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ON THE RATIONAL HOMOTOPY TYPE OF INTERSECTION SPACES

DOMINIK J. WRAZIDLO

Abstract. Banagl’s method of intersection spaces allows modification of certain types of

stratified pseudomanifolds near the singular set in such a way that the rational Betti num-
bers of the modified spaces satisfy generalized Poincaré duality in analogy with Goresky-

MacPherson’s intersection homology. In the case of one isolated singularity, we show that
the duality isomorphism comes from a nondegenerate intersection pairing which depends on

the choice of a chain representative of the fundamental class of the regular stratum. On the

technical side, we use piecewise linear polynomial differential forms due to Sullivan to define a
suitable commutative cochain algebra model for intersection spaces. We show that the weak

equivalence class of our model does not depend on choices, which implies uniqueness of the

rational intersection space cohomology ring. Our construction parallels Banagl’s commutative
cochain algebra of smooth differential forms modeling intersection space cohomology, and we

show that both algebras are weakly equivalent.

1. Introduction

In this paper, we provide a new and systematic approach to intersection space cohomology
that is based on tools of rational homotopy theory.

Intersection spaces are a spatial construction due to Banagl [6, 5] that gives access to Poincaré
duality for singular spaces. The cohomology theory of intersection spaces is neither isomorphic
to Goresky-MacPherson’s intersection homology [19, 20], nor to Cheeger’s L2 cohomology of
Riemannian pseudomanifolds [13, 14, 15]. For singular Calabi-Yau 3-folds, the homology of
intersection spaces is known to be related to intersection homology by mirror symmetry (see
[5]). Intersection space cohomology has been modeled by means of linear algebra [18], sheaf
theory [10, 11, 7, 23, 2], L2 cohomology [9], and smooth differential forms [4]. While the first two
approaches do not take into account the cup product structure on intersection space cohomology,
the latter two are only available for pseudomanifolds equipped with a Thom-Mather smooth
stratification. To overcome all these drawbacks, it seems adequate to use commutative cochain
algebra models for intersection spaces as introduced in [22, 21] for pseudomanifolds with isolated
singularities.

Apart from certain real cochain algebras of smooth differential forms used in [4], commutative
models have so far not been employed to derive Poincaré duality theorems for intersection space
cohomology. Note that Klimczak [22] obtains duality results by turning intersection spaces
themselves into Poincaré duality spaces via cell attachments. This idea has been extended by
the author to certain pseudomanifolds of stratification depth one in [26]. However, even for
product link bundles duality results have only been implemented there under an additional
condition on the dimension of the singular set.
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The purpose of this paper is to construct in analogy with Banagl’s de Rham approach [4]
a nondegenerate intersection pairing on the cohomology of a suitable commutative model for
intersection spaces.

Let p be a perversity in the sense of intersection homology theory, and let X be a compact
topologically stratified pseudomanifold having one isolated singularity x with connected link.
While the construction of the pointed intersection space IpX involves choosing a Moore approx-
imation of the link, we show that its augmented commutative models do not depend on this
choice in the sense that they determine a unique weak equivalence class IpX (see Theorem 5.5).
We point out that IpX determines the rational homotopy type of simply connected intersection
spaces IpX by Quillen-Sullivan’s theorem. As a direct consequence of Theorem 5.5, we obtain
the following

Theorem 1.1 (Uniqueness of the intersection space cohomology ring). The rational cohomology
ring H∗(IpX) does not depend on choices involved in the construction of the intersection space
IpX.

When X has a Thom-Mather C∞-stratification, we show in Theorem 7.1 that over the reals,
a representative of the class IpX is given by Banagl’s augmented commutative cochain algebra
ΩI∗p (X \ {x})⊕R (see [4]) consisting of certain smooth differential forms on the complement M

in X of a fixed distinguished neighborhood of {x} ⊂ X. Thus, our result gives a strengthening
of the de Rham description of intersection space cohomology obtained previously in [4, 24].

As for the de Rham description of intersection cohomology, Brasselet, Hector, and Saralegi
provide in [12] a subcomplex of intersection differential forms, and realize generalized Poincaré
duality by the usual integration of differential forms over simplices. In the context of intersection
space cohomology, we recall from [4] that generalized Poincaré duality for ΩI∗p (X\{x}) is realized
by a canonical nondegenerate intersection pairing on cohomology that integrates wedge product
of forms over the top stratum. In the setting of rational homotopy theory, we imitate the complex
ΩI∗p (X \ {x}) by the augmentation ideal AIp(X,x) of a convenient augmented commutative

model AIp(X) ∈ IpX. In analogy with the inclusion ΩI∗p (X \ {x}) ⊂ Ω∗(X \ {x}), there is

a canonical inclusion ιp : AIp(X,x) → APL(M) (see Proposition 5.4(i)) into the commutative
cochain algebra of piecewise linear polynomial differential forms on M . In our main theorem
below, we also employ the linear form

∫
µ

: APL(M)→ Q (see (3.3)) that integrates polynomial

differential forms over the singular simplices of a fixed singular chain representative µ of the
fundamental class of M induced by a fixed orientation on X.

Theorem 1.2 (Generalized Poincaré duality). Fix complementary perversities p and q. If X
is Q-oriented and n-dimensional, then multiplication in APL(M) followed by integration over a
normalized singular chain representative µ of the fundamental class of M induces a nondegen-
erate bilinear form∫

µ

: Hr(AIp(X,x))×Hn−r(AIq(X,x))→ Q, ([α], [β]) 7→
∫
µ

ιp(α) · ιq(β).

Our approach extends nicely at least to pseudomanifolds with one non-isolated singular stra-
tum and trivial link bundle as outlined in Section 5.3. We expect that the methods of this paper
apply more generally to pseudomanifolds of higher stratification depth like toric varieties (see
Remark 5.1), and can be useful to study commutative models for the relative intersection spaces
of Agust́ın and Fernández de Bobadilla [2].

The paper is structured as follows. Section 2 provides preliminaries on cochain algebras. In
Section 3, we discuss the background on integration of piecewise linear polynomial differential
forms that is relevant to this paper. Cotruncation of augmented commutative cochain algebras
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will be studied in Section 4. In Section 5, we construct a commutative model for intersection
spaces. The proof of Theorem 1.2 is given in Section 6. Finally, the purpose of Section 7 is to
relate our commutative model for intersection spaces to smooth differential forms.

2. Preliminaries on cochain algebras

In this section, we discuss basic facts, and fix necessary notation and sign conventions con-
cerning cochain algebras by following the reference [16].

Throughout the paper (with the exception of Section 7), we work over the ground field Q.

2.1. Graded vector spaces and complexes. (see §3(a) in [16]) A graded vector space is a
family V = {Vi}i∈Z of rational vector spaces. An element v ∈ Vi is called (by abuse of language)
an element of V of degree i. A linear map f : V →W of degree i between graded vector spaces is
a family of linear maps fj : Vj →Wi+j . It determines graded subspaces ker f ⊂ V and im f ⊂W
via (ker f)j = ker fj and (im f)j = im fj−i, respectively. A sequence U

f−→ V
g−→ W of linear

maps is exact at V if ker g = im f . A short exact sequence is a sequence 0→ U
f−→ V

g−→W → 0
which is exact at U , V and W .

A complex is a graded vector space V together with a differential d, that is, a linear map
d : V → V of degree −1 such that d2 = 0. To a complex V = (V, d) we may assign its homology
H(V ) which is the graded vector space given by the quotient H(V, d) = ker d/ im d. A morphism
of complexes is a linear map ϕ : (V, d) → (W,d) of degree zero such that dϕ = ϕd. It induces
H(ϕ) : H(V ) → H(W ). If H(ϕ) is an isomorphism, we call ϕ a quasi-isomorphism, and write

ϕ : V
'−→W . A short exact sequence of morphisms of complexes,

0→ (U, d)
α−→ (V, d)

β−→ (W,d)→ 0,

induces a long exact homology sequence,

· · · → Hi(U)
Hi(α)−−−−→ Hi(V )

Hi(β)−−−−→ Hi(W )
∂−→ Hi−1(U)→ . . . ,(2.1)

defined for all i. Here, the connecting homomorphism ∂ is defined in the usual way: if w ∈ W
represents [w] ∈ Hi(W ) and if β(v) = w, then ∂([w]) is represented by the unique u ∈ U such
that α(u) = dv. A chain complex is a complex (V, d) with V = {Vn}n≥0.

In contrast to the previous paragraph, the use of upper grading notation V = {V i}i∈Z in a
complex (V, d) will always mean that d has degree +1, and then we call H(V ) = H(V, d) the
cohomology of V . Note that the analog of the connecting homomorphism ∂ in the long exact
sequence (2.1) for cohomology will be of the form δ : Hi(U)→ Hi+1(W ). A cochain complex is
a complex (V, d) with V = {V n}n≥0.

2.2. Graded algebras. (see §3(b) in [16]) A graded algebra is a graded vector space
R = {Ri}i∈Z together with bilinear pairings Ri×Rj → Ri+j , (x, y) 7→ xy, which are associative
(that is, (xy)z = x(yz) for all x, y, z ∈ R) and have an identity 1 ∈ R0 (that is, 1x = x = x1 for
all x ∈ R). We regard Q as a graded algebra concentrated in degree 0. A morphism ϕ : R → S
of graded algebras is a linear map of degree zero such that ϕ(xy) = ϕ(x)ϕ(y) and ϕ(1) = 1.
An augmentation for a graded algebra R is a morphism ε : R → Q of graded algebras, and the
inclusion ker ε ↪→ R is called the augmentation ideal of ε. A graded algebra is called augmented
if it is equipped with an augmentation.

A derivation of degree k is a linear map θ : R→ R of degree k such that

θ(xy) = (θx)y + (−1)k deg xx(θy).

A graded algebra A is commutative if xy = (−1)deg x deg yyx for all x, y ∈ A.
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2.3. Differential graded algebras. (see §3(c) in [16]) A differential graded algebra (DGA) is
a graded algebra R together with a differential d in R that is a derivation. Note that ker d is a
subalgebra of R, and im d is an ideal in ker d. Thus, the homology H(R, d) = ker d/ im d inherits
the structure of a graded algebra. A morphism of differential graded algebras f : (R, d)→ (S, d)
is a morphism of graded algebras satisfying fd = df . It induces a morphism

H(f) : H(R)→ H(S)

of graded algebras. If H(f) is an isomorphism, we call f a quasi-isomorphism, and write

f : (R, d)
∼=−→ (S, d). A chain algebra is a DGA (R, d) with R = {Rn}n≥0.

A cochain algebra is a DGA (R, d) with R = {Rn}n≥0. For (R, d) we will mainly use the
notation R or R∗ in this paper. As before, the use of upper grading notation means that d has
degree +1, and the graded algebra H(R) = H(R, d) is called the cohomology of R. A cochain
algebra is commutative if this holds for the underlying graded algebra.

2.4. Normalized singular (co)chains. (see §4(a) and §5 in [16]) We recall the concept of
normalized singular (co)chains, which will be used in Theorem 3.1, but might be less familiar
than singular (co)chains.

For n ≥ 0 let Sn(X) denote the set of all singular n-simplices on a space X, that is, continuous
maps ∆n → X, where ∆n denotes the convex hull of the standard basis in Rn+1. The i-th face
inclusion λi : ∆n−1 → ∆n of ∆n (defined for n ≥ 1 and 0 ≤ i ≤ n) and the j-th degeneracy
ρj : ∆n+1 → ∆n of ∆n (defined for n ≥ 0 and 0 ≤ j ≤ n) induce the face and degeneracy maps

∂i : Sn+1(X)→ Sn(X), ∂i(σ) = σ ◦ fi,
sj : Sn(X)→ Sn+1(X), sj(σ) = σ ◦ ρj .

The singular chain complex of X is the chain complex CS∗(X) = {CSn(X)}n≥0, where CSn(X)
is the rational vector space with basis Sn(X), and the differential is given by d =

∑
i(−1)i∂i.

Its homology is denoted by H∗(X), and is called the singular homology of X.
Let DSn+1(X) ⊂ CSn+1(X) denote the subspace spanned by the (n+1)-simplices of the form

si(τ) (degenerate simplices), where τ ∈ Sn(X) and 0 ≤ i ≤ n. It can be shown that DS∗(X) is a
subchain complex of CS∗(X), and that H(DS∗(X)) = 0. The normalized singular chain complex
of X is the quotient complex C∗(X) = CS∗(X)/DS∗(X). As the surjection CS∗(X) → C∗(X)
is a quasi-isomorphism, we may identify H∗(X) = H(C∗(X)). A map f : X → Y induces the
complex morphism f] : C∗(X)→ C∗(Y ) given by f](σ) = f ◦ σ. We write f∗ = H(f]) for the in-
duced map on homology. For a subspace A ⊂ X the quotient complex C∗(X,A) = C∗(X)/C∗(A)
computes the ordinary relative singular homology H∗(X,A) = H(CS∗(X)/CS∗(A)).

The normalized singular cochain algebra of X is the cochain complex C∗(X) = {Cn(X)}n≥0,
where Cn(X) is the rational vector space of linear forms ϕ : Cn(X) → Q, and the differential
is given by the formula d(ϕ) = −(−1)degϕϕ ◦ d. Moreover, C∗(X) carries the structure of a
cochain algebra by value of the cup product

Ci(X)× Ci(X)→ Ci+j(X), (ϕ,ψ) 7→ ϕ ∪ ψ,

which can be defined in terms of the Alexander-Whitney map. The cohomology algebra
H(C∗(X)) is denoted by H∗(X) and called the singular cohomology of X.

A map f : X → Y induces the DGA morphism f ] : C∗(Y )→ C∗(X) given by f ](ϕ) = ϕ ◦ f].
We write f∗ = H(f ]) for the induced map on cohomology. For any inclusion i : A → X of a
subspace the induced map i] : C∗(X)→ C∗(A) is surjective, and its kernel is an ideal of C∗(X)
which will be denoted by C∗(X,A). Thus, any pair (X,A) induces a natural short exact sequence

0→ C∗(X,A)
j]−→ C∗(X)

i]−→ C∗(A)→ 0,
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in which we consider the map j] to be induced by the inclusion j : (X, ∅) → (X,A). More
generally, for any map f : X → Y such that f(A) ⊂ B for subspaces A ⊂ X and B ⊂ Y , the
morphism f ] : C∗(Y )→ C∗(X) can be seen to restrict to a morphism f ] : C∗(Y,B)→ C∗(X,A).

The cohomology algebra of C∗(X,A) is denoted by H∗(X,A) and is called the relative singular
cohomology of the pair (X,A).

2.5. The commutative cochain algebra APL(X). (see §10(c) in [16]) Let X be a topological
space. In contrast to the fact that the cochain algebra C∗(X) of normalized singular cochains is
usually not commutative, Sullivan has constructed a contravariant functor APL from the category
of topological spaces and continuous maps to the category of commutative cochain algebras and
cochain algebra morphisms such that the graded algebras H∗(X) and H(APL(X)) are naturally
isomorphic (see Section 3.1). In analogy with smooth differential forms on a manifold, elements
of APL(X) are families of polynomial differential forms on the singular simplices of X that are
compatible with face and degeneracy maps.

Given a map f : X → Y , we write f∗ : APL(Y ) → APL(X) for the induced morphism. For
any inclusion i : A → X of a subspace the induced map i∗ : APL(X) → APL(A) is surjective,
and its kernel is an ideal of APL(X) which will be denoted by APL(X,A). Thus, any pair (X,A)
induces a natural short exact sequence

0→ APL(X,A)
j∗−→ APL(X)

i∗−→ APL(A)→ 0,

in which we consider the map j∗ to be induced by the inclusion j : (X, ∅) → (X,A). More
generally, for any map f : X → Y such that f(A) ⊂ B for subspaces A ⊂ X and B ⊂ Y , the
morphism f∗ : APL(Y )→ APL(X) can be seen to restrict to a morphism

f∗ : APL(Y,B)→ APL(X,A).

For the one point space X = ∗, we have APL(∗) = Q. For a disjoint union X = X1 t X2,
we can identify APL(X) = APL(X1) ⊕ APL(X2) by means of the morphisms induced by the
inclusions X1, X2 ⊂ X.

3. Integration

In this section, we provide the background on integration of piecewise linear polynomial
differential forms that is needed to construct the nondegenerate bilinear form of Theorem 1.2.
Our presentation is informed by §10(e) in [16]. For the convenience of the reader, we go into
detail whenever our version of a result is not explicitly stated in [16].

Throughout this section, let (X,A) be a pair consisting of a topological space X and subspace
A ⊂ X. Let i : A→ X and j : (X, ∅)→ (X,A) denote the inclusions.

3.1. The de Rham theorem. As shown in Theorem 10.15(ii) in [16], integration of polyno-
mial differential forms over singular simplices of X gives rise to a natural quasi-isomorphism∮
X

: APL(X)
'−→ C∗(X) of cochain complexes. In the following, we discuss an extension of this

result to space pairs.

Theorem 3.1. For any pair (X,A) there is a quasi-isomorphism∮
(X,A)

: APL(X,A)
'−→ C∗(X,A)(3.1)
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of cochain complexes. Moreover, for any second pair (Y,B) and any map f : X → Y such that
f(A) ⊂ B, we obtain a commutative diagram

(3.2)

APL(X,A) APL(Y,B)

C∗(X,A) C∗(Y,B).

f∗

∮
(X,A)

∮
(Y,B)

f]

Proof. In the case that both A and B are the empty set, our claims are contained in Theo-
rem 10.15(ii) in [16]. In the general case, we consider the diagram

0 APL(X,A) APL(X) APL(A) 0

0 C∗(X,A) C∗(X) C∗(A) 0,

j∗

∮
(X,A)

i∗

∮
X'

∮
A'

j] i]

in which the horizontal sequences are the short exact sequences associated to the pair (X,A),
and the solid arrow square commutes. Thus, we see that

∮
X

restricts to a homomorphism∮
(X,A)

: APL(X,A) → C∗(X,A) of cochain complexes. By the five lemma,
∮

(X,A)
is a quasi-

isomorphism. Finally, diagram (3.2) commutes because it can be obtained by restricting the
morphisms in the commutative diagram

APL(X) APL(Y )

C∗(X) C∗(Y ).

f∗

∮
X

∮
Y

f]

�

3.2. Stokes’ theorem. For a normalized singular chain ξ ∈ C∗(X), we use integration (3.1) to
define a linear form ∫

ξ

: APL(X)→ Q,
∫
ξ

x = (

∮
X

x)(ξ).(3.3)

The fact that integration (3.1) commutes with the differentials can be considered as an abstract
version of Stokes’ theorem as follows.

Theorem 3.2. If ξ ∈ C∗(X) such that j](ξ) ∈ C∗(X,A) is closed, then dξ ∈ C∗(X) is contained
in C∗(A) ⊂ C∗(X), and ∫

ξ

dx = −(−1)deg x

∫
dξ

i∗(x), x ∈ APL(X).

Proof. For ξ ∈ C∗(X) such that j](ξ) ∈ C∗(X,A) is closed, we have j](dξ) = d(j](ξ)) = 0. Thus,
by exactness of

0→ C∗(A)
i]−→ C∗(X)

j]−→ C∗(X,A)→ 0,

we may consider dξ ∈ C∗(X) as an element of C∗(A). Then, for x ∈ APL(X) we obtain∫
ξ

dx = (

∮
X

dx)(ξ) = (d

∮
X

x)(ξ) = ε(

∮
X

x)(dξ)

= ε(

∮
X

x)(i](dξ)) = ε(i]
∮
X

x)(dξ) = ε(

∮
A

i∗x)(dξ) = ε

∫
dξ

i∗x,
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where the sign ε = −(−1)deg x is due to our sign convention for the differential of normalized
singular cochains (see Section 2.4). �

3.3. Cohomological multiplicativity. While integration (3.1) is not a quasi-isomorphism of
cochain algebras, it induces an algebra isomorphism on cohomology, which we denote by the
same symbol

∮
.

Theorem 3.3. For any pair (X,A) we have∮
(X,A)

xy = (

∮
(X,A)

x) ∪ (

∮
(X,A)

y), x, y ∈ H∗(APL(X,A)),∮
(X,A)

xy = (

∮
(X,A)

x) ∪ (

∮
X

y), x ∈ H∗(APL(X,A)), y ∈ H∗(APL(X)).

Proof. We only prove the second formula, while the proof of the first formula is very similar.
It follows from the Remark in [16, p. 130] that for any pair (X,A) there is a commutative

diagram of graded vector spaces

H∗(X,A) H∗((CPL ⊗APL)(X,A)) H∗(APL(X,A))

H∗(X,A),

β(X,A)

∼=

=
∼=α(X,A)

∼=

γ(X,A)

∮
(X,A)

∼=

where we have also used the identification CPL(−) = C∗(−) from Theorem 10.9(i) in [16], as
well as the fact that APL, CPL and CPL ⊗APL are extendable simplicial cochain complexes by
Lemma 10.7(iii), Lemma 10.12(ii) and Lemma 10.12(iii) in [16], respectively.

Since β : CPL → CPL⊗APL and γ : APL → CPL⊗APL are quasi-isomorphisms of extendable
simplicial cochain algebras (see [16, p. 125]), we have

β(X,A)(x ∪ y) = β(X,A)(x)βX(y), x ∈ H∗(X,A), y ∈ H∗(X),

γ(X,A)(xy) = γ(X,A)(x)γX(y), x ∈ H∗(APL(X,A)), y ∈ H∗(APL(X)).

(Note however that α : CPL ⊗ APL → CPL is only a quasi-isomorphism of simplicial cochain
complexes.)

All in all, we obtain∮
(X,A)

xy = α(X,A)(γ(X,A)(xy)) = α(X,A)(γ(X,A)(x)γX(y))

= α(X,A)(β(X,A)(

∮
(X,A)

x)βX(

∮
X

y))

= α(X,A)(β(X,A)((

∮
(X,A)

x) ∪ (

∮
X

y))) = (

∮
(X,A)

x) ∪ (

∮
X

y).

�

3.4. Poincaré-Lefschetz duality. Let (X,A) = (M,∂M) be an n-dimensional compact topo-
logical manifold with boundary. We assume that (M,∂M) is Q-oriented, and denote by

[M,∂M ] ∈ Hn(M,∂M)

the corresponding fundamental class. In the following, we discuss a rational homotopy theory
version of the nondegenerate intersection pairing given by classical Poincaré-Lefschetz duality

Hr(M)×Hn−r(M,∂M)→ Q, (x, y) 7→ 〈x ∪ y, [M,∂M ]〉.(3.4)
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Theorem 3.4. Let µ ∈ Cn(M) be a normalized singular chain whose image under the map
j] : Cn(M) → Cn(M,∂M) represents the fundamental class [M,∂M ] ∈ Hn(M,∂M). Then,
multiplication in APL(M) followed by integration over µ (see (3.3)) induces a nondegenerate
bilinear form∫

µ

: Hr(APL(M))×Hn−r(APL(M,∂M))→ Q, ([α], [β]) 7→
∫
µ

α · j∗(β).

Proof. To show that the bilinear form∫
µ

: ArPL(M)×An−rPL (M,∂M)→ Q, (α, β) 7→
∫
µ

α · j∗(β),

induces a bilinear form
∫
µ

on cohomology, we have to show that for all closed elements

α, α′ ∈ ArPL(M) with α′ − α = dη for some η ∈ Ar−1
PL (M), and all closed elements

β, β′ ∈ An−rPL (M,∂M) with β′ − β = dω for some ω ∈ An−r−1
PL (M,∂M), we have∫

µ
(α′, β′) =

∫
µ
(α, β). It suffices to consider the case that α = α′ or β = β′. If β = β′,

then Stokes’ theorem (Theorem 3.2) and the fact that i∗ ◦ j∗ = 0 imply∫
µ

(α′, β)−
∫
µ

(α, β) =

∫
µ

d(η · j∗(β)) = ±
∫
dµ

i∗(η · j∗(β)) = 0.

Similarly, we can show that
∫
µ
(α, β′) =

∫
µ
(α, β) if α = α′.

We prove that the bilinear form
∫
µ

induced on cohomology is nondegenerate by reducing it

to classical Poincaré-Lefschetz duality (3.4). By the de Rham theorem (Theorem 3.1), we have
for α ∈ APL(M) and β ∈ APL(M,∂M) that∫

µ

α · j∗(β) =

∫
µ

j∗(α · β) = (j]
∮

(M,∂M)

α · β)(µ) = (

∮
(M,∂M)

α · β)(j]µ),

where we note that α · β ∈ APL(M,∂M) and j∗(α · β) = α · j∗(β), which follows easily from the
short exact sequence 0→ APL(M,∂M)→ APL(M)→ APL(∂M)→ 0. Assuming that α and β
are closed, and using that j]µ is closed and represents [j]µ] = [M,∂M ], as well as cohomological
multiplicativity (Theorem 3.3), we can pass to (co)homology and obtain

(

∮
(M,∂M)

α · β)(j]µ) = 〈[
∮

(M,∂M)

α · β], [M,∂M ]〉

= 〈
∮

(M,∂M)

[α] · [β] , [M,∂M ]〉 = 〈
∮
M

[α] ∪
∮

(M,∂M)

[β] , [M,∂M ]〉.

Since
∮
M

and
∮

(M,∂M)
are isomorphisms on cohomology by the de Rham theorem (Theorem 3.1),

we have reduced our bilinear form
∫
µ

to the nondegenerate bilinear form given by Poincaré-

Lefschetz duality (3.4). �

4. Cotruncation of commutative cochain algebras

Throughout this section, let C∗ be a commutative cochain algebra with H0(C∗) = Q. The
results of this section will be applied in later sections to cotruncations of the cochain algebra
C∗ = APL(L) associated to the connected link L of an isolated singularity in pseudomanifold.
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4.1. Truncation and cotruncation. Let k > 0 be an integer. We define the k-truncation
cochain complex of C∗ to be the subcomplex of C∗ given by

τ<kC
∗ : . . .

d−→ Ck−2 d−→ Ck−1 d|−→ im(d : Ck−1 → Ck)→ 0→ 0→ . . . .

We observe that the canonical inclusion ϑ<k : τ<kC
∗ → C∗ induces isomorphisms

Hr(ϑ<k) : Hr(τ<kC
∗)
∼=−→ Hr(C∗)

for r < k, and we have Hr(τ<kC
∗) = 0 for r ≥ k. However, the inclusion τ<kC

∗ → C∗ is in
general not a morphism of commutative cochain algebras because im(d : Ck−1 → Ck) might not
be closed under multiplication with elements in C0.

In contrast to truncations, it turns out that cotruncations can be studied within the category
of commutative cochain algebras.

Definition 4.1. A (cohomological) k-cotruncation of C∗ is a commutative cochain algebra B∗

with H0(B∗) = Q together with a morphism β : B∗ → C∗ such that Hr(B∗) = 0 for 0 < r < k,

and Hr(β) : Hr(B∗)
∼=−→ Hr(C∗) for r ≥ k. An augmented k-cotruncation of C∗ is a morphism

of the form (β, εB) : B∗ → C∗ ⊕Q, where β : B∗ → C∗ is a k-cotruncation of C∗.

The following example shows that cotruncations do always exist.

Example 4.2 (Standard cotruncation). Given a direct sum decomposition

Ck = D ⊕ im(d : Ck−1 → Ck),

we can consider the k-cotruncation cochain complex

τD≥kC
∗ : . . . −→ 0→ 0→ D

d|−→ Ck+1 d−→ Ck+2 d−→ . . . ,

where D is placed in degree k. Using multiplication in C∗, we observe that τ̂D≥kC
∗ = τD≥kC

∗⊕Q
is a commutative cochain algebra with unique augmentation εD : τ̂D≥kC

∗ → Q. Moreover, the

canonical inclusion ϑD≥k : τ̂D≥kC
∗ → C∗ defines a k-cotruncation of C∗, which we call a standard

k-cotruncation of C∗. The inclusion (ϑD≥k, εD) : τ̂D≥kC
∗ → C∗⊕Q is an augmented k-cotruncation

of C∗, which we call an augmented standard k-cotruncation of C∗.

Remark 4.3. While the cotruncation cochain complex τD≥kC
∗ in Example 4.2 is closed under the

multiplication inherited from C∗, it might not be an ideal in C∗ because D might not be closed
under multiplication with elements in C0.

4.2. Weak equivalences. Let A be a commutative cochain algebra. A commutative cochain
algebra B is said to be over A if B is equipped with a morphism B → A. Moreover, a morphism
f : B → B′ of commutative cochain algebras is said to be over A if B and B′ are over A, and
f is compatible with the structure morphisms B → A and B′ → A. Let f1 : B1 → B′1 and
f2 : B2 → B′2 be morphisms over A. A quasi-isomorphism over A from f1 to f2 is a pair (β, β′)

of quasi-isomorphisms β : B1
'−→ B2 and β′ : B′1

'−→ B′2 over A such that β′ ◦ f1 = f2 ◦ β. A

weak equivalence over A between f1 and f2 is a chain f1
'−→ g1

'←− . . .
'−→ gr

'←− f2 of quasi-
isomorphisms over A, where g1, . . . , gr are suitable morphisms over A. We call f1 and f2 weakly
equivalent over A if they are connected by such a chain.

In the following result, we consider augmented cotruncations B∗ → C∗ ⊕ Q of C∗ (see Defi-
nition 4.1) as morphisms over C∗ ⊕Q by means of the identity morphism on C∗ ⊕Q.

Proposition 4.4. Let k > 0 be an integer. Any two augmented k-cotruncations of C∗ are weakly
equivalent over C∗ ⊕Q.
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Proof. For k = 1, we fix an augmentation εC : C∗ → Q, and show that any given augmented
1-cotruncation (β, εB) : B∗ → C∗ ⊕ Q is weakly equivalent over C∗ ⊕ Q to the morphism
(idC∗ , εC) : C∗ → C∗ ⊕ Q. (Here, (idC∗ , εC) is considered as a morphism over C∗ ⊕ Q by
means of the identity morphism on C∗ ⊕ Q.) For this purpose, we choose a quasi-isomorphism

α : A∗
'−→ B∗ from a commutative cochain algebra A∗ with A0 = Q and unique augmentation

εA : A∗ → Q. (For example, we can use the existence of Sullivan models by Proposition 12.1 in
[16].) Then,

B∗ A∗ C∗

C∗ ⊕Q C∗ ⊕Q C∗ ⊕Q

(β,εB)

'
α

(β◦α,εA)

β◦α

(idC∗ ,εC)

= =

commutes. This yields the desired weak equivalence over C∗⊕Q between (β, εB) and (idC∗ , εC)
because β ◦ α is a 1-cotruncation and thus a quasi-isomorphism.

For k > 1, it suffices to show that (1) every augmented k-cotruncation of C∗ is weakly
equivalent over C∗ ⊕ Q to an augmented standard k-cotruncation of C∗, and that (2) any two
augmented standard k-cotruncations of C∗ are weakly equivalent over C∗ ⊕Q.

Proof of (1). Given any augmented k-cotruncation (β, εB) : B∗ → C∗⊕Q, we choose a quasi-

isomorphism α : A∗
'−→ B∗ from a commutative cochain algebra A∗ with A0 = Q and unique

augmentation εA : A∗ → Q, and satisfying Ai = 0 for 1 ≤ i ≤ k−1, and dAk = 0. (For example,
we can take A∗ to be a minimal Sullivan model for B∗ as constructed in Proposition 12.2 in
[16].) Since dAk = 0 and Ak−1 = 0, we obtain an isomorphism

Ak = Hk(A∗) Hk(B∗) Hk(C∗).
Hk(α)

∼=
Hk(β)

∼=

Thus, we have β(α(Ak)) ∩ im(d : Ck−1 → Ck) = 0. Therefore, we may choose a direct sum
complement D ⊂ Ck of im(d : Ck−1 → Ck) in Ck such that β(α(Ak)) ⊂ D. Then, by construc-
tion, the k-cotruncation β ◦ α : A∗ → C∗ lifts to a quasi-isomorphism η : A∗ → τ̂D≥kC

∗ under the

standard k-cotruncation ϑD≥k : τ̂D≥kC
∗ → C∗ of C∗ (see Example 4.2). Consequently, we obtain

a commutative diagram

B∗ A∗ τ̂D≥kC
∗

C∗ ⊕Q C∗ ⊕Q C∗ ⊕Q

(β,εB)

'
α

(β◦α,εA)

η

'

(ϑD≥k,εD)

= =

which provides a weak equivalence over C∗ ⊕ Q from (β, εB) to (ϑD≥k, εD). This completes the

proof of assertion (1).
Proof of (2). We fix a subspace E ⊂ Ck−1 such that the differential d : Ck−1 → Ck restricts

to an isomorphism E
∼=−→ d(Ck−1). We consider the cochain complex

σE≥kC
∗ : . . . −→ 0→ 0→ E

d|−→ Ck
d−→ Ck+1 d−→ . . . ,

where E is placed in degree k − 1. Since k > 1, it follows that σ̂E≥kC
∗ = σE≥kC

∗ ⊕ Q is a
commutative cochain algebra whose multiplication is inherited from C∗, and which has a unique
augmentation εE : σ̂E≥kC

∗ → Q. Moreover, the canonical inclusion ϕE≥k : σ̂E≥kC
∗ → C∗ defines a

k-cotruncation of C∗.
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Given any standard k-cotruncation ϑD≥k : τ̂D≥kC
∗ → C∗ of C∗, we observe that the canonical

inclusion ρ≥k : τ̂D≥kC
∗ → σ̂E≥kC

∗ is by construction a quasi-isomorphism. Consequently, we
obtain a commutative diagram

τ̂D≥kC
∗ σ̂E≥kC

∗

C∗ ⊕Q C∗ ⊕Q

(ϑD≥k,εD)

ρ≥k

'

(ϕE≥k,εE)

=

which provides a quasi-isomorphism over C∗ ⊕ Q from (ϑD≥k, εD) to (ϕE≥k, εE). This completes

the proof of assertion (2). �

In this paper, Proposition 4.4 will always be applied in connection with the following lemma,
where it provides the weak equivalence between g′ and γ◦g over C ′ (see the proofs of Theorem 5.5
and Theorem 7.1).

Lemma 4.5. We consider two fiber product squares

A×C B B

A C,

π g

f

A′ ×C′ B′ B′

A′ C ′,

π′ g′

f ′

of morphisms over Q, where the morphisms f and f ′ are surjective. Suppose that (α, γ) : f
'−→ f ′

is a quasi-isomorphism over Q such that g′ and the composition γ ◦ g (seen as morphisms over
C ′ by means of the identity morphism on C ′) are weakly equivalent over C ′. Then, π and π′ are
weakly equivalent over Q. If, in addition, A = A′ and the quasi-isomorphism α is the identity
morphism on A, then π and π′ (seen as morphisms over A by means of the identity morphism
on A) are weakly equivalent over A.

Proof. We apply Lemma 13.3 in [16] to the commutative diagram over Q

A C B

A′ C ′ B

'α

f

'γ

g

=

f ′ γ◦g

to obtain a quasi-isomorphism over Q from π to the structure map A′×C′ B → A′. Since g′ and
the composition γ ◦ g are by assumption weakly equivalent over C ′, we can construct a weak
equivalence over Q between A′ ×C′ B → A′ and π′ by applying Lemma 13.3 in [16] iteratively
to commutative diagrams over Q of the form

A′ C ′ B0

A′ C ′ B1.

=

f ′

=

g

'
f ′ γ◦g

If A = A′ and the quasi-isomorphism α is the identity morphism on A, then all quasi-
isomorphisms we constructed are quasi-isomorphisms over A. �
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4.3. Poincaré duality. For every integer k > 0, we fix a standard cotruncation

ϑ≥k = ϑD≥k : τ̂≥kC
∗ = τ̂D≥kC

∗ → C∗

of C∗ (see Example 4.2).

Lemma 4.6. If k, l, r, s > 0 are integers such that k + l > r + s, then

ϑ≥k(τ≥kC
r) · ϑ≥l(τ≥lCs) = 0.

Proof. Let α ∈ τ≥kCr and β ∈ τ≥lCs. By construction of the k-cotruncation cochain complex
in Example 4.2, we have ϑ≥k(α) = 0 unless α has degree r ≥ k. But in the latter case, our
assumption k + l > r + s implies that s < l, and thus ϑ≥l(β) = 0. Hence, in all cases we obtain
ϑ≥k(α) · ϑ≥l(β) = 0. �

For the rest of this section, we assume that H∗(C∗) is a Poincaré duality algebra of dimension
c ≥ 0 (see e.g. Definition 3.1 in [17]). That is, the vector spaces Hr(C∗) are finite-dimensional
for all r, and there is an isomorphism Hc(C∗) ∼= Q such that multiplication in H∗(C∗) induces
for all r a nondegenerate bilinear pairing

〈 , 〉 : Hr(C∗)×Hc−r(C∗)→ Hc(C∗) ∼= Q.(4.1)

Lemma 4.7. If k, l > 0 are integers such that k + l = c+ 1, then the pairing (4.1) restricts to
a nondegenerate pairing

Hr(τ<kC
∗)×Hc−r(τ≥lC

∗)→ Q, (x, y) 7→ 〈H(ϑ<k)(x), H(ϑ≥l)(y)〉.(4.2)

Proof. If r ≥ k, then it follows from k+ l > c that c− r < l, so both vector spaces of the pairing
are zero. For r < k, it follows from c ≥ (k − 1) + l that c − r ≥ l, so that the pairing (4.2) is
isomorphic to the pairing (4.1). �

Let L be a closed Q-oriented topological manifold of dimension c. Then, C∗ = APL(L) is
a c-dimensional Poincaré duality algebra by means of the isomorphism Hc(C∗) ∼= Q induced
by integration

∫
λ

: AcPL(L) → Q over a chain representative λ ∈ Cc(L;Q) of the fundamental

class of L. In fact, note that
∫
λ

vanishes on d(Ac−1
PL (L)) by Stokes’ theorem (Theorem 3.2), and

that the induced pairing 〈[α], [β]〉 =
∫
λ
α ·β (4.1) is nondegenerate by Poincaré-Lefschetz duality

(Theorem 3.4). Such an integration on cochain level is the structure we need for general C∗ to
express the pairing (4.2) entirely in terms of cotruncations.

Proposition 4.8. Let k, l > 0 be integers such that k + l = c + 1. Suppose that the isomor-
phism Hc(C∗) ∼= Q is induced by a linear form

∫
: Cc → Q that vanishes on d(Cc−1). Then,

multiplication in C∗ followed by integration induces a nondegenerate bilinear form∫
: Hr(C∗/ϑ≥k(τ≥kC

∗))×Hc−r(τ≥lC
∗)→ Q, ([π≥k(α)] , [β]) 7→

∫
α · ϑ≥l(β),

where π≥k : C∗ → C∗/ϑ≥k(τ≥kC
∗) denotes the canonical projection morphism.

Proof. On cochain level, we have the bilinear form∫
: Cr/ϑ≥k(τ≥kC

r)× τ≥lCc−r → Q, (π≥k(α), β) 7→
∫
α · ϑ≥l(β),

because for all α ∈ Cr, η ∈ τ≥kCr, and β ∈ τ≥lCc−r, Lemma 4.6 yields that∫
(π≥k(α+ ϑ≥k(η)), β)−

∫
(π≥k(α), β) =

∫
ϑ≥k(η) · ϑ≥l(β) = 0.
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Let us show that the bilinear form
∫

induces a bilinear form on cohomology, which we also
denote by the symbol

∫
. For this purpose, we consider closed elements π≥k(α) ∈ Cr/τ≥kC

r

(where α ∈ Cr) and β ∈ τ≥lCc−r. If π≥k(α) = dπ≥k(η) for some η ∈ Cr−1, then∫
(π≥k(α), β) =

∫
dη · ϑ≥l(β) =

∫
d(η · ϑ≥l(β)) = 0.

If β = dω for some ω ∈ τ≥lCc−r−1, then we apply Lemma 4.6 (using that dα ∈ ϑ≥k(τ≥kC
r+1)

because π≥k(α) is closed) to conclude that∫
(π≥k(α), β) =

∫
α · ϑ≥l(dω) = ±

∫
d(α · ϑ≥l(ω))±

∫
dα · ϑ≥l(ω) = 0.

It remains to show that the bilinear form
∫

is nondegenerate on cohomology. For this purpose,
we note that the composition

τ<kC
∗ ϑ<k−−→ C∗

π≥k−−→ C∗/ϑ≥k(τ≥kC
∗)

is an isomorphism of cochain complexes because we have the direct sum decomposition

Cr = τ<kC
r ⊕ τ≥kCr

by definition of k-(co)truncation cochain complexes in Section 4. But under the induced isomor-
phism on cohomology, our bilinear form corresponds to the pairing (4.2), which is nondegenerate
by Lemma 4.7. �

5. A commutative model for intersection spaces

Let Xn be a compact n-dimensional topologically stratified pseudomanifold with one isolated
singularity x. In other words, the regular stratum X \ {x} of X is a topological manifold of
dimension n ≥ 2, and the singular stratum {x} of X has an open neighborhood Ux in X which
is homeomorphic to the open cone on some (n − 1)-dimensional closed topological manifold L,
where x corresponds to the cone point. The manifold L is called the link of x, and will be
assumed to be connected in this paper. We fix a distinguished neighborhood Ux of x once and
for all. Then, the complement M = X \ Ux is a compact topological n-manifold with boundary
L = ∂M , and we can write X = M ∪∂M cone(∂M).

5.1. Construction of intersection spaces. Let p be a perversity. That is, p is a function
{2, 3, 4, . . . } → {0, 1, 2, . . . } which satisfies the Goresky-MacPherson growth conditions p(2) = 0
and p(s) ≤ p(s+ 1) ≤ p(s) + 1 for all s ∈ {2, 3, . . . }. As the singular point x has codimension n
in X, we have to consider the cutoff degree k = k(p) = n− 1− p(n) for the link L = ∂M of x.
Note that k > 0 holds by the growth conditions of p. We choose a spatial homology truncation
(Moore approximation) f<k : L<k → L in order to truncate the integral homology groups of the

link L in degrees k and above. That is, f<k induces an isomorphism Hr(L<k;Z)
∼=−→ Hr(L;Z)

for r < k, and we have Hr(L<k;Z) = 0 for r ≥ k. To construct f<k, we compose a CW
approximation L′ → L of L with a Moore approximation L<k → L′ of the CW complex L′ by
using Corollary 1.4 in [25]. (In particular, it is not necessary to assume as in [5] that the link L
is simply connected.)

Recall from [5] that the perversity p intersection space IpX associated to X is defined as the
homotopy cofiber of the composition

g : L<k
f<k−−→ L = ∂M ↪→M.

That is, we have

IpX = cone(g) = M ∪∂M=L cone(f<k).
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We take the cone point ∗ ∈ cone(f<k) as the natural basepoint of the intersection space IpX.

Remark 5.1. Intersection spaces have first been constructed for pseudomanifolds of stratification
depth 1 with trivial link bundle in [6, 5], and with certain twisted link bundles in [8]. A
construction for some special pseudomanifolds of stratification depth 2 has been studied in [3].
Recently, Agust́ın and Fernández de Bobadilla [2] have proposed an inductive procedure to
construct relative intersection spaces Ip(X,Σ) for pseudomanifolds X with singular set Σ of
arbitrary stratification depth with compatible link bundles. For instance, their construction is
applicable to complex toric varieties with canonical stratifications (see Section 4 in [1]).

5.2. The commutative model AIp(X). Let p be a perversity. In the following definition, we
introduce the central object AIp(X) of this paper, which is an augmented commutative cochain
algebra whose construction is based on the choice of a standard k-cotruncation of APL(L).
Theorem 5.5 below shows that AIp(X) is an augmented commutative model for the pointed
intersection space IpX.

Definition 5.2. Given an augmented standard k-cotruncation

(ϑ≥k, ε) = (ϑD≥k, εD) : τ̂≥kAPL(L) = τ̂D≥kAPL(L) ↪→ APL(L)⊕Q = APL(L t ∗)

of APL(L) for the cutoff degree k = n− 1− p(n) (see Example 4.2), we define the commutative
cochain algebra AIp(X) as the fiber product that completes the fiber product square

(5.1)

AIp(X) = APL(M t ∗)×APL(∂Mt∗) τ̂≥kAPL(L) τ̂≥kAPL(L)

APL(M t ∗) APL(L t ∗).

ρp

ιp (ϑ≥k,ε)

incl∗

We equip AIp(X) with the canonical augmentation given by the composition

AIp(X)
(5.1)−−−→ APL(L t ∗) incl∗−−−→ APL(∗) = Q.(5.2)

Remark 5.3. While AIp(X) depends on the choice of the standard cotruncation ϑD≥k, different
choices lead to commutative cochain algebras that are weakly equivalent over

APL(M t ∗) = APL(M)⊕Q

by the last part of Lemma 4.5.

The following proposition will be used in the proof of Theorem 1.2 (see Section 6).

Proposition 5.4. (i) Let AIp(X,x) denote the augmentation ideal of the augmented com-
mutative cochain algebra AIp(X). Diagram (5.1) restricts (by abuse of notation) to a
fiber product square

(5.3)

AIp(X,x) τ≥kAPL(L)

APL(M) APL(L)

ρp

ιp ϑ≥k|

i∗

of commutative cochain complexes, where i : L = ∂M →M is the inclusion.
(ii) Let ηp : ker ρp ↪→ AIp(X,x) denote the inclusion. There is a canonical identification

ker ρp = APL(M,∂M) such that the diagram
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APL(M,∂M) AIp(X,x)

APL(M)

j∗

ηp

ιp

commutes, where j : (M, ∅)→ (M,∂M) denotes the inclusion of pairs.
(iii) Let κp : APL(M) � APL(M)/ im ιp denote the quotient map. There is a canonical

identification APL(M)/ im ιp = APL(L)/ϑ≥k(τ≥kAPL(L)) such that the diagram

APL(M) APL(L)

APL(L)/ϑ≥k(τ≥kAPL(L))

κp

i∗

π≥k

commutes, where π≥k denotes the quotient map.

Proof. The morphisms in diagram (5.1) are compatible with the canonical augmentations
AIp(X)→ Q (5.2),

ε : τ̂≥kAPL(L)→ Q, APL(M t ∗) incl∗−−−→ APL(∗) = Q, and APL(L t ∗) incl∗−−−→ APL(∗) = Q.

Thus, part (i) follows by restricting diagram (5.1) to the corresponding augmentation ideals.
As for part (ii), we note that ιp restricts under ηp : ker ρp ↪→ AIp(X,x) and j∗ to an injection
ker ρp ↪→ ker i∗ = APL(M,∂M). To show surjectivity, we note that for any y ∈ ker i∗ there
is x ∈ AIp(X,x) such that ιp(x) = y and ρp(x) = 0 in the fiber product square (5.3). As
for part (iii), we note that i∗ restricts under κp : APL(M) � APL(M)/ im ιp and π≥k to a
surjection APL(M)/ im ιp � APL(L)/ϑ≥k(τ≥kAPL(L)). To show injectivity, we observe that
for any y ∈ APL(M) such that i∗(y) ∈ ϑ≥k(τ≥kAPL(L)) there is x ∈ AIp(X,x) such that
ιp(x) = y by using the fiber product square (5.3). �

Recall from Section 4.2 the notion of weak equivalence of morphisms. Theorem 5.5 below im-
plies that AIp(X) is an augmented commutative model for the pointed intersection space IpX.
In particular, the weak equivalence class determined by either of the augmented commutative
cochain algebras AIp(X) and APL(IpX) does not depend on the choice of the Moore approxima-
tion f<k or on the choice of the standard cotruncation ϑD≥k. In particular, Theorem 5.5 implies
Theorem 1.1 of the introduction.

Theorem 5.5. The morphism APL(IpX)→ APL(M t ∗) induced by inclusion is weakly equiv-
alent over APL(M t ∗) to the morphism ιp : AIp(X)→ APL(M t ∗).

Proof. We apply Proposition 13.5 in [16] to the commutative diagram of inclusions

∂M t ∗ cone(f<k)

M t ∗ IpXh

to obtain a commutative diagram

APL(IpX) APL(M t ∗)×APL(∂Mt∗) APL(cone(f<k))

APL(M t ∗) APL(M t ∗)

'

h∗ π

=
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that provides a quasi-isomorphism over APL(M t ∗) from h∗ to the morphism

π : APL(M t ∗)×APL(∂Mt∗) APL(cone(f<k))→ APL(M t ∗)

given by projection of the fiber product to the first component. It remains to relate the morphism
π to the morphism

ιp : AIp(X) = APL(M t ∗)×APL(∂Mt∗) τ̂≥kAPL(∂M)→ APL(M t ∗)

obtained as in Definition 5.2 from the choice of an augmented standard k-cotruncation

(ϑ≥k, ε) : τ̂≥kAPL(∂M)→ APL(∂M t ∗) = APL(∂M)⊕Q

of APL(∂M) (see Example 4.2). For this purpose, we observe that the morphisms

incl∗ : APL(cone(f<k))→ APL(L t ∗)

and (ϑ≥k, ε) are weakly equivalent over APL(∂M t ∗) by Proposition 4.4. Then, we see that
the two morphisms π and ιp are indeed weakly equivalent over APL(M t ∗) = APL(M)⊕Q by
applying the last part of Lemma 4.5 to the diagram

APL(M t ∗)×APL(∂Mt∗) APL(cone(f<k)) APL(cone(f<k))

APL(M t ∗) APL(L t ∗)

π incl∗

incl∗

and to the diagram (5.1), as well as to the identity morphisms on APL(Mt∗) and APL(Lt∗). �

5.3. Beyond isolated singularities. In order to extend the approach of this paper beyond
spaces with isolated singularities, one should next consider a pseudomanifold X with one non-
isolated singular stratum Σ having a possibly twisted link bundle L→ ∂M → Σ with connected
link L and structure group G (compare [8]). At least for a trivial link bundle ∂M = L×Σ→ Σ,
we outline here in generalization of Definition 5.2 the construction of a commutative model
AIp(X,Σ)⊕Q for the intersection space

IpX = cone(L<k × Σ
F<k−−−→ ∂M

incl−−→M) = M ∪∂M=L×Σ cone(F<k),

where F<k = f<k × idΣ depends on a chosen Moore approximation f<k : L<k → L of L of
degree k = c − p(c + 1) with c = dimL. First, we define the commutative cochain algebra
APL,∂MS(M tΣ) of PL polynomial forms that are multiplicatively structured at the boundary
by the fiber product

(5.4)

APL,∂MS(M t Σ) APL(L t ∗)⊗APL(Σ)

APL(M t Σ) APL(∂M t Σ).

ν

ω' s'

incl∗

(Here, note that the canonical quasi-isomorphism

s : APL(L t ∗)⊗APL(Σ)→ APL((L t ∗)× Σ) = APL(∂M t Σ)

described in Example 2 in [16, p. 142] induces a quasi-isomorphism

ω : APL,∂MS(M t Σ)→ APL(M t Σ)⊗APL(∂MtΣ) APL(∂M t Σ) = APL(M t Σ)
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by Lemma 13.3 in [16].) Next, we define the commutative cochain algebra AIp(X) by the fiber
product

(5.5)

AIp(X) τ̂≥kAPL(L)⊗APL(Σ)

APL,∂MS(M t Σ) APL(L t ∗)⊗APL(Σ).

ρp

ιp (ϑ≥k,ε)⊗idAPL(Σ)

ν

Note that all morphisms in (5.4) and (5.5) are over APL(Σ) via surjective morphisms induced
by the restrictions

APL(M t Σ)→ APL(Σ), APL(∂M t Σ)→ APL(Σ), and APL(L t ∗)→ APL(∗) = Q,
as well as the augmentation ε : τ̂≥kAPL(L) → Q. Finally, the kernel AIp(X,Σ) of the sur-
jective morphism AIp(X) → APL(Σ) provides the desired commutative model AIp(X,Σ) ⊕ Q
for IpX. (In fact, by using an extension of Theorem 5.5, we can show that the morphism
AIp(X) → APL(Σ) is weakly equivalent over APL(Σ) through a chain of surjective morphisms

A → APL(Σ) to the morphism APL(IpX) → APL(Σ) induced by the inclusion Σ → IpX of the
relative intersection space

Ip(X,Σ) = (IpX ,Σ) = (M ∪∂M=L×Σ cone(f<k)× Σ, ∗ × Σ).

Thus, AIp(X,Σ) ⊕ Q is weakly equivalent to APL(IpX ,Σ) ⊕ Q, which is a commutative model

for IpX because IpX/Σ is homotopy equivalent to IpX.) Consequently, Theorem 1.1 holds more
generally for pseudomanifolds having one non-isolated singular stratum with trivial link bundle.
We also expect to extend Theorem 1.2 and Theorem 7.1 to this setting, but the details will be
presented elsewhere.

Remark 5.6. It is an interesting problem to extend our approach to cases in which the link
bundle L→ ∂M → Σ is twisted. In analogy with the de Rham approach in [4] it seems plausible
that our commutative cochain algebra (5.4) of PL polynomial forms that are multiplicatively
structured at the boundary admits a generalization to flat link bundles that trivialize with respect
to a finite good open cover of the base Σ. The next obstacle is the existence of G-equivariant
standard cotruncations of APL(L), which we need to generalize our construction (5.5) to this
twisted setting. (Note that the Hodge star operator used for this purpose in [4] in the context
of smooth differential forms is not available for PL polynomial forms.) Then, in order to obtain
a commutative model for IpX, one has to identify conditions under which uniqueness of G-
equivariant standard cotruncations holds in analogy to Proposition 4.4. Finally, it might be
possible to generalize Theorem 1.2 to the twisted setting by using the bootstrap principle like in
[4] to extend the construction of the nondegerate bilinear form

∫
dµ

that appears in the original

proof. It seems interesting to compare the obstructions that arise in the above program to the
local duality obstructions of truncatable fiber bundles introduced in [8].

6. Proof of Theorem 1.2

Let Xn be a compact n-dimensional topologically stratified pseudomanifold with one isolated
singularity x and connected link L. As in Section 5, we fix a decomposition Xn = M ∪∂M
cone(∂M), where M is a compact topological n-manifold with boundary L = ∂M . Throughout
this section, let i : L = ∂M →M and j : (M, ∅)→ (M,∂M) denote the inclusions.

Let p and q be complementary perversities. That is, we have p(s) + q(s) = s − 2 for all
s ∈ {2, 3, . . . }. Let k = n−1−p(n) and l = n−1− q(n) denote the cutoff degrees corresponding
to p and q, where we note that k + l = n. Following Proposition 5.4(i), we have inclusions
ιp : AIp(X,x) ↪→ APL(M) and ιq : AIq(X,x) ↪→ APL(M) of commutative cochain complexes.



268 D.J. WRAZIDLO

Let X be Q-oriented, which means that the regular stratum X \ {x} of X is equipped with
a Q-orientation. Let µ ∈ Cn(M ;Q) be a normalized singular chain whose image under the map
j] : Cn(M ;Q) → Cn(M,∂M ;Q) represents the fundamental class in Hn(M,∂M ;Q) induced by
the given Q-orientation of X. As explained in Section 2.5, integration of polynomial differential
forms over simplices of µ induces a linear form

∫
µ

: APL(M)→ Q.

Then, we have the following

Lemma 6.1. Multiplication in APL(M) followed by integration over µ induces a bilinear form∫
µ

: Hr(AIp(X,x))×Hn−r(AIq(X,x))→ Q, ([α], [β]) 7→
∫
µ

ιp(α) · ιq(β).(6.1)

Proof. Let us show that the bilinear form∫
µ

: AIrp(X,x)×AIn−rq (X,x)→ Q, (α, β) 7→
∫
µ

ιp(α) · ιq(β),

induces a well-defined bilinear form on cohomology. We have to show that for all closed elements
α, α′ ∈ AIrp(X,x) with α′ − α = dη for some η ∈ AIr−1

p (X,x), and for all closed elements

β, β′ ∈ AIn−rq (X,x) with β′−β = dω for some ω ∈ AIn−r−1
q (X,x), we have

∫
µ
(α′, β′) =

∫
µ
(α, β).

It suffices to consider the case that α = α′ or β = β′. If β = β′, then using Stokes’ theorem
(Theorem 3.2) and Lemma 4.6,∫

µ

(α′, β)−
∫
µ

(α, β) =

∫
µ

d(ιp(η) · ιq(β)) = ±
∫
dµ

i∗(ιp(η) · ιq(β)) = ±
∫
dµ

y · z = 0,

where y = i∗ιp(η) ∈ ϑ≥k(τ≥kA
r−1
PL (L)) and z = i∗ιq(β) ∈ ϑ≥l(τ≥lAn−rPL (L)). The proof in the

case α = α′ is similar and will be omitted. �

It remains to show that the bilinear form of Lemma 6.1 is nondegenerate. For this purpose,
we assemble the cohomology long exact sequences induced by the short exact sequences of the
cochain complexes (see part (ii) and (iii) of Proposition 5.4)

0→ AIp(X,x)
ιp−→ APL(M)

κp−→ APL(L)/ϑ≥k(τ≥kAPL(L))→ 0,

0→ APL(M,∂M)
ηq−→ AIq(X,x)

ρq−→ τ≥lAPL(L)→ 0,

in a ladder diagram

Hr−1(APL(L)/ϑ≥k(τ≥kAPL(L))) Hn−r(τ≥lAPL(L))†

Hr(AIp(X,x)) Hn−r(AIq(X,x))†

Hr(APL(M)) Hn−r(APL(M,∂M))†

Hr(APL(L)/ϑ≥k(τ≥kAPL(L))) Hn−r−1(τ≥lAPL(L))†,

∫
dµ

∼=

δ H(ρq)
†∫

µ

H(ιp) H(ηq)
†∫

µ

∼=

H(κp) δ†∫
dµ

∼=

where we also use the nondegenerate bilinear form
∫
dµ

of Proposition 4.8 (applied to the chain

representative λ = dµ ∈ Cn−1(L) of the fundamental class of L = ∂M that is induced by the
Q-orientation of M), the nondegenerate bilinear form

∫
µ

of Theorem 3.4, and the bilinear form∫
µ

of Lemma 6.1.
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In view of the five lemma, to show that the bilinear form (6.1) is nondegenerate it suffices to
show that in the ladder diagram above, the top square (TS), the middle square (MS), and the
bottom square (BS) commute (up to sign).

Let us show that the top square (TS) commutes (up to sign). We have to show that, for
all closed elements α ∈ Ar−1

PL (L)/ϑ≥k(τ≥kA
r−1
PL (L)) and all closed elements β ∈ AIn−rq (X,x), it

holds that

((

∫
µ

◦δ)([α]))([β]) = (H(ρq)
† ◦
∫
dµ

)([α]))([β]).(6.2)

Let us consider the left hand side of equation (6.2). By construction of δ, we can write
δ([α]) = [y], where y ∈ AIrp(X,x) satisfies ιp(y) = dx for some x ∈ Ar−1

PL (M) with κp(x) = α.
Thus, the left hand side of the equation is given by

((

∫
µ

◦δ)([α]))([β]) = (

∫
µ

([y]))([β]) =

∫
µ

ιp(y) · ιq(β) =

∫
µ

dx · ιq(β).

Using Stokes’ theorem (Theorem 3.2) and the fact that β is closed, we obtain∫
µ

dx · ιq(β) =

∫
µ

d(x · ιq(β)) = ±
∫
dµ

i∗(x · ιq(β)).

Since κp = π≥k ◦ i∗ (Proposition 5.4(iii)), the right hand side of (6.2) becomes

(H(ρq)
† ◦
∫
dµ

)([α]))([β]) = (

∫
dµ

([α]))([ρq(β)]) =

∫
dµ

i∗(x) · ϑ≥l(ρq(β)).

Noting that i∗ ◦ ιq = ϑ≥l ◦ρq (Proposition 5.4(i)), we conclude that (TS) commutes (up to sign).
Next, we show that the middle square (MS) commutes. We have to show that for all closed

elements α ∈ AIrp(X,x) and all closed elements β ∈ An−rPL (M,∂M), it holds that

((

∫
µ

◦H(ιp))([α]))([β]) = ((H(ηq)
† ◦
∫
µ

)([α]))([β]).(6.3)

Let us consider the left hand side of equation (6.3), which is

((

∫
µ

◦H(ιp))([α]))([β]) = (

∫
µ

([ιp(α)]))([β]) =

∫
µ

ιp(α) · j∗(β).

On the other hand, the right hand side of (6.3) is given by

((H(ηq)
† ◦
∫
µ

)([α]))([β]) = (

∫
µ

([α]))([ηq(β)]) =

∫
µ

ιp(α) · ιq(ηq(β)).

Noting that j∗ = ιq ◦ ηq (Proposition 5.4(ii)), we conclude that (MS) commutes.
Finally, let us show that the bottom square (BS) commutes (up to sign). We have to show

that for all closed elements α ∈ ArPL(M) and all closed elements β ∈ τ≥lAn−r−1
PL (L), it holds

that

((

∫
dµ

◦H(κp))([α]))([β]) = ((δ† ◦
∫
µ

)([α]))([β]).(6.4)

Since κp = π≥k ◦ i∗ (Proposition 5.4(iii)), the left hand side of equation (6.4) becomes

((

∫
dµ

◦H(κp)([α]))([β]) = (

∫
dµ

([π≥k(i∗(α))]))([β]) =

∫
dµ

i∗(α) · ϑ≥l(β).
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Let us compare this to the right hand side of (6.4). By construction of δ, we can write δ([β]) = [y],
where y ∈ An−rPL (M,∂M) satisfies ηq(y) = dx for some x ∈ AIn−r−1

q (X,x) with ρq(x) = β. Since

j∗ = ιq ◦ ηq (Proposition 5.4(ii)), the right hand side of (6.4) is given by

((δ† ◦
∫
µ

)([α]))([β]) = (

∫
µ

([α]))([y]) =

∫
µ

α · j∗(y) =

∫
µ

α · ιq(dx).

Using Stokes’ theorem (Theorem 3.2) and the fact that α is closed, we obtain∫
µ

α · ιq(dx) = ±
∫
µ

d(α · ιq(x)) = ±
∫
dµ

i∗(α · ιq(x)),

where the two signs “±” are independent of each other. Noting that i∗ ◦ ιq = ϑ≥l ◦ ρq (Proposi-
tion 5.4(i)), we conclude that (BS) commutes (up to sign).

This completes the proof of Theorem 1.2.

7. Smooth differential forms

In this section, we work over the ground field R. We also assume that the pseudomanifold X
considered at the beginning of Section 5 has a Thom-Mather C∞-stratification. Since X has one
isolated singularity x, the only condition is that the regular stratum X \ {x} of X is equipped
with a smooth structure.

Let Ω∗(M) denote the commutative cochain algebra of smooth differential forms on the
smooth manifold M ⊂ X \ {x} with boundary ∂M . One of the main results of [4] is a de Rham

description of the intersection space cohomology H̃∗(IpX;R) by means of the subcomplex

ΩI∗p (M) = {ω ∈ Ω∗(M); ω|∂M ∈ τ≥kΩ∗(∂M)} ⊂ Ω∗(M)

determined by the choice of a cotruncation cochain complex τ≥kΩ∗(∂M) for the cutoff degree
k = k(p) as in Example 4.2. Banagl’s de Rham isomorphism

H̃∗(IpX;R) ∼= H∗(ΩI∗p (M))

is induced by integration of differential forms over smooth singular simplices, and relies on a
partial smoothing technique. In view of Theorem 5.5, we have the following strengthening of
Banagl’s de Rham description.

Theorem 7.1. The morphism ιp : AIp(X;R)→ APL(M t ∗;R) over R constructed as in Defi-
nition 5.2 and the morphism ΩI∗p (M)⊕R→ Ω∗(M)⊕R over R given by (α, t) 7→ (α+ t, t) (and

with augmentations given by projection to the second component) are weakly equivalent over R.

Proof. A smooth singular k-simplex on a smooth manifold N with boundary is a continuous

map ∆k → N that extends to a smooth map U → Ñ , where U is an open neighborhood of the

standard simplex ∆k ⊂ Rk+1, and Ñ is obtained from N by gluing an outward collar to ∂N .
Let S∞∗ (N) denote the simplicial set of smooth singular simplices on N (compare §11(c) in [16]).
Moreover, let ADR denote the simplicial cochain algebra of real C∞ differential forms (see §11(c)
in [16]).

According to Theorem 11.4 in [16] (whose proof is also applicable to manifolds with boundary
by taking into account charts at boundary points modeled on upper Euclidean half space), the
inclusion S∞∗ (N) → S∗(N) into the simplicial set S∗(N) of all singular simplices on N induces
a natural quasi-isomorphism

γN : APL(N ;R) = APL(S∗(N);R)
'−→ APL(S∞∗ (N);R).
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Moreover, by the same theorem, the inclusion APL( ;R)→ ADR of simplicial cochain algebras
induces a natural quasi-isomorphism

βN : APL(S∞∗ (N);R)
'−→ ADR(S∞∗ (N)).

We apply Lemma 4.5 (in its version over the ground field R) to the quasi-isomorphism

(α, γ) : f
'−→ f ′ over R given by the commutative diagram of morphisms over R

APL(M t ∗;R) APL(∂M t ∗;R)

ADR(S∞∗ (M t ∗)) ADR(S∞∗ (∂M t ∗)),

α=βMt∗◦γMt∗'

f

γ=β∂Mt∗◦γ∂Mt∗'

f ′

and to chosen augmented standard k-cotruncations (see Example 4.2)

g : τ̂≥kAPL(∂M ;R)→ APL(∂M t ∗;R) = APL(∂M ;R)⊕ R,
g′ : τ̂≥kADR(S∞∗ (∂M))→ ADR(S∞∗ (∂M t ∗)) = ADR(S∞∗ (∂M))⊕ R

of APL(∂M ;R) and ADR(S∞∗ (∂M)), respectively, to obtain a weak equivalence over R between
the morphism ιp : AIp(X;R)→ APL(M t ∗;R) and the morphism

κp : ADR(S∞∗ (M t ∗))×ADR(S∞∗ (∂Mt∗)) τ̂≥kADR(S∞∗ (∂M))→ ADR(S∞∗ (M t ∗))

given by projection of the fiber product to the first component. (For this purpose, we note
that our morphisms f and f ′ in the above diagram are indeed surjective because APL( ;R)
is extendable by Lemma 10.7(iii) in [16], and ADR is extendable by Lemma 11.3(iii) in [16].
Moreover, we observe that our morphisms g′ and γ ◦ g are weakly equivalent over

ADR(S∞∗ (∂M t ∗))

by Proposition 4.4.)
By Theorem 11.4 in [16], there is also a natural quasi-isomorphism

αN : Ω∗(N)
'−→ ADR(S∞∗ (N)).

We apply Lemma 4.5 (in its version over the ground field R) to the quasi-isomorphism

(α, γ) : f
'−→ f ′ over R given by the commutative diagram of morphisms over R

Ω∗(M t ∗) Ω∗(∂M t ∗)

ADR(S∞∗ (M t ∗)) ADR(S∞∗ (∂M t ∗))

α=αMt∗'

f

γ=α∂Mt∗'

f ′

and to the previously fixed augmented standard k-cotruncations

τ̂≥kΩ∗(∂M)→ Ω∗(∂M t ∗) = Ω∗(∂M)⊕ R,
τ̂≥kADR(S∞∗ (∂M))→ ADR(S∞∗ (∂M t ∗)) = ADR(S∞∗ (∂M))⊕ R

of Ω∗(∂M t ∗) and ADR(S∞∗ (∂M)), taking the roles of g and g′, respectively, to obtain a weak
equivalence over R between the morphism

λp : Ω∗(M t ∗)×Ω∗(∂Mt∗) τ̂≥kΩ∗(∂M)→ Ω∗(M t ∗)

given by projection of the fiber product to the first component and the morphism κp. (For
this purpose, we observe that our morphisms g′ and γ ◦ g are indeed weakly equivalent over
ADR(S∞∗ (∂M t ∗)) by Proposition 4.4.)
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Finally, we observe that the morphism ΩI∗p (M) ⊕ R → Ω∗(M) ⊕ R over R given by

(α, t) 7→ (α+ t, t) corresponds to the morphism λp under the composition of isomorphisms

ΩI∗p (M)⊕ R Ω∗(M t ∗)×Ω∗(∂Mt∗) τ̂≥kΩ∗(∂M)

(
Ω∗(M)×Ω∗(∂M) τ≥kΩ∗(∂M)

)
⊕ R Ω∗(M)⊕ R×Ω∗(∂M)⊕R τ≥kΩ∗(∂M)⊕ R,

∼=(ω,t) 7→((ω,ω|∂M ),t)

∼=

Ψ
∼=

=

where Ψ((ω, η), t) = ((ω + t, t), (η, t)). �
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