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RECOGNITION PROBLEM OF FRONTAL SINGULARITIES

GOO ISHIKAWA

ABSTRACT. A natural class of mappings, frontal mappings, is explained from both geometric and alge-
braic aspects. Several results on the recognition of frontal singularities, in particular, cuspidal edges, folded
umbrellas, swallowtails, Mond singularities, Shcherbak singularities, and their openings are surveyed.

1. INTRODUCTION

This is a survey article on recognition problem of frontal singularities.
First we explain the recognition problem of singularities and its significance.
Let f : (Rn,a)→ (Rm,b) and f ′ : (Rn,a′)→ (Rm,b′) be smooth (= C∞) map-germs. Then f and f ′

are called A -equivalent or diffeomorphic if there exist diffeomorphism-germs σ : (Rn,a)→ (Rn,a′) and
τ : (Rm,b)→ (Rm,b′) such that the diagram

(Rn,a)
f−→ (Rm,b)

↓ σ ↓ τ

(Rn,a′)
f ′−−→ (Rm,b′)

commutes. By a singularity of smooth mappings, we mean an A -equivalence class of map-germs.
Suppose that we investigate “singularities” of mappings belonging to some given class. Then the

recognition problem of singularities may be understood as the following dual manners:
Problem: Given two map-germs f and f ′, belonging to the given class, determine, as easily as possible
whether f and f ′ are equivalent or not.
Problem: Given a singularity, find criteria to determine as easy as possible whether a map-germ f
belonging to some class has (= falls into) the given singularity or not.

Importance of the recognition problem of singularities can be explained as follows.
Once we establish a classification list of singularities in a situation A, we will face (at least) two kinds

of needs:
1. Given a map-germ in the same situation A, we want to know which singularity is it in the list.
2. For another situation B, we want to know how similar is the classification list of singularities as A

or not.
In both cases, we need to recognize the singularities, as easily as possible, by as many as possible

criteria. For applications of singularity theory, it is indispensable to recognize singularities and to solve
classification problems in various situations.

The recognition problem of singularities of smooth map-germs has been treated by the many mathe-
maticians, motivated by differential geometry and other wide area, and its solutions are supposed to have
many applications.

In fact most of known results of recognition of singularities are found under the motivation of geo-
metric studies of singularities appearing in Euclid geometry and various Klein geometries ([21, 3, 19]).
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Example 1.1. (Singularities in non-Euclidean geometry) The following is a diagram representing the
history of non-Euclidean geometry found in the reference [26]:

Euclid geometry → Riemann geometry

↓ ↓

Klein geometry → Cartan geometry

Then it would be natural to ask
Problem: How are the classification results of singularities in Euclid geometry (resp. in Klein geometry)
valid in Riemann geometry (resp. in Cartan geometry)?
In other words,
Problem: Do the classifications of singularities in flat ambient spaces work also for “curved” ambient
spaces?

In fact, we applied the several results of recognition ([21, 3]), for instance, to the generic classification
of singularities of improper affine spheres and of surfaces of constant Gaussian curvature ([13]), and
moreover, to the classification of generic singularities appearing in tangent surfaces which are ruled by
geodesics in general Riemannian spaces ([17, 18]). See also §6.

In this paper we will pay our attention to the class of mappings, frontal mappings, which is introduced
and studied in §2. Then we survey several recognition theorems on them in §3. Note that the recognitions
of fronts or frontals (Rn,a)→ Rm are studied by many authors ([21, 3, 24, 25, 20]).

To show the theorems given in §3, we introduce the notion of openings, relating it with that of frontals,
in §4. See also [9, 10]. In fact, in §4, we observe that any frontal singularity is an opening of a map-germ
from Rn to Rn (Lemma 4.3).

Then we naturally propose:
Problem: Study the recognition problem of frontals from the recognition results on map-germs
(Rn,a)→ Rn, (n = m), combined with the viewpoint of openings.

In this paper, in connection with the above problems, we specify geometrically several frontal singular-
ities which we are going to treat (Example 2.2). Then we solve the recognition problem of such singular-
ities, in §3, giving explicit normal forms. In fact we combine the recognition results on (R2,0)→ (R2,0)
by K. Saji (∼2010) and several arguments on openings, which was implicitly performed for the clas-
sification of singularities of tangent surfaces (tangent developables) by the author (∼1995) over twenty
years, the idea of which traces back to the author’s master thesis [5]. We prove recognition theorems in
§5.

In the last section §6, as an application of our solutions of recognition problem of frontal singularities,
we announce the classification of singularities appearing in tangent surfaces of generic null curves which
are ruled by null geodesics in general Lorentz 3-manifolds ([14, 16]), mentioning related recognition
results and open problems.

In this paper, all manifolds and mappings are assumed to be of class C∞ unless otherwise stated.
The author truly thanks to the organisers for giving him the chance to write this paper down and he

deeply thanks to anonymous referees for their helpful comments to improve the paper.

2. FRONTAL SINGULARITIES

Let f : (Rn,a)→ (Rm,b) be a map-germ. Suppose n≤ m.
Then f is called a frontal map-germ or a frontal in short, if there exists a smooth (C∞) family of

n-planes f̃ (t) ⊆ Tf (t)Rm along f , t ∈ (Rn,a), i.e. there exists a smooth lift f̃ : (Rn,a)→ Gr(n,TRm)
satisfying the “integrality condition”

Tt f (TtRn)⊂ f̃ (t) (⊂ Tf (t)Rm),
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for any t ∈ Rn nearby a, such that π ◦ f̃ = f :

Gr(n,TRm)

π

��
(Rn,a)

f
//

f̃
88

(Rm,b).

Here Gr(n,TRm) is the Grassmann bundle consisting of n-planes V ⊂ TxRm(x ∈ Rm) with the canonical
projection π(x,V ) = x, and Tt f : TtRn→ Tf (t)Rm is the differential of f at t ∈ (Rn,a).

Then f̃ is called a Legendre lift or an integral lift of the frontal f . Actually f̃ is an integral mapping to
the canonical or contact distribution on Gr(n,TRm) (cf. [8]).

Example 2.1. (1) Any immersion is a frontal. In fact then the Legendre lift is given by f̃ (t) := Tt f (TtRn).
(2) Any map-germ (Rn,a) → (Rn,b),(n = m) is a frontal. In fact the Legendre lift is given by

f̃ (t) := Tf (t)Rn.
(3) Any constant map-germ is a frontal. In fact we can take any lift f̃ of f .
(4) Any wave-front (Rn,a)→ (Rn+1,b), that is a Legendre projection of a Legendre submanifold in

Gr(n,TRn+1) = PT ∗Rn+1, is a frontal. Take the inclusion of the Legendre submanifold as the Legendre
lift.

Example 2.2. (Singularities of tangent surfaces) Let γ : (R,0)→Rm be a curve-germ in Euclidean space.
Then the tangent surface Tan(γ) : (R2,0)→Rm is defined as the ruled surface generated by tangent lines
along the curve. Suppose γ is of type L = (`1, `2, `3, . . . ,),(1≤ `1 < `2 < `3 < · · ·), i.e.

γ(t) = (t`1 + · · · , t`2 + · · · , t`3 + · · · , . . .)
for a system of affine coordinates of Rm centered at γ(0). Then it is known that the singularity of Tan(γ)
is uniquely determined by the type L and called cuspidal edge (CE) if L = (1,2,3, . . .), folded umbrella
(FU) or cuspidal cross cap (CCC) if (1,2,4), swallowtail (SW) if (2,3,4), Mond (MD) or cuspidal beaks
(CB) if (1,3,4), Shcherbak (SB) if (1,3,5), cuspidal swallowtail (CS) if (3,4,5), open folded umbrella
(OFU) if (1,2,4,5, . . .), open swallowtail (OSW) if (2,3,4,5, . . .), open Mond (OMD) or open cuspidal
beaks (OCB) if (1,3,4,5, . . .) (see [8]).

cuspidal edge folded umbrella swallowtail

Mond singularity Shcherbak singularity cuspidal swallowtail

open folded umbrella open swallowtail open Mond singularity
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In general, a frontal f : (Rn,a)→ (Rm,b) is called a front if f has an immersive Legendre lift f̃ .

Let Ea := {h : (Rn,a)→ R} denote the R-algebra of smooth function-germs on (Rn,a).
Denote by Γ the set of subsets I ⊆ {1,2, . . . ,m} with #(I) = n. For a map-germ

f : (Rn,a)→ (Rm,b),n≤ m

and I ∈ Γ, we set DI = det(∂ fi/∂ t j)i∈I,1≤ j≤n. Then Jacobi ideal J f of f is defined as the ideal generated
in Ea by all n-minor determinants DI (I ∈ Γ) of Jacobi matrix J( f ) of f . Then we have:

Lemma 2.3. (Criterion of frontality) Let f : (Rn,a)→ (Rm,b) be a map-germ. If f is a frontal, then the
Jacobi ideal J f of f is principal, i.e. it is generated by one element. In fact J f is generated by DI for
some I ∈ Γ. Conversely, if J f is principal and the singular locus

S( f ) = {t ∈ (Rn,a) | rank(Tt f : TtRn→ Tf (t)Rm)< n}

of f is nowhere dense in (Rn,a), then f is a frontal.

Proof : Let f be a frontal and f̃ be a Legendre lift of f . Take I0 ∈ Γ such that f̃ (a) projects isomorphically
by the projection Rm → Rn to the components belonging to I0. Let (pI)I∈Γ be the Plücker coordinates
of f̃ . Then pI0(a) 6= 0. This implies that for any I ∈ Γ, there exists hI ∈ Ea such that DI = hIDI0 . Set
λ = DI0 . Then the Jacobi ideal J f is generated by λ .

Conversely suppose J f is generated by one element λ ∈ Ea. Since J f is generated by λ , we have that
there exists kI ∈ Ea for any I ∈ Γ such that DI = kIλ . Since λ ∈ J f , there exists `I ∈ Ea for any I ∈ Γ

such that λ = ∑I∈Γ `IDI . Therefore (1−∑I∈Γ `IkI)λ = 0. Suppose (`IkI)(a) = 0 for any I ∈ Γ. Then
1−∑I∈Γ `IkI is a unit and therefore λ = 0. Thus we have J f = 0. This contradicts to the assumption that
S( f ) is nowhere dense. Hence there exists I0 ∈ Γ such that (`I0kI0)(a) 6= 0. Then kI0(a) 6= 0. Therefore
J f is generated by DI0 . Hence DI = hIDI0 for any I ∈ Γ with hI0(a) = 1. Then the Legendre lift f̃ on
Rn \S( f ) extends to (Rn,a), which is given by the Plücker coordinates (hI)I∈Γ. 2

Example 2.4. Define f : (R2,0)→ (R3,0) by f (t1, t2) := (ϕ(t1), ϕ(t1)t2, ϕ(−t1)), where the C∞ func-
tion ϕ : (R,0)→ (R,0) is given by ϕ(t) = exp(−1/t2)(t ≥ 0),0(t ≤ 0). Then the Jacobi ideal J f is
generated by ϕ ′(t1)ϕ(t1) and therefore J f is principal and J f 6= 0. However f is not a frontal. In fact, for
t1 > 0, (T(t1,t2) f )(T(t1,t2)R

2) is given by the plane dx3 = 0 and for t1 < 0, (T(t1,t2) f )(T(t1,t2)R
2) contains the

x3-axis. Therefore f can not be a frontal.

Corollary 2.5. Let f : (Rn,a)→ (Rm,b) be a map-germ. Suppose f is analytic and J f 6= 0. Then f is a
frontal if and only if J f is a principal ideal.

Proof : By Lemma 2.3, if f is frontal, then J f is principal. If J f is principal and J f 6= 0, then DI 6= 0 for
some I ∈ Γ. Since f is analytic, S( f ) is nowhere dense. Thus by Lemma 2.3, f is a frontal. 2

Example 2.6. Define f : (R3,0)→ (R4,0) by f (t1, t2, t3) := (t3
1 , t2

1 t2, t1t2
2 , t3

2 ). The germ f parametrizes
the cone over a non-degenerate cubic in P(R4) = RP3. Then f is analytic and J f = 0 is principal.
However f is not a frontal.

Definition 2.7. Let f : (Rn,a)→ (Rm,b) be a frontal. Then a generator λ ∈ Ea of J f is called a Jacobian
(or a singularity identifier) of f , which is uniquely determined from f up to multiplication of a unit in
Ea.

The singular locus S( f ) of a frontal f is given by the zero-locus of the Jacobian λ of f .

Definition 2.8. (Proper frontals) A frontal f : (Rn,a)→ (Rm,b) is called proper if the singular locus
S( f ) is nowhere dense in (Rn,a).
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Remark 2.9. Our naming “proper” is a little confusing since its usage is different from the ordinary
meaning of properness (inverse images of any compact is compact). Our condition that the singular locus
S f is nowhere dense is easy to handle for the local study of mappings.

Lemma 2.10. Let f : (Rn,a)→ (Rm,b) be a proper frontal or n = m. Then f has a unique Legendre lift
f̃ : (Rn,a)→ Gr(n,TRm).

Proof : On the regular locus Rn \S( f ), there is the unique Legendre lift f̃ defined by f̃ (t) := (Tt f )(TtRn).
Let f be a proper frontal. Then Rn \S( f ) is dense in (Rn,a). Therefore the extension of f̃ (t) is unique.
Let n = m. Then the unique lift f̃ is defined by f̃ (t) = Tf (t)Rm (Example 2.1 (2)). 2

Let f : (Rn,a)→ (Rm,b) be a frontal (resp. a proper frontal) and f̃ : (Rn,a)→Gr(n,TRm) a Legendre
lift of f . Recall that f̃ (t),(t ∈ (Rn,a)) is an n-plane field along f . In particular f̃ (a)⊆ TbRm.

Definition 2.11. A system (x1, . . . ,xn,xn+1, . . . ,xm) of local coordinates of Rm centered at b is called
adapted to f̃ (or, to f ) if

f̃ (a) =

〈(
∂

∂x1

)
b
, . . . ,

(
∂

∂xn

)
b

〉
R

(= {v ∈ TbRm | dxn+1(v) = 0, . . . ,dxm(v) = 0}).

Clearly we have

Lemma 2.12. Any frontal f : (Rn,a)→ (Rm,b) has an adapted system of local coordinates on (Rm,b).
In fact any system of local coordinates on (Rm,b) is modified into an adapted system of local coordinates
by a linear change of coordinates.

Remark 2.13. For an adapted system of coordinates (x1, . . . ,xn,xn+1, . . . ,xm) of f , the Jacobian λ is
given by the ordinary Jacobian ∂ ( f1,..., fn)

∂ (t1,...,tn)
, where fi = xi ◦ f .

Example 2.14. Let f : (R2,0)→ (R3,0) be given by

(u, t) 7→ (x1,x2,x3) = (t +u, t3 +3t2u, t4 +4t3u),

which is the tangent surface, Mond surface, of the curve t 7→ (t, t3, t4).
Then the Jacobi matrix J( f ) of f is given by

J( f ) =

 1 1
3t2 3t2 +6tu
4t3 4t3 +12t2u

 ,

and its minors are calculated as 
D12 = 6tu,

D13 = 12t2u = 2t(6tu),

D23 = 12t4u = 2t3(6tu),

Then the Jacobi ideal J f is generated by λ = tu. Therefore f is a proper frontal with

S( f ) = {(u, t) | tu = 0}.

The unique Legendre lift f̃ : (R2,0)→ Gr(2,TR3) of f is given, via the Plücker coordinates of fibre
components,

D12/D12 = 1, D13/D12 = 2t, D23/D12 = 2t3.

The system of coordinates (x1,x2,x3) is adapted for f in the example.
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3. RECOGNITION OF SEVERAL FRONTAL SINGULARITIES

To give our recognition results we need the notion of “kernel fields” in addition to that of Jacobians of
frontals.

Let f : (Rn,a)→ (Rm,b) be a map-germ. We denote by Va the Ea-module of vector fields over (Rn,a)
and set

N f := {η ∈ Va | η fi ∈ J f , (1≤ i≤ m)},
which is an Ea-submodule of Va.

Note that, if η ∈N f , then η(t) ∈ Ker(Tt f : TtRn→ Tf (t)Rm) for any t ∈ S( f ). Moreover note that, if
λ ∈ J f , then λ ·Va ⊆N f .

A map-germ f : (Rn,a)→ (Rm,b) is called of corank k if dimR Ker(Ta f : TaRn→ TbRm) = k.
Then we have

Lemma 3.1. Let f : (Rn,a)→ (Rm,b) be a map-germ of corank 1. Then N f /J f ·Va is a free Ea-module
of rank 1, i.e. N f /J f ·Va is isomorphic to Ea as Ea-modules by [η ]→ 1, for some η ∈N f .

Let f : (Rn,a)→ (Rm,b) be a frontal of corank 1 and λ f the Jacobian of f (Definition 2.7). Then by
Lemma 3.1, N f /λ f ·Va is a free module of rank 1.

Definition 3.2. A vector field η over (Rn,a) is called a kernel field (or a null field) of f if η generates
the free Ea-module N f /λ f ·Va.

Remark 3.3. The notion of null fields is introduced first in [21].

Proof of Lemma 3.1: Since f is of corank 1, f is A -equivalent to a map-germ (Rn,0)→ (Rm,0) of form

g = (t1, . . . , tn−1,ϕn(t), . . . ,ϕm(t)).

Note that N f /J f Va is isomorphic to Ng/J f V0. Moreover the Jacob ideal of g is generated by

∂ϕn(t)/∂ tn, . . . ,∂ϕm(t)/∂ tn.

Let η = ∑
n
i=1 ηi∂/∂ ti ∈ V0. Then η ∈Ng if and only if η1, . . . ,ηn−1 ∈ Jg. Therefore Ng/JgV0 is freely

generated by ∂/∂ tn. Thus we have that N f /J f ·Va is a free Ea-module of rank 1, 2

Now we start to give our recognition theorems on the frontal singularities introduced in Example 2.2.
To begin with, we recall the following fundamental recognition result due to Saji ([24]), which is a
reformulation of Whitney’s original results in [27] for parts (1) and (2).

Theorem 3.4. (Saji[24]) Let f : (R2,a)→ (R2,b) be a frontal map-germ of corank 1. Then, for the
Jacobian λ and the kernel field η of f , we have

(1) f is A -equivalent to the fold, i.e. to (t1, t2) 7→ (t1, t2
2 ), if and only if (ηλ )(a) 6= 0.

(2) f is A -equivalent to Whitney’s cusp, i.e. to (t1, t2) 7→ (t1, t3
2 + t1t2), if and only if

(dλ )(a) 6= 0,(ηλ )(a) = 0,(ηηλ )(a) 6= 0.

(3) f is A -equivalent to bec à bec (beak-to-beak), (t1, t2) 7→ (t1, t3
2 + t1t2

2 ), if and only if λ has an
indefinite Morse critical point at a and (ηηλ )(a) 6= 0.

Remark 3.5. Each condition (1), (2), (3) of Theorem 3.4 is independent of the choice of λ and η ,
and depends only on J -equivalence class of f which is introduced in Definition 4.13. In fact, if
J f ′◦σ = J f , then f ′ satisfies the condition for λ ′ = λ ◦σ−1 and η ′ = (T σ)η ◦σ−1. (See §4).
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Remark 3.6. For a map-germ f : (R2,a)→ (R2,b) of corank 1, the condition (dλ )(a) 6= 0 is equivalent
to that the Jacobian is K -equivalent to the germ (t1, t2) 7→ t1 at the origin. The condition that λ has an
indefinite Morse critical point at a is equivalent to that λ is K -equivalent to the germ (t1, t2) 7→ t1t2 at
the origin.

Remark 3.7. For plane to plane map-germs, the fold (resp. Whitney cusp, bec à bec) is characterized as
a“tangent map” of a planar curve of type (1,2) (resp. (2,3), (1,3)), which is ruled by tangent lines to the
curve ([8, 15]).

Let f : (R2,a)→ (Rm,b),(m≥ 3) be a proper frontal of corank 1. We wish to recognize the singularity,
i.e. A -equivalence class of f by the Jacobian λ = λ f and the kernel field η = η f . Moreover we wish
to recognize the singularity of f as an opening of a plane-to-plane map-germ. To realize this, we will
use an adapted system of coordinates (x1,x2,x3, . . . ,xm) for f and set fi = xi ◦ f . Note that we mention
several conditions to recognize singularities in terms of adapted coordinates, however the conditions are,
of course, independent of the choice of an adapted coordinates, and therefore any system of adapted
coordinates can be taken to simplify the checking of a suitable condition.

In general, we use the following notation:

Definition 3.8. For a germ of vector field η ∈ Va over (Rn,a) and a function-germ h ∈ Ea on (Rn,a), the
vanishing order ordη

a (h) of the function h at the point a for the vector-field η is defined by

ordη
a (h) := inf{i ∈ N∪{0} | (η ih)(a) 6= 0}.

Then we characterize the cuspidal edge as an opening of fold map-germ:

Theorem 3.9. (Recognition of cuspidal edge) For a frontal f : (R2,a)→ (R3,b) of corank 1, the follow-
ing conditions are equivalent to each other:

(1) f is A -equivalent to the cuspidal edge (CE).
(1’) f is A -equivalent to the germ (t1, t2) 7→ (t1, t2

2 , t
3
2 ).

(2) f is a front and ηλ (a) 6= 0.
(3) ηλ (a) 6= 0 and ordη

a ( f3) = 3, for an adapted system of coordinates (x1,x2,x3) of (R3,b).

Theorem 3.9 is generalized by

Theorem 3.10. (Recognition of embedded cuspidal edge) For a frontal f : (R2,a)→ (Rm,b),3 ≤ m of
corank 1, the following conditions are equivalent to each other:

(1) f is A -equivalent to the cuspidal edge, i.e. the tangent surface to a curve of type (1,2,3, . . .).
(1’) f is A -equivalent to the germ (t1, t2) 7→ (t1, t2

2 , t
3
2 ,0, . . . ,0).

(2) f is a front and ηλ (a) 6= 0.
(3) ηλ (a) 6= 0 and ordη

a ( fi) = 3 for some i,3 ≤ i ≤ m, for an adapted system of coordinates
(x1,x2,x3, . . . ,xm) of (Rm,b).

The following is a recognition of the folded umbrella due to the theory of openings:

Theorem 3.11. (Recognition of folded umbrella (cuspidal cross cap)) Let f : (R2,a)→ (R3,b) be a
frontal of corank 1. The following conditions are equivalent to each other:

(1) f is A -equivalent to the folded umbrella (FU), i.e. the tangent surface to a curve of type (1,2,4).
(1’) f is A -equivalent to the germ (t1, t2) 7→ (t1, t2

2 , t1t3
2 ).

(2) ηλ (a) 6= 0,(η3 f3)(a) = 0 and (dλ ∧d(η3 f3))(a) 6= 0.

Remark 3.12. It is already known another kind of recognition of folded umbrella by [3].

As for cases of higher codimension, we have
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Theorem 3.13. (Recognition of open folded umbrella (open cuspidal cross cap))
Let f : (R2,a)→ (Rm,b),(m≥ 4) be a frontal of corank 1. Then the following conditions are equiva-

lent to each other:
(1) f is A -equivalent to the open folded umbrella, i.e. the tangent surface to a curve of type

(1,3,4,5, . . .).
(1’) f is A -equivalent to the germ (t1, t2)→ (t1, t2

2 , t1t3
2 , t5

2 , 0, . . . ,0).
(2) (ηλ )(a) 6= 0, (η3 fk)(a) = 0,(3 ≤ k ≤ m), and there exist 3 ≤ i < j ≤ m and A ∈ GL(2,R) such

that, setting ( fi, f j)A = ( f ′3, f ′4), (dλ ∧η3 f ′3)(a) 6= 0,(dλ ∧η3 f ′4)(a) = 0,(η5 f ′4)(a) 6= 0.

As for openings of Whitney’s cusp mapping, we have

Theorem 3.14. (Recognition of swallowtail) Let f : (R2,a)→ (R3,b) be a frontal of corank 1. Then the
following conditions are equivalent to each other:

(1) f is A -equivalent to the swallowtail (SW), i.e. the tangent surface to a curve of type (2,3,4).
(1’) f is A -equivalent to the germ (t1, t2) 7→ (t1, t3

2 + t1t2, 3
4 t4

2 +
1
2 t1t2

2 ).
(2) f is a front, (dλ )(a) 6= 0 and ordη

a (λ ) = 2.
(3) λ is K -equivalent to the germ (t1, t2) 7→ t1 at 0, ordη

a (λ ) = 2 and ordη
a ( f3) = 4, for an adapted

system of coordinates (x1,x2,x3).

As for cases of higher codimension, we have

Theorem 3.15. (Recognition of open swallowtail) Let f : (R2,a)→ (Rm,b) be a frontal of corank 1 with
m≥ 4. Then the following conditions are equivalent to each other:

(1) f is A -equivalent to the open swallowtail, i.e. the tangent surface to a curve of type (2,3,4,5, . . .).
(1’) f is A -equivalent to the germ (t1, t2) 7→ (t1, t3

2 + t1t2, 3
4 t4

2 +
1
2 t1t2

2 ,
3
5 t5

2 +
1
3 t1t3

2 , 0, . . .).
(2) The Jacobian λ is K -equivalent to the germ (t1, t2) 7→ t1 at the origin, ordη

a (λ ) = 2,
(η3 fi)(a) = 0,(3 ≤ k ≤ m), and there exist 3 ≤ i < j ≤ m and A ∈ GL(2,R) such that, setting
( fi, f j)A = ( f ′3, f ′4), ordη

a ( f ′3) = 4, ordη
a ( f ′4) = 5.

Remark 3.16. Though we treat the open swallowtail as the singularity appeared in tangent surfaces,
first it appeared as a singularity of Lagrangian varieties and geometric solutions of differential systems
([1, 4]). The open swallowtail and open folded umbrella appear also in the context of frontal-symplectic
versality (Example 12.3 of [12]).

As for openings of bec à bec mapping, we have

Theorem 3.17. (Recognition of Mond singularity (cuspidal beaks), (1)(2) [19]) Let f : (R2,a)→ (R3,b)
be a frontal of corank 1. Then the following conditions are equivalent to each other:

(1) f is A -equivalent to Mond singularity (cuspidal beaks), i.e. the tangent surface to a curve of type
(1,3,4).

(1’) f is A -equivalent to the germ (t1, t2) 7→ (t1, t3
2 + t1t2

2 ,
3
4 t4

2 +
2
3 t1t3

2 ).
(2) f is a front, λ is K -equivalent t1t2 at the origin, and ordη

a (λ ) = 2.
(3) λ is K -equivalent t1t2 at the origin, ordη

a (λ ) = 2 and ordη
a ( f3) = 4.

Moreover we have:

Theorem 3.18. (Recognition of open Mond singularities (open cuspidal beaks)) Let f : (R2,a)→ (Rm,b)
be a frontal of corank 1 with m≥ 4. Then the following conditions are equivalent to each other:

(1) f is A -equivalent to the open Mond singularity, i.e. the tangent surface to a curve of type
(1,3,4,5, . . .).

(1’) f is A -equivalent to the germ (t1, t2) 7→ (t1, t3
2 + t1t2

2 ,
3
4 t4

2 +
2
3 t1t3

2 ,
3
5 t5

2 +
1
2 t1t4

2 , . . .).

(2) λ is K -equivalent to (t1, t2) 7→ t1t2 at the origin, ordη
a (λ ) = 2, (η3 fi)(a) = 0,(3 ≤ k ≤ m),

and there exist 3 ≤ i 6= j ≤ m and A ∈ GL(2,R) such that, setting ( fi, f j)A = ( f ′3, f ′4), ordη
a ( f ′3) = 4,

ordη
a ( f ′4) = 5.
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To conclude this section, we give the result on recognition of Shcherbak singularity:

Theorem 3.19. (Recognition of Shcherbak singularity) Let f : (R2,a)→ (R3,b) be a frontal of corank
1. Then the following conditions are equivalent to each other:

(1) f is A -equivalent to Shcherbak singularity, i.e. the tangent surface to a curve of type (1,3,5).
(1’) f is A -equivalent to the germ (t1, t2) 7→ (t1, t3

2 + t1t2
2 ,

3
5 t5

2 +
1
2 t1t4

2 ) at the origin.
(2) λ is K -equivalent to the germ (t1, t2) 7→ t1t2 at the origin, ordη

a (λ ) = 2, ordη
c ( f3) ≥ 4 for any

point c on a component of the singular locus S( f ), and ordη
a ( f3) = 5.

Note that Shcherbak singularity necessarily has the (2,5) cuspidal-edge along one component of the
singular locus, while it has the ordinary (2,3) cuspidal edge along another component.

4. FRONTALS AND OPENINGS

To understand the frontal singularities and to prove the results in the previous section, we introduce
the notion of openings and make clear its relation to frontal singularities (see also [11]).

Let f : (Rn,a)→ (Rm,b) be a frontal (resp. a proper frontal) and f̃ : (Rn,a)→ Gr(n,TRm) any
Legendre lift of f . Let

(x1, . . . ,xn,xn+1, . . . ,xm)

be an adapted system of coordinates to f̃ (resp. to f ) (Definition 2.11). Then, setting fi = xi◦ f ,1≤ i≤m,
we have

d fi = hi1d f1 +hi2d f2 + · · ·+hind fn, (n+1≤ i≤ m)

for some hi j ∈ Ea,hi j(a) = 0, n+1≤ i≤ m,1≤ j ≤ n.

Definition 4.1. In general, for a map-germ f = ( f1, . . . , fm) : (Rn,a) → (Rm,b), we define the Ea-
submodule

J f :=
m

∑
j=1

Ead f j = Ead( f ∗Eb)

of the Ea-module of differential 1-forms Ω1
a on (Rn,a). We would like to call J f the Jacobi module of

f .

Note that J f is determined by the Jacobi matrix J( f ) of f . Returning to our original situation, we
define the following key notion:

Definition 4.2. We call a map-germ f : (Rn,a)→ (Rm,b) an opening of a map-germ

g : (Rn,a)→ (Rn,g(a))

if f is of the form (g1, . . . ,gn, fn+1, . . . , fm) with d f j ∈Jg,(n+1≤ j ≤ m) via a system of local coordi-
nates of (Rm,b).

Then we observe the following:

Lemma 4.3. Any frontal f : (Rn,a)→ (Rm,b) is an opening of g := ( f1, . . . , fn) : (Rn,a)→ (Rn,g(a))
via adapted coordinates to a Legendre lift of f . Conversely, any opening of a map-germ

g : (Rn,a)→ (Rn,g(a))

is a frontal. An opening of g is a proper frontal if and only if g is proper, i.e. S(g) is nowhere dense.

Proof : The first half is clear. To see the second half, let f = (g1, . . . ,gn, fn+1, . . . , fm) be an opening of g.
Then

d fi = hi1d f1 +hi2d f2 + · · ·+hind fn, (n+1≤ i≤ m)
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for some hi j ∈ Ea,n+1≤ i≤ m,1≤ j ≤ n. Then a Legendre lift f̃ : (Rn,a)→ Gr(n,TRm) is given, via
Grassmannian coordinates of the fiber, by

t 7→ ( f (t),
(

En
H(t)

)
),

where En is the n× n unit matrix and H(t) is given by the (m− n)× n-matrix (hi j(t)). Therefore f is
a frontal. Note that an adapted system of coordinates for f is given by (x1, . . . ,xn, x̃n+1, . . . , x̃m) with
x̃i = xi−∑

m
j=n+1 hi j(a)x j (n+1≤ i≤ m). The last statement follows clearly. 2

Here we recall one of key notion for our approach to the recognition problem of frontal singularities.

Definition 4.4. ([8]) An opening

f : (Rn,a)→ (Rm,b), f = (g; fn+1, . . . , fm),

of a map-germ g : (Rn,a)→ (Rn,g(a)) is called a versal opening if, for any h ∈ Ea with dh ∈Jg, there
exist k0,k1, . . . ,km−n ∈ ERn,g(a) such that

h = g∗(k0)+g∗(k1) fn+1 + · · ·+g∗(km−n) fm.

We will use the following result which is proved in Proposition 6.9 of [8].

Theorem 4.5. Any two versal openings f , f ′ : (Rn,a)→ (Rm,b) (having the same target dimension) of
a map-germ g are A -equivalent to each other.

Recall, for a map-germ f : (Rn,a)→ (Rm,b), we have defined J f = Ead( f ∗Eb) (Definition 4.1).

Lemma 4.6. (1) Let f : (Rn,a)→ (Rm,b), f ′ : (Rn,a)→ (Rm,b′) be map-germs. If f and f ′ are L -
equivalent, i.e. if there exists a diffeomorphism-germ τ : (Rm,b)→ (Rm,b′) such that f ′ = τ ◦ f , then
J f = J f ′ .

(2) Let f : (Rn,a)→ (Rm,b), f ′ : (Rn,a′)→ (Rm,b) be map-germs. If f and f ′ are R-equivalent, i.e.
if there exists a diffeomorphism-germ σ : (Rn,a)→ (Rn,a′) such that f ′ = f ◦σ , then σ∗(J f ) = J f ′ .

Proof : (1) Since f ∗Eb = f ′∗Eb′ , we have J f = Ead( f ∗Eb) = Ead( f ′∗Eb′) = J f ′ .
(2) Since f ′∗Eb = σ∗( f ∗Eb), we have

J f ′ = Ea′d( f ′∗Eb) = Ea′d(σ
∗( f ∗Eb)) = σ

∗Eaσ
∗d( f ∗Eb) = σ

∗(Ead( f ∗Eb)) = σ
∗(J f ).

2

The equality of Jacobi modules J f has a simple meaning:

Lemma 4.7. Let f : (Rn,a)→ (Rm,b), f ′ : (Rn,a)→ (Rm′ ,b′) be map-germs.
Then the following conditions (i), (ii) are equivalent:
(i) The Jacobi module J f = J f ′ .
(ii) There exist an m′×m-matrix P and an m×m′-matrix Q with entries in Ea such that the Jacobi

matrix J( f ′) = PJ( f ) and J( f ) = QJ( f ′).
In particular, (i) implies that the Jacobi ideal J f = J f ′ .
Moreover, if the target dimension m = m′, then the following condition (iii) is equivalent to (i).
(iii) There exists an invertible m×m-matrix R with entries in Ea such that J( f ′) = RJ( f ).

To show Lemma 4.7, we recall the following fact in linear algebra.

Lemma 4.8. (cf. [22]) Let A,B be m×m-matrices with entries in R. Then there exists an m×m-matrices
C with entries in R such that C(Em−BA)+A is invertible.
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Proof of Lemma 4.7:
The inclusion J f ′ ⊆J f is equivalent to that there exist pi j ∈ Ea such that d f ′i = ∑ j=1m pi jd f j,

(1 ≤ i ≤ m), namely that J( f ′) = PJ( f ) by setting P = (pi j). Similarly, the inclusion J f ⊆J f ′ is
equivalent to that there exist qi j ∈ Ea such that d fi =∑ j=1m qi jd f ′j,(1≤ i≤m), namely that J( f )=QJ( f ′)
by setting Q = (qi j). Therefore the equivalence between (i) and (ii) is clear.

Suppose m = m′. By Lemma 4.8, there exists an m×m-matrix C with entries in R such that

C(Em−Q(a)P(a))+P(a)

is invertible. Then R := C(Em−QP)+P is an invertible m×m-matrix with entries in in Ea. Then we
have (Em−QP)J( f ) = J( f )−QJ( f ′) = O and therefore RJ( f ) =C(Em−QP)J( f )+PJ( f ) = J( f ′). 2

Remark 4.9. Related to Jacobi modules, we define the ramification module R f ⊆ Ea for a map-germ
f : (Rn,a)→ (Rm,b) by

R f := {h ∈ Ea | dh ∈J f },
using the Jacobi module J f . Then R f = R f ′ if and only if J f = J f ′ . See, for details, the series of
papers [6, 7, 8, 9, 10, 11].

Lemma 4.10. Let f : (Rn,a)→ (Rm,b), f ′ : (Rn,a′)→ (Rm′ ,b′) be map-germs. If J f = J f ′ , then

J f = J f ′ , N f = N f ′ .

Proof : The equality J f = J f ′ follows from Lemma 4.7. For any η ∈Va, the condition η ∈N f is equivalent
to that ω(η) ∈ J f = J f ′ for any ω ∈J f = J f ′ , which is equivalent to that η ∈N f ′ . Therefore we have
N f = N f ′ . 2

Lemma 4.11. Let f , f ′ : (Rn,a)→ (Rm,b) be proper frontals of corank 1. Then the conditions

λ f ·Ea = λ f ′ ·Ea, N f = N f ′ ,

imply that J f = J f ′ .

Proof : By the assumption we may take λ f = λ f ′ and η f = η f ′ . and η f = ∂/∂ tn for a system of coor-
dinates t1, . . . , tn−1, tn of (Rn,a). Note that, by the assumption, the zero-locus of λ f is nowhere dense.
Then f∗(∂/∂ t1), . . . , f∗(∂/∂ tn−1),(1/λ f ) f∗(∂/∂ tn) are linearly independent at a as elements of E m

a . Take
additional ξn+1, . . . ,ξm to complete a basis of E m

a . Moreover by the assumption

f ′∗(∂/∂ t1), . . . , f ′∗(∂/∂ tn−1),(1/λ f ) f ′∗(∂/∂ tn)

are linearly independent at a as elements of E m
a . Take additional ξ ′n+1, . . . ,ξ

′
m to complete a basis of E m

a .
Then define R : (Rn,a)→ GL(m,R) by

R f∗(∂/∂ ti)= f ′∗(∂/∂ ti),1≤ i≤ n−1, R(1/λ f ) f∗(∂/∂ tn)= (1/λ f ) f ′∗(∂/∂ tn), Rξ j = ξ
′
j,n+1≤ j≤m.

Then R f∗(∂/∂ tn) = f ′∗(∂/∂ tn) and we have RJ( f ) = J( f ′). By Lemma 4.7, we have J f = J f ′ . 2

We utilize the following in the next section:

Lemma 4.12. Let f : (Rn,a)→ (Rm,b) be an opening of g : (Rn,a)→ (Rn,g(a)) with respect to an
adapted system of coordinates (x1, . . . ,xn,xn+1, . . . ,xm). Then f and g are frontals and J f = Jg. They
have common Jacobian, same corank, and N f = Ng. If they are of corank 1, then they have common
kernel field.
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Proof : By Lemma 4.3, we have J f = Jg. Then J f = Jg, therefore λ f = λg. Moreover, by Lemma 4.7,
Ker(Ta f ) = Ker(Tag)⊆ TaRn. Therefore f and g have the same corank. Furthermore, for any η ∈ Va, the
condition that d fi(η) ∈ J f ,1≤ i≤ m is equivalent to that dgi(η) ∈ J f = Jg,1≤ i≤ n. Hence N f = Ng.
2

Definition 4.13. Let f : (Rn,a)→ (Rm,b) and f ′ : (Rn,a′)→ (Rm′ ,b′) be map-germs. Then f and f ′ are
called J -equivalent if there exists a diffeomorphism-germ σ : (Rn,a)→ (Rn,a′) such that J f ′◦σ =J f .
Note that m and m′ can be different.

By Lemma 4.6 and Lemma 4.11, we have

Corollary 4.14. Let f : (Rn,a)→ (Rm,b) and f ′ : (Rn,a′)→ (Rm′ ,b′) be map-germs. If f and f ′ are
A -equivalent, then f and f ′ are J -equivalent.

Corollary 4.15. Let f , f ′ be proper frontals. If f and f ′ are J -equivalent, then (λ f ·Ea, N f ) is trans-
formed to (λ f ′ ·Ea′ , N f ′) by a diffeomorphism-germ σ : (Rn,a)→ (Rn,a′). In particular λ f and λ f ′ are
K -equivalent.

Moreover if f is of corank 1 and (λ f ·Ea, N f ) is transformed to (λ f ′ ·Ea′ , N f ′) by a diffeomorphism-
germ σ : (Rn,a)→ (Rn,a′), then f and f ′ are J -equivalent.

On the vanishing order of a function for a vector field introduced in Definition 3.8, we have:

Lemma 4.16. If h̃ = ρh, ξ̃ = νξ for some ρ,ν ∈ Ea with ρ(a) 6= 0,ξ (a) 6= 0, then ordξ̃
a (h̃) = ordξ

a (h).
If h = h ◦ σ ,ξ = (T σ−1) ◦ ξ ◦ σ for some diffeomorphism-germ σ : (Rn,a′) → (Rn,a), then

ordξ

a′(h) = ordξ
a (h).

By Lemma 4.16 we have

Corollary 4.17. Let f : (Rn,a)→ (Rm,b) be a proper frontal of corank 1. Then ordη
a (λ ) is independent

of the choices of the Jacobian λ and the kernel field η of f . If f ′ : (Rn,a′)→ (Rm′ ,b′) is J -equivalent
to f , then f ′ is a proper frontal of corank 1 and ordη ′

a (λ ′) is equal to ordη
a (λ ), for any Jacobian λ ′ and

any kernel filed η ′ of f ′.

5. PROOFS OF RECOGNITION THEOREMS

In this section we give proofs of Theorems 3.9, 3.10, 3.11, 3.13, 3.14, 3.15, 3.17, 3.18, and 3.19.

Proof of Theorem 3.9: The equivalence of (1) and (1’) is classically known (see [6]). The equivalence of
(1’) and (2) is proved in [21].

To study the condition, we set g = ( f1, f2). Then for the Jacobian λ and the kernel field η of g we also
have ηλ (a) 6= 0 (see Lemma4.12). By Theorem 3.4, g is A -equivalent to the fold. Then the condition (3)
means that f is a versal opening of the fold g. Since the cuspidal edge is characterized as the (mini)-versal
opening of the fold map-germ, we have the equivalence of (3) and (1) by Theorem 4.5. 2

Proof of Theorem 3.10: The equivalence of (1) and (1’) is proved in Theorem 7.1 of [8]. The condition
(3) means that f is a versal opening of the fold g. Since the embedded cuspidal edge is characterized as
the versal opening of the fold map-germ, we have the equivalence of (3) and (1) by Theorem4.5. On the
other hand, under the condition ηλ (a) 6= 0, the condition ordη

a ( fi) = 3 for some i,3≤ i≤m is equivalent
to that the Legendre lift f̃ is an immersion i.e. f is a front. Therefore (3) and (2) are equivalent. 2

Proof of Theorem 3.11. The equivalence of (1) and (1’) is due to Cleave (see [8]).
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Suppose the condition (2) is satisfied. Then f is A -equivalent to the germ g(t1, t2) = (t1, t2
2 , f3(t1, t2))

at the origin with λ = t2,η = ∂/∂ t2, (η3 f3)(0) = 0 and (dλ ∧ d(η3 f3))(0) 6= 0. Since d f3 ∈Jg, in
other word since f3 ∈Rg (Remark4.9), there exist functions A,B on (R2,0) such that

f3(t1, t2) = A(t1, t2
2 )+B(t1, t2

2 )t
3
2 .

Then the condition (η3 f3)(0) = 0 is equivalent to B(0,0) = 0, and the condition

(dλ ∧d(η3 f3))(0) 6= 0

is equivalent to ∂B
∂ t1

(0,0) 6= 0. Define diffeomorphism-germs σ : (R2,0)→ (R2,0) by

σ(t1, t2) = (B(t1, t2
2 ), t2)

and τ : (R3,0)→ (R3,0) by

τ(x1,x2,x3) = (B(x1,x2),x2,x3−A(x1,x2)).

Then (t1, t2
2 , t1t3

2 ) ◦σ = τ ◦ (t1, t2
2 , f3) holds. Therefore f is A -equivalent to folded umbrella. Hence we

see that (2) implies (1). Conversely (1) implies (2) for some, so for any, adapted coordinates. 2

Proof of Theorem 3.13: The A -determinacy of tangent maps to curves of type (1,2,4,5, . . .) is proved in
Theorem 7.2 of [8]. Let γ : (R,0)→ (Rm,0) be the curve t 7→ (t, t2, t4, t5,0, . . .). Then the tangent map
Tan(γ) : (R2,0)→ (Rm,0) is given by

Tan(γ)(t,u) = (t +u, t2 +2ut, t4 +4ut3, t5 +5ut4, 0, . . .).

Then it is easy to see that Tan(γ) is A -equivalent to (t1, t2)→ (t1, t2
2 , t1t3

2 , t5
2 , 0, . . . ,0). Hence we have

the equivalence of (1) and (1’).
Suppose f satisfies (2). Then f is an opening of ( f1, f2), which is a fold by Theorem3.4. Therefore f

is A -equivalent to a frontal of form (t1, t2
2 , f3, f4, . . .) for an adapted coordinates. The Jacobian is given

by λ = t2 and the kernel field is given by η = ∂/∂ t2. We write fi = Ai(t1, t2
2 )+Bi(t1, t2

2 )t
3
2 for some Ai,Bi

with Ai(0,0) = 0,Bi(0,0) = 0, (3≤ i≤ m). Then fi = Ãi(t1, t2
2 )t1t3

2 + B̃i(t1, t2
2 )t

5
2 . Then the condition (2)

is equivalent to that, for some i, j with 3≤ i < j ≤ m,(
Ãi(0,0) B̃i(0,0)
Ã j(0,0) B̃ j(0,0)

)
∈ GL(2,R).

Then f is A -equivalent to (t1, t2
2 , t1t3

2 , t5
2 , 0, . . . ,0). Therefore (2) implies (1’). The converse is clear. 2

Proof of Theorem 3.14: The equivalence of (1) and (1’) is proved in Theorem 1 of [6]. The equivalence
of (1’) and (2) is proved in Proposition 1.3 of [21]. The condition that λ is K -equivalent to t1 and
ordη

a (λ ) = 2 is equivalent, by Theorem 3.4, to that f is an opening of Whitney’s cusp

g(t1, t2) = (t1, t3
2 + t1t2).

The Jacobian is given by λ = 3t2
2 + t1 and the kernel field is given by η = ∂/∂ t2. Set

U1 =
3
4

t4
2 +

1
2

t1t2
2 ,U2 =

3
5

t5
2 +

1
3

t1t3
2 .

Then it is known that the ramification module Rg is generated by 1,U1,U2 over g∗ (see [6]). Since
f3 ∈Rg is the third component for an adapted system of coordinates, f3 is written as

f3 = A◦g+(B◦g)U1 +(C ◦g)U2,

for some functions A,B,C with A(0,0) = 0, ∂A
∂x1

(0,0) = 0, ∂A
∂x2

(0,0) = 0. By the condition
ordη

a ( f3) = 4, we have B(0,0) 6= 0. Then, by a change of adapted system of coordinates, We may suppose
f = (g, f3) with f3 =U1 +Φ, where Φ = (B̃◦g)U1 +(D◦g)U2 with B̃(0,0) = 0. Then we set the family
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Fs = (g,U1 + sΦ). By the same infinitesimal method used in [6], we can show that the family Fs is trivi-
alized by A -equivalence. Hence f = F1 is A -equivalent to F0, that is the normal form of (2). Therefore
(3) implies (2). The converse is clear. 2

Proof of Theorem 3.15: The equivalence of (1) and (1’) is proved in [8]. The condition (2) implies,
by Theorem 3.4, that f is an opening of Whitney’s cusp. Using the same notations as in the proof of
Theorem 3.14, we write fk as fk = Ak ◦ g+(Bk ◦ g)U1 +(Ck ◦ g)U2, for some functions Ak,Bk,Ck with
Ak(0,0) = 0, ∂Ak

∂x1
(0,0) = 0, ∂Ak

∂x2
(0,0) = 0. Then by the condition (2), we see that f is a versal opening

(Definition 4.4) of g. On the other hand the map-germ of (1’) is a versal opening of g ([8]). By Theorem
4.5, we see that (2) implies (1’). The converse implication (1’) to (2) is clear. 2

Proof of Theorem 3.17: The outline of the proof is similar to that of Theorem 3.14. The equivalence of (1)
and (1’) is proved in Theorem 1 of [6]. The equivalence of (1’) and (2) is proved in [19]. The condition
that λ is K -equivalent to t1t2 and ordη

a (λ ) = 2 is equivalent, by Theorem 3.4, to that f is an opening of
bec à bec g(t1, t2) = (t1, t3

2 + t1t2
2 ). The Jacobian is given by λ = 3t2

2 +2t1t2 and the kernel field is given
by η = ∂/∂ t2. Set U1 = 3

4 t4
2 +

2
3 t1t3

2 ,U2 = 3
5 t5

2 +
1
2 t1t4

2 . Then it is known that the ramification module
Rg is generated by 1,U1,U2 over g∗ (see [6]). Since f3 ∈ Rg is the third component for an adapted
system of coordinates, f3 is written as f3 = A◦g+(B◦g)U1 +(C ◦g)U2, for some functions A,B,C with
A(0,0) = 0, ∂A

∂x1
(0,0) = 0, ∂A

∂x2
(0,0) = 0. By the condition ordη

a ( f3) = 4, we have B(0,0) 6= 0. Then,
by a change of adapted system of coordinates, we may suppose f = (g, f3) with f3 = U1 +Φ, where
Φ = (B̃ ◦ g)U1 +(C ◦ g)U2 with B̃(0,0) = 0. Then, by the infinitesimal method used in [6], the family
Fs = (g,U1+sΦ) is trivialized by A -equivalence. Hence f = F1 is A -equivalent to F0, that is the normal
form of (2). Therefore (3) implies (2). The converse is clear. 2

Proof of Theorem 3.18: Open Mond singularities are characterized as versal openings of bec à bec ([8]).
Then Theorem3.18 is proved similarly as the proof of Theorem3.15. 2

Proof of Theorem 3.19: The equivalence of (1) and (1’) is proved in [6]. The condition (2) implies
that f is an opening of bec à bec. Using the same notations in the proof of Theorem 3.17, we write f3 as
f3 =A◦g+(B◦g)U1+(C◦g)U2, for some functions A,B,C with A(0,0) = 0, ∂A

∂x1
(0,0) = 0, ∂A

∂x2
(0,0) = 0.

By the condition ordη
a ( f3) = 5, we have B(0,0) = 0 and C(0,0) 6= 0. Moreover, by the assumption, we

may assume that ordη

(t1,0)
f3 ≥ 4 along the component {t2 = 0} of S( f ) and then B(x1,0) = 0. Then,

by a change of adapted system of coordinates, we may suppose f = (g, f3) with f3 = U2 +Φ, where
Φ = (B◦g)U1 +(C̃ ◦g)U2 with B(x1,0) = 0,C̃(0,0) = 0. Then by the same infinitesimal method used in
[6], the family Fs = (g,U2 + sΦ) turns to be trivial under A -equivalence. Hence f = F1 is A -equivalent
to F0, that is the normal form of (1’). Therefore (2) implies (1’). The converse is clear. 2

6. AN APPLICATION TO 3-DIMENSIONAL LORENTZIAN GEOMETRY, AND OTHER TOPICS

We announce the following result without explanations of notions. The details will be given in [16].

Theorem 6.1. ([2], [14, 16]) Any null frontal surface in a Lorentzian 3-manifold turns to be a null
tangent surface of a (directed) null curve, and any generic null frontal surface has only singularities,
along the null curve, of type

(I) cuspidal edge (CE), (II) swallowtail (SW), or (III) Shcherbak singularity (SB).
Moreover the corresponding dual frontal in the space of null-geodesics has (I) cuspidal edge (CE),

(II) Mond singularity (MD), or (III) generic folded pleat (GFP).
The same classification result holds not only for any Lorentzian metric but also for arbitrary non-

degenerate (strictly convex) cone structure in any 3-manifold.
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To show Theorem 6.1, we face the recognition problem on cuspidal edge, swallowtail, Scherbak
singularity, Mond singularity, and “generic folded pleat”. In fact we will use the recognition theorems
introduced in the previous section and the following result on openings of Whitney’s cusp. The following
recognition result is proved by the same method of the above proof of Theorem3.14. The details will be
given in [16].

Theorem 6.2. (Recognition of folded pleat) Let f : (R2,a)→ (R3,b) be a frontal of corank 1. Then the
following conditions are equivalent to each other:

(1) f is A -equivalent to a folded pleat i.e. the singularity of tangent surface of a curve of type (2,3,5).
(1’) f is A -equivalent to the germ (t1, t3

2 + t1t2, 3
5 t5

2 +
1
2 t1t3

2 + c( 1
2 t6

2 +
3
4 t1t4

2 )) at the origin for some
c ∈ R.

(2) λ is K -equivalent to the germ (t1, t2) 7→ t1 at the origin, ordη
a (λ )(a) = 2, f has an injective

representative, and ordη
p ( f3) = 5.

Note that a folded pleat singularity necessarily has an injective representative.

folded pleat cuspidal swallowtail cuspidal lips

Remark 6.3. Recall that the diffeomorphism classes (CE), (SW), (SB) and (MD) are exactly charac-
terized as those of tangent surfaces in Euclidean space R3 of curves of type (1,2,3), (2,3,4), (1,3,5),
(1,3,4) respectively. A map-germ (R2,a)→ (R3,b) is called a folded pleat (FP) if it is diffeomorphic
to the tangent surface of a curve of type (2,3,5) in R3. The diffeomorphism classes of folded pleats fall
into two classes, the generic folded pleat and the non-generic folded pleat. In the list of Theorem 6.1, it
is claimed that only the generic folded pleat (GFP) appear. Theorem 6.2 do not solve the recognition of
a singularity but a class of singularities, which consists of two singularities. Note that the parameter c
in (1’) of Theorem 6.2 is not a moduli, but provides just two A -equivalence classes. To recognize the
generic folded pleat, it is necessary an additional argument to distinguish generic and non-generic folded
pleats.

In this occasion we introduce and prove the following two theorems of recognition:

Theorem 6.4. (Recognition of cuspidal swallowtail) Let (R2,a)→ (R3,b) be a frontal of corank 1. Then
the following conditions are equivalent to each other:

(1) f is A -equivalent to the cuspidal swallowtail i.e. the singularity of tangent surface of curves of
type (3,4,5).

(1’) f is A -equivalent to the germ (t1, t2) 7→ (t1, t4
2 + t1t2, 4

5 t5
2 +

1
2 t1t2

2 ) at the origin.
(2) λ is K -equivalent to the germ (t1, t2) 7→ t1 at the origin, ordη

a (λ ) = 3 and ordη
a ( f3) = 5.

Proof : In [8] it is proved that the condition (1) is equivalent to that f is A -equivalent to the germ
(t,u) 7→ (t3+3u, t4+4ut, t5+5ut2), which is A -equivalent to the normal form of (1’). Therefore (1) and
(1’) are equivalent. In [24], the map-germ which is A -equivalent to the germ g : (t1, t2) 7→ (t1, t4

2 +t1t2) at
the origin is called a swallowtail and it is shown that a map-germ g : (R2,a)→ (R2,g(a)) is a swallowtail
if and only if λ is K -equivalent to the germ (t1, t2) 7→ t1 at the origin and ordη

a (λ )= 3. Suppose f satisfies
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(2). Then f is an opening of swallowtail. Then f is A -equivalent to a frontal of form f = (g, f3). We
have the Jacobian λ = 4t3

2 + t1 and η = ∂/∂ t2. We follow the method of [6]. Set

U = t4
2 + t1t2, U1 =

4
5 t5

2 +
1
2 t1t2

2 , U2 =
2
3 t6

2 +
1
3 t1t3

2 , U3 =
4
7 t7

2 +
1
4 t1t4

2 .

The third component f3 is written as

f3 = A◦g+(B◦g)U1 +(C ◦g)U2 +(D◦g)U3.

Then the condition ordη
a ( f3) = 5 implies that B(0,0) 6= 0. We may suppose f = (g, f3) with

f3 =U1 +Φ,Φ = (B◦g)U1 +(C ◦g)U2 +(D◦g)U3,B(0,0) = 0.

Then the family Fs = (g, U1 + sΦ) is trivialized by A -equivalence. Thus f = F1 is A -equivalent to F0
which is the normal form of (1’). Therefore (2) implies (1’). The converse is clear. Hence (1’) and (2)
are equivalent. 2

As for openings of the lips (t1, t2)→ (t1, t3
2 + t2

1 t2) (see [24]), we have

Theorem 6.5. (Recognition of cuspidal lips) Let (R2,a)→ (R3,b) be a frontal of corank 1. Then the
following conditions are equivalent to each other:

(1) f is A -equivalent to cuspidal lips i.e. (t1, t2)→ (t1, t3
2 + t2

1 t2, 3
4 t4

2 +
1
2 t2

1 t2
2 ).

(2) f is a front and λ is K -equivalent to the germ (t1, t2) 7→ t2
1 + t2

2 at the origin.
(3) λ is K -equivalent to the germ (t1, t2) 7→ t2

1 + t2
2 at the origin, and ordη

a ( f3) = 4.

Proof : The equivalence of (1) and (2) is proved in [19]. Under the condition that λ is K -equivalent to
the germ (t1, t2) 7→ t2

1 + t2
2 at the origin, the condition ordη

a ( f3) = 4 is equivalent to that the Legendre lift
f̃ is an immersion. Thus we have the equivalence of (2) and (3). 2

Remark 6.6. Cuspidal lips never appear as singularities of tangent surfaces.

We conclude the paper by presenting open questions:

Question 1. When does J -equivalence imply A -equivalence ?

Remark 6.7. For immersions, folds, cusps, lips, beaks, swallowtails : (R2,0)→ (R2,0), J -equivalence
of frontals of corank 1 implies A -equivalence.

Example 6.8. ([23, 20]) Let f , f ′ : (R2,0)→ (R2,0) be defined by f (t1, t2) = (t1, t1t2+t5
2 +t7

2 ) (butterfly)
and f ′(t1, t2) = (t1, t1t2 + t5

2 ) (elder butterfly). Then f is not A -equivalent to f ′ and their recognition by
Taylor coefficients is obtained by Kabata [20]. On the other hand we observe, by using the theory of
implicit OED of first order, that f is J -equivalent to f ′ in fact. Therefore we see that it is absolutely
impossible to recognize them just in terms of kernel field η and Jacobian λ .

Question 2. When does J -equivalence imply K -equivalence ?

It can be shown, for map-germs of corank 1, that J -equivalence implies K -equivalence under a mild
condition:

Lemma 6.9. Let f : (Rn,a)→ (Rm,b) and f ′ : (Rn,a′)→ (Rm′ ,b′) be map-germs of corank 1. If f and
f ′ are J -equivalent and f is K -finite, then f and f ′ are K -equivalent, i.e. ( f ∗mb)Ea is transformed
to ( f ′∗mb′)Ea′ by a diffeomorphism-germ σ : (Rn,a)→ (Rn,a′). Here mb ⊂ Eb is the maximal ideal. The
condition that f is K -finite means that dimR(Ea/( f ∗mb)Ea)< ∞.
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Proof : By the assumption, f is A -equivalent to g : (Rn,0)→ (Rm,0) of form

(t1, . . . , tn−1,ϕn(t), . . . ,ϕm(t))

for some ϕi ∈ E0,n ≤ i ≤ m. Then g∗(m0)E0 is generated by t1, . . . , tn−1, t`n for some ` and ` is uniquely
determined by the minimum of orders of ϕn(0, tn), . . . ,ϕm(0, tn) for tn at 0. On the other hand, the Jacobi
module Jg is generated by dt1, . . . ,dtn−1,(∂ϕn/∂ tn)dtn, . . . ,(∂ϕn/∂ tn)dtn, and the minimum of orders
of (∂ϕn/∂ tn)(0, tn), . . . ,(∂ϕm/∂ tn)(0, tn) for tn at 0 is invariant under J -equivalence. Therefore K -
equivalence class is also invariant under J -equivalence. 2
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