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KATO’S CHAOS CREATED BY QUADRATIC MAPPINGS ASSOCIATED

WITH SPHERICAL ORTHOTOMIC CURVES

TAKASHI NISHIMURA

Abstract. In this paper, we first show that for a given generic spherical curve γ : I → Sn

and a generic point P ∈ Sn, the spherical orthotomic curve relative to γ and P naturally

yield a simple quadratic mapping ΦP : Rn+1 → Rn+1. Since Sn is compact and ΦP |Sn :

Sn → Sn is the spherical counterpart of the trivial expanding mapping x 7→ 2x, it is natural
to expect a chaotic behavior for the iteration of ΦP |Sn . Accordingly, we show that ΦP |Sn

(and incidentally ΦP |Dn+1 as well) actually creates Kato’s chaos. Therefore, by investigating

spherical orthotomic curves, an example of singular quadratic mapping creating Kato’s chaos
is naturally obtained.

1. Introduction

Throughout this paper, let n be a non-negative integer. In addition, let Sn, Dn+1 be the unit
sphere and the unit closed disk of Rn+1 respectively.

Let I be an interval. In [1], for a given plane unit-speed curve γ : I → R2 and a given point
P ∈ R2, the pedal curve pedγ,P : I → R2 and the orthotomic curve ortγ,P : I → R2 are defined
as follows:

pedγ,P (s) = P + ((γ(s)− P ) ·N(s))N(s),

ortγ,P (s) = P + 2 ((γ(s)− P ) ·N(s))N(s).

Here, N(s) is the unit normal vector to γ at γ(s). For instance, let γ : R → R2 be a parabola
defined by γ(t) =

(
t, t2 − 1

4

)
and let P be the origin (0, 0). Let ` : R→ R be the arc-length of γ

measured from γ(0). Then, pedγ◦`−1,P is just the affine tangent line to the parabola γ ◦ `−1 at
γ ◦ `−1(0) and ortγ◦`−1,P is merely the directrix of the parabola with the focal point P . From
this elementary example, in general, the orthotomic curve for a given unit-speed curve γ may be
considered as a generalization of the directrix of a parabola in some sense. Moreover, as explained
in pp. 175–177 in [1], orthotomic curves have a seismic application. This is a very interesting
and very important practical application of orthotomic curves. Since pedal curves seem to be
well-studied rather than orthotomic curves, we are interested in how to obtain the orthotomic
curve from the pedal curve for a given unit-speed curve γ and a point P . By definition, it follows

ortγ,P (s) + P

2
= pedγ,P (s)

and thus ortγ,P (s) = 2pedγ,P (s) − P . Therefore, by using the simple mapping FP : R2 → R2

defined by
FP (x) = 2x− P,

we have the following:
ortγ,P (s) = FP ◦ pedγ,P (s).
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Since FP is nothing but the radial expansion with factor 2 with respect to the point P , the study
of orthotomic curves may be completely reduced to the study of pedal curves in the plane curve
case.

Similarly, in the case of Sn, by obtaining the orthotomic curve from the pedal curve for a given
spherical unit-speed curve γ and a point P , we can get an expanding mapping Sn → Sn with
similar properties as the above FP . However, in this case, the space Sn is compact. Thus, this
expanding mapping Sn → Sn is expected to have some kneading effect. This expectation leads
us to study the iteration of this mapping. In order to get the expanding mapping Sn → Sn, for a
generic unit-speed curve γ : I → Sn and a generic point P ∈ Sn, the pedal curve pedγ,P : I → Sn

and the orthotomic curve ortγ,P : I → Sn need to be defined reasonably. In [5, 6], a reasonable
definition of spherical unit speed curve is given; and then for a spherical unit speed curve
γ : I → Sn and a generic point P ∈ Sn, the spherical pedal curve pedγ,P : I → Sn is defined
reasonably. Notice that the well-definedness of pedγ,P : I → Sn implies P · pedγ,P (s) 6= 0 for
any s ∈ I (see [5, 6]). Thus, by using the following relation which is reasonable in Sn,

ortγ,P (s) + P

2
= (P · pedγ,P (s)) pedγ,P (s),

the spherical orthotomic curve ortγ,P : I → Sn is naturally defined as follows:

ortγ,P (s) = 2 (P · pedγ,P (s)) pedγ,P (s)− P.
Therefore, by using the mapping ΦP : Rn+1 → Rn+1 defined by

ΦP (x) = 2(P · x)x− P,
the orthotomic curve is obtained from the pedal curve as follows:

ortγ,P (s) = ΦP ◦ pedγ,P (s).

As in the following lemma, both ΦP |Sn and ΦP |Dn+1 (n ≥ 0) are endomorphisms. Thus, ΦP |Sn

(n ≥ 1) may be regarded as the spherical counterpart of the expansion FP . By combining these
facts and the compactness of Sn (resp., Dn+1), it is expected that not only ΦP |Sn but also
ΦP |Dn+1 may have a chaotic behavior of some kind.

Lemma 1. For any P ∈ Sn, the following three hold:

(1) ΦP (Sn) ⊂ Sn for any n ≥ 0.
(2) ΦP (Sn) ⊃ Sn for any n ≥ 1.
(3) ΦP (Dn+1) = Dn+1 for any n ≥ 0.

For the proof of Lemma 1, see Section 2. The following two examples, too, show that for both
ΦP |Sn and ΦP |Dn+1 , the chaotic behavior of their iteration deserves to be investigated.

Example 1. Suppose that n = 1 and P = (1, 0). Then, ΦP (x) = (2x21 − 1, 2x1x2), where
x = (x1, x2). If x belongs to S1, x may be written as x = (cos θ, sin θ). Then,

ΦP |S1(cos θ, sin θ) =
(
2 cos2 θ − 1, 2 cos θ sin θ

)
= (cos 2θ, sin 2θ) .

Thus, the restricted mapping ΦP |Sn in this case is exactly the same mapping given in Chapter 1,
Example 3.4 of Devaney’s well-known book [2].

Example 2. Suppose that n = 0. Then, P is 1 or −1, and ΦP (x) = 2x2−1 or −2x2 +1. Define
the affine transformation hP : R→ R as follows:

hP (x) =

{
−2x+ 1 (if P = 1),

2x− 1 (if P = −1).

Then, in each case, it is easily seen that h−1P ◦ΦP ◦ hP (x) = 4x(1− x). Therefore, in each case,
ΦP |D1 has the same dynamics as Chapter 1, Example 8.9 of [2].
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From Examples 1 and 2, it seems meaningful to study the chaotic behavior of iteration for
ΦP |Sn : Sn → Sn (n ≥ 1) or ΦP |Dn+1 : Dn+1 → Dn+1 (n ≥ 0), which is the main purpose of
this paper.

Definition 1. Let (X, d) be a metric space with metric d and let f : X → X be a continuous
mapping.

(1) The mapping f is said to be sensitive if there is a positive number λ > 0 such that
for any x ∈ X and any neighborhood U of x in X, there exists a point y ∈ U and a
non-negative integer k ≥ 0 such that d(fk(x), fk(y)) > λ, where fk stands for f ◦ · · · ◦ f︸ ︷︷ ︸

k-tuples

.

(2) The mapping f is said to be transitive if for any non-empty open subsets U, V ⊂ X,
there exists a positive integer k > 0 such that fk(U) ∩ V 6= ∅.

(3) The mapping f is said to be accessible if for any λ > 0 and any non-empty open subsets
U, V ⊂ X, there exist two points u ∈ U , v ∈ V and a positive integer k > 0 such that
d(fk(u), fk(v)) ≤ λ.

(4) The mapping f is said to be topologically mixing if for any non-empty open subsets
U, V ⊂ X, there exists a positive integer k > 0 such that fm(U)∩ V 6= ∅ for any m ≥ k.

(5) The mapping f is said to be chaotic in the sense of Devaney ([2]) if f is sensitive,
transitive and the set consisting of periodic points of f is dense in X.

(6) The mapping f is said to be chaotic in the sense of Kato ([3]) if f is sensitive and
accessible.

By definition, it is clear that if a mapping f : X → X is topologically mixing, then it is
transitive. Moreover, by [3], it is known that if a mapping f : X → X is topologically mixing,
then it is chaotic in the sense of Kato. Although Kato’s chaos has been well-investigated (for
instance, see [3, 4, 7]), elementary examples which are singular and not transitive seem to have
been desired. Theorem 1 gives such examples.

Theorem 1. (1) Let P be a point of S1.
(1-1) The endomorphism ΦP |S1 : S1 → S1 is chaotic in the sense of Devaney. Moreover,

it is chaotic in the sense of Kato.
(1-2) The endomorphism ΦP |D2 : D2 → D2 is chaotic in the sense of Kato although it is

not chaotic in the sense of Devaney.
(2) Let P be a point of S0. Then, ΦP |D1 : D1 → D1 is chaotic in the sense of Devaney.

Moreover, it is chaotic in the sense of Kato.
(3) Let m be an integer such that m ≥ 2. Moreover, let P be a point of Sm. Then, both

ΦP |Dm+1 : Dm+1 → Dm+1 and ΦP |Sm : Sm → Sm are chaotic in the sense of Kato.
(4) Let m be an integer such that m ≥ 2. Moreover, let P be a point of Sm. Then, neither

ΦP |Dm+1 : Dm+1 → Dm+1 nor ΦP |Sm : Sm → Sm is transitive. In particular, neither
ΦP |Dm+1 : Dm+1 → Dm+1 nor ΦP |Sm : Sm → Sm is chaotic in the sense of Devaney.

This paper is organized as follows. In Section 2, the proof of Lemma 1 is given. Theorem 1 is
proved in Section 3. Section 4 is an appendix where geometric properties of ΦP are given though
some of properties of ΦP given in Section 4 already appear implicitly in Sections 2 and 3.
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2. Proof of Lemma 1

2.1. Proof of the assertion (1) of Lemma 1. Let x be a point of Sn. Then, x · x = 1 and
we have the following:

ΦP (x) · ΦP (x) = (2(x · P )x− P ) · (2(x · P )x− P )

= 4(x · P )2(x · x)− 4(x · P )2 + (P · P )

= 4(x · P )2 − 4(x · P )2 + 1 = 1.

This completes the proof of the assertion (1). 2

2.2. Proof of the assertion (2) of Lemma 1. Let y be a point of Sn. Suppose that y 6= −P .
Set

x =
y+P
2

||y+P2 ||
.

Then, it follows

2(x · P )x− P = 2

(
y+P
2

||y+P2 ||
· P

)
y+P
2

||y+P2 ||
− P

=
2

||y + P ||2
((y · P ) + 1) (y + P )− P

=
1

(1 + (y · P ))
((y · P ) + 1) (y + P )− P

= (y + P )− P = y.

Next, suppose that y = −P . Let x be a point of Sn such that x · P = 0. Then,

2(x · P )x− P = −P = y.

Therefore, we have the assertion (2). 2

2.3. Proof of the assertion (3) of Lemma 1. Let x be a point of Rn+1 such that x · x < 1.
Then, we have

ΦP (x) · ΦP (x) < 4(x · P )2 − 4(x · P )2 + 1 = 1.

Conversely, let y be a point satisfying y ·y < 1. Notice that in this case (y ·P )+1 ≥ −||y||+1 > 0
and 1 + ||y||2 + 2(y · P ) ≥ 1 + ||y||2 − 2||y|| = (1− ||y||)2 > 0. Set

a =

√
1 + ||y||2 + 2(y · P )

2(y · P ) + 2
and x = a

y+P
2

||y+P2 ||
.

Then,

2(x · P )x− P = 2

(
a

y+P
2

||y+P2 ||
· P

)
a

y+P
2

||y+P2 ||
− P

=
2a2

||y + P ||2
((y · P ) + 1) (y + P )− P

=
2a2

(1 + ||y||2 + 2(y · P ))
((y · P ) + 1) (y + P )− P

= (y + P )− P = y.

Therefore, the assertion (3) holds. 2
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3. Proof of Theorem 1

3.1. Proof of the assertion (1) of Theorem 1. We first show the assertion (1-1). Let x be
a point of S1. Set

P = (cosα, sinα) and x = (cos θ, sin θ).

Then, it is easily seen that

ΦP (cos θ, sin θ)

= 2 ((cosα, sinα) · (cos θ, sin θ)) (cos θ, sin θ)− (cosα, sinα)

= (cos(2θ − α), sin(2θ − α)) .

It follows ΦkP (cos(θ + α), sin(θ + α)) =
(
cos(2kθ + α), sin(2kθ + α)

)
and therefore, by the same

argument as in Example 8.6 of [2], ΦP |S1 is chaotic in the sense of Devaney. In order to show
that ΦP |S1 is chaotic in the sense of Kato, it is sufficient to show that ΦP |S1 is accessible, which
is easily seen by the above formula.

Next, we show the assertion (1-2). Since R2 may be regarded as R2×{0} ⊂ R3, the given point
P ∈ S1 is naturally considered as a point of S2. Then, ΦP |S2 and ΦP |D2 are semi-conjugate.
Thus, the assertion (1-2) easily follows from the assertions (3) and (4) for ΦP |S2 . 2

3.2. Proof of the assertion (2) of Theorem 1. By Subsection 3.1 and Example 8.9 of [2],
ΦP |D1 is chaotic in the sense of Devaney. Moreover, it is easily seen that the property of
accessibility is preserved by semi-conjugacy. Thus, ΦP |D1 is chaotic in the sense of Kato as well.
2

3.3. Proof of the assertion (3) of Theorem 1. Let Q be a point of Sm − {P,−P}. Set

P⊥Q =
Q− (P ·Q)P

||Q− (P ·Q)P ||
.

Then, it follows P⊥Q ∈ Sm and P · P⊥Q = 0. Let x be a point of the circle Sm ∩ (RP + RP⊥Q ).

Then, x may be written as x = cos θ P + sin θ P⊥Q . Then, it is easily seen that

ΦP (cos θ P + sin θ P⊥Q ) = cos 2θ P + sin 2θ P⊥Q .

Hence, for any non-empty open neighborhood U of Q in Sm there exists a positive integer i such
that the circle Sm ∩ (RP + RP⊥Q ) is contained in ΦiP (U). Therefore, ΦP |Sm is sensitive.

Next, take another point R. By the same argument as above, it is seen that for any non-
empty open neighborhood V of R in Sm there exists a positive integer j such that the circle
Sm ∩ (RP + RP⊥Q ) is contained in ΦjP (V ). Set k = max(i, j). Then, it follows

P ∈ ΦkP (U) ∩ ΦkP (V ).

Hence, ΦP |Sm is accessible.
Moreover, under the identification of Sm and Sm × {0}(⊂ Sm+1), the given point P ∈ Sm is

considered as a point of Sm+1. Then, ΦP |Sm+1 and ΦP |Dm+1 are semi-conjugate. Thus, ΦP |Dm+1

is also sensitive and accessible. Therefore, both ΦP |Sm and ΦP |Dm+1 are chaotic in the sense of
Kato. 2

3.4. Proof of the assertion (4) of Theorem 1. Let Q,R be points of Sm so that P,Q,R are
linearly independent. Then, R does not belong to the circle Sm ∩ (RP +RP⊥Q ) where P⊥Q is the
point constructed in Subsection 3.3. Thus, by the argument given in Subsection 3.3, there exist
sufficiently small neighborhoods U (resp., V ) of Q (resp., R) in Sm such that Φ`P (U) ∩ V = ∅
for any ` ≥ 0. Hence, ΦP |Sm is never transitive.



210 TAKASHI NISHIMURA

Again, under the identification of Sm and Sm × {0}(⊂ Sm+1), the given point P ∈ Sm is
considered as a point of Sm+1. Then, ΦP |Sm+1 and ΦP |Dm+1 are semi-conjugate. Thus, even
ΦP |Dm+1 is not transitive. 2

4. Some properties of ΦP

In this section, following the referee’s suggestions, the geometric structure of ΦP is studied.

Proposition 1. Let P , h : Rn+1 → Rn+1 be a point of Rn+1 and an orthogonal linear mapping

respectively. Set P̃ = h(P ). Then, the following equality holds:

ΦP̃ ◦ h = h ◦ ΦP .

Proof. Let A be the orthogonal matrix corresponding to h. For any x ∈ Rn+1, we have the
following:

ΦP̃ ◦ h(x) = ΦP̃ (xA)

= 2
(
P̃ · xA

)
xA− P̃

= 2 (PA · xA)xA− PA
= (2 (P · x)x− P )A

= h ◦ ΦP (x).

2

Corollary 1. Let P be a point of Sn and let h : Rn+1 → Rn+1 be an orthogonal linear
mapping such that h(P ) = (1, 0, . . . , 0). Then, h ◦ ΦP ◦ h−1 is the following mapping where
x = (x1, x2, . . . , xn+1) :

h ◦ ΦP ◦ h−1(x1, x2, . . . , xn+1) = (2x21 − 1, 2x1x2, . . . , 2x1xn+1).

Notice that if we understand that x2 ∈ Rn, then the form of ΦP in Example 1 is exactly the
same as the form of h ◦ ΦP ◦ h−1 in Corollary 1. Moreover, the following holds.

Proposition 2. Let P be a point of Rn+1 − {0}. Then, the mapping ΦP preserves any 2-
dimensional linear subspace that contains P . Moreover, the restrictions of ΦP to such linear
subspaces are conjugated to each other.

Proof. The proof of the first assertion of Proposition 2 is implicitly given in Subsection 3.3
although in Subsection 3.3 P is a point of Sn. Thus, it is omitted to give it here.

We show the second assertion of Proposition 2 by using the same symbols as in Subsection 3.3.

Let Q̃ be a point of Sn−
(
RP + RP⊥Q

)
and let h : Rn+1 → Rn+1 be an orthogonal linear mapping

such that h(P ) = P and h(Q) = Q̃. Then, it is trivially seen that h maps the 2-dimensional

linear space
(
RP + RP⊥Q

)
to
(
RP + RP⊥

Q̃

)
. Moreover, by Proposition 1, the following equality

holds:

ΦP̃ ◦ h = h ◦ ΦP .

Therefore, the second assertion of Proposition 2 holds. 2

Proposition 2 reduces the study of dynamical system of ΦP to the 2-dimensional case, which
is given in Example 1.

The final assertion is for the mapping ΦP where P = (1, 0, . . . , 0).
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Proposition 3. Let P = (1, 0, . . . , 0) ∈ Sn and let ΦP : Rn+1 → Rn+1 be the mapping defined
by

ΦP (x1, x2, . . . , xn+1) = (2x21 − 1, 2x1x2, . . . , 2x1xn+1).

Let (x1, x2, . . . , xn+1) ∈ Rn+1 be a point such that

ϕ(x1, x2, . . . , xn+1) = x21 + µ
(
x22 + · · ·+ x2n+1

)
= 1,

where µ is a positive real number. Then, ϕ ◦ ΦP (x1, x2, . . . , xn+1) = 1. In other words, ΦP
preserves the level set ϕ−1(1).

Proof. Assume that ϕ(x1, x2, . . . , xn+1) = 1. Then,

ϕ ◦ ΦP (x1, x2, . . . , xn+1) =
(
2x21 − 1

)2
+ µ

(
(2x1x2)

2
+ · · ·+ (2x1xn+1)

2
)

= 4x41 − 4x21 + 1 + 4µ
(
x21x

2
2 + · · ·x21x2n+1

)
= 4x41 − 4x21

(
1− µ

(
x22 + · · ·+ x2n+1

))
+ 1

= 4x41 − 4x41 + 1

= 1.

2

Notice that ΦP does not necessarily preserve other level sets ϕ−1(c) (c 6= 1). The case µ = 1
of Proposition 3 suggests (1) of Lemma 1.
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