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Abstract. We develop geometry of algebraic subvarieties of Kn over arbitrary Henselian val-

ued fields K of equicharacteristic zero. This is a continuation of our previous article concerned

with algebraic geometry over rank one valued fields. At the center of our approach is again
the closedness theorem to the effect that the projections Kn × Pm(K) → Kn are definably

closed maps. It enables, in particular, application of resolution of singularities in much the

same way as over locally compact ground fields. As before, the proof of that theorem uses,
among others, the local behavior of definable functions of one variable and fiber shrinking,

being a relaxed version of curve selection. But now, to achieve the former result, we first

examine functions given by algebraic power series. All our previous results will be established
here in the general settings: several versions of curve selection (via resolution of singularities)

and of the  Lojasiewicz inequality (via two instances of quantifier elimination indicated below),

extending continuous hereditarily rational functions as well as the theory of regulous func-
tions, sets and sheaves, including Nullstellensatz and Cartan’s theorems A and B. Two basic

tools are quantifier elimination for Henselian valued fields due to Pas and relative quantifier

elimination for ordered abelian groups (in a many-sorted language with imaginary auxiliary
sorts) due to Cluckers–Halupczok. Other, new applications of the closedness theorem are

piecewise continuity of definable functions, Hölder continuity of functions definable on closed
bounded subsets of Kn, the existence of definable retractions onto closed definable subsets of

Kn and a definable, non-Archimedean version of the Tietze–Urysohn extension theorem. In a

recent paper, we established a version of the closedness theorem over Henselian valued fields
with analytic structure along with several applications.

1. Introduction

Throughout the paper, K will be an arbitrary Henselian valued field of equicharacteristic zero
with valuation v, value group Γ, valuation ring R and residue field k. Examples of such fields are
the quotient fields of the rings of formal power series and of Puiseux series with coefficients from
a field k of characteristic zero as well as the fields of Hahn series (maximally complete valued
fields also called Malcev–Neumann fields; cf. [27]):

k((tΓ)) :=

f(t) =
∑
γ∈Γ

aγt
γ : aγ ∈ k, supp f(t) is well ordered

 .

We consider the ground field K along with the three-sorted language L of Denef–Pas (cf. [53, 44]).
The three sorts of L are: the valued field K-sort, the value group Γ-sort and the residue field k-
sort. The language of the K-sort is the language of rings; that of the Γ-sort is any augmentation
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of the language of ordered abelian groups (and∞); finally, that of the k-sort is any augmentation
of the language of rings. The only symbols of L connecting the sorts are two functions from the
main K-sort to the auxiliary Γ-sort and k-sort: the valuation map and an angular component
map.

Every valued field K has a topology induced by its valuation v. Cartesian products Kn are
equipped with the product topology, and their subsets inherit a topology, called the K-topology.
This paper is a continuation of our paper [44] devoted to geometry over Henselian rank one valued
fields, and includes our recent preprints [45, 46, 47]. The main aim is to prove (in Section 8)
the closedness theorem stated below, and next to derive several results in the following Sections
9–14.

Theorem 1.1. Let D be an L-definable subset of Kn. Then the canonical projection

π : D ×Rm −→ D

is definably closed in the K-topology, i.e. if B ⊂ D × Rm is an L-definable closed subset, so is
its image π(B) ⊂ D.

Remark 1.2. Not all valued fields K have an angular component map, but it exists if K has a
cross section, which happens whenever K is ℵ1-saturated (cf. [7, Chap. II]). Moreover, a valued
field K has an angular component map whenever its residue field k is ℵ1-saturated (cf. [54,
Corollary 1.6]). In general, unlike for p-adic fields and their finite extensions, adding an angular
component map does strengthen the family of definable sets. Since the K-topology is definable
in the language of valued fields, the closedness theorem is a first order property. Therefore it is
valid over arbitrary Henselian valued fields of equicharacteristic zero, because it can be proven
using saturated elementary extensions, thus assuming that an angular component map exists.

Two basic tools applied in this paper are quantifier elimination for Henselian valued fields
(along with preparation cell decomposition) due to Pas [53] and relative quantifier elimination
for ordered abelian groups (in a many-sorted language with imaginary auxiliary sorts) due to
Cluckers–Halupczok [8]. In the case where the ground field K is of rank one, Theorem 1.1 was
established in our paper [44, Section 7], where instead we applied simply quantifier elimination
for ordered abelian groups in the Presburger language. Of course, when K is a locally compact
field, it holds by a routine topological argument.

As before, our approach relies on the local behavior of definable functions of one variable and
the so-called fiber shrinking, being a relaxed version of curve selection. Over arbitrary Henselian
valued fields, the former result will be established in Section 5, and the latter in Section 6.
Now, however, in the proofs of fiber shrinking (Proposition 6.1) and the closedness theorem
(Theorem 1.1), we also apply relative quantifier elimination for ordered abelian groups, due to
Cluckers–Halupczok [8]. It will be recalled in Section 7.

Section 2 contains a version of the implicit function theorem (Proposition 2.5). In the next
section, we provide a version of the Artin–Mazur theorem on algebraic power series (Proposi-
tion 3.3). Consequently, every algebraic power series over K determines a unique continuous
function which is definable in the language of valued fields. Section 4 presents certain versions
of the theorems of Abhyankar–Jung (Proposition 4.1) and Newton-Puiseux (Proposition 4.2)
for Henselian subalgebras of formal power series which are closed under power substitution and
division by a coordinate, given in our paper [43] (see also [52]). In Section 5, we use the fore-
going results in analysis of functions of one variable, definable in the language of Denef–Pas, to
establish a theorem on existence of the limit (Theorem 5.1).
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The closedness theorem will allow us to establish several results as for instance: piecewise
continuity of definable functions (Section 9), certain non-archimedean versions of curve selection
(Section 10) and of the  Lojasiewicz inequality with a direct consequence, Hölder continuity of
definable functions on closed bounded subsets of Kn (Section 11) as well as extending hereditarily
rational functions (Section 12) and the theory of regulous functions, sets and sheaves, including
Nullstellensatz and Cartan’s theorems A and B (Section 12). Over rank one valued fields,
these results (except piecewise and Hölder continuity) were established in our paper [44]. The
theory of hereditarily rational functions on the real and p-adic varieties was developed in the
joint paper [30]. Yet another application of the closedness theorem is the existence of definable
retractions onto closed definable subsets of Kn and a definable, non-Archimedean version of the
Tietze–Urysohn extension theorem. These results are established for the algebraic case and for
Henselian fields with analytic structure in our recent papers [49, 50, 51]. It is very plausible
that they will also hold in the more general case of axiomatically based structures on Henselian
valued fields.

The closedness theorem immediately yields five corollaries stated below. Corollaries 1.6
and 1.7, enable application of resolution of singularities and of transformation to a simple normal
crossing by blowing up (cf. [28, Chap. III] for references and relatively short proofs) in much the
same way as over locally compact ground fields.

Corollary 1.3. Let D be an L-definable subset of Kn and Pm(K) stand for the projective space
of dimension m over K. Then the canonical projection π : D×Pm(K) −→ D is definably closed.

Corollary 1.4. Let A be a closed L-definable subset of Pm(K) or Rm. Then every continuous
L-definable map f : A→ Kn is definably closed in the K-topology.

Corollary 1.5. Let φi, i = 0, . . . ,m, be regular functions on Kn, D be an L-definable subset of
Kn and σ : Y −→ KAn the blow-up of the affine space KAn with respect to the ideal (φ0, . . . , φm).
Then the restriction σ : Y (K) ∩ σ−1(D) −→ D is a definably closed quotient map.

Proof. Indeed, Y (K) can be regarded as a closed algebraic subvariety of Kn × Pm(K) and σ as
the canonical projection. �

Corollary 1.6. Let X be a smooth K-variety, D be an L-definable subset of X(K) and
σ : Y −→ X the blow-up along a smooth center. Then the restriction σ : Y (K) ∩ σ−1(D) −→ D
is a definably closed quotient map.

Corollary 1.7. (Descent property) Under the assumptions of the above corollary, every contin-
uous L-definable function g : Y (K)∩σ−1(D) −→ K that is constant on the fibers of the blow-up
σ descends to a (unique) continuous L-definable function f : D −→ K.

2. Some versions of the implicit function theorem

In this section, we give elementary proofs of some versions of the inverse mapping and implicit
function theorems; cf. the versions established in the papers [55, Theorem 7.4], [22, Section 9],
[36, Section 4] and [21, Proposition 3.1.4]. We begin with a simplest version (H) of Hensel’s
lemma in several variables, studied by Fisher [20]. Given an ideal m of a ring R, let m×n stand
for the n-fold Cartesian product of m and R× for the set of units of R. The origin (0, . . . , 0) ∈ Rn
is denoted by 0.
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(H) Assume that a ring R satisfies Hensel’s conditions (i.e. it is linearly topologized, Hausdorff
and complete) and that an ideal m of R is closed. Let f = (f1, . . . , fn) be an n-tuple of restricted
power series f1, . . . , fn ∈ R{X}, X = (X1, . . . , Xn), J be its Jacobian determinant and a ∈ Rn.
If f(0) ∈ m×n and J(0) ∈ R×, then there is a unique a ∈ m×n such that f(a) = 0.

Proposition 2.1. Under the above assumptions, f induces a bijection

m×n 3 x −→ f(x) ∈ m×n

of m×n onto itself.

Proof. For any y ∈ m×n, apply condition (H) to the restricted power series f(X)− y. �

If, moreover, the pair (R,m) satisfies Hensel’s conditions (i.e. every element of m is topologi-
cally nilpotent), then condition (H) holds by [5, Chap. III, §4.5].

Remark 2.2. Henselian local rings can be characterized both by the classical Hensel lemma and
by condition (H): a local ring (R,m) is Henselian iff (R,m) with the discrete topology satisfies
condition (H) (cf. [20, Proposition 2]).

Now consider a Henselian local ring (R,m). Let f = (f1, . . . , fn) be an n-tuple of polynomials
f1, . . . , fn ∈ R[X], X = (X1, . . . , Xn) and J be its Jacobian determinant.

Corollary 2.3. Suppose that f(0) ∈ m×n and J(0) ∈ R×. Then f is a homeomorphism of m×n

onto itself in the m-adic topology. If, in addition, R is a Henselian valued ring with maximal
ideal m, then f is a homeomorphism of m×n onto itself in the valuation topology.

Proof. Obviously, J(a) ∈ R× for every a ∈ m×n. Let M be the jacobian matrix of f . Then

f(a+ x)− f(a) =M(a) · x+ g(x) =M(a) · (x+M(a)−1 · g(x))

for an n-tuple g = (g1, . . . , gn) of polynomials g1, . . . , gn ∈ (X)2R[X]. Hence the assertion follows
easily. �

The proposition below is a version of the inverse mapping theorem.

Proposition 2.4. If f(0) = 0 and e := J(0) 6= 0, then f is an open embedding of e ·m×n onto
e2 ·m×n.

Proof. Let N be the adjugate of the matrix M(0) and y = e2b with b ∈ m×n. Since

f(eX) = e · M(0) ·X + e2g(X)

for an n-tuple g = (g1, . . . , gn) of polynomials g1, . . . , gn ∈ (X)2R[X], we get the equivalences

f(eX) = y ⇔ f(eX)− y = 0 ⇔ e · M(0) · (X +N g(X)−N b) = 0.

Applying Corollary 2.3 to the map h(X) := X +N g(X), we get

f−1(y) = ex ⇔ x = h−1(N b) and f−1(y) = eh−1(N · y/e2).

This finishes the proof. �

Further, let 0 ≤ r < n, p = (pr+1, . . . , pn) be an (n− r)-tuple of polynomials

pr+1, . . . , pn ∈ R[X], X = (X1, . . . , Xn),

and

J :=
∂(pr+1, . . . , pn)

∂(Xr+1, . . . , Xn)
, e := J(0).

Suppose that
0 ∈ V := {x ∈ Rn : pr+1(x) = . . . = pn(x) = 0}.
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In a similar fashion as above, we can establish the following version of the implicit function
theorem.

Proposition 2.5. If e 6= 0, then there exists a unique continuous map

φ : (e2 ·m)×r −→ (e ·m)×(n−r)

which is definable in the language of valued fields and such that φ(0) = 0 and the graph map

(e2 ·m)×r 3 u −→ (u, φ(u)) ∈ (e2 ·m)×r × (e ·m)×(n−r)

is an open embedding into the zero locus V of the polynomials p and, more precisely, onto

V ∩
[
(e2 ·m)×r × (e ·m)×(n−r)

]
.

Proof. Put f(X) := (X1, . . . , Xr, p(X)); of course, the jacobian determinant of f at 0 ∈ Rn is
equal to e. Keep the notation from the proof of Proposition 2.4, take any b ∈ e2 · m×r and put
y := (e2b, 0) ∈ Rn. Then we have the equivalences

f(eX) = y ⇔ f(eX)− y = 0 ⇔ eM(0) · (X +N g(X)−N · (b, 0)) = 0.

Applying Corollary 2.3 to the map h(X) := X +N g(X), we get

f−1(y) = ex ⇔ x = h−1(N · (b, 0)) and f−1(y) = eh−1(N · y/e2).

Therefore the function

φ(u) := eh−1(N · (u, 0)/e2)

is the one we are looking for. �

3. Density property and a version of the Artin–Mazur theorem over Henselian
valued fields

We say that a topological field K satisfies the density property (cf. [30, 44]) if the following
equivalent conditions hold.

(1) If X is a smooth, irreducible K-variety and ∅ 6= U ⊂ X is a Zariski open subset, then
U(K) is dense in X(K) in the K-topology.

(2) If C is a smooth, irreducible K-curve and ∅ 6= U is a Zariski open subset, then U(K) is
dense in C(K) in the K-topology.

(3) If C is a smooth, irreducible K-curve, then C(K) has no isolated points.

(This property is indispensable for ensuring reasonable topological and geometric properties of
algebraic subsets of Kn; see [44] for the case where the ground field K is a Henselian rank one
valued field.) The density property of Henselian non-trivially valued fields follows immediately
from Proposition 2.5 and the Jacobian criterion for smoothness (see e.g. [17, Theorem 16.19]),
recalled below for the reader’s convenience.

Theorem 3.1. Let I = (p1, . . . , ps) ⊂ K[X], X = (X1, . . . , Xn) be an ideal, A := K[X]/I and
V := Spec (A). Suppose the origin 0 ∈ Kn lies in V (equivalently, I ⊂ (X)K[X]) and V is of
dimension r at 0. Then the Jacobian matrix

M :=

[
∂pi
∂Xj

(0) : i = 1, . . . , s, j = 1, . . . , n

]
has rank ≤ (n − r) and V is smooth at 0 iff M has exactly rank (n − r). Furthermore, if V is
smooth at 0 and

J :=
∂(pr+1, . . . , pn)

∂(Xr+1, . . . , Xn)
(0) = det

[
∂pi
∂Xj

(0) : i, j = r + 1, . . . , n

]
6= 0,
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then pr+1, . . . , pn generate the localization I · K[X](X1,...,Xn) of the ideal I with respect to the
maximal ideal (X1, . . . , Xn).

Remark 3.2. Under the above assumptions, consider the completion Â = K[[X]]/I ·K[[X]] of
A in the (X)-adic topology. If J 6= 0, it follows from the implicit function theorem for formal
power series that there are unique power series

φr+1, . . . , φn ∈ (X1, . . . , Xr) ·K[[X1, . . . , Xr]]

such that
pi(X1, . . . , Xr, φr+1(X1, . . . , Xr), . . . , φn(X1, . . . , Xr)) = 0

for i = r + 1, . . . , n. Therefore the homomorphism

α̂ : Â −→ K[[X1, . . . , Xr]], Xj 7→ Xj , Xk 7→ φk(X1, . . . , Xr),

for j = 1, . . . , r and k = r + 1, . . . , n, is an isomorphism.
Conversely, suppose that α̂ is an isomorphism; this means that the projection from V onto

SpecK[X1, . . . , Xr] is etale at 0. Then the local rings A and Â are regular and, moreover, it
is easy to check that the determinant J 6= 0 does not vanish after perhaps renumbering the
polynomials pi(X).

We say that a formal power series φ ∈ K[[X]], X = (X1, . . . , Xn), is algebraic if it is algebraic
over K[X]. The kernel of the homomorphism of K-algebras

σ : K[X,T ] −→ K[[X]], X1 7→ X1, . . . , Xn 7→ Xn, T 7→ φ(X),

is, of course, a principal prime ideal: kerσ = (p) ⊂ K[X,T ], where p ∈ K[X,T ] is a unique (up
to a constant factor) irreducible polynomial, called an irreducible polynomial of φ.

We now state a version of the Artin–Mazur theorem (cf. [3, 4] for the classical versions).

Proposition 3.3. Let φ ∈ (X)K[[X]] be an algebraic formal power series. Then there exist
polynomials

p1, . . . , pr ∈ K[X,Y ], Y = (Y1, . . . , Yr),

and formal power series φ2, . . . , φr ∈ K[[X]] such that

e :=
∂(p1, . . . , pr)

∂(Y1, . . . , Yr)
(0) = det

[
∂pi
∂Yj

(0) : i, j = 1, . . . , r

]
6= 0,

and
pi(X1, . . . , Xn, φ1(X), . . . , φr(X)) = 0, i = 1, . . . , r,

where φ1 := φ.

Proof. Let p1(X,Y1) be an irreducible polynomial of φ1. Then the integral closure B of
A := K[X,Y1]/(p1) is a finite A-module and thus is of the form

B = K[X,Y ]/(p1, . . . , ps), Y = (Y1, . . . , Yr),

where p1, . . . , ps ∈ K[X,Y ]. Obviously, A and B are of dimension n, and the induced embedding
α : A→ K[[X]] extends to an embedding β : B → K[[X]]. Put

φk := β(Yk) ∈ K[[X]], k = 1, . . . , r.

Substituting Yk − φk(0) for Yk, we may assume that φk(0) = 0 for all k = 1, . . . , r. Hence
pi(0) = 0 for all i = 1, . . . , s.

The completion B̂ of B in the (X,Y )-adic topology is a local ring of dimension n, and the
induced homomorphism

β̂ : B̂ = K[[X,Y ]]/(p1, . . . , ps) −→ K[[X]]
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is, of course, surjective. But, by the Zariski main theorem (cf. [59, Chap. VIII, § 13, Theorem 32]),

B̂ is a normal domain. Comparison of dimensions shows that β̂ is an isomorphism. Now, it
follows from Remark 3.2 that the determinant e 6= 0 does not vanish after perhaps renumbering
the polynomials pi(X). This finishes the proof. �

Propositions 3.3 and 2.5 immediately yield the following

Corollary 3.4. Let φ ∈ (X)K[[X]] be an algebraic power series with irreducible polynomial
p(X,T ) ∈ K[X,T ]. Then there is an a ∈ K, a 6= 0, and a unique continuous function

φ̃ : a ·Rn −→ K

corresponding to φ, which is definable in the language of valued fields and such that φ̃(0) = 0

and p(x, φ̃(x)) = 0 for all x ∈ a ·Rn. 2

For simplicity, we shall denote the induced continuous function by the same letter φ. This
abuse of notation will not lead to confusion in general.

Remark 3.5. Clearly, the ring K[[X]]alg of algebraic power series is the henselization of the local
ring K[X](X) of regular functions. Therefore the implicit functions φr+1(u), . . . , φn(u) from
Proposition 2.5 correspond to unique algebraic power series

φr+1(X1, . . . , Xr), . . . , φn(X1, . . . , Xr)

without constant term. In fact, one can deduce by means of the classical version of the implicit
function theorem for restricted power series (cf. [5, Chap. III, §4.5] or [20]) that φr+1, . . . , φn are
of the form

φk(X1, . . . , Xr) = e · ωk(X1/e
2, . . . , Xr/e

2), k = r + 1, . . . , n,

where ωk(X1, . . . , Xr) ∈ R[[X1, . . . , Xr]] and e ∈ R.

4. The Newton–Puiseux and Abhyankar–Jung Theorems

Here we are going to provide a version of the Newton–Puiseux theorem, which will be used
in analysis of definable functions of one variable in the next section.

We call a polynomial

f(X;T ) = T s + as−1(X)Tn−1 + · · ·+ a0(X) ∈ K[[X]][T ],

X = (X1, . . . , Xs), quasiordinary if its discriminant D(X) is a normal crossing:

D(X) = Xα · u(X) with α ∈ Ns, u(X) ∈ k[[X]], u(0) 6= 0.

Let K be an algebraically closed field of characteristic zero. Consider a henselian K[X]-
subalgebra K〈X〉 of the formal power series ring K[[X]] which is closed under reciprocal (whence
it is a local ring), power substitution and division by a coordinate. For positive integers r1, . . . , rn
put

K〈X1/r1
1 , . . . , X1/rn

n 〉 :=
{
a(X

1/r1
1 , . . . , X1/rn

n ) : a(X) ∈ K〈X〉
}

;

when r1 = . . . = rm = r, we denote the above algebra by K〈X1/r〉.
In our paper [43] (see also [52]), we established a version of the Abhyankar–Jung theorem

recalled below. This axiomatic approach to that theorem was given for the first time in our
preprint [42].

Proposition 4.1. Under the above assumptions, every quasiordinary polynomial

f(X;T ) = T s + as−1(X)T s−1 + · · ·+ a0(X) ∈ K〈X〉[T ]

has all its roots in K〈X1/r〉 for some r ∈ N; actually, one can take r = s!.
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A particular case is the following version of the Newton-Puiseux theorem.

Corollary 4.2. Let X denote one variable. Every polynomial

f(X;T ) = T s + as−1(X)T s−1 + · · ·+ a0(X) ∈ K〈X〉[T ]

has all its roots in K〈X1/r〉 for some r ∈ N; one can take r = s!. Equivalently, the polynomial
f(Xr, T ) splits into T -linear factors. If f(X,T ) is irreducible, then r = s will do and

f(Xs, T ) =

s∏
i=1

(T − φ(εiX)),

where φ(X) ∈ K〈X〉 and ε is a primitive root of unity.

Remark 4.3. Since the proof of these theorems is of finitary character, it is easy to check that
if the ground field K of characteristic zero is not algebraically closed, they remain valid for the
Henselian subalgebra K ⊗K K〈X〉 of K[[X]], where K denotes the algebraic closure of K.

The ring K[[X]]alg of algebraic power series is a local Henselian ring closed under power
substitutions and division by a coordinate. Thus the above results apply to the algebra

K〈X〉 = K[[X]]alg.

5. Definable functions of one variable

At this stage, we can readily to proceed with analysis of definable functions of one variable over
arbitrary Henselian valued fields of equicharacteristic zero. We wish to establish a general version
of the theorem on existence of the limit stated below. It was proven in [44, Proposition 5.2] over
rank one valued fields. Now the language L under consideration is the three-sorted language of
Denef–Pas.

Theorem 5.1. (Existence of the limit) Let f : A → K be an L-definable function on a subset
A of K and suppose 0 is an accumulation point of A. Then there is a finite partition of A into
L-definable sets A1, . . . , Ar and points w1 . . . , wr ∈ P1(K) such that

lim
x→0

f |Ai (x) = wi for i = 1, . . . , r.

Moreover, there is a neighborhood U of 0 such that each definable set

{(v(x), v(f(x))) : x ∈ (Ai ∩ U) \ {0}} ⊂ Γ× (Γ ∪ {∞}), i = 1, . . . , r,

is contained in an affine line with rational slope q · l = pi · k + βi, i = 1, . . . , r, with pi, q ∈ Z,
q > 0, βi ∈ Γ, or in Γ× {∞}.

Proof. Having the Newton–Puiseux theorem for algebraic power series at hand, we can repeat
mutatis mutandis the proof from loc. cit. as briefly outlined below. In that paper, the field L is
the completion of the algebraic closure K of the ground field K. Here, in view of Corollary 4.3,

the K-algebras L{X} and K̂{X} should be just replaced with K ⊗K K[[X]]alg and K[[X]]alg,
respectively. Then the reasonings follow almost verbatim. Note also that Lemma 5.1 (to the
effect that K is a closed subspace of K) holds true for arbitrary Henselian valued fields of
equicharacteristic zero. This follows directly from that the field K is algebraically maximal (as
it is Henselian and finitely ramified; see e.g. [18, Chap. 4]). �

We conclude with the following comment. The above proposition along with the technique of
fiber shrinking from [44, Section 6] were two basic tools in the proof of the closedness theorem [44,
Theorem 3.1] over Henselian rank one valued fields, which plays an important role in Henselian
geometry.



220 KRZYSZTOF JAN NOWAK

6. Fiber shrinking

Consider a Henselian valued field K of equicharacteristic zero along with the three-sorted
language L of Denef–Pas. In this section, we remind the reader the concept of fiber shrinking
introduced in our paper [44, Section 6].

Let A be an L-definable subset of Kn with accumulation point a = (a1, . . . , an) ∈ Kn and E
an L-definable subset of K with accumulation point a1. We call an L-definable family of sets
Φ =

⋃
t∈E {t} × Φt ⊂ A an L-definable x1-fiber shrinking for the set A at a if

lim
t→a1

Φt = (a2, . . . , an),

i.e. for any neighborhood U of (a2, . . . , an) ∈ Kn−1, there is a neighborhood V of a1 ∈ K such
that ∅ 6= Φt ⊂ U for every t ∈ V ∩ E, t 6= a1. When n = 1, A is itself a fiber shrinking for the
subset A of K at an accumulation point a ∈ K.

Proposition 6.1. (Fiber shrinking) Every L-definable subset A of Kn with accumulation point
a ∈ Kn has, after a permutation of the coordinates, an L-definable x1-fiber shrinking at a.

In the case where the ground field K is of rank one, the proof of Proposition 6.1 was given
in [44, Section 6]. In the general case, it can be repeated verbatim once we demonstrate the
following result on definable subsets in the value group sort Γ.

Lemma 6.2. Let Γ be an ordered abelian group and P be a definable subset of Γn. Suppose that
(∞, . . . ,∞) is an accumulation point of P , i.e. for any δ ∈ Γ the set

{x ∈ P : x1 > δ, . . . , xn > δ} 6= ∅

is non-empty. Then there is an affine semi-line

L = {(r1k + γ1, . . . , rnk + γn) : k ∈ Γ, k ≥ 0} with r1, . . . , rn ∈ N,

passing through a point γ = (γ1, . . . , γn) ∈ P and such that (∞, . . . ,∞) is an accumulation point
of the intersection P ∩ L too.

In [44, Section 6], Lemma 6.2 was established for archimedean groups by means of quantifier
elimination in the Presburger language. Now, in the general case, it follows in a similar fashion
by means of relative quantifier elimination for ordered abelian groups in the language Lqe due
to Cluckers–Halupczok [8], outlined in the next section. Indeed, applying Theorem 7.1 along
with Remarks 7.2 and 7.3), it is not difficult to see that the parametrized congruence conditions
which occur in the description of the set P are not an essential obstacle to finding the line L we
are looking for. Therefore the lemma reduces, likewise as it was in [44, Section 6], to a problem
of semi-linear geometry.

7. Quantifier elimination for ordered abelian groups

It is well known that archimedean ordered abelian groups admit quantifier elimination in
the Presburger language. Much more complicated are quantifier elimination results for non-
archimedean groups (especially those with infinite rank), going back as far as Gurevich [24].
He established a transfer of sentences from ordered abelian groups to so-called coloured chains
(i.e. linearly ordered sets with additional unary predicates), enhanced later to allow arbitrary
formulas. This was done in his doctoral dissertation ”The decision problem for some algebraic
theories” (Sverdlovsk, 1968), and by Schmitt in his habilitation dissertation ”Model theory of
ordered abelian groups” (Heidelberg, 1982); see also the paper [56]. Such a transfer is a kind
of relative quantifier elimination, which allows Gurevich–Schmitt [25], in their study of the NIP
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property, to lift model theoretic properties from ordered sets to ordered abelian groups or, in
other words, to transform statements on ordered abelian groups into those on coloured chains.

Instead Cluckers–Halupczok [8] introduce a suitable many-sorted language Lqe with main
group sort Γ and auxiliary imaginary sorts (with canonical parameters for some definable families
of convex subgroups) which carry the structure of a linearly ordered set with some additional
unary predicates. They provide quantifier elimination relative to the auxiliary sorts, where
each definable set in the group sort is a union of a family of quantifier free definable sets with
parameter running a definable (with quantifiers) set of the auxiliary sorts.

Fortunately, sometimes it is possible to directly deduce information about ordered abelian
groups without any deeper knowledge of the auxiliary sorts. For instance, this may be illustrated
by their theorem on piecewise linearity of definable functions [8, Corollary 1.10] as well as by
Proposition 6.2 and application of quantifier elimination in the proof of the closedness theorem
in Section 4.

Now we briefly recall the language Lqe taking care of points essential for our applications.
The main group sort Γ is with the constant 0, the binary function + and the unary function −.
The collection A of auxiliary sorts consists of certain imaginary sorts:

A := {Sp, Tp, T +
p : p ∈ P};

here P stands for the set of prime numbers. By abuse of notation, A will also denote the union
of the auxiliary sorts. In this section, we denote Γ-sort variables by x, y, z, . . . and auxiliary sorts
variables by η, θ, ζ, . . ..

Further, the language Lqe consists of some unary predicates on Sp, p ∈ P, some binary order
relations on A, a ternary relation

x ≡m
′

m,α y on Γ× Γ× Sp for each p ∈ P, m,m′ ∈ N,

and finally predicates for the ternary relations x�α y+kα on Γ×Γ×A, where � ∈ {=, <,≡m},
m ∈ N, k ∈ Z and α is the third operand running any of the auxiliary sorts A.

We now explain the meaning of the above ternary relations, which are defined by means of
certain definable convex subgroups Γα and Γm

′

α of Γ with α ∈ A and m′ ∈ N. Namely we write

x ≡m
′

m,α y iff x− y ∈ Γm
′

α +mΓ.

Further, let 1α denote the minimal positive element of Γ/Γα if Γ/Γα is discrete and 1α := 0
otherwise, and set kα := k · 1α for all k ∈ Z. By definition we write

x �α y + kα iff x (mod Γα) � y (mod Γα) + kα.

(Thus the language Lqe incorporates the Presburger language on all quotients Γ/Γα.) Note also
that the ordinary predicates < and ≡m on Γ are Γ-quantifier-free definable in the language Lqe.

Now we can readily formulate quantifier elimination relative to the auxiliary sorts ([8, Theo-
rem 1.8]).

Theorem 7.1. In the theory T of ordered abelian groups, each Lqe-formula φ(x̄, η̄) is equivalent
to an Lqe-formula ψ(x̄, η̄) in family union form, i.e.

ψ(x̄, η̄) =

k∨
i=1

∃ θ̄
[
χi(η̄, θ̄) ∧ ωi(x̄, θ̄)

]
,

where θ̄ are A-variables, the formulas χi(η̄, θ̄) live purely in the auxiliary sorts A, each ωi(x̄, θ̄)
is a conjunction of literals (i.e. atomic or negated atomic formulas) and T implies that the
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Lqe(A)-formulas

{χi(η̄, ᾱ) ∧ ωi(x̄, ᾱ) : i = 1, . . . , k, ᾱ ∈ A}
are pairwise inconsistent.

Remark 7.2. The sets definable (or, definable with parameters) in the main group sort Γ resemble
to some extent the sets which are definable in the Presburger language. Indeed, the atomic
formulas involved in the formulas ωi(x̄, θ̄) are of the form t(x̄) �θj kθj , where t(x̄) is a Z-linear
combination (respectively, a Z-linear combination plus an element of Γ), the predicates

� ∈ {=, <,≡m,≡m
′

m } with some m,m′ ∈ N,

θj is one of the entries of θ̄ and k ∈ Z; here k = 0 if � is ≡m′

m . Clearly, while linear equalities and
inequalities define polyhedra, congruence conditions define sets which consist of entire cosets of
mΓ for finitely many m ∈ N.

Remark 7.3. Note also that the sets given by atomic formulas t(x̄)�θj kθj consist of entire cosets
of the subgroups Γθj . Therefore, the union of those subgroups Γθj which essentially occur in
a formula in family union form, describing a proper subset of Γn, is not cofinal with Γ. This
observation is often useful as, for instance, in the proofs of fiber shrinking and Theorem 1.1.

8. Proof of the closedness theorem

In the proof of Theorem 1.1, we shall generally follow the ideas from our previous paper [44,
Section 7]. We must show that if B is an L-definable subset of D×(K◦)n and a point a lies in the
closure of A := π(B), then there is a point b in the closure of B such that π(b) = a. Again, the
proof reduces easily to the case m = 1 and next, by means of fiber shrinking (Proposition 6.1),
to the case n = 1. We may obviously assume that a = 0 6∈ A.

Whereas in the paper [44] preparation cell decomposition (due to Pas; see [53, Theorem 3.2]
and [44, Theorem 2.4]) was combined with quantifier elimination in the Γ sort in the Presburger
language, here it is combined with relative quantifier elimination in the language Lqe considered
in Section 7. In a similar manner as in [44], we can now assume that B is a subset F of a cell C
of the form presented below. Let a(x, ξ), b(x, ξ), c(x, ξ) : D −→ K be three L-definable functions
on an L-definable subset D of K2 × km and let ν ∈ N is a positive integer. For each ξ ∈ km set

C(ξ) :=

{
(x, y) ∈ Kn

x ×Ky : (x, ξ) ∈ D,

v(a(x, ξ)) �1 v((y − c(x, ξ))ν) �2 v(b(x, ξ)), ac(y − c(x, ξ)) = ξ1

}
,

where �1,�2 stand for <,≤ or no condition in any occurrence. A cell C is by definition a disjoint
union of the fibres C(ξ). The subset F of C is a union of fibers F (ξ) of the form

F (ξ) :=

{
(x, y) ∈ C(ξ) : ∃ θ̄ χ(θ̄) ∧

∧
i∈Ia

v(ai(x, ξ)) �1,θji
v((y − c(x, ξ))νi),

∧
i∈Ib

v((y − c(x, ξ))νi) �2,θji
v(bi(x, ξ))

∧
∧
i∈If

v((y − c(x, ξ))νi) �θji v(fi(x, ξ))

 ,
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where Ia, Ib, If are finite (possibly empty) sets of indices, ai, bi, fi are L-definable functions,
νi,M ∈ N are positive integers, �1, �2 stand for < or ≤, the predicates

� ∈ {≡M ,¬ ≡M ,≡m
′

M ,¬ ≡m
′

M } with some m′ ∈ N,
and θji is one of the entries of θ̄.

As before, since every L-definable subset in the Cartesian product Γn × km of auxiliary sorts
is a finite union of the Cartesian products of definable subsets in Γn and in km, we can assume
that B is one fiber F (ξ′) for a parameter ξ′ ∈ km. For simplicity, we abbreviate

c(x, ξ′), a(x, ξ′), b(x, ξ′), ai(x, ξ
′), bi(x, ξ

′), fi(x, ξ
′)

to
c(x), a(x), b(x), ai(x), bi(x), fi(x)

with i ∈ Ia, i ∈ Ib and i ∈ If . Denote by E ⊂ K the common domain of these functions; then 0
is an accumulation point of E.

By the theorem on existence of the limit (Theorem 5.1), we can assume that the limits

c(0), a(0), b(0), ai(0), bi(0), fi(0)

of the functions
c(x), a(x), b(x), ai(x), bi(x), fi(x)

when x→ 0 exist in R. Moreover, there is a neighborhood U of 0 such that, each definable set

{(v(x), v(fi(x))) : x ∈ (E ∩ U) \ {0}} ⊂ Γ× (Γ ∪ {∞}), i ∈ If ,
is contained in an affine line with rational slope

(8.1) q · l = pi · k + βi, i ∈ If ,
with pi, q ∈ Z, q > 0, βi ∈ Γ, or in Γ× {∞}.

The role of the center c(x) is, of course, immaterial. We may assume, without loss of generality,
that it vanishes, c(x) ≡ 0, for if a point b = (0, w) ∈ K2 lies in the closure of the cell with zero
center, the point (0, w + c(0)) lies in the closure of the cell with center c(x).

Observe now that If �1 occurs and a(0) = 0, the set F (ξ′) is itself an x-fiber shrinking at
(0, 0) and the point b = (0, 0) is an accumulation point of B lying over a = 0, as desired. And so
is the point b = (0, 0) if �1,θji

occurs and ai(0) = 0 for some i ∈ Ia, because then the set F (ξ′)
contains the x-fiber shrinking

F (ξ′) ∩ {(x, y) ∈ E ×K : v(ai(x)) �1 v(yνi)}.

So suppose that either only �2 occur or �1 occur and, moreover, a(0) 6= 0 and ai(0) 6= 0 for
all i ∈ Ia. By elimination of K-quantifiers, the set v(E) is a definable subset of Γ. Further, it
is easy to check, applying Theorem 7.1 ff. likewise as it was in Lemma 6.2, that the set v(E) is
given near infinity only by finitely many parametrized congruence conditions of the form

(8.2) v(E) =

{
k ∈ Γ : k > β ∧ ∃ θ̄ ω(θ̄) ∧

s∧
i=1

mik �N,θji γi

}
.

where β, γi ∈ Γ, mi, N ∈ N for i = 1, . . . , s, the predicates

� ∈ {≡N ,¬ ≡N ,≡m
′

N ,¬ ≡m
′

N } with some m′ ∈ N,
and θji is one of the entries of θ̄. Obviously, after perhaps shrinking the neighborhood of zero,
we may assume that

v(a(x)) = v(a(0)) and v(ai(x)) = v(ai(0))
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for all i ∈ Ia and x ∈ E \ {0}, v(x) > β.

Now, take an element (u,w) ∈ F (ξ′) with u ∈ E \ {0}, v(u) > β. In order to complete the
proof, it suffices to show that (0, w) is an accumulation point of F (ξ′). To this end, observe that,
by equality 8.2, there is a point x ∈ E arbitrarily close to 0 such that

v(x) ∈ v(u) + qMN · Γ.
By equality 8.1, we get v(fi(x)) ∈ v(fi(u)) + piMN · Γ, i ∈ If , and hence

(8.3) v (fi(x)) ≡M v(fi(u)), i ∈ If .
Clearly, in the vicinity of zero we have

v(yν) �2 v(b(x, ξ)) and
∧
i∈Ib

v(yνi) �2,θji
v(bi(x, ξ)).

Therefore equality 8.3 along with the definition of the fibre F (ξ′) yield (x,w) ∈ F (ξ′), concluding
the proof of the closedness theorem.

9. Piecewise continuity of definable functions

Further, let L be the three-sorted language L of Denef–Pas. The main purpose of this section
is to prove the following

Theorem 9.1. Let A ⊂ Kn and f : A→ P1(K) be an L-definable function. Then f is piecewise
continuous, i.e. there is a finite partition of A into L-definable locally closed subsets A1, . . . , As
of Kn such that the restriction of f to each Ai is continuous.

We immediately obtain

Corollary 9.2. The conclusion of the above theorem holds for any L-definable function
f : A→ K.

The proof of Theorem 9.1 relies on two basic ingredients. The first one is concerned with a
theory of algebraic dimension and decomposition of definable sets into a finite union of locally
closed definable subsets we begin with. It was established by van den Dries [13] for certain
expansions of rings (and Henselian valued fields, in particular) which admit quantifier elimina-
tion and are equipped with a topological system. The second one is the closedness theorem
(Theorem 1.1).

Consider an infinite integral domainD with quotient fieldK. One of the fundamental concepts
introduced by van den Dries [13] is that of a topological system on a given expansionD of a domain

D in a language L̃. That concept incorporates both Zariski-type and definable topologies. We
remind the reader that it consists of a topology τn on each set Dn, n ∈ N, such that:

1) For any n-ary L̃D-terms t1, . . . , ts, n, s ∈ N, the induced map

Dn 3 a −→ (t1(a), . . . , ts(a)) ∈ Ds

is continuous.
2) Every singleton {a}, a ∈ D, is a closed subset of D.

3) For any n-ary relation symbol R of the language L̃ and any sequence 1 ≤ i1 < . . . < ik ≤ n,
1 ≤ k ≤ n, the two sets

{(ai1 , . . . , aik) ∈ Dk : D |= R((ai1 , . . . , aik)&), ai1 6= 0, . . . , aik 6= 0},
{(ai1 , . . . , aik) ∈ Dk : D |= ¬R((ai1 , . . . , aik)&), ai1 6= 0, . . . , aik 6= 0}

are open in Dk; here (ai1 , . . . , aik)& denotes the element of Dn whose ij-th coordinate is aij ,
j = 1, . . . , k, and whose remaining coordinates are zero.



A CLOSEDNESS THEOREM AND ITS APPLICATIONS 225

Finite intersections of closed sets of the form {a ∈ Dn : t(a) = 0}, where t is an n-ary

L̃D-term, will be called special closed subsets of Dn. Finite intersections of open sets of the form

{a ∈ Dn : t(a) 6= 0},
{a ∈ Dn : D |= R((ti1(a), . . . , tik(a))&), ti1(a) 6= 0, . . . , tik(a) 6= 0}

or
{a ∈ Dn : D |= ¬R((ti1(a), . . . , tik(a))&), ti1(a) 6= 0, . . . , tik(a) 6= 0},

where t, ti1 , tik are L̃D-terms, will be called special open subsets of Dn. Finally, an intersection
of a special open and a special closed subsets of Dn will be called a special locally closed subset

of Dn. Every quantifier-free L̃-definable set is a finite union of special locally closed sets.

Suppose now that the language L̃ extends the language of rings and has no extra function

symbols of arity > 0 and that an L̃-expansion D of the domain D under study admits quantifier
elimination and is equipped with a topological system such that every non-empty special open
subset of D is infinite. These conditions ensure that D is algebraically bounded and algebraic
dimension is a dimension function on D ([13, Proposition 2.15 and 2.7]). Algebraic dimension
is the only dimension function on D whenever, in addition, D is a non-trivially valued field and
the topology τ1 is induced by its valuation. Then, for simplicity, the algebraic dimension of an

L̃-definable set E will be denoted by dimE.

Now we recall the following two basic results from the paper [13, Propositions 2.17 and 2.23]:

Proposition 9.3. Every L̃-definable subset of Dn is a finite union of intersections of Zariski

closed with special open subsets of Dn and, a fortiori, a finite union of locally closed L̃-definable
subsets of Dn.

Proposition 9.4. Let E be an L̃-definable subset of Dn, and let E stand for its closure and
∂E := E \ E for its frontier. Then

alg.dim (∂E) < alg.dim (E).

It is not difficult to strengthen the former proposition as follows.

Corollary 9.5. Every L̃-definable set is a finite disjoint union of locally closed sets.

Quantifier elimination due to Pas [53, Theorem 4.1] (more precisely, elimination of K-quant-

ifiers) enables translation of the language L of Denef–Pas on K into a language L̃ described
above, which is equipped with the topological system wherein τn is the K-topology on Kn,
n ∈ N. Indeed, we must augment the language of rings by adding extra relation symbols for the
inverse images under the valuation and angular component map of relations on the value group
and residue field, respectively. More precisely, we must add the names of sets of the form

{a ∈ Kn : (v(a1), . . . , v(an)) ∈ P} and {a ∈ Kn : (ac a1, . . . , ac an) ∈ Q},
where P and Q are definable subsets of Γn and kn (as the auxiliary sorts of the language L),
respectively.

Summing up, the foregoing results apply in the case of Henselian non-trivially valued fields
with the three-sorted language L of Denef–Pas. Now we can readily prove Theorem 9.1.

Proof. Consider an L-definable function f : A→ P1(K) and its graph

E := {(x, f(x)) : x ∈ A} ⊂ Kn × P1(K).

We shall proceed with induction with respect to the dimension d = dimA = dim E of the source
and graph of f . By Corollary 9.5, we can assume that the graph E is a locally closed subset
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of Kn × P1(K) of dimension d and that the conclusion of the theorem holds for functions with
source and graph of dimension < d.

Let F be the closure of E in Kn × P1(K) and ∂E := F \ E be the frontier of E. Since E is
locally closed, the frontier ∂E is a closed subset of Kn × P1(K) as well. Let

π : Kn × P1(K) −→ Kn

be the canonical projection. Then, by virtue of the closedness theorem, the images π(F ) and
π(∂E) are closed subsets of Kn. Further,

dim F = dim π(F ) = d and dim π(∂E) ≤ dim ∂E < d;

the last inequality holds by Proposition 9.4. Putting B := π(F ) \ π(∂E) ⊂ π(E) = A, we thus
get dim B = d and dim (A \B) < d. Clearly, the set

E0 := E ∩ (B × P1(K)) = F ∩ (B × P1(K))

is a closed subset of B × P1(K) and is the graph of the restriction f0 : B −→ P1(K) of f to B.
Again, it follows immediately from the closedness theorem that the restriction π0 : E0 −→ B of
the projection π to E0 is a definably closed map. Therefore f0 is a continuous function. But, by
the induction hypothesis, the restriction of f to A \ B satisfies the conclusion of the theorem,
whence so does the function f . This completes the proof. �

10. Curve selection

We now pass to curve selection over non-locally compact ground fields under study. While
the real version of curve selection goes back to the papers [6, 58] (see also [40, 41, 4]), the p-adic
one was achieved in the papers [57, 12].

In this section we give two versions of curve selection which are counterparts of the ones from
our paper [44, Proposition 8.1 and 8.2] over rank one valued fields. The first one is concerned with
valuative semialgebraic sets and we can repeat verbatim its proof which relies on transformation
to a normal crossing by blowing up and the closedness theorem.

By a valuative semialgebraic subset of Kn we mean a (finite) Boolean combination of elemen-
tary valuative semialgebraic subsets, i.e. sets of the form {x ∈ Kn : v(f(x)) ≤ v(g(x))}, where
f and g are regular functions on Kn. We call a map ϕ semialgebraic if its graph is a valuative
semialgebraic set.

Proposition 10.1. Let A be a valuative semialgebraic subset of Kn. If a point a ∈ Kn lies in
the closure (in the K-topology) of A\{a}, then there is a semialgebraic map ϕ : R −→ Kn given
by algebraic power series such that

ϕ(0) = a and ϕ(R \ {0}) ⊂ A \ {a}.

We now turn to the general version of curve selection for L-definable sets. Under the cir-
cumstances, we apply relative quantifier elimination in a many-sorted language due to Cluckers–
Halupczok rather than simply quantifier elimination in the Presburger language for rank one
valued fields. The passage between the two corresponding reasonings for curve selection is simi-
lar to that for fiber shrinking. Nevertheless we provide a detailed proof for more clarity and the
reader’s convenience. Note that both fiber shrinking and curve selection apply Lemma 6.2.

Proposition 10.2. Let A be an L-definable subset of Kn. If a point a ∈ Kn lies in the closure
(in the K-topology) of A \ {a}, then there exist a semialgebraic map ϕ : R −→ Kn given by
algebraic power series and an L-definable subset E of R with accumulation point 0 such that

ϕ(0) = a and ϕ(E \ {0}) ⊂ A \ {a}.
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Proof. As before, we proceed with induction with respect to the dimension of the ambient space
n. The case n = 1 being evident, suppose n > 1. By elimination of K-quantifiers, the set A\{a}
is a finite union of sets defined by conditions of the form

(v(f1(x)), . . . , v(fr(x))) ∈ P, (ac g1(x), . . . , ac gs(x)) ∈ Q,

where fi, gj ∈ K[x] are polynomials, and P and Q are definable subsets of Γr and ks, respectively.
Without loss of generality, we may assume that A is such a set and a = 0.

Take a finite composite σ : Y −→ KAn of blow-ups along smooth centers such that the pull-
backs fσ1 , . . . , f

σ
r and gσ1 , . . . , g

σ
s are normal crossing divisors unless they vanish. Since the

restriction σ : Y (K) −→ Kn is definably closed (Corollary 1.6), there is a point b ∈ Y (K)∩σ−1(a)
which lies in the closure of the set B := Y (K)∩ σ−1(A \ {a}). Take local coordinates y1. . . . , yn
near b in which b = 0 and every pull-back above is a normal crossing. We shall first select a
semialgebraic map ψ : R −→ Y (K) given by restricted power series and an L-definable subset
E of R with accumulation point 0 such that ψ(0) = b and ψ(E \ {0}) ⊂ B.

Since the valuation map and the angular component map composed with a continuous function
are locally constant near any point at which this function does not vanish, the conditions which
describe the set B near b are of the form

(v(y1), . . . , v(yn)) ∈ P̃ , (ac y1, . . . , ac yn) ∈ Q̃,

where P̃ and Q̃ are definable subsets of Γn and kn, respectively.

The set B0 determined by the conditions

(v(y1), . . . , v(yn)) ∈ P̃ ,

(ac y1, . . . , ac yn) ∈ Q̃ ∩
n⋃
i=1

{ξi = 0},

is contained near b in the union of hyperplanes {yi = 0}, i = 1, . . . , n. If b is an accumulation
point of the set B0, then the desired map ψ exists by the induction hypothesis. Otherwise b is
an accumulation point of the set B1 := B \B0.

Now we are going to apply relative quantifier elimination in the value group sort Γ. Similarly,
as in the proof of Lemma 6.2, the parametrized congruence conditions which occur in the de-

scription of the definable subset P̃ of Γn, achieved via quantifier elimination, are not an essential
obstacle to finding the desired map ψ, but affect only the definable subset E of R. Neither are
the conditions

Q̃ \
n⋃
i=1

{ξi = 0}

imposed on the angular components of the coordinates y1, . . . , yn, because none of them vanishes
here. Therefore, in order to select the map ψ, we must first of all analyze the linear conditions

(equalities and inequalities) which occur in the description of the set P̃ .

The set P̃ has an accumulation point (∞, . . . ,∞) as b = 0 is an accumulation point of B. By
Lemma 6.2, there is an affine semi-line

L = {(r1t+ γ1, . . . , rnt+ γn) : t ∈ Γ, t ≥ 0} with r1, . . . , rn ∈ N,

passing through a point γ = (γ1, . . . , γn) ∈ P and such that (∞, . . . ,∞) is an accumulation
point of the intersection P ∩ L too.
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Now, take some elements

(ξ1, . . . , ξn) ∈ Q̃ \
n⋃
i=1

{ξi = 0}

and next some elements w1, . . . , wn ∈ K for which

v(w1) = γ1, . . . , v(wn) = γn and acw1 = ξ1, . . . , acwn = ξn.

It is not difficult to check that there exists an L-definable subset E of R which is determined
by a finite number of parametrized congruence conditions (in the many-sorted language Lqe
described in Section 7) imposed on v(t) and the conditions ac t = 1 such that the subset

F := {(w1 · tr1 , . . . , wn · trn) : t ∈ E}

of the arc

ψ : R→ Y, ψ(t) = (w1 · tr1 , . . . , wn · trn)

is contained in B1. Then ϕ := σ ◦ψ is the map we are looking for. This completes the proof. �

11. The  Lojasiewicz inequalities

In this section we provide certain two versions of the  Lojasiewicz inequality which generalize
the ones from [44, Propositions 9.1 and 9.2] to the case of arbitrary Henselian valued fields.
Moreover, the first one is now formulated for several functions g1, . . . , gm. For its proof we still
need the following easy consequence of the closedness theorem.

Proposition 11.1. Let f : A → K be a continuous L-definable function on a closed bounded
subset A ⊂ Kn. Then f is a bounded function, i.e. there is an ω ∈ Γ such that v(f(x)) ≥ ω for
all x ∈ A.

We adopt the following notation:

v(x) = v(x1, . . . , xn) := min {v(x1), . . . , v(xn)}

for x = (x1, . . . , xn) ∈ Kn.

Theorem 11.2. Let f, g1, . . . , gm : A→ K be continuous L-definable functions on a closed (in
the K-topology) bounded subset A of Km. If

{x ∈ A : g1(x) = . . . = gm(x) = 0} ⊂ {x ∈ A : f(x) = 0},

then there exist a positive integer s and a constant β ∈ Γ such that

s · v(f(x)) + β ≥ v((g1(x), . . . , gm(x)))

for all x ∈ A.

Proof. Put g = (g1, . . . , gm). It is easy to check that the set Aγ := {x ∈ A : v(f(x)) = γ} is a
closed L-definable subset of A for every γ ∈ Γ. By the hypothesis and the closedness theorem,
the set g(Aγ) is a closed L-definable subset of Km\{0}, γ ∈ Γ. The set v(g(Aγ)) is thus bounded
from above, i.e. v(g(Aγ)) ≤ α(γ) for some α(γ) ∈ Γ. By elimination of K-quantifiers, the set

Λ := {(v(f(x)), v(g(x))) ∈ Γ2 : x ∈ A, f(x) 6= 0} ⊂ {(γ, δ) ∈ Γ2 : δ ≤ α(γ)}

is a definable subset of Γ2 in the many-sorted language Lqe from Section 7. Applying Theorem 7.1
ff., we see that this set is described by a finite number of parametrized linear equalities and
inequalities, and of parametrized congruence conditions. Hence

Λ ∩ {(γ, δ) ∈ Γ2 : γ > γ0} ⊂ {(γ, δ) ∈ Γ2 : δ ≤ s · γ}
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for a positive integer s and some γ0 ∈ Γ. We thus get

v(g(x)) ≤ s · v(f(x)) if x ∈ A, v(f(x)) > γ0.

Again, by the hypothesis, we have g({x ∈ A : v(f(x)) ≤ γ0}) ⊂ Km \ {0}. Therefore it follows
from the closedness theorem that the set {v(g(x)) ∈ Γ : v(f(x)) ≤ γ0} is bounded from above,
say, by a θ ∈ Γ. Taking an ω ∈ Γ as in Proposition 11.1 and putting β := max {0, θ − s · ω}, we
get

s · v(f(x))− v(g(x)) + β ≥ 0, for all x ∈ A,
as desired. �

A direct consequence of Theorem 11.2 is the following result on Hölder continuity of definable
functions.

Proposition 11.3. Let f : A → K be a continuous L-definable function on a closed bounded
subset A ⊂ Kn. Then f is Hölder continuous with a positive integer s and a constant β ∈ Γ, i.e.

s · v(f(x)− f(z)) + β ≥ v(x− z)

for all x, z ∈ A.

Proof. Apply Theorem 11.2 to the functions

f(x)− f(y) and gi(x, y) = xi − yi, i = 1, . . . , n.

�

We immediately obtain

Corollary 11.4. Every continuous L-definable function f : A→ K on a closed bounded subset
A ⊂ Kn is uniformly continuous.

Now we state a version of the  Lojasiewicz inequality for continuous definable functions of a
locally closed subset of Kn.

Theorem 11.5. Let f, g : A → K be two continuous L-definable functions on a locally closed
subset A of Kn. If

{x ∈ A : g(x) = 0} ⊂ {x ∈ A : f(x) = 0},
then there exist a positive integer s and a continuous L-definable function h on A such that
fs(x) = h(x) · g(x) for all x ∈ A.

Proof. It is easy to check that the set A is of the form A := U ∩ F , where U and F are two
L-definable subsets of Kn, U is open and F is closed in the K-topology.

We shall adapt the foregoing arguments. Since the set U is open, its complement V := Kn \U
is closed in Kn and A is the following union of open and closed subsets of Kn and of Pn(K):

Xβ := {x ∈ Kn : v(x1), . . . , v(xn) ≥ −β, v(x− y) ≤ β for all y ∈ V },

where β ∈ Γ, β ≥ 0. As before, we see that the sets

Aβ,γ := {x ∈ Xβ : v(f(x)) = γ} with β, γ ∈ Γ

are closed L-definable subsets of Pn(K), and next that the sets g(Aβ,γ) are closed L-definable
subsets of K \ {0} for all β, γ ∈ Γ. Likewise, we get

Λ := {(β, v(f(x)), v(g(x))) ∈ Γ3 : x ∈ Xβ , f(x) 6= 0} ⊂ {(β, γ, δ) ∈ Γ3 : δ < α(β, γ)}

for some α(β, γ) ∈ Γ.
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Λ is a definable subset of Γ3 in the many-sorted language Lqe, and thus is described by a
finite number of parametrized linear equalities and inequalities, and of parametrized congruence
conditions. Again, the above inclusion reduces to an analysis of those linear equalities and
inequalities. Consequently, there exist a positive integer s ∈ N and elements γ0(β) ∈ Γ such that

Λ ∩ {(β, γ, δ) ∈ Γ3 : γ > γ0(β)} ⊂ {(β, γ, δ) ∈ Γ3 : δ < s · γ}.
Since A is the union of the sets Xβ , it is not difficult to check that the quotient fs/g extends by
zero through the zero set of the denominator to a (unique) continuous L-definable function on
A, which is the desired result. �

We conclude this section with a theorem which is much stronger than its counterpart,
[44, Proposition 12.1], concerning continuous rational functions. The proof we give now re-
sembles the above one, without applying transformation to a normal crossing. Put

D(f) := {x ∈ A : f(x) 6= 0} and Z (f) := {x ∈ A : f(x) = 0}.

Theorem 11.6. Let f : A→ K be a continuous L-definable function on a locally closed subset
A of Kn and g : D(f)→ K a continuous L-definable function. Then fs · g extends, for s� 0,
by zero through the set Z (f) to a (unique) continuous L-definable function on A.

Proof. As in the proof of Theorem 11.5, let A = U ∩ F and consider the same sets Xβ ⊂ Kn,
β ∈ Γ, and Λ ⊂ Γ3. Under the assumptions, we get

Λ ⊂ {(β, γ, δ) ∈ Γ3 : δ > α(β, γ)}
for some α(β, γ) ∈ Γ. Now, in a similar fashion as before, we can find an integer r ∈ Z and
elements γ0(β) ∈ Γ such that

Λ ∩ {(β, γ, δ) ∈ Γ3 : γ > γ0(β)} ⊂ {(β, γ, δ) ∈ Γ3 : δ > r · γ}.
Take a positive integer s ∈ N such that s + r > 0. Then, as in the proof of Theorem 11.5, it
is not difficult to check that the function fs · g extends by zero through the zero set of f to a
(unique) continuous L-definable function on A, which is the desired result. �

Remark 11.7. Note that Theorem 11.6 is, in fact, a strengthening of Theorem 11.5, and has many
important applications. In particular, it plays a crucial role in the proof of the Nullstellensatz
for regulous (i.e. continuous and rational) functions on Kn.

12. Continuous hereditarily rational functions and regulous functions and
sheaves

Continuous rational functions on singular real algebraic varieties, unlike those on non-singular
real algebraic varieties, often behave quite unusually. This is illustrated by many examples from
the paper [30, Section 1], and gives rise to the concept of hereditarily rational functions. We
shall assume that the ground field K is not algebraically closed. Otherwise, the notion of a
continuous rational function on a normal variety coincides with that of a regular function and,
in general, the study of continuous rational functions leads to the concept of seminormality and
seminormalization; cf. [1, 2] or [29, Section 10.2] for a recent treatment. Let K be topological
field with the density property. For a K-variety Z, let Z(K) denote the set of all K-points
on Z. We say that a continuous function f : Z(K) −→ K is hereditarily rational if for every
irreducible subvariety Y ⊂ Z there exists a Zariski dense open subvariety Y 0 ⊂ Y such that
f |Y 0(K) is regular. Below we recall an extension theorem, which plays a crucial role in the theory
of continuous rational functions. It says roughly that continuous rational extendability to the
non-singular ambient space is ensured by (and in fact equivalent to) the intrinsic property to
be continuous hereditarily rational. This theorem was first proven for real and p-adic varieties
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in [30], and next over Henselian rank one valued fields in [44, Section 10]. The proof of the latter
result relied on the closedness theorem (Theorem 1.1), the descent property (Corollary 1.7) and
the  Lojasiewicz inequality (Theorem 11.5), and can now be repeated verbatim for the case where
K is an arbitrary Henselian valued field K of equicharacteristic zero.

Theorem 12.1. Let X be a non-singular K-variety and W ⊂ Z ⊂ X closed subvarieties.
Let f be a continuous hereditarily rational function on Z(K) that is regular at all K-points of
Z(K) \W (K). Then f extends to a continuous hereditarily rational function F on X(K) that
is regular at all K-points of X(K) \W (K).

The corresponding theorem for hereditarily rational functions of class Ck, k ∈ N, remains an
open problem as yet. This leads to the concept of k-regulous functions, k ∈ N, on a subvariety
Z(K) of a non-singular K-variety X(K), i.e. those functions on Z(K) which are the restrictions
to Z(K) of rational functions of class Ck on X(K).

In real algebraic geometry, the theory of regulous functions, varieties and sheaves was devel-
oped by Fichou–Huisman–Mangolte–Monnier [19]. Regulous geometry over Henselian rank one
valued fields was studied in our paper [44, Sections 11, 12, 13]. The basic tools we applied are
the closedness theorem, descent property, the  Lojasiewicz inequalities and transformation to a
normal crossing by blowing up. We should emphasize that all those our results, including the
Nullstellensatz and Cartan’s theorems A and B for regulous quasi-coherent sheaves, remain true
over arbitrary Henselian valued fields (of equicharacteristic zero) with almost the same proofs.

We conclude this paper with the following comment.

Remark 12.2. In our recent paper [48], we established a definable, non-Archimedean version
of the closedness theorem over Henselian valued fields (of equicharacteristic zero) with analytic
structure along with several applications. Let us mention, finally, that the theory of analytic
structures goes back to the work of many mathematicians (see e.g. [12, 14, 37, 16, 15, 38, 39, 9,
10, 11]).
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(1969), 431–450.
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