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REFLEXION MAPS AND GEOMETRY OF SURFACES IN R4

P.J. GIBLIN, S. JANECZKO, AND M.A.S. RUAS

Abstract. In this article we introduce new affinely invariant points—‘special parabolic points’—

on the parabolic set of a generic surface M in real 4-space, associated with symmetries in the
2-parameter family of reflexions of M in points of itself. The parabolic set itself is detected in

this way, and each arc is given a sign, which changes at the special points, where the family
has an additional degree of symmetry. Other points of M which are detected by the family

of reflexions include inflexion points of real and imaginary type, and the first of these is also

associated with sign changes on the parabolic set. We show how to compute the special points
globally for the case where M is given in Monge form and give some examples illustrating the

birth of special parabolic points in a 1-parameter family of surfaces. The tool we use from

singularity theory is the contact classification of certain symmetric maps from the plane to
the plane and we give the beginning of this classification, including versal unfoldings which

we relate to the geometry of M .

1. Introduction

In a previous article [6] the first two authors studied families of local reflexion maps on
surfaces in R3 and their bifurcation sets, in particular showing that certain special parabolic
points, not related to the flat geometry of the surface, are detected by the structure of the
corresponding bifurcation set. These special parabolic, or A∗2 points, arose also in earlier work
on centre symmetry sets of surfaces [7]. Although the definition of the reflexion maps is local
the bifurcation sets could be extended over the whole surface, producing curves connecting
the special parabolic points. In this article we extend some of these results to surfaces in R4,
again studying local reflexions and bifurcation sets of familites of contact maps. In the present
situation we need to study the contact between two surfaces in R4 and this is measured by a map
(germ) R2, 0→ R2, 0. The appropriate equivalence relation to measure contact is K-equivalence
(see [10]) and therefore the bifurcation set of a family of contact maps must be constructed
according to this equivalence relation, taking into account the inherent Z2-symmetry of the
contact maps.

We find new ‘special parabolic points’ on a surface in R4, which are of two types, ‘elliptic’
and ‘hyperbolic’, and are in some ways analogues of the special parabolic points encountered in
R3; the local structure of the bifurcation sets is also similar to the 3-dimensional case. For a
surface in R4 however there are more special kinds of points and the bifurcation set of our family
of contact functions displays different structures at these. We have not so far found a natural
interpretation of a global bifurcation set, connecting special parabolic points and other points
through the hyperbolic and elliptic regions of the surface.

In §2 we derive the family of reflexion maps and explain our interpretation of the bifurcation
set of such a family. The abstract classification which we need is given in Theorem 3.1 and the
application to surfaces in R4 occupies the remainder of §3. We find the bifurcation set germ
at parabolic points, at the two types of special parabolic points, and at inflexion points of real
and imaginary type. In particular we show that arcs of the parabolic set between these various
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special points can be given a sign, which changes in a well-defined way at the special points.
Identifying the local structure of the bifurcation sets requires that we are able to check versal
unfolding conditions and we give the criteria for these to hold in each case.

The above calculations are done with a surface M in Monge form at the origin. In §4 we
show how to compute the special parabolic points on a whole surface given in Monge form. The
special parabolic points are found as the intersection of the parabolic set with another curve in
M and we find an explicit formula for this curve, given in Appendix A but applied to several
examples in §4. An example, adapted from [4], shows the birth of special parabolic points on a
loop of the parabolic set created in a generic 1-parameter family of surfaces—an elliptic island
in a hyperbolic sea. Immediately after the moment that the island appears it has no special
parabolic points but two of these, of the same type, can be born as the island grows larger.
Between the two the sign of the parabolic set changes.

Finally in §5 we give some concluding remarks and open problems.

2. Families of contact maps

Consider a surface M in R4, with coordinates (a, b, c, d), parametrized by

γ(x, y) = (f(x, y), g(x, y), x, y),

where we shall assume that the 1-jets of f and g at (x, y) = (0, 0) are zero. Let (p, q) be the
parameters of a fixed point on the surface. Reflecting a point γ(p+ x, q + y) of M in the point
γ(p, q) gives 2γ(p, q)−γ(p+x, q+y), so that reflecting M in γ(p, q) gives the surface M∗ through
γ(p, q) with parametrization R2 → R4:

(x, y) 7→ (2f(p, q)− f(p+ x, q + y), 2g(p, q)− g(p+ x, q + y), p− x, q − y).

Thus x = y = 0 returns the point γ(p, q). Composing this parametrization with the map
R4 → R2 defined by (a, b, c, d) 7→ (f(c, d)− a, g(c, d)− b), for which the inverse image of (0, 0)
is equal to M , gives the following map (germ) F(p,q) : R2, (0, 0) → R2, (0, 0), whose K-class
measures the contact between M and M∗ at γ(p, q) (see [10]).

F(p,q)(x, y) = (f(p+ x, q + y) + f(p− x, q − y)− 2f(p, q),

g(p+ x, q + y) + g(p− x, q − y)− 2g(p, q)).(1)

When we include the parameters p, q we write F (x, y, p, q). Note that

F (x, y, p, q) ≡ F (−x,−y, p, q) :

for each (p, q) the map F(p,q) is symmetric with respect to the reflexion (x, y)→ (−x,−y).

Thus F is a family of symmetric mappings R2 → R2, with variables x, y parametrized by p, q.
We investigate the bifurcation set of this family, the fundamental definition of which is

BF = {(p, q) : there exist (x, y) such that F(p,q) has an unstable

singularity at x, y with respect to K equivalence

of maps symmetric in the above sense}.
In [6] the corresponding bifurcation set of a family F of real-valued functions was analysed

by studying the critical set of F . Here we need to work directly with K-equivalence of maps,
where the critical set does not play so significant a role, and we adopt a different approach.

At (p, q) = (0, 0) the contact map is

(2) F(0,0)(x, y) = (f(x, y) + f(−x,−y), g(x, y) + g(−x,−y)),

which is twice the even part of (f, g), but we shall sometimes ignore the factor 2. Thus the
conditions on M needed for the classification of F(0,0) involve only the even degree terms of f, g;
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however the conditions for the family F with parameters p, q to give a K-versal unfolding will
involve also the odd degree terms.

We work within the set of maps h : R2 → R2 which are symmetric by reflexion in the origin:
h(x, y) = h(−x,−y). To do this we use the basis u = x2, v = xy,w = y2 for all functions of two
variables which are symmetric with respect to this symmetry and study map germs H : R3 → R2

with coordinates (u, v, w) in R3, up to K-equivalence preserving the homogeneous variety (cone)
V : v2 = uw. (In fact for us this is a half-cone since u = x2 and w = y2 are non-negative,
but for classification purposes we may assume that the whole cone is preserved.) We write

VK-equivalence for this equivalence of germs H : R3, (0, 0, 0) → R2, (0, 0). We shall work with

VK-versal unfoldings and construct bifurcation diagrams for these in a sense we now explain.
For a given germ H, the VK equivalence will preserve the intersection H−1(0) ∩ V up to

local diffeomorphism of R3, and indeed will preserve the multiplicity of intersection of the curve
H−1(0) with the cone V . As the map H varies in a family the multiplicity will change and
furthermore intersection points of multiplicity > 1 may move away from the origin; these points
nevertheless form part of the ‘contact data’ of H−1(0) and V since they represent unstable
mappings. Except in one case, described below, all the contact data are concentrated at the
origin.

Definition 2.1. The strata of our bifurcation set are those points in the versal unfolding space
for which the contact data consisting of the multiplicity of contact between H−1(0, 0) and V in
an arbitrarily small neighbourhood of the origin in R3 are constant.

The idea is best illustrated by an example, which will arise in §3.5 below. Consider the family
of maps Hλ,µ(u, v, w) = (v, u− w3 + λw + µw2). For any (λ, µ), H−1λ,µ(0) lies in the plane v = 0

with coordinates (u,w), and V : v2 = uw intersects this plane in the two lines u = 0, w = 0 (for
real solutions for x, y we require indeed u ≥ 0 and w ≥ 0). We therefore examine how the curve
u−w3 + λw+µw2 = 0 in the (u,w) plane meets the two coordinate axes. Intersection with the
axis w = 0 gives only the origin. Intersection with the axis u = 0 requires w(−w2 +µw+λ) = 0
which gives tangency at the origin when λ = 0, so that in the (λ, µ) plane the axis λ = 0, apart
from the origin, is one stratum of the bifurcation set. The total contact between H−1λ,µ(0, 0) and
V at the origin is 3. The origin λ = µ = 0 is a separate stratum since the contact there between
H−1λ,µ(0, 0) and V is 4. There is also a double root of −w2 + µw + λ = 0 at w = 1

2µ when

µ2 + 4λ = 0, resulting in ordinary tangency between H−1λ,µ(0, 0) and V at (u,w) = (0, 12µ). This

gives a stratum µ2 + 4λ = 0 of the bifurcation set, with µ ≥ 0 since w = y2 ≥ 0, which intersects
every neighbourhood of (0, 0) in the plane of the unfolding parameters (λ, µ). The various
possibilities are sketched in Figure 1 where the intersection number between Hλ,µ = 0 and V is
indicated against each intersection point. For real solutions (x, y) we require these intersection
points to be in the quadrant u ≥ 0, w ≥ 0 of the (u,w) plane. The resulting bifurcation set is
also drawn in Figure 1, with four strata of positive codimension in the (λ, µ) plane.

3. Classification of the contact maps up to VK-equivalence

We consider map germs R3 → R2, with coordinates u, v, w in the source (u = x2, v = xy,
w = y2 as above), under contact equivalence which preserves the homogeneous variety
V : uw − v2 = 0. Vector fields generating those tangent to this variety are given by the Euler
vector field and the three hamiltonian vector fields:

(3) u ∂
∂u + v ∂

∂v + w ∂
∂w , 2v ∂

∂u + w ∂
∂v , u

∂
∂v + 2v ∂

∂w , u
∂
∂u − w

∂
∂w .

The tangent space to the VK orbit at H(u, v, w) is dH(θV )+H∗(m2)E23 , where dH is the jacobian
matrix of H and θV is the E3 module generated by the above vector fields.
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Figure 1. The unstable intersections between the curve v = 0, u = w3 − λw− µw2

and the cone V : v2 = uw for various values of λ, µ. These give 0- and 1-dimensional
strata of the bifurcation set of the family H(u, v, w) = (v, u−w3 + µw+ λw2), shown
in the boxed diagram at bottom right. Intersections corresponding to real values of
(x, y) are in the quadrant u ≥ 0, w ≥ 0 of the u,w-plane.

The classification which we need is summarized in Theorem 3.1, which is proved by the
method of complete transversals [3] and the finite determinacy theorem for VK equivalence [5].
Comments on this classification and application to our geometrical situation are in the remainder
of this section. (We remark here that a different but related classification of maps involving only
odd degree terms is obtained in [9].)

Theorem 3.1. The abstract classification of map germs H : R3 → R2 up to K-equivalence
preserving the half-cone V : v2 − uw = 0, u ≥ 0, w ≥ 0 starts with the classes given in Table 1.
The classes of symmetric germs h : R2 → R2, where h(x, y) = h(−x,−y), up to K-equivalence
preserving the symmetry are obtained by replacing u, v, w by x2, xy, y2 respectively. �

type normal form VK codimension versal unfolding geometry

(H) (w, u) 0 — hyperbolic point
(E) (u− w, v) 0 — elliptic point
(P) (v, u± w2) 1 (0, λw) ordinary parabolic point

(SP) (v, u± w3) 2 (0, λw + µw2) special parabolic point
(IR) (v, u2 + 2buw ± w2) 3 (0, buw + λu+ µw) inflexion of real type

b2 6= 1 for +
(II) (u+ w, ku2 + uv) 3 (0, ku2 + λu+ µv) inflexion of imaginary type

or (u+ w, uv + kv2) 3 (0, kv2 + λu+ µv)

Table 1. The lowest codimension singularities in the VK classification of map
germs R3, (0, 0, 0)→ R2, (0, 0).

We shall see that the moduli b and k in the normal forms above do not affect the geometry of
the situation. Note that the two forms (v, u± w2) are not equivalent since u ≥ 0 so we cannot
replace u by −u. The same applies to the two forms (v, u± w3). Note that the germs (P) and
(SP) are the first two in a sequence (v, u±wk), k ≥ 2, distinguished by the contact between the
zero-set of the germ and the cone V : v2 − uw = 0.
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The contact maps are invariant under affine transformations of the space R4 in which our
surface M lies, so that we may first put M in a standard form at the origin in (a, b, c, d)-space.
We can assume the tangent plane at the origin is the (c, d)-plane and the quadratic terms f2, g2
of f, g are reduced by the action of GL(2,R)×GL(2,R) on pairs of binary quadratic forms to
a standard form. Finally a linear transformation of R4 reparametrizes M as (x, y) 7→ (f, g, x, y)
where now f and g have their quadratic parts in standard form. See for example [4, pp. 182–183]
for the standard forms of 2-jets of surfaces in R4.

There is a convenient way to recognize the types (P) and (SP) of the contact map

(u, v, w) 7→ (C1(u, v, w), C2(u, v, w)),

which will be useful below.

Lemma 3.2. In each case the zero set C1 = C2 = 0 in R3 is a smooth curve at the origin and
(P): has exactly 2-point contact (ordinary tangency) with the cone V : v2 = uw at the origin,
(SP): has exactly 3-point contact with the cone V at the origin. �

3.1. First stable case: hyperbolic point. A standard form for the 2-jet of the surface at a
hyperbolic point is (y2, x2, x, y), or in a less reduced form (f11xy + f02y

2, g20x
2, x, y) where

f02 6= 0, g20 6= 0. The contact map at the origin of R4, ignoring the factor 2 in (2), has 1-jet
F1 = (f11v+ f02w, g20u) (or just (w, u) in the reduced form). This is VK-stable and is the case
where the kernel of the linear map F1 : R3 → R2 intersects the cone V ⊂ R3 only in the origin.
The bifurcation set germ is empty.

3.2. Second stable case: elliptic point. A standard form for the 2-jet of the surface is
(x2 − y2, xy, x, y), or in a less reduced form (f20x

2 + f02y
2, g11xy, x, y), f20f02 < 0, g11 6= 0

as in [4]. This corresponds to 1-jet F1 = (f20u + f02w, g11v) (or (u − w, v) in reduced form).
This is VK-stable and it is the case where the kernel of the linear map F1 : R3 → R2 intersects
the cone V in two distinct generators. The bifurcation set germ is empty.

3.3. Codimension 1 case: ordinary parabolic point. A standard form of the 2-jet of M at
a parabolic point, up to affine transformations of R4, is

(f11xy, g20x
2, x, y),

where f11 6= 0, g20 6= 0. The corresponding 1-jet in (u, v, w) coordinates is (v, u) from the
abstract classification, with gives 2-jet (v, u ± w2) which is 2-VK-determined. The two cases,
with signs ±, are not equivalent. Note that with 1-jet (v, u) the kernel of the linear map from
R3 to R2, (u, v, w) 7→ (v, u), is along the w-axis, which is a generator of the cone V .

For the contact map F(0,0) we obtain (f11xy, g20x
2± g04y4), provided the coefficient g04 of y4

is nonzero, with two cases according as g20g04 > 0 or < 0. (It can be checked that in reducing
to this form the coefficients of (0, x2) and (0, y4) are not changed, in particular the final values
are not influenced by the coefficients in the polynomial f , provided of course that f11 6= 0.) The
coefficient of y2 in the expansion of the second component of F (x, y, p, q) is 2g12p+ 6g03q; thus
provided g12 6= 0 or g03 6= 0 the family (1) with parameters p, q gives a versal unfolding (note
that these are odd degree terms of g(x, y)). We call such points, where the expansion of M at
the origin has the 2-jet (f11xy, g20x

2, x, y) and

(4) f11 6= 0, g20 6= 0, g04 6= 0, g12 or g03 6= 0,

ordinary parabolic points of M . The last condition is equivalent to the smoothness of the para-
bolic set of M at the origin (see below) but the condition g04 6= 0 does not arise from the flat
geometry of M and is analogous to the condition found in [6] for an ‘ordinary’ (A2) point of the
parabolic set of M ⊂ R3.
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A standard result is that the global equation of the parabolic set of a surface M in the form
(f(x, y), g(x, y), x, y) is

(5) (fxxgyy − fyygxx)2 = 4(fxygyy − fyygxy)(fxxgxy − fxygxx).

This can be proved by considering the 3-parameter family of height functions at any point of M ,
say H(x, y, λ, µ, ν) = λf(x, y)+g(x, y)+µx+νy or H(x, y, λ, µ, ν) = f(x, y)+λg(x, y)+µx+νy
and writing down the condition that there is a unique direction (λ, 1, µ, ν) or (1, λ, µ, ν) with
the height function having a non-Morse singularity, that is Hx = Hy = HxxHyy −H2

xy = 0. (All
normal vectors to M have one of these two forms.) We note below in §3.4 that the formula also
follows from our analysis of contact functions.

In the present case the lowest terms in the equation of the parabolic set at the origin are,
from (5), 16f211g20(g12x+ 3g03y), so that the parabolic set is smooth at the origin if and only if
g12 or g03 is nonzero: the last condition of (4). We can unambiguously label smooth segments of
the parabolic set with the sign + or − according as, with 2-jet of (f, g) equal to (f11xy, g20x

2),
both coefficients being nonzero, the product g20g04 of the coefficients of (0, x2) and (0, y4) is > 0
or < 0. We shall see below when the sign of the parabolic set changes.

For the bifurcation set, we consider the map (u, v, w) 7→ (v, u±w2 +λw) and the multiplicity
of the zero set of this in an arbitrarily small neighbourhood of the origin. Since v = 0 the
intersection lies in the (u,w) plane, at points of the u- and w-axes. The curve u = ∓w2 − λw is
tangent to the w axis if and only if λ = 0 and then the multiple value of w is 0 so the tangency
is at the origin. In the geometrical case of a surface, as above, the condition λ = 0 is replaced by
2g12p+ 6g03q = 0, which is the tangent line to the parabolic set at the origin. Thus the germ of
the bifurcation diagram in the (p, q) parametrization plane of the surface consists of the tangent
line to the parabolic set:

Proposition 3.3. At an point of the parabolic set satisfying (4) the bifurcation set B is locally
exactly the parabolic set. We can give a sign to each such point of the parabolic set by the sign
of g20g04 when the 2-jet of (f, g) is reduced to (f11xy, g20x

2).

Points off the parabolic set have stable contact maps, in fact they are elliptic or hyperbolic
points as in §§3.1 and 3.2.

3.4. Formulas for loci of types (P) and (SP) in Table 3.1. We can use the criterion in
Lemma 3.2 to obtain the equation (5) for the parabolic set on a general surface in Monge form,
and then find an additional equation which holds at special parabolic points. We shall use these
in §4 to analyse some examples of special parabolic points.

For the contact map (1) at the point of M with parameters p, q write f11 for fxx(p, q), f12 for
fxy(p, q), f1222 for fxyyy(p, q) and so on. Then the 2-jet of the first component of the contact
map F = F(p,q) in terms of u, v, w is (taking into account the factor 2 which automatically arises)

C1(u, v, w) = (f11u+ 2f12v + f22w) +

1
12

(
f1111u

2 + 4f1112uv + 6f1122uw + 4f1222vw + f2222w
2
)
,

with a similar formula for the second component.
We can now solve the equations C1 = C2 = 0 for say u and v in terms of w up to order 2,

and substitute in the equation v2 = uw of the cone V to obtain the order of contact of the zero
set of C with V . The condition for the order of contact to be at least 2, that is the condition
for the coefficient of w2 after substitution to be zero, then works out at exactly (5) where fxx
appears as f11 and so on.

The additional condition for the contact to be of order at least 3, that is for the coefficient
of w3 also to be zero, is naturally more complicated and requires solving for u and v as above
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to a higher order. But it is possible to use this condition in explicit examples and it is stated in
appendix A. This formula is used in examples in §4.

3.5. Codimension 2 case: special parabolic point. This degeneracy occurs for the abstract
map R3 → R2 when the coefficient of w2 in §3.3 equals zero but there is a nonzero coefficient
of w3. The kernel of the 1-jet map R3 → R2, (u, v, w) 7→ (v, u) is still 1-dimensional and along
a generator of the cone V . The bifurcation set of the abstract germ in the case (v, u− w3) was
analysed in §2 and is illustrated in Figure 1. The other case, (v, u+ w3), is similar and the full
picture of the bifurcation set is in Figure 2.

In our geometrical situation, on the surfaceM the above degeneracy corresponds to a parabolic
point with the 2-jet of (f, g) being (f11xy, g20x

2) and g04 = 0. The additional condition
which ensures that the contact singularity is no more degenerate is g213 − 4g20g06 6= 0, that is
the even degree terms g20x

2 + g13xy
3 + g06y

6 do not form a perfect square. (This condition
remains unchanged when the higher terms of f are eliminated, in particular the condition to
avoid further degeneracy does not involve the higher degree terms of f .) We call these special
parabolic points1. The further condition that in the family of contact maps the parameters p, q
give a versal unfolding is 5g12g05 − 3g03g14 6= 0.

+ +
E EH Hl l

mm

+ w 3 - w 3

+ +E EH

H

l l

mm

+ w 2 - w 2

( a ) ( b )

+
HE

+

H

E

Figure 2. (a) The bifurcation set of the unfolding

(v, u± w3 + λw + µw2) = (xy, x2 ± y6 + λy2 + µy4),

as in §3.5 (special parabolic points), with +w3 on the left and −w3 on the right. The
bifurcation set in each case consists of a germ of the µ-axis and a half parabola. In the
geometrical situation the µ-axis corresponds to the parabolic set of M and the sign,
+ or −, against this axis is the sign attached to that segment of the parabolic set as
in §3.3. Further E and H refer to the parts of the (λ, µ) plane which correspond with
elliptic and hyperbolic points of M , respectively, using the normal forms of §§3.1,3.2.
The left-hand figure of (a) corresponds with 4g20g06 − g213 > 0 and the right-hand
figure with 4g20g06 − g213 < 0.
(b) Similarly for the bifurcation set of (v, u2 ±w2 + λu+ µw) as in §3.6 (inflexions of
real type), corresponding to 4g40g04 − g222 > 0 on the left and < 0 on the right in the
geometrical situation.

The two cases, distinguished by the sign of g213−4g20g06 in the geometrical situation, differ as
to the region of M , elliptic or hyperbolic, in which the ‘half parabola’ branch of B lies. Figure 2(a)
shows the two cases. Furthermore, at points along the parabolic set, the local expansion of the
surface has g04 6= 0 and g04 changes sign at special parabolic points. Thus if we label points of
the parabolic set by + or − then the sign changes at special parabolic points. See Figure 2(a).

Summing up the conclusions of this section:

1In the case of a surface in R3 they had an alternative name, “A∗
2 points”, referring to the fact that the contact

between the surface and its tangent plane at any parabolic point is a function of type A2, but this notation is
not appropriate here.



REFLEXION MAPS AND GEOMETRY OF SURFACES IN R4 91

Proposition 3.4. A parabolic point of M , with the 2-jet of (f, g) in the form (f11xy, g20x
2)

is called a special parabolic point if the coefficient g04 of y4 in g is zero and g213 − 4g20g06 6= 0.
The sign attached to ordinary parabolic points close to this one, as in Proposition 3.3, changes
at a special parabolic point. Provided 5g12g05 − 3g03g14 6= 0 the p, q parameters versally unfold
the contact singularity in the family F as in (1) and the bifurcation set is the union of the
parabolic set and a “half-parabola” lying in the hyperbolic or elliptic region according to the sign
of 4g20g06 − g213, as in Figure 2(a).

We do not know whether there is any significance attached to the sign of 5g12g05 − 3g03g14.

3.6. First codimension 3 case: inflexions of real type. The 2-jet of (f, g) at inflexion
points of real type (also called real inflexions or umbilic points) on M has the form (f11xy, 0),
where f11 6= 0.

The abstract map R3 → R2, (u, v, w) 7→ (v, 0) has a 2-dimensional kernel which intersects the
cone V along two generators. The abstract normal form is (v, u2 + 2buw±w2) where the second
component should not be a perfect square, that is b2 6= ±1 (for the − case this is no restriction).
An abstract VK-versal unfolding is given by (v, u2 + 2buw±w2 +λu+µw), that is b is a smooth
modulus in this case. The bifurcation set B is found by considering the contact of the curve
u2 + 2buw ± w2 + λu + µw = 0 with the u and w axes in the (u,w) plane. The condition for
tangency comes to µ = 0 or λ = 0, irrespective of the sign in the normal form and the value of
b. Thus B consists of the complete λ and µ axes (not half-axes), and does not depend on the
modulus b. Note that although uw = v2 on the cone V our map germs are defined on R3 and
not just on the cone, so we cannot use left-equivalence to remove the modulus term 2buw.

Remark 3.5. We do not know if b has any geometrical significance. However, taking the two
components of the map (v, u2 + 2buw±w2), the intersection of the cone V with the plane v = 0
gives two lines in the plane, u = 0 and w = 0, and the second component gives two more lines
which are real when b2 > ±1 (no restriction for the − sign). The cross-ratio of these four lines
will be responsible for the existence of a smooth modulus.

The contact singularity for λ = 0, µ 6= 0 or µ = 0, λ 6= 0 is equivalent to that for a parabolic
point as in §3.3. Thus the two crossing branches of B represent, in our geometrical situation,
the parabolic set on M . Indeed at a generic inflexion of real type the parabolic set does have a
transverse self-crossing. Furthermore, as λ passes through zero the normal form for the contact
singularity at a parabolic point changes from the + case to the − case or vice versa; similarly
when µ passes through zero. So the sign attached to the parabolic set changes along each branch
of B at an inflexion point of real type.

In the geometrical situation, on the surface M the bifurcation set divides the surface locally
into four regions, two opposite regions being hyperbolic and two elliptic. The configuration
corresponding to the two normal forms is shown in Figure 2(b). The condition to avoid further
degeneracy is g222 − 4g40g04 6= 0 and the condition for p, q in the family of contact maps to
versally unfold the singularity is 9g30g03− g12g21 6= 0. Perhaps surprisingly, this latter condition
is the same as that for an inflexion point of real type to be R+ versally unfolded by the family
of height functions. (See2 [8, Prop.7.9, p.224].) As above, the bifurcation set consists of the
two intersecting branches of the parabolic set, and passing through the crossing point on either
branch the “sign” of the parabolic set, as in §3.3, changes. See Figure 2.

2Translating notation from this to our notation we have a20 = f20 = 0, a02 = f02 = 0, a21 = f21,

b30 = g30, b31 = g21, b32 = g12, b33 = g03. The condition in [8] for a versally unfolded D4 then reduces to

our 1
2
f11(−9g30g03 + g21g12) 6= 0. Of course we do not have a D4 singularity, that is the nondegeneracy of the

degree 3 terms of g does not apply. Instead we have a nondegeneracy condition on the degree 4 terms of g.
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Proposition 3.6. At a generic inflexion point of real type on M the VK bifurcation set of the
family of contact maps consists of the two branches of the parabolic set through the inflexion
point. The sign as in §3.3 changes along each branch. See Figure 2(b). With 2-jet of (f, g) equal
to (f11xy, 0), where f11 6= 0, the conditions are g222 − 4g40g04 6= 0 and 9g30g03 − g12g21 6= 0.

3.7. Second codimension 3 case: inflexion point of imaginary type. The 2-jet of (f, g)
at inflexion points of imaginary type on M (also called imaginary inflexions or umbilic points)
has the form (f20x

2 + f02y
2, 0), where f20f02 > 0.

The abstract map R3 → R2 has kernel of the linear part (u+w, 0), a plane meeting the cone V
only in the origin, and reduces to the abstract normal form H(u, v, w) = (u+w, au2+2buv+cv2),
subject to the conditions b2−ac 6= 0 and also 4b2 + (a− c)2 6= 0, that is b and a− c are not both
0. This time there is no explicit requirement that a, c are nonzero, indeed a = c = 0, b 6= 0 gives
a 2-VK-determined germ.

We can however reduce to two alternative normal forms, as in Table 1, as follows. Applying
the four vector fields (3) to dH the quadratic form φ(u, v) = au2 + 2buv + cv2 can be changed
to any linear combination of φ and ψ(u, v) = uφv − vφu = bu2 + (c − a)uv − bv2, provided the
conditions above are not violated. Using bφ + cψ we can obtain ku2 + uv for some k, provided
2b2+c(c−a) 6= 0, and using bφ−aψ we can obtain uv+kv2 for some k provided 2b2−a(c−a) 6= 0.
If both these reductions fail then it is easy to check that a = c and b = 0 which violates the
original condition on φ.

Remark 3.7. We do not know whether this remaining smooth modulus k has any geometrical
significance. However, as in the real inflexion case (Remark 3.5), a smooth modulus is to be
expected in view of the presence of four concurrent lines in the intersection of the cone V and
the zero-set of the map (u, v, w) 7→ (u + w, ku2 + uv), to take one of the above alternatives.
Setting u+w = z, the equation uw = v2 becomes u(z − u) = v2 and setting z = 0 we have four
lines in this plane, u2 + v2 = 0 and u(ku + v) = 0. Of course the first pair of these lines are
never real.

A VK versal unfolding is given by

(u+ w, ku2 + uv + λu+ µv + νu2) or (u+ w, uv + kv2 + λu+ µv + νv2),

where k is a smooth modulus. There are no restrictions on the value of k; in particular it can
be 0. The VK bifurcation set B in this case consists of the origin only in the (λ, µ)-plane since
u+ w = 0 is possible only for x = y = 0, hence u = v = w = 0.

In the geometrical case we require g231 − 4g40g22 6= 0, and g31, f20g22 − f02g40 are not both
zero. For p, q in the family of contact maps to versally unfold the singularity we require3

g221 − 3g12g30 6= 0.

The inflexion points of imaginary type are isolated points of the parabolic set of M . They also
lie on the curve on M defined by the vanishing of the normal curvature κ of M . This is the
same as saying that the curvature ellipse collapses to a segment (and so has zero area). See [2,
pp. 9, 17]. Points of the κ = 0 curve on M other than the inflexions of imaginary type are not
distinguished by the family of reflexion maps since in general κ = 0 is not an affine invariant of
M .

Proposition 3.8. At an inflexion point of imaginary type on M , with 2-jet of (f, g) equal to
(f20x

2 + f02y
2, 0), where f20f02 > 0, the VK bifurcation set consists of the point only. A

3This is not the same condition as that in [8, Prop.7.9, p.224] which in our notation becomes

f02(3g30g12 − g221) + f20(3g21g03 − g212) 6= 0.
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generic point of this kind is an isolated point of the parabolic set of M . The conditions are
g231 − 4g40g22 6= 0, g22, g40 − g22 are not both zero and g221 − 3g12g30 6= 0.

4. Examples

In this section we show how to calculate special parabolic points in practice over a whole
surface M given in Monge form.

A good source of examples where something interesting is happening is [4, pp.189-90]. In
these examples the parabolic set undergoes a transition as M changes in a 1-parameter family,
so that a loop appears (either an elliptic island in a hyperbolic sea or vice versa), or a crossing
on the parabolic set separates in a Morse transition. In fact from our point of view the examples
of [4] are not quite generic since at special parabolic points, when these exist, our family of
contact maps does not versally unfold the singularity according to the criterion of §3.5. However
this is easily remedied by additing an extra term to one of the defining equations.

For us it is not generic for a crossing or isolated point on the parabolic set to be in addition
a special parabolic point, since special parabolic points are isolated on the parabolic set. Thus
when a loop of parabolic points appears on M the loop will generically have no special parabolic
points on it but these can develop as the loop expands, as the examples show. We can check
numerically that the sign of the parabolic curve, in the sense of §3.3, changes at a special point,
and we can calculate the type of the special point, as defined in §3.5.

Example 4.1. Consider the family of surfaces given in Monge form by
f(x, y) = xy+ y3, g(x, y) = x2 + x2y2 + xy3− 1

2y
4 + 1

30y
5 +µy2, where the term in y5 is added

to the formula in [4, p.189] (with λ = − 1
2 ) to make the special points generic from the family of

reflexion maps, and small negative values of the parameter µ produce a loop on the parabolic
set. Figure 3 illustrates the formation of two special points on the parabolic set as µ becomes
more negative.

H

H
E

E

+

+

_

_

_

_
_

Figure 3. The parameter plane of the curve of Example 4.1 near the origin x = y = 0
for, left to right, µ = − 1

35
, µ = − 1

29
, µ = − 1

25
. The figure shows a loop on the

parabolic set and the additional curve whose intersections with the parabolic set give
special points, as in §3.4, §A. Two special points appear at about µ = − 1

29
. The

signs of the parabolic set arcs are marked in the third figure and the elliptic region
E and the hyperbolic region H. The right-hand figure is a schematic representation of
the germ of a “semi-lips” which joins the two bifurcation sets of the special parabolic
points immediately after their creation. Note that this is consistent with Figure 2(a)
with the −w3 sign.

We can calculate the type of the special points, and the sign of the parabolic curve on either
side of them, as follows, where the calculations are necessarily numerical rather than exact.
Having calculated numerically the parameter values (p, q) of a special point, that is where the
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two curves in Figure 3 intersect we ‘move the origin’ to this point. This re-parametrizes M near
(f(p, q), g(p, q), p, q) as the set of points (f(x′+p, y′+q)−f(p, q), g(x′+p, y′+q)−g(p, q), x′, y′)
where (x′, y′) are the new coordinates in the parameter plane, with origin at x = p, y = q. We
can now proceed to reduce the quadratic terms of this parametrization to (x′y′, x′2), ignoring
any linear terms which can be removed by a global affine transformation of R4. Having done
this, we can apply the formulas of §3.5 to determine the type of special parabolic point (elliptic
or hyperbolic) and to check that it is nondegenerate and that the family of contact maps is
versally unfolded. All these calculations are straightforward and were performed in MAPLE.
The same method can be used at an ordinary parabolic point to determine whether it is positive
or negative in the sense of §3.3.

For the example above we find that the special parabolic points are both elliptic, that is the
germ of the bifurcation set is inside the elliptic island of M . We find that after reduction of the
quadratic terms of f, g the conditions g04 = 0, 4g20g06 − g213 < 0, 5g12g05 − 3g03g14 6= 0 in the
notation of §3.5, all hold at both special points. The latter condition does not hold without the
addition of the term in y5 to g.

We also find that the sign of the parabolic points on the loop is negative for small µ before
the special points appear; this is to be expected since the sign of y4 in g(x, y) is < 0. The arc of
the parabolic set between the special points consists of positive parabolic points.

Example 4.2. A second example, also adapted from [4], is provided by

f(x, y) = xy + y3, g(x, y) = x2 + x2y − 3x2y2 + 3y4 + y5 + µy2.

See Figure 4 for an illustration. Calculation as above stows that the special parabolic point
is elliptic and is versally unfolded by the family of contact maps so that the bifurcation set is
as described in §3.5. Also, the signs of the parabolic set are as in the figure. Note that this
transition on the parabolic set via a self-crossing is not to be confused with the inflexion point
of real type as in §3.6.

H

H

H

E
E E

+

++

+

__

Figure 4. The parabolic set in the parameter plane for Example 4.2, with (left)
µ = − 1

60
and (right) µ = 1

60
. The special parabolic points where the two curves meet

are of elliptic type; H stands for the hyperbolic region, E for the elliptic region and
+,− refer to the sign of these sections of the parabolic set, computed using the method
explained above.

5. Concluding remarks

We have shown how the family of contact maps by reflexion in points of a surface M in R4

identifies the parabolic set of M and also some special but still smooth points of the parabolic
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set which are not part of the flat geometry of M but are affine invariants of M . We do not know
of a different characterisation of these points.

In [6] it was possible to extend the bifurcation set of the family of contact maps on a surface
M in R3 to a global bifurcation set, even though it was not entirely clear what geometrical
significance this had away from the parabolic set on M . In the present case, for M a surface in
R4, we do not know of any reasonable way to make the bifurcation set global.

Because of the sign attached to points of the parabolic set which changes at special parabolic
points and also at self-crossings of the parabolic set, it is possible to formulate some statements
about the numbers of special points. For instance, on a smooth closed loop of the parabolic
set there must be an even number of special parabolic points (possibly zero). Similarly on a
figure-eight component of the parabolic set there must be the same parity of special parabolic
points on each loop.

It is possible in principle to extend the explicit calculations of special parabolic points, as in
§4, to the case when the surface is parametrized in a general way, as

(A(x, y), B(x, y), C(x, y), D(x, y)).

However there is a significant difficulty in writing down the contact map, as in (1) which is
valid for the case C(x, y) = x,D(x, y) = y, without an expression for M as the zero set of a
submersion R4 → R2. We need to construct the contact map from parametrizations of both M
and its reflexion M∗ in a point of M . Extension to a general parametrization would allow us to
examine examples such as those in [1]. Even more challenging is the explicit calculation of the
contact map for a surface which is given in implicit form as the zero set of a submersion.

Appendix A. The additional formula for the locus of special parabolic points

Consider a surface in Monge form (f(x, y), g(x, y), x, y). For our purposes it does not matter
whether f, g have linear terms since they can be removed by a global affine transformation of R4

which will not affect the parabolic curves or special parabolic points. The additional condition,
besides (5), for a point with parameters (p, q) to be a special parabolic point, is as follows. We
use the notation of §3.4.

Let
Θ1 = f12g22 − f22g12, Θ2 = f11g22 − f22g11, Θ3 = f11g12 − f12g11

Φ1 = f11g11g22 − 2f11g
2
12 + 2f12g11g12 − f22g211

Φ2 = f11g11f22 − 2f212g11 + 2f11f12g12 − f211g22
Then the condition is

Θ2
1Φ1f1111 − 2Θ1Θ2Φ1f1112 + 6Θ1Θ3Φ1f1122 − 2Θ2Θ3Φ1f1222

+Θ2
3Φ1f2222 + Θ2

1Φ2g1111 − 2Θ1Θ2Φ2g1112 + 6Θ1Θ3Φ2g1122

−2Θ2Θ3Φ2g1222 + Θ2
3Φ2g2222 = 0.

In the case that f11 = 0, f12 6= 0, f22 = 0, g11 6= 0, g12 = 0, g22 = 0 this reduces to g2222 = 0, as
we expect from §3.5 where the condition appears as g04 = 0 when we are working at the origin.
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