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ON THE COLENGTH OF FRACTIONAL IDEALS

E. M. N. DE GUZMÁN AND A. HEFEZ

Abstract. The main goal of this paper is to give a recursive formula for the colength of a

fractional ideal in terms of some maximal points of its value set and of its projections. The
fractional ideals are relative to a class of rings called admissible, a more general class of one

dimensional local rings that contains those of algebroid curves. For fractional ideals of such
rings with two or three minimal primes, a closed formula for the colength is provided.

1. Introduction

The computation of the colength of a fractional ideal of a ring of an irreducible algebroid
plane curve in terms of its value set was known since the work of Gorenstein in the fifties of
last century, at least (cf. [6]). Such computation was performed for a larger class of analytically
reduced but reducible rings by D’Anna in [2, §2], where colengths of fractional ideals and lengths
of maximal saturated chains in their sets of values are related. D’Anna’s method requires the
knowledge of many elements in the set of values, a disadvantage that would be desirable to
overcome to increase computational efficiency. In fact, in the particular case of an algebroid
curve with two branches, Barucci, D’Anna and Fröberg, in [1], were able to give an explicit
formula for the colength of a given fractional ideal in terms of some maximal points of its value
set.

Local rings of algebroid curves and the class studied by D’Anna in [2] belong to the larger
class of admissible rings considered in this paper. By such a ring, we mean a one dimensional,
local, noetherian, Cohen-Macaulay, analytically reduced and residually rational ring such that
the cardinality of its residue field is sufficiently large (see [8] for more details). For simplicity
and without loss of generality (cf. [2, §1]), we will also assume that our rings are complete with
respect to the topology induced by the maximal ideal. In such case, a sufficiently large residue
field means that its cardinality is greater than or equal to the number r of minimal primes of
the ring.

One of our main results, Theorem 10, gives a recursive formula on the number r for the
colength of a fractional ideal in a complete admissible ring. The important feature is that
the computation requires only few special points of the value set, namely, its relative maximal
points and those of its projections. The other main result is Corollary 20 that provides a closed
formula for the colength in the case of three minimal primes. It is worth noting that such a
closed formula for three minimal primes is not a straightforward consequence of the recursive
formula established in Theorem 10, since its proof demands a careful analysis of the geometry
of the maximal points of the value set.

The outline of the paper is as follows. Section 2 collects some preliminaries and notation
regarding the general background of the article. Section 3 is concerned with the definition of
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value sets, recalling three useful analog properties to ones obtained for semigroups of values by
Delgado and Garcia (cf. [3] and [5]). Section 4 introduces and analyzes different kinds of maximal
points in the value set to get enough tools to pass to Section 5 that is eventually concerned with
the announced recursive formula for the colength of fractional ideals in admissible rings. To ease
the comparison with the previous results due to Barucci, D’Anna and Fröberg, we first analyze
their recipe for r = 2, while we devote Section 5.2 to the case r ≥ 3. The closed formula for
r = 3 is finally dealt with in Section 6 where a fine detailed analysis of the geometry of the
maximal points is offered in a series of lemmas, culminating with Lemma 18 that unavoidably
leads, after the case by case analysis, the statement and proof of Theorem 19 that confirms a
conjectural formula by M. Hernandes (cf. [7]).

2. General background

In this section we refer to [2] for our unproved statements. Let ℘1, . . . , ℘r be the minimal
primes of an admissible complete ring R. We will use the notation I = {1, . . . , r}. We set
Ri = R/℘i and will denote by πi : R→ Ri the canonical surjection. Since R is reduced, we have
an injective homomorphism

π : R ↪→ R1 × · · · ×Rr
h 7→ (π1(h), . . . , πr(h)).

More generally, if J = {j1 < · · · < js} is any subset of I, we may consider RJ = R/ ∩si=1 ℘ji
and will denote by πJ : R −→ RJ the natural surjection.

We will denote by K the total ring of fractions of R and when J ⊂ I we denote by KJ the
total ring of fractions of the ring RJ . Notice that RI = R and KI = K. If J = {i}, then R{i} is

equal to the above defined domain Ri whose field of fractions will be denoted by Ki. Let R̃ be

the integral closure of R in K and R̃J be that of RJ in KJ . One has that R̃J ' R̃j1 × · · · × R̃js ,
which in turn is the integral closure of Rj1 × · · · ×Rjs in its total ring of fractions. We have the
following diagram:

KJ ' Kj1 × · · · × Kjs

↪→ ↪→

R̃J ' R̃j1 × · · · × R̃js

↪→ ↪→

RJ ↪→ Rj1 × · · · ×Rjs
Since each R̃i is a DVR, with a valuation denoted by vi, one has that Ki is a valuated field

with the extension of the valuation vi which is denoted by the same symbol. This allows one to
define the value map

v : K \ Z(K) → Zr
h 7→ (v1(π1(h)), . . . , vr(πr(h))),

where πi here denotes the projection K → Ki, which is the extension of the previously defined
projection map πi : R→ Ri and Z(K) stands for the set of zero divisors of K.

An R-submodule I of K will be called a regular fractional ideal of R if it contains a regular
element of R and there is a regular element d in R such that d I ⊂ R.

Since d I is an ideal of R, which is a noetherian ring, one has that I ⊂ K is a nontrivial
fractional ideal if and only if it contains a regular element of R and it is a finitely generated
R-module.

Examples of fractional ideals of R are R itself, R̃, the conductor C of R̃ in R, or any ideal of R

or of R̃ that contains a regular element. Also, if I is a regular fractional ideal of R, then for all
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∅ 6= J ⊂ I one has that πJ(I) is a regular fractional ideal of RJ , where, this time, πJ : K → KJ
denotes the natural projection.

3. Value sets

If I is a regular fractional ideal of R, we define the value set of I as being

E = v(I \ Z(K)) ⊂ Zr.

If J = {j1 < · · · < js} ⊂ I, then we denote by prJ the projection Zr → Zs,

(α1, . . . , αr) 7→ (αj1 , . . . , αjs).

Let us define

EJ = v(πJ(I) \ Z(KJ)).

If j ∈ J = {j1, . . . , jt, . . . js} ⊂ I, with jt = j, for α = (αj1 , . . . , αjs) ∈ EJ , then we define

p̃rj(α) = αjt = αj .

We will consider on Zr the product order ≤ and will write (a1, . . . , ar) < (b1, . . . , br) when
ai < bi, for all i = 1, . . . , r.

Value sets of fractional ideals have the following fundamental analog properties to those of
semigroups of values described by Garcia for r = 2 in [5] and by Delgado for r > 2 in [3] (see
also [2] or [1]):

Property (A). If α = (α1, . . . , αr) and β = (β1, . . . , βr) belong to E, then

min(α, β) = (min(α1, β1), . . . ,min(αr, βr)) ∈ E.

Property (B). If α = (α1, . . . , αr), β = (β1, . . . , βr) belong to E, α 6= β and αi = βi for some
i ∈ {1, . . . , r}, then there exists γ ∈ E such that γi > αi = βi and γj ≥ min{αj , βj} for each
j 6= i, with equality holding if αj 6= βj.

Property (C). There exist α ∈ Zr and γ ∈ Nr such that

γ + Nr ⊂ E ⊂ α+ Zr.

Properties (A) and (C) allow one to conclude that there exist a unique mE = (m1, . . . ,mr)
such that βi ≥ mi, i = 1, . . . , r, for all (β1, . . . , βr) ∈ E and a unique least element γ ∈ E with
the property that γ +Nr ⊂ E. This element is what we call the conductor of E and will denote
it by c(E).

Observe that one always has

c(EJ) ≤ prJ(c(E)), ∀ J ⊂ I.

One has the following result:

Lemma 1. If I is a fractional ideal of R and ∅ 6= J ⊂ I, then prJ(E) = EJ .

Proof. One has obviously that prJ(E) ⊂ EJ . On the other hand, let αJ ∈ EJ . Take h ∈ I such
that vJ(πJ(h)) = αJ . If h 6∈ Z(K) we are done. Otherwise, choose any h′ ∈ I \ Z(K) such that
prJ(v(h′)) > αJ , which exists since E has a conductor. Hence, vJ(h + h′) = αJ , proving the
other inclusion. �
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4. Maximal points

We now introduce the important notion of a fiber of an element α ∈ E with respect to a
subset J ⊂ I that will play a central role in what follows.

Definition 1. Given A ⊂ Zr, α ∈ Zr and ∅ 6= J ⊂ I, we define

FJ(A,α) = {β ∈ A; prJ(β) = prJ(α) and prI\J(β) > prI\J(α)},

F J(A,α) = {β ∈ A; prJ(β) = prJ(α), and prI\J(β) ≥ prI\J(α)},
The set F (A,α) =

⋃r
i=1 F{i}(A,α) will be called the fiber of α in A.

The sets F{i}(A,α) and F {i}(A,α) will be denoted simply by Fi(A,α) and F i(A,α). Notice

that FI(Zr, α) = F I(Zr, α) = {α}.

Definition 2. α ∈ A is called a maximal point of A, if F (A,α) = ∅.

This means that there is no element in A with one coordinate equal to the corresponding
coordinate of α and the others bigger.

From now on, E will denote the value set of the regular fractional ideal I of R. From the
fact that E has a minimum m and a conductor γ = c(E), one has immediately that all maximal
points of E are in the limited region {(x1, . . . , xr) ∈ Zr; mi ≤ xi < γi, i = 1, . . . , r}. This
implies that E has finitely many maximal points.

Definition 3. We will say that a maximal point α of E is an absolute maximal if FJ(E,α) = ∅
for every J ⊂ I, J 6= I. If a maximal point α of E is such that FJ(E,α) 6= ∅, for every J ⊂ I
with #J ≥ 2, then α will be called a relative maximal of E.

Figure 1. Maximal points

In the case where r = 2, the notions of maximal, relative maximal and absolute maximal
coincide. For r = 3 we may only have relative maximals or absolute maximals, but in general
there will be several types of maximals.

We will denote by M(E), RM(E) and AM(E) the sets of maximals, of relative maximals and
absolute maximals of the set E, respectively.

The importance of the relative maximals is attested by the theorem below that says that the
set RM(E) determines E in a combinatorial sense as follows:

Theorem 2 (generation). Let α ∈ Zr be such that pJ(α) ∈ EJ for all J ⊂ I with #J = r − 1.
Then

α ∈ E ⇐⇒ α /∈ F (Zr, β), ∀β ∈ RM(E).
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We will omit the proof since this result is a slight modification of [3, Theorem 1.5] with
essentially the same proof.

The following two lemmas give us characterizations of the relative and absolute maximal
points that will be useful in Section 4.

Lemma 3. Given a value set E ⊂ Zr and α ∈ Zr with the following properties:

i) there is i ∈ I such that Fi(E,α) = ∅,
ii) Fi,j(E,α) 6= ∅ for all j ∈ I \ {i}.

Then α is a relative maximal of E.

Proof. Follows the same steps as the proof of [3, Lemma 1.3] �

Lemma 4. Given a value set E ⊂ Zr and α ∈ E, assume that there exists an index i ∈ I such
that FJ(E,α) = ∅ for every J ( I with i ∈ J . Then α is an absolute maximal of E.

Proof. We have to prove that FK(E,α) = ∅ for all K ⊂ I with i /∈ K.
Assume, by reductio ad absurdum, that there exists some K ⊂ I with i /∈ K such that

FK(E,α) 6= ∅. Let β be an element in FK(E,α), then βk = αk, ∀k ∈ K and βj > αj , for
all j /∈ K. Applying Property (B) for α, β and any index k′ ∈ K, we have that there exists
θ ∈ E such that θk′ > βk′ = αk′ , θl ≥ min{αl, βl}, ∀l 6= k′ and θj = αj for all j /∈ K . If
B = (I \ K) ∪ {l ∈ K, θl = αl}, then we have θ ∈ FB(E,α) (6= ∅), with i ∈ B, which is a
contradiction. �

5. Colengths of fractional ideals

Let R be a complete admissible ring and let J ⊂ I two regular fractional ideals of R with
value sets D and E, respectively. Since J ⊂ I, one has that D ⊂ E, hence c(E) ≤ c(D). Our
aim in this section is to find a formula for the length `R(I/J ) of I/J as R-modules, called the
colength of J with respect to I, in terms of the value sets D and E.

The motivation comes from the case r = 1, that is, when R is a domain. In this case, as
observed by Gorenstein [6], one can easily show that

`R(I/J ) = #(E \D).

When r > 1, then E \D is not finite anymore.

For α ∈ Zr and I a fractional ideal of R, with value set E, we define

I(α) = {h ∈ I; v(h) ≥ α}.
It is clear that if mE = minE, then I(mE) = I.
One has the following result:

Proposition 5. ([1, Proposition 2.7]) Let J ⊆ I be two fractional ideals of R, with value sets
D and E, respectively, then

`R

(
I
J

)
= `R

(
I
I(γ)

)
− `R

(
J
J (γ)

)
,

for sufficiently large γ ∈ Nr (for instance, if γ ≥ c(D)).

If ei ∈ Zr denotes the vector with zero entries except the i-th entry which is equal to 1, then
the following result will give us an effective way to calculate colengths of ideals.

Proposition 6. [2, Proposition 2.2] If α ∈ Zr, then we have

`R

(
I(α)

I(α+ ei)

)
=

 1, if F i(E,α) 6= ∅,

0, otherwise.
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So, to compute, for instance, `R

(
I
I(γ)

)
, one may take a chain

mE = α0 ≤ α1 ≤ · · · ≤ αm = γ,

where αj ∈ Zr and αj − αj−1 ∈ {ei, i = 1, . . . , r}, and then using Proposition 6 by observing
that

`R

(
I
I(γ)

)
= `R

(
I(α0)

I(γ)

)
=

m∑
j=1

`R

(
I(αj−1)

I(αj)

)
.

D’Anna in [2] showed that `R

(
I
I(γ)

)
is equal to the length n of a saturated chain

mE < α0 < α1 < · · · < αn = γ

in E. The drawback of this result is that one has to know all points of E in the hypercube with
opposite vertices mE and γ.

The fact that E is determined by its projections EJ and its relative maximal points, suggests

that `R

(
I
I(γ)

)
can be computed in terms of these data. In fact, this will be done in Theorem 1

below.
In what follows we will denote `R simply by `.

5.1. Case r=2. This simplest case was studied by Barucci, D’Anna and Fröberg in [1] and we
reproduce it here because it gives a clue on how to proceed in general.

Let α0 = mE and consider the chain in Z2

α0 ≤ · · · ≤ αm = γ = (γ1, γ2) ≥ c(E)

such that
α0 = (α0

1, α
0
2), α1 = (α0

1 + 1, α0
2), . . . , αs = (γ1, α

0
2),

αs+1 = (γ1, α
0
2 + 1), αs+2 = (γ1, α

0
2 + 2), . . . , αm = (γ1, γ2),

and consider the following sets

L1 = {α0, α1, . . . , αs} and L2 = {αs, αs+1, . . . , αm}.
By Proposition 6, we have

`

(
I
I(γ)

)
= #L1 −#{α ∈ L1; F 1(E,α) = ∅}+

#L2 −#{α ∈ L2; F 2(E,α) = ∅}.
Now, because of our choice of L1, denoting by G(Ei) the set of gaps of Ei in the interval

(min(Ei),+∞), we have that

∀α ∈ L1, F 1(E,α) = ∅ ⇐⇒ pr1(α) ∈ G(E1),

hence

#{α ∈ L1; F 1(E,α) = ∅} = #G(E1).

Observe that not all α ∈ L2 with F 2(E,α) = ∅ are such that pr2(α) ∈ G(E2), hence

#{α ∈ L2; F 2(E,α) = ∅} = #G(E2)− ξ,

where ξ is the number of α in L2 with pr2(α) ∈ E2 and F 2(E,α) = ∅. But, such α are in
one-to-one correspondence with the maximal points of E, hence ξ = #M(E).

Putting all this together, we get
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Proposition 7. If γ ≥ c(E), then

(1) `

(
I
I(γ)

)
= (γ1 − α0

1) + (γ2 − α0
2)−#G(E1)−#G(E2)−#M(E).

5.2. Case r ≥ 3. Let us assume that I is a fractional ideal of R, where R has r minimal primes.
Let

mE = α0 ≤ α1 ≤ · · · ≤ αm = γ ≥ c(E),

be the chain in Zr, given by the union of the following paths (see Figure 2, for r = 3):

L1 : α0, α1 = α0 + e1, . . . , α
s1 = α0 + (γ1 − α0

1)e1 = (γ1, α
0
2, . . . , α

0
r),

. . .

Lr : αsr−1 = (γ1, . . . , γr−1, α
0
r), α

sr−1+1 = αsr−1 + er, . . . , α
m = γ.

Figure 2. The chain for r = 3

For i ∈ I, let us define [1, i] = [1, i+ 1) = {1, . . . , i}. We will need the following result:

Lemma 8. For any α ∈ L1 ∪ . . . ∪ Lr−1, and for i ∈ [1, r), one has

F i(E,α) 6= ∅ ⇐⇒ F i(E[1,r),pr[1,r)(α)) 6= ∅.

Proof. (⇒) This is obvious.
(⇐) Suppose that

(θ1, . . . , θr−1) ∈ F i(E[1,r),pr[1,r)(α)) 6= ∅.

Since by Lemma 1 one has that pr[1,r)(E) = E[1,r), then there exists θ = (θ1, . . . , θr−1, θr) ∈ E.

Since α ∈ Li for some i = 1, . . . , r − 1, it follows that αr = α0
r. Then one cannot have

θr < αr = α0
r, because otherwise

(α0
1, . . . , α

0
r−1, θr) = min(α0, θ) ∈ E,

which is contradiction, since α0 is the minimum of E. Hence θr ≥ αr, so θ ∈ F i(E,α), and the
result follows. �
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Lemma 8 allows us to write:

(2) `

(
I
I(γ)

)
= `

(
π[1,r)(I)

π[1,r)(I)(pr[1,r)(γ))

)
+ (γr − α0

r)−#{α ∈ Lr; F r(E,α) = ∅}.

Hence to get an inductive formula for `
(
I
I(γ)

)
, we only have to compute

#{α ∈ Lr; F r(E,α) = ∅},

and for this we will need the following lemma.

Lemma 9. Let α ∈ Zr, then F j(E,α) = ∅ if and only if either αj ∈ G(Ej) or there exist some
J ⊆ I with {j} ( J and a relative maximal β of EJ such that p̃rj(β) = αj and p̃ri(β) < αi, for
all i ∈ J , i 6= j.

Proof. (⇐) (We prove more, since it is enough to assume β is any maximal of EJ) It is obvious
that if αj ∈ G(Ej), then F j(E,α) = ∅. Let us now assume that there exist J ⊂ I, with {j} ( J
and β ∈M(EJ), such that p̃rj(β) = αj and p̃ri(β) < αi, for all i ∈ J , i 6= j.

Suppose by reductio ad absurdum that F j(E,α) 6= ∅. Let θ ∈ F j(E,α), that is, θj = αj and
θi ≥ αi,∀i ∈ J \ {j}. Now since, ∀i ∈ J, i 6= j,

p̃rj(prJ(θ)) = θj = αj = p̃rj(β) and p̃ri(prJ(θ)) = θi ≥ αi > p̃ri(β),

then prJ(θ) ∈ Fj(EJ , β), which contradicts the assumption that β ∈M(EJ).

(⇒) Since F j(E,α) = ∅ implies Fj(E,α) = ∅, the proof follows the same lines as the proof of
[4, Theorem 1.5]. �

Going back to our main calculation, by Lemma 9, if α ∈ Lr is such that F r(E,α) = ∅, then
either αr ∈ G(Er), or there exist a subset J of I = {1, . . . , r}, with {r} ( J , and β ∈ RM(EJ),
with p̃rr(β) = αr and p̃ri(β) < αi for i ∈ J, i 6= r.

Notice that for α ∈ Lr one has αi = γi for i 6= r, so the condition p̃ri(β) < αi for i ∈ J, i 6= r
is satisfied, since β ∈M(EJ). So, we have a bijection

{α ∈ Lr; F r(E,α) = ∅} ←→ G(Er) ∪
⋃

{r}(J⊆I

p̃rr(RM(EJ)).

Since for all J , with {r} ( J ⊆ I, the sets G(Er) and p̃rr(RM(EJ)) are disjoint, it follows
that

(3) #{α ∈ Lr;F r(E,α) = ∅} = #G(Er) + #

( ⋃
{r}(J⊂I

p̃rr(RM(EJ))

)
.

Let us define

Θ1 = 0, and Θi = #
⋃

{i}(J⊆[1,i]

p̃riRM(EJ)), 2 ≤ i ≤ r.

Now, putting together Equations (2) and (3), we get the following recursive formula:

Theorem 10. Let I be a fractional ideal of a ring R with r minimal primes with values set E.
If γ ≥ c(E), then

(4) `

(
I
I(γ)

)
= `

(
π[1,r)(I)

π[1,r)(I)(pr[1,r)(γ))

)
+ (γr − α0

r)−#G(Er)−Θr
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Corollary 11. With the same hypotheses as in Theorem 10, one has the formula

`

(
I
I(γ)

)
=

r∑
i=1

(
γi − α0

i −#G(Ei)−Θi

)
.

6. A closed formula for r = 3

In this section, we provide a nicer formula than Equation (4), when r = 3. To simplify nota-
tion, for any J ⊂ I = {1, 2, 3}, we will denote by RMJ , AMJ and MJ the sets RM(EJ), AM(EJ)
and M(EJ), respectively. Notice also that if #J = 2, then RMJ = AMJ = MJ .

From Formulas (1) and (2), for γ ≥ c(E), one has

`

(
I
I(γ)

)
= (γ1 − α0

1)−#G(E1) + (γ2 − α0
2)−#G(E2)−#M{1,2}+

(γ3 − α0
3)−#{α ∈ L3; F 3(E,α) = ∅}.

We will use the following notation:

L′3 = {α ∈ L3;F 3(E,α) = ∅}.
Now, from Lemma 9, the points α = (α1, α2, α3) ∈ L′3 are such that α3 ∈ G(E3) or they are

associated to maximal points of either E{1,3}, E{2,3}, or E with last coordinate equal to α3. So,
we have

(5) #L′3 = #G(E3) + #M{1,3} + #M{2,3} + #RM − η,
where η is some correcting term which will take into account the eventual multiple counting of
maximals having the same last coordinate.

To compute η we will analyze in greater detail the geometry of maximal points.
If α, β ∈M with α3 = β3, then α1 6= β1 and α2 6= β2. If α1 < β1, then necessarily β2 < α2.
We say that two relative (respectively, absolute) maximals α and β of E with α3 = β3 and

α1 < β1 are adjacent, if there is no (θ1, θ2, α3) in RM (respectively, in AM) with α1 < θ1 < β1

and β2 < θ2 < α2.
We will describe below the geometry of the maximal points of E

Lemma 12. If α ∈ AM , then one of the following three conditions is verified:

(i) there exist two adjacent relative maximals β and θ of E such that pr{1,3}(β) = pr{1,3}(α)

and pr{2,3}(θ) = pr{2,3}(α);

(ii) there exists β ∈ RM such that pr{1,3}(β) = pr{1,3}(α) and pr{2,3}(α) ∈ M{2,3}, or

pr{2,3}(β) = pr{2,3}(α) and pr{1,3}(α) ∈M{1,3};
(iii) pr{1,3}(α) ∈M{1,3} and pr{2,3}(α) ∈M{2,3}.

Proof. Let α = (α1, α2, α3) ∈ AM , then F (E,α) = ∅. We consider the following sets:

R1 = {β ∈ Z3; β3 = α3, β1 > α1, β2 < α2}
and

R2 = {θ ∈ Z3; θ3 = α3, θ1 < α1, θ2 > α2}.
Then there are four possibilities:

R1 ∩ E 6= ∅ and R2 ∩ E 6= ∅, R1 ∩ E 6= ∅ and R2 ∩ E = ∅.

R1 ∩ E = ∅ and R2 ∩ E 6= ∅, R1 ∩ E = ∅ and R2 ∩ E = ∅.
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Suppose R1 ∩E 6= ∅ and R2 ∩E 6= ∅. Choose β ∈ R1 ∩E and θ ∈ R2 ∩E, such that α2 − β2

and α1 − θ1 are as small as possible. Then by Property (A), we have min(α, β),min(α, θ) ∈ E.
Obviously pr{1,3}(β) = pr{1,3}(α) and pr{2,3}(θ) = pr{2,3}(α). Moreover, according to Lemma

3, these are relative maximals because F3(E,min(α, β)) and F3(E,min(α, θ)) are empty and the
sets F{1,3}(E,min(α, β)), F{1,3}(E,min(α, θ)), F{2,3}(E,min(α, β)) and F{2,3}(E,min(α, θ)) are
nonempty. It follows that min(α, β) and min(α, θ) are adjacent relative maximals.

Suppose R1 ∩ E 6= ∅ and R2 ∩ E = ∅. Choose β ∈ R1 ∩ E such that α2 − β2 is as small as
possible, then, as we argued above, we have that min(α, β) ∈ RM and pr{1,3}(β) = pr{1,3}(α).

Moreover, as R2 ∩ E = ∅, it follows that pr{2,3}(α) ∈M{2,3}.
The case R1 ∩ E = ∅ and R2 ∩ E 6= ∅ is similar to the above one, giving us the second

possibility in (ii).
Suppose R1 ∩ E = ∅ and R2 ∩ E = ∅. It is obvious that

pr{1,3}(α) ∈M{1,3} and pr{2,3}(α) ∈M{2,3}.
�

Given two points θ1, θ2 ∈ Z3 such that pr3(θ1) = pr3(θ2), we will denote by R(θ1, θ2) the
parallelogram determined by the coplanar points θ1, θ2,min(θ1, θ2) and max(θ1, θ2). We have
the following result:

Corollary 13. Let θ1, θ2 ∈ AM be such that pr3(θ1) = pr3(θ2). Then one has

R(θ1, θ2) ∩RM 6= ∅.

Proof. Because θ1, θ2 ∈ AM , it follows immediately that (iii) of Lemma 12 cannot happen,
therefore, the existence of the relative maximal is ensured by (i) or (ii). �

Lemma 14. If β and β′ are adjacent relative maximals, with β3 = β′3, then max(β, β′) is an
absolute maximal of E.

Proof. We may suppose that β1 > β′1 and β2 < β′2. As β and β′ are adjacent, we have that
F{1,3}(E, β) ∩ F{2,3}(E, β′) 6= ∅, because otherwise, take α1 ∈ F{1,3}(E, β), with α1

2 the greatest

possible and α2 ∈ F{2,3}(E, β′), with α2
1 the greatest possible. From Lemma 4 it follows that α1

and α2 are absolute maximals of E, then by Corollary 13 there exists a relative maximal in the
region R(α1, α2), this contradicts the fact that β and β′ are adjacent relative maximals.

Then, effectively, F{1,3}(E, β) ∩ F{2,3}(E, β′) = {max(β, β′)}, which is an absolute maximal.
�

Recall that the elements in L′3 are of the form (γ1, γ2, α3), with α0
3 ≤ α3 ≤ γ3.

Lemma 15. Let α ∈ L′3 be such that

α3 ∈ (p̃r3(M{1,3}) \ p̃r3(M{2,3})) ∩ pr3(RM) or α3 ∈ (p̃r3(M{2,3}) \ p̃r3(M{1,3})) ∩ pr3(RM).

Then there are the same number of relative as absolute maximals in E with third coordinate equal
to α3.

Proof. We assume that α3 ∈ (p̃r3(M{1,3}) \ p̃r3(M{2,3})) ∩ pr3(RM), since the other case is
analogous.

Since α3 ∈ pr3(RM), we may assume that there are s (≥ 1) relative maximals β1, . . . , βs in
E with third coordinate equal to α3. We may suppose that β1

1 < β2
1 < · · · < βs1, so the βi’s are

successively adjacent relative maximals, hence, by lemma 14, we have that

max(β1, β2), . . . ,max(βs−1, βs) ∈ AM.

This shows that there are at least s− 1 absolute maximals in E with third coordinate α3.
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Now as pr3(α) ∈ p̃r3(M{1,3}), then there is a (η1
1 , α3) ∈ M{1,3} with η1

1 ≤ α1 (= γ1), because
c(E{1,3}) ≤ pr{1,3}(c(E)) = (γ1, γ3). Because of our hypothesis, the elements δ in the fiber

F{1,3}(E, β
s) are such that βs1 < δ1 ≤ η1

1 . But we must have δ1 = η1
1 , because, otherwise, there

would be a point η1 = (η1
1 , η

1
2 , α3) ∈ pr−1

{1,3}(η
1
1 , α3), with η1

2 < βs2, and a point η2 ∈ F{2,3}(E, βs)
with η2

1 < η1
1 and η2

2 = βs2. These η1 and η2 are absolute maximals, due to Lemma 4, then from
Corollary 13, there would exist a relative maximal in the region R(η1, η2), which contradicts the
fact that we have s relative maximals. This implies that (βs1, η

1
2 , α3) is an absolute maximal of

E.
We have to show that there are no other absolute maximals. If such maximal existed, then one

of the three conditions in Lemma 12 would be satisfied. Obviously conditions (i) and (iii) cannot
be satisfied, but neither condition (ii) can be satisfied, because otherwise α3 ∈ p̃r3(M{2,3}),
which is a contradiction. �

Lemma 16. Let α = (α1, α2, α3) ∈ L′3 be such that α3 ∈
(
p̃r3(M{1,3})∩ p̃r3(M{2,3})

)
\pr3(RM),

then there exists one and only one absolute maximal of E with third coordinate equal to α3.

Proof. As

α3 ∈ p̃r3(M{1,3}) ∩ p̃r3(M{2,3}),

then there exist (β1
1 , α3) ∈ M{1,3} and (β2

2 , α3) ∈ M{2,3} such that β1
1 < α1(= γ1) and

β2
2 < α2(= γ2), because one always has that c(E{i,j}) ≤ pr{i,j}(c(E)).

Consider the element θ = (β1
1 , β

2
2 , α3). If θ ∈ E, since it is easy to verify that FJ(E, θ) = ∅

for 3 ∈ J ( {1, 2, 3}, it follows by Lemma 4 that θ is an absolute maximal of E, which is unique
in view of Corollary 13 and the hypothesis that α3 6∈ pr3(RM).

If θ 6∈ E, then take θ1 = (β1
1 , δ

1
2 , α3) ∈ pr−1

{1,3}(β
1
1 , α3) ∩ E, and

θ2 = (δ2
1 , β

2
2 , α3) ∈ pr−1

{2,3}(β
2
2 , α3) ∩ E.

We have that δ2
1 < β1

1 and δ1
2 < β2

2 , because otherwise θ ∈ E or, (β1
1 , α3) and/or (β2

2 , α3) would
not be maximals of E{1,3} and/or E{2,3}. Choose δ2

1 and δ1
2 the greatest possible, then it is easy

to verify that FJ(E, θi) = ∅ for i = 1, 2 and 3 ∈ J ( {1, 2, 3}. Hence from Lemma 4, θ1 and θ2

are absolute maximals of E, therefore from Corollary 13 there would be a relative maximal of
E with third coordinate equal to α3, which is a contradiction. �

Lemma 17. Let α ∈ L′3 be such that α3 ∈ p̃r3(M{1,3}) ∩ p̃r3(M{2,3}) ∩ pr3(RM). If there exist
s relative maximals with third coordinate equal to α3, then there exist s + 1 absolute maximals
with third coordinate equal to α3.

Proof. Following the proof of Lemma 15, we have s − 1 absolute maximals obtained by taking
the maximum of each pair of adjacent relative maximals. The conditions α3 ∈ p̃r3(M{1,3}) and
α3 ∈ p̃r3(M{2,3}) give us two extra absolute maximals, and the same argument used there, shows
that there are no other. �

Lemma 18. Let α ∈ L′3 be such that α3 ∈ pr3(RM)\
(
p̃r3(M{1,3})∪ p̃r3(M{2,3})

)
. If there exist

s relative maximals with third coordinate equal to α3, then we have s− 1 absolute maximals with
third coordinate equal to α3.

Proof. The arguments used in the proofs of the last two lemmas give us the result. �

Going back to Formula (5), we want to calculate η. From Lemma 9 we can ensure that
α ∈ L′3 = {α ∈ L3; F 3(E,α) = ∅} \ G(E3), only if α falls into one of the following five cases:
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(i) α3 ∈ (p̃r3(M{1,3}) \ p̃r3(M{2,3})) ∩ pr3(RM).
If there exist such α, then they are related to a unique element of M{1,3} and if there

are s1 relative maximals with third coordinate α3, then in our formula α was counted
s1 + 1 times. By Lemma 15 we know that there exist s1 absolute maximals of E with third
coordinate α3. So, we subtract s1 from our counting to partially correct the formula.

(ii) α3 ∈ (p̃r3(M{2,3}) \ p̃r3(M{1,3})) ∩ pr3(RM).
Analogously to (i), α is related to a unique element of M{2,3} and if there are s2 relative

maximals with third coordinate α3, then α was counted s2 +1 times in the formula. Again,
by Lemma 15 we know that there are s2 absolute maximals of E with third coordinate α3.
So, we subtract s2 from our counting to partially correct the formula.

(iii) α3 ∈
(
p̃r3(M{1,3}) ∩ p̃r3(M{2,3})

)
\ pr3(RM).

In this case, α is related to a unique elements in M{1,3} and in M{2,3}, so in the formula
we are counting α twice. By Lemma 16 there is a unique absolute maximal of E with
third coordinate α3 such that its projections pr{1,3} and pr{2,3} are in M{1,3} and M{1,3},
respectively. So, we correct partially the formula by subtracting 1, which corresponds to
this unique absolute maximal.

(iv) α3 ∈ p̃r3(M{1,3}) ∩ p̃r3(M{2,3}) ∩ pr3(RM).
In this case, α is related to a unique element of M{1,3}, to a unique element of M{2,3}

and, let us say, s3 elements of RM , so in our counting, α was counted s3 + 2 times. By
Lemma 17 there exist s3 +1 absolute maximals of E with third coordinate α3. In this case,
the correcting term is s3 + 1, equal to the number of these absolute maximals.

(v) α3 ∈ pr3(RM) \
(
p̃r3(M{1,3}) ∪ p̃r3(M{2,3})

)
.

In this case, α is related with, let us say, s4 elements of RM with third coordinate equal
to α3, so we are counting it s4 times. By Lemma 18 there exist s4 − 1 absolute maximals
with third coordinate α3. This is exactly the correcting term we must apply to our formula.

Observe that the above cases exhaust all absolute maximals of E, implying the following
result conjectured by M. E. Hernandes after having analyzed several examples (cf. [7]):

Theorem 19. Let R be an admissible ring with three minimal primes and let I be a fractional
ideal of R with values set E. If γ ≥ c(E), then

`
(
I
I(γ)

)
=

∑r
i=1

(
(γi − α0

i )−#G(Ei)
)
−
∑

1≤i<j≤3 #M{i,j}−
#RM + #AM.

Corollary 20. Let J ⊆ I be two fractional ideals of an admissible ring R, with three minimal
primes. Denote by E and D, respectively, the value sets of I and J . Then

`R

(
I
J

)
=

∑3
i=1

(
(β0
i − α0

i ) + (#G(Di)−#G(Ei))
)

+∑
1≤i<j≤3 #M{i,j}(D)−

∑
1≤i<j≤3 #M{i,j}(E)+

#RM(D)−#RM(E) + #AM(E)−#AM(D),

where α0 = min(E) and β0 = min(D).
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