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Abstract. In this paper, we shall discuss the duality of singularities for a class of flat surfaces

in Euclidean space. After introducing the definition of the conjugate of a tangent developable,

we show that, if a tangent developable admits a swallowtail, its conjugate has a cuspidal cross
cap. Similarly, we prove that the conjugate of a tangent developable having cuspidal S+

1
singularities has cuspidal butterflies, and that cuspidal beaks have self-duality. We also show

that cuspidal edges do not possess such a property, by exhibiting an example of a tangent
developable with cuspidal edges whose conjugate has 5/2-cuspidal edges. Finally, we prove

that conjugates of complete flat fronts with embedded ends cannot be complete flat fronts.

1. Introduction

We denote Euclidean 3-space by R3. It is well-known that, for a minimal surface

f = (x1, x2, x3) : M → R3,

its coordinate functions xj (j = 1, 2, 3) are harmonic functions on M . Then, the harmonic

conjugates x]j (j = 1, 2, 3) define another minimal surface f ] = (x]1, x
]
2, x

]
3), which is called the

conjugate minimal surface. Similarly, for maximal surfaces in the Lorentz-Minkowski 3-space L3,
we can define the conjugate. Since the only complete maximal surfaces are spacelike planes [2],
we need to consider maximal surfaces with singular points. Umehara–Yamada [23] introduced a
class of maximal surfaces with admissible singularities called maxfaces, which satisfy the following
property so-called the duality of singularities:

Fact 1.1 ([23, 4]). Let f : M → L3 be a maxface, f ] : M → L3 its conjugate, and p ∈ M
a singular point. Then, f at p is A-equivalent to the cuspidal edge (resp. swallowtail, cuspidal
cross cap) if and only if f ] at p is A-equivalent to the cuspidal edge (resp. cuspidal cross cap,
swallowtail).

The property as in Fact 1.1 is called the duality of singularities. Let S3
1 (resp. S3) be the de

Sitter 3-space (resp. the 3-sphere) of constant sectional curvature 1. Also, let H3
1 (resp. H3) be

the anti-de Sitter 3-space (resp. the hyperbolic 3-space) of constant sectional curvature −1, and
Q3 be the 3-lightcone. It is known that such a duality of singularities holds for various classes
of surfaces as follows:

• timelike minimal surfaces (so-called minfaces) in L3 [21] (cf. [1]),
• spacelike surfaces of non-zero constant mean curvature in L3 [7],
• spacelike surfaces of constant mean curvature 1 in S3

1 [4],
• timelike surfaces of constant mean curvature 1 in H3

1 [24],
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• spacelike surfaces of zero extrinsic curvature in S3
1 , H3 and Q3 [13],

• surfaces of zero extrinsic curvature in S3 [12].

We remark that such a duality is known for more degenerate singularities, such as cuspidal
beaks, cuspidal butterflies and cuspidal S−1 singularities ([12, 18]).

In this article, we shall study the duality of singularities in the case of flat surfaces with
singularities in R3. Murata–Umehara [17] investigated the global properties of flat surfaces
with singularities called flat fronts (cf. Fact 2.1). In particular, they proved that complete flat
fronts with non-empty singular sets must be tangent developables. Ishikawa [10] investigated the
singularities of tangent developables from the view point of the (real) projective geometry. In
particular, Ishikawa [10] used the Scherbak’s dual curves [20] in the dual projective space to
define the dual tangent developables, and proved the duality of singularities. For more details,
see [10, 11] (cf. [3]). However, to the best of the author’s knowledge, there was no notion like the
conjugate of flat surfaces R3 in the setting of Euclidean geometry. Thus, we shall find a suitable
definition of the conjugate of flat fronts which satisfy the duality of singularities.

This paper is organized as follows. In Section 2, we review some basic facts on flat fronts,
singularities of frontals in R3, and frontals in the 2-sphere S2. Then, in Section 3, after review-
ing a-orientable admissible developable frontals introduced by Murata–Umehara [17], we apply
the criteria for cuspidal cross caps to such developable frontals. Comparing the condition for
swallowtails and that for cuspidal cross caps, we give a definition of the conjugates for tangent
developables (Definition 3.6, cf. Corollary 3.9). In Section 4, applying the criteria for other
singularities (cuspidal beaks, cuspidal butterfly, cuspidal S±1 , 5/2-cuspidal edge) to such tangent
developables (cf. Propositions 4.2, 4.4, 4.6 and 4.9), we obtain the duality of singularities (The-
orem 4.10). In the case of the cuspidal edge, we exhibit an example which does not satisfy the
desired duality (see Example 4.11). Finally, in Section 5, we glance a global property of such
conjugate operation, by proving that the conjugate of a complete flat front with embedded ends
cannot be a complete flat front (Proposition 5.1).

2. Preliminaries

We denote by R3 the Euclidean 3-space. Let M be a connected smooth 2-manifold and

f : M −→ R3

a smooth map. A point p ∈M is called a singular point if f is not an immersion at p. Otherwise,
we say p a regular point. Denote by S(f) (⊂ M) the singular set. If S(f) is empty, we call f a
(regular) surface. In this case, at least locally, we can take a smooth unit normal vector field ν
along f , that is, for every point p ∈M , there exist an open neighborhood U of p and a smooth
map ν : U → S2 such that

(2.1) dfq(v) · ν(q) = 0 holds for each q ∈ U and v ∈ TqM ,

where the dot ‘·’ is the canonical inner product on R3 and S2 is the unit sphere

S2 := {x ∈ R3 ; x · x = 1}.

2.1. Flat fronts. A smooth map f : M → R3 is called a frontal if, for each point p ∈M , there
exist a neighborhood U of p and a smooth map ν : U → S2 which satisfies (2.1). Such a ν is
called the unit normal vector field or the Gauss map of f . If ν can be defined throughout M ,
f is called co-orientable. If (L :=) (f, ν) : U → R3 × S2 gives an immersion, f is called a wave
front (or a front , for short).

A front f with a unit normal ν is called flat if rank(dν) ≤ 1 on M . Denote by ds2 := df · df
the first fundamental form of f . In the case that f is regular, f is flat as a front if and only if
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f is flat as a regular surface (namely, the Gaussian curvature K of ds2 is identically zero K = 0
on M).

A smooth map f : M → R3 is called complete if there exists a symmetric covariant tensor T
on M with compact support such that ds2 + T gives a complete Riemannian metric on M . If f
is complete and the singular set S(f) is non-empty, then S(f) must be compact.

Murata-Umehara [17] proved the following.

Fact 2.1 ([17]). Let ξ : S1 → S2 be a regular curve without inflection points, and α = a(t)dt a
1-form on S1 = R/2πZ such that

∫
S1 ξ α = 0 holds. Then, f : S1 ×R→ R3 defined by

(2.2) f(t, v) := σ(t) + v ξ(t)

(
σ(t) :=

∫ t

0

a(τ) ξ(τ)dτ

)
is a complete flat front with non-empty singular set. Conversely, let f : M → R3 be a complete
flat front defined on a connected smooth 2-manifold M . If the singular set S(f) of f is not
empty, then f is umbilic-free, co-orientable, M is diffeomorphic to S1 ×R, and f is given by
(2.2). Moreover, if the ends of f are embedded, f has at least four singular points other than
cuspidal edges.

For the definition of umbilic points, see [17] (cf. [5, 6, 8]). The final statement of Fact 2.1 may
be regarded as a variant of four vertex theorem for plane curves.

2.2. Singularities of frontals. Fix a smooth 2-manifold M and take two points pi ∈ M
(i = 1, 2). Let fi : (M,pi)→ (R3, f(pi)) (i = 1, 2) be two map germs. We say f1 is A-equivalent
to f2 if there exist diffeomorphism germs

ϕ : (M,p1)→ (M,p2) and Φ : (R3, f(p1))→ (R3, f(p2))

such that Φ◦f1 ◦ϕ−1 = f2. We set fCE , fSW , fCCR, fCBK , fCBF , fCS±
k

, frCE to be the germs

from (R2, 0) to (R3, 0) given by:

fCE(u, v) := (u, v2, v3),

fSW (u, v) := (4u3 + 2uv, 3u4 + u2v,−v),

fCCR(u, v) := (u, v2, uv3),

fCBK(u, v) := (v,−2u3 + uv2,−3u4 + u2v2),

fCBF (u, v) := (u, 5v4 + 2uv, 4v5 + uv2 − u2),

fCS±
k

(u, v) := (u, v2, v3(uk+1 ± v2)),

frCE(u, v) := (u, v2, v5),

(2.3)

respectively, where k is a positive integer. We call the map germ fCE (resp. fSW , fCCR,
fCBK , fCBF , fCS±

k
, frCE) the cuspidal edge (resp. swallowtail, cuspidal cross cap, cuspidal

beaks, cuspidal butterfly, cuspidal S±k singularity, 5/2-cuspidal edge).
Kokubu–Rossman–Saji–Umehara–Yamada [15] gave a useful criteria for cuspidal edge and

swallowtail. Similar useful criteria for other singularities are given in the following: [4] for
cuspidal cross cap (cf. Fact 3.4); [14] for cuspidal beaks (cf. Fact 4.1); [13] for cuspidal butterfly
(cf. Fact 4.3); [19] for cuspidal S±k singularity (cf. Fact 4.5); and [9] for 5/2-cuspidal edge (cf.
Fact 4.8). To state such criteria, we shall review some basic notions for frontals.

Let f : M → R3 be a frontal with the (locally defined) unit normal ν. Take a point p ∈M . Let
(U ;u, v) be a coordinate neighborhood of p. We call λ := det(fu, fv, ν) the signed area density
function. Remark that p is a singular point of f if and only if λ(p) = 0. If dλ(p) 6= 0, a singular
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Cuspidal edge fCE Swallowtail fSW Cuspidal cross cap fCCR

Cuspidal S+
1 singularity f

CS+
1

Cuspidal butterfly fCBF Cuspidal beaks fCBK

5/2-cuspidal edge frCE

Figure 1. The images of standard models of the singularities (fCE , fSW ,
fCCR, fCS+

1
, fCBF , fCBK , frCE) given in (2.3).

point p is called non-degenerate. We remark that if p is non-degenerate, then rank(df)p = 1
holds. By the implicit function theorem, there exists a regular curve γ(t) (|t| < ε) on the uv-
plane such that γ(0) = p and the image of γ coincides with the singular point set S(f) near
p, where ε > 0. We call γ(t) the singular curve and γ′ = dγ/dt the singular direction. Then,
there exists a non-zero smooth vector field ζ(t) along γ(t) such that ζ(t) is a null vector (i.e.,
df(ζ(t)) = 0) for each t. Such a vector field ζ(t) is called a null vector field . On the other hand,
a non-vanishing smooth vector field ζ = ζ(u, v) on U so that ζ|S(f) gives a kernel direction of f
is also called a null vector field . We set the functions δ(t) and ψccr(t) as

(2.4) δ(t) := det (γ′(t), ζ(t)) , ψccr(t) := det ((f ◦ γ)′(t), (ν ◦ γ)(t), dν(ζ(t))) ,

respectively. Later we use these functions in the criteria for various singularity types (cf. Facts
3.4, 4.1, 4.3, 4.5 and 4.8).

2.3. Frontals in 2-sphere. Let J be an open interval of R. A smooth map ξ : J → S2 is called
a frontal if there exists a smooth unit vector field n along ξ such that ξ′ · n = 0 holds. We call
n the unit normal vector field or the spherical dual. The pair (ξ,n) gives a Legendre curve in
the unit tangent bundle

T1S
2 = {(p, v) ∈ S2 × S2 ; p · v = 0}
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with respect to the canonical contact structure. Since ξ · n′ = 0, there exist smooth 1-forms ρ,
ω such that

(2.5) dξ = ρη, dn = −ω η,
where we set η := n× ξ. Then, the frame F(t) := {ξ(t),η(t),n(t)} satisfies

(2.6) F−1dF =

0 −ρ 0
ρ 0 −ω
0 ω 0

 ,

where we used the identity dη = −ρ ξ + ωn. Conversely, the following holds.

Fact 2.2 ([22, Theorem 2.5]). Let ρ, ω be smooth 1-forms on an interval J . Then, there exists
a frontal ξ : J → S2 with the spherical dual n such that (2.5) holds.

Therefore, we may conclude that there exists a one-to-one correspondence between frontals
with spherical duals and pairs of smooth 1-forms. We call the pair of 1-forms (ρ, ω) the data of
the frontal ξ : J → S2.

3. Conjugates of tangent developables

In this section, comparing the criteria for swallowtail and cuspidal cross cap, we give a defi-
nition of the conjugates of developable frontals.

3.1. Developable frontals. Let J be an open interval including 0 ∈ J . Take 1-forms α, β on
J and a frontal ξ : J → S2 with the spherical dual n. Then a smooth map f : J ×R → R3

defined by

(3.1) f(t, v) := σ(t) + v ξ(t)

(
σ(t) :=

∫ t

0

(α ξ + β η) , η := n× ξ
)

is a co-orientable frontal in R3 so that ν(t, v) := n(t) is a unit normal. We shall call f(t, v)
an a-orientable admissible developable frontal and v is called the asymptotic parameter. The
quadruple of the 1-forms (α, β, ρ, ω) is independent of the choice of the parameter t on J as a
1-dimensional manifold, which we call the data of f(t, v). Here, (ρ, ω) is the data corresponding
to a frontal ξ in S2 with the spherical dual n (cf. (2.5)).

Remark 3.1. We remark that Murata–Umehara defined a-orientable admissible developable
frontals in [17, Definition 2.3], where ‘a-orientable’ means ‘asymptotically orientable’, see [17,
page 289]. They gave a representation formula in [17, Theorem 2.8]. Our definition is based on
[17, Theorem 2.8].

If f is a cylinder, then ξ : J → S2 is a constant map, that is, r(t) = 0 holds for all t ∈ J ,
where ρ = r(t)dt. We call a point p0 = (t0, v0) a cylindrical point of f(t, v) if ξ′(t0) = 0 (i.e.,
r(t0) = 0) holds1. We denote by Sc(f) (resp. Snc(f)) the set of cylindrical singular points (resp.
non-cylindrical singular points).

Lemma 3.2 (cf. [17, Proposition 2.16]). Let f(t, v) be an a-orientable admissible developable
frontal whose data is given by (α, β, ρ, ω) = (a(t) dt, b(t) dt, r(t) dt, w(t) dt). Then, a point

p0 = (t0, v0) ∈ J ×R
is a singular point of f if and only if b(t0) + v0 r(t0) = 0. Moreover,

• f is a front at a singular point p0 = (t0, v0) if and only if w(t0) 6= 0.

1Cylindrical singular points are linear singular points in the sense of [17, Definition 2.15].
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• p0 = (t0, v0) is a cylindrical singular point of f if and only if b(t0) = r(t0) = 0. Such a
p0 ∈ Sc(f) is non-degenerate if and only if b′(t0) + v0 r

′(t0) 6= 0. Setting

(3.2) γc(v) := (t0, v), ζc(v) := ∂t − a(t0) ∂v,

we have that γc(v) is a singular curve passing through γc(v0) = p0, and ζc(v) is a null
vector field along γc(v). Moreover, we have (cf. (2.4))

(3.3) δc(v) := det (γ′c(v), ζc(v)) = −1.

• p0 = (t0, v0) is a non-cylindrical singular point of f if and only if r(t0) 6= 0 and
v0 = −b(t0)/r(t0). Such a p0 ∈ Snc(f) is non-degenerate, and setting

(3.4) γnc(t) :=

(
t, − b(t)

r(t)

)
, ζnc(t) := ∂t − a(t) ∂v,

we have that γnc(t) is a singular curve passing through γnc(t0) = p0, and ζnc(t) is a null
vector field along γnc(t). Moreover, we have (cf. (2.4))

(3.5) δnc(t) := det (γ′nc(t), ζnc(t)) = −a(t) +

(
b(t)

r(t)

)′
.

Proof. By (2.5), we have

(3.6) ft = a(t) ξ(t) + (b(t) + v r(t))η(t), fv = ξ(t).

So, the signed area density function λ is given by

(3.7) λ = det(ft, fv, ν) = (b(t) + v r(t)) det (η(t), ξ(t), n(t)) = −b(t)− v r(t).
Thus, we have S(f) = {(t, v) ∈ J ×R ; b(t) + v r(t) = 0} and

(3.8) − λt = b′(t) + v r′(t), −λv = r(t).

On the singular set S(f), ft − a(t)fv = 0 holds. Thus, setting ζ(t, v) := ∂t − a(t)∂v, we have
df(ζ) = 0 at a singular point p0. Since f is front at p0 ∈ S(f) if and only if

(dL)p0 = ((df)p0 , (dν)p0)

is injective, this condition is equivalent to (dν)p0(ζ) 6= 0. Since −dν(ζ) = −n′ = wη, f is front
at p0 ∈ S(f) if and only if w(t0) 6= 0.

If p0 is cylindrical, r(t0) = 0 holds. Thus, p0 is a cylindrical singular point if and only
if r(t0) = 0 and b(t0) (= b(t0) + v0 r(t0)) = 0. By (3.8), p0 is non-degenerate if and only if
b′(t0) + v0 r

′(t0) 6= 0. In this case, γc(v) given in (3.2) is a singular curve passing through
γc(v0) = p0. By (3.6), ft−a(t0) fv = 0 holds along γc(v), and hence we have ζc(v) given in (3.2)
is a null vector field along γc(v).

If p0 is a non-cylindrical singular point, r(t0) 6= 0 holds. By (3.8), p0 must be non-degenerate.
Then γnc(t) given in (3.4) is a singular curve passing through γnc(t0) = p0. By (3.6),

ft − a(t) fv = 0

holds along γnc(t), and hence we have ζnc(t) given in (3.4) is a null vector field along γnc(t). �

As we seen in Lemma 3.2, the cylindrical and non-cylindrical singular sets, Sc(f) and Snc(f),
are written as

Sc(f) = {(t, v) ∈ J ×R ; b(t) = r(t) = 0} ,(3.9)

Snc(f) =

{
(t, v) ∈ J ×R ; r(t) 6= 0, v = − b(t)

r(t)

}
,(3.10)

respectively.
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Murata–Umehara [17] applied the criteria for cuspidal edge and swallowtail given in [15] to
developable frontals as follows:

Fact 3.3 ([17, Proposition 2.16]). Let f(t, v) be an a-orientable admissible developable frontal
whose data is given by (α, β, ρ, ω) = (a(t) dt, b(t) dt, r(t) dt, w(t) dt). Then, a point

p0 = (t0, v0) ∈ J ×R
is a singular point of f if and only if b(t0) + v0 r(t0) = 0. Moreover, for a singular point
p0 = (t0, v0) of f , we have that

• f at p0 is A-equivalent to the cuspidal edge if and only if

r(t0) 6= 0, a(t0) 6=
(
b(t)

r(t)

)′∣∣∣∣∣
t=t0

, w(t0) 6= 0,

or
r(t0) = 0, b′(t0) + v0 r

′(t0) 6= 0, w(t0) 6= 0.

• f at p0 is A-equivalent to the swallowtail if and only if

(3.11) r(t0) 6= 0, a(t0) =

(
b(t)

r(t)

)′∣∣∣∣∣
t=t0

, a′(t0) 6=
(
b(t)

r(t)

)′′∣∣∣∣∣
t=t0

, w(t0) 6= 0.

We can observe that swallowtails never appear on the cylindrical singular set Sc(f).

3.2. Cuspidal cross cap. Here we review the criterion for the cuspidal cross cap given by
Fujimori–Saji–Umehara–Yamada [4].

Fact 3.4 (Criterion for cuspidal cross cap [4]). Let f : U → R3 be a frontal defined on a domain
U of R2, with the unit normal ν, and p ∈ U a non-degenerate singular point of f . And let γ(t)
be a singular curve such that γ(0) = p, ζ(t) a null vector field, δ(t) and ψccr(t) be the functions
defied by (2.4). Then, the map germ f at p is A-equivalent to the cuspidal cross cap if and only
if δ(0) 6= 0, ψccr(0) = 0 and ψ′ccr(0) 6= 0.

Now, we shall apply Fact 3.4 to a-orientable admissible developable frontals.

Proposition 3.5. Let f(t, v) be an a-orientable admissible developable frontal whose data is
given by (α, β, ρ, ω) = (a(t) dt, b(t) dt, r(t) dt, w(t) dt). For a singular point p0 = (t0, v0) of f , we
have that f at p0 is A-equivalent to the cuspidal cross cap if and only if

(3.12) r(t0) 6= 0, a(t0) 6=
(
b(t)

r(t)

)′∣∣∣∣∣
t=t0

, w(t0) = 0, w′(t0) 6= 0.

Proof. First, assume that p0 ∈ Snc(f). By Lemma 3.2, γnc(t) is a singular curve passing through
γnc(t0) = p0, and ζnc(t) is a null vector field along γnc(t), where γnc(t) and ζnc(t) are given by
(3.4). Let δnc(t) be the function given in (3.5). By Lemma 3.2, the function δ given in (2.4)
coincides with δnc(t). On the other hand, setting γ̂nc(t) := f(γnc(t)), we have

γ̂′nc(t) = −δnc(t)ξ(t).

Hence, the function ψccr given in (2.4) is

(3.13) ψccr(t) = −δnc(t) det (ξ(t), n(t), n′(t)) = −δnc(t)w(t).

Therefore, f at p0 is A-equivalent to cuspidal cross cap if and only if (3.12) holds.
Next, we shall prove that, if p0 ∈ Sc(f), f at p0 cannot be A-equivalent to the cuspidal

cross cap. By Lemma 3.2, γc(v) is a singular curve passing through γc(v0) = p0, and ζc(v) is
a null vector field along γc(v), where γc(v) and ζc(v) are given by (3.2). By Lemma 3.2, the
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function δ given in (2.4) is identically −1. On the other hand, setting γ̂c(v) := f(γc(v)), we have
γ̂′c(v) = ξ(t0). Hence, the function ψccr given in (2.4) is

(3.14) ψccr(v) = det (ξ(t), n(t0), w(t0)η(t0)) = w(t0).

Therefore, ψccr(v0) = 0 and ψ′ccr(v0) 6= 0 do not occur at the same time. Thus, f at p0 cannot
be A-equivalent to the cuspidal cross cap. �

3.3. Observation and definition. For an a-orientable admissible developable frontal
f = f(t, v), we would like to find its conjugate f ] which satisfies the so-called duality of singu-
larities as in Fact 1.1 in the introduction.

We shall compare the condition (3.11) for swallowtail and that (3.12) for cuspidal cross cap.
If β = b(t) dt is identically zero, (3.11) is equivalent to

(3.15) r(t0) 6= 0, a(t0) = 0, a′(t0) 6= 0, w(t0) 6= 0,

and (3.12) is equivalent to

(3.16) r(t0) 6= 0, a(t0) 6= 0, w(t0) = 0, w′(t0) 6= 0.

Thus, for an a-orientable admissible developable frontal f = f(t, v) with the data (α, 0, ρ, ω), if
we set f ] to be the a-orientable admissible developable frontal whose data is given by

(α], 0, ρ], ω]) := (ω, 0, ρ, α),

we have that f at p is A-equivalent to the swallowtail if and only if f ] at p is A-equivalent to
the cuspidal cross cap. Namely, f and f ] satisfy the duality of singularities.

A-orientable admissible developable frontals with β = 0 are tangent developables. In fact,
when β = 0, f given in (3.1) is written as

(3.17) f(t, v) := σ(t) + v ξ(t)

(
σ(t) :=

∫ t

0

α ξ, η := n× ξ
)
.

Since σ′(t) and ξ(t) are linearly dependent, we may conclude that f is a tangent developable.

Definition 3.6 (A-tangent developable). We call an a-orientable admissible developable frontal
with β = 0 an a-tangent developable. For an a-tangent developable f , the triplet of the 1-forms
(α, ρ, ω) is also called the data. Then, the a-tangent developable f ] whose data is given by
(α], ρ], ω]) := (ω, ρ, α) is called the conjugate of f .

We remark that, by Lemma 3.2 and ρ = ρ], the singular set of an a-tangent developable f
coincides with that of the conjugate f ] of f , namely S(f) = S(f ]) = {(t, v) ∈ J×R ; v r(t) = 0}
holds. In the case that the a-tangent developable f = f(t, v) is defined on M := S1 ×R, the

domain of the conjugate f ] is the universal covering M̃ = R2 of M .

Remark 3.7. An a-orientable admissible developable frontal without cylindrical points is an a-
tangent developable. If (t, v) is non-cylindrical, by changing the parameter v 7→ v − b(t)/r(t), f
can be written as

f = σ(t) +

(
v − b(t)

r(t)

)
ξ(t) = σ̃(t) + v ξ(t).

Here we set σ̃(t) := σ(t)− (b(t)/r(t))ξ(t), which satisfies that σ̃′(t) and ξ(t) are linearly depen-
dent.

Let {e1, e2, e3} be the canonical orthonormal basis ofR3, namely, (e1, e2, e3) = Id, where Id is
the identity matrix Id := diag(1, 1, 1). The procedure of constructing the a-tangent developable
from a given data (α, ρ, ω) is as follows:

• Take F0 ∈ SO(3) arbitrarily.
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• Let F = F(t) be a solution of (2.6) with the initial value F(t0) = F0.
• Setting ξ(t) := F(t)e1, then,

f(t, v) = σ(t) + v ξ(t)

(
σ(t) :=

∫ t

t0

α ξ

)
is an a-tangent developable whose data is given by (α, ρ, ω) such that n(t) := F(t)e3 is
a unit normal.

Taking account of the data of the conjugate (α], ρ], ω]) = (ω, ρ, α), we have the following.

Lemma 3.8. Let f = f(t, v) be the a-tangent developable defined on J ×R whose data is given
by (α, ρ, ω). Fix t0 ∈ J . Take a solution F ] = F ](t) of the following initial value problem

(3.18) (F ])−1dF ] =

0 −ρ 0
ρ 0 −α
0 α 0

 , F ](t0) = Id.

Then setting ξ](t) := F ](t)e1, the conjugate f ] is given by

(3.19) f ](t, v) = σ](t) + v ξ](t)

(
σ](t) :=

∫ t

t0

ω ξ]
)

such that the data of f ] is given by (α], ρ], ω]) := (ω, ρ, α), and n](t) := F ](t)e3 gives a unit
normal of f ].

By [17, Proposition 2.16] (cf. Fact 3.3) and Proposition 3.5, we have the following:

Corollary 3.9. Let f(t, v) be an a-tangent developable whose data is given by

(α, ρ, ω) = (a(t) dt, r(t) dt, w(t) dt).

Take a singular point p0 = (t0, v0) ∈ S(f). Then,

• f at p0 is A-equivalent to the cuspidal edge if and only if

v0 = 0, r(t0) 6= 0, a(t0) 6= 0, w(t0) 6= 0,

or

v0 6= 0, r(t0) = 0, r′(t0) 6= 0, w(t0) 6= 0.

• f at p0 is A-equivalent to the swallowtail if and only if

(3.20) v0 = 0, r(t0) 6= 0, a(t0) = 0, a′(t0) 6= 0, w(t0) 6= 0.

• f at p0 is A-equivalent to the cuspidal cross cap if and only if

(3.21) v0 = 0, r(t0) 6= 0, a(t0) 6= 0, w(t0) = 0, w′(t0) 6= 0.

In particular, f at p0 is A-equivalent to the swallowtail if and only if f ] at p0 is A-equivalent to
the cuspidal cross cap, where f ] is the conjugate of f .

As an example, we calculate the conjugate of the standard swallowtail.

Example 3.10 (Conjugate of the standard swallowtail). Let fSW be the standard swallowtail
given in (2.3). By a parameter change (u, v) 7→ (t, y − 6t2), we have

fSW (t, y) = (−8t3,−3t4, 6t2) + y (2t, t2,−1).

Thus, setting v := y
√

1 + 4t2 + t4, fSW is an a-tangent developable fSW (t, v) = σ(t) + v ξ(t),
where

σ(t) := (−8t3,−3t4, 6t2), ξ(t) :=
1√

1 + 4t2 + t4
(2t, t2,−1).
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Since σ′(t) = −12t
√

1 + 4t2 + t4 ξ(t), we have

(3.22) a(t) = −12t
√

1 + 4t2 + t4.

Then the spherical dual n(t) of ξ(t) and η(t) = n(t)× ξ(t) are given by

n(t) =
1√

1 + t2 + t4

(
t,−1, t2

)
,

η(t) =
1√

1 + 4t2 + t4
√

1 + t2 + t4

(
1− t4, t+ 2t3, 2t+ t3

)
,

respectively. Hence we have

(3.23) r(t) =
2
√

1 + t2 + t4

1 + 4t2 + t4
, w(t) = −

√
1 + 4t2 + t4

1 + t2 + t4
,

where r(t) = ξ′(t) · η(t), w(t) = −n′(t) · η(t).
Then, applying Lemma 3.8 with (α, ρ, ω) = (a(t) dt, r(t) dt, w(t) dt) and t0 = 0, we obtain

the conjugate f ]SW (t, v), where a(t), r(t), w(t) are given by (3.22) and (3.23), respectively (cf.
Figure 2).

Figure 2. The a-tangent developable f ]SW which is the conjugate of the stan-
dard swallowtail fSW given by (2.3) (cf. Figure 1). By Corollary 3.9, we have

that f ]SW at (t, v) = (0, 0) is A-equivalent to the cuspidal cross cap. This figure
is plotted by integrating (3.18) and (3.19) numerically.

4. Other singularities

Here, we shall write down the criteria for other singularities (cuspidal beaks, cuspidal butterfly,
cuspidal S±1 singularity, 5/2-cuspidal edge) on a-tangent developables in terms of their data.

4.1. Cuspidal beaks. First, we review the criterion for the cuspidal beaks given by Izumiya–
Saji–Takahashi [14].

Fact 4.1 (Criterion for cuspidal beaks [14]). Let f : U → R3 be a front defined on a domain U
of R2 with the unit normal ν. Also let p ∈ U be a singular point of f and ζ a null vector field.
Then, the map germ f at p is A-equivalent to the cuspidal beaks if and only if rank(df)p = 1,
dλ(p) = 0, det Hessλ(p) < 0 and ζζλ(p) 6= 0 hold.

Applying Fact 4.1 to a-tangent developables, we have the following.
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Proposition 4.2. Let f(t, v) be an a-tangent developable whose data is given by

(α, ρ, ω) = (a(t) dt, r(t) dt, w(t) dt).

Then, for a singular point p0 = (t0, v0) of f , we have that f at p0 is A-equivalent to the cuspidal
beaks if and only if

(4.1) v0 = 0, r(t0) = 0, r′(t0) 6= 0, a(t0) 6= 0, w(t0) 6= 0.

Proof. We remark that for any singular point p0 of f , rank(df)p0 = 1 holds (cf. (3.6)). Hence, by
Fact 4.1, f at p0 isA-equivalent to the cuspidal beaks if and only if dλ(p0) = 0, det Hessλ(p0) < 0,
ζζλ(p0) 6= 0, and f is a front at p0. By (3.8), dλ(p0) = 0 if and only if r(t0) = 0 (i.e., p0 is
cylindrical) and v0 r

′(t0) = 0. Since the signed area density function λ is given by

λ(t, v) = −v r(t)
(cf. (3.7)), we have

det Hessλ = det

(
λtt λtv
λtv λvv

)
= −λ2tv = −(r′)2.

Hence, det Hessλ(p0) < 0 if and only if r′(t0) 6= 0. As we see in the proof of Lemma 3.2,
ζ(t, v) := ∂t − a(t)∂v gives a null vector field. Since ζλ = v r′(t)− a(t)r(t), we have

(4.2) ζ2λ = v r′′(t)− a′(t)r(t)− 2a(t)r′(t).

Therefore, f at p0 is A-equivalent to the cuspidal beaks if and only if (4.1) holds. �

4.2. Cuspidal butterfly. Next, we review the criterion for the cuspidal butterfly given by
Izumiya–Saji [13].

Fact 4.3 (Criterion for cuspidal butterfly [13]). Let f : U → R3 be a front defined on a domain
U of R2 with the unit normal ν. Take a non-degenerate singular point p ∈ U of f . Let γ(t) be
a singular curve such that γ(0) = p and ζ(t) a null vector field. Then, the map germ f at p is
A-equivalent to the cuspidal butterfly if and only if δ(0) = δ′(0) = 0 and δ′′(0) 6= 0 hold.

Applying Fact 4.3 to a-tangent developables, we have the following.

Proposition 4.4. Let f(t, v) be an a-tangent developable whose data is given by

(α, ρ, ω) = (a(t) dt, r(t) dt, w(t) dt).

Then, for a singular point p0 = (t0, v0) of f , we have that f at p0 is A-equivalent to the cuspidal
butterfly if and only if

(4.3) v0 = 0, r(t0) 6= 0, a(t0) = a′(t0) = 0, a′′(t0) 6= 0, w(t0) 6= 0.

Proof. By (4.2), we have

(4.4) ζ3λ = v r′′′(t)− a′′(t)r(t)− 3a′(t)r′(t)− 3a(t)r′′(t).

Hence, by Fact 4.3, f at p0 is A-equivalent to the cuspidal butterfly if and only if

(i) f is a front at p0 = (t0, v0) (i.e., w(t0) 6= 0),
(ii) p0 = (t0, v0) is non-degenerate (i.e., r(t0) 6= 0 or r(t0) = 0, v0 r

′(t0) 6= 0),
(iii) v0 r(t0) = 0,
(iv) v0 r

′(t0)− a(t0)r(t0) = 0,
(v) v0 r

′′(t0)− a′(t0)r(t0)− 2a(t0)r′(t0) = 0,
(vi) v0 r

′′′(t0)− a′′(t0)r(t0)− 3a′(t0)r′(t0)− 3a(t0)r′′(t0) 6= 0.

If we assume that p0 = (t0, v0) is cylindrical (i.e., r(t0) = 0), the condition (i) implies v0 r
′(t0) 6= 0.

This contradicts the condition (iv), v0 r
′(t0) = 0. Thus, we have r(t0) 6= 0. Then, we can check

that the conditions (i)–(vi) are equivalent to (4.3). �
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4.3. Cuspidal S±1 singularity. Now, we review the criterion for the cuspidal S±1 singularity
given by Saji [19].

Fact 4.5 (Criterion for cuspidal S±1 singularity [19]). Let f : U → R3 be a frontal defined on a

domain U of R2 with the unit normal ν. Take a non-degenerate singular point p ∈ U of f . Let
γ(t) be a singular curve such that γ(0) = p and ζ a null vector field. Then, the map germ f at
p is A-equivalent to the cuspidal S+

1 singularity (resp. the cuspidal S−1 singularity) if and only
if the following (i)-(iv) hold:

(i) δ(0) 6= 0,
(ii) ψccr(0) = ψ′ccr(0) = 0 and

(4.5) (d1 :=)ψ′′ccr(0) 6= 0,

(iii) there exist a regular curve c : (−ε, ε)→ U and ` ∈ R such that c(0) = p, c′(0) is parallel
to ζ(0), ĉ′′(0) 6= 0, ĉ′′′(0) = ` ĉ′′(0) and

(4.6) (d2 :=) det
(
dfp(ξp), ĉ

′′(0), 3ĉ(5)(0)− 10` ĉ(4)(0)
)
6= 0

hold, where ĉ := f ◦ c and ξp := γ′(0),
(iv) the product d1d2 is positive (resp. negative), where d1, d2 are given by (4.5), (4.6),

respectively. Here, we choose ζ and c so that c′(0) points the same direction as the null
vector ζ(0) and that {γ′(0), ζ(0)} is positively oriented.

Applying Fact 4.5 to a-tangent developables, we have the following.

Proposition 4.6. Let f(t, v) be an a-tangent developable whose data is given by

(α, ρ, ω) = (a(t) dt, r(t) dt, w(t) dt).

Then, for a singular point p0 = (t0, v0) of f , we have that f at p0 is A-equivalent to the cuspidal
S+
1 singularity if and only if

(4.7) v0 = 0, r(t0) 6= 0, a(t0) 6= 0, w(t0) = w′(t0) = 0, w′′(t0) 6= 0.

Remark 4.7. It is known that, by Ishikawa’s theorem [10], developable surfaces do not admit any
cuspidal S±k singularities for k > 1. We also remark that, by Mond [16] and Saji [19, Theorem

4.1], tangent developable surfaces of a regular space curve do not admit cuspidal S−1 singularity,
as in the following proof.

Proof of Proposition 4.6. We first show that p0 is non-cylindrical. If we assume p0 = (t0, v0) is
cylindrical, we have γc(v) = (t0, v) is a singular curve passing through γc(v0) = p0. Then the
function ψccr defined as (2.4) is given by ψccr(v) = w(t0) (cf. (3.14)). Thus,

ψccr(v0) = ψ′ccr(v0) = 0

and ψ′′ccr(v0) 6= 0 do not occur at the same time. Therefore, p0 must be non-cylindrical.
Since r(t0) 6= 0 and 0 = λ(t0, v0) = −v0 r(t0), we have v0 = 0. Then, γnc(t) = (t, 0) is a

singular curve passing through γnc(t0) = p0, and ζnc(t) = ∂t − a(t)∂v is a null vector field along
γnc(t). Then we have δ(t) = det(γ′nc(t), ζnc(t)) = −a(t) (cf. (3.5)). Thus, the condition (i) of
the criterion in Fact 4.5 implies a(t0) 6= 0.

Now, assume that a(t0) < 0, namely, {γ′nc(t0), ζnc(t0)} is positively oriented. The function
ψccr defined as (2.4) is given by ψccr(t) = a(t)w(t) (cf. (3.13)). Thus, under the condition (i),
the condition (ii) in Fact 4.5 implies w(t0) = w′(t0) = 0 and w′′(t0) 6= 0 hold. The constant d1 in
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(4.5) is given by d1 = a(t0)w′′(t0). With respect to the condition (iii) in Fact 4.5, by a parallel
translation of R3, we may assume that σ(t0) = 0 without loss of generality. Then, setting

(4.8) c(τ) := (τ,−ϕ(τ))

(
ϕ(τ) :=

σ(τ) · ξ(t0)

ξ(τ) · ξ(t0)

)
,

we have c(t0) = p0. Differentiating ϕ(τ), we have that c′(t0) = ζnc(t0). Since

ĉ′′(t0) = −a(t0)ρ(t0)η(t0)

and ĉ′′′(t0) = −(2a(t0)ρ′(t0) + a′(t0)ρ(t0))η(t0) under the conditions (i) and (ii) in Fact 4.5, we
have

ĉ′′′(t0) = ` ĉ′′(t0)

(
` :=

2a(t0)ρ′(t0) + a′(t0)ρ(t0)

a(t0)ρ(t0)

)
.

Moreover, by a direct calculation, we can check that ĉ(4)(t0) is a constant multiple of η(t0) and

ĉ(5)(t0) = k1η(t0)− 4a(0)ρ(0)ω′′(0)n(t0)

holds, where k1 ∈ R is a constant. Thus, the constant d2 in (4.6) is given by

d2 = det (a(t0)ξ(t0), −a(t0)r(t0)η(t0), −4a(0)r(t0)w′′(t0)n(t0))

= 12a(t0)3r(t0)2w′′(t0).

Hence, under the conditions (i) and (ii) in Fact 4.5, the condition (iii) is always satisfied.
In the case of a(t0) > 0, we take the null vector field as ζnc(t) := −∂t + a(t)∂v and the

curve c(τ) as c(τ) := (−τ, ϕ(τ)), where ϕ(τ) is given by (4.8). Then, by a similar calculation as
above, the constant d1 in (4.5) is given by d1 = −a(t0)w′′(t0), and the constant d2 in (4.6) is
d2 = −12a(t0)3r(t0)2w′′(t0). Therefore, regardless of the sign of a(t0), we have

d1d2 = 12a(t0)4r(t0)2w′′(t0)2 > 0.

Thus, Fact 4.5 implies that any a-tangent developable does not admit cuspidal S−1 singularities,
and that f at p0 = (t0, v0) is A-equivalent to the cuspidal S+

1 singularity if and only if (4.7)
holds. �

4.4. 5/2-cuspidal edge. Finally, we review the criterion for the 5/2-cuspidal edge given in [9].

Fact 4.8 (Criterion for 5/2-cuspidal edge [9]). Let f : U → R3 be a frontal defined on a domain
U of R2 with the unit normal ν. Take a non-degenerate singular point p ∈ U of f . Let γ(t)
(|t| < ε) be a singular curve such that γ(0) = p and ζ a null vector field. Then, the map germ f
at p is A-equivalent to the 5/2-cuspidal edge if and only if the following (i)-(iii) hold:

(i) δ(0) 6= 0,
(ii) det

(
γ̂′, ζ2f, ζ3f

)∣∣
(u,v)=γ(t)

= 0 holds for each t ∈ (−ε, ε),

(iii) det
(
γ̂′(0), ζ̄2f(p), 3ζ̄5f(p)− 10C ζ̄4f(p)

)
6= 0.

Here ζ̄ is a special null vector field such that

(4.9) γ̂′(0) · ζ̄2f(p) = γ̂′(0) · ζ̄3f(p) = 0, ζ̄3f(p) = C ζ̄2f(p),

where C ∈ R is a constant.

We remark that if γ̂′(0) · ζ̄2f(p) = γ̂′(0) · ζ̄3f(p) = 0 holds, then there exists a constant C ∈ R
which satisfies ζ̄3f(p) = C ζ̄2f(p). Applying Fact 4.8 to a-tangent developables, we have the
following.
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Proposition 4.9. Let f(t, v) be an a-tangent developable whose data is given by

(α, ρ, ω) = (a(t) dt, r(t) dt, w(t) dt).

Then, for a singular point p0 = (t0, v0) of f , we have that f at p0 is A-equivalent to the 5/2-
cuspidal edge if and only if

(4.10) v0 6= 0, r′(t0) 6= 0, r(t0) = w(t0) = 0,

(
w′

r′

)′∣∣∣∣∣
t=t0

6= −2a(t0)w′(t0)

v0r′(t0)
.

Proof. We first show that p0 is cylindrical. If we assume that p0 = (t0, v0) is non-cylindrical, we
have that r(t0) 6= 0 and v0 = 0. As we have seen in Lemma 3.2, γnc(t) = (t, 0) is a singular curve
passing through γnc(t0) = p0 and ζnc(t) = ∂t − a(t)∂v is a null vector field. Since the function δ
defined as (2.4) is given by δnc(t) = −a(t) (cf. (3.5)), the condition (i) in Fact 4.8 is equivalent
to a(t0) 6= 0. On the other hand, since ζ2ncf(γnc(t)) = −a(t)r(t)η(t) and

ζ3ncf(γnc(t)) = 2a(t)r(t)2ξ(t) − (r(t)a′(t) + 2a(t)m′(t))η(t) + 2a(t)r(t)w(t)n(t),

we have that the condition (ii) in Fact 4.8 is equivalent to w(t) = 0 for all t. Then, setting

ζ̄ :=

(
1− r(t0)

a(t0)2
v2
)
∂t − a(t)∂v,

we have ζ̄2f(p0) = −a(t0)r(t0)η(t0) and ζ̄3f(p0) = −(a′(t0)m(t0) + 2a(t0)m′(t0))η(t0). Hence,
ζ̄ is a null vector field satisfying (4.9) with the constant

C := (a′(t0)m(t0) + 2a(t0)m′(t0))/(a(t0)m(t0)).

Then, by a direct calculation, we have ζ̄4f(p0), ζ̄5f(p0) ∈ Span(ξ(t0),η(t0)), which implies

det
(
df(γ′nc(0)), ζ̄2f(p0), 3ζ̄5f(p0)− 10C ζ̄4f(p0)

)
= 0.

Hence, p0 must be cylindrical.
As we have seen in Lemma 3.2, a non-degenerate cylindrical singular point p0 = (t0, v0)

satisfies r(t0) = 0, r′(t0) 6= 0, v0 6= 0. Then, γc(v) = (t0, v) is a singular curve passing through
γc(v0) = p0 and ζc = ∂t − a(t)∂v is a null vector field. Since the function δ defined as (2.4) is
given by δc(v) = −1 (cf. (3.3)), the condition (i) in Fact 4.8 is always satisfied. On the other
hand, since ζ2c f(γc(v)) = vm′(t0)η(t0) and

ζ3c f(γc(v)) = (−2a(t0)m′(t0) + vm′′(t0))η(t0)− 2vw(t0)m′(t0)n(t0),

we have that the condition (ii) in Fact 4.8 is equivalent to w(t0) = 0. Then, ζc = ∂t − a(t)∂v is
a null vector field satisfying (4.9) with the constant C := (v0m

′′(t0) − 2a(t0)m′(t0))/(vm′(t0)).
By a direct calculation, we have

det
(
df(γ′c(0)), ζ2c f(p0), 3ζ5c f(p0)− 10C ζ4c f(p0)

)
= −12v0m

′(t0) (2a(t0)m′(t0)w′(t0)− v0m′′(t0)w′(t0) + v0m
′(t0)w′′(t0)) .

Hence, by Fact 4.8, we have that f at p0 = (t0, v0) is A-equivalent to the 5/2-cuspidal edge if
and only if (4.10) holds. �
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Criteria
Cuspidal edge v0 = 0, r(t0) 6= 0, a(t0) 6= 0, w(t0) 6= 0

or v0 6= 0, r(t0) = 0, r′(t0) 6= 0, w(t0) 6= 0

Swallowtail v0 = 0, r(t0) 6= 0, a(t0) = 0, a′(t0) 6= 0, w(t0) 6= 0

Cuspidal cross cap v0 = 0, r(t0) 6= 0, a(t0) 6= 0, w(t0) = 0, w′(t0) 6= 0

Cuspidal beaks v0 = 0, r(t0) = 0, r′(t0) 6= 0, a(t0) 6= 0, w(t0) 6= 0

Cuspidal butterfly v0 = 0, r(t0) 6= 0, a(t0) = a′(t0) = 0,
a′′(t0) 6= 0, w(t0) 6= 0

Cuspidal S+
1 singularity v0 = 0, r(t0) 6= 0, a(t0) 6= 0,

w(t0) = w′(t0) = 0, w′′(t0) 6= 0
5/2-cuspidal edge v0 6= 0, r′(t0) 6= 0, r(t0) = w(t0) = 0,(

w′

r′

)′∣∣∣∣∣
t=t0

6= −2a(t0)w′(t0)

v0r′(t0)

Table 1. The criterion for singularities of a-tangent developables. See Corol-
lary 3.9, Propositions 4.2, 4.4, 4.6 and 4.9.

4.5. Duality of singularities. Here, we give a summary of the criterion for singularities of
a-tangent developables. Let f(t, v) be an a-tangent developable defined on J ×R whose data is
given by (α, ρ, ω) = (a(t) dt, r(t) dt, w(t) dt). In Corollary 3.9, Propositions 4.2, 4.4, 4.6 and 4.9,
we proved that the singularity type of the germ f at p0 = (t0, v0) ∈ J ×R is determined by the
data as in Table 1.

Since the conjugate f ] of an a-tangent developable f is given by the data

(α], ρ], ω]) := (ω, ρ, α),

exchanging the roles α and ω we have the following.

Theorem 4.10 (Duality of singularities for a-tangent developables). Let f : M → R3 be an
a-tangent developable, f ] the conjugate of f , and p0 ∈ M a singular point, where M := J ×R.
Then, f at p0 is A-equivalent to the swallowtail (resp. cuspidal cross cap, cuspidal beaks, cuspidal
butterfly, cuspidal S+

1 singularity) if and only if f ] at p0 is A-equivalent to the cuspidal cross
cap (resp. swallowtail, cuspidal beaks, cuspidal S+

1 singularity, cuspidal butterfly).

In the case of the cuspidal edge, there exist examples which do not satisfy the desired duality
of singularities.

Example 4.11. Let f = f(t, v) be an a-tangent developable whose data is given by

(α, ρ, ω) = (2t dt, t dt, dt).

By Corollary 3.9, f at (0, v) is cuspidal edge for v 6= 0 (see Figure 3). The conjugate f ] = f ](t, v)
of f is given by the data (α], ρ], ω]) = (dt, t dt, 2t dt). By Proposition 4.9, f ] at (0, v) is 5/2-
cuspidal edge for v 6= 0 (see Figure 4).

5. Conjugate of complete flat fronts

Finally, we observe a global behavior of the conjugate operations among a-tangent devel-
opables.
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Figure 3. The image of the a-tangent developable f = f(t, v) whose data
is given by (α, ρ, ω) = (2t dt, t dt, dt). By Corollary 3.9, we have that f at
(0, v) is A-equivalent to the cuspidal edge for v 6= 0. This figure is plotted
by integrating (2.6) and (3.17) numerically. The black line is the image of the
cylindrical singular set Sc(f) = {(0, v) ; v 6= 0}.

Figure 4. The image of the conjugate f ] = f ](t, v) of the a-tangent devel-
opable with the data (α, ρ, ω) = (2t dt, t dt, dt). Since the data of f ] is given
by (α], ρ], ω]) = (dt, t dt, 2t dt), Proposition 4.9 yields that f at (0, v) is A-
equivalent to the 5/2-cuspidal edge for v 6= 0. This figure is plotted by integrat-
ing (3.18) and (3.19) numerically. The black line is the image of the cylindrical
singular set Sc(f

]) = {(0, v) ; v 6= 0}.

Proposition 5.1. Let f : M → R3 be an a-tangent developable such that f is a complete flat
front with embedded ends, where M := S1 ×R. Then, the conjugate f ] of f is not a front. In
particular, the conjugate of a complete flat front with embedded ends cannot be a complete flat
front.

Proof. Let (α, ρ, ω) be the data of f . By Fact 2.1, f has at least four singular points other than
cuspidal edges. In fact, if we denote by α = a(t) dt, it is proved in [17, pp. 311–312] that a(t)
changes signs at least four times on S1. Since the data of f ] is given by (α], ρ], ω]) := (ω, ρ, α),
and f ] is front if and only if ω] never vanishes, we have that f ] cannot be a front. �
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