation slightly. The original Weierstrass equation in [16] is y2−6uy =
u3 +25tu2 + (144t2 + t3)u+16t4. By [16, Example, p. 210], EQ

x satisfies the following properties:

(i) φQ
x has 2 reducible singular fibers over t = 0,∞, whose types are: I4 over t = 0 and III

over t = ∞. This implies Q has A3 as its singularity.
(ii) MW(EQ

x ) ∼= A∗
3 ⊕A1∗.

By modifying the sections given [16] slightly, take three sections of EQ
x as follows:

so : (0, 4t2), s̃1 : (−16t,−48t), s̃2 : (−15t, t2 + 45t).

For these sections, so ∈ A∗
1 and s̃i ∈ A∗

3 (i = 1, 2) and we have

⟨so, so⟩ =
1

2
, ⟨s̃i, s̃i⟩ =

3

4
(i = 1, 2), ⟨s̃1, s̃2⟩ =

1

4
,

and there is no other section s with ⟨s, s⟩ = 1/2 other than ±so. The sections given by s1 := 2s0
and s2 := s̃1 + s̃2 are

s1 =

(
1

64
t2 − 41

2
t+ 315,− 1

512
t3 − 55

32
t2 +

2637

8
t− 5670

)
s2 =

(
t2 + 192t+ 8640,−t3 − 301t2 − 27936t− 803520

)
.

Since s2 ∈ A∗
3, we infer that s1 is 2-divisible, while s2 is not 2-divisible. Also, both 2so and s1+s2

do not meet the zero section O and ⟨s1, s1⟩ = ⟨s2, s2⟩ = 2. Let C1 and C2 be conics given by

C1 : u =
1

64
t2 − 41

2
t+ 315

C2 : u = t2 + 192t+ 8640.

We infer that C1 and C2 are even tangential conics to Q corresponding to s1 and s2, respectivly.
A straightforward computation shows that, for each i, Ci is tangent to Q at four distinct points.
Hence (C1 +Q,C2 +Q) is an example for Proposition 5.1 (i).
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Remark 5.1.

(1) Zariski pairs in Examples 5.1 and 5.2 can be found in [13]. Hence our examples are not
new. Our justification lies in a new point of view: quadratic residue curves.

(2) For Zariski pairs in Examples 5.1 and 5.2, there exists a Z-spitting conic for C1 + Q1,
while there exists no such conic for C2 + Q2 (see [13] for the definition of Z-splitting
conics). Moreover precisely, for an irreducible quartic Q with ΞQ = 2A1 or A3 and its
even tangential conic C, one can show (C/Q) = 1 if and only if there exists a Z-splitting
conic for C +Q whose class order is 4 ([20]).
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GENERIC SPACE CURVES, GEOMETRY AND NUMEROLOGY

C. T. C. WALL

Abstract. A projective curve Γ ∈ P 3(C) defines a stratification of P 3 according to the types
of the singularities of the projection of Γ from the variable point. In this paper we calculate

the degrees of these strata, assuming that Γ is projection-generic in the sense of [8].

We use geometrical properties of the stratifications of P 3 and of the blow-up BΓ of P 3

along Γ (with exceptional set denoted EΓ) introduced in [9] to introduce several auxiliary

curves: more precisely, there are three 2-dimensional strata: the surface of tangents to Γ, the

surface of T-secants (i.e. lines joining two points with coplanar tangents), and the surface of
3-secants. We obtain three plane curves by intersecting these with a generic plane. Three

curves in EΓ were introduced in [9]. We also have three curves in Γ × Γ closely related to
them. Our numerical results are obtained by applying the genus and related formulae to these

curves.

Introduction

A projective curve Γ ⊂ P 3(C) defines a stratification of P 3 according to the types of the
singularities of the projection of Γ from the variable point. The object of this paper is to
calculate the degrees of (the closures of) these strata, and the number of special points of each
type on Γ, in terms of the degree d and genus g of Γ. We will assume throughout that Γ is
projection-generic in the sense of [8]. This has two advantages: in [9] we obtained local normal
forms for this stratification; and we will see that we obtain precise answers, without needing to
interpret our numbers as being counted with multiplicities.

Our techniques are essentially classical. We will use geometrical properties of the stratifica-
tions of P 3 and of the blow-up BΓ of P 3 along Γ (with exceptional set denoted EΓ) introduced
in [9] to introduce several auxiliary curves: the study of these and of their interrelations is itself
of some interest. More precisely, there are three 2-dimensional strata: the surface of tangents to
Γ, the surface of T-secants (i.e. lines joining two points with coplanar tangents), and the surface
of 3-secants. We obtain 3 plane curves Π∗ by intersecting these with a generic plane. Three
curves E∗ in EΓ were introduced in [9]. We also have three curves T∗ in Γ×Γ closely related to
them. Our numerical results are obtained by applying the genus and related formulae to these
curves.

We introduce our notation in §1, and describe the singularities of the auxiliary curves in §2 (in
the case of the T∗ the proofs are deferred to §7). In §3 we begin calculations, and in Lemma 3.2
express many of our degrees in terms of parameters ki. In §4 we analyse the correspondences
T∗, give the degrees of the 2-dimensional strata in Proposition 5.1, and calculate the ki in
Proposition 4.2. In §5 we analyse the E∗ and in Proposition 5.2 complete the count of points of
special types on Γ. In §6 we analyse the Π∗, and determine the degrees of the remaining curve
strata, which we list in Theorem 6.1. After some experiment, I have settled on collecting all
these formulae by powers of g, since it turns out that in all but two cases, the term not involving
g factors over Q[d] into linear factors.
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1. Recall of results and notations of [8]

If Γ is a smooth space curve, the projections ΓP of Γ from a variable point P of space give
a 3-parameter family of maps to the plane. In [8], we analysed this situation in the real C∞

case, and gave explicit genericity conditions, (PG1)-(PG6) below, defining a set of space curves
which is open and dense in the family of all such curves. These conditions also make sense in
the complex case, and (as in [9]) we will assume them throughout the paper. Among projective
algebraic curves, it is not clear that those satisfying the conditions form a dense set, though this
should not be hard to establish at least for rational curves of high enough degree. In practice,
this fails for degree 1 or 2, and seems to hold for degrees ≥ 3.

The projection along a line L through P has a singular point if L meets Γ in more than 1
point, or if L is tangent to Γ. Call a line meeting Γ in r points an r−secant; it is a T − r−secant
if the tangents at 2 of the points are coplanar (we omit r if r = 2). Write TQΓ for the tangent
at a point Q ∈ Γ, and OQΓ for the osculating plane at Q.

Hypothesis (PG1) is that the family of projections of Γ from points not on Γ is generic in
the sense that it versally unfolds the singularities of any curve of the set. More precisely, the
induced map is transverse to each stratum; thus the unfolding is versal in each case except that
of the X9 stratum (quadruple points), where we only have topological versality.

It follows that the curvature of Γ is non-zero, but the torsion may vanish: if it vanishes at Q,
we call Q a stall. Equivalently, here the local intersection number of Γ with OQΓ exceeds 3; the
hypothesis implies that it is at most 4.

It also follows that for P ∈ P 3\Γ, the types of singularities of the projection have codimension
≤ 3, and the points P such that the sum of the codimensions of singularities of ΓP is c form
smooth (3 − c)-dimensional manifolds which regularly stratify P 3 \ Γ; normal forms are given
by model versal unfoldings of the singularities that occur (except for the X9 stratum; a precise
normal form for this case was given in [9, Lemma 7.2]).

We partition P 3 \ Γ as follows. If Σ denotes a list of singularities, So(Σ) consists of points P
such that Σ is the list of singularities of ΓP . Define also
S(Σ) is the closure of So(Σ) in P 3, and
n(Σ) is the degree of S(Σ).

We will calculate these degrees in all cases where S(Σ) has dimension 1 or 2.
For a codimension 0 set of projections we have only normal crossing (A1) singularities. Apart

from these, in codimension 1, ΓP can have
a cusp (A2) if, for some Q ∈ Γ, P ∈ TQΓ;
a tacnode (A3) if P lies on a T-secant QR of Γ; or
a triple point (D4) if P lies on a 3-secant QRS of Γ.
For a codimension 2 set of points P , ΓP can have two codimension 1 singularities, or one

of A4, A5, D5, D6 or X9 (in Arnold’s notation, but here we have maps C → C2, not func-
tions on C2). In codimension 3 we have A6, A7, D8 and combinations of singularities of lower
codimension.

In particular, any T-secant contains a unique point, its T-centre, projection of Γ from which
gives an A5, rather than an A3 singularity; for a T-3-secant a D8 rather than a D6.

We also contemplate projections of Γ from points of itself. Since Γ has nowhere zero curvature,
each projection ΓP := πP (Γ) with P ∈ Γ is well defined and is again given by a smooth map.
We can, at least locally, regard {ΓP } as a 1-parameter family of parametrised plane curves.
Hypothesis (PG2) is that the family of projections ΓP of Γ from points P ∈ Γ has generic
singularities.

To fit these into the family of projections from points P 6∈ Γ, write πΓ : BΓ → P 3 for the
blow-up along Γ and EΓ for the exceptional set; thus a point of EΓ is a pair (P,Π) with P ∈ Γ
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and Π a plane through TPΓ. There is a natural projection πE : EΓ → Γ, which is a fibre bundle
with fibre a projective line. Now define a family of curves {Φz : z ∈ BΓ} by:

if z 6∈ EΓ, so z ∈ BΓ \ Γ, set Φz := Γz,
if z = (P,Π) ∈ EΓ, set Φz := ΓP ∪ L, where L := πP (Π).

Thus the line L goes through the point YP := πP (TPΓ). This is a flat family: near any point
there is a smooth function whose zero set meets the fibre over z in Φz.

If Φ,Φ′ are plane curves and P ∈ Φ∩Φ′, define κP (Φ,Φ′) to be the local intersection number
at P minus 1; write κ(Φ,Φ′) for the sum over all P ∈ Φ∩Φ′. We will call P ∈ Γ a special point if
either ΓP fails to have normal crossings or, for some line L through YP , κ(L,ΓP ) ≥ 2: condition
(PG4) is that we always have κ(L,ΓP ) ≤ 2.

We next list the types of special point on Γ and our notation for them (we follow [9] rather
than [8]). If ΓP itself fails to have normal crossings, it has a singular point ZP . There are three
cases, according to the type of the singularity.
α: type A2: P ∈ TQΓ for some Q ∈ Γ,
β: type A3: we have a T-3-secant P (QR),
γ: type D4: we have a 4-secant PQRS.

Hypothesis (PG3) is that for cases α, β and γ, YPZP is transverse to ΓP at all points.
We say P has type δ if YP is a double point on ΓP , i.e. if Q ∈ TPΓ for some Q 6= P .
If ΓP has normal crossings and ΓP ∪L does not, then κ(L,ΓP ) > 0. Excluding cases α, β, γ, δ,

we have κ(L,ΓP ) = 1 if either
a: L touches ΓP at YP (Π = OPΓ),
b: L touches ΓP elsewhere (Π contains a tangent line TQΓ), or
c: L passes through a node of ΓP (Π contains a trisecant PQR).

These cases occur when the point (P,Π) lies on certain curves in EΓ. We denote these curves
by Ea, Eb, Ec respectively.

In all cases, κ(L,ΓP ) ≤ 2. The cases κ(L,ΓP ) = 2 are enumerated as follows, where q, r, . . .
denote the images of Q,R, . . . under projection from P .
ab: L touches ΓP at p and q: TQΓ ⊂ OPΓ = Π.
ac: L touches ΓP at p and goes through a double point r = s: PRS ⊂ OPΓ = Π.
bb: L touches ΓP at q and r: TPΓ, TQΓ and TRΓ lie in Π.
bc: L touches ΓP at q and passes through a double point r = s: Π contains TPΓ, TQΓ and

the trisecant PRS.
cc: LP passes through double points q = r and s = t: Π contains TPΓ and the trisecants

PQR and PST .
a2: LP is an inflexional tangent at p: P is a stall on Γ, Π = OPΓ.
b2: LP is an inflexional tangent at q: TPΓ ⊂ OQΓ = Π.
c2: L is tangent at q to a double point q = r of ΓP : we have a T-trisecant PQR with TPΓ, TQΓ

both in Π.
Hypothesis (PG5) states that the curve Ec has transverse intersections with Ea, Eb and Ec

at S(ac), S(bc) and S(cc) respectively.
Finally, hypothesis (PG6) is that for no P ∈ Γ can we have more than one of the cases

α, β, γ, δ, ab, ac, bb, bc, cc, a2, b2, c2.
If P ∈ Γ is not of type α, β, γ or δ, there is at most one line L through YP with κ(L,ΓP ) ≥ 2.

Thus if there is a special point of EΓ in π−1
E (P ), it is unique and we denote its type by the same

symbol as above.
If ΓP has a singular point ZP , and (P,Π) such that L = YPZP , we also denote the type

of (P,Π) by the same letter as for P . For P of type δ we distinguish (P,Π) of type δ1, with
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Π = OPΓ and type δ2, when Π passes through TQΓ: in each of these, L touches ΓP at YP .

If X is any of α, β, γ, δ, ab, ac, bb, bc, cc, a2, b2, c2 we write S(X) for the set of points of Γ
of type X, and #(X) for its cardinality. We calculate all the numbers #(X) below. We extend
the stratification of P 3 \ Γ to P 3 by declaring the strata in Γ to be the S(X) just defined, and
the rest of Γ to be a single stratum. We proved in [9] that this stratification is regular, and
obtained normal forms at all points of Γ. We will make crucial use of these in this paper.

We now define our auxiliary curves. First, we have the three curves Ea, Eb and Ec in EΓ

defined above.
Next we have three curves in Γ× Γ:
(P,Q) ∈ Ta: if P ∈ OQΓ,
(P,Q) ∈ Tb: if PQ is a T-secant,
(P,Q) ∈ Tc: if PQ is a trisecant.
For Y ⊂ Γ× Γ, denote by Y t the image of Y under interchange of factors.

There are just three 2-dimensional strata in P 3, which we will denote by A := S(A2), the surface
of tangents to Γ; by B := S(A3), the surface of T-secants; and by C := S(D4) the surface of
trisecants. Each of these is, by definition, a ruled surface. Choose a plane Π0 transverse to all
strata of the stratification of P 3, and define three curves in Π0 by

Πa := Π0 ∩A, Πb := Π0 ∩B, Πc := Π0 ∩ C.

2. Singularities of the auxiliary curves

We first consider the curves in EΓ, which were analysed in our previous work. We are
interested in singularities of the curves in relation to the projection πE , which is a submersion
on Γ. The result is as follows.

Lemma 2.1. [9, Theorem 1.2, Addendum 4.3, Lemma 4.4, Addendum 5.2] The curves Ea, Eb
and Ec in EΓ are smooth, disjoint and submerse on Γ except as below.

At a point of type ab, ac, bb, bc or cc, the two curves meet transversely.
At S(a2), Ea and Eb touch (simply).
At S(b2), Eb has a cusp with non-vertical tangent.
At S(c2), Eb and Ec touch.
At S(α), Eb and Ec meet transversely.
At S(β), Ec touches the fibre.
At S(γ), Ec has 3 transverse branches.
At S(δ1), Ea and Ec meet transversely.
At S(δ2), Eb touches the fibre.

Next we consider the plane sections Πa, Πb, Πc of A, B and C. These have the same degrees
as the corresponding surfaces, and have singularities only where the plane meets a singular set
of the surface. If Γ has degree d, Π meets Γ in d points, and for any curve stratum S(Σ) in
P 3 \Γ, Π meets S(Σ) transversely in n(Σ) points, and the local picture of strata at each is given
by that in a versal unfolding of Σ. Denote by ma, mb and mc the respective multiplicities of
A,B and C along Γ.

We recall that B is the surface of tangents to S(A5), so has a cuspidal edge along S(A5).
We do not need to list intersection points of these plane sections, since we obtain the same
information from the mutual intersections of the surfaces A, B and C.

Lemma 2.2. The curve Πa has d A2 singularities and n(2A2) A1 singularities.
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The curve Πb has n(2A3) A1 singularities, n(A5) A2 singularities, and d ordinary singular
points of multiplicity mb.

The curve Πc has n(2D4) A1 singularities, n(X9) X9 singularities, and d ordinary singular
points of multiplicity mc.

To describe the singularities of the curves in Γ×Γ we need further notations. First we define
notation for the points of Γ× Γ which play a rôle: these are related to special lines PQ ∈ P 3.

A special line of type A4 is tangent to Γ at a stall P : a point of S(a2). Define (P, P ) ∈ W1,
and W ′1 to consist of points (Q,P ) with Q 6= P, Q ∈ OPΓ.

A special line of type D5 is a secant PQ with Q ∈ TPΓ: P has type δ, Q has type α. Define
(P,Q) ∈W2, (P, P ) ∈W ′2.

A special line of type D6 is a T-trisecant PQR with TQΓ, TRΓ coplanar: P has type β, Q,R
have type c2. Define (P,Q) ∈W3, (Q,R) ∈W ′3.

A special line of type X9 is a 4-secant PQRS: P,Q,R, S have type γ. Define (P,Q) ∈W4.
We also have special lines PQ where TPΓ ⊂ OQΓ: P has type b2, Q has type ab. Define

(P,Q) ∈W5.
Finally, we have special lines which are trisecants PQR ⊂ OPΓ: P has type ac. Here Q,R

are not special in the sense of [8], but the projections ΓQ, ΓR each have a flecnode. Define
(P,Q) ∈W6.

For T ⊂ Γ × Γ, write I1(T ) for the set of singular points of projection on the first factor
(classically known as coincidence points), and I2(T ) for singular points of the second projection,
so that I1(T t) = (I2(T ))t. We call a point (P,Q) ∈ I1(T ) simple if T is smooth at (P,Q) and
the local intersection number of T with {P}×Γ is 2; similarly for I2(T ). We now describe these
points, and also the intersections of the T∗ with the diagonal ∆ ⊂ Γ × Γ (classically known as
united points) and with each other. The proofs will require detailed calculations, which we defer
to §7.

Theorem 2.3. (i) We have Ta ∩∆ = Tb ∩∆ = W1, Tc ∩∆ = W ′2. At W1, the tangent to Ta is
3tp + tq = 0, and to Tb is tp + tq = 0.

(ii) We have I1(Ta) = W t
5 , I2(Ta) = W ′t1 ∪W2, I1(Tb) = W2 ∪W5, I1(Tc) = W t

2 ∪W3 ∪W4,
I2(Tc) = W2 ∪W t

3 ∪W4. All coincidence points except W4 are simple.
(iii) The curves Ta and Tb are smooth; the singularities of Tc are simple nodes at points of

type W4, with 2 transverse branches, each tangent to neither fibre.
(iv) We have Ta ∩ Tb = W1 ∪W t

2 ∪W5, Ta ∩ Tc = W t
2 ∪W6, and Tb ∩ Tc = W2 ∪W t

2 ∪W ′3.
(v) The intersection number at each of these common points is +1, except that at W t

2 the
intersection number of T ta and Tc is 2.

3. Preliminaries

We denote the degrees of the 2-dimensional strata by da = n(A2), db = n(A3) and dc = n(D4).
Denote also by ma, mb and mc the respective multiplicities of A,B and C along Γ.

Lemma 3.1. The multiplicities along Γ in P 3 are ma = 2, mb = 2(d − 3 + g) and mc =
1
2 (d− 2)(d− 3)− g.

Proof. Since, as is well known, the tangent surface A has a cuspidal edge along Γ, ma = 2.
The projection of Γ from a general point P of itself is a plane curve ΓP with degree d− 1 and

genus g, whose only singularities are simple nodes (type A1). It follows from Plücker’s formulae
that such a curve has class 2(d− 2 + g) and that the number of nodes is 1

2 (d− 2)(d− 3)− g.
Now T-secants of Γ through P project to tangents from YP to ΓP , hence there are just

2(d− 3 + g) of them; and trisecants through P project to lines joining YP to nodes of ΓP . The
result follows. �
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The strata S(A4), S(D5), S(D6), S(X9) are unions of straight lines: write k1, k2, k3, k4 for
the numbers of these lines, k5 for the number of tangents to Γ which lie in an osculating plane
at a different point, and k6 for the number of trisecants PQR lying in the osculating plane OPΓ.
Several of our degrees can easily be expressed in terms of the ki.

Lemma 3.2. We have
(i) #(a2) = n(A4) = n(A6) = #(W1) = k1, and #(W ′1) = (d− 4)k1.
(ii) #(α) = #(δ) = n(D5) = #(W2) = #(W ′2) = k2.
(iii) #(β) = n(D6) = n(D8) = k3, #(c2) = #(W3) = #(W ′3) = 2k3.
(iv) #(γ) = 4n(X9) = 4k4, #(W4) = 12k4.
(v) #(ab) = #(b2) = #(W5) = k5.
(vi) #(ac) = k6 and #(W6) = 2k6.

Proof. (i) holds since S(A4) consists of k1 lines, each of which is a tangent at a stall P , and
contains a unique point of S(A6), and there are #(a2) stalls. Moreover, each contributes one
point (P, P ) ∈W1, and OPΓ has intersection number 4 with Γ at P , hence there are d−4 further
intersections Q with (Q,P ) ∈W ′1 (note that OPΓ cannot be tangent at a further point).

(ii) holds since S(D5) consists of k2 lines, each of which is a tangent at a point P ∈ S(δ),
meeting Γ again at a point Q ∈ S(α); it contributes one point (P,Q) to W2 and one point (Q,Q)
to W ′2.

(iii) holds since S(D6) consists of k3 lines, each of which is a T-trisecant, meeting Γ in
two points P, Q with coplanar tangents, each in S(c2), and one other point R ∈ S(β), and
contains a unique point of S(D8). It also contributes 2 points (R,P ), (R,Q) to W3 and 2 points
(P,Q), (Q,P ) to W ′3.

(iv) holds since S(X9) consists of k4 4-secants PQRS, each of which meets Γ in 4 points of
S(γ). Any ordered pair from PQRS gives a point of W4.

(v) holds since k5 counts the secants PQ with TPΓ ⊂ OQΓ, and the point P ∈ S(b2),
Q ∈ S(ab), and (P,Q) ∈W5.

(vi) holds since there are k6 trisecants PQR ⊂ OPΓ, and P ∈ S(ac), (P,Q) and (P,R) belong
to W6. �

We will make frequent use of the genus formula for a curve on an algebraic surface. The
following version is the most convenient for us, since it does not assume the curve irreducible:

If M is a reduced curve on a smooth surface S with canonical class KS, we have

[M ].([M ] +KS) = µ(M)− χ(M).

Here µ(M) denotes the total Milnor number and χ(M) the (topological) Euler characteristic
of the Riemann surface M . This formula is easily deduced from the traditional version (see e.g.
[1, 1.15]). It also follows from a routine topological argument (see e.g. [7, Theorem 6.4.1]) that
the numbers µ(Mt)− χ(Mt) are constant in a family of curves Mt.

In particular, if M is a plane curve of degree d, we obtain the Plücker relation µ(M)−χ(M) =
d(d− 3).

Next we need the Plücker relations for space curves which are given in [3, p.270]. Let ∆ be a
reduced and non-planar space curve (it need not be projection-generic). We have invariants:
χ(∆), the Euler characteristic of ∆,
r0(∆), the degree, the number of points in which ∆ meets a general plane,
r1(∆), the rank, the number of tangent lines to ∆ meeting a general line,
r2(∆), the class, the number of osculating planes of ∆ containing a general point.

At a point P where, in some local co-ordinates, we have local parametrisations

x1 = a1t
b1 + . . . , x2 = a2t

b2 + . . . , x3 = a3t
b3 + . . . ,
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with the ai 6= 0 and 0 < b1 < b2 < b3, we set b0 := 0 and define

si(P ) := bi+1 − bi − 1 (i = 0, 1, 2).

At all but finitely many P ∈ ∆, s0 = s1 = s2 = 0, so we can define

si(∆) =
∑
P∈∆

si(P ).

In fact, in the cases arising below, we do not encounter points P with
∑
i si(P ) > 1. We call s0

the number of cusps, s1 the number of flexes, and s2 the number of stalls.
The set of osculating planes to ∆ is a curve ∆∨ in the dual projective space P∨. We call

∆∨ the dual curve of ∆. The elementary projective characters of ∆∨ are r∨i = r2−i, s
∨
i = s2−i

(i = 0, 1, 2).
The following are partial analogues for space curves of the Plücker formulae.

Lemma 3.3. [5, Cor.5.3, p.491] [3, p.270] For ∆ a reduced and non-planar space curve, we have
−χ(∆)− s0 = −2r0 + r1, −χ(∆)− s1 = r0 − 2r1 + r2, −χ(∆)− s2 = r1 − 2r2.

Proof. We claim that projecting ∆ from a general point P gives a plane curve with Euler
characteristic −χ(∆), degree r0, class r1, with s0 cusps and s1 + r2 flexes. Applying the Plücker
formulas to this projection gives the first two relations; the same argument for the dual curve
yields the third.

To justify the claim, note that if P 6∈ ∆, projection does not change the degree. If P lies on
no tangent, projection introduces no new cusp. A general P lies on the osculating planes at just
r2 distinct ordinary points; thus projecting from P adds r2 to the number of flexes. A general
line through a general point P is a general line; through it pass r1 tangent planes to C, so its
projected image lies on r1 tangents to CP . �

Apply Lemma 3.3 to the curve Γ. Here s0 = s1 = 0 since Γ is smoothly embedded and the
curvature does not vanish, and r0 = d. Since Γ is smooth and connected of genus g, χ(Γ) = 2−2g.
It thus follows from the lemma that r1 = 2d+ 2g − 2, r2 = 3d+ 3g − 6 and s2 = 4d+ 12g − 12.
Now it follows from the definitions that da = r1 and k1 = s2. Hence we have

(1) da = 2d− 2 + 2g, k1 = 4d− 12 + 12g.

4. Correspondences in Γ× Γ

In this section we evaluate the constants ki by studying the correspondences T∗.
In general, a curve T ⊂ Γ× Γ is called a correspondence on Γ. We denote the degrees of the

projections on the factors by d1(T ), d2(T ), thus d1(T t) = d2(T ). We need the notion of valence:
see e.g. [3, pp 284] for further details.

For P ∈ Γ, write T (P ) = {Q | (P,Q) ∈ T}: we can consider this as a divisor on Γ if we count
multiplicities appropriately. Then T has valence k if the linear equivalence class of T (P ) + kP
is independent of P . We will denote the valence of T by v(T ); we have v(T t) = v(T ). For the
above cases, we have

Lemma 4.1. (compare [3, pp 291-5])
Ta has d1(Ta) = d− 3, d2(Ta) = 3d+ 6g − 9 and v(Ta) = 3.
Tb has d1(Tb) = mb = 2d+ 2g − 6 and v(Tb) = 4.
Tc has d1(Tc) = 2mc = (d− 2)(d− 3)− 2g and v(Tc) = d− 4.
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Proof. Consider the projection πP of Γ from P with image ΓP ; recall that YP denotes the image
of the tangent at P . As in the proof of Lemma 3.1, ΓP has degree d− 1 and genus g, and hence
by Lemma 3.3 has class 2(d− 2 + g), mc = 1

2 (d− 2)(d− 3)− g nodes, and 3(d+ 2g − 3) flexes.
Now

(P,Q) ∈ Ta if πP (Q) is a flex of ΓP ,
(P,Q) ∈ T ta if πP (Q) lies on the tangent at YP ,
(P,Q) ∈ Tb if YP lies on the tangent to ΓP at πP (Q),
(P,Q) ∈ Tc if πP (Q) is a node of ΓP .

Hence d1(Ta) is the number of further intersections with ΓP of the tangent at YP , so is 2 less
than the degree; d2(Ta) is equal to the number of flexes of ΓP ; d1(Tb) is the number of tangents
from YP , which is equal to the class, diminished by 2 to allow for the tangent at YP itself; and
d1(Tc) is equal to double the number of nodes of ΓP , since each contributes two points Q.

For the valences we argue following [3, p 295].
For Ta, consider the projection πP : Γ→ P 2 from P . The canonical class KΓ = π∗P (−3HP 2)+

Ta(P ), and π∗PHP 2 = HP 3 − P , so Ta(P ) + 3P = KΓ + 3HP 3 .
For Tb, consider the projection πL : Γ → P 1 from TPΓ. Then the canonical class KΓ =

π∗L(−2HP 1) + Tb(P ), and π∗LHP 1 = HP 3 − 2P , so Tb(P ) + 4P = KΓ + 2HP 3 .
For Tc, as on [3, p 291] we have KΓ = π∗P ((d − 4)HP 2) − D, where D is the preimage

of the double points of ΓP , and hence is Tc(P ). Again using π∗PHP 2 = HP 3 − P , we find
Tc(P ) + (d− 4)P = (d− 4)HP 3 −KΓ, giving valence (d− 4). �

It is shown on [3, p.285] that a correspondence T with valency has the divisor class of

(d1(T ) + v(T ))(∗ × Γ) + (d2(T ) + v(T ))(Γ× ∗)− v(T )∆(Γ),

where ∆(Γ) denotes the diagonal. Since the diagonal has self-intersection number 2−2g, we can
now calculate all intersection numbers. In particular,

(2) T.∆(Γ) = d1(T ) + d2(T ) + 2gv(T ),

(3) T.T ′ = d1(T )d2(T ′) + d2(T )d1(T ′)− 2gv(T )v(T ′).

We also apply the genus formula. Since the canonical class is (2g − 2)(∗ × Γ + Γ× ∗), this gives

(4) − χ(T ) = 2d1(T )d2(T ) + (2g − 2)(d1(T ) + d2(T ))− 2gv(T )2 − µ(T ).

We can now count the intersections of Ta, Tb and Tc with ∆ in two ways: they are enumerated
in Theorem 2.3 (i) and shown to have multiplicity 1, and then counted in Lemma 3.2, giving the
numbers k1, k1 and k2; or we can use (2), with the values given by Lemma 4.1. The first two
confirm the calculation k1 = 4d+ 12g − 12 of (1); the third gives

(5) k2 = 2(d− 2)(d− 3) + 2g(d− 6).

We can also obtain χ(T ) in two ways. Projecting on the first factor gives d1(T )χ(Γ), diminished
by the effect of ramification, thus if the coincidence points are simple, we obtain d1(T )(2−2g)−
I1(T ). Now coincidence points of Ta, Tb and Tc were enumerated in Theorem 2.3 (ii) and shown
to be simple, and then counted in Lemma 3.2. Secondly, we can use (4), with the values given
by Lemma 4.1. Applying this to Ta, T

t
a and Tb yields

−χ(Ta) = (d− 3)(2g − 2) + k5,
−χ(Ta) = (3d+ 6g − 9)(2g − 2) + (d− 4)k1 + k2,
−χ(Ta) = 2(d− 3)(3d+ 6g − 9) + (2g − 2)(4d+ 6g − 12)− 18g;
−χ(Tb) = (2d+ 2g − 6)(2g − 2) + k2 + k5,
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−χ(Tb) = 2(2d+ 2g − 6)2 + (2g − 2)(4d+ 4g − 12)− 32g.
In view of the values of k1 and k2 given by (1) and (5), the second and third of these equations
yield the same value; comparing with the first then gives

(6) k5 = 6(d− 3)(d− 4) + 6g(3d− 14) + 12g2;

and now the other equations both give the same value for χ(Tb).
Similarly, the intersection numbers Ta.Tb, Ta.Tc and Tb.Tc can be computed either using

Theorem 2.3 (iv) and (v), and Lemma 3.2 or using (3), with the values given by Lemma 4.1.
Comparing the results gives
k1 + k2 + k5 = (4d+ 6g − 12)(2d+ 2g − 6)− 24g,
2k2 + 2k6 = (4d+ 6g − 12)((d− 2)(d− 3)− 2g)− 6g(d− 4),
2k2 + 2k3 = 2(2d+ 2g − 6)((d− 2)(d− 3)− 2g)− 8g(d− 4).

Here the first is an identity in view of the known values of k1, k2 and k5; the others yield values
for k6 and k3.

Finally, applying the same procedure as for Ta and Tb to Tc, but now taking account of the
fact that µ(Tc) = 12k4, gives
−χ(Tc) = ((d− 2)(d− 3)− 2g)(2g − 2) + k2 + k3 + 12k4,
−χ(Tc) = 2((d− 2)(d− 3)− 2g)2 + (4g − 4)((d− 2)(d− 3)− 2g)− 2g(d− 4)2 − 12k4.

Here substituting the known values of k2 and k3 allows us to solve for k4. Collecting our results
gives

Proposition 4.2. We have
k1 = 4(d− 3) + 12g,
k2 = 2(d− 2)(d− 3) + 2g(d− 6),
k3 = 2(d− 2)(d− 3)(d− 4) + 2g(d2 − 10d+ 26)− 4g2,
k4 = 1

12 (d− 2)(d− 3)2(d− 4)− 1
2g(d2 − 7d+ 13) + 1

2g
2,

k5 = 6(d− 3)(d− 4) + 6g(3d− 14) + 12g2,
k6 = 2(d− 2)(d− 3)(d− 4) + 3g(d2 − 8d+ 18)− 6g2.

We also have
χ(Ta) = −2(d− 3)(3d− 13)− 10g(2d− 9)− 12g2,
χ(Tb) = −8(d− 3)(d− 4)− 8g(3d− 14)− 16g2,
χ(Tc) = −(d+ 1)(d− 2)(d− 3)(d− 4) + 6g(d− 5) + 6g2.

The number k1 of stalls comes from the Plücker relations. The number k2 of tangents meeting
Γ again was first given by Cayley [2], and the number k4 of 4-secants was first given by Salmon
1868; with a fuller proof given by Zeuthen [11]. In [6] a formula for k2 is given for arbitrary
curves; applying this to the dual curve Γ∨ yields a formula for k5(Γ). The formulae for k3 and
k6 appear to be new.

5. Curves in EΓ

In this section, by studying the curves Ea, Eb and Ec, we complete the evaluation of numbers
of types of special points on Γ.

At a general point of each of these curves, the projection πE induces a submersion on Γ.
The list of exceptions was given in Lemma 2.1. In particular, the projection of Ea on Γ is an
isomorphism. The degrees of the projections of Eb and Ec to Γ coincide with the multiplicities
along Γ of the surfaces B and C, hence are equal tomb andmc respectively. Applying Lemma 2.1,
we obtain formulae for the Euler characteristics of Eb and Ec and for the mutual intersection
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numbers as follows.

(7)

Ea.Eb = #(ab) + 2#(a2) = #(ab) + 2k1.
Ea.Ec = #(ac) + #(δ) = #(ac) + k2.
Eb.Ec = #(bc) + #(α) + 2#(c2) = #(bc) + k2 + 4k3.
χ(Eb) = mbχ(Γ)−#(bb)−#(b2)−#(δ) = mb(2− 2g)−#(bb)− k5 − k2.
χ(Ec) = mcχ(Γ)−#(cc)−#(β)− 2#(γ) = mc(2− 2g)−#(cc)− k3 − 8k4.

The group of divisors on BΓ is free on the classes [H] of a (pulled back) plane and [E] of EΓ.

The strict transform Â of A is obtained from the total transform by subtracting [E] multiplied
by the multiplicity ma of S(A2) along Γ; similarly for B and C. Thus

(8) [Â] = da[H]−ma[E], [B̂] = db[H]−mb[E], [Ĉ] = dc[H]−mc[E].

Taking intersections with EΓ defines a map from divisors on BΓ to those on EΓ. Since the
blow up of a point in a surface gives a curve of self-intersection -1, the self-intersection of EΓ in
BΓ has the class −[D], where D is the class of a section of the bundle EΓ → Γ. Denote by [F ]
the class in EΓ of a fibre. Then since a plane meets Γ in d points, the trace of [H] on EΓ is d[F ].

The surface EΓ is a P 1−bundle over Γ, associated to a plane bundle E. This situation is
described in Beauville [1, III,18]: the group of divisors of EΓ is free on [D] and [F ], we have

(9) [D].[D] = k0, [D].[F ] = 1, [F ].[F ] = 0,

where k0 = deg E, and the canonical class is KE = −2[D] + (deg E + 2g − 2)[F ].
In fact, we have k0 = −4d − 2g + 2. To see this, we can apply the adjunction formula to

the blow-up BΓ → P 3 to see that KE is the pullback of KP + 2[E] = −4[H] + 2[E], hence is
−4d[F ]− 2[D].

According to [9, Corollary 7.3.1], the surface A touches EΓ along the curve a, and also meets
it in the fibres over the points of S(α); B meets EΓ in b, the fibres over S(β), and fibres over
S(δ) counted twice; and C meets EΓ in c and the fibres over S(γ). It follows from (8) by taking
traces on E (recall that ma = 2) that we have divisors

(10) [Ea] = [D] + ca[F ], [Eb] = mb[D] + cb[F ], [Ec] = mc[D] + cc[F ],

where
ca = 1

2 (dda −#(α)) = 1
2 (dda − k2),

cb = dbd−#(β)− 2#(δ) = ddb − k3 − 2k2,
cc = dcd−#(γ) = ddc − 4k4.

Using (9) and (10) gives formulae for the mutual intersection numbers of Ea, Eb and Ec alter-
native to those of (7). In particular,

#(ab) + 2k1 = [Ea].[Eb] = k0mb + 1
2mb(dda − k2) + dbd− k3 − 2k2,

#(ac) + k2 = [Ea].[Ec] = k0mc + 1
2mc(dda − k2) + dcd− 4k4.

We have already calculated mb and mc in Lemma 3.1, da in (1); by Lemma 3.2, #(ab) = k5 and
#(ac) = k6, and the values of the ki are given in Proposition 4.2. Substituting these enables us
to complete the calculation of the degrees of 2-dimensional strata.

Proposition 5.1. We have
da = 2d− 2 + 2g,
db = 2(d− 1)(d− 3) + 2g(d− 3)
dc = 1

3 (d− 1)(d− 2)(d− 3)− g(d− 2).

Now by Lemma 2.1, Ea is isomorphic to Γ, so has genus g; Eb has #(bb) simple (A1) nodes
and #(b2) simple (A2) cusps; Ec has #(cc) simple nodes and #(γ) triple points (type D4). Thus,
first,



GENERIC SPACE CURVES, GEOMETRY AND NUMEROLOGY 201

−χ(Ea) = {( 1
2dad−#(α))[F ] + [D]}.{( 1

2dad−#(α)− 4d)[F ]− [D]},
which indeed reduces, substituting from (9), to 2g − 2. Then we have
−χ(Eb) = [Eb].([Eb] +KE)−#(bb)− 2#(b2),
−χ(Ec) = [Ec].([Ec] +KE)−#(cc)− 4#(γ),

and hence formulae alternative to those of (7); comparing the two and substituting known values
completes the count of special points of the various types.

Proposition 5.2. We have
#(α) = #(δ) = 2(d− 2)(d− 3) + 2g(d− 6),
#(β) = 2(d− 2)(d− 3)(d− 4) + 2g(d2 − 10d+ 26)− 4g2,
#(γ) = 1

3 (d− 2)(d− 3)2(d− 4)− 2g(d2 − 7d+ 13) + 2g2,
#(a2) = 4(d− 3) + 12g,
#(b2) = 6(d− 3)(d− 4) + 6g(3d− 14) + 12g2,
#(c2) = 4(d− 2)(d− 3)(d− 4) + 4g(d2 − 10d+ 26)− 8g2,
#(ab) = 6(d− 3)(d− 4) + 6g(3d− 14) + 12g2,
#(ac) = 2(d− 2)(d− 3)(d− 4) + 3g(d2 − 8d+ 18)− 6g2,
#(bb) = 4(d− 5)(d− 3)(d− 4) + 4g(3d2 − 30d+ 77) + 12(d− 6)g2 + 4g3,
#(bc) = 3(d− 5)(d− 2)(d− 3)(d− 4) + g(5d3 − 65d2 + 288d− 448) + (2d2 − 26d+ 92)g2 − 4g3,
#(cc) = 1

4 (d− 2)(d− 3)(d− 4)(d− 5)(2d− 3) + 1
4g(d4− 24d3 + 177d2− 502d+ 468)− (d2− 10d+

28)g2 + g3.

We also have
χ(Eb) = −4(d− 3)2(d− 4)− 4g(3d2 − 24d+ 49)− 4g2(3d− 14)− 4g3,
χ(Ec) = − 1

12 (d− 2)(d− 3)(6d3 − 55d2 + 169d− 192)− 1
4g(d4 − 24d3 + 173d2 − 490d+ 500) +

g2(d2 − 10d+ 30)− g3.
However the Euler characteristics of the normalised curves (which give the genera) are given by

χ(Ẽb) = χ(Eb) + #(bb) and χ(Ẽc) = χ(Ec) + #(cc) + 8k4, which lead to the simpler formulae

(11)
χ(Ẽb) = −8(d− 3)(d− 4)− 8g(3d− 14)− 16g2,

χ(Ẽc) = −(d− 2)(d− 3)(2d− 9)− g(3d2 − 25d+ 60) + 6g2.

The degree dc of the surface C of trisecants was first given by Cayley [2], with a full proof
by Zeuthen [11]. The number of tritangent planes (equal to 1

3#(bb)) was also given by Zeuthen
[11]. The formulae for db, #(bc) and #(cc) appear to be new.

6. Degrees of curve strata

In this section we complete the calculation of the degrees of the 1-dimensional strata. We
first state the result; the formulae will be obtained in stages through the section.

Theorem 6.1. We have
n(A4) = 4(d− 3) + 12g,
n(A5) = 6(d− 3)3 + 12g(d− 5) + 6g2,
n(D5) = 2(d− 2)(d− 3) + 2g(d− 6),
n(D6) = 2(d− 2)(d− 3)(d− 4) + 2g(d2 − 10d+ 26)− 4g2,
n(X9) = 1

12 (d− 2)(d− 3)2(d− 4)− 1
2g(d2 − 7d+ 13) + 1

2g
2,

n(2A2) = 2(d− 1 + g)(d− 3 + g) = 2(d− 1)(d− 3) + 4g(d− 2) + 2g2,
n(A2A3) = 2d(d− 3)(2d− 7) + 2g(4d2 − 19d+ 6) + 4g2(d− 3),
n(A2D4) = 1

3 (d− 2)(d− 3)(d− 4)(2d+ 1) + 2
3g(d3 − 9d2 + 20d+ 6)− 2g2(d− 2),

n(2A3) = 2(d+ 1)(d− 3)2(d− 4) + 4g(d3 − 8d2 + 13d+ 16) + 2g2(d2 − 7d+ 4),
n(A3D4) = 1

3 (d−2)(d−3)(d−4)(2d2−5d−9)+ 1
3g(2d4−27d3+103d2−66d−204)−2g2(d2−6d+2),

n(2D4) = 1
72 (d−2)(d−3)(d−4)(d−5)(4d2−d−12)− 1

6g(d−3)(d−5)(2d2−3d−8)+ 1
2dg

2(d−5).



202 C. T. C. WALL

The values of n(A4), n(D5), n(D6) and n(X9) were denoted k1, k2, k3 and k4 and calculated
in Proposition 4.2. The degrees of curves of intersection of two strata can be evaluated as follows.

Lemma 6.2. [9, Lemma 2.1] Along S(A4), S(A2) and S(A3) are smooth, and intersect with
multiplicity 2; along S(A5), S(A3) has a cuspidal edge; along S(D5), S(A2), S(A3) and S(D4)
are all smooth, and any two of them meet transversely; along S(D6), S(A3) and S(D4) are
smooth, and intersect with multiplicity 2; and along S(X9), S(D4) has 4 branches, any two of
which are transversal.

It follows that intersections of cycles are given by

(12)
[A].[B] = S(A2A3) + 2S(A4) + S(D5) + 2mb[Γ],
[A].[C] = S(A2D4) + S(D5) + 2mc[Γ],
[B].[C] = S(A3D4) + S(D5) + 2S(D6) +mbmc[Γ].

Taking degrees, we find
dadb = n(A2A3) + 2k1 + k2 + 2dmb,
dadc = n(A2D4) + k2 + 2dmc,
dbdc = n(A3D4) + k2 + 2k3 + dmbmc;

and substituting the values already obtained now yields the values of n(A2A3), n(A2D4) and
n(A3D4).

Next we consider the generic plane sections Πa, Πb, Πc of the respective surfaces A, B and
C. These have the same degrees as the corresponding surfaces, and have singularities given by
Lemma 2.2. Applying the Plücker formula, we obtain
−χ(Πa) = da(da − 3)− 2d− n(2A2),
−χ(Πb) = db(db − 3)− n(2A3)− 2n(A5)− d(mb − 1)2,
−χ(Πc) = dc(dc − 3)− n(2D4)− 9n(X9)− d(mc − 1)2.

However, it will be more convenient to use instead the normalisations of these curves, and here
we have

(13)

−χ(Π̃a) = da(da − 3)− 2d− 2n(2A2),

−χ(Π̃b) = db(db − 3)− 2n(2A3)− 2n(A5)− dmb(mb − 1),

−χ(Π̃c) = dc(dc − 3)− 2n(2D4)− 12n(X9)− dmc(mc − 1).

To obtain alternative formulae, we first observe that Π̃a can be identified with Γ itself, so
χ(Π̃a) = 2− 2g.

Next we compare Tb, Eb and Πb. A general T-secant PQ of Γ determines 2 points (P,Q), (Q,P ) ∈
Tb, 2 points (P,Π), (Q,Π′) ∈ Eb and a single point PQ∩Π0 of Πb. There are various exceptions
to this, but the number of exceptions decreases if we compare instead the normalisations Tb
(already normal), Ẽb and Π̃b: the only special cases now are the k1 tangents at stalls P , which

yield a single point in each of Tb, Ẽb and Π̃b. Hence χ(Tb) = χ(Ẽb) = 2χ(Π̃b)− k1.
The equality is confirmed by our calculations, and we obtain

(14) χ(Π̃b) = −2(d− 3)(2d− 9)− 2g(6d− 31)− 8g2.

Similarly for the third case, a general trisecant PQR of Γ gives rise to 6 points of Tc, 3 points
of Ec and a single point of Πc. Again using the normalisations, we find that the only exceptions
are (a) each of k2 tangents TPΓ meeting Γ again in Q, giving only 3 points of T̃c and 2 points of

Ẽc, and (b) each of k4 4-secants PQRS of Γ, giving 24 points of T̃c (12 points of Tc), 12 points of

Ẽc (4 points of Ec) and 4 points of Π̃c (1 point of Πc). Hence χ(T̃c) = χ(Tc)+12k4 = 2χ(Ẽc)−k2,
giving

χ(T̃c) = −4(d− 2)(d− 3)(d− 4)− 6g(d2 − 8d+ 18) + 12g2,

and χ(Ẽc) = 3χ(Π̃c)− k2, giving
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χ(Π̃c) = − 1
3 (d− 2)(d− 3)(2d− 11)− g(d2 − 9d+ 24) + 2g2.

Substituting in (13) now yields the values of n(2A2) and n(2D4) and the equation

(15) n(2A3) + n(A5) = 2(d− 3)2(d2 − 3d− 1) + 4g(d3 − 8d2 + 16d+ 1) + 2g2(d2 − 7d+ 7).

Lemma 6.3. If ∆∨ is the dual curve to ∆, then S(2A2)(∆∨) is the dual curve to S(A5)(∆).

Proof. We can define S(2A2)(∆∨) as the set of planes through a pair of coplanar tangents of
∆∨, or of ∆. But this is just the set of tangent planes of S(A3)(∆), and hence, of S(A5)(∆). �

We next study the curve S(A5), which from now on we denote by F . Recall that each T-secant
of Γ touches F at its T-centre, thus the tangent surface to F is S(A3) = B.

Theorem 6.4. For Γ projection-generic, the curve F has no flexes, it has stalls only at S(b2),
and has cusps only at S(A7) and S(δ).

Proof. The only 0-dimensional strata lying on F are the compound singularities S(A2A5), S(A3A5), S(D4A5),
and S(A7), S(D8) outside Γ, and S(b2), S(δ) on Γ. By [9, §2], F is smooth at the compound
singularities and at S(D8) and is cusped at S(A7). By the normal forms of [9, §6], F is smooth
at S(b2) and is cusped at S(δ).

It follows in the generic case by [4] and in general by specialisation that the tangent line to a
curve at a flex is singular on its tangent surface. But for Γ projection-generic, the singular locus
of B is Γ∪F ∪S(2A3). Now Γ cannot contain a straight line. If F or S(2A3) contained a line L,
L could not itself be a T-secant (the T-trisecants form S(D6)). For each T-secant meeting L, its
T-plane contains the tangent line to S(A3), hence contains L. Thus the tangent lines to Γ at the
end points of the T-secant meet L. We claim that this implies that Γ is planar: a contradiction.
For take L as y = z = 0 in C3, and take a local parameter t on Γ. Since the tangent at (x, y, z)
meets L, (dy/dt)/(dz/dt) = y/z. Hence d(y/z)/dt = 0, thus y/z is constant along Γ. Thus the
singular locus of S(A3) contains no straight line, so F has no flex.

Any stall of F lies on the self-intersection curve S(2A3) ∪ Γ of the tangent surface B of F .
Now S(2A3) meets F only in S(A7) which gives cusps, not stalls on S(A5). The curve Γ itself
meets F in S(b2)∪S(δ). By [9, Proposition 8.4], B has a cuspidal cross-cap at a point of S(b2),
hence such a point is indeed a stall on F . By [9, Theorem 9.2], at a point of S(δ), B has a
swallowtail singularity, and by [9, Corollary 9.2.1], the local parameters of F at such a point are
s0 = 1, s1 = s2 = 0, so it does not count as a stall. �

Thus we have projective characters s1(F ) = 0, s2(F ) = #(b2) = k5, r1(F ) = db. Moreover,

since each T-secant meets F in just one point, we can identify the normalisation F̃ with Π̃b, so
have χ(F ) = χ(Π̃b), which was calculated in (14). The Plücker relations of Lemma 3.3 imply
(since s1(F ) = 0)

r0(F ) = 1
2 (3r1(F )− s2(F )− 3χ(F )) = 1

2 (3db − k5 − 3χ(Π̃b)),
and this gives the degree n(A5) of F = S(A5). The value of n(2A3) now follows from (15).

We also have s0(F ) = 2r1(F ) − s2(F ) − 4χ(F ) = 2db − k5 − 4χ(Π̃b), and Theorem 6.4 gives
s0(F ) = k2 + n(A7), so we obtain

(16) n(A7) = 12(d− 3)(d− 4) + 4g(8d− 41) + 20g2.

A formula for the degree of the curve S(2A2) (there called the nodal curve), for arbitrary
space curves, can be found in [6], in the form 1

2{r1(r1 − 1) − r2 − 3(r0 + s1)}. One can also
calculate n(2A3) by applying this formula to F , but must then note that this nodal curve has
to be interpreted as containing Γ with multiplicity

(
mb

2

)
as well as S(2A3). The other formulae

in this section are new.
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7. Calculations in Γ× Γ

In this section we prove Theorem 2.3. We first prove most of (i) in Lemma 7.1, and all
of (iv) in Lemma 7.2. The assertions in (ii) and (iii) require calculations, which we give in
Lemmas 7.3, 7.4 and 7.5, for the respective curves Ta, Tb and Tc. We complete the proof of (v)
in Proposition 7.7.

In these arguments we will make explicit use of the condition of projection genericity, par-
ticularly (PG6), which implies in particular that the subsets W1 . . .W6 of Γ × Γ are mutually
disjoint. We also need the following consequences of (PG1):

at any stall P ∈ Γ we have s2(P ) = 1,
there is no T-3-secant with T-centre on Γ,
the cross-ratio of the planes through a 4-secant containing the 4 tangent lines is not equal to

the cross-ratio of the 4 points on the line.

Before starting our calculations, we note that the situation of Tb and Tc was also considered
in [3, pp 290-297]. However precise conditions for counting multiplicities were passed over there,
and of the hypotheses actually listed on p.291, the absence of 5-secants, T-4-secants and flexes
(points with s1(P ) > 0) follow from (PG1), and the condition that no osculating 2-plane contain
a tangent line is not generic.

The correspondences Ta and Tb are among those studied in [10], and the results concerning
them are given there. The proofs below are more direct than those of [10] for this special case.
Of the hypotheses of the other paper, that s0(P ) + s1(P ) + s2(P ) ≤ 1 for each P ∈ Γ follows
from our hypotheses s0(P ) = s1(P ) = 0 and s2(P ) ≤ 1; (PG6) implies all the other conditions
(in fact we just need S(a2), S(α), S(δ), S(ab) and S(b2) disjoint).

Lemma 7.1. We have Ta ∩∆(Γ) = Tb ∩∆(Γ) = W1, Tc ∩∆(Γ) = W ′2.

Proof. If (P,Q) ∈ Ta we have P ∈ OQΓ. Conversely, the plane OQΓ has intersection number
d with Γ, and the point Q accounts for 3; for the other points P , we have (P,Q) ∈ Ta. If also
P = Q, the intersection number at Q is 4, so Q is a stall.

If (P, P ) ∈ Tb, there is an intersection of TY ΓP with ΓP at YP additional to that expected,
i.e. YP is a flex of ΓP , so again P is a stall of Γ.

If (P, P ) ∈ Tc, then there is a line meeting Γ twice in P and once elsewhere. This must be
the tangent at P , so P ∈ S(δ). �

Lemma 7.2. We have Ta∩Tb = W1∪W t
2∪W5, Ta∩Tc = W t

2∪W6, and Tb∩Tc = W2∪W t
2∪W ′3.

Proof. Intersections on the diagonal are dealt with by Lemma 7.1, so consider pairs P 6= Q.
If (P,Q) ∈ Ta ∩ Tb, then P ∈ OQΓ. If P ∈ TQΓ then (P,Q) ∈ W t

2 ; if not, TPΓ meets TQΓ in
a point different from P in OQΓ, so is contained in this plane, hence (P,Q) ∈W5.

If (P,Q) ∈ Ta ∩ Tc, then PQ ⊂ OQΓ and PQ is a trisecant PQR. If R = P , we have
Q ∈ TPΓ ⊂ OQΓ, so Q ∈ S(δ) ∩ S(b2), contradicting projection genericity. If R = Q, P ∈ TQΓ,
so (P,Q) ∈W t

2 . If P,Q,R are distinct, then Q has type ac, hence (P,Q) ∈W6.
If (P,Q) ∈ Tb∩Tc, then again PQ is a trisecant PQR. If R = P thenQ ∈ TPΓ, so (P,Q) ∈W2.

If R = Q then P ∈ TQΓ, so (P,Q) ∈W t
2 . Otherwise, (P,Q) ∈W ′3. �

For the next results, we need direct calculations of the low order terms in the expansions of
the curves at the special points. Parts of these calculations appeared in a preliminary version
of [9], where they were used to establish the local structure of the curves Ea, Eb and Ec in EΓ

with respect to each other and to the projection πE : however in the final version of [9], the local
structure is obtained from the main versality results.
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We work throughout in affine 3-space, and take up the notation and calculations of [8, Propo-
sition 6.15]: denote a typical point by X = (x, x′, x′′); points of Γ are denoted P = (p, p′, p′′),
Q, R etc. We regard the co-ordinates p, p′, p′′ as functions of a local parameter tp on Γ which
vanishes at P (we omit the subscript p if there is no ambiguity). Their Taylor expansions are
denoted p =

∑∞
0 prt

r
p, p
′ =

∑∞
0 p′rt

r
p, etc.

Successive derivatives of the vector P with respect to tp are denoted by suffices: P1, P2, . . ..
Thus at tp = 0 we have Pr = r!(pr, p

′
r, p
′′
r ). However, we denote by P0 the result of substituting

tp = 0 in P .
We take co-ordinates with P0 at the origin, with tangent along the x′′−axis. Since Γ is smooth

at P , p′′1 6= 0. We may take x′′ (scaled by p′′1 , which we retain to preserve homogeneity in our
formulae) as local co-ordinate at P , so p′′r = 0 for r 6= 1. When Q0 6= P0, we also suppose Q0

in the plane x′ = 0, so q′0 = 0. We will expand an equation for the correspondence T∗ as Taylor
series in tp and tq. If the terms of degree ≤ 1 are atp + btq = 0, then we have a coincidence
point I1(T ) if b = 0 (or I2(T ) if a = 0, a singular point of T if a = b = 0), and it is simple iff the
coefficient of t2q is non-zero.

Lemma 7.3. The curve Ta is smooth at all points. We have I1(Ta) = W t
5 and I2(Ta) = W ′t1 ∪W2.

All coincidence points are simple. At a united point in W1, the tangent is 3tp + tq = 0.

Proof. We have (P,Q) ∈ Ta if Q ∈ OPΓ, so P −Q,P1 and P2 are coplanar. Since (P0, Q0) ∈ Ta,
we have p′2 = 0; as the curvature does not vanish at P0, p2 6= 0. We have

∆0 := [P −Q,P1, P2] =

∣∣∣∣∣∣
−q0 + . . . −q′1tq + . . . −q′′0 + . . .

2p2tp + . . . 3p′3t
2
p + . . . p′′1

2p2 + . . . 6p′3tp + . . . 0

∣∣∣∣∣∣ ;
the terms of degree 1 in tp and tq are 6q0p

′
3p
′′
1 tp − 2p2q

′
1p
′′
1 tq.

Thus for I1(Ta) we have q′1 = 0, so TQ0
Γ ⊂ OP0

Γ and (P0, Q0) ∈W t
5 .

For I2(Ta) we have either
q0 = 0:, so Q0 ∈ TP0 and (P0, Q0) ∈W2, or
p′3 = 0, so P0 is a stall on Γ and (P0, Q0) ∈W ′t1 ;

we cannot have both, for this would imply P0 ∈ S(δ) ∩ S(a2). This gives the coincidence points
as stated, and proves smoothness.

In the W t
5 case, to obtain the coefficient of t2q, we set tp = 0 in the determinant: the coefficient

is −2p2q
′
2p
′′
1 , which does not vanish since if q′2 = 0, Q0 would be a stall, so Q0 ∈ S(ab) ∩ S(a2).

In the other cases, we need the coefficient of t2p. If p′3 = 0, the coefficient is −12q0p
′
4p
′′
1 , which

cannot vanish else we would have s2(P ) ≥ 2; if q0 = 0, the coefficient is 6p2p
′
3q
′′
0 , and this is

non-zero as q′′0 = 0 implies Q0 = P0.
We also need to consider the case Q0 = P0. Here P and Q are given by the same parametri-

sation, i.e. with the same coefficients pr . . . but with different parameters tp, tq. Since we have
a stall, p′3 = 0 and p′4 6= 0, so the determinant reduces to∣∣∣∣∣∣

p2(t2p − t2q) + . . . p′4(t4p − t4q) + . . . p′′1(tp − tq)
2p2tp + . . . 4p′4t

3
p + . . . p′′1

2p2 + . . . 12p′4t
2
p + . . . 0

∣∣∣∣∣∣ .
A factor (tp − tq)

3 can be removed; when this is done, the terms of least degree reduce to
2p2p

′
4p
′′
1(3tp + tq); in particular, the curve is smooth. �

Lemma 7.4. The curve Tb is smooth at all points. At a united point, the tangent is given by
tq = −tp. The set I1(Tb) = W2 ∪W5. All coincidence points are simple.
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Proof. First consider a neighbourhood of the point defined by a T-secant P0Q0, with P0 6= Q0.
Since (P0, Q0) ∈ Tb, we have q′1 = 0. Now (P,Q) ∈ Tb if P − Q, P1 and Q1 are coplanar, so
∆b := [P −Q,P1, Q1] = 0. We have

∆b =

∣∣∣∣∣∣
p2t

2
p + . . .− q0 − . . . p′2t

2
p + . . .− q′2t2q + . . . p′′1 tp − q′′0 − . . .

2p2tp + . . . 2p′2tp + . . . p′′1
q1 + . . . 2q′2tq + . . . q′′1 + . . .

∣∣∣∣∣∣ .
The linear terms in the expansion of ∆b are −2p′2(−q1q

′′
0 +q0q

′′
1 )tp+2q0q

′
2p
′′
1 tq. For I1(Tb), either

q0 = 0, so Q0 ∈ TP0
Γ and (P0, Q0) ∈W2, or

q′2 = 0, thus OQ0
Γ is x′ = 0 so TP0

Γ ⊂ OQ0
Γ and (P0, Q0) ∈W5.

We cannot have both, else we would have P0 ∈ S(δ)∩S(b2). As a check, we note that for I2(Tb)
we have the transposed cases:

(−q1q
′′
0 + q0q

′′
1 ) = 0; since q′1 = 0, this is the condition for P0 ∈ TQ0

Γ, so P0 ∈ S(α),
(P0, Q0) ∈W t

2 , or
p′2 = 0, thus OP0

Γ is x′ = 0, so here TQ0
⊂ OP0

and (P0, Q0) ∈W t
5 .

This proves smoothness of Tb. As before, we check the second degree terms:
if q0 = 0, the coefficient is −q1q

′
2p
′′
1 , and q1 6= 0 for otherwise TP0Γ = TQ0Γ,

if q′2 = 0, the coefficient is −3q0q
′
3p
′′
1 , and q′3 6= 0, for otherwise Q0 is a stall.

We also see that when p′2 = 0, the coefficient of t2p is 3p′3(q1q
′′
0 − q0q

′′
1 ).

Again we must also consider the case P0 = Q0. We already saw in [8, Lemma 6.11 (ii)] that
in this case, (as we saw in Lemma 7.1) P0 must be a stall, so (P0, P0) ∈ W1, and also that for
the two parameters we have, to first order, tp + tq = 0. �

Lemma 7.5. At a point (P,Q) ∈ Tc, the curve is smooth and transverse to neither fibre except
as follows. We have I1(Tc) = W t

2 ∪W3 ∪W4, I2(Tc) = W2 ∪W t
3 ∪W4. Points of W t

2 ∪W3

are simple coincidence points. Points of W4 are double points, with 2 transverse branches, each
tangent to neither fibre.

Proof. We use the same notation as before, and take the trisecant P0Q0R0 to lie on x′ = 0. First
suppose P0, Q0, R0 are distinct, so we may suppose 0 = p′′0 , q

′′
0 and r′′0 also distinct. Since the

points are collinear, q0
q′′0

= r0
r′′0

= λ, say.

The condition for collinearity of P,Q,R is that the matrix

(17)

 1 p p′ p′′

1 q q′ q′′

1 r r′ r′′


have rank 2. Since the first and last columns are independent for P0, Q0, R0 and hence nearby,
it suffices to equate to zero the determinants formed by omitting the third and second columns,
which we denote respectively by ∆c and ∆′c.

For the terms of order at most 1 in tp, tq, tr it suffices to consider 1 0 0 p′′1 tp
1 q0 + q1tq q′1tq q′′0 + q′′1 tq
1 r0 + r1tr r′1tr r′′0 + r′′1 tr

 .

The terms of degree at most 1 in tp, tq and tr are:
∆c: p

′′
1(r0 − q0)tp + (q1 − λq′′1 )r′′0 tq + (λr′′1 − r1)q′′0 tr,

∆′c: q
′
1r
′′
0 tq − r′1q′′0 tr.

If q′1 = 0, TP0
Γ and TQ0

Γ both lie in the plane x′ = 0, so we have a T-3-secant and (P0, Q0) ∈W ′3:
here tr = 0 and p′′1(r0 − q0)tp + (q1 − λq′′1 )r′′0 tq = 0.
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Similarly if r′1 = 0, we have tq = 0 (we cannot have q′1 = r′1 = 0), TP0
Γ and TR0

Γ are coplanar:
here (P0, Q0) ∈W t

3 ⊂ I2(Tc).
Otherwise, we can eliminate tr to get 0 = r′1p

′′
1(r0 − q0)tp + ξr′′0 tq, where ξ = (q1 − λq′′1 )r′1 −

(r1 − λr′′1 )q′1.
Thus ξ = 0 is the condition for TQ0

Γ and TR0
Γ to be coplanar: in this case (P0, Q0) ∈W3 ⊂

I1(Tc).
Thus if (P0, Q0) ∈ W3, the coefficient of tq vanishes. We now claim that it follows from the

fact that P0 is not the T-centre of Q0R0 that the coefficient C in tp = Ct2q is non-zero. As direct
calculation is messy, we proceed a little differently.

Write the co-ordinates of Q as (q, q′, q′′). Projecting from P0 (the origin) to x′′ = c gives
(cq/q′′, cq′/q′′); similarly for R. Since the second co-ordinates have leading terms (cq′1/q

′′
0 )tq and

(cr′1/r
′′
0 )tr, we can solve q′/q′′ = r′/r′′ for tr in terms of tq. The order of contact of the projected

curves is now the order of the difference of the first co-ordinates, hence the order of qr′′ − q′′r.
Since P0 is not the T-centre of Q0R0, this order is 2.

On the other hand, we have ∆c = (qr′′ − q′′r) − p(r′′ − q′′) + p′′1 tp(r − q) and ∆′c = (q′r′′ −
q′′r′)− p′(r′′− q′′) + p′′1 tp(r

′− q′). Since p, p′ each have order at least 2, we can ignore the terms
involving p, p′. Substituting the above solution for tr thus makes ∆′c vanish to order at least
2. So to this order, the equation ∆c = 0 yields tp = (qr′′ − q′′r)/p′′1(q − r) which, since the
denominator is non-vanishing, has order precisely 2.

Next we treat the case when P0, Q0 and R0 are not all distinct. Suppose R0 = P0: then
Q0 ∈ TP0

Γ, so q0 = 0. Here P0 ∈ S(δ) and (P0, Q0) ∈W2; the 3-secants near TP0
Γ give a branch

of Tc. We take co-ordinates so that the plane OP0
Γ is given by x′ = 0, and so p′2 = 0. Since

P0 6∈ S(a2), p′3 6= 0. Since P0 6∈ S(ab), TQ0
Γ 6⊂ OP0

Γ, so p2q
′
1 6= 0.

In the matrix (17) we subtract the first row from the third, and divide the result by tr − tp
giving, to first order, (0, p2(tp + tr), 0, p

′′
1). Terms of order ≤ 2 in the matrix are: 1 0 0 p′′1 tp

1 q1tq + q2t
2
q q′1tq + q′2t

2
q q′′0 + q′′1 tq + q′′2 t

2
q

0 p2(tp + tr) + p3(t
2
p + tptr + t2r) p′3(t

2
p + tptr + t2r) p′′1


Denote the minors corresponding to ∆c and ∆′c by ∆1 and ∆′1. These have first order terms
q1p
′′
1 tq − p2q

′′
0 (tp + tr) and q′1p

′′
1 tq respectively, so to first order we have 0 = tq = tp + tr and

(P0, Q0) ∈ I2(Tc).
Assign weight 1 to tp and tr, 2 to tq: then up to weight 2 we have ∆′1 = p′′1q

′
1tq − q′′0p′3(t2p +

tptr + t2r), so to that order tq =
q′′0 p

′
3

p′′1 q
′
1
t2p, with non-zero coefficient. Hence the coincidence point is

simple.
We have now shown that at each point of Tc we have a smoothly immersed curve. Dou-

ble points can only occur if P0Q0 lies in two trisecants, or more accurately, defines a 4-secant
P0Q0R0S0, thus (P0, Q0) ∈ W4. It remains to show that the two branches at such a point
are not tangent. With the above notation, we had 0 = r′1p

′′
1(r0 − q0)tp + ξr′′0 tq, where ξ =

(q1 − λq′′1 )r′1 − (r1 − λr′′1 )q′1. Thus the condition for tangency of the two branches is

{(q1 − λq′′1 )r
′
1 − (r1 − λr′′1 )q

′
1}r

′′
0 s

′
1p

′′
1 (s0 − q0) = {(q1 − λq′′1 )s

′
1 − (s1 − λs′′1 )q

′
1}s

′′
0 r

′
1p

′′
1 (r0 − q0).

Substituting q0 = λq′′0 , r0 = λr′′0 , s0 = λs′′0 , and dividing both sides by λp′′1q
′
1r
′
1s
′
1, this reduces

to
{ q1−λq

′′
1

q′1
− r1−λr′′1

r′1
}r′′0 (s′′0 − q′′0 ) = { q1−λq

′′
1

q′1
− s1−λs′′1

s′1
}s′′0(r′′0 − q′′0 ).

Now the points P0, Q0, R0, S0 lie on the line x′ = 0, x = λx′′, with co-ordinates 0, q′′0 , r
′′
0 , s
′′
0 , and

the tangents to Γ at these points lie in the planes x′ = µ(x−λx′′), where the corresponding values
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of µ are 0,
q′1

q1−λq′′1
,

r′1
r1−λr′′1

,
s′1

s1−λs′′1
. The above equality requires the cross-ratios (0, q′′0 , r

′′
0 , s
′′
0) and

(0,
q′1

q1−λq′′1
,

r′1
r1−λr′′1

,
s′1

s1−λs′′1
) to be equal. But projection genericity implies that they are not. �

Before treating intersection numbers in Γ×Γ we introduce a map which, in some cases, enables
us to deduce them from intersection numbers in EΓ (which were given in Lemma 2.1). Define
Φ : Γ× Γ! EΓ by (P,Q) 7→ (P,Π), where Π is the plane through TPΓ and Q. This is defined
except if Q ∈ TPΓ, i.e. except on the diagonal ∆(Γ) and W2. We have Φ(T ta) = Ea, Φ(Tb) = Eb
and Φ(Tc) = Ec; the images of points of other types are given by

x W ′1 W t
2 W3 W ′3 W4 W5 W t

5 W6

Φ(x) a2 α β c2 γ b2 ab ac
.

Lemma 7.6. The restriction of Φ to the complement of ∆(Γ) ∪ Tb is a submersion. Along Tb,
the map is a simple fold, except at points of W5.

Proof. With co-ordinates as above, Π is the plane through the x′′−axis and (q, q′, q′′), which has
initial position (q0, 0, q

′′
0 ). Thus for tq small, the angle made by Π is q′1tq/q0. Hence the map is

a local submersion if q′1 6= 0, i.e. if (P0, Q0) 6∈ Tb.
For the second assertion we may suppose q0 6= 0, q′0 = 0, q′1 = 0. Since the point P is given

by the first projection, it suffices to keep P = P0 fixed, and see how Π varies with Q. Here
the angle is q′2t

2
q/q0 (modulo higher terms), so is a non-zero multiple of t2q except if q′2 = 0, i.e.

(P0, Q0) ∈W5. �

Proposition 7.7. The intersection number at each of the common points of Lemma 7.2 is 1,
except that at W t

2 the intersection number of T ta and Tc is 2.

Proof. We treat the cases in turn.
W1 ⊂ Ta∩T ta∩Tb. We have seen that at such a point, to first order, Ta is given by 3tp+tq = 0,

hence T ta by tp + 3tq = 0, while Tb is given by tp + tq = 0.
W2 ⊂ T ta ∩Tb ∩Tc. We have W2 ⊂ I2(T ta)∩ I1(Tb)∩ I2(Tc), so at these points Tb is transverse

to the others. From the above calculations, the least order terms at W2 are

for T ta we have tq =
3p′3q

′′
0

q′1p
′′
1
t2p.

for Tc we have tq =
p′3q

′′
0

q′1p
′′
1
t2p.

Since p′3q
′′
0 6= 0, T ta and Tc have intersection number 2.

W ′3 ⊂ Tb ∩ Tc: the case of a T-3-secant (P0Q0)R0. Here we apply Lemma 7.6. Since Eb and
Ec have simple tangency at a point of S(c2), it follows since Φ is a simple fold along Tb that the
pre-images Tb and Tc are transverse.
W5 ⊂ Ta ∩ Tb. Here transversality holds since W5 ⊂ I1(Tb) ∩ I2(Ta).
W6 ⊂ Ta ∩ Tc. Here since Ea and Ec are transverse at ac, it follows from Lemma 7.6 that Ta

and Tc are transverse at W6. �

References

[1] Beauville, A., Complex algebraic surfaces, Cambridge Univ. Press, 1983.

[2] Cayley, A., On skew surfaces, otherwise scrolls, Phil. Trans. Roy. Soc. 153 (1863) 453–483.
DOI: 10.1098/rstl.1863.0021

[3] Griffiths, P. and J. Harris Principles of algebraic geometry, xiv, 813 pp., John Wiley & sons, 1978.
[4] Mond, D. M. Q., Singularities of the tangent developable of a space curve, Quart. Jour. Math. Oxford 40

(1989) 79–91. DOI: 10.1093/qmath/40.1.79

[5] Piene, Ragni. Numerical characters of a curve in projective n-space. In Real and complex singularities (Proc.
Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pp. 475–495. Sijthoff and Noordhoff,
Alphen aan den Rijn, 1977.

http://dx.doi.org/10.1098/rstl.1863.0021
http://dx.doi.org/10.1093/qmath/40.1.79


GENERIC SPACE CURVES, GEOMETRY AND NUMEROLOGY 209

[6] Piene, Ragni. Cuspidal projections of space curves. Math. Ann. 256 (1981), 95–119.
DOI: 10.1007/BF01450947

[7] Wall, C. T. C., Singular points of plane curves (London Math. Soc. student text 63), xii, 370 pp, Cambridge
Univ. Press, 2004. DOI: 10.1017/CBO9780511617560

[8] Wall, C. T. C., Projection genericity of space curves, Journal of Topology 1 (2008) 362–390.

DOI: 10.1112/jtopol/jtm015
[9] Wall, C. T. C., Geometry of projection-generic space curves, Math. Proc. Camb. Phil. Soc. 147 (2009),

115–142. DOI: 10.1017/S0305004108002168
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