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FRONTS OF CONTROL-AFFINE SYSTEMS IN R3

ILYA BOGAEVSKY

To Goo Ishikawa on the occasion of his sixtieth birthday

Abstract. We consider a control-affine system in three-dimensional space with control pa-

rameters belonging to a two-dimensional disk and study its fronts evolving from a point for

small times. We prove that generically the Legendrian lifts of such fronts have standard sin-
gularities and there are only two principally different typical cases — hyperbolic and elliptic.

Introduction

The ends of local time-optimal trajectories of a control system that start at a given point form
its front depending on time. We consider control-affine systems in three-dimensional space with
control parameters belonging to a two-dimensional disk and study singularities of their fronts
for small times.

If our system is linear-control then it defines a sub-Riemannian structure and its fronts are
described in [1] in the case that the sub-Riemannian structure is contact. For such a typical
system the fronts have infinite number of swallowtails at any neighborhood of the initial point.
Therefore their structure is complicated but it becomes much more simpler from the viewpoint
of contact geometry. Namely, let us consider the Legendrian surface consisting of all contact
elements being tangent to a considered front and cooriented outside. According to our result
this submanifold is smooth except two points lying over the initial point. Moreover, these
singularities are standard for all contact sub-Riemannian structures — not only for typical ones.
It means that all of them have the same normal form with respect to contact diffeomorphisms
of the ambient space.

A considered control-affine system can have hyperbolic and elliptic points introduced in [6].
The sets formed by them are open always and its union is dense for a typical system. In
particular, a linear-control system cannot have hyperbolic points at all and is elliptic exactly at
the points where the corresponding sub-Riemannian structure is contact.

According to the present paper the Legendrian surface consisting of all contact elements being
tangent to a front and cooriented outside is homeomorphic to the two-dimensional sphere and
has the following singularities.

If the initial point is elliptic then the considered Legendrian surface is smooth outside two
points where it has singularities E2. If the initial point is hyperbolic then the considered Leg-
endrian surface is smooth outside two disjoint segments, where it has singularities H1 at their
inner points and H2 at their four ends. All singularities with the same name (E2, H1, or H2)
are equivalent to each other with respect to contact diffeomorphisms of the ambient space. In
particular, their normal forms do not contain continuous invariants.

Non-typical examples of instant fronts of elliptic (left) and hyperbolic (right) points are shown
in Fig. 1. (These figures are published in [7] and [6] respectively.)
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Figure 1. Non-typical examples of instant fronts of elliptic (left) and hyper-
bolic (right) points

1. Definitions

1.1. Instant fronts of control-affine systems in R3. We consider a control-affine system in
R3 with control parameters u = (u1, u2):

(1) ẋ = ξ0(x) + u1ξ1(x) + u2ξ2(x), u2
1 + u2

2 ≤ 1

as a family of vector fields in R3 depending on u. Here x ∈ R3, (x, ẋ) ∈ T ∗R3, and ξ0, ξ1,
ξ2 are bounded smooth1 vector fields on R3 such that the vectors ξ1(x) and ξ2(x) are linearly
independent at any point x ∈ R3.

Definition. A Lipschitzian mapping ϕ : [0, T ] → R3, T > 0 is called a trajectory of the
control-affine system (1) if there exist measurable functions ũ1, ũ2 : [0, T ] → R such that the
equations

dϕ

dt
= ξ0(ϕ(t)) + ũ1(t) ξ1(ϕ(t)) + ũ2(t) ξ2(ϕ(t)), ũ2

1(t) + ũ2
2(t) ≤ 1

hold for almost all t ∈ [0, T ].

Definition. The ends ϕ(T ) of all trajectories ϕ : [0, T ]→ R3 of the system (1) starting at a
given point ϕ(0) = x0 form the attainable set of the point x0 ∈ R3 for the time T :

Ax0
(T ) =

{
x ∈ R3 | ∃ ϕ s. t. ϕ(0) = x0, ϕ(T ) = x

}
.

Its boundary is denoted by ∂Ax0
(T ).

Definition. If a trajectory ϕ : [0, T ]→ R3 of the system (1) satisfies the condition

ϕ (T ) ∈ ∂Aϕ(0)(T )

then it is called geometrically optimal.

Remark. According to Filippov’s theorem (Theorem 10.1 in [2]) the attainable set Ax0
(T )

is compact. Therefore its boundary ∂Ax0
(T ) ⊆ Ax0

(T ) consists of the ends ϕ(T ) of all geomet-
rically optimal trajectories ϕ : [0, T ]→ R3 starting at the point ϕ(0) = x0.

1“Smooth” means “infinitely smooth” everywhere.
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Definition. A trajectory ϕ : [0, T ] → R3 of the system (1) is called locally geometrically
optimal if there exists δ > 0 such that

ϕ(t) ∈ ∂Aϕ(t0)(t− t0) ∀ t0, t ∈ [0, T ] : t0 < t < t0 + δ.

Remark. It is well known that any geometrically optimal trajectory ϕ : [0, T ] → R3 of the
system (1) satisfies the condition

ϕ (t) ∈ ∂Aϕ(t0)(t− t0) ∀ t0, t ∈ [0, T ] : t0 < t.

In particular, ϕ : [0, T ]→ R3 is locally geometrically optimal.

Definition. The closure of the set formed by the ends ϕ(T ) of all locally geometrically
optimal trajectories ϕ : [0, T ]→ R3 starting at a given point ϕ(0) = x0 is called its instant front
Fx0

(T ) for the time T .

Remark. By definition, Fx0
(T ) ⊇ ∂Ax0

(T ).

1.2. Relativistic viewpoint: hyperbolic and elliptic points. Let us consider the space-
time R3+1 and fix a point m = (x, 0) ∈ R3+1. The control-affine system (1) defines a hyperplane

Π(m) = 〈Ξ0(m),Ξ1(m),Ξ2(m)〉R ⊂ TmR3+1

where
Ξ0 = (ξ0, 1), Ξ1 = (ξ1, 0), Ξ2 = (ξ2, 0)

are vector fields on R3+1. This hyperplane contains the cone

C(m) =
{
v0 Ξ0(m) + v1 Ξ1(m) + v2 Ξ2(m) | v2

0 − v2
1 − v2

2 = 0
}
⊂ Π(m)

formed by all directions belonging to the control-affine system (1) such that u2
1 + u2

2 = 1.
Let Π be locally defined as the field of 0-spaces of some non-zero 1-form θ on R3+1. The

restriction dθ|Π(m) is an antisymmetric 2-form in the three-dimensional vector space Π(m). Its
kernel

k(m) = ker dθ|Π(m) ⊂ Π(m)

has dimension 1 or 3 and is defined by the field Π, i. e. does not depend on the choice of a
non-zero 1-form θ.

Definition. Let m = (x, 0) and the kernel k(m) be one-dimensional. If the kernel k(m)
lies in the inner part of the complement of the cone C(m), then the point x is called elliptic. If
the kernel k(m) lies in the outer part of the complement of the cone C(m), then the point x is
called hyperbolic. If the kernel k(m) belongs to the cone C(m) itself, then the point x is called
parabolic. All these cases are shown in Fig. 2.

Figure 2. Elliptic, hyperbolic, and parabolic points

Remark. In the present paper parabolic points are not studied.

Example H. All points of the control-affine system

ẋ = u1, ẏ = u2, ż = y, u2
1 + u2

2 ≤ 1
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are hyperbolic. Here

• ξ0 = (0, 0, y), ξ1 = (1, 0, 0), ξ2 = (0, 1, 0);
• Π = {v0(0, 0, y, 1) + v1(1, 0, 0, 0) + v2(0, 1, 0, 0)};
• θ = y dt− dz, dθ = dy ∧ dt, dθ|Π = dv2 ∧ dv0;
• k = {v0 = v2 = 0} ⊂ Π;
• C =

{
v2

0 − v2
1 − v2

2 = 0
}

.

The instant fronts of these control-affine system are diffeomorphic to the shown in Fig. 1 on the
right.

Example E. All points of the control-affine system

ẋ = u1, ẏ = u2, ż = u1y, u2
1 + u2

2 ≤ 1

are elliptic. Here

• ξ0 = 0, ξ1 = (1, 0, y), ξ2 = (0, 1, 0);
• Π = {v0(0, 0, 0, 1) + v1(1, 0, y, 0) + v2(0, 1, 0, 0)};
• θ = y dx− dz, dθ = dy ∧ dx, dθ|Π = dv2 ∧ dv1;
• k = {v1 = v2 = 0} ⊂ Π;
• C =

{
v2

0 − v2
1 − v2

2 = 0
}

.

The instant fronts of these control-affine system are diffeomorphic to the shown in Fig. 1 on the
left.

1.3. Stratified Legendrian submanifolds.

Definition. A stratified submanifold of a contact space is called Legendrian if it is the closure
of the smooth Legendrian submanifold being the union of its strata of maximal dimension.

Let R5 be a contact space with coordinates (P1, P2, Q1, Q2, U), the origin

O = {P1 = P2 = Q1 = Q2 = U = 0},

and the contact structure defined as the field of 0-spaces of the contact form

Θ =
1

2
P dQ− 1

2
QdP − dU.

The following stratified submanifolds are Legendrian:

• H1 =
{

2P1 lnP 2
1 +Q1 = Q2 = U + P 2

1 = 0
}

where P1 lnP 2
1 = 0 if P1 = 0;

• H2 =
{
P1 = A2, P2 = AB, Q1 = B2, Q2 = 2AB lnA2, U = A2B2/2

}
where A,B ∈ R

are parameters and A lnA2 = 0 if A = 0;

• E2 =
{
P1 + iQ1 = Uei(ψ−

1
U ), Q2 + iP2 = Uei(ψ+ 1

U ), U ≥ 0
}

where i =
√
−1, ψ ∈ R

mod 2πZ is a parameter, and Uei(ψ±
1
U ) = 0 if U = 0.

The submanifold H1 consists of three connected smooth strata: the two surfaces distinguished
by the inequalities P1 ≷ 0 and the line H1

1 = {P1 = Q1 = Q2 = U = 0}.
The submanifold H2 appears in [4] (Chapter 8) and consists of three connected smooth strata:

the surface distinguished by the conditions A 6= 0, the open ray

H1
2 = {P1 = P2 = Q2 = U = 0, Q1 > 0}

distinguished by the conditions A = 0, B 6= 0, and the origin O distinguished by the conditions
A = B = 0.

The submanifold E2 consists of two connected smooth strata: the cylinder distinguished by
the conditions U > 0 and the origin O distinguished by the conditions U = 0.
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Definition. We say that a two-dimensional stratified Legendrian submanifold Λ of a contact
space has a singularity H1, H2, or E2 at a point λ ∈ Λ if its germ (Λ, λ) is contact diffeomorphic
to the germ (H1, O), (H2, O), or (E2, O) respectively.

For instance, it is clear that the stratified Legendrian submanifold H1 has a singularity H1

not only at the origin O but at any point of its stratum H1
1 as well. Besides, the stratified

Legendrian submanifold H2 has singularities H1 at all points of its stratum H1
2 — it is shown in

[5] .

2. Main result

Let ST ∗Rn be the space of cooriented contact elements in Rn with the standard contact
structure and π : ST ∗Rn → Rn be the natural projection. (A cooriented contact element in
Rn is a pair ([p]; x) consisting of a point x ∈ Rn and a ray [p] = {κp | κ > 0} generated by a
non-zero covector p ∈ T ∗xRn ∼= Rn∗).

Definition. The image π(Λ) is called the front of a stratified Legendrian submanifold Λ.

Theorem 1. Let x0 be any hyperbolic or elliptic point of the control-affine system (1).
Then there exists δ > 0 such that for any T ∈ (0, δ) the instant front Fx0

(T ) is the front of
some stratified Legendrian submanifold of ST ∗R3 denoted by Lx0

(T ) and satisfying the following
conditions:

• Lx0
(T ) is homeomorphic to the two-dimensional sphere;

• in the hyperbolic case Lx0(T ) is smooth outside two disjoint segments and has singular-
ities H1 at inner their points and H2 at their four ends;

• in the elliptic case Lx0
(T ) is smooth outside two points where it has singularities E2.

Remark. Theorem 1 claims the existence of stratified Legendrian submanifolds Lx0(T ) sat-
isfying the indicated conditions. The submanifolds Lx0

(T ) themselves are explicitly constructed
in Subsection 3.1.

3. Proofs

3.1. Construction of Lx0
(T ). Let ST ∗R3+1 be the space of cooriented contact elements

([p, s]; x, t) in the space-time R3+1 with the standard contact structure and π : ST ∗R3+1 → R3+1

be the natural projection where [p, s] = {κ(p, s) | κ > 0} is the open ray generated by a non-zero
covector (p, s) ∈ T ∗x,tR3+1 ∼= R3+1∗.

Following Section 12.1 in [2] let us construct the Hamiltonian

h(p; x) = max
u2
1+u2

2≤1
〈p, ξ0(x) + u1ξ1(x) + u2ξ2(x)〉

= 〈p, ξ0(x)〉+
√
〈p, ξ1(x)〉2 + 〈p, ξ2(x)〉2

associated with the control-affine system (1). The Hamiltonian h defines the singular hypersur-
face

Σ =
{

([p, s]; x, t) ∈ ST ∗R3+1 | h(p; x) + s = 0
}

=
{(
〈p, ξ0(x)〉+ s

)2
= 〈p, ξ1(x)〉2 + 〈p, ξ2(x)〉2, 〈p, ξ0(x)〉+ s ≤ 0

}
,

its singularities form the smooth 4-dimensional submanifold:

Σ4 =
{

([p, s]; x, t) ∈ ST ∗R3+1 | 〈p, ξ0(x)〉+ s = 〈p, ξ1(x)〉 = 〈p, ξ2(x)〉 = 0
}
.
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The smooth stratum Σ \Σ4 (as a hypersurface in a contact space) consists of its characteristics.
Such a characteristic satisfies the equations

dp

dt
= −∂xh(p; x),

dx

dt
= ∂ph(p; x), h(p; x) + s = 0

and its projection to the space-time is the graph of a locally geometrically optimal trajectory
according to Proposition 12.1 and Section 17.1 in [2].

Definition. The world stratified Legendrian submanifold of a point x0 ∈ R3 is the closure
of the union of all characteristics Γ of Σ \ Σ4 passing through π−1(x0, 0):

Λx0
=

⋃
π(Γ)3(x0,0)

Γ ⊂ ST ∗R3+1.

Let τ : ST ∗R3+1 → R be the time function sending ([p, s]; x, t) 7→ t and % : Σ→ ST ∗R3 be the
projection sending ([p, s]; x, t) 7→ ([p]; x) which is correctly defined because Σ does not contain
contact elements with p = 0 and s 6= 0. The instant stratified Legendrian submanifold of the
point x0 at a time T

Lx0(T ) = %
(
Λx0 ∩ τ−1(T )

)
⊂ ST ∗R3

is the projection of the section of the world stratified Legendrian submanifold with the isochrone
τ = T .

3.2. Arnold’s singularities of Σ. For any point (x0, t0) ∈ R3+1 the fiber π−1(x0, t0) contains
exactly two singularities of Σ: the contact elements ([p, s]; x0, t0) distinguished by the conditions

〈p, ξ0(x0)〉+ s = 〈p, ξ1(x0)〉 = 〈p, ξ2(x0)〉 = 0.

In other words, they are exactly the hyperplane Π(x0, t0) introduced in Subsection 1.2 with two
possible coorientations and denoted as Π+(x0, t0) and Π−(x0, t0).

Let O = Π+(x0, t0) or O = Π−(x0, t0). Then in a neighborhood of O there exist local
coordinates (P1, P2, P3, Q1, Q2, Q3, U) such that the contact structure is given as the field of
0-spaces of the contact form

(2) Θ =
1

2
P dQ− 1

2
QdP − dU

and:

• Σ =
{
P1Q1 − P 2

2 = 0, P1 +Q1 ≥ 0
}

if x0 is a hyperbolic point of the control-affine
system (1);

• Σ =
{
P 2

1 +Q2
1 − P 2

2 = 0, P2 ≥ 0
}

if x0 is an elliptic point of the control-affine system
(1).

This fact follows directly from [3] where the equations P1Q1 − P 2
2 = 0 and P 2

1 + Q2
1 − P 2

2 = 0
appear as normal forms of degeneracy hypersurfaces for symbols of systems of partial differential
equations.

Example H. For the hyperbolic control-affine system

ẋ = u1, ẏ = u2, ż = y, u2
1 + u2

2 ≤ 1

from Example H of Subsection 1.2 we get

〈p, ξ1(x)〉 = p, 〈p, ξ2(x)〉 = q, 〈p, ξ0(x)〉+ s = ry + s.

Hence in the affine chart r = −1

Σ =
{
p2 + q2 = (−y + s)2, −y + s ≤ 0

}
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and

p dx+ q dy − dz + s dt = 0

is the contact structure. Let

U = 2z − qy − px− st
and

P1 = q − s+ y, P2 = p, P3 = −q − s+ t,
Q1 = −q − s+ y, Q2 = 2x, Q3 = q − s− t.

In these coordinates

Σ =
{
P1Q1 − P 2

2 = 0, P1 +Q1 ≥ 0
}
,

π−1(0) = {x = y = z = t = 0} = {Q1 = P3, Q2 = 0, Q3 = P1, U = 0} ,
and the contact structure is given by the equation Θ = 0.

Example E. For the elliptic control-affine system

ẋ = u1, ẏ = u2, ż = u1y, u2
1 + u2

2 ≤ 1

from Example E of Subsection 1.2 we get

〈p, ξ1(x)〉 = p+ ry, 〈p, ξ2(x)〉 = q, 〈p, ξ0(x)〉+ s = s.

Hence in the affine chart r = −1

Σ =
{

(p− y)2 + q2 = s2, s ≤ 0
}

and

p dx+ q dy − dz + s dt = 0

is the contact structure. Let

U = 2z − qy − px− st
and

P1 = p− y, P2 = −s, P3 = q − x,
Q1 = q, Q2 = −t, Q3 = p.

In these coordinates

Σ =
{
P 2

1 +Q2
1 − P 2

2 = 0, P2 ≥ 0
}
,

π−1(0) = {x = y = z = t = 0} = {Q1 = P3, Q2 = 0, Q3 = P1, U = 0} ,
and the contact structure is given by the equation Θ = 0.

3.3. Contact vector fields. A vector field ~K in a contact space is called contact if it preserves
the contact structure. If the contact structure is given as the field of 0-spaces of a contact form

Θ then K = Θ( ~K) is called the generating function of ~K. We will use the following well known
facts:

• ~K is uniquely defined by its generating function K = Θ( ~K);

• ~K is tangent to the hypersurface {K = 0} and its characteristics;

• ~K is tangent to a smooth Legendrian submanifold L if and only if K|L = 0.

In our case (2)

(3) ~K =


Ṗ = −∂QK − P ∂UK/2

Q̇ = ∂PK − Q∂UK/2

U̇ = −K + P ∂PK/2 + Q∂QK/2

.

In particular,

(4) ~K(O) = 0 ⇐⇒ K(O) = 0 and dOK|{dU=0} = 0
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where dOK is the differential of the generating function at O and {dU = 0} is the contact
hyperplane at O.

3.4. Topology of Λx0
. If K = P1Q1 − P 2

2 the formulas (3) give:

Ṗ1 = −P1, Q̇1 = Q1, Ṗ2 = 0, Q̇2 = −2P2, Ṗ3 = Q̇3 = U̇ = 0.

According to Subsections 3.2 and 3.3 in the hyperbolic case a characteristic of the smooth
stratum Σ \ Σ4 is tangent to this contact vector field.

In particular, P2 = const along the characteristics. A characteristic with P2 6= 0 lies in the
smooth stratum Σ \ Σ4. In the limit case P2 = 0 we get P1Q1 = 0, Q2 = const, P3 = const,
Q3 = const, U = const, P1 +Q1 ≥ 0. This curve intersects the stratum Σ4 as P1 = Q1 = 0 and
is not smooth at the intersection point. Such curves and characteristics of Σ \ Σ4 with P2 6= 0
are called characteristics of Σ.

If K = P 2
1 /2 +Q2

1/2− P 2
2 /2 the formulas (3) give:

Ṗ1 = −Q1, Q̇1 = P1, Ṗ2 = 0, Q̇2 = −P2, Ṗ3 = Q̇3 = U̇ = 0,

According to Subsections 3.2 and 3.3 in the elliptic case a characteristic of the smooth stratum
Σ \ Σ4 is tangent to this contact vector field.

In particular, P2 = const. The characteristics with P2 > 0 lie in the smooth stratum Σ \ Σ4.
In the limit case P2 = 0 we get a line P1 = Q1 = 0, P3 = const, Q3 = const, U = const which lies
in the stratum Σ4. Such lines and characteristics of Σ\Σ4 with P2 6= 0 are called characteristics
of Σ.

Characteristics of Σ satisfy the existence–uniqueness–continuity property: any point of Σ
belongs a locally unique characteristic which depends continuously on the point.

Lemma 1. The Legendrian submanifold Λx0
in some neighborhood of (x0, 0) is homeomorphic

to the cylinder over the two-dimensional sphere if x0 is hyperbolic or elliptic point of the control-
affine system (1).

Proof. The Legendrian submanifold is the union of all characteristics of Σ intersecting the set

Σ ∩ π−1(x0, 0) =
{

[p, s] ∈ ST ∗x0,0R
3+1 | h(p; x) + s = 0

}
,

which is homeomorphic to the two-dimensional sphere. But in some neighborhood of (x0, 0)
characteristics of Σ satisfy the existence–uniqueness–continuity property. �

3.5. Basic Lemmas. Let R7 be a contact space with coordinates (P1, P2, P3, Q1, Q2, Q3, U), its
contact structure be defined as the field of 0-spaces of the contact form (2), and Σ be one of the
two hypersurfaces:

Σ =
{
P1Q1 − P 2

2 = 0
}

or Σ =
{
P 2

1 +Q2
1 − P 2

2 = 0
}
.

The hypersurface consists of the two smooth strata:

Σ4 = {P1 = Q1 = P2 = 0}
and Σ \ Σ4. Let O ∈ Σ4 be the origin P = Q = U = 0 and L be the space of the germs (L,O)
at the origin of all smooth Legendrian submanifolds L that pass through the origin and are
transversal to Σ4. In particular,

(L0, O) ∈ L, L0 = {Q1 = P3, Q2 = 0, Q3 = P1, U = 0} .

Lemma 2. The space L is arcwise connected and P2, P3, Q3 are coordinates on any
(L,O) ∈ L.



FRONTS OF CONTROL-AFFINE SYSTEMS IN R3 23

Proof. A germ (L,O) of a Legendrian submanifold at the origin is transversal to Σ4 if and only
if the restrictions of the differentials dP1, dQ1, and dP2 to the tangent plane TOL are linearly
independent. Hence:

TOL =


dQ2 = a11 dP1 + a12 dQ1 + a13 dP2

dP3 = a21 dP1 + a22 dQ1 + a23 dP2

dQ3 = a31 dP1 + a32 dQ1 + a33 dP2

dU = 0

.

But the tangent plane TOL is a Lagrangian subspace of the contact hyperplane dU = 0 endowed
with a linear symplectic form dΘ|Θ=0 = dP ∧ dQ; and the condition

dP ∧ dQ
∣∣
TOL

= 0, dP ∧ dQ
∣∣
TOL

= (1 + a21a32 − a22a31) dP1 ∧ dQ1

+ (−a11 + a21a33 − a23a31) dP1 ∧ dP2 + (−a12 + a22a33 − a23a32) dQ1 ∧ dP2

gives
a21a32 − a22a31 = −1, a11 = a21a33 − a23a31, a12 = a22a33 − a23a32.

These three equalities show that the space formed by all tangent planes TOL such that (L, 0) ∈ L
is homotopically equivalent to a circle and, in particular, arcwise connected. But two germs
of Legendrian submanifolds at the origin with the same tangent plane can be connected by a
continuous path consisting of germs having the same tangent plane. Hence the space L is arcwise
connected.

The equality a21a32 − a22a31 = −1 implies that the restrictions of the differentials dP2, dP3,
and dQ3 to the tangent plane TOL are linearly independent. So P2, P3, Q3 are coordinates on
(L,O) ∈ L. �

Lemma 3. For any (L1, O) ∈ L there exists a local contact diffeomorphism h1 such that
(L1, O) = h1(L0, O) and h1(Σ) = Σ.

Proof. According to Lemma 2 we can include the Legendrian germs (L0, O) and (L1, O) into
a family (Lε, O) ∈ L where ε ∈ [0, 1], Lε = kε(L0), and kε is a smooth family of contact
diffeomorphisms such that kε(O) = O for all ε ∈ [0, 1]. Let

~Kε(kεe) =
d

dε
kεe, e ∈ R7, ~Kε(O) = 0

be a contact vector field which depends smoothly on ε.

Let Kε = Θ( ~Kε). According to Lemma 2 in some neighborhood UO of the origin P2, P3,
and Q3 are coordinates on Lε for any ε ∈ [0, 1]. Therefore there exists a unique function
H? : [0, 1]× UO → R depending only on ε, P2, P3, Q3 such that

(5) Hε

∣∣
Lε

= Kε

∣∣
Lε
.

Let ~Hε be the contact vector field defined by the formulas (3) where K = Hε.

First of all, let us show that ~Hε(O) = 0. Indeed, according to (4) Kε(O) = 0 and

dOKε|{dU=0} = 0 because ~Kε(O) = 0. Hence Hε(O) = 0 and dOHε = 0 because Lε is tan-

gent to the hyperplane {dU = 0}. So according to (4) ~Hε(O) = 0.
Now we can define a family of local contact diffeomorphisms hε depending on ε ∈ [0, 1] such

that

~Hε(hεe) =
d

dε
hεe ∀ e ∈ VO,

where VO is a neighborhood of the origin. Indeed, it is possible because ~Hε(O) = 0. Besides,

the equality ~Hε(O) = 0 implies that hε(O) = O.
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The formulas (3) imply that the coordinate functions P1, P2, and Q1 are first integrals of the

contact vector field ~Hε because its generating function ~Hε does not depend on P1, Q1, Q2, and

U . Hence the contact vector field ~Hε is tangent to Σ4 and Σ \ Σ4. Therefore hε(Σ) = Σ for all
ε ∈ [0, 1].

The equality (5) implies that for any ε ∈ [0, 1] the vector field ~Hε − ~Kε is tangent to
Lε = kε(L0). So hε(L0) = kε(L0) for all ε ∈ [0, 1].

Therefore (Lε, O) = hε(L0, O) and hε(Σ) = Σ for all ε ∈ [0, 1]. In particular, it holds for
ε = 1. �

3.6. Local normal forms of Λx0
. Lemma 3 implies the following

Lemma 4. Let O = Π+(x0, 0) or O = Π−(x0, 0). Then in a neighborhood of O there exist
local coordinates (P1, P2, P3, Q1, Q2, Q3, U) such that:

• the contact structure is given as the field of 0-spaces of the contact form

Θ =
1

2
P dQ− 1

2
QdP − dU ;

• π−1(x0, 0) = {Q1 = P3, Q2 = 0, Q3 = P1, U = 0};
• if x0 is a hyperbolic point then

Σ =
{
P1Q1 − P 2

2 = 0, P1 +Q1 ≥ 0
}

and Λx0
= ΛH+ ∪ ΛH−

where

ΛH+ =

 P1 = a2b2, Q1 = c2,
P2 = abc, Q2 = 2abc ln a2, U = 0,
P3 = a2c2, Q3 = b2,

ΛH− =

 P1 = b2, Q1 = a2c2,
P2 = abc, Q2 = −2abc ln a2, U = 0,
P3 = c2, Q3 = a2b2,

a ∈ [0, 1], b, c ∈ R are parameters, and a ln a2 = 0 if a = 0;
• if x0 is an elliptic point then

Σ =
{
P 2

1 +Q2
1 − P 2

2 = 0, P2 ≥ 0
}

and Λx0
= ΛE

where

ΛE =


P2 ≥ 0,

P1 + iQ1 = P2e
i
(
ψ− Q2

2P2

)
, U = 0,

Q3 + iP3 = P2e
i
(
ψ+

Q2
2P2

)
,

i =
√
−1, ψ ∈ R mod 2πZ is a parameter, and P2e

i
(
ψ± Q2

2P2

)
= 0 if P2 = 0.

Remark. Examples H and E of coordinates from Lemma 4 are given in Subsection 3.2.

Proof. According to Subsection 3.2 and Lemma 3 in a neighborhood of O there exist local
coordinates (P1, P2, P3, Q1, Q2, Q3, U) such that:

• the contact structure is given by the equation Θ = 0;
• π−1(x0, 0) = {Q1 = P3, Q2 = 0, Q3 = P1, U = 0};
• if x0 is a hyperbolic point then Σ =

{
P1Q1 − P 2

2 = 0, P1 +Q1 ≥ 0
}

;

• if x0 is an elliptic point then Σ =
{
P 2

1 +Q2
1 − P 2

2 = 0, P2 ≥ 0
}

.

Let us consider the following parameterizations of Σ ∩ π−1(x0, 0):
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• P1 = b2, Q1 = c2, P2 = bc, Q2 = 0, P3 = c2, Q3 = b2, U = 0 (where b, c ∈ R are
parameters and x0 is hyperbolic);

• P2 ≥ 0, P1 + iQ1 = P2e
iψ, Q2 = 0, Q3 + iP3 = P2e

iψ, U = 0 (where ψ ∈ R mod 2πZ is
a parameter and x0 is elliptic).

According to Subsection 3.4 the characteristics of Σ have parameterizations (with a real param-
eter σ) satisfying the differential equations:

• dP1

dσ = −P1, dQ1

dσ = Q1, dP2

dσ = 0, dQ2

dσ = −2P2, dP3

dσ = dQ3

dσ = dU
dσ = 0,

if x0 is hyperbolic;
• dP1

dσ + idQ1

dσ = i(P1 + iQ1), dP2

dσ = 0, dQ2

dσ = −P2, dP3

dσ = dQ3

dσ = dU
dσ = 0,

if x0 is elliptic.

Therefore the characteristics passing through Σ ∩ π−1(x0, 0) are given by the equations:

• P1 = b2e−σ, Q1 = c2eσ, P2 = bc, Q2 = −2bcσ, P3 = c2, Q3 = b2, U = 0,
if x0 is hyperbolic;

• P2 ≥ 0, P1 + iQ1 = P2e
i(ψ+σ), Q2 = −P2σ, Q3 + iP3 = P2e

iψ, U = 0,
if x0 is elliptic.

Here σ ∈ R is a parameter along the characteristics.
In the hyperbolic case for σ ≥ 0 we get the formulas for ΛH+ from Lemma 4 changing

c 7→ ce−σ/2 and setting a = e−σ/2.
In the hyperbolic case for σ ≤ 0 we get the above formulas for ΛH− from Lemma 4 changing

b 7→ beσ/2 and setting a = eσ/2.
In the elliptic case we get the formulas for ΛE changing ψ 7→ ψ − σ/2 and setting

σ = −Q2/P2. �

3.7. Singularities of Λx0 .

Definition. We say that a three-dimensional stratified Legendrian submanifold Λ of a con-
tact space has a singularity H1, H2, or E2 at a point λ ∈ Λ if its germ (Λ, λ) is contact diffeo-
morphic to the germ (H1 × R, O), (H2 × R, O), or (E2 × R, O) respectively.

Lemma 5. The Legendrian submanifold ΛH+ ∪ ΛH−
(1) has singularities H1 if

P1 = P2 = P3 = Q2 = U = 0, Q1 > 0, Q3 > 0,

or
P2 = Q1 = Q2 = Q3 = U = 0, P1 > 0, P3 > 0;

(2) has singularities H2 if

P1 = P2 = P3 = Q2 = U = 0, Q1 = 0, Q3 > 0,

or
P1 = P2 = P3 = Q2 = U = 0, Q1 > 0, Q3 = 0,

or
P2 = Q1 = Q2 = Q3 = U = 0, P1 = 0, P3 > 0,

or
P2 = Q1 = Q2 = Q3 = U = 0, P1 > 0, P3 = 0;

(3) has more complicated singularity if

P1 = P2 = P3 = Q1 = Q2 = Q3 = U = 0;

(4) is smooth at the other points.
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Proof. The Legendrian submanifold ΛH+ ∪ΛH− has singularities if and only if a = 0 in the formulas

of Lemma 4. It gives the set of singularities of ΛH+ :

P1 = P2 = P3 = Q2 = U = 0, Q1 ≥ 0, Q3 ≥ 0;

and the set of singularities of ΛH− :

P2 = Q1 = Q2 = Q3 = U = 0, P1 ≥ 0, P3 ≥ 0;

proving the item 4 from Lemma 5. Let us consider the following transformations:

• a 7→ a, b 7→ κb, c 7→ c, κ > 0,
(P1, P2, P3, Q1, Q2, Q3, U) 7→ (κ2P1, κP2, P3, Q1, κQ2, κ

2Q3, κ
2U);

• a 7→ a, b 7→ b, c 7→ κc, κ > 0,
(P1, P2, P3, Q1, Q2, Q3, U) 7→ (P1, κP2, κ

2P3, κ
2Q1, κQ2, Q3, κ

2U);
• a 7→ a, b 7→ c, c 7→ b,

(P1, P2, P3, Q1, Q2, Q3, U) 7→ (P3, P2, P1, Q3, Q2, Q1, U);
• a 7→ a, b 7→ b, c 7→ c,

(P1, P2, P3, Q1, Q2, Q3, U) 7→ (Q3, P2, Q1, P3,−Q2, P1,−U).

All of them preserve the contact structure and the Legendrian submanifold ΛH+ ∪ ΛH− . Besides,

these transformations divide the set of singularities of ΛH+ ∪ΛH− into the three orbits mentioned
in the items 1–3 of Lemma 5. In particular, we prove its item 3.

The point P1 = P2 = P3 = Q1 = Q2 = U = 0, Q3 = 1 belongs to ΛH+ . Let us consider its
section with Q3 = 1. Then b = 1 or b = −1 but these conditions define the same submanifold: P1 = a2, Q1 = c2,

P2 = ac, Q2 = 2ac ln a2, U = 0.
P3 = a2c2, Q3 = 1,

The form Θ defines the contact structure

1

2
(P1 dQ1 + P2 dQ2 −Q1 dP1 −Q2 dP2)− dP3

2
= 0

in the plane Q3 = 1, U = 0 and our section is Legendrian. Denoting A = a, B = c, U = P3/2
we get the Legendrian submanifold H2 from Subsection 1.3 and prove the item 2 of Lemma 5.

But the stratified Legendrian submanifold H2 has singularities H1 if A = 0 and B 6= 0 that is
shown in [5]. It proves the item 1 of Lemma 5. �

Lemma 6. The Legendrian submanifold ΛE

(1) has singularities E2 if

P1 = P2 = P3 = Q1 = Q3 = U = 0, Q2 6= 0;

(2) has more complicated singularity if

P1 = P2 = P3 = Q1 = Q2 = Q3 = U = 0;

(3) is smooth at the other points.

Proof. The Legendrian submanifold ΛE has singularities if and only if P2 = 0 in the formulas of
Lemma 4. It gives the set of singularities of ΛE :

P1 = P2 = P3 = Q1 = Q3 = U = 0;

and proves the item 3 from Lemma 6. Let us consider the following transformations:

• (P1, P2, P3, Q1, Q2, Q3, U) 7→ (κP1, κP2, κP3, κQ1, κQ2, κQ3, κ
2U), κ > 0;

• (P1, P2, P3, Q1, Q2, Q3, U) 7→ (Q3, P2, Q1, P3,−Q2, P1,−U).
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All of them preserve the contact structure and the Legendrian submanifold ΛE . Besides, these
transformations divide the set of singularities of ΛE into the two orbits mentioned in the items 1,
2 of Lemma 6. In particular, we prove its item 2.

Let us consider the section of ΛE with Q2 = 2:

ΛE =


P2 ≥ 0,

P1 + iQ1 = P2e
i
(
ψ− 1

P2

)
, U = 0,

Q3 + iP3 = P2e
i
(
ψ+ 1

P2

)
,

The form Θ defines the contact structure

1

2
(P1 dQ1 + P3 dQ3 −Q1 dP1 −Q3 dP3)− dP2 = 0

in the plane Q3 = 1, U = 0 and our section is Legendrian. After obvious renaming P2 7→ U ,
P3 7→ P2, Q3 7→ Q2 we get the Legendrian submanifold E2 from Subsection 1.3 and prove the
item 1 of Lemma 6. �

3.8. Time function τ . Here we prove some conditions which have to be satisfied by the time
function τ in the coordinates from Lemma 4.

Lemma 7. Let O = Π+(x0, 0) or O = Π−(x0, 0) and dOτ be the differential of the time
function τ at O. Then in the coordinates from Lemma 4

dOτ = γ1(dQ1 − dP3) + γ2 dQ2 + γ3(dQ3 − dP1) + γ0 dU

where

• γ1γ3 > γ2
2 if x0 is hyperbolic;

• γ2
2 > γ2

1 + γ2
3 if x0 is elliptic.

Proof. The equality

dOτ = γ1(dQ1 − dP3) + γ2 dQ2 + γ3(dQ3 − dP1) + γ0 dU

follows from the conditions

π−1(x0, 0) = {Q1 = P3, Q2 = 0, Q3 = P1, U = 0} ⊂ τ−1(0).

Let us prove the inequalities γ1γ3 > γ2
2 and γ2

2 > γ2
1 + γ2

3 .
The Legendrian submanifold π−1(x0, 0) ⊂ ST ∗R3+1 is situated in the isochrone τ−1(0) and

consists of its characteristics: the lines ([p, ·]; x0, 0) with p 6= 0 and the two points ([0,±1]; x0, 0).
In an affine neighborhood of O the hypersurface Σ∩π−1(x0, 0) is a half-cone. It turns out that one
of the two half-characteristics of the isochrone τ−1(0) starting at O lies inside of this half-cone.

Indeed, let us choose local coordinates (x, y, z) in a neighborhood of x0 ∈ R3 such that
ξ1(x0) = (1, 0, 0), ξ2(x0) = (0, 1, 0), and ξ0(x0) = (a0, b0, c0). Then according to Subsection 3.1
we get that in the coordinates (p, q, r, s) that are dual to (x, y, z, t):

Σ ∩ π−1(x0, 0) =
{

[p, q, r, s]
∣∣ a0p+ b0q + c0r + s+

√
p2 + q2 = 0

}
and O = [0, 0, 1,−c0] or O = [0, 0,−1, c0]. So, we can take the affine neighborhood r = 1 or
r = −1 respectively. It is clear that in each case the ray

p = q = 0, ±c0 + s < 0

is situated inside of the half-cone
{
a0p+ b0q ± c0 + s+

√
p2 + q2 = 0

}
.
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But according to Subsection 3.3 the characteristics of τ−1(0) are tangent to the contact vector
field ~τ defined by the formulas (3) for K = τ . Hence one of the two vectors ±~τ(0) where

~τ(0) =
{
Ṗ1 = γ1, Ṗ2 = γ2, Ṗ3 = γ3, Q̇1 = γ3, Q̇2 = 0, Q̇3 = γ1, U̇ = 0

}
must lie inside of the half-cone

Σ ∩ π−1(x0, 0) = Σ ∩ {Q1 = P3, Q2 = 0, Q3 = P1, U = 0} .
It means that

• Ṗ1Q̇1 − Ṗ2
2

= γ1γ3 − γ2
2 > 0 if x0 is hyperbolic and

• Ṗ1
2

+ Q̇1
2 − Ṗ2

2
= γ2

1 + γ2
3 − γ2

2 < 0 if x0 is elliptic.

�

3.9. Proof of Theorem 1. According to Lemma 1 in some neighborhood of (x0, 0) the Leg-
endrian submanifold Λx0

is homeomorphic to the cylinder over the two-dimensional sphere, the
elements of the cylinder are characteristics of Σ. But an isochrone τ−1(T ) is transversal to
these characteristics because their projections are the graphs of trajectories of the control-affine
system (1). It proves that Lx0

(T ) is homeomorphic to the two-dimensional sphere.
In neighborhoods of two contact elements Π+(x0, 0) or Π−(x0, 0) the Legendrian submanifold

Λx0
has singularities described in Lemmas 4, 5, and 6.

In the hyperbolic case Theorem 1 follows from Lemma 5. Namely, singularities H1 form two
quadrants described in Lemma 5. But one and only one of them lies in the domain τ > 0
according to Lemma 7.

In the elliptic case Theorem 1 follows from Lemma 6. Namely, singularities E2 form two rays
described in Lemma 6. But one and only one of them lies in the domain τ > 0 according to
Lemma 7.

4. Appendix

Theorem 1 implies that for enough small T > 0 the stratified Legendrian submanifolds Lx0(T )
are reduced to a normal form LH in the hyperbolic case and to a normal form LE in the elliptic
case. Here we give explicit formulas for LH based on [6] and for LE based on [7]. The fronts of
the stratified Legendrian submanifolds LE and LH are shown in Fig. 1 on the left and the right
respectively.

Normal form LH :

LH =

{
(p : q : r;x, y, z) ∈ ST ∗R3

∣∣∣ p =
4αβ

(1 + α2)(1 + β2)
, q =

1− β2

1 + β2
,

r =
1− α2

1 + α2
, x = Φ(α)

2β

1 + β2
, y =

1− β2

1 + β2
, z = Ψ(α)

2β2

(1 + β2)2

}
where α, β ∈ R ∪ {∞} are parameters,

Φ(α) = −α lnα2

1− α2
, Ψ(α) =

1− α4 + 2α2 lnα2

(1− α2)2
,

Φ(0) = Φ(∞) = Ψ(1) = Ψ(−1) = 0, Φ(1) = −Φ(−1) = Ψ(0) = −Ψ(∞) = 1.
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Normal form LE:
LE = LE ∪ {P+,P−}, P± = (0 : 0 : ±1; 0, 0, 0) ∈ ST ∗R3,

LE =

{
(p : q : r;x, y, z) ∈ ST ∗R3

∣∣∣ p = cos r cosφ, q = cos r sinφ,

x =
2 sin r cosφ

r
, y =

2 sin r sinφ

r
, z =

2r − sin 2r

2r2

}
where φ ∈ R mod 2πZ is a parameter.
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