
Journal of Singularities
Volume 20 (2020), 54-78

received: 8 July 2019
in revised form: 27 November 2019

DOI: 10.5427/jsing.2020.20c

A TOPOLOGICAL CHARACTERIZATION OF THE MIDDLE PERVERSITY

INTERSECTION COMPLEX FOR ARBITRARY COMPLEX ALGEBRAIC

VARIETIES

BEN WU

Abstract. For an arbitrary complex algebraic variety which is not necessarily pure-dimensional,

the intersection complex can be defined as the direct sum of the Deligne-Goresky-MacPherson

intersection complexes of each irreducible component. We give two axiomatic topological
characterizations of the middle perversity direct sum intersection complex, one stratification

dependent and the other stratification independent. To accomplish this, we show that this

direct sum intersection complex can be constructed using Deligne’s construction in the more
general context of topologically stratified spaces. A consequence of these characterizations is

the invariance of this direct sum intersection complex under homeomorphisms.

1. Introduction

In [6], Goresky and MacPherson introduce the intersection (co)homology groups for a topo-
logical pseudomanifold. In [7], Goresky and MacPherson construct a complex of sheaves whose
(hyper)cohomology gives the intersection homology groups. This complex of sheaves is called
the (Deligne-Goresky-MacPherson) intersection complex and the construction is referred to as
Deligne’s construction (the indexing convention used for intersection complexes is discussed at
the end of the introduction). They show that the intersection complex is uniquely characterized
(up to canonical isomorphism) by certain axioms. A consequence of this characterization is that
the intersection complex, and hence the intersection homology, is invariant under homeomor-
phisms. Irreducible, or even pure-dimensional, (complex algebraic) varieties can be viewed as
topological pseudomanifolds and intersection homology is a useful tool for understanding their
topology; see [4]. Arbitrary varieties, however, cannot be viewed as topological pseudomanifolds
because their irreducible components may have differing dimensions. Instead, they must be
viewed as topologically stratified spaces; see §2.1.

For arbitrary varieties, there is still a natural candidate for the intersection complex. In [2],
de Cataldo defines the middle perversity intersection complex of a variety as a direct sum of
the middle perversity Deligne-Goresky-MacPherson intersection complexes of each irreducible
component. He then observes that this complex satisfies virtually all of the properties of the
usual intersection complex for irreducible varieties, e.g. Poincaré duality, existence of mixed
and pure Hodge structures, Lefschetz theorems, etc. In [3], de Cataldo and Maulik prove the
homeomorphism invariance of the intersection complex as a lemma and use it to prove that the
perverse Leray filtration for the Hitchin morphism is independent of the complex structure of the
curve. An axiomatic characterization of the intersection complex, analogous to the one given
by Goresky and MacPherson for pseudomanifolds, is desirable because it gives a topological
criterion for determining which complexes can be the intersection complexes. Example 4.2 in §4
shows that although each summand of the intersection complex is characterized by the axioms
proposed by Goresky and MacPherson, it is not so clear which axioms characterize the direct
sum.

http://dx.doi.org/10.5427/jsing.2020.20c
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The main goal of this paper is to give an axiomatic topological characterization of the middle
perversity intersection complex of an arbitrary complex algebraic variety which is not necessarily
pure-dimensional. For those wondering why we only consider the middle perversity, see Remark
3.12. Although we will only work with complex algebraic varieties in this paper, our results hold
for any topologically stratified space with only even-dimensional strata (see Remark 3.1). In
particular, they also hold for complex analytic spaces. We summarize our approach below.

Let X be a complex algebraic variety of complex dimension n, with stratification

X : X = Xn ⊇ Xn−1 ⊇ · · · ⊇ X−1 = ∅
by closed subvarieties, so that all strata contained in Xk −Xk−1 are of pure complex dimension
k and X (in the classical topology) has the structure of a topologically stratified space (e.g. X
induced by a Whitney stratification). In Section 3, we show that the stratification induces an
open dense subset U ⊆ X such that each

(1) each point of U admits a neighborhood homeomorphic to Cm for some 1 ≤ m ≤ n, i.e.
U =

⊔n
m=1 U

m where Um is a topological manifold of complex dimension m,

(2) Um − Um has complex dimension ≤ m− 1, where Um is the closure of Um in X.

We then construct a complex IC(X,L) of sheaves on X using Deligne’s construction with respect
to: the (lower) middle perversity, the stratification X, and any local system L on the induced
open dense subset U ⊆ X. Proposition 3.10 shows that we can interpret this complex as a
direct sum of Deligne-Goresky-MacPherson intersection complexes. In particular, for possibly
reducible varieties, the complex IC(X,L) is the intersection complex defined by de Cataldo in [2].
When the variety is pure-dimensional, Deligne’s construction begins by using the stratification
to induce a filtration by open sets. A key ingredient in our construction of IC(X,L) is a new way
of using the stratification to induce a filtration of a not necessarily pure-dimensional complex
algebraic variety by open sets. Example 3.4 shows that this procedure is more subtle than one
might initially expect. A priori the complex IC(X,L) depends on the stratification X and the
local system L. Our main result is the following:

Theorem 1 (§5). Let X be a complex algebraic variety of complex dimension n which is not
necessarily pure-dimensional. Let U be an open dense subset of X satisfying (1) and (2) above.
Let Lm be a local system on Um and set L =

⊕n
m=1 Lm (extend each Lm on Um to U by zero).

Then there exists a unique (up to canonical isomorphism) complex IC(X,L) satisfying:

(a) (Normalization) There exists an open dense subset V of X such that V =
⊔n
m=1 V

m

where V m is a topological manifold of complex dimension m, dimC(V m − V m) ≤ m− 1,
and IC(X,L)|Vm ' L′m[m] where L′ is the unique extension of Lm|Um∩Vm to V m (see
Remark 4.16 for more details on L′).

(b) (Pure-dimensional Support) For 1 ≤ m ≤ n, if a > −m,

dimC{x ∈ V m | Ha(i∗xS) 6= 0} < −a.
(c) (Pure-dimensional Cosupport) For 1 ≤ m ≤ n, if a < m,

dimC{x ∈ V m | Ha(i!xS) 6= 0} < a.

where ix : {x} → X is the inclusion.
In particular, the complex IC(X,L) is independent of the stratification and the complex

IC(X,L) is invariant under homeomorphisms.

This theorem gives another proof of the homeomorphism invariance of the intersection com-
plex proved by de Cataldo and Maulik in [3] for possibly reducible varieties. We prove our
main theorem by giving two characterizations of the complex IC(X,L) in Section 4. These
characterizations are analogous to the stratification dependent characterization, [AX1], and the
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stratification independent characterization, [AX2], of the intersection complex of a topological
pseudomanifold given by Goresky and MacPherson in [7]. To emphasize the analogy with the
axioms proposed by Goresky and MacPherson, we will denote our sets of axioms by [AX1′] and
[AX2′]. More precisely, we give a stratification dependent collection of axioms, [AX1′], and prove
that IC(X,L) is the unique complex (up to canonical isomorphism) satisfying axioms [AX1′]; see
Definition 4.3 and Theorem 4.5. We discuss the differences between axioms [AX1′] and axioms
[AX1] in Remark 4.4. We then give a stratification independent collection of axioms, [AX2′], and
prove that axioms [AX2′] are equivalent to axioms [AX1′]; see Definition 4.9 and Proposition
4.11. We discuss the differences between axioms [AX2′] and axioms [AX2] in Remark 4.10. In
Section 5, we finish the proof by giving a way to compare objects in Db

c(X) with respect to two
different stratifications which may not have a common refinement.

Indexing Convention. Let X be a complex algebraic variety of pure complex dimension n.
Let U ⊆ X be an open dense subset which is a topological manifold of dimension n and let L
be a local system on U . We require that the middle perversity Deligne-Goresky-MacPherson
intersection complex IC(X,L) satisfies IC(X,L)|U ' L[n]. With this convention, IC(X,L) is
perverse.

Let X be a complex algebraic variety of complex dimension n which is not necessarily pure-
dimensional. Let U be an open dense subset of X such that U =

⊔n
m=1 U

m where each Um

is a topological manifold of dimension n and dimC(Um − Um) ≤ m − 1. Let Xm = Um be
the closure of Um in X. In Corollary 4.14, we show that Xm can be interpreted as the union
of all irreducible m-dimensional components of X. Let Lm be a local system on Um and set
L =

⊕n
m=1 Lm where each Lm is extended to U by zero. The intersection complex of X

is defined to be IC(X,L) =
⊕n

m=1 IC(Xm,Lm) where each IC(Xm,Lm) is normalized as
above. In particular, IC(X,L)|U '

⊕n
m=1 Lm[m]. Although this indexing convention seems

more cumbersome than the Borel convention where the local systems are not shifted, it is more
convenient to use when construct the complex IC(X,L) (see Remark 3.11 for a more detailed
discussion).

1.1. Acknowledgements. I would like to thank my advisor Mark de Cataldo for suggesting
this problem and for the many useful discussions. I would also like to thank Jörg Schürmann,
Michael Albanese and Lisa Marquand for their comments and suggestions. I would finally like
to thank the anonymous referee whose comments and suggestions helped improved this paper.

2. Preliminaries

We begin by fixing some terminology and notation. Given a set A and a subset B ⊆ A,
we denote by Bc the set complement of B. The word variety means a separated scheme of
finite type over the complex numbers C. We endow varieties with the classical topology. In
this case, Whitney showed that varieties admit the structure of Whitney stratified spaces [16].
Verdier then showed that there exists a Whitney stratification such that each strata is complex
algebraic [15]. Finally, Teissier showed that varieties admit a canonical Whitney stratification
for which the strata are algebraic [14]. We work with a fixed regular Noetherian ring R with
finite Krull dimension. We shall mainly be concerned with the cases that R = Z,Q, or C. The
word sheaf means a sheaf of R-modules. The constant sheaf on a topological space X is denoted
by RX . The word complex means a complex of sheaves of R-modules. Let Sh(X) denote the
abelian category of sheaves on X, and Db(X) denote the bounded derived category of the abelian
category Sh(X).
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2.1. Topologically Stratified Spaces. We begin by recalling the basic definitions associated
with topologically stratified spaces given in [7]. A more detailed discussion can be found in [5,
Ch. 2].

Definition 2.1. The definition of a topological stratified space is inductive. A 0-dimensional
topologically stratified Hausdorff space is a countable collection of points with the discrete topol-
ogy. An n-dimensional topological stratification of a paracompact Hausdorff space X is a finite
filtration X by closed subsets

(2.1) X : X = Xn ⊇ Xn−1 ⊇ · · · ⊇ X0 ⊇ X−1 = ∅

such that for each point p ∈ Xk−Xk−1, there exists a neighborhood N of p, a compact Hausdorff
space L with an (n− k − 1)-dimensional topological stratification

(2.2) L = Ln−k−1 ⊇ · · · ⊇ L0 ⊇ L−1 = ∅,

and a homeomorphism

(2.3) φ : Rk × coneo(L)→ N

which takes each Rk × coneo(Lj) homeomorphically to N ∩ Xk+j+1. Here, coneo(L) denotes
the open cone L × [0, 1)/ ∼ where (l, 0) ∼ (l′, 0) for all l, l′ ∈ L. We use the convention that
coneo(∅) is a point. We often refer to N as a distinguished neighborhood and X as a stratification.
In Remark 2.2, we emphasize some important structure of distinguished neighborhoods. To
maintain simplicity in our formulas later on, we will make the assumption that stratified spaces
do not contain any open 0-dimensional strata, i.e. isolated points.

If Xk − Xk−1 is nonempty, then for any p ∈ Xk − Xk−1, any distinguished neighborhood
N gives a homeomorphism N ∩ Xk ' Rk × coneo(L−1) ' Rk. By shrinking N we can take
N ⊆ Xc

k−1. Thus, if Xk − Xk−1 is nonempty, it is a k-dimensional topological manifold. The
connected components of Xk −Xk−1 are called the k-dimensional strata of X.

A consequence of the definition is that stratified spaces satisfy the axiom of the frontier,
i.e. the closure of any stratum is a union of lower-dimensional strata. We refer the reader to
[5, §2.2-§2.3] for proofs.

Remark 2.2. Let X be a stratified space with stratification X and N ' Rk × coneo(L) be
a distinguished neighborhood of x ∈ Xk − Xk−1. Let π : N → coneo(L) denote the natural
projection map. There is a natural stratification on Rk × coneo(L) given by setting

(Rk × coneo(L))j := Rk × coneo(Lj).

Since Rk× coneo(Lj) homeomorphic to N ∩Xk+j+1, the natural stratification on Rk× coneo(L)
is the same as the stratification on N induced by X. In particular, if S is a stratum of X, then
S ∩N is a union of strata of the form Rk × coneo(T ) where T is a stratum of L. It follows that
π−1(π(S ∩N)) = S ∩N .

Remark 2.3. A Whitney stratification on a complex algebraic variety X induces a topological
stratification. Thus, we can view X as a topologically stratified space with only even-dimensional
strata. We will denote this stratification by

X : X = Xn ⊇ Xn−1 ⊇ · · · ⊇ X0 ⊇ X−1 = ∅

where Xk − Xk−1 consists of complex k-dimensional strata. The strata can be taken to be
complex algebraic, but we will not need this fact. A stratification of a complex algebraic variety
will always mean stratification in the above sense.
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Definition 2.4. A topologically stratified space X is purely n-dimensional if Xn − Xn−1 is
dense in X. A topologically stratified space is purely n-dimensional if and only if every open
set has topological dimension n in the sense of Hurewicz and Wallman described in [8]. An n-
dimensional topological pseudomanifold is a purely n-dimensional topologically stratified space
which admits a stratification X such that Xn−1 = Xn−2.

Definition 2.5. Let X and Y be stratified spaces. A continuous map f : X → Y is stratified if

(1) f is stratum preserving, i.e. for any stratum S of Yk − Yk−1, f−1(S) is a union of strata
of X.

(2) for each p ∈ Yk−Yk−1, there exists a neighborhood N of p in Yk, a topologically stratified
space

F = Fk ⊇ Fk−1 ⊇ · · · ⊇ F−1 = ∅
and a strata preserving homeomorphism F × N → f−1(N) which commutes with pro-
jection to N .

2.2. The Constructible Derived Category. Let X be a topologically stratified space. A
sheaf L on X is locally constant if for each x ∈ X, there exists an open set U ⊆ X and an
R-module M such that L|U ' MU , where MU is the constant sheaf on U associated with the
R-module M . A locally constant sheaf L with finitely generated stalks is referred to as a lo-
cal system. A complex of sheaves S is cohomologically locally constant (CLC) if the associated
cohomology sheaves are locally constant. Now, let X be any filtration of X by closed subsets,
not necessarily a stratification. A complex of sheaves S is cohomologically locally constant with
respect to X (X-clc) if for each k, S|Xk−Xk−1

is CLC. A complex of sheaves S is constructible with
respect to X (X-cc) if S is X-clc and the stalks of the cohomology sheaves are finitely generated.
A complex of sheaves S is topologically constructible if S is bounded and S is constructible with
respect to some stratification of X. In this paper, the word constructible means topologically
constructible. Let Db

c(X) denote the full subcategory of Db(X) consisting of constructible com-
plexes and Db

X(X) denote the full subcategory of Db(X) consisting of X-cc complexes. The
standard t-structure on Db(X) induces a t-structure on Db

c(X). The truncation functors are
denoted τ≤i : Db

c(X)→ Db,≤i
c (X) and τ≥i : Db

c(X)→ Db,≥i
c (X).

Useful references for sheaf theory are [9, 10]. A brief discussion of the constructible derived
category can be found in [7, §1.3-§1.15]. For a more complete discussion, we refer the reader to
[1]. We will record some of the most useful facts below for convenience.

Let X, Y be stratified spaces with stratifications X and Y respectively. Let f : X → Y be a
stratified map with respect to these stratifications. We have the four functors

Db
X(X) Db

Y(Y ).

Rf∗,Rf!

f∗,f !

Proposition 2.6. If X is an oriented manifold and i : Z → X is the inclusion of a locally closed
oriented submanifold of codimension d, we have that i!RX ' i∗RX [−d].

Proof. See [9, p. 336]. �

There are adjunctions (f∗, Rf∗) and (Rf!, f
!). There is a morphism of functors Rf! → Rf∗

which is an isomorphism if f is proper. For an open set U ⊆ X and Z = X − U its closed
complement, we have inclusions

U
j−→ X

i←− Z.
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Since Z is closed, Ri! = i!. This gives rise to the adjunction distinguished triangles

i!i
! → id→ Rj∗j

∗ [1]−→,

Rj!j
! → id→ i∗i

∗ [1]−→ .

Lemma 2.7. Let M be a locally contractible topological space and π : X ′ = X ×M → X be
the projection. Let Y ⊆ X and Y ′ = π−1(Y ). We have a cartesian diagram

Y ′ X ′

Y X

i′

π′ π

i

(a) If Y ⊆ X is open and S ∈ Db
c(Y ), then

Ri′∗π
′∗S ' π∗Ri∗S.

(b) If Y ⊆ X is closed and T ∈ Db
c(X), then

π′∗i!T ' i′!π∗T.

Proof. See [1, V, 3.13]. �

We end with the following important proposition.

Proposition 2.8. Suppose A,B,C are objects in Dbc(X) and Ha(A) = 0 for a ≥ k + 1. Let
ψ : B → C be a morphism such that the induced maps on cohomology Ha(B) → Ha(C) are
isomorphisms for all a ≤ k. Then the map induced by ψ

HomDb
c(X)(A,B)→ HomDb

c(X)(A,C)

is an isomorphism.

Proof. See [7, §1.15]. �

3. Deligne’s Construction for Complex Algebraic Varieties

We briefly recall Deligne’s construction when the complex algebraic variety X has pure com-
plex dimension n with stratification X by closed subvarieties. The stratification induces a filtra-
tion by open subsets

U1 ⊆ U2 ⊆ · · · ⊆ Un+1 = X

where Uk = X − Xn−k. Since X is pure-dimensional, U1 is dense in X. Let jk : Uk → Uk+1

denote the inclusion maps. Define a complex recursively as follows: if L is a local system on the
open dense union of strata U1, then set

I1 = L[n]

Ik+1 = τ≤k−1−nRjk∗Ik

Note that here we are using the middle perversity and the indexing convention described at the
end of the introduction.

We see that in the pure-dimensional case, the starting point for Deligne’s construction of the
intersection complex is a local system on an open dense union of strata, shifted by the complex
dimension of that open dense set. When the variety is not necessarily pure-dimensional, the
starting point for Deligne’s construction will still be a local system on a open dense union of
strata. However, the notion of shifting by dimension becomes more complicated. This is because
an open dense set in the variety may consist of many components of different dimensions. Given
a local system on an open dense set, restriction gives local systems on each component of fixed
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dimension. We can then shift each restricted local system by the dimension of the component
that it is supported on. We make this more precise below.

In what follows, let X be a complex algebraic variety of complex dimension n, with stratifi-
cation

X : X = Xn ⊇ Xn−1 ⊇ · · · ⊇ X−1 = ∅
so that all strata contained in Xk − Xk−1 are of pure complex dimension k and X has the
structure of a topologically stratified space (e.g. X is induced by a Whitney stratification). Let
p denote the middle perversity. Unless otherwise stated, the word dimension is taken to mean
complex dimension.

Remark 3.1. In all of our proofs, we only use the fact that a complex algebraic variety X has
the structure of a topologically stratified space (in the sense of Definition 2.1). We do not use
the algebraic structure of X or of any of its strata. Thus, if one replaces the words complex
algebraic variety by “topologically stratified space with only even-dimensional strata” and is
careful with the notion of dimension, then one obtains the same statements for this larger class
of objects. In particular, our results will also hold for complex analytic spaces. If one is interested
in the more general statement, then one should use the notion of topological dimension given
in [8]. The main reason we make this simplification is to avoid constantly switching between
complex dimension (more natural when stating our results) and real dimension (more natural
when discussing stratified spaces). This will hopefully alleviate some of the confusion in the rest
of the paper.

3.1. Identifying the Open Dense Union of Strata. In this section, we identify an open
dense subset of the complex algebraic variety X that will serve as the starting point of Deligne’s
construction. Fix a stratification X of X. For each 0 ≤ m ≤ n, let Um be the union of all
m-dimensional strata which are open in X and let Xm := Um. Since the closure of a stratum is
a union of strata of lower dimension by the axiom of the frontier, Xm is a union of strata and
∂Xm = Xm − Um is a union of strata of lower dimension. In particular dimC∂X

m ≤ m − 1.
Each Xm is therefore a pseudomanifold with stratifications

Xm : Xm
m ⊇ Xm

m−1 ⊇ · · · ⊇ Xm
0 ⊇ Xm

−1 = ∅,
where Xm

k = Xm∩Xk and Xm
k −Xm

k−1 consists of strata of pure complex dimension k for k ≤ m.
Set Umk = Xm −Xm−k. Notice that in general, Umk is only locally closed in X and Um1 = Um.
Set

(3.1) U1 =

n⊔
m=1

Um.

We will see in Corollary 4.14 that Xm is actually the union of all m-dimensional irreducible
components of X.

Remark 3.2. If X is of pure dimension n, then Un = X − Xn−1 and Um = ∅ for m < n.
Moreover, Un is dense in X and Xn = Un = X.

Proposition 3.3. The open set U1 =
⊔n
m=1 U

m is dense, i.e.
⋃n
m=1X

m = X

Proof. Suppose
⋃n
m=1X

m is strictly contained in X. Then the set complement

(

n⋃
m=1

Xm)c =
⊔
i∈I

Si

is a union of strata. Since the closure of any stratum is a union of lower-dimensional strata,
there are two cases. Fix any stratum S1 ⊆ (

⋃n
m=1X

m)c.
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Case 1: We have S1 ⊆ Sk for some k ∈ I. In this case, since Sc1 =
⋃n
m=1X

m t
⊔
i6=1 Si, we have

Sc1 =

n⋃
m=1

Xm ∪
⋃
i 6=1

Si.

Since S1 ⊆ Sk, we have that S1 ⊆ Sc1 = interior(S1)c. This implies that S1 has empty interior
which is a contradiction since S1 is a nonempty stratum.

Case 2: The strata S1 does not meet Sk for any k 6= i. This implies that

Sc1 =

n⋃
m=1

Xm ∪
⋃
i 6=1

Si =

n⋃
m=1

Xm t
⊔
i 6=1

Si = Sc1.

It follows that Sc1 = Sc1 = interior(S1)c, i.e. S1 is open in X. This contradicts the definition of
Xm.

In either case, we have a contradiction. So we conclude that (
⋃n
m=1X

m)c = ∅, i.e. U1 is
dense. �

3.2. The Open Filtration Induced by a Stratification. In this section, we describe a
filtration of X by open subsets, beginning with U1, induced by a stratification X. The following
example shows that applying Deligne’s construction to certain filtrations by open sets will not
produce a direct sum of intersection complexes.

Example 3.4. Let E ⊆ P2 be a smooth elliptic curve and CE ⊆ C3 be the affine cone over E.
Let L be a line in C3 passing through the origin that is not contained in CE and

C ′ = CE ∩ {z3 = 1} ⊂ C3.

Let X = CE ∪ L. Consider the stratification

X : CE ∪ L ⊃ L ∪ C ′ ⊃ {0} ⊃ ∅.

With the notation above, U2 = CE − C ′ − {0} and U1 = L − {0}. Taking closures, we have
X2 = CE and X1 = L. We have sets

U2
1 = X2 −X1 = CE − C ′ − {0},

U2
2 = X2 −X0 = CE − {0},

U2
3 = X2 −X−1 = CE .

U1
1 = X1 −X0 = L− {0},

U1
2 = X1 −X−1 = L,

One possible way to filter X by open subsets is the following. Let

U1 = U2
1 ∪ U1

1 = (CE − C ′ − {0}) ∪ (L− {0}) ,
U2 = U2

2 ∪ U1
2 = (CE − {0}) ∪ L = X,

U3 = U2
3 ∪ U1

3 = CE ∪ L = X.

This gives a filtration by open subsets

U1
j1−→ U2

j2=id−−−−→ U3.

We apply Deligne’s construction to this filtration. Recall that p denotes the middle perversity.
On the open dense set U1, let I1 = QU2 [2]⊕QU1 [1]. On U2 = X, if we truncate at p(2)−2 = −2,
the complex appearing in Deligne’s construction is

τ≤p(2)−2Rj1∗I1 = τ≤−2Rj1∗ (QU2 [2]⊕QU1 [1]) = τ≤−2Rj1∗QU2 [2].
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Here we see that the truncation operation kills off the contribution from the open 1-dimensional
stratum. We add this contribution back in using Deligne’s construction for U1, i.e. on U2, set

I2 = τ≤p(2)−2Rj1∗I1 ⊕ τ≤p(2)−1Rj1∗QU1 [1] = τ≤−2Rj1∗QU2 [2]⊕ τ≤−1Rj1∗QU1 [1].

Notice that I2 is not a direct sum of intersection complexes since the first summand is truncated
at −2 instead of −1. If we instead truncate at p(4)− 2 = −1, we have on U2 = X the complex

I ′2 = τ≤p(4)−2Rj1∗I1 = τ≤−1Rj1∗QU2 [2]⊕ τ≤−1Rj1∗QU1 [1].

However, the first summand of I ′2 is still not the intersection complex of CE . The support
condition fails for τ≤−1Rj1∗QU2 [2] since {x ∈ CE | H1(τ≤−1Rj1∗QU2 [2])x 6= 0} = C ′ is not
zero-dimensional.

The problem with the filtration in the example is that strata of differing dimensions were
added at the same stage in the filtration. Our filtration of the complex algebraic variety X by
open sets described below avoids this issue and is motivated by the following observation. If X
is pure of dimension n with stratification X, then the induced filtration by open subsets is given
by

∅ ⊆ U1 ⊆ · · · ⊆ Un+1 = X,

where Uk = X−Xn−k. It follows that Uk+1−Uk = (X−Xn−k−1)−(X−Xn−k) = Xn−k−Xn−k−1

consists of all codimension k strata of X. None of these strata can be open since any open
subset of pure-dimensional variety X has dimension n. So Uk+1 − Uk consists of all non-open
codimension k strata of X. We would like our filtration of X by open sets to satisfy the same
property.

Let

Wk =

n⋃
m=n−k+2

Umm−n+k,(3.2)

Uk = Wk t
n−k+1⊔
m=1

Um1 .(3.3)

A priori, the sets Uk are not necessarily open in X since the sets Umm−n+k = Xm −Xn−k are
only locally closed in X. However, we have the following lemma.

Lemma 3.5. The set Uk is open in Uk+1 for each 1 ≤ k ≤ n.

Proof. We show that if p ∈ Uk, there is a neighborhood N of p in Uk+1 that is contained in Uk.

If p ∈
⊔n−k
m=1 U

m, then we are done. If p ∈
⋃n
m=n−k+1 U

m
m−n+k, let N = Uk+1 ∩ Xc

n−k. Since⊔n−k
m=1 U

m ⊆ Xn−k, we see that N = Wk+1 ∩Xc
n−k. Notice that p ∈ N and N is open in Uk+1.

We claim that N ⊆ Uk. Let q ∈ N . Since q ∈ Wk+1, q ∈ Umm−n+k+1 = Xm −Xn−k−1 for some
m ≥ n− k + 1. Since q ∈ Xc

n−k, we see that q ∈ Umn−k ⊆ Uk. �

Since Un+1 = X, the previous lemma implies that Un is open in X. It follows from descending
induction on k that Uk is open in X for all 1 ≤ k ≤ n. This gives a finite filtration U of X by
open subsets

(3.4) U : ∅ ⊆ U1 ⊆ · · · ⊆ Un ⊆ Un+1 = X.

We have inclusions Uk
jk−→ Uk+1

ik←− (Uk+1 − Uk). We will refer to the filtration U as the open
filtration induced by X.

We conclude this section with several facts about the structure of the open filtration U.

Lemma 3.6. We have Uk+1 − Uk = (Wk+1 −Wk)− Un−k+1
1 .
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Proof. Notice that

Uk+1 − Uk = Uk+1 −

(
Wk t

n−k+1⊔
m=1

Um1

)

= (Uk+1 −Wk)−
n−k+1⊔
m=1

Um1

=

(
(Wk+1 −Wk)−

n−k+1⊔
m=1

Um1

)
∪

((
n−k⊔
m=1

Um1 −Wk

)
−
n−k+1⊔
m=1

Um1

)

= (Wk+1 −Wk)−
n−k+1⊔
m=1

Um1

= (Wk+1 −Wk)− Un−k+1
1 ,

where the last equality holds since
⊔n−k
m=1 U

m
1 ⊆W c

k+1. �

Lemma 3.7. The set Uk+1 − Uk consists of all non-open (n− k)-dimensional strata, i.e.

Xn−k −Xn−k−1 = (Uk+1 − Uk) t Un−k1 .

Proof. Suppose x ∈ Xn−k − Xn−k−1. Let S ⊆ Xn−k − Xn−k−1 be the (n − k)-dimensional
stratum containing x. Since Xm is a union of strata and X = ∪nm=1X

m, S ⊆ Xm for some
m ≥ n − k. Since S ⊆ Xc

n−k−1, S ⊆ Xm − Xn−k−1 ⊆ Umm−n+k+1 ⊆ Uk+1. If S is open, then

S ⊆ Un−k1 . If S is not open, then S ⊆ Wk+1. In this case, suppose that S ⊆ Uk. Since S
is not open, S ⊆ Wk. In particular S ⊆ Umm−n+k = Xm − Xn−k for some m ≥ n − k + 2.
This implies that S ⊆ Xc

n−k which is a contradiction. So x ∈ S ⊆ Uk+1 − Uk. It follows that

Xn−k −Xn−k−1 ⊆ (Uk+1 − Uk) t Un−k1 .
Conversely, if x ∈ Uk+1 − Uk, then x /∈ Uk implies that x /∈ Umm−n+k = Xm − Xn−k for all

m. It follows that x /∈ Xc
n−k, i.e. x ∈ Xn−k. Since x ∈ Uk+1, x ∈ Umm−n+k+1 = Xm −Xn−k−1

for some m. In particular, x ∈ Xc
n−k−1. It follows that x ∈ Xn−k −Xn−k−1. If x ∈ Un−k, then

x ∈ Xn−k −Xn−k−1 by definition. It follows that (Uk+1 − Uk) t Un−k1 ⊆ Xn−k −Xn−k−1. �

Lemma 3.8. Fix 1 ≤ k ≤ n. Then Umm−n+k is closed in Uk for n − k + 1 ≤ m ≤ n and Um1 is
closed in Uk for 1 ≤ m ≤ n− k.

Proof. Suppose n− k + 1 ≤ m ≤ n. Since Xm is closed in X, it suffices to show that

Umm−n+k = Xm ∩ Uk.
The inclusion Umm−n+k ⊆ Xm∩Uk follows from the definition of Uk. Now let x ∈ Xm∩Uk. Since

x ∈ Xm and m ≥ n − k + 1, x ∈ Wk or x ∈ Un−k+1
1 . It follows that x ∈ U ll−n−k = X l −Xn−k

for some n−k+ 1 ≤ l ≤ n. In particular, x /∈ Xn−k. It follows that x ∈ Xm−Xn−k = Umm−n+k.
We conclude that Umm−n+k = Xm ∩ Uk.

A similar argument shows that Um1 = Xm ∩ Uk for 1 ≤ k ≤ n− k. �

3.3. Construction of IC(X,L). Let X be a stratification of X and U the open filtration induced
by X. Let L be a local system on the open dense subset U1 ⊆ X.

Remark 3.9. We can express L as L =
⊕n

m=1 a
m
1∗Lm where Lm := L|Um is a local system on

Um and am1 : Um → U1 is inclusion of a closed subset. We will often abuse notation and identify
am1∗Lm with Lm. Since each Lm is a local system on Um, we can associate with L the complex⊕n

m=1 Lm[m].
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Define a complex IC(X,L) on X recursively as follows: set

(3.5)

I1 =

n⊕
m=1

Lm[m] on U1,

Ik+1 = τ≤k−1−nRjk∗Ik ⊕
n−k⊕
m=1

Lm[m] on Uk+1,

and let IC(X,L) = In+1. Note that the truncation is done with respect to the middle perversity.
We refer to IC(X,L) as the object obtained by the Deligne’s construction with respect to

the stratification X and the local system L. Note that this construction only uses the filtration
structure of X. We emphasize that we are only shifting the local system by the complex dimension
of Um. This shift is done so that our complex IC(X,L) agrees with the indexing convention
discussed at the end of the introduction.

We show below that the complex IC(X,L) can be interpreted as a direct sum of Deligne-
Goresky-MacPherson intersection complexes. Let X be a complex algebraic variety of complex
dimension n with stratification X. Recall that the stratification X induces an open dense subset
U1 =

⊔n
m=1 U

m. We saw that X =
⋃n
m=1X

m where Xm = Um. Corollary 4.14 will imply that
Xm can also be interpreted as the union of all m-dimensional irreducible components of X. Let
L =

⊕n
m=1 Lm be a local system on the open dense union of strata U1. Let IC(Xm,Lm) be the

object obtained by Deligne’s construction with respect to the induced stratification Xm of Xm

and the local system Lm on Um for the pure-dimensional variety Xm. Notice that IC(Xm,Lm)
is precisely the Deligne-Goresky-MacPherson intersection complex of Xm. Let am : Xm → X
be inclusion.

Proposition 3.10. With the notation above, we have that

IC(X,L) '
n⊕

m=1

am∗ IC(Xm,Lm).

Proof. Fix 1 ≤ k ≤ n and n − k + 1 ≤ m ≤ n. Let • := m − n + k. Consider the cartesian
diagram

Um• Uk

Um•+1 Uk+1

am•

jm• � jk

am•+1

where all maps are inclusions. Lemma 3.8 implies that the maps am• and am•+1 are inclusions of
closed subsets. It follows that

Rjk∗a
m
•∗ ' R(jk ◦ am• )∗ = R(am•+1 ◦ jm• )∗ ' am•+1∗Rj

m
•∗.

Now, notice that the complex IC(X,L) is a direct summand of complexes of the form

τ≤−1Rjn∗ · · · τ≤−mRjn−m+1∗a
m
1∗Lm[m].

Using the above commutation relation and the fact that am•∗ is exact, we can iteratively move
am1∗ to the left. We conclude that

τ≤−1Rjn∗ · · · τ≤−mRjn−m+1∗a
m
1∗Lm[m] ' am∗ τ≤−1Rj

m
m∗ · · · τ≤−mRjm1∗Lm[m].

It follows that IC(X,L) =
⊕n

m=1 a
m
∗ IC(Xm,Lm). �
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Remark 3.11. With our choice of indexing convention in the construction of IC(X,L), each
summand appearing in Rjk∗Ik is truncated at the same place. If one uses the Borel convention
and does not shift the initial local systems when constructing the complex IC(X,L), the sum-
mands appearing in Rjk∗Ik will need to be truncated in different places to ensure that IC(X,L)
is a direct sum of the middle perversity Deligne-Goresky-MacPherson intersection complexes. It
is therefore simpler notationally to use our indexing convention when describing the construction
of IC(X, L) than the Borel convention. Additionally, notice that with our indexing convention,
the cohomology sheaves of IC(X, L)|Wk+1

vanish above degrees k−1−n by definition. A crucial
point is that this vanishing condition can be stated without using the fact that IC(X,L) is a
direct sum of complexes and we use it in our axiomatic characterization of IC(X,L) (see Ax-
ioms [AX1′] in Definition 4.3). One can go from the Borel indexing convention to our indexing
convention (and vice-versa) by shifting each summand by the appropriate complex dimension.

Remark 3.12. If one wishes to consider other perversities, one can try to mimic the above
construction of IC(X,L) (in this context, the Borel convention seems more natural). However,
there is not a clear analogue of the middle perversity vanishing conditions mentioned in the
previous remark. Due to this, characterizing the intersection complex for arbitrary perversities
seems like a more subtle question.

We conclude this section by illustrating the construction in the setting of Example 3.4.

Example 3.13. With the same notation as Example 3.4, the open filtration U induced by the
stratification X is given by

U : U1
j1−→ U2

j2−→ U3 = X,

where
U1 = U2

1 ∪ U1
1 = (CE − C ′ − {0}) ∪ (L− {0}) ,

U2 = U2
2 ∪ U1

1 = (CE − {0}) ∪ L− {0},
U3 = U2

3 ∪ U1
2 = CE ∪ L = X.

Deligne’s construction proceeds as follows. On U1, set I1 = QU2 [2]⊕QU1 [1]. On U2, set

I2 = τ≤−2Rj1∗I1 ⊕QU1 [1] = τ≤−2Rj1∗QU2 [2]⊕QU1 [1].

On U3, set

I3 = τ≤−1Rj2∗I2 = τ≤−1Rj2∗ (τ≤−2Rj1∗QU2 [2]⊕QU1 [1])

= τ≤−1Rj2∗τ≤−2Rj1∗QU2 [2]⊕ τ≤−1Rj2∗QU1 [1].

Here we see that both summands of IC(X) = I3 are intersection complexes.

4. An Axiomatic Characterization of IC(X,L)

When the complex algebraic variety is pure-dimensional, Goresky and MacPherson give a
stratification independent set of axioms characterizing the intersection complex in [7]. We re-
call the axioms with respect to the middle perversity for pure-dimensional varieties below for
convenience.

Definition 4.1. Let X be a complex algebraic variety of pure complex dimension n. A topo-
logically constructible complex S satisfies axioms [AX2] if

(a) (Normalization) S|X−Σ = L[n] where Σ ⊂ X is a closed subset of complex dimension
n− 1 and L is a local system on X − Σ,

(b) (Lower Bound) Ha(S) = 0 for a < −n,
(c) (Support) dimC{x ∈ X | Ha(i∗xS) 6= 0} < −a for a > −n,
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(d) (Cosupport) dimC{x ∈ X | Ha(i!xS) 6= 0} < a for a < n,

where ix : {x} → X is inclusion. These axioms differ slightly from the ones proposed by
Goresky and MacPherson in [7] because we normalize using complex dimension rather than real
dimension.

Let X be a possibly reducible complex algebraic variety of complex dimension n. Let Xm be
the union of all m-dimensional irreducible components of X. Then each Xm is a variety of pure
dimension m. Let IC(Xm) be the corresponding intersection complexes (with Q coefficients).
Recall that the intersection complex (with Q coefficients) IC(X) of X is defined to be

IC(X) =

n⊕
m=1

IC(Xm).

Since each summand satisfies the support and cosupport axioms, one might guess that the
direct summand satisfies the support and cosupport axioms. The next example shows that
this is not the case. One might also guess that the complex IC(X)|Xm satisfies axioms [AX2]
since each summand satisfies axioms [AX2]. If this were true, there would be a natural map
IC(X) →

⊕n
m=1 IC(Xm) via the adjunction maps. The next example shows that this is also

not the case.

Example 4.2. Inside C3, let P = {(z1, z2, 0)|zi ∈ C} and L = {(0, 0, z3)|z3 ∈ C}. Let X = P ∪L
be the reducible variety with irreducible components P and L. The intersection complex of X is
given by IC = IC(P )⊕IC(L) = QP [2]⊕QL[1]. The support and cosupport axioms [AX2](c)(d)
fail for IC since

dimC{x ∈ X | H−1(i∗xIC) 6= 0} = dimCL = 1 6= 0,

and
dimC{x ∈ X | H1(i!xIC) 6= 0} = dimCL = 1 6= 0,

where ix : {x} → X is inclusion. If we instead consider

IC|P = QP [2]⊕ ĩ0∗Q[1],

where ĩ0 : {0} → P is the inclusion, the support condition axiom [AX2](c) is satisfied. However,
notice that

ĩ!0(IC|P ) = ĩ!0QP [2]⊕ ĩ!0ĩ0∗Q[1] = Q[−2]⊕Q[1].

This implies that the cosupport condition [AX2](d) fails for IC|P since

{x ∈ P | H−1(̃i!xIC|P ) 6= 0} = {0} 6= ∅.

In the previous example, we see that the cosupport axiom fails because we first restrict the
complex IC to the irreducible component P . If we do not first restrict, notice that

i!0(IC) = i!0QP [2]⊕ i!0QL[1] = Q[−2]⊕Q[−1].

This implies that
dimC{x ∈ P | H1(i!xIC) 6= 0} = dimC{0} = 0.

We conclude that for a < 2, dimC{x ∈ P | Ha(i!xIC) 6= 0} < a. The significance of this
observation is that although neither IC nor IC|P satisfies the cosupport condition, IC satisfies
a pure-dimensional analog of the cosupport condition. We will show in the following sections
that a pure-dimensional analog of the support and cosupport axioms will help us characterize
the complex IC.

In the following sections, let X be a complex algebraic variety of complex dimension n with
stratification X. Consider the open filtration

U : U1 ⊆ · · · ⊆ Un ⊆ Un+1 = X,
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induced by the stratification X as in Equation 3.4. Recall that U1 =
⊔n
m=1 U

m where Um is the
union of all open m-dimensional strata in X. Let L be a local system on U1. As in Remark 3.9,
we write L =

⊕n
m=1 Lm where Lm is a local system on Um extended to U1 by zero.

4.1. Axioms [AX1′].

Definition 4.3. Let S be a complex on X and set Sk := S|Uk
. We have inclusions

Uk
jk−→ Uk+1

ik←− (Uk+1 − Uk) .

Recall that Wk =
⋃n
m=n−k+2 U

m
m−n+k where Umm−n+k = Xm − Xn−k. We say that S satisfies

axioms [AX1′] (with respect to the stratification X) if

(a) (Normalization) S|U1 '
⊕n

m=1 Lm[m] in Db
c(U1),

(b) (Vanishing) for all k ≥ 1, Ha(S|Wk+1
) = 0 for a > k − 1− n,

(c) (Attaching) the induced morphism on cohomology sheaves

Ha(i∗kSk+1)→ Ha(i∗kRjk∗j
∗
kSk+1)

is an isomorphism for all k ≥ 1 and a ≤ k − 1− n.

Remark 4.4. The stratification dependent axioms [AX1′] are analogous to the stratification
dependent axioms [AX1] for pseudomanifolds proposed by Goresky and MacPherson in [7].
When X is a pseudomanifold, axioms [AX1′] reduce to axioms [AX1]. One difference between
the axioms is that we do not include a lower bound axiom. This is because the lower bound axiom
for pseudomanifolds is actually implied by the other axioms (in particular [AX1](a) and (d)) and
is not needed to characterize the intersection complex. We will also not need an analog of the
lower bound axiom to characterize the complex IC(X,L). The normalization axiom [AX1′](a)
differs from [AX1](a) in that our open dense set U1 contains strata of differing dimensions. We
require that each local system is shifted based on the dimension of the strata that it is supported
on. The vanishing axiom [AX1′](b) differs from [AX1](c) in that we restrict our complex S to the
smaller open set Wk+1 instead of Uk+1. The reason for this is that the open set Uk+1 contains the
open strata Um for n− k ≤ m ≤ n. The normalization axiom implies that S|Um ' Lm[m]. We
must therefore ignore these strata if we want the vanishing axiom to hold. The attaching axiom
[AX1′](c) is completely analogous to [AX1](d). They both give the same vanishing condition
for the cohomology sheaves when restricting the complex to the non-open (n − k)-dimensional
strata.

We also do not require that the complex S is X-cc. We will eventually see that if S satisfies
axioms [AX1′], then S is X-cc. This is analogous to Borel’s discussion of constructibility in the
pseudomanifold case; see [1, V, §3].

4.2. Alternative Formulations of [AX1′](c). In this section, we give two useful alterna-
tive characterizations of [AX1′](c), namely [AX1′](c′) and [AX1′](c′′). Recall the adjunction
distinguished triangle

ik!i
!
kSk+1 → Sk+1 → Rjk∗j

∗
kSk+1

[1]−→ .

Restricting gives the distinguished triangle

i!kSk+1 → i∗kSk+1 → ikRjk∗j
∗
kSk+1

[1]−→ .

The long exact sequence in cohomology and [AX1′](c) imply thatHa(i!kSk+1) = 0 for a ≤ k−n.
So we see that [AX1′](c) is equivalent to

(c′) Ha(i!kSk+1) = 0 for k ≥ 1 and a ≤ n− k.

We now relate this to the vanishing of the costalks Ha(i!xS). Fix k ≥ 1. Suppose
x ∈ Uk+1 − Uk. Factor the inclusion ix : {x} → X into
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{x} X

Uk+1 − Uk Uk

ix

µx

ik

α

It follows that
i!xS = µ!

x ◦ i!k ◦ α!S

= µ!
x ◦ i!kSk+1

= µ∗x ◦ i!kSk+1[−2(n− k)],

where the second equality holds because α is an open inclusion and the third equality follows
from Proposition 2.6 since Uk+1 − Uk is a topological manifold of real dimension 2(n − k). It
follows that

Ha(i!xS) = Ha−2(n−k)(Sk+1)x.

Hence we see that [AX1′](c’) is equivalent to

(c′′) If x ∈ Uk+1 − Uk, then Ha(i!xS) = 0 for all a ≤ n− k.

4.3. [AX1′] Characterizes IC(X,L). The main goal of this section is to prove the following
theorem.

Theorem 4.5. Let X be a complex algebraic variety of complex dimension n with stratification
X. Let U be the open filtration induced by X. Let L =

⊕n
m=1 Lm be any local system on the

open dense union of strata U1 ⊆ X. The functor F which takes the complex
⊕n

m=1 Lm[m] to
the complex IC(X,L) defines an equivalence of categories between

(a) the full subcategory of Db
c(U1) whose objects are all complexes of the form

⊕n
m=1 Lm[m]

where Lm is a local system on Um1 extended to U1 by zero, and
(b) the full subcategory of Db

c(X) whose objects are all complexes satisfying axioms [AX1′]

The inverse functor G assigns to any complex S satisfying axioms [AX1′] the complex⊕n
m=1H−m(S|U1

)[m].

We have the two immediate corollaries.

Corollary 4.6. If a complex S satisfies [AX1′], then S is canonically isomorphic to
F (L) = IC(X,L) in Dbc(X).

Corollary 4.7. If a complex S satisfies [AX1′], then S is X-cc.

Proof. Since S satisfies [AX1′], S is isomorphic to IC(X,L). Since IC(X,L) is constructed
by iterated pushforwards along strata and truncations applied to the constructible complex⊕n

m=1 Lm[m], it is constructible. Therefore, S is X-cc. �

To prove Theorem 4.5, we make the following reduction. For each k ≥ 1, let Ck denote the
full subcategory of Db

c(Uk) consisting of complexes which satisfy axiom [AX1′] on Uk. If S ∈ Ck,
then S is a complex on

Uk = Wk t
n−k+1⊔
m=1

Um1 .

Notice that Wk is closed in Uk and let iWk : Wk → Uk be the inclusion. The normalization and
vanishing axioms imply that S|Um

1
' H−m(S) is a local system. We set Lm := H−m(S) for

1 ≤ m ≤ n− k + 1. Since Uk is a disjoint union of Wk and the Um1 ’s, S can be expressed as

S = SWk
⊕
n−k+1⊕
m=1

Lm[m],
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where SWk
= iWk∗i

W∗
k S. We will denote the adjunction map S → SWk

by pr1 and the direct sum

of adjunction maps S →
⊕n−k+1

m=1 Lm[m] by pr2.
For any S ∈ Ck, define Fk(S) by:

(4.1) Fk(S) = τ≤k−1−nRjk∗S ⊕
n−k⊕
m=1

H−m(S)[m].

We claim that Fk is a functor from Ck to Ck+1. It suffices to show that for any S ∈ Ck,
Fk(S) ∈ Ck+1. The normalization and vanishing axioms are all satisfied by definition of Fk(S).
Since

(4.2)

j∗kFk(S) = j∗k

(
τ≤k−1−nRjk∗S ⊕

n−k⊕
m=1

H−m(S)[m]

)

= τ≤k−1−nS ⊕
n−k⊕
m=1

Lm[m]

= τ≤k−1−n

(
SWk

⊕
n−k+1⊕
m=1

Lm[m]

)
⊕

n−k⊕
m=1

Lm[m]

= SWk
⊕ Ln−k+1[n− k + 1]⊕

n−k⊕
m=1

Lm[m]

= S,

the attaching axiom is satisfied because the attaching morphism is the composition

τ≤k−1−ni
∗
kRjk∗S ' i∗kFk(S)→ i∗kRjk∗j

∗
kFk(S) ' i∗kRjk∗S.

The restriction functor j∗k is clearly a functor from Ck+1 to Ck.
The key observation is that our original functor F is the composition F = Fn ◦Fn−1 ◦ · · · ◦F1

and the inverse functor G is the composition G = j∗1 ◦ · · · ◦ j∗n−1 ◦ j∗n. Theorem 4.5 is therefore a
consequence of the following theorem.

Theorem 4.8. For k ≥ 1, the functor Fk defines an equivalence of categories between Ck and
Ck+1. The inverse functor Gk is j∗k .

Proof. Equation 4.2 shows that j∗kFk = idCk as a functor. We must also show that Fkj
∗
k is

isomorphic to idCk+1
as functors, i.e. for any S ∈ Ck+1, we must construct an isomorphism

S → Fkj
∗
kS such that for any morphism S → T in the category Ck+1, the diagram

S T

Fkj
∗
k(S) Fkj

∗
k(T )

commutes. We construct the morphism S → Fkj
∗
kS as follows. Since S ∈ Ck+1,

S = SWk+1
⊕

n−k⊕
m=1

Lm[m].

It follows that
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Fkj
∗
kS = τ≤k−1−nRjk∗j

∗
k(SWk+1

⊕
n−k⊕
m=1

Lm[m])⊕
n−k⊕
m=1

Lm[m]

= τ≤k−1−nRjk∗j
∗
kSWk+1

⊕
n−k⊕
m=1

Lm[m].

The adjunction morphism gives us a morphism SWk+1
→ Rjk∗j

∗
kSWk+1

. The vanishing axiom
[AX1′](b) implies that SWk+1

' τ≤k−1−nSWk+1
. Therefore, we have a morphism

S
pr1−−→ SWk+1

' τ≤k−1−nSWk+1
→ τ≤k−1−nRjk∗j

∗
kSWk+1

' τ≤k−1−nRjk∗j
∗
kS.

We also have a morphism

S
pr2−−→

n−k⊕
m=1

Lm[m].

Taking the direct sum of these morphisms gives us a morphism S → Fkj
∗
kS. By construction, the

morphism S → Fkj
∗
kS is an isomorphism over Uk. We need to check that it is an isomorphism

over Uk+1 − Uk. The attaching axiom [AX1′](c) implies that

i∗kS → i∗kRjk∗j
∗
kS

induces an isomorphism on cohomology sheaves for all a ≤ k − 1− n. Thus,

i∗kS ' τ≤k−1−ni
∗
kS ' τ≤k−1−ni

∗
kRjk∗j

∗
kS ' i∗kFkj∗kS.

We have thus constructed an isomorphism S → Fkj
∗
kS. Since this morphism is constructed

as a direct sum of two morphisms, we will check that each summand is a morphism of functors.
Let f : S → T be a morphism in the category Ck+1. Consider the diagram

S T

SWk+1
TWk+1

Rjk∗j
∗
kSWk+1

Rjk∗j
∗
kTWk+1

τ≤k−1−nRjk∗j
∗
kSWk+1

τ≤k−1−nRjk∗j
∗
kTWk+1

pr1

f

pr1

fWk+1

ηk+1(S) ηk+1(T )

gWk+1

θ

where gWk+1
= τ≤k−1−nRjk∗j

∗
k(fWk+1

). It is clear that the top square commutes and the two
trapezoids commute. The left and right triangles commute by the truncation distinguished
triangle. The commutativity of the top and bottom trapezoids combined with the commutativity
of the left and right triangles imply that

θ ◦ ηk+1(T ) ◦ fWk+1
= θ ◦ gWk+1

◦ ηk+1(S).

Since
SWk+1

' τ≤k−1−nSWk+1

and θ induces isomorphisms on cohomology sheaves for all a ≤ k−1−n, Proposition 2.8 implies
that

ηk+1(T ) ◦ fWk+1
= gWk+1

◦ ηk+1(S).

It follows that the bottom rectangle commutes. Commutativity of the upper and lower rectangles
implies that the largest rectangle commutes. Since the diagram
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S T

⊕n−k
m=1 LmS [m]

⊕n−k
m=1 LmT [m]

pr2

f

pr2

commutes, we conclude that the isomorphism idCk+1
→ Fkj

∗
k is an isomorphism of functors. �

4.4. Axioms [AX2′]. In this section, we give a stratification independent collection of axioms
characterizing IC(X,L). Let X be a complex algebraic variety of complex dimension n.

Definition 4.9. Suppose that S is X-clc for some stratification X of X. We say that S satisfies
axioms [AX2′] if

(a) (Normalization) There exists an open dense subset V of X such that V =
⊔n
m=1 V

m

where V m is a topological manifold of complex dimension m, dimC(V m−V m) ≤ m− 1,
and there exist local systems Lm on V m such that S|Vm ' Lm[m]

(b) (Pure-Dimensional Support) For 1 ≤ m ≤ n, if a > −m,

dimC{x ∈ V m | Ha(i∗xS) 6= 0} < −a.

(c) (Pure-Dimensional Cosupport) For 1 ≤ m ≤ n, if a < m,

dimC{x ∈ V m | Ha(i!xS) 6= 0} < a.

where ix : {x} → X is the inclusion.

Remark 4.10. The stratification independent axioms [AX2′] are analogous to axioms [AX2]
proposed by Goresky and MacPherson in [7]; see Definition 4.1 for axioms [AX2]. When X is
a pure-dimensional complex algebraic variety, axioms [AX2′] reduce to axioms [AX2]. Again,
we do not include an analog of the lower bound axiom because it is not needed to characterize
the complex IC(X,L). The normalization axiom [AX2′](a) differs from [AX2](a) in that the
open dense set V contains manifolds of differing dimensions. We require that each local system
is shifted by the complex dimension of the manifold. The pure-dimensional support axiom
[AX2′](b) differs from [AX2](b) in a significant way. Instead of looking at all possible stalks of
the complex S, we look at stalks of S in a specific V m. For each m, we place a condition on the
vanishing of cohomology of these stalks in certain degrees. The specific degrees subject to our
conditions depend on m instead of the dimension of the complex algebraic variety. The difference
between [AX2′](c) and [AX2](c) is similar to the difference between [AX2′](b) and [AX2](b).

We also make a remark on the assumption that S is X-clc. In [7], it is assumed that S is
topologically constructible, i.e. the cohomology sheaves of S also have finitely generated stalks.
The finite generation of the stalks of the cohomology sheaves is a consequence of the axioms by
Corollary 4.6 and the following proposition.

Proposition 4.11. Let X be a complex algebraic variety of complex dimension n and let X be
a stratification of X by closed subvarieties. Suppose that S is X-clc. Then S satisfies [AX1′]
with respect to X if and only if S satisfies [AX2′].

Before proving the proposition, we will need to establish several lemmas. Let X be a topolog-
ical stratification of X. Recall that Um is the union of all open m-dimensional strata of X and
Xm is defined to be Um. Let Wm be the largest set of points in X which admit a neighborhood
homeomorphic to Cm. We can equivalently think of Wm as the largest open subset of X which
is a topological manifold of complex dimension m.

Lemma 4.12. With the notation above, we have Um ⊆Wm.
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Proof. Let p ∈ Um. Let Smp ⊆ Xm − Xm−1 be the open complex m-dimensional stratum
containing p. By definition of topologically stratified space, there exists a neighborhood Np and
a real (2(n−m)−1)-dimensional topologically stratified space L such that Np ' Cm×coneo(L).
Recall from the definition of stratified space that the stratification of L induces one on Np. Since
Smp is open, we can take Np ⊆ Smp ⊆ Xm. It follows that

Np = Np ∩Xm ' Cm × coneo(L−1) = Cm.

So p ∈Wm. �

Lemma 4.13. Suppose that V is any open dense subset of X consisting of points in X which ad-
mit a neighborhood homeomorphic to some Cm. Write V =

⊔m
m=1 V

m where V m is a topological

manifold of complex dimension m. Then V m = Xm.

Proof. We will show that V m and Xm are both equal to Wm. We first show that Xm = Wm.
Lemma 4.12 implies that Xm ⊆Wm. We now show that Wm ⊆ Xm. Let p ∈Wm and suppose
that p /∈ Xm. Since p ∈ Wm, there exists a distinguished neighborhood Np of p homeomorphic

to Cm. Since X =
⋃n
l=1X

l, p ∈ X l for some l 6= m. Since X l = U l, Np ∩U l must be nonempty.
Let q ∈ Np ∩ U l. Since q ∈ Np, q admits a neighborhood homeomorphic to Cm. Since q ∈ U l,
Lemma 4.12 implies that q admits a neighborhood homeomorphic to Cl. This is a contradiction
because l 6= m. It follows that p ∈ Xm.

The proof that V m = Wm is similar. �

Corollary 4.14. LetX be a complex algebraic variety of complex dimension n with stratification
X. Let Um be the union of all open m-dimensional strata. Then Um is the union of all m-
dimensional irreducible components of X.

Proof. To see this, let X̃m be the union of all m-dimensional irreducible components of X. Let

V m be the smooth locus of X̃m −
(⋃

l 6=m X̃
l ∩ X̃m

)
. Then V =

⊔n
m=1 V

m is an open dense

subset of X consisting of points which admit a neighborhood homeomorphic to V m. It then
follows from the previous lemma that X̃m = Um. �

Lemma 4.15. Let S be an X-clc complex. Then S satisfies [AX1′](a) if and only if S satisfies
[AX2′](a) .

Proof. If S satisfies [AX1′](a) with respect to X, then the open set U1 coming from the stratifi-
cation also satisfies the requirements in [AX2′](a). Now let S be X-clc and suppose S satisfies
[AX2′](a). Since S is X-clc, S|Um is CLC. In particular, all of the cohomology sheaves Ha(S)|Um

are locally constant. For a 6= −m, [AX2′](a) implies that Ha(S)|Um∩Vm = 0. Since Ha(S)|Um

is locally constant and its restriction to Um ∩ V m is 0, we conclude that Ha(S)|Um = 0. This
proves the lemma. �

Remark 4.16. Let S be a X-clc complex and suppose S satisfies [AX2′](a). Then S|mV = Lm[m]
where Lm is a local system on the topological manifold V m. By the previous lemma, the
assumption that S is X-clc implies that S|Um ' L′m where Um is the open subset of Xm coming
from the stratification and L′m is a local system on Um. Since dimC(V m−V m) ≤ m−1, Um∩V m
has real codimension greater than or equal to 2 in Um. This implies that there is a surjection of
fundamental groups π1(Um ∩V m) � π1(Um). Fix a base point x ∈ Um ∩V m. The local system
L′ on U1 corresponds to a representation φ : π1(U1, x) → Aut(L′x) and the restriction L|U1∩V
corresponds to a representation φ̃ : π1(Um ∩ V m, x)→ Aut(Lmx ). Since L′x = Sx = Lx, we have
a commutative diagram:
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π1(Um ∩ V m, x)

π1(Um, x) Aut(Lx)

i∗
φ̃

φ

Surjectivity of the fundamental groups implies that φ is the unique representation making this
diagram commute.

To see this, let ψ be another such representation. Then for any [γ] ∈ π1(Um, x), surjectivity
of the fundamental groups says there exists [σ] ∈ π1(Um ∩ V m, x) such that i∗([σ]) = [γ]. It
follows that

φ([γ]) = φ̃([σ]) = ψ([γ]),

and so ψ = φ. This implies that the local system L′m on Um is the unique extension of the local
system Lm|Um∩Vm . The most important case of this is the constant sheaf. If

Lm|Um∩Vm ' RUm∩Vm ,

then the representation φ̃ is trivial. Surjectivity of the fundamental groups implies that the
representation φ is trivial, i.e. Lm|Um ' RUm .

This fact is false without the surjectivity of fundamental groups. Consider the inclusion
S1 − {p} → S1 and take any nontrivial local system on S1. Then its restriction to S1 − {p} is
trivial.

Remark 4.17. The significance of Lemma 4.15 is the following. If S is X-clc and satisfies
[AX2′], then we can replace the open set V appearing in [AX2′](a) with the open set U1 coming
from the stratification. Since S is X-clc, the sets appearing in [AX2′](b) and [AX2′](c) can be
taken to be unions of strata.

We are now ready to prove Proposition 4.11.

Proof of Proposition 4.11. Suppose S is an X-clc complex and that S satisfies [AX2′].
Lemma 4.15 implies that S satisfies [AX1′](a). We now prove that S satisfies [AX1′](b) if and
only if S satisfies [AX2′](b). Fix 1 ≤ m ≤ n and a > −m. By Remark 4.17, the set

{x ∈ Xm | Ha(i∗xS) 6= 0}

is a union of strata. Suppose S satisfies [AX1′](b). This implies that the strata contained in
{x ∈ Xm | Ha(i∗xS) 6= 0} cannot meet Wk+1 for a > k−1−n. Hence they can only be contained
in Wk+1 for a ≤ k−1−n, equivalently k ≥ a+n+1. So the strata are contained in Wk+1−Wk for
some k ≥ a+n+1. By Lemma 3.6, Uk+1−Uk = (Wk+1−Wk)−Un−k+1. Since k ≥ a+n+1 and
a > −m, we have that n− k+ 1 ≤ −a < m. It follows that Un−k+1 cannot be among the strata
contained in {x ∈ Xm | Ha(i∗xS) 6= 0}. This implies that the only allowable strata are contained
in Uk+1 − Uk for n− k < −a. It follows that dimC{x ∈ Xm | Ha(i∗xS) 6= 0} ≤ n− k < −a.

Conversely, suppose S satisfies [AX2′](b). Then dimC{x ∈ Xm | Ha(i∗xS) 6= 0} < −a. Since
{x ∈ Xm | Ha(i∗xS) 6= 0} is a union of strata, it can only contain strata of dimension < −a.
These strata are contained in Uk+1 − Uk ⊆ Wk+1 −Wk for n − k < −a. So these strata can
only be contained in Wk+1 for n− k + 1 ≥ −a or equivalently, a ≤ k − 1− n. This implies that
S|Wk+1

' τ≤k−1−nS|Wk+1
.

We now prove that S satisfies [AX1′](c) if and only if it satisfies [AX1′](c). Fix 1 ≤ m ≤ n
and a < m. Again by Remark 4.17, the set {x ∈ Xm | Ha(i!x(S) 6= 0} is a union of strata. If
x ∈ Um, then by factoring the inclusion ix : {x} → X as
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{x} X

Um

ix

µx
jm

we see that i!S = µ!
xS|Um

1
= µ∗xLm[−m]. Since a < m, we see that {x ∈ Xm | Ha(i!x(S) 6= 0}

does not contain any open m-dimensional strata.
Now, suppose S satisfies [AX2′](c), then S also satisfies [AX1′](c′′). In particular, this implies

that these strata cannot meet Uk+1 − Uk for a ≤ n − k. Thus the only allowable strata are
contained in Uk+1−Uk for a > n−k. It follows that dimC{x ∈ Xm | Ha(i!x(S) 6= 0} ≤ n−k < a.

Conversely suppose S satisfies [AX2′](c). Then dimC{x ∈ Xm | Ha(i!x(S) 6= 0} < a. Since
{x ∈ Xm | Ha(i!xS) 6= 0} is a union of non-open strata, it can only contain strata of complex
dimension < a. These strata are contained in Uk+1 − Uk for a > n− k. �

5. Topological Independence of IC(X,L)

The main goal of this section is to prove Theorem 1.

Theorem 1. Let X be a complex algebraic variety of complex dimension n which is not neces-
sarily pure-dimensional. Let U be an open dense subset of X such that U =

⊔n
m=1 U

m where

Um is a topological manifold of complex dimension m and dimC(Um−Um) ≤ m− 1. Let Lm be
a local system on Um and set L =

⊕n
m=1 Lm (extend each Lm on Um to U by zero). Then there

exists a unique (up to canonical isomorphism) complex IC(X,L) satisfying axioms [AX2′], i.e.
IC(X,L) is the unique complex satisfying:

(a) (Normalization) There exists an open dense subset V of X such that V =
⊔n
m=1 V

m

where V m is a topological manifold of complex dimension m, dimC(V m − V m) ≤ m− 1,
and IC(X,L)|Vm ' L′m[m] where L′ is the unique extension of Lm|Um∩Vm to V m (see
Remark 4.16 for more details on L′).

(b) (Pure-Dimensional Support) For 1 ≤ m ≤ n, if a > −m,

dimC{x ∈ V m | Ha(i∗xS) 6= 0} < −a.

(c) (Pure-Dimensional Cosupport) For 1 ≤ m ≤ n, if a < m,

dimC{x ∈ V m | Ha(i!xS) 6= 0} < a.

To prove Theorem 1, we follow the same strategy as Goresky and MacPherson in [7]. The
main difficulty is that we need some way of comparing objects in Db

c(X) satisfying [AX1′] with
respect to two different stratifications, which may not have a common refinement. To address
this, we will construct a canonical filtration Xcan such that:

(1) each topological stratification is a refinement of Xcan,
(2) applying Deligne’s construction with respect to Xcan yields a complex Jcan satisfying

[AX2′],
(3) Jcan is X-clc for any stratification X.

The existence of such a complex Jcan implies Theorem 1 as follows. Suppose S is X-clc for
some stratification X of X and S satisfies [AX2′]. Then S satisfies [AX1′] with respect to X by
Proposition 4.11. Similarly, the complex Jcan described above also satisfies [AX1′] with respect
to X. By Corollary 4.6, S and Jcan are canonically isomorphic in Db

c(X). If T is the complex

obtained by applying Deligne’s construction to any other stratification X̃, then T satisfies [AX1′]

with respect to X̃ and satisfies [AX2′] by Proposition 4.11. It follows that T is also canonically
isomorphic to Jcan.
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5.1. Construction of the Canonical Filtration. We will construct the canonical filtration
Xcan inductively. For each 1 ≤ m ≤ n, let Wm be the largest set of points in X which admit a
neighborhood homeomorphic to Cm and let Xm = Wm. Set Xcan

n−1 = X −Wn. Now, suppose
that

Xcank : Xcan
n ⊇ Xcan

n−1 ⊇ · · · ⊇ Xcan
n−k

has been defined and each Xcan
n−l is closed in X. Recall that the open filtration Ucank induced by

Xcank is given by

Ucank : U can1 ⊆ · · · ⊆ U cank ,

where

U canl =
(
Xn −Xcan

n−l
)
∪
(
Xn−1 −Xcan

n−l+1

)
∪ · · · ∪

(
Xn−l+2 −Xcan

n−2

)
t
n−l+1⊔
m=1

Wm.

Let Jcank ∈ Db
c(U

can
k ) be the complex obtained by applying Deligne’s construction with respect

to the filtration Xcank . Let hk : U cank → X be the open inclusion. Let V ′ be the largest open
subset of Xcan

n−k −Wn−k which is a topological manifold of complex dimension n − k and such

that (Rhk∗J
can
k ) |Xcan

n−k
is CLC. Let V = V ′ tWn−k and define Xcan

n−k−1 := Xcan
n−k − V . Notice

that Xcan
n−k−1 is closed in X.

Lemma 5.1. Xcan
n−1 is a union of strata for any stratification X.

Proof. Fix a stratification X. Recall that Xcan
1 = X −Wn. Since X is a union of strata, it

suffices to show that Wn is a union of strata. We claim that Wn is a union of the strata Sr
which in the normal direction, look like Cn−r. If x is contained in such a stratum, then x has a
neighborhood homeomorphic to Cm. Conversely, if x has a neighborhood homeomorphic to Cm
and Sr is the stratum containing x, then by possibly shrinking the neighborhood, we see that
Sr must look like Cn−r in the normal direction. �

Proposition 5.2. For 0 ≤ k ≤ n, we have

(1) For any stratification X, Xcan
n−k−1 is a union of strata,

(2) dimCX
can
n−k−1 ≤ n− k − 1,

(3) Zcann−k = (Xcan
n−k − Xcan

n−k−1) −Wn−k is either empty or a complex (n − k)-dimensional
topological manifold.

(4) Let Jcan be the object obtained by applying Deligne’s construction with respect to the
canonical filtration Xcan and a local system L on

⊔n
m=1W

m. Then Jcan|Zcan
n−k

is CLC.

Proof. We prove (1)-(4) by induction on k. If k = 0, then Xcan
n−1 is a union of strata by the

previous lemma. Moreover, Wn contains all of the n-dimensional strata of X by Lemma 4.12, so
dimCX

can
n−1 ≤ n−1. This shows that (1) and (2) are satisfied. Since Zcann = (X−Xcan

n−1)−Wn = ∅
is empty, (3) and (4) are also satisfied.

Now fix k > 0 and suppose that (1)-(4) hold for all integers strictly less than k. Induction
hypothesis (1) says that Xcan

n−k is a union of strata. If we can show that the set V used to define
Xcan
n−k−1 is a union of strata which contains the complex (n − k)-dimensional strata of X, then

(1) and (2) will hold for k. Property (3) will hold for k since

Zn−k = (Xcan
n−k −Xcan

n−k−1)−Wn−k = V −Wn−k = V ′

and V ′ is a topological manifold of complex dimension n − k. Finally, since Rhk∗J
can
k is CLC

on Zcann−k,

Jcan|Zcan
n−k

= τ≤k−1−n (Rhk∗h
∗
kJ

can) |Zcan
n−k

= τ≤k−1−n (Rhk∗J
can
k ) |Zcan

n−k
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is CLC. This implies that (4) will hold for k. Thus it suffices to show that V is a union of
strata which contains the complex (n−k)-dimensional strata of X. This is a consequence of the
following lemma. �

Lemma 5.3. In the situation above, the complex Rhk∗J
can
k |Xcan

n−k
is X-clc for k ≥ 1.

Proof. Denote the stratification of X

X : X = Xn ⊇ Xn−1 ⊇ · · · ⊇ X−1 = ∅.

By the induction hypothesis, Xcan
n−k is a union of strata. We must show that Rhk∗J

can
k |Xcan

n−k
is

CLC on each stratum. Let x ∈ Xcan
n−k and let Sr ⊆ X2r −X2r−1 be the stratum containing x.

By definition of topologically stratified space, there exists a distinguished neighborhood N and
a real (2(n− r)− 1)-dimensional topologically stratified space L such that N ' Cr × coneo(L)
and N ∩X2r+l′+1 ' Cr× coneo(Ll′). Let V := coneo(L) and π : Cr×V → V be projection onto
the second factor. For l ≤ k, let

Ũ canl := U canl ∩N,
and

Û canl := π(U canl ).

Let j̃l : Ũ canl → Ũ canl+1 and ĵl : Û canl → Û canl+1 denote inclusions. For l ≤ k, the induction

hypothesis (1) ensures that U canl is a union of strata. Remark 2.2 implies that π−1(π(Ũ canl )). It
follows that

(Rhk∗J
can
k )|N ' Rh̃k∗

(
τ≤k−1−nRj̃k−1∗ · · · τ≤−nRj̃1∗π∗L̂n[n]

⊕ · · · ⊕ τ≤k−1−nRj̃k−1∗π
∗L̂n−k−2[n− k − 2]⊕

n−k+1⊕
m=1

π∗L̂m[m]

)
.

By Lemma 2.7, moving π∗ to the left changes tildes to hats. This gives

(Rhk∗J
can
k )|N ' π∗Rĥk∗

(
τ≤k−1−nRĵk−1∗ · · · τ≤−nRĵ1∗L̂n[n]

⊕ · · · ⊕ τ≤k−1−nRĵk−1∗L̂n−k−2[n− k − 2]⊕
n−k+1⊕
m=1

L̂m[m]

)
.

Since V0 is a point, the complex (Rhk∗J
can
k )|π−1(V0) is CLC. �

Proposition 5.4. Let Jcan be the complex obtained from Deligne’s construction with respect
to the canonical filtration Xcan and some local system L on

⊔n
m=1W

m. Then Jcan satisfies
[AX2′].

Proof. Jcan satisfies [AX2′](a) by construction. To verify [AX2′](b), fix 1 ≤ m ≤ n and a > −m.
We want to show that dimC{x ∈ Xm | Ha(i∗xJ

can) 6= 0} < −a. First, notice that W l ∩Xm is
nonempty if and only if l = m. Since Jcan|Wm ' Lm[m] and a > −m, the set

W l ∩ {x ∈ Xm | Ha(i∗xJ
can) 6= 0}

is empty for all 1 ≤ l ≤ n. Thus, it suffices to consider the intersection

Zcann−k ∩ {x ∈ Xm | Ha(i∗xJ
can) 6= 0}.

Since

Jcan|Zcan
n−k
' τ≤k−1−nJ

can|Zcan
n−k

,
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this intersection is possibly nonempty if and only if a ≤ k − 1− n. Since dimCZ
can
n−k ≤ n− k, it

follows that
dimC

(
Zcann−k ∩ {x ∈ Xm | Ha(i∗xJ

can) 6= 0}
)
≤ n− k < −a.

Since this is true for any k ≥ 1, we conclude that dimC{x ∈ Xm | Ha(i∗xJ
can) 6= 0} < −a.

To verify [AX2′](c), fix 1 ≤ m ≤ n and a < m. A similar argument to the above shows that
W l ∩ {x ∈ Xm | Ha(i!xJ

can) 6= 0} is empty for all 1 ≤ l ≤ n. Again, it suffices to consider
Zcann−k ∩ {x ∈ Xm | Ha(i!xJ

can) 6= 0}. Notice that by Proposition 3.7, Zcann−k = U cank+1 −U cank . The

inclusions U cank

j−→ U cank+1
i←− U cank+1 − U cank give rise to the adjunction triangle

i!i
!Jcan|Ucan

k+1
→ Jcan|Ucan

k+1
→ Rj∗j

∗Jcan|Ucan
k+1

[1]−→ .

Restriction to U cank+1 − U cank gives

i!Jcan|Ucan
k+1
→ i∗Jcan|Ucan

k+1
→ i∗Rj∗j

∗Jcan|Ucan
k+1

[1]−→ .

Since i∗Jcan|Ucan
k+1
' τ≤k−1−ni

∗Rj∗j
∗Jcan|Ucan

k+1
by construction, the long exact sequence in co-

homology implies that Ha(i!Jcan|Ucan
k+1

) = 0 for a ≤ k − n. Factor the inclusion ix : {x} → X
into

{x} X

U cank+1 − U cank U cank+1

ix

µx

i

β

Since U cank+1 −U cank is a topological manifold of dimension 2(n− k), Proposition 2.6 implies that

i!xJ
can = µ!

xi
!Jcan|Ucan

k+1
= µ∗xi

!Jcan|Ucan
k+1

[−2(n− k)],

where the first equality holds since U cank+1 is open in X. It follows that Ha(i!xJ
can) = 0 for

a ≤ n− k. So (U cank+1 − U cank ) ∩ {x ∈ Xm | Ha(i!xJ
can) 6= 0} is possibly nonempty if and only if

a > n− k. We conclude that

dimC
(
Zcann−k ∩ {x ∈ Xm | Ha(i!xJ

can) 6= 0}
)
≤ n− k < a.

Since this is true for any k ≥ 1, we conclude that dim{x ∈ Xm | Ha(i!xJ
can) 6= 0} < a. �
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