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WILD SINGULARITIES OF KUMMER VARIETIES

BENEDIKT SCHILSON

Abstract. In characteristic p = 2, we compute the singularities of Kummer varieties arising

from products of elliptic curves. This result is generalized to Kummer varieties associated to
ordinary abelian varieties.

Introduction

Let k be an algebraically closed field of characteristic p ≥ 0 and let A be an abelian variety
over k of dimension g ≥ 2. The Kummer variety A/ι is by definition the quotient of A by the
action of the sign involution ι and this quotient acquires singularities coming from the 2-torsion
of A. If p 6= 2, then the singular locus of the Kummer variety consists of 22g closed points. In
the case p = 2 the situation changes dramatically. Here the number of singular points of A/ι
can vary and is at most 2g. In the case of Kummer surfaces, Katsura [7] studied the singularities
and their resolution. For Kummer varieties of higher dimension, no such result is known. The
goal of this paper is to determine the singularities for an accessible class of examples, namely
Kummer varieties arising from products of elliptic curves.

To proceed so, one has to look for a suitable open affine ι-invariant subset U ⊂ A containing
exactly one point of order (at most) 2. Under this assumption, the quotient U/ι exists and
is the desired open affine neighbourhood of the chosen singular point in A/ι. By a change of
variables, the spectrum of the affine coordinate ring R = Γ(U,OA) can be considered as a closed

subscheme of affine space A2g
k such that the Z/2Z-action on R coincides with the induced action

of an involution on k[x1, y1, . . . , xg, yg]. In the case that A is the product of ordinary elliptic
curves, the involution is given by xi 7→ xi, yi 7→ yi+xi. The ring of invariants in this setting was
computed by Richman [12]. Now the decisive step is to prove that in this case passing to the

quotient of A2g
k by the group action is compatible with taking the closed subscheme mentioned

above. For arbitrary group actions this statement does not hold.
From the description of the affine coordinate ring of U/ι as an affine k-algebra one immediately

gets the singularity by completing the ring with respect to the ideal of the singular point. By an
argument of Katsura, the computation of the singularities can be extended to abelian varieties
whose associated formal group is isomorphic to that of a product of elliptic curves. This is the
case e.g. for all ordinary abelian varieties and for all abelian varieties with 2g−1 points of order
at most 2.

For the sake of simplicity, only the case of ordinary abelian varieties is formulated here: The
completed local ring at a singular point has a set of generators TM , Xi with M ⊂ {1, . . . , g},
i = 1, . . . , g, satisfying the relations

T∅ = 0, Xi − T{i} = 0 ,
∑
L(D

XDrL TL = 0, and

TATB +
∑

L(A∩B
X(A∩B)rL PL T(A∪B)rL + PA∩B

∑
M(ArB

X(ArB)rM TM∪(BrA) = 0
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for 1 ≤ i ≤ g, A,B,D ⊂ {1, . . . , g} with |D| ≥ 3 and |A|, |B| ≥ 2. Here we use the notation

XM =
∏
i∈M

Xi, PM =
∏
i∈M

(X3
i +Xi).

Now the main result reads as follows:

Theorem. Let A be an ordinary abelian variety of dimension g ≥ 2 over an algebraically closed
field of characteristic p = 2 and X = A/ι the Kummer variety of A. Then the completed local
ring at every singular point of X is isomorphic to

kJTM , Xi | M ⊂ {1, . . . , g}, i = 1, . . . , gK/J,

where the ideal J is generated by all relations given above. The embedding dimension of this local
ring equals 2g − 1.

For Kummer surfaces, we get the known types of the singularities as described by Artin [1],
Shioda [14] and Katsura [7] in the 1970s.

The paper is structured as follows: First, we give normal forms for Weierstraß equations and
find an open affine ι-invariant subscheme U = Spec(R) of the product of elliptic curves. In
Section 2 we get an explicit description of the quotient U/ι by taking the spectrum of the ring of
invariants Rι. Completing with respect to the singular point yields the singularity. This result
is extended to arbitrary ordinary abelian varieties in Section 3. Finally, we give a brief overview
on related problems, namely quotient singularities arising from Artin–Schreier curves and on the
rationality problem for Kummer varieties stemming from supersingular abelian varieties.

Acknowledgement. The author would like to thank Stefan Schröer for many helpful discus-
sions. This work is part of the author’s PhD thesis and was conducted in the framework of
the research training group GRK 2240: Algebro-Geometric Methods in Algebra, Arithmetic and
Topology, which is funded by the DFG.

1. Products of elliptic curves

In this section k denotes an algebraically closed ground field of characteristic p = 2. The goal
of this section is to find a suitable normal form for the action of the sign involution on an open
subscheme of an elliptic curve.

Let E be an ordinary elliptic curve with j-invariant jE 6= 0 and pick an α ∈ k with α6 = j−1E .

Then the Weierstraß equation y2 + αxy = x3 + βx with coefficients α and β = αj−1E defines an
elliptic curve with the same j-invariant. We may assume that E is given by this equation. The
spectrum of the ring

RjE = k [x, y] /(y2 + αxy + x3 + βx)

yields an affine open set U , which contains all points of E except the identity element. Hence,
the sign involution ι maps U to itself. By [15], Chapter III, Algorithm 2.3, the action of ι is
given by (x, y) 7→ (x, y + αx); in particular, the point (0, 0) ∈ U is the unique point of order 2.
The induced action on the affine coordinate ring RjE is given by

x 7−→ x, y 7−→ y + αx.

It will turn out to be important that there is a linear action on A2
k = Spec(k[x, y]) defined as

above such that the action of ι on Spec(RjE ), considered as closed subscheme of A2
k, is induced

by this linear action.
Now let E be a supersingular elliptic curve, i.e. jE = 0. The curve E can be defined by the

homogeneous Weierstraß equation Y 2Z + Y Z2 = X3 and the sign involution ι operates on E
by (X : Y : Z) 7→ (X : Y + Z : Z). The identity element O = (0 : 1 : 0) is the only fixed
point of ι. Introducing new coordinates x = X/Y , z = Z/Y yields the open affine subscheme
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U ′ = Spec
(
k [x, z] /(z + z2 + x3)

)
which contains all points of E except (0 : 0 : 1). An ι-invariant

open neighbourhood U of O is obtained by removing the point ι((0 : 0 : 1)) = (0 : 1 : 1) from
U ′. The affine coordinate ring of U is

R0 = k
[
x, z, (z + 1)

−1
]
/(z + z2 + x3)

and the induced automorphism of k-algebras ι∗ : R0 → R0 is given by

x 7−→ x

z + 1
, z 7−→ z

z + 1
.

Moreover, we have (z + 1)−1 7→ z + 1.
The following lemma gives a simpler description of R0 which requires only two generators.

Lemma 1.1. The k-algebra R0 is generated by x2(z+ 1)−1 and x(z+ 1)−1. More precisely: Let
S = k [v, w] /(w2 + v2w + v), then

v 7−→ x2

z + 1
, w 7−→ x

z + 1
.

defines an isomorphism Φ: S → R0.

Proof. The homomorphism Φ is well-defined: Of course there is a homomorphism

Φ̃: k [v, w]→ R0

which maps the indeterminates to the given elements, so it is enough to check that the given
relation lies in the kernel of Φ̃:

Φ̃(w2 + v2w + v) =
x2

(z + 1)2
+

x4

(z + 1)2
· x

z + 1
+

x2

z + 1

=
x2

(z + 1)3
·
(
z + x3 + z2

)
= 0.

Furthermore, simple calculations give

Φ (vw + 1) =
1

z + 1
, Φ

(
vw + v3

)
= z, Φ

(
w(vw + v3 + 1)

)
= x,

which proves surjectivity of Φ. It remains to show that Φ is injective: The polynomial

w2 + v2w + v ∈ k[v][w] = k[v, w]

is irreducible (Eisenstein’s criterion for prime element v), thus a prime element in the two-
dimensional factorial ring k[v, w]. Consequently, the ring S is a one-dimensional domain. Since
both R0 and S/ ker(Φ) are domains, the kernel ker(Φ) ⊂ S is a prime ideal. Hence, either
ker(Φ) = 0 holds or ker(Φ) is a maximal ideal. The last case is impossible because R0 is not a
field. �

By abuse of notation, the induced involution Φ−1 ◦ ι∗ ◦ Φ on S will also be denoted by ι∗.

Lemma 1.2. We have ι∗(v) = v and ι∗(w) = w + v2.

Proof. Straightforward computation: The element x · x(z + 1)−1 ∈ R0 is invariant as ι∗ inter-
changes the factors. Next, we have

w + v2 = Φ−1
(

x

z + 1
+

x4

z2 + 1

)
= Φ−1

(
x(z + 1 + x3)

z2 + 1

)
= Φ−1

(
x(z2 + 1)

z2 + 1

)
= Φ−1

(
ι∗
(

x

z + 1

))
= Φ−1 ◦ ι∗ ◦ Φ(w) = ι∗(w).

�
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The group action from Lemma 1.2 is not induced by a linear action on A2
k, but it can still be

regarded as closely related.
The k-algebras Rj form the building blocks to build an open affine neighbourhood of one

2-division point. We can replace R0 by the k-algebra S and for jE 6= 0 we can replace RjE by
the isomorphic ring k [x, y] /(y2 + xy + α−3x3 + α−1βx).

The following proposition gives a summary of the situation established now:

Proposition 1.3. Let k be an algebraically closed field of characteristic p = 2 and

A = E1 × . . .× Eg
be a product of elliptic curves over k, where E1, . . . , Er are ordinary and Er+1, . . . , Eg are su-
persingular. Then the spectrum of

R = k [x1, y1, . . . , xr, yr, vr+1, wr+1, . . . , vg, wg] /I,

with the ideal I generated by

y2i + xiyi + j
1
2

Ei
x3i + j−1Ei

xi, 1 ≤ i ≤ r,
w2
j + v2jwj + vj , r + 1 ≤ j ≤ g,

defines an open affine ι-invariant neighbourhood of exactly one 2-division point of A. The sign
involution ι : A→ A induces a Z/2Z-action on R by

xi 7−→ xi, yi 7−→ yi + xi, 1 ≤ i ≤ r,
vj 7−→ vj , wj 7−→ wj + v2j , r + 1 ≤ j ≤ g.

2. Wild group actions

Let R be as in Proposition 1.3 and R̂ be the completion of R at the origin. In the rings
kJxi, yiK and kJvj , wjK, the formal partial derivatives

∂

∂xi
(y2i + xiyi + j

1
2

Ei
x3i + j−1Ei

xi) = yi + j
1
2

Ei
x2i + j−1Ei

,

∂

∂vj
(w2

j + v2jwj + vj) = 1

are units, so there exist unique formal power series xi(yi) and vj(wj) satisfying the respective

relations in R̂ (cf. [2], Chapter IV, page 37) and it follows that R̂ ∼= kJy1, . . . , yr, wr+1, . . . , wgK.
The induced group action of the sign involution on R̂ is known to be non-linear, see e.g. [11],
Proposition 2.1:

Proposition 2.1. Let k be an algebraically closed field of characteristic p > 0 and

S = kJu1, . . . , ugK

equipped with a G-action, where the order of G is divisible by p. If the morphism

Spec(S)→ Spec(SG)

is only at the maximal ideal m ⊂ S ramified, then it is not possible to choose coordinates for S
such that G acts linearly on S.

However, the following statement shows that for specific diagonal actions one can obtain the
invariants from a group action on affine space:
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Proposition 2.2. Let k be a field of characteristic p > 0 and G = 〈σ〉 ∼= Z/pZ. Define a
G-action on the polynomial ring S = k [A1, B1, . . . , Ag, Bg] by

σ (Ai) = Ai, σ (Bi) = Bi +Aeii

for integers ei ≥ 1. Further, assume there are polynomials fi ∈ S of the form

fi = Bpi −A
(p−1)ei
i Bi + Pi(Ai)

for some Pi ∈ Ai k[Ai], and denote by I = (f1, . . . , fg) ⊂ S the ideal generated by the fi. Then
the G-action on S induces an action on the quotient S/I and the residue class map defines a

surjective homomorphism φ : SG → (S/I)
G

of k-algebras. In particular,

SG/I ∩ SG ∼= (S/I)
G
.

Proof. As σ(fi) = fi holds, it follows σ(I) = I and one obtains the well-defined G-action
σ(h+ I) = σ(h) + I on S/I.

Let h + I ∈ S/I be an arbitrary element. There exists a representative h0 ∈ S with the
property that the indeterminates B1, . . . , Bg occur in every monomial of h0 with exponent at
most p− 1, i.e. degBi

(h0) ≤ p− 1 for all 1 ≤ i ≤ g. The polynomial

σ(h0) = h0(A1, B1 +Ae11 , . . . , Ag, Bg +Aegg )

has the property degBi
(σ(h0)) ≤ p− 1 as well; the same is true for σ(h0)− h0 ∈ S.

The element h0 + I ∈ S/I is invariant under G iff σ(h0)− h0 ∈ I. In the case σ(h0)− h0 = 0
one gets that h + I = φ(h0) lies in the image of φ. Hence, for surjectivity of φ it is enough to
show that an element h ∈ I which satisfies the condition degBi

(h) ≤ p− 1 for all i has to be the
zero polynomial.

Define the sets Mi for 1 ≤ i ≤ g by

Mi = {Ari , AriBi, . . . , AriB
p−1
i ,

(
Bpi +A

(p−1)ei
i Bi + Pi

)
AriB

s
i | r, s,≥ 0},

so the elements of Mi build up a basis of the k-vector space k[Ai, Bi]. Therefore, the elements
of the set

M = M1 · . . . ·Mg = {m1 · . . . ·mg | mi ∈Mi, 1 ≤ i ≤ g}
are a basis of S = k[A1, B1]⊗ . . .⊗ k[Ag, Bg]. The subspace I has a generating set consisting of
all elements of the form (

Bpi +A
(p−1)ei
i Bi + Pi

)
Ar11 B

s1
1 · . . . ·Argg Bsgg

with 1 ≤ i ≤ g and exponents r1, s1, . . . , rg, sg ≥ 0. As one can replace the factors A
rj
j B

sj
j by

a linear combination of elements of Mj , one gets a new generating set of I, consisting of all
elements of the form(

Bpi +A
(p−1)ei
i Bi + Pi

)
Arii B

si
i ·m

(i)
1 · . . . · m̂i · . . . ·m(i)

g

where 1 ≤ i ≤ g, ri, si ≥ 0, m
(i)
j ∈ Mj for 1 ≤ j ≤ g and m̂i is omitted in the product. This

generating set contains exactly the elements of M that have a factor md with degBd
(md) ≥ p.

Let now be h ∈ I with degBi
(h) ≤ p − 1 for all i. Then on the one hand h is a linear

combination of elements of the generating set of I, on the other hand h is linear combination of
elements of M , namely of basis elements of the form m1 · . . . ·mg with

mi ∈ {Ari , AriBi, . . . , AriB
p−1
i | r ≥ 0}.

From the uniqueness of the linear combination it follows h = 0. Hence, every element of (S/I)G

is residue class of an invariant element of SG. �
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In particular, the proof shows that every (invariant) element h + I ∈ S/I has a unique
(invariant) representative h0 ∈ S with degBi

(h0) ≤ p− 1 for every 1 ≤ i ≤ g.
It is known that the isomorphism from the proposition always exists for finite group actions if

the order of the group is coprime to the characteristic of the ground field. For wild group actions
taking invariants and taking quotients may or may not commute. The easiest counterexample
is the following:

Example 2.3. Let S = F2[X,Y ] with action of G = S2 by permuting the indeterminates and let
I be theG-invariant principal ideal I = (X+Y ) ⊂ S. Then every element f+I ∈ S/I is invariant.
But the fundamental theorem of symmetric polynomials yields SG = F2[X+Y, XY ], so the class
X + I ∈ (S/I)G does not lie in the image of the residue class map SG → (S/I)G. Otherwise
there would exist polynomials g(X,Y ), h(XY ) ∈ S such that X = h(XY ) + (X + Y )g(X,Y ) in
S, but coefficient comparison of the linear terms shows that this is impossible.

3. Computation of invariants

We start with the computation of the ring of invariants Rι with R and the group action
as in Proposition 1.3. If all elliptic curves are ordinary, we can consider the action of the sign
involution on R as induced by a linear action on affine space A2g

k . As soon as the ring of invariants
in this situation is known, the ring Rι is then obtained by using Proposition 2.2.

The involution on k[x1, y1, . . . , xg, yg] given by x 7→ x, y 7→ y+x has been studied by Richman
[12], who computed a set of generators for the ring of invariants over a field of characteristic
p = 2. Here we give the more general result by Campbell and Hughes (cf. [3], page 4), which
applies for the case p > 0.

Proposition 3.1 (Campbell, Hughes). Let K = Fp and G = 〈σ〉 cyclic of order p and

SK = K [x1, y1, . . . , xg, yg]

with G-action given by σ(xi) = xi, σ(yi) = yi+xi for 1 ≤ i ≤ g. Then the G-invariant elements

xi for 1 ≤ i ≤ g,
xiyj − xjyi for 1 ≤ i < j ≤ g,
N(yi) for 1 ≤ i ≤ g,
Tr
(
ya11 · · · y

ag
g

)
for 0 ≤ a1, . . . , ag ≤ p− 1 and

∑
i ai > 2(p− 1)

build up a generating system of the invariant ring SGK . Here N(X) =
∏
σ∈G σ(X) denotes the

norm and Tr(X) =
∑
σ∈G σ(X) the trace of an element X ∈ SK .

As the equality N(yi) = y2i + xiyi = j
1
2

Ei
x3i + j−1Ei

xi holds in R, one can omit these elements
from a generating system of Rι. Furthermore, xi = Tr(yi) and xiyj −xjyi = Tr(yiyj) +xixj can
be written as traces, so we get the following corollary:

Corollary 3.2. Assume that A is the product of g ordinary elliptic curves. Then the ring
Rι (with R and group action as in Proposition 1.3) is generated by all elements of the form
Tr(yi1 · . . . · yim).

The ring Rι can also be computed directly without using Richman’s result or Proposition 3.1.
Observe that

fM := Tr

(∏
i∈M

yi

)
=

|M |−1∑
d=0

∑
N⊂M,
|N |=d

∏
m∈MrN

xm
∏
n∈N

yn
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holds, in particular we have degxi
(Q) + degyi(Q) = 1 for every monomial Q of fM and fM is

the sum of all such monomials except of
∏
i∈M yi. We regard the fM as elements of the vector

space

V = {f ∈ k(x1, . . . , xg)[y1, . . . , yg] | degyi(f) ≤ 1 for every 1 ≤ i ≤ g}
over the field k(x1, . . . , xg) and compute the eigenvectors for the eigenvalue λ = 1 of the lin-
ear map induced by ι. If a1, . . . , al ∈ V is a basis of the eigenspace V ι, then the elements
a1, . . . , al, yga1, . . . , ygal are linearly independent in V . In fact, if

0 = µ1a1 + . . .+ µlal + λ1yga1 + . . .+ λlygal

is a linear combination of zero, then applying the linear map ι− 1 yields

0 = xg(λ1a1 + . . .+ λlal)

which is only possible if the coefficients λi vanish for every i; as a consequence, also all µi
vanish. Hence l ≤ 2g−1. On the other hand, a similar argument shows that the 2g−1 elements
of the form fM∪{g} with M ⊂ {1, . . . , g − 1} are linearly independent, thus l = 2g−1 and a
basis of V ι is found. In the last step one has to compute the set V ι ∩ k[x1, y1, . . . , xg, yg].
If f =

∑
M λM∪{g} · fM∪{g} is a linear combination with coefficients from k(x1, . . . , xg), then

one can reduce the denominator of λM∪{g} either to 1 or xg: Choose a subset M ′ of maximal
cardinality such that λM ′∪{g} is non-zero. Then fM ′∪{g} is the only element in the sum that
contains the monomial xg ·

∏
i∈M ′ yi, hence the denominator of λM ′∪{g} has to divide xg. Apply

the same argument to f + λM ′∪{g} · fM ′∪{g} to get the statement for all denominators.
Now it suffices to consider

f =
∑

M⊂{1,...,g−1}

µM∪{g}

xg
· fM∪{g} ∈ k[x1, y1, . . . , xg, yg]

with µM∪{g} ∈ k[x1, . . . , xg−1]. The formal partial derivative ∂f/∂yg vanishes as degyg (f) ≤ 0.

On the other hand we have degxg
(f) = 0, so f is an invariant element of k[x1, y1, . . . , xg−1, yg−1].

By induction the statement follows. (The case g = 1 is trivial: Here Rι = k[x1], generated by
x1 = Tr(y1).)

Next, we consider the case that supersingular factors appear in the product of elliptic curves.
Nearly the same computation is possible:

Proposition 3.3. With the notation as in Proposition 1.3, the invariant ring Rι is generated
by the elements

vr+1, . . . , vg,

fM∪N = Tr

∏
i∈M

yi ·
∏
j∈N

wj

 ,

where M ⊂ {1, . . . , r}, N ⊂ {r + 1, . . . , g} run through all subsets.

Proof. Consider the k-algebras Sn = k
[
x1, y1, . . . , xr, yr, v

n
r+1, wr+1, . . . , v

n
g , wg

]
for n ∈ {1, 2},

and the vector spaces

Vn = {f ∈ Sn | degyi(f) ≤ 1, degwj
(f) ≤ 1 for every 1 ≤ i ≤ r < j ≤ g} ⊂ Sn

with the Z/2Z-action given by

ι(xi) = xi, ι(yi) = yi + xi, ι(vnj ) = vnj , ι(wj) = wj + v2j .
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For every element of R = S1/I we can find a unique representative in V1. Let f1 ∈ V1 be a
polynomial and let L ⊂ {r + 1, . . . , g} be a subset. Let hL ∈ V1 be the sum of all monomials Q
of f1, for which the condition

j ∈ L ⇐⇒ degvj (Q) ≡ 1 mod 2

holds. The polynomial hL is the sum of all monomials of f1, where the indeterminates vj with
j ∈ L occur with odd exponents, whereas the other vi have even exponents. Of course, f1 is the
sum of the hL and we get

f1 =
∑
L

hL =
∑
L

∏
j∈L

vj

 h̃L

for suitable polynomials h̃L ∈ V2. As ι(V2) = V2 and ι(vj) = vj , an element f1 ∈ V1 is ι-invariant

iff the polynomials h̃L ∈ V2 are ι-invariant. The action of ι on V2 is of the form for which
the invariant elements are known. By Corollary 3.2, the residue class of every invariant element
f2 ∈ V ι2 can be written as polynomial in the traces, hence the fM∪N and vj build up a generating
set of the k-algebra Rι. �

In the setting of Proposition 3.1, the relations between the generators are unknown in general.
However, in the case p = 2 (which we are interested in) Campbell and Wehlau gave a generating
set for the ideal of relations in [4], Theorem 3.6. These relations are

(i)
∑
L(A

xArL Tr (yL) = 0,

(ii) Tr (yA) Tr (yB) =
∑

L(A∩B
x(A∩B)rL N (yL) Tr

(
y(A∪B)rL

)
+ N (yA∩B)

∑
M(ArB

x(ArB)rM Tr
(
yM∪(BrA)

)
,

where we use the compact notation xM =
∏
i∈M xi, same for yM . For every subset

M ⊂ {1, . . . , g} let M ′ = M ∩ {1, . . . , r}, M ′′ = M ∩ {r + 1, . . . , g}. In the factor ring R we can
simplify the formulas by replacing the norm by suitable polynomials in the indeterminates xi
and vj :

N (yL′wL′′) = N (y)L′ · N (w)L′′ = PL′ · PL′′ = PL,

N (yA′∩B′ wA′′∩B′′) = PA′∩B′ · PA′′∩B′′ = PA∩B

and the polynomial Pi is given by Pi = γix
3
i + γ−2i xi for i ∈M ′ where γ2i equals the j-invariant

of the elliptic curve Ei, and Pj = vj for j ∈ M ′′. Again, we write PL =
∏
i∈L Pi. Now for

arbitrary subsets A,B,D ⊂ {1, . . . , g}, the following holds in Rι:

(i)
∑
L(D

xD′rL′ v
2
D′′rL′′ Tr (yL′wL′′) = 0,

(ii) Tr (yA′wA′′) Tr (yB′wB′′)

=
∑

L(A∩B
x(A′∩B′)rL′ v

2
(A′′∩B′′)rL′′ PL Tr

(
y(A′∪B′)rL′ w(A′′∪B′′)rL′′

)
+ PA∩B

∑
M(ArB

x(A′rB′)rM ′ v
2
(A′′rB′′)rM ′′ Tr

(
yM ′∪(B′rA′) wM ′′∪(B′′rA′′)

)
We now show that these relations again generate all relations between the generators in Rι.
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Proposition 3.4. Let R and Rι be as in Proposition 1.3. Furthermore, we define

R0 = k [TM , Xi, Vj | M ⊂ {1, . . . , g}, i = 1, . . . , r, j = r + 1, . . . , g]

and the homomorphism of k-algebras ψ : R0 → Rι by TM 7→ Tr(yM ′ wM ′′), Xi 7→ xi, Vj 7→ vj.
Then ψ is surjective and ker(ψ) is generated by

T∅ , Xi − T{i} , V 2
j − T{j} ,(3.1) ∑

L(D
XD′rL′ V

2
D′′rL′′ TL,(3.2)

TATB +
∑

L(A∩B
X(A′∩B′)rL′ V

2
(A′′∩B′′)rL′′ PL T(A∪B)rL(3.3)

+ PA∩B
∑

M(ArB
X(A′rB′)rM ′ V

2
(A′′rB′′)rM ′′ TM∪(BrA)

for 1 ≤ i ≤ r < j ≤ g, A,B,D ⊂ {1, . . . , g} with |A|, |B| ≥ 2, |D| ≥ 3.

Note that the relations of type (3.2) and (3.3) are trivial if |D| ≤ 2 or |A| ≤ 1 or |B| ≤ 1
holds. The relations in (3.1) are only used to get a better notation.

Proof. The homomorphism ψ is surjective, as a generating set of Rι lies in the image. Let J be
the ideal generated by all elements of the form (3.1)-(3.3). The relations from J are contained
in the kernel of ψ. Set R̄0 = R0/J . We show that ψ induces an isomorphism ψ̄ : R̄0 → Rι.

Take an element Q̄ ∈ ker(ψ̄), i.e. Q̄ is the residue class of a polynomial in R0 that vanishes in
Rι when plugging in the generators. Using the relations of type (3.3), we can find a represen-
tative Q0 of Q̄ in the polynomial ring R0 such that the condition degTM

(Q0) ≤ 1 holds for all
indeterminates TM with |M | ≥ 2. This means that Q0 gives a relation in Rι of the form∑

|M |≥2

µM Tr(yM ′wM ′′) = 0

for suitable polynomials µM ∈ k[x1, . . . , xr, vr+1, . . . vg]. Of course, this relation also holds in R.
The proof of Proposition 2.2 shows that it holds in the polynomial ring S = k[x1, y1, . . . , vg, wg]
as well and in Sι, as all occuring polynomials are invariant. Thus, Q0 is a relation between the
generators of the invariant ring Sι, hence generated by the relations found by Campbell and
Wehlau. The ideal J is generated by the residue classes of these relations and, as a consequence,
Q̄ = 0 in R̄0. So ψ̄ is an isomorphism. �

Now one can read off the embedding dimension of the singularity. Recall that the embedding
dimension of a noetherian local ring is by definition the cardinality of a minimal generating set
of its maximal ideal. The embedding dimension of the singularity is the embedding dimension
of the completion R̂ι of Rι with respect to the singular point.

Proposition 3.5. The invariant elements

x1, . . . , xr, vr+1, . . . , vg, fM = Tr(yM ′ wM ′′) with |M | ≥ 2

form a minimal set of generators of Rι. Furthermore, the embedding dimension of R̂ι is 2g − 1.

Proof. Let m ⊂ R̂ι denote the maximal ideal, which is generated by the images of the generators
of Rι in the completion. The minimality follows from the statement about the embedding
dimension: Suppose there is a generating set a1, . . . , ad of Rι with d < 2g − 1. These elements
are residue classes of polynomials in xi, yi, vj , wj and without loss of generality we can assume
that their constant terms are zero. Hence, the ideal (a1, . . . , ad) ⊂ Rι is the maximal ideal of
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the singular point in Spec(Rι) and we get a set of generators of m consisting of less than 2g − 1
elements, which is a contradiction.

We compute the embedding dimension by showing that the elements xi, vj , fM are linearly
independent in the cotangent space m/m2. This vector space has dimension at most 2g − 1
because the residue classes of a minimal generating set of m form a basis of the vector space.

After replacing R̂ι by the completion of the ring R0/ker(ψ) from Proposition 3.4, consider
the linear combination

r∑
i=1

λiXi +

g∑
i=r+1

λi Vi +
∑
|M |≥2

µM TM ∈ m2(3.4)

in R̂ι with coefficients λi, µM ∈ k. Denote the element (3.4) by f . The ideal m2 ⊂ R̂ι is generated
by all products of two elements of the known generating set. The relations of type (3.3) show

that every such product is contained in a = (X1, . . . , Xr, Vr+1, . . . Vg) ⊂ R̂ι; hence, f ∈ a. In

R̂ι/a, the condition on f reads∑
|M |≥2

µM TM ∈ (TA · TB , |A|, |B| ≥ 2) ⊂ kJTM | |M | ≥ 2K,

so µM = 0 for every M . Similarly, one gets λi = 0 by reducing (3.4) modulo

(TM , |M | ≥ 2) + m2 ⊂ R̂ι.

�

For abelian surfaces (i.e. g = 2), we recover some known results:

Example 3.6. Let A = E1 × E2 be the product of two elliptic curves and let 0 ≤ r ≤ 2 be the
number of supersingular factors in the product. In this case a neighbourhood of a singular point
of A/ι is given by the spectrum of

R2 = k[X1, X2, T ]/
(
T 2 +X1X2T +X2

1P2(X2) +X2
2P1(X1)

)
, if r = 2,

R1 = k[X1, V2, T ]/
(
T 2 +X1V

2
2 T +X2

1V2 + V 4
2 P1(X1)

)
, if r = 1,

R0 = k[V1, V2, T ]/
(
T 2 + V 2

1 V
2
2 T + V 4

1 V2 + V 4
2 V1

)
, if r = 0.

Recall that Pi(Xi) = Xi ·Ui(Xi) where Ui becomes a unit in the completion because of its non-
zero constant term. Hence, by a change of variables T ′ = TU−11 U−12 , X ′1 = X1U

−1
1 , X ′2 = X2U

−1
2

in R2, we get the formal completion

R̂2 = kJX ′1, X
′
2, T

′K/
(
T ′2 +X ′1X

′
2T
′ +X ′21 X

′
2 +X ′1X

′2
2

)
which is a singularity of type D1

4 in [1]. Similarly, we obtain

R̂1 = kJX ′1, V2, T
′K/
(
T ′2 +X ′1V

2
2 T
′ +X ′21 V2 + V 4

2 X
′
1

)
which is a singularity of type D2

8, in accordance with [13], Propositions 5.1 and 5.2. In the case
r = 0 the equation for the singularity is already the normal form from [7], Proposition 8.

In the case of Kummer threefolds arising from products of elliptic curves, one gets seven
generators for the invariant ring Rι and the ideal of relations is generated by ten relations of
type (3.3) and one relation of type (3.2).

We give as an example the case that is expected to be “least difficult among all wild Kummer
threefolds”. However, no explicit resolution of the singularity is known.
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Example 3.7. Consider the abelian threefold A = E × E × E for an ordinary elliptic curve
E with j-invariant jE = 1. Then a neighbourhood of a singular point of A/ι is given by the
spectrum of

R = k[X1, X2, X3, T{1,2}, T{1,3}, T{2,3}, T{1,2,3}]/J

where the ideal J is generated by the following relations with {h, i, j} = {1, 2, 3} and i < j:

X1T{2,3} +X2T{1,3} +X3T{1,2} +X1X2X3,

T 2
{i,j} +XiXjT{i,j} +X2

i (X3
j +Xj) +X2

j (X3
i +Xi),

T{h,i}T{h,j} +XhT{1,2,3} + (X3
h +Xh)XiXj ,

T{i,j}T{1,2,3} +XiXjT{1,2,3} +Xi(X
3
j +Xj)T{h,i} +Xj(X

3
i +Xi)T{h,j},

T 2
{1,2,3} +X1X2X3T{1,2,3} +X2X3(X3

1 +X1)T{2,3} +X1X3(X3
2 +X2)T{1,3}

+X1X2(X3
3 +X3)T{1,2} +

∑
a,b,c,
b<c

X2
a(X3

b +Xb)(X
3
c +Xc).

Similar to Example 3.6, the polynomials X3
i +Xi can be replaced by Xi in the formal completion.

4. Formal groups

If two abelian varieties have isomorphic associated formal groups, then the Kummer varieties
of these abelian varieties have “formal isomorphic” singularities (the completed local rings at
the singular points are isomorphic). This argument is used by Katsura [7], Proposition 3, where
the case of ordinary abelian surfaces is settled by looking at the product of elliptic curves. In
this section, we sum up some results on formal groups in order to use Katsura’s argument in the
higher dimensional case.

Here k denotes a ground field of characteristic p > 0. When talking of a formal group, we
will usually mean a formal spectrum G = Spf(Ô) with Ô a local noetherian k-algebra, endowed
with morphisms that define the group structure. The formal group associated to an algebraic
group is the formal completion at the identity element. An isogeny between formal groups is
a homomorphism that becomes an isomorphism in the factor category of commutative formal
groups over k modulo the full subcategory of formal spectra Spf(Λ) with Λ artinian.

Manin [9] gave a classification of commutative formal groups up to isogeny: Every finite-
dimensional commutative formal group G over k is isogenous to a sum G ∼ T ⊕ U ⊕ V where

T =

r⊕
i=1

G1,0 , U =
⊕
n≥1

G⊕rnn,∞ , V =
⊕
n,m≥1

(n,m)=1,

G⊕sn,m
n,m

for natural numbers r, rn, sn,m. This decomposition is unique up to isogeny. The formal groups
Gn,m, 1 ≤ n < ∞, 0 ≤ m ≤ ∞, gcd(n,m) = 1 for m 6= ∞ can be characterized (up to isogeny)
by the following properties:

(i) dim(Gn,m) = n.
(ii) Gn,m is indecomposable.

(iii) For Gn,m multiplication by p is an isogeny of degree pn+m (m 6=∞).

In particular, Gn,m and Gn′,m′ with (n,m) 6= (n′,m′) lie in different isogeny classes. If k is
algebraically closed and G is reduced, one can replace G ∼ T by G ∼= T (cf. [9], Theorem 1.2 on
page 20).

Lemma 1 in [8] shows how to compute the degree of induced isogenies between formal groups:

If α : A→ B is an isogeny between algebraic groups and α̂ : Â→ B̂ denotes the isogeny between
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dim(G) possible G up to isogeny

1 G1,0, G1,1

2 G⊕2
1,0, G⊕2

1,1, G1,0 ⊕G1,1

3 G⊕r
1,0 ⊕G⊕3−r

1,1 , 0 ≤ r ≤ 3, G1,2 ⊕G2,1

4 G⊕r
1,0 ⊕G⊕4−r

1,1 , 0 ≤ r ≤ 4, G1,i ⊕G1,2 ⊕G2,1, i ∈ {0, 1}, G1,3 ⊕G3,1

Table 1. Formal groups of abelian varieties in small dimension

the formal groups, then deg (α̂) = insdeg (α). In the case α = pA : A→ A for an abelian variety
A of dimension g, one gets

insdeg(pA) =
deg(pA)

sepdeg(pA)
=

p2g

|ker(pA)(k)|
which can be used to determine the formal group of an elliptic curve E. If E is ordinary, then
Ê ∼= G1,0, and for supersingular elliptic curves Ê ∼= G1,1 holds. As these formal groups are
one-dimensional, “sogenous” can be replaced by “isomorphic” (cf. [5], Theorem 18.5.1).

Formal groups arising from abelian varieties are far more special. Here a certain kind of
symmetry condition holds which is due to Manin for finite fields (cf. [9], Theorem 4.1) and Oort
for algebraically closed fields (cf. [10], page III.19-3): The formal group of an abelian variety A
can be written as a sum of the form

Â ∼ G⊕r1,0 ⊕G
⊕s
1,1 ⊕

⊕
m>n≥1
(n,m)=1

(Gn,m ⊕Gm,n)
⊕tn,m

for suitable r, s, tn,m ≥ 0, i.e. the summands Gn,m and Gm,n occur with the same multiplicity
and Gn,∞ does not appear.

Proposition 4.1. Let A be a g-dimensional abelian variety over k with p = 2.

(i) If A is ordinary, i.e. A has 2g points of order at most 2, then Â ∼= G⊕g1,0.

(ii) If A has 2g−1 points of order at most 2, then Â ∼= G1,1 ⊕G⊕g−11,0 .

Proof. In both cases the group scheme ker(2A) can be described explicitly as

(i) (Z/2Z)⊕g ⊕ µ⊕g2 , (ii) (Z/2Z)⊕g−1 ⊕ µ⊕g−12 ⊕N2,

where N2 is a local-local group scheme. The formal group associated to A now arises as limit
over the local part (cf. [16], Examples on page 166)

(i) Â ∼= lim−→µ⊕g2n
∼= (lim−→µ2n)⊕g ∼= Ĝ⊕gm ∼= G⊕g1,0,

(ii) Â ∼= lim−→
(
µ⊕g−12n ⊕N2n

)
∼= (lim−→µ2n)⊕g−1 ⊕ lim−→N2n

∼= G⊕g−11,0 ⊕H.
Here H denotes a one-dimensional commutative formal group. From the uniqueness of the
decomposition of Â up to isogeny it follows that H is isogenous to G1,1. As H is one-dimensional,
one can replace “isogenous” by “isomorphic”. �

In the case A ∼ G⊕g−21,0 ⊕ G⊕21,1 the above argument does not work because there are several

isomorphism classes within the isogeny class of G⊕21,1. (As a consequence, there are two different

types of singularities of wild Kummer surfaces with one singular point in [7].) The relation
between the formal group of A and the singularities of A/ι is as follows:
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Proposition 4.2. Let A and B be abelian varieties over an algebraically closed field k of char-
acteristic p = 2. If the formal groups Â and B̂ are isomorphic, then the singularities of the
Kummer varieties X = A/ιA and Y = B/ιB are formal isomorphic (meaning that the completed
local rings are isomorphic).

Proof. We denote by φ : Â → B̂ the isomorphism. The schemes A and B have the same di-
mension, hence Â ∼= B̂ ∼= Spf(R) as formal spectra with R = kJT1, . . . , TgK. We obtain auto-
morphisms φ∗, ι∗A, ι∗B of R induced by φ and the sign involutions of A and B. Moreover, the
automorphisms ι∗A, ι∗B coincide with the induced automorphisms of the completed local rings

ÔA,eA and ÔB,eB .

It suffices to show that the invariant rings Rι
∗
A and Rι

∗
B are isomorphic, because taking invari-

ants “commutes” with completion. From the compatibility with the group laws one immediately
gets ι∗A = φ∗ ◦ ι∗B ◦ (φ∗)−1. We now show Rι

∗
A = φ∗(Rι

∗
B ): If f ∈ Rι∗B is an arbitrary element,

then

ι∗A(φ∗(f)) = φ∗ ◦ ι∗B ◦ (φ∗)−1 ◦ φ∗(f) = φ∗(f),

so φ∗(f) ∈ Rι∗A . Switching the roles of φ∗ and φ∗−1, one gets the inclusion φ∗−1(Rι
∗
A) ⊂ Rι

∗
B

with the same argument. Apply φ∗ to complete the proof. �

Corollary 4.3. Let A be a g-dimensional abelian variety over an algebraically closed field of
characteristic p = 2 and denote by 2r = |ker(2A)(k)| the number of 2-torsion points of A. We
define B = E1 × . . .×Eg as the product of r ordinary and g− r supersingular elliptic curves. If
r = g or r = g − 1 holds, then the singularities of the Kummer varieties of A and B are formal
isomorphic.

Hence, the description of the singularities of Kummer varieties arising from products of elliptic
curves includes the case of arbitrary Kummer varieties with 2g (ordinary case) or 2g−1 singular
points.

5. Open questions

In this last section we discuss some questions that arise naturally through the description of
the singularities and their open neighbourhood.

Embedding dimension. For Kummer varieties X arising from products of elliptic curves or
ordinary abelian varieties, the embedding dimension of the singularities is always 2g−1, where g
denotes the dimension of X. Now it is natural to ask whether this result still holds for arbitrary
abelian varieties.

Question 5.1. Given a Kummer variety, is the embedding dimension of the singularities always
2g − 1?

Rationality problem. In dimension g ≤ 1, every Kummer variety is isomorphic to P0
k or P1

k, hence
rational. The Kummer surface of a supersingular abelian variety is rational as well. This was
proved by Shioda [14] in the case of a product of supersingular elliptic curves and generalized
by Katsura [7]. We call an abelian variety A and its Kummer variety A/ι superspecial if A is
isomorphic to a product of supersingular elliptic curves.

As soon as we have an open affine subscheme of the Kummer variety X, we can examine its
function field and ask again whether the variety is rational. Shioda gives an explicit computation
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of the function field of the superspecial Kummer surface and gets K = k(V1, V2, T ) = k(r, s),
where

V1 =
r2 + s

ωr2s+ r + ω2s2
, V2 =

r2 + s

ω2r2s+ r + ωs2
, T = V 2

1 V
2
2 r
(
V −11 + ωs

)
and ω denotes a primitive third root of unity.

For the superspecial Kummer threefold, we can argue in a similar way. It has function field
K = k(V1, V2, V3, T{1,2}, T{1,3}, T{2,3}, T{1,2,3}) with the relations from Proposition 3.4 between
the generators. As we have

T{2,3} =
V 2
2 T{1,3} + V 2

3 T{1,2} + V 2
1 V

2
2 V

2
3

V 2
1

, T{1,2,3} =
T{1,2}T{1,3} + V1V

2
2 V

2
3

V 2
1

,

these indeterminates can be omitted. Now for i = 2, 3 we can consider the two subfields

Ki = k(V1, Vi, T{1,i}) = k(ri, si)

of K which are rational function fields, i.e. the indeterminates V1, V2, V3, T{1,2}, T{1,3} can be
interpreted as rational functions in r2, s2 or r3, s3. As V1 is contained in both K2 and K3, one
gets the relation

r22 + s2
ωr22s2 + r2 + ω2s22

=
r23 + s3

ωr23s3 + r3 + ω2s23
(= V1)

in K = k(r2, s2, r3, s3). It is unclear, whether the field K is of the form k(a, b, c).

Question 5.2. Is the superspecial Kummer variety (uni-)rational for some g > 2?

Products of Artin–Schreier curves. Instead of considering products of elliptic curves one can
also study products of Artin–Schreier curves which are given by affine equations of the form
yp−xp−1y− (x+α2x

2 + . . .+αpx
p) over a ground field of characteristic p. Now Z/pZ = 〈σ〉 acts

on the curve by σ(x, y) = (x, y + x), having the fixed point P = (0, 0). Hence, the quotient of a
product C1×. . .×Cn of these curves by the diagonal action has a singular point at the origin. As
the group action is of the form described in Proposition 2.2, one can again reduce the problem
of computing the quotient to the case of Z/pZ acting on A2n

k and use the result of Campbell and
Hughes (Proposition 3.1). Unfortunately, the relations between the generators are unknown for
p 6= 2 and n ≥ 3. In the case n = 2 one gets the singularity from [6], Proposition 2.2.

Question 5.3. What can be said about the singularities if n ≥ 3?
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