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Abstract. Lagrangian equivalence among Lagrangian submanifolds and S.P+-Legendrian

equivalence among graph-like Legendrian unfoldings are equivalent. We investigate r-parameter
families of Lagrangian submanifolds and r-parameter families of graph-like Legendrian un-

foldings. Then we show that r-parameter families of Lagrangian equivalence and r-parameter

families of S.P+-Legendrian equivalence are equivalent. As an application, we give a generic
classification of bifurcations of Lagrangian submanifold germs for lower dimensions.

1. Introduction

The study of singularities of caustics and wave fronts was the starting point of the theory
of Lagrangian and Legendrian singularities developed by several mathematicians and physicists
(cf. [1], [2, 5, 6, 7, 11, 18, 19, 29, 30]). The caustic is described as the set of critical values of
the projection of a Lagrangian submanifold from the phase space onto the configuration space.
Lagrangian equivalence among Lagrangian submanifold germs in the phase space was introduced
for the study of oscillatory integrals on caustics (cf. [1, 4, 8]). By definition, Lagrangian equiva-
lence implies caustic equivalence (i.e. diffeomorphic caustics). However, it has been known that
caustic equivalence does not imply Lagrangian equivalence even generically. This is one of the
main differences from the theory of Legendrian singularities. In the theory of Legendrian singu-
larities, wave fronts equivalence (i.e. diffeomorphic wave fronts) implies Legendrian equivalence
generically. This is the reason why people considered caustic equivalence instead of Lagrangian
equivalence in many situations (cf. [1, 24, 30] etc).

On the other hand, the notion of graph-like Legendrian unfoldings was introduced in [9]. It
belongs to a special class of the big Legendrian submanifolds which were introduced in [30]. In §2,
we give brief reviews on the theories of Lagrangian singularities (cf. [1, 2, 6]), of big Legendrian
submanifolds (cf. [20]) and of graph-like Legendrian unfoldings (cf. [21, 22]), respectively. One of
the main results in the theory of graph-like Legendrian unfoldings is that Lagrangian equivalence
among Lagrangian submanifolds and S.P+-Legendrian equivalence (which was introduced in
[10]) among graph-like Legendrian unfoldings are equivalent, see Theorem 2.8 (cf. [13]). It is
known that two graph-like Legendrian unfoldings are S.P+-Legendrian equivalent if and only if
the corresponding graph-like wave front set germs are S.P+-diffeomorphic generically [13, 14].
In this sense, S.P+-Legendrian equivalence is geometric equivalence. It follows that the hidden
relation between caustics and wave front propagations can be investigated and revealed. In
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fact, we give several applications of Lagrangian singularity theory and graph-like Legendrian
unfolding theory (cf. [13, 14, 15, 16, 21, 22, 23]).

On the other hand, if we consider r-parameter families of Lagrangian submanifold germs, the
situation is not so simple. In [2, 30], V.I. Arnol’d and V.M. Zakalyukin gave a generic classi-
fication of bifurcations of caustics and wave fronts, and hence gave a generic classification of
bifurcations of Legendrian submanifold germs by Legendrian equivalence. However, they only
gave a generic classification of bifurcations of caustics by caustic equivalence. A generic classifi-
cation of bifurcations of Lagrangian submanifold germs by Lagrangian equivalence has not been
given in any contexts as far as the authors know. In this paper, we consider r-parameter families
of Lagrangian submanifolds in §3 and r-parameter families of graph-like Legendrian unfoldings
in §4, respectively. As a main result, we show that r-parameter Lagrangian equivalence among
Lagrangian submanifolds families and r-parameter S.P+-Legendrian equivalence among graph-
like Legendrian unfoldings families are equivalent, see Theorem 5.1 in §5. Since S.P+-Legendrian
equivalence is geometric equivalence, it is much easier to investigate than Lagrangian equiva-
lence. Therefore, as an application of Theorem 5.1, we give a generic classification of bifurcations
of Lagrangian submanifolds by Lagrangian equivalence for lower dimensions, see Theorem 6.1 in
§6. There appear functional moduli in the list of the classification even for lower dimensions.

All maps and manifolds considered here are differentiable of class C∞.

2. Preliminaries

In order to fix the notations for describing the main results, we give brief reviews on the
theories of Lagrangian singularities, of big Legendrian submanifolds and of graph-like Legendrian
unfoldings, respectively. We also give a relation between the equivalence relations of Lagrangian
submanifolds and graph-like Legendrian unfoldings (cf. [13, 16]).

2.1. Lagrangian singularities. We consider the cotangent bundle π : T ∗Rn → Rn with the
canonical symplectic structure ω =

∑n
i=1 dpi ∧ dxi, where (x, p) = (x1, . . . , xn, p1, . . . , pn) is

the canonical coordinate on T ∗Rn. A submanifold i : L ⊂ T ∗Rn is said to be a Lagrangian
submanifold if dimL = n and i∗ω = 0. The set of the critical values of π ◦ i is called the caustic
of i : L ⊂ T ∗Rn, which is denoted by CL. One of the main results in the theory of Lagrangian
singularities is the description of Lagrangian submanifold germs by using families of function
germs. For a function germ F : (Rk × Rn, 0) → (R, 0), we say that F is a Morse family of
functions if the map germ

∆F =

(
∂F

∂q1
, . . . ,

∂F

∂qk

)
: (Rk × Rn, 0)→ (Rk, 0)

is non-singular, where (q, x) = (q1, . . . , qk, x1, . . . , xn) ∈ (Rk × Rn, 0). In this case, we have a
smooth n-dimensional submanifold germ C(F ) = (∆F )−1(0) ⊂ (Rk × Rn, 0) and a map germ
L(F ) : (C(F ), 0)→ T ∗Rn defined by

L(F )(q, x) =

(
x,
∂F

∂x1
(q, x), . . . ,

∂F

∂xn
(q, x)

)
.

We can show that L(F )(C(F )) is a Lagrangian submanifold germ. It is known that all Lagrangian
submanifold germs in T ∗Rn are constructed by the above method (cf. [2, page 300]).

A Morse family of functions F : (Rk × Rn, 0) → (R, 0) is called a generating family of
L(F )(C(F )). Let πn : (Rk × Rn, 0) → (Rn, 0) be the canonical projection, then we can eas-
ily show that the critical value set of πn|C(F ) is the bifurcation set BF of F , where

BF =
{
x ∈ (Rn, 0)

∣∣∣ there exists q ∈ (Rk, 0) such that (q, x) ∈ C(F ), rank
( ∂2F

∂qi∂qj
(q, x)

)
< k

}
,
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so that we have CL(F )(C(F )) = BF .
We now define an equivalence relation among Lagrangian submanifold germs. Let

i : (L, x) ⊂ (T ∗Rn, p) and i′ : (L′, x′) ⊂ (T ∗Rn, p′)

be Lagrangian submanifold germs. Then we say that i and i′ are Lagrangian equivalent if
there exist a diffeomorphism germ σ : (L, x) → (L′, x′), a symplectic diffeomorphism germ
τ̂ : (T ∗Rn, p) → (T ∗Rn, p′) and a diffeomorphism germ τ : (Rn, π(p)) → (Rn, π(p′)) such that
τ̂ ◦ i = i′ ◦ σ and π ◦ τ̂ = τ ◦ π. Then the caustic CL is diffeomorphic to the caustic CL′ by
the diffeomorphism germ τ. However, it has been known that caustic equivalence does not imply
Lagrangian equivalence even generically (cf. [2, 12, 16]).

A Lagrangian submanifold germ in T ∗Rn at a point is said to be Lagrange stable if for every
map with the given germ there is a neighbourhood in the space of Lagrangian submanifolds (in
the Whitney C∞-topology) and a neighbourhood of the original point such that each Lagrangian
submanifold belonging to the first neighbourhood has in the second neighbourhood a point at
which its germ is Lagrangian equivalent to the original germ.

We can interpret the Lagrangian equivalence by using the notion of generating families. Let
F,G : (Rk × Rn, 0) → (R, 0) be function germs. We say that F and G are P -R+-equivalent if
there exist a diffeomorphism germ

Φ : (Rk × Rn, 0)→ (Rk × Rn, 0)

of the form Φ(q, x) = (φ1(q, x), φ2(x)) and a function germ α : (Rn, 0) → (R, 0) such that

G(q, x) = F (Φ(q, x)) +α(x). For any F1 : (Rk ×Rn, 0)→ (R, 0) and F2 : (Rk′ ×Rn, 0)→ (R, 0),
F1 and F2 are said to be stably P -R+-equivalent if they become P -R+-equivalent after the
addition to the arguments qi of new arguments q′i and to the functions Fi of non-degenerate
quadratic forms Qi in the new arguments, that is, F1 + Q1 and F2 + Q2 are P -R+-equivalent.
Then we have the following theorem (cf. [2, pages 304 and 325]):

Theorem 2.1. Let F : (Rk × Rn, 0)→ (R, 0) and G : (Rk′ × Rn, 0)→ (R, 0) be Morse families
of functions. Then L(F )(C(F )) and L(G)(C(G)) are Lagrangian equivalent if and only if F and
G are stably P -R+-equivalent.

2.2. The theory of wave front propagations. We consider one-parameter families of wave
fronts and their bifurcations. The principal idea is that a one-parameter family of wave fronts
is considered to be a wave front whose dimension is one dimension higher than each member of
the family. This is called a big wave front. We distinguish space and time coordinates, so that
we denote Rn+1 = Rn × R and coordinates are denoted by (x, t) = (x1, . . . , xn, t) ∈ Rn × R.
Then we consider the projective cotangent bundle π : PT ∗(Rn×R)→ Rn×R over Rn×R. Let
Π : TPT ∗(Rn × R)→ PT ∗(Rn × R) be the tangent bundle over PT ∗(Rn × R) and

dπ : TPT ∗(Rn × R)→ T (Rn × R)

the differential map of π. For any X ∈ TPT ∗(Rn×R), there exists an element α ∈ T ∗(x,t)(R
n×R)

such that Π(X) = [α]. For an element V ∈ T(x,t)(Rn×R), the property α(V ) = 0 does not depend
on the choice of representative of the class [α]. Thus we can define the canonical contact structure
on PT ∗(Rn×R) by K = {X ∈ TPT ∗(Rn×R) | Π(X)(dπ(X)) = 0}. Because of the trivialization
PT ∗(Rn × R) ∼= (Rn × R)× P (Rn × R)∗, we call

((x1, . . . , xn, t), [ξ1 : · · · : ξn : τ ])
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homogeneous coordinates, where [ξ1 : · · · : ξn : τ ] are the homogeneous coordinates of the dual
projective space P (Rn × R)∗. It is easy to show that X ∈ K((x,t),[ξ:τ ]) if and only if

n∑
i=1

µiξi + λτ = 0,

where dπ(X) =
∑n
i=1 µi(∂/∂xi) + λ(∂/∂t). We remark that PT ∗(Rn × R) is a fiberwise com-

pactification of the 1-jet space J1(Rn,R) as follows: We consider an affine open subset

Uτ = {((x, t), [ξ : τ ])|τ 6= 0}

of PT ∗(Rn × R). For any ((x, t), [ξ : τ ]) ∈ Uτ , we have

((x1, . . . , xn, t), [ξ1 : · · · : ξn : τ ]) = ((x1, . . . , xn, t), [−(ξ1/τ) : · · · : −(ξn/τ) : −1]),

so that we may adapt the corresponding affine coordinates ((x1, . . . , xn, t), (p1, . . . , pn)), where
pi = −ξi/τ. On Uτ we can easily show that θ−1(0) = K|Uτ , where θ = dt −

∑n
i=1 pidxi. This

means that Uτ may be identified with the 1-jet space J1(Rn,R). We set

Uτ = J1
GA(Rn,R) ⊂ PT ∗(Rn × R).

We call the above coordinate system a system of graph-like affine coordinates. Throughout this
paper, we use this identification.

A submanifold i : L ⊂ PT ∗(Rn × R) is a Legendrian submanifold if dimL = n and
dip(TpL) ⊂ Ki(p) for any p ∈ L. We say that a point p ∈ L is a Legendrian singular point
if rank d(π ◦ i)p < n. For a Legendrian submanifold i : L ⊂ PT ∗(Rn × R), π ◦ i(L) = W (L) is
called a big wave front. We have a family of small fronts:

Wt(L) = π1(π−1
2 (t) ∩W (L)) (t ∈ R),

where π1 : Rn × R → Rn and π2 : Rn × R → R are the canonical projections defined by
π1(x, t) = x and π2(x, t) = t respectively. In this sense, we call L a big Legendrian submanifold.

The discriminant of the family {Wt(L)}t∈R is defined as the image of singular points of
π1|W (L). In the general case, the discriminant consists of three components: the caustic
CL = π1(Σ(W (L))), where Σ(W (L)) is the set of singular points of W (L) (i.e. the critical
value set of the Legendrian mappings π|L = π ◦ i); the Maxwell stratified set ML, the projection
of the closure of the self intersection set ofW (L); and the critical value set ∆L of π1|W (L)\Σ(W (L)).
In [20, 21, 31], it has been stated that ∆L is the envelope of the family of momentary fronts.
However, we remark that ∆L is not necessarily the envelope of the family of the projection of
smooth momentary fronts π(Wt(L)). It may happen that π−1

2 (t) ∩W (L) is non-singular while
π1|π−1

2 (t)∩W (L) has singularities, so that ∆L is the set of critical values of the family of mappings

π1|π−1
2 (t)∩W (L) for smooth π−1

2 (t) ∩W (L) (cf. [12]).

For any Legendrian submanifold germ i : (L, p0) ⊂ (PT ∗(Rn×R), p0), there exists a generating
family of i by the theory of Legendrian singularities [2]. Let F : (Rk × (Rn ×R), 0)→ (R, 0) be
a function germ such that (F , d2F) : (Rk × (Rn × R), 0)→ (R× Rk, 0) is non-singular, where

d2F(q, x, t) =

(
∂F
∂q1

(q, x, t), . . . ,
∂F
∂qk

(q, x, t)

)
.

In this case, we call F a big Morse family of hypersurfaces. Then Σ∗(F) = (F , d2F)−1(0) is
a smooth n-dimensional submanifold germ. Define LF : (Σ∗(F), 0)→ PT ∗(Rn × R) by

LF (q, x, t) =

(
x, t,

[
∂F
∂x

(q, x, t) :
∂F
∂t

(q, x, t)

])
,
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where [
∂F
∂x

(q, x, t) :
∂F
∂t

(q, x, t)

]
=

[
∂F
∂x1

(q, x, t) : · · · : ∂F
∂xn

(q, x, t) :
∂F
∂t

(q, x, t)

]
.

It is easy to show that LF (Σ∗(F)) is a Legendrian submanifold germ. It is known that all big
Legendrian submanifold germs are constructed by the above method (cf. [1,30]). We call F a
generating family of LF . The big wave front coincides with the discriminant set D(F) of F ,
where

D(F) =
{

(x, t) ∈ (Rn × R, 0)
∣∣∣ there exists q ∈ (Rk, 0) such that (q, x, t) ∈ Σ∗(F)

}
,

so that we have W (LF (Σ∗(F))) = D(F).

We now consider an equivalence relation among big Legendrian submanifolds which preserves
both the qualitative pictures of bifurcations and the discriminant of families of small fronts.
Let i : (L, p0) ⊂ (PT ∗(Rn × R), p0) and i′ : (L′, p′0) ⊂ (PT ∗(Rn × R), p′0) be big Legendrian
submanifold germs. We say that i and i′ are strictly parametrized+ Legendrian equivalent (or,
briefly, S.P+-Legendrian equivalent) if there exist diffeomorphism germs

Φ : (Rn × R, π(p0))→ (Rn × R, π(p′0))

of the form Φ(x, t) = (φ1(x), t+ α(x)) and Ψ : (L, p0)→ (L′, p′0) such that Φ̂ ◦ i = i ◦Ψ, where

Φ̂ : (PT ∗(Rn × R), p0) → (PT ∗(Rn × R), p′0) is the unique contact lift of Φ. This equivalence
relation was independently introduced in [10, 31] for the different purposes, respectively. We
can define the notion of stability of big Legendrian submanifold germs with respect to S.P+-
Legendrian equivalence similar to the definition of Lagrangian stability in §2.1 (cf. [2, Part III]).
However, we omit to give the definition here.

We study S.P+-Legendrian equivalence by using the notion of generating families of Legen-
drian submanifold germs. Let E(q,x,t) be the R-algebra of function germs of (q, x, t)-variables.

For function germs F ,G : (Rk × (Rn × R), 0)→ (R, 0), we say that F and G are space-S.P+-K-
equivalent (or, briefly, s-S.P+-K-equivalent) if there exists a diffeomorphism germ

Φ : (Rk × (Rn × R), 0)→ (Rk × (Rn × R), 0)

of the form Φ(q, x, t) = (φ(q, x, t), φ1(x), t + α(x)) such that 〈F ◦ Φ〉E(q,x,t)
= 〈G〉E(q,x,t)

. The

notion of S.P+-K-versal deformation plays an important role for our purpose. We define the
extended tangent space of f : (Rk × R, 0)→ (R, 0) relative to S.P+-K by

Te(S.P
+-K)(f) =

〈
∂f

∂q1
, . . . ,

∂f

∂qk
, f

〉
E(q,t)

+

〈
∂f

∂t

〉
R
.

We say that F is an S.P+-K-versal deformation of f = F|Rk×{0}×R if it satisfies

E(q,t) = Te(S.P
+-K)(f) +

〈
∂F
∂x1
|Rk×{0}×R, . . . ,

∂F
∂xn
|Rk×{0}×R

〉
R
.

Then we also have the following theorem.

Theorem 2.2. Let F : (Rk × (Rn × R), 0)→ (R, 0) and G : (Rk′ × (Rn × R), 0)→ (R, 0) be big
Morse families of hypersurfaces.
(1) LF (Σ∗(F)) and LG(Σ∗(G)) are S.P+-Legendrian equivalent if and only if F and G are stably
s-S.P+-K-equivalent.
(2) LF (Σ∗(F)) is S.P+-Legendre stable if and only if F is an S.P+-K-versal deformation of
f = F|Rk×{0}×R.
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Since the big Legendrian submanifold germ i : (L, p0) ⊂ (PT ∗(Rn × R), p0) is uniquely
determined on the regular part of the big wave front W (L), we have the following simple but
significant property of Legendrian submanifold germs:

Proposition 2.3. Let i : (L, p0) ⊂ (PT ∗(Rn × R), p0) and i′ : (L′, p0) ⊂ (PT ∗(Rn × R), p0) be
big Legendrian submanifold germs such that π ◦ i, π ◦ i′ are proper map germs and the regular
sets of these map germs are dense respectively. Then (L, p0) = (L′, p0) if and only if

(W (L), π(p0)) = (W (L′), π(p0)).

This result has been firstly pointed out by Zakalyukin [30]. Also see [25]. The assumption in
the above proposition is a generic condition for i, i′. In particular, if i and i′ are S.P+-Legendre
stable, then these satisfy the assumption.

Concerning the discriminant and the bifurcation of momentary fronts, we define the following
equivalence relation among big wave front germs. Let i : (L, p0) ⊂ (PT ∗(Rn × R), p0) and
i′ : (L′, p′0) ⊂ (PT ∗(Rn × R), p′0) be big Legendrian submanifold germs. We say that W (L) and
W (L′) are S.P+-diffeomorphic if there exists a diffeomorphism germ

Φ : (Rn × R, π(p0))→ (Rn × R, π(p′0))

of the form Φ(x, t) = (φ1(x), t + α(x)) such that Φ(W (L)) = W (L′). Remark that the S.P+-
diffeomorphism among big wave front germs preserves the diffeomorphism types of discriminants
[31]. By Proposition 2.3, we have the following proposition.

Proposition 2.4. Let i : (L, p0) ⊂ (PT ∗(Rn × R), p0) and i′ : (L′, p′0) ⊂ (PT ∗(Rn × R), p′0) be
big Legendrian submanifold germs such that π ◦ i, π ◦ i′ are proper map germs and the regular
sets of those map germs are dense respectively. Then i and i′ are S.P+-Legendrian equivalent if
and only if (W (L), π(p0)) and (W (L′), π(p′0)) are S.P+-diffeomorphic.

2.3. Graph-like Legendrian unfoldings. In this subsection we explain the theory of graph-
like Legendrian unfoldings. Graph-like Legendrian unfoldings belong to a special class of big
Legendrian submanifolds. A big Legendrian submanifold i : L ⊂ PT ∗(Rn × R) is said to be a
graph-like Legendrian unfolding if L ⊂ J1

GA(Rn,R).
We call W (L) = π(L) a graph-like wave front of L, where π : J1

GA(Rn,R) → Rn × R is the
canonical projection. We define the mapping Π : J1

GA(Rn,R) → T ∗Rn by Π(x, t, p) = (x, p),
where (x, t, p) = (x1, . . . , xn, t, p1, . . . , pn) and the canonical contact form on J1

GA(Rn,R) is given
by θ = dt− Σni=1pidxi. Then we have the following proposition.

Proposition 2.5 ([12]). For a graph-like Legendrian unfolding L ⊂ J1
GA(Rn,R), z ∈ L is a

singular point of π|L : L → Rn × R if and only if it is a singular point of π1 ◦ π|L : L → Rn.
Moreover, Π|L : L → T ∗Rn is immersive, so that Π(L) is a Lagrangian submanifold in T ∗Rn.

We have the following corollary of Proposition 2.5.

Corollary 2.6 ([12]). For a graph-like Legendrian unfolding L ⊂ J1
GA(Rn,R), ∆L is the empty

set so that the discriminant of the family of momentary fronts is CL ∪ML.

Since L is a big Legendrian submanifold in PT ∗(Rn × R), it has a generating family

F : (Rk × (Rn × R), 0)→ (R, 0)

at least locally. Since L ⊂ J1
GA(Rn,R) = Uτ ⊂ PT ∗(Rn × R), it satisfies the condition

(∂F/∂t)(0) 6= 0. Let F : (Rk × (Rn × R), 0) → (R, 0) be a big Morse family of hypersur-
faces. We say that F is a graph-like Morse family of hypersurfaces if (∂F/∂t)(0) 6= 0. It is
easy to show that the corresponding big Legendrian submanifold germ is a graph-like Legen-
drian unfolding. Of course, all graph-like Legendrian unfolding germs can be constructed by the
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above way. We also say that F is a graph-like generating family of LF (Σ∗(F)). We remark that
the notion of graph-like Legendrian unfoldings and corresponding generating families have been
introduced by the first named author in [9] to describe the perestroikas of wave fronts given as
the solutions for general eikonal equations.

We can consider the following more restrictive class of graph-like generating families: Let F
be a graph-like Morse family of hypersurfaces. By the implicit function theorem, there exists a
function F : (Rk × Rn, 0) → (R, 0) such that 〈F(q, x, t)〉E(q,x,t)

= 〈F (q, x) − t〉E(q,x,t)
. Then we

have the following proposition.

Proposition 2.7 ([22]). Let F : (Rk × (Rn × R), 0) → (R, 0) and F : (Rk × Rn, 0) → (R, 0) be
function germs such that 〈F(q, x, t)〉E(q,x,t)

= 〈F (q, x)− t〉E(q,x,t)
. Then F is a graph-like Morse

family of hypersurfaces if and only if F is a Morse family of functions.

We now consider the case F(q, x, t) = λ(q, x, t)(F (q, x)− t), for λ(0) 6= 0. In this case,

Σ∗(F) = {(q, x, F (q, x)) ∈ (Rk × (Rn × R), 0) | (q, x) ∈ C(F )},
where C(F ) = ∆F−1(0). Moreover, we have the Lagrangian submanifold germ

L(F )(C(F )) ⊂ T ∗Rn,
where L(F ) is defined by

L(F )(q, x) =

(
x,
∂F

∂x1
(q, x), . . . ,

∂F

∂xn
(q, x)

)
.

Since F is a graph-like Morse family of hypersurfaces, we have a big Legendrian submanifold
germ LF (Σ∗(F)) ⊂ J1

GA(Rn,R), where LF : (Σ∗(F), 0) → J1
GA(Rn,R) = T ∗Rn × R is defined

by

LF (q, x, t) =

(
x, t,−

∂F
∂x1

(q, x, t)
∂F
∂t (q, x, t)

, . . . ,−
∂F
∂xn

(q, x, t)
∂F
∂t (q, x, t)

)
.

We also define LF : (C(F ), 0)→ J1
GA(Rn,R) by

LF (q, x) =

(
x, F (q, x),

∂F

∂x1
(q, x), . . . ,

∂F

∂xn
(q, x)

)
.

Since ∂F/∂xi = (∂λ/∂xi)(F − t) + λ∂F/∂xi and ∂F/∂t = (∂λ/∂t)(F − t)− λ, we have

(∂F/∂xi)(q, x, t) = λ(q, x, t)(∂F/∂xi)(q, x, t)

and
(∂F/∂t)(q, x, t) = −λ(q, x, t)

for (q, x, t) ∈ Σ∗(F). It follows that LF (C(F )) = LF (Σ∗(F)). By definition, we have

Π(LF (Σ∗(F))) = Π(LF (C(F ))) = L(F )(C(F )).

The graph-like wave front of LF (Σ∗(F)) = LF (C(F )) is the graph of F |C(F ). This is the reason
why we call it a graph-like Legendrian unfolding.

For a graph-like Morse family of hypersurfaces F(q, x, t) = λ(q, x, t)(F (q, x)−t), F(q, x, t) and
F (q, x, t) = F (q, x) − t are s-S.P+-K-equivalent, so that we consider F (q, x, t) = F (q, x) − t as
a graph-like Morse family of hypersurfaces. Since F (q, x, t) is a big Morse family, we can use all
the definitions of equivalence relations in §2.2. Moreover, we can translate the propositions and
theorems into corresponding assertions in terms of graph-like Legendrian unfoldings. We can
also consider the stability of graph-like Legendrian unfolding with respect to S.P+-Legendrian
equivalence which is analogous to the stability of Lagrangian submanifold germs with respect to
Lagrangian equivalence in §2.1.
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2.4. Equivalence relations. We consider a relation between the equivalence relations of La-
grangian submanifold germs and of graph-like Legendrian unfoldings (cf. [9, 10, 16, 20, 21, 31]).

Theorem 2.8 ([13]). Let

F : (Rk × (Rn × R), 0)→ (R, 0) and G : (Rk
′
× (Rn × R), 0)→ (R, 0)

be graph-like Morse families of hypersurfaces of the forms F(q, x, t) = λ(q, x, t)(F (q, x) − t)
and G(q′, x, t) = µ(q′, x, t)(G(q′, x) − t). Then Lagrangian submanifold germs L(F )(C(F ))
and L(G)(C(G)) are Lagrangian equivalent if and only if the graph-like Legendrian unfoldings
LF (Σ∗(F)) and LG(Σ∗(G)) are S.P+-Legendrian equivalent.

By definition, the set of Legendrian singular points of the graph-like Legendrian unfolding
LF (Σ∗(F)) coincides with the set of singular points of π ◦ L(F ). Therefore the singularities of
graph-like wave front of LF (Σ∗(F)) lie on the caustic of L(F ). It follows that we can apply
Proposition 2.4 to S.P+-Legendrian equivalence. We have the following direct corollaries of
Theorem 2.8.

Corollary 2.9. With the same notations as those in Theorem 2.8, suppose that π ◦ LF , π ◦ LG
are proper map germs and the regular sets of these map germs are dense respectively. Then
Lagrangian submanifold germs L(F )(C(F )) and L(G)(C(G)) are Lagrangian equivalent if and
only if W (LF (Σ∗(F))) and W (LG(Σ∗(G))) are S.P+-diffeomorphic.

Corollary 2.10. Suppose that F(q, x, t) = λ(q, x, t)(F (q, x)− t) is a graph-like Morse family of
hypersurfaces. Then L(F )(C(F )) is Lagrange stable if and only if L(Σ∗(F)) is S.P+-Legendre
stable.

3. Families of Lagrangian submanifolds

We say that ir : L × Rr ⊂ T ∗Rn is an r-parameter family of Lagrangian submanifolds if
i|L×{s} : L × {s} ⊂ T ∗Rn is a Lagrangian submanifold for each s = (s1, . . . , sr) ∈ Rr. By the
theory of Lagrangian singularity in §2.1, we have a Morse family of functions. Let

F : (Rk × Rn × Rr, 0)→ (R, 0), (q, x, s)→ F (q, x, s)

be an r-parameter family of Morse families of functions, that is, for each fixed s ∈ (Rr, 0),
Fs(q, x) = F (q, x, s) is a Morse family of functions and it depends smoothly on s.

We consider the cotangent bundle πr : T ∗(Rn × Rr)→ Rn × Rr over Rn × Rr. Let

(x, s, p, u) = (xi, sj , pi, uj), i = 1, . . . , n, j = 1, . . . , r

be the canonical coordinates on T ∗(Rn × Rr). Then the canonical symplectic structure on
T ∗(Rn×Rr) is given by the canonical 2-form ωr =

∑n
i=1 dpi ∧ dxi +

∑r
j=1 duj ∧ dsj . We denote

the canonical projection by π̃r : T ∗(Rn × Rr)→ T ∗Rn.
Let F : (Rk × Rn × Rr, 0) → (R, 0), (q, x, s) 7→ F (q, x, s) be an r-parameter family of Morse

families of functions. Then it is also a Morse family of functions as an (n+r)-parameter family of
function germs. Therefore we have a Lagrangian submanifold germ L(F )(C(F )) ⊂ T ∗(Rn×Rr),
where L(F ) : (C(F ), 0)→ T ∗(Rn×Rr) is defined in §2.1. Moreover, π̃r ◦L(F )(C(F )) ⊂ T ∗Rn is
an r-parameter family of Lagrangian submanifold germs. We call L(F )(C(F )) a big Lagrangian
submanifold germ.

Let ir : (L × Rr, (x, 0)) ⊂ (T ∗(Rn × Rr), p) and i′r : (L′ × Rr, (x′, 0)) ⊂ (T ∗(Rn × Rr), p′) be
big Lagrangian submanifold germs. We say that ir and i′r are r-parameter Lagrangian equivalent
(or, briefly, r-Lagrangian equivalent) if there exist a diffeomorphism germ

σ : (L× Rr, (x, 0))→ (L′ × Rr, (x′, 0))
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of the form σ(u, s) = (σ1(u, s), ϕ(s)), a symplectic diffeomorphism germ

τ̂ : (T ∗(Rn × Rr), p)→ (T ∗(Rn × Rr), p′)

and a diffeomorphism germ τ : (Rn × Rr, π(p))→ (Rn × Rr, π(p′)) of the form

τ(x, s) = (τ1(x, s), ϕ(s))

such that τ̂ ◦ ir = i′r ◦ σ and πr ◦ τ̂ = τ ◦ πr.

Let F,G : (Rk × Rn × Rr, 0) → (R, 0) be function germs. We say that F and G are P -R+-
equivalent as r-parameter families (or, briefly, r-P -R+-equivalent) if there exist a diffeomorphism
germ Φ : (Rk×Rn×Rr, 0)→ (Rk×Rn×Rr, 0) of the form Φ(q, x, s) = (φ1(q, x, s), φ2(x, s), ϕ(s))
and a function germ α : (Rn×Rr, 0)→ (R, 0) such that G(q, x, s) = F (Φ(q, x, s))+α(x, s). Then
we also have the following theorem.

Theorem 3.1. Let F : (Rk × Rn × Rr, 0) → (R, 0) and G : (Rk′ × Rn × Rr, 0) → (R, 0) be
r-parameter families of Morse families of functions. Then L(F )(C(F )) and L(G)(C(G)) are
r-Lagrangian equivalent if and only if F and G are stably r-P -R+-equivalent.

We also consider the stability of r-parameter families of Lagrangian submanifolds with respect
to r-Lagrangian equivalence.

4. Families of graph-like Legendrian unfoldings

A big Legendrian submanifold

i : L × Rr ⊂ PT ∗(Rn × Rr × R)

is said to be an r-parameter family of graph-like Legendrian unfoldings if

L × Rr ⊂ J1
GA(Rn × Rr,R).

We call W (L × Rr) = πr(L × Rr) an r-parameter family of graph-like wave fronts of L × Rr,
where πr : J1

GA(Rn × Rr,R) → Rn × Rr × R is the canonical projection. By the theory of
Legendrian singularity in §2.3, we have a graph-like Legendrian unfolding corresponding to the
family of graph-like Legendrian unfoldings. Let

F : (Rk × (Rn × Rr × R), 0)→ (R, 0), (q, x, s, t)→ F(q, x, s, t)

be an r-parameter family of graph-like Morse families of hypersurfaces, that is, for each fixed
s ∈ (Rr, 0), Fs(q, x, t) = F(q, x, s, t) is a graph-like Morse family of hypersurfaces and it depends
smoothly on s.

Let

i : (L×Rr, (p, 0)) ⊂ (PT ∗(Rn×Rr×R), p0) and i′ : (L′×Rr, (p′, 0)) ⊂ (PT ∗(Rn×Rr×R), p′0)

be Legendrian submanifold germs. We say that i and i′ are r-parameter S.P+-Legendrian equiv-
alent (or, briefly r-S.P+-Legendrian equivalent) if there exist diffeomorphism germs

Φ : (Rn × Rr × R, πr(p0))→ (Rn × Rr × R, πr(p′0))

of the form Φ(x, s, t) = (φ1(x, s), ϕ(s), t + α(x, s)) and Ψ : (L × Rr, p0) → (L′ × Rr, p′0) of the

form Ψ(u, s) = (ψ1(u, s), ϕ(s)) such that Φ̂ ◦ i = i ◦Ψ, where

Φ̂ : (PT ∗(Rn × Rr × R), p0)→ (PT ∗(Rn × Rr × R), p′0)

is the unique contact lift of Φ.
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Let F ,G : (Rk × (Rn × Rr × R), 0) → (R, 0) be function germs. We say that F and G are
r-parameter s-S.P+-K-equivalent (or, briefly, r-s-S.P+-K-equivalent) if there exists a diffeomor-
phism germ Φ : (Rk × (Rn × Rr × R), 0)→ (Rk × (Rn × Rr × R), 0) of the form

Φ(q, x, s, t) = (φ(q, x, s, t), φ1(x, s), ϕ(s), t+ α(x, s))

such that 〈F ◦ Φ〉E(q,x,s,t)
= 〈G〉E(q,x,s,t)

. Then we also have the following theorem.

Theorem 4.1. Let F : (Rk×(Rn×Rr×R), 0)→ (R, 0) and G : (Rk′×(Rn×Rr×R), 0)→ (R, 0)
be r-parameter families of graph-like Legendrian unfoldings. Then LF (Σ∗(F)) and LG(Σ∗(G))
are r-S.P+-Legendrian equivalent if and only if F and G are stably r-s-S.P+-K-equivalent.

We also consider the stability of r-parameter families of graph-like Legendrian unfoldings with
respect to r-S.P+-Legendrian equivalence.

5. Relations between equivalence relations

We consider a relation of the r-parameter version of equivalence relations between r-parameter
families of Lagrangian submanifolds and r-parameter families of graph-like Legendrian unfold-
ings. One of the main results in this paper is as follows:

Theorem 5.1. Let F : (Rk×(Rn×Rr×R), 0)→ (R, 0) and G : (Rk′×(Rn×Rr×R), 0)→ (R, 0)
be r-parameter families of graph-like Morse families of hypersurfaces of the forms

F(q, x, s, t) = λ(q, x, s, t)(F (q, x, s)− t) and G(q′, x, s, t) = µ(q′, x, s, t)(G(q′, x, s)− t).

Then r-parameter families of Lagrangian submanifold germs L(F )(C(F )) and L(G)(C(G)) are r-
Lagrangian equivalent if and only if the r-parameter families of graph-like Legendrian unfoldings
LF (Σ∗(F)) and LG(Σ∗(G)) are r-S.P+-Legendrian equivalent.

Proof. By Theorem 3.1, if L(F )(C(F )) and L(G)(C(G)) are r-Lagrangian equivalent, then F
and G are stably r-P -R+-equivalent. In this case, we may assume that k = k′, F and G are r-P -
R+-equivalent, so that there exist a diffeomorphism germ Φ : (Rk×Rn×Rr, 0)→ (Rk×Rn×Rr, 0)
of the form Φ(q, x, s) = (φ1(q, x, s), φ2(x, s), ϕ(s)) and a function germ α : (Rn×Rr, 0)→ (R, 0)
such that G(q, x, s) = F (Φ(q, x, s)) + α(x, s). Then we define the diffeomorphism germ

Φ̃ : (Rk × (Rn × Rr × R), 0)→ (Rk × (Rn × Rr × R), 0)

by Φ̃(q, x, s, t) = (φ1(q, x, s), φ2(x, s), ϕ(s), t− α(x, s)). It follows that

G(q, x, s, t) = G(q, x, s)− t = F ◦ Φ(q, x, s)− t+ α(x, s) = F ◦ Φ̃(q, x, s, t).

This means that F and G are r-s-S.P+-K-equivalent. By Theorem 4.1, LF (Σ∗(F)) and LG(Σ∗(G))
are r-S.P+-Legendrian equivalent.

Conversely, we assume that LF (Σ∗(F)) and LG(Σ∗(G)) are r-S.P+-Legendrian equivalent.
Since LF (Σ∗(F)) = LF (C(F )), LG(Σ∗(G)) = LG(C(G)), it follows from the assumption that
there exist diffeomorphism germs Φ : (Rn × Rr × R, 0)→ (Rn × Rr × R, 0) of the form

Φ(x, s, t) = (φ1(x, s), ϕ(s), t+ α(x, s))

and Ψ : (C(F ), 0)→ (C(G), 0) of the form Ψ(u, s) = (ψ1(u, s), ϕ(s)) such that

Φ̂(LF (C(F ))) = LG(C(G) ◦Ψ).

Then we have Φ−1(x, s, t) = (φ−1
1 (x, s), ϕ−1(s), t− α(x, s)), where φ−1

1 : (Rn × Rs, 0)→ (Rn, 0)
satisfies the condition φ−1

1 (φ1(x, s), ϕ(s)) = x and α(x, s) means α(φ−1
1 (x, s), ϕ−1(s)).
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Therefore, the Jacobi matrix of Φ−1 at Φ(x, s, t) is given by

JΦ(x,s,t)Φ
−1 =

 ∂φ−1
1

∂x (φ1(x, s), ϕ(s))
∂φ−1

1

∂s (φ1(x, s), ϕ(s)) 0

0 ∂ϕ−1

∂s (ϕ(s)) 0
−∂α∂x (φ1(x, s), ϕ(s)) −∂α∂s (φ1(x, s), ϕ(s)) 1

 .

It follows that

Φ̂(x, s, t, [p : u : τ ]) =
(

Φ(x, s, t),
[
p · ∂φ

−1
1

∂x
(φ1(x, s), ϕ(s))− τ ∂α

∂x
(φ1(x, s), ϕ(s)) :

p · ∂φ
−1
1

∂s
(φ1(x, s), ϕ(s)) + u · ∂ϕ

−1

∂s
(ϕ(s))− τ ∂α

∂s
(φ1(x, s), ϕ(s)) : τ

])
.

Since τ 6= 0, we have[
p · ∂φ

−1
1

∂x
(φ1(x, s), ϕ(s))− τ ∂α

∂x
(φ1(x, s), ϕ(s)) :

p · ∂φ
−1
1

∂s
(φ1(x, s), ϕ(s)) + u · ∂ϕ

−1

∂s
(ϕ(s))− τ ∂α

∂s
(φ1(x, s), ϕ(s)) : τ

]
=
[
−p
τ
· ∂φ

−1
1

∂x
(φ1(x, s), ϕ(s)) +

∂α

∂x
(φ1(x, s), ϕ(s)) :

−p
τ
· ∂φ

−1
1

∂s
(φ1(x, s), ϕ(s))− u

τ
· ∂ϕ

−1

∂s
(ϕ(s)) +

∂α

∂s
(φ1(x, s), ϕ(s)) : −1

]
.

We consider the graph-like affine coordinates (x, s, t, p, u) ∈ J1
GA(Rn × Rr,R), where we denote

again −p/τ by p and −u/τ by u, respectively. By the form of Φ̂, we have

Φ̂(J1
GA(Rn × Rr,R)) = J1

GA(Rn × Rr,R).

We define Φ̃ : T ∗(Rn × Rr)→ T ∗(Rn × Rr) by

Φ̃(x, s, p, u) = (φ1(x, s), ϕ(s), φ2(x, s, p), φ3(x, s, p, u)),

where

φ2(x, s, p) = p · ∂φ
−1
1

∂x
(φ1(x, s), ϕ(s)) +

∂α

∂x
(φ1(x, s), ϕ(s)),

φ3(x, s, p, u) = p · ∂φ
−1
1

∂s
(φ1(x, s), ϕ(s)) + u · ∂ϕ

−1

∂s
(ϕ(s)) +

∂α

∂s
(φ1(x, s), ϕ(s)).

Since Φ̂ is a contact diffeomorphism germ, there exists a non-zero function germ
λ : J1

GA(Rn × Rr,R) → R such that Φ̂∗θ = λθ, where θ = dt −
∑n
i=1 pidxi −

∑r
j=1 ujdsj .

Therefore, we have

dt+ dα− φ2 · dφ1 − φ3 · dϕ = λ(dt− p · dx− u · ds).

It follows that λ = 1 and

dα− φ2 · dφ1 − φ3 · dϕ = −p · dx− u · ds.

If we set θ = −
∑n
i=1 pidxi −

∑r
j=1 ujdsj , then

Φ̃∗ω = Φ̃∗dθ = dΦ̃∗θ = d(−dα+ θ) = −d(dα) + dθ = ω.

This means that Φ̃ is a symplectic diffeomorphism germ. Since

Πr ◦ Φ̂|J1
GA(Rn×Rr,R) = Φ̃ ◦Πr|J1

GA(Rn×Rr,R),
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we have

L(G)(C(G) ◦Ψ) = Πr(LG(C(G) ◦Ψ)) = Πr ◦ Φ̂(LF (C(F )))

= Φ̃ ◦Πr(LF (C(F ))) = Φ̃ ◦ L(F )(C(F )),

where
Πr : J1

GA(Rn × Rr,R)→ T ∗(Rn × Rr)
is the canonical projection Πr(x, s, t, p, u) = (x, s, p, u). It follows that L(F )(C(F )) and
L(G)(C(G)) are r-Lagrangian equivalent. This completes the proof. 2

Let i : (L × Rr, p0) ⊂ J1
GA(Rn × Rr,R) and i′ : (L′ × Rr, p′0) ⊂ J1

GA(Rn × Rr,R) be r-
parameter families of graph-like Legendrian unfoldings. We say that W (L×Rr) and W (L′×Rr)
are r-S.P+-diffeomorphic if there exists a diffeomorphism germ

Φ : (Rn × Rr × R, π(p0))→ (Rn × Rr × R, π(p′0))

of the form Φ(x, s, t) = (φ1(x, s), ϕ(s), t+ α(x, s)) such that Φ(W (L × Rr)) = W (L′ × Rr). We
have the following direct corollaries of Theorem 5.1.

Corollary 5.2. With the same notations as those in Theorem 5.1, suppose that

πr ◦ LF and πr ◦ LG
are proper map germs and the regular sets of these map germs are dense respectively. Then
r-parameter families of Lagrangian submanifold germs L(F )(C(F )) and L(G)(C(G)) are r-
Lagrangian equivalent if and only if W (LF (Σ∗(F))) and W (LG(Σ∗(G))) are r-S.P+-diffeo-
morphic.

Corollary 5.3. Suppose that F(q, x, s, t) = λ(q, x, s, t)(F (q, x, s) − t) is an r-parameter family
of graph-like Morse families of hypersurfaces. Then L(F )(C(F )) is r-Lagrange stable if and only
if L(Σ∗(F)) is r-S.P+-Legendre stable.

6. Classifications of bifurcations of Lagrangian submanifolds

We consider bifurcations of Lagrangian submanifold germs, that is, the case of r = 1. As
an application of Theorem 5.1, we give generic classifications of bifurcations of Lagrangian sub-
manifold germs for lower dimensions by using one-parameter families of graph-like Legendrian
unfoldings.

Theorem 6.1. Let 1 ≤ n ≤ 3. A generic one-parameter family of Lagrangian submanifold
germs L(F )(C(F )) of a one-parameter family of Morse families of functions

F : (Rk × Rn × R, 0)→ (R, 0),

is one-parameter Lagrangian equivalent to the one-parameter family of Lagrangian submanifold
germs of one of the following one-parameter families of Morse families of functions:

n = 1;
(1) q1,
(2) ±q2

1 + x1,
(3) q3

1 + x1q1,
(4) ±q4

1 + α(x1, s)q
2
1 + x1q1, ∂α/∂s(0) 6= 0, ∂α/∂x1(0) = 0,

n = 2;
(1) q1,
(2) ±q2

1 + x1q1,
(3) q3

1 + x1q1 + x2,
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(4)1 ±q4
1 + x1q

2
1 + x2q2,

(4)2 ±q4
1 + α(x1, x2, s)q

2
1 + x1q1 + x2, ∂α/∂s(0) 6= 0, ∂α/∂x1(0) = ∂α/∂x2(0) = 0,

(5)1 q
5
1 + α(x1, x2, s)q

3
1 + x1q

2
1 + x2q1, ∂α/∂s(0) 6= 0, ∂α/∂x1(0) = ∂α/∂x2(0) = 0,

(5)2 q
5
1 + x1q

3
1 + α(x1, x2, s)q

2
1 + x2q1, ∂α/∂s(0) 6= 0, ∂α/∂x1(0) = ∂α/∂x2(0) = 0,

(6) q3
1 ± q1q

2
2 + α(x1, x2, s)q

2
1 + x1q1 + x2q2, ∂α/∂s(0) 6= 0, ∂α/∂x1(0) = ∂α/∂x2(0) = 0,

n = 3;
(1) q1,
(2) ±q2

1 + x1q1,
(3) q3

1 + x1q1 + x2,
(4)1 ±q4

1 + x1q
2
1 + x2q2 + x3,

(4)2 ±q4
1 + α(x1, x2, x3, s)q

2
1 + x1q1 + x2, ∂α/∂s(0) 6= 0, ∂α/∂xi(0) = 0 i = 1, 2, 3,

(5)1 q
5
1 + x1q

3
1 + x2q

2
1 + x3q1,

(5)2 q
5
1 + α(x1, x2, x3, s)q

3
1 + x1q

2
1 + x2q1 + x3, ∂α/∂s(0) 6= 0, ∂α/∂xi(0) = 0,

(5)3 q
5
1 + x1q

3
1 + α(x1, x2, x3, s)q

2
1 + x2q1 + x3, ∂α/∂s(0) 6= 0, ∂α/∂xi(0) = 0,

(6)1 q
3
1 ± q1q

2
2 + x1q

2
1 + x2q1 + x3q2,

(6)2 q
3
1 ± q1q

2
2 + α(x1, x2, x3, s)q

2
1 + x1q1 + x2q2 + x3, ∂α/∂s(0) 6= 0, ∂α/∂xi(0) = 0,

(7)1 ±q6
1 + α(x1, x2, x3, s)q

4
1 + x1q

3
1 + x2q

2
1 + x3q1, ∂α/∂s(0) 6= 0, ∂α/∂xi(0) = 0,

(7)2 ±q6
1 + x1q

4
1 + α(x1, x2, x3, s)q

3
1 + x2q

2
1 + x3q1, ∂α/∂s(0) 6= 0, ∂α/∂xi(0) = 0,

(7)3 ±q6
1 + x1q

4
1 + x1q

3
1 + α(x1, x2, x3, s)q

2
1 + x3q1, ∂α/∂s(0) 6= 0, ∂α/∂xi(0) = 0,

(8)1 ±(q2
1q2 + q4

2) + α(x1, x2, x3, s)q
2
1 + x1q

2
2 + x2q1 + x3q2, ∂α/∂s(0) 6= 0, ∂α/∂xi(0) = 0,

(8)2 ±(q2
1q2 + q4

2) + x1q
2
1 + α(x1, x2, x3, s)q

2
2 + x2q1 + x3q2, ∂α/∂s(0) 6= 0, ∂α/∂xi(0) = 0,

where i = 1, 2, 3.

The function germs α are called functional moduli. By definition of the one-parameter S.P+-
K-equivalence relation, functional moduli must satisfy some extra conditions; however, we do
not argue about such conditions here (cf. [17]).

In order to prove Theorem 6.1, we prepare some notations and results for the classification of
function germs. We use a method for the classification of function germs in [26, 27, 28].

Let F : (Rk×(Rn×R×R), 0)→ (R, 0) be a one-parameter family of graph-like Morse families
of hypersurfaces of the form

F(q, x, s, t) = λ(q, x, s, t)(F (q, x, s)− t).

We write F (q, x, s, t) = F (q, x, s) − t. For an unfolding F : (Rk × Rn × R × R, 0) → (R, 0) of
f(q, x, t) = f(q, x)− t, F is a 1-S.P+-K-versal deformation of f if

E(q,x,t) =

〈
∂f

∂q
(q, x), f(q, x)− t

〉
E(q,x,t)

+

〈
∂f

∂x
(q, x), 1

〉
Ex

+

〈
∂F

∂s
|s=0

〉
R
.

It follows that if

dimR E(q,x,t)/

(〈
∂f

∂q
(q, x), f(q, x)− t

〉
E(q,x,t)

+

〈
∂f

∂x
(q, x), 1

〉
Ex

)
≤ 1,

then

dimR E(q,t)/

(〈
∂f

∂q
(q), f(q)− t

〉
E(q,t)

+ 〈1〉R

)
≤ n+ 1.

However, the condition of 1-S.P+-K-versal deformations (that is, 1-S.P+-Legendrian stability
for corresponding Legendrian submanifold germs) is too strong for giving the classification. We
assume that F (q, x, s, t) is an S.P+-K-versal deformation of f(q, t), namely,
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E(q,t) =

〈
∂f

∂q
(q, x), f(q, x)− t

〉
E(q,t)

+ 〈1〉R +

〈
∂F

∂x
|x=s=0,

∂F

∂s
|x=s=0

〉
R
.

We give a quick review of the classification of S.P+-K-versal deformations with S.P+-K-cod
≤ 4. For details see [10]. Let F and F ′ : (Rk × Rn × R, 0)→ (R, 0) be germs of unfoldings of f
and f ′ : (Rk×R, 0)→ (R, 0), respectively. We say that F and F ′ are S.P+-K (respectively, S.P -
K)-equivalent if there exists a diffeomorphism germ Φ : (Rk × Rn × R, 0)→ (Rk × Rn × R, 0) of
the form Φ(q, u, t) = (φ1(q, u, t), φ2(u), t + α(u)) (respectively, Φ(q, u, t) = (φ1(q, u, t), φ2(u), t))
such that 〈F ◦ Φ〉E(q,u,t)

= 〈F ′〉E(q,u,t)
. We also say that F (q, u, t) is an S.P+-K (respectively,

S.P -K)-versal deformation of f = F |Rk×0×R if

E(q,t) =

〈
f,
∂f

∂q1
, . . . ,

∂g

∂qk

〉
E(q,t)

+

〈
∂f

∂t

〉
R

+

〈
∂F

∂u1
|Rk×0×R, . . . ,

∂F

∂ur
|Rk×0×R

〉
R(

respectively, E(q,t) =

〈
f,
∂f

∂q1
, . . . ,

∂g

∂qk

〉
E(q,t)

+

〈
∂F

∂u1
|Rk×0×R, . . . ,

∂F

∂ur
|Rk×0×R

〉
R

)
.

We say that f and f ′ are S-K-equivalent if there exists a diffeomorphism germ

Φ : (Rk × R, 0)→ (Rk × R, 0)

of the form Φ(q, t) = (φ(q, t), t) such that 〈f ◦ Φ〉E(q,t) = 〈f ′〉E(q,t) .
For each germ of a function f : (Rk × R, 0)→ (R, 0), we set

S.P -K-cod(f) = dimR E(q,t)/
〈
f,
∂f

∂q1
, . . . ,

∂f

∂qk

〉
E(q,t)

,

S.P+-K-cod(f) = dimR E(q,t)/

(〈
f,
∂f

∂q1
, . . . ,

∂f

∂qk

〉
E(q,t)

+

〈
∂f

∂t

〉
R

)
.

Then we have the following classifications:

Theorem 6.2 ([10, Theorem 4.2]). Let f : (Rk × R, 0) → (R, 0) be a function germ with S.P -
K-cod (f) ≤ 5. Then f is stably S-K-equivalent to one of the germs in the following list:

(1) q1, S.P -K-cod(f) = 0; A0,
(2) ±t± q2

1 , S.P -K-cod(f) = 1; A1,
(3) ±t± q3

1 , S.P -K-cod(f) = 2; A2,
(4) ±t2 ± q2

1 , S.P -K-cod(f) = 2; B2,
(5) ±t± q4

1 , S.P -K-cod(f) = 3; A3,
(6) ±t3 ± q2

1 , S.P -K-cod(f) = 3; B3,
(7) q3

1 ± tq1, S.P -K-cod(f) = 3; C3,
(8) ±t+ q5

1 , S.P -K-cod(f) = 4; A4,
(9) ±t+ (q3

1 ± q1q
2
2), S.P -K-cod(f) = 4; D4,

(10) ±t2 + q3
1 , S.P -K-cod(f) = 4; F4,

(11) ±t4 ± q2
1 , S.P -K-cod(f) = 4; B4,

(12) q4
1 ± tq1, S.P -K-cod(f) = 4; C4,

(13) ±t+ q6
1 , S.P -K-cod(f) = 5; A5,

(14) ±t± (q4
1 + q1q

2
2), S.P -K-cod(f) = 5; D5,

(15) ±t5 ± q2
1 , S.P -K-cod(f) = 5; B5,

(16) q5
1 ± tq1, S.P -K-cod(f) = 5; C5.
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We can construct an S.P -K (respectively, S.P+-K)-versal deformation for each normal form
by the usual method (cf. [3]). Then the corresponding list is as follows:

S.P -K-versal deformations:
(1) q1,
(2) ±t± q2

1 + u1,
(3) ±t± q3

1 + u1q1 + u2,
(4) ±t2 ± q2

1 + u1t+ u2,
(5) ±t± q4

1 + u1q
2
1 + u2q1 + u3,

(6) ±t3 ± q2
1 + u1t

2 + u2t+ u3,
(7) q3

1 ± tq1 + u1q
2
1 + u2q1 + u3,

(8) ±t+ q5
1 + u1q

3
1 + u2q

2
1 + u3q

3
1 + u4,

(9) ±t+ (q3
1 ± q1q

2
2) + u1q

2
1 + u2q2 + u3q1 + u4,

(10) ±t2 + q3
1 + u1tq1 + u2q1 + u3s+ u4,

(11) ±t4 ± q2
1 + u1t

3 + u2t
2 + u3t+ u4,

(12) q4
1 ± tq1 + u1q

3
1 + u2q

2
1 + u3q1 + u4,

(13) ±t± q6
1 + u1q

4
1 + u2q

3
1 + u3q

2
1 + u4q1 + u5,

(14) ±t± (q4
1 + q1q

2
2) + u1q

2
1 + u2q

2
2 + u3q1 + u4q2 + u5,

(15) ±t5 ± q2
1 + u1t

4 + u2t
3 + u3t

2 + u4t+ u5,
(16) q5

1 ± tq1 + u1q
4
1 + u2q

3
1 + u3q

2
1 + u4q1 + u5.

S.P+-K-versal deformations:

(1) q1,
(2) ±t± q2

1 ,
(3) ±t± q3

1 + v1q1,
(4) ±t2 ± q2

1 + v1,
(5) ±t± q4

1 + v1q
2
1 + v2q1,

(6) ±t3 ± q2
1 + v1t+ v2,

(7) q3
1 ± tq1 + v1q

2
1 + v2,

(8) ±t± q5
1 + v1q

3
1 + v2q

2
1 + v3q

3
1 ,

(9) ±t+ (q3
1 ± q1q

2
2) + v1q

2
1 + v2q2 + v3q1,

(10) ±t2 + q3
1 + v1tq1 + v2q1 + v3,

(11) ±t4 ± q2
1 + v1t

2 + v2t+ v3,
(12) q4

1 ± tq1 + v1q
3
1 + v2q

2
1 + v3,

(13) ±t± q6
1 + v1q

4
1 + v2q

3
1 + v3q

2
1 + v4q1,

(14) ±t± (q4
1 + q1q

2
2) + v1q

2
1 + v2q

2
2 + v3q1 + v4q2,

(15) ±t5 ± q2
1 + v1t

4 + v2t
3 + v3t

2 + v4t,
(16) q5

1 ± tq1 + v1q
4
1 + v2q

3
1 + v3q

2
1 + v4q1.

We remark that the relation between S.P+-K-cod and S.P -K-cod is given by

S.P+-K − cod(f) = S.P -K − cod(f) + 1

by [10, Proposition 3.5].

The following theorem is useful and important for our purpose (cf. [3]).

Theorem 6.3. Let F and F ′ : (Rk×Rn×R, 0)→ (R, 0) be germs of functions which are S.P+-
K (respectively, S.P -K)-versal deformations of f = F |Rk×0×R and f ′ = F ′|Rk×0×R respectively.
Then F and F ′ are S.P+-K (respectively, S.P -K)-equivalent if and only if f and f ′ are S-K-
equivalent.
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Proof of Theorem 6.1. Let 1 ≤ n ≤ 3. We denote the set of one-parameter families of
Lagrangian submanifolds by L(U × V, T ∗(Rn × R)), where U ⊂ Rn and V ⊂ R are open do-
mains around the origin. The set of Lagrangian stable one-parameter families of Lagrangian
submanifolds is an open and dense subset in L(U × V, T ∗(Rn × R)) (cf. [1, 2, 30]).

Therefore, by Corollary 2.10 and Theorem 5.1, we can give a classification of an S.P+-K-
versal deformation of one-parameter graph-like Legendrian unfoldings under the one-parameter
s-S.P+-K equivalence.

We consider the case of n = 3. Since the classifications in the cases n = 1 and n = 2 are given
by the similar method, we omit it. By Theorems 6.2, 6.3 and the form of

F (q, x, s, t) = F (q, x, s)− t,

F is stably S.P+-K-equivalent to one of the germs in the following list:

(1) −t+ q1 + v1 + v2 + v3 + v4,

(2) −t± q2
1 + v1 + v2 + v3 + v4,

(3) −t+ q3
1 + v1q1 + v2 + v3 + v4,

(4) −t± q4
1 + v1q

2
1 + v2q1 + v3 + v4,

(5) −t+ q5
1 + v1q

3
1 + v2q

2
1 + v3q1 + v4,

(6) −t+ (q3
1 ± q1q

2
2) + v1q

2
1 + v2q2 + v3q1 + v4,

(7) −t± q6
1 + v1q

4
1 + v2q

3
1 + v3q

2
1 + v4q1,

(8) −t± (q4
1 ± q1q

2
2) + v1q

2
1 + v2q

2
2 + v3q2 + v4q1,

where (v1, v2, v3, v4) ∈ (R4, 0). We would like to classify these germs by the one-parameter
s-S.P+-K-equivalence. By the above normal forms, there exists a germ of a diffeomorphism
φ : (R3×R, 0)→ (R4, 0) such that F is stably one-parameter s-S.P+-K-equivalent to one of the
germs in the following list:

(1) −t+ q1 + v1(x, s) + v2(x, s) + v3(x, s) + v4(x, s),

(2) −t± q2
1 + v1(x, s) + v2(x, s) + v3(x, s) + v4(x, s),

(3) −t+ q3
1 + v1(x, s)q1 + v2(x, s) + v3(x, s) + v4(x, s),

(4) −t± q4
1 + v1(x, s)q2

1 + v2(x, s)q1 + v3(x, s) + v4(x, s),

(5) −t+ q5
1 + v1(x, s)q3

1 + v2(x, s)q2
1 + v3(x, s)q1 + v4(x, s),

(6) −t+ (q3
1 ± q1q

2
2) + v1(x, s)q2

1 + v2(x, s)q2 + v3(x, s)q1 + v4(x, s),

(7) −t+±q6
1 + v1(x, s)q4

1 + v2(x, s)q3
1 + v3(x, s)q2

1 + v4(x, s)q1,

(8) −t± (q4
1 ± q1q

2
2) + v1(x, s)q2

1 + v2(x, s)q2
2 + v3(x, s)q2 + v4(x, s)q1,

where x = (x1, x2, x3) ∈ (R3, 0). Since F is a one-parameter family of graph-like Morse families
of hypersurfaces, ∂F/∂q : (Rk × R3 × R, 0) → (R, 0) is non-singular for each fixed s ∈ (R, 0),
that is, we have a rank condition

rank

(
∂2F

∂q2
,
∂2F

∂q∂x

)
(0) = k.
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By the rank condition, (1), (2) and (3) are one-parameter s-S.P -K-equivalent to

(1) − t+ q1, (2) − t± q2
1 + x1q1, (3) − t+ q3

1 + x1q1 + x2,

respectively. In the case (4), we divide it into four cases: (∂v1/∂x1)(0) 6= 0, (∂v1/∂x2)(0) 6= 0,
(∂v1/∂x3)(0) 6= 0 or (∂v1/∂s)(0) 6= 0. In the first, second and third cases, F is one-parameter
s-S.P -K-equivalent to

(4)1 − t± q4
1 + x1q

2
1 + x2q1 + x3.

In the fourth case, F is one-parameter s-S.P -K-equivalent to

(4)2 − t± q4
1 + α(x, s)q2

1 + x2q1 + x3,

where α : (R3 × R, 0)→ (R, 0) is a smooth function with the conditions

(∂α/∂s)(0) 6= 0, (∂α/∂xi)(0) = 0, i = 1, 2, 3.

In the case (5), F is one-parameter s-S.P+-K-equivalent to

(5)1 −t+ q5
1 + x1q

3
1 + x2q

2
1 + x3q1,

(5)2 −t+ q5
1 + α(x, s)q3

1 + x1q
2
1 + x2q1 + x3,

(5)3 −t+ q5
1 + x1q

3
1 + α(x, s)q2

1 + x2q1 + x3,

where α : (R3 × R, 0)→ (R, 0) is a smooth function with the conditions

(∂α/∂s)(0) 6= 0, (∂α/∂xi)(0) = 0, i = 1, 2, 3.

In the cases (6) and (8), we can give the normal forms by the similar methods to those of the
case (4). Moreover, in the case (7), we can also give the normal forms by the similar methods
to those of the case (5). This completes the proof. 2

Remark 6.4. In the generic classifications under one-parameter caustic equivalence in [1, 2, 30],
the functional moduli have a special form. For instance, the functional moduli of the type (7)1

in Theorem 6.1 are equivalent to the form α(x, s) = s. Moreover, types (7)2 and (7)3 in Theorem
6.1 do not appear in the generic classifications under one-parameter caustic equivalence.

We give concrete examples of bifurcations of caustics for the types (7)1 and (7)2.

Example 6.5. Let F : (R× R3 × R, 0)→ (R, 0) be given by

F (q, x, s) = −t+ q6 + α(x1, x2, x3, s)q
4 + x1q

3 + x2q
2 + x3q,

where ∂α/∂s(0) 6= 0, ∂α/∂xi(0) = 0, i = 1, 2, 3. The one-parameter family of Lagrangian sub-
manifold germs L(F ) : (C(F ), 0)→ T ∗R3 is given by L(F )(q, x, s) = (x, ∂F/∂x(q, x, s)).
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If we take α(x, s) = s, then the one-parameter family of caustics is given by the image of
(u, v, s) 7→ (v,−15u4 − 6su2 − 3uv, 24u5 + 8su3 + 3vu2); see Figure 1 (cf. [1, 2, 30]). If we
take α(x, s) = s + x2

1, then the the one-parameter family of caustics is given by the image of
(u, v, s) 7→ (v,−15u4 − 6(s+ v2)u2 − 3uv, 24u5 + 8(s+ v2)u3 + 3vu2); see Figure 2.

s > 0 s = 0 s < 0
Figure 1. Type (7)1 with α(x, s) = s.

s > 0 s = 0 s < 0

Figure 2. Type (7)1 with α(x, s) = s+ x2
1.

Example 6.6. Let F : (R× R3 × R, 0)→ (R, 0) be given by

F (q, x, s) = −t+ q6 + x1q
4 + α(x1, x2, x3, s)q

3 + x2q
2 + x3q,

where ∂α/∂s(0) 6= 0, ∂α/∂xi(0) = 0, i = 1, 2, 3. If we take α(x, s) = s + x2
1, then the one-

parameter family of caustics is given by the image of

(u, v, s) 7→ (v,−15u4 − 6vu2 − 3(s+ v2)u, 24u5 + 8vu3 + 3(s+ v2)u2);

see Figure 3.
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s > 0 s = 0 s < 0

Figure 3. Type (7)2 with α(x, s) = s+ x2
1.
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