
Journal of Singularities
Volume 21 (2020), 234-248

Proc. of Geometric and Algebraic

Singularity Theory, Bȩdlewo, 2017
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Dedicated to Professor Goo Ishikawa on the occasion of his 60th birthday

Abstract. Given a null-cobordant oriented framed link L in a closed oriented 3–manifold
M , we determine those links in M r L which can be realized as the singular point set of a
generic map M → R2 that has L as an oriented framed regular fiber. Then, we study the
linking behavior between the singular point set and regular fibers for generic maps of M into

R
2.

1. Introduction

Topology of generic C∞ maps of manifolds of dimension ≥ 2 into the plane R
2 has been

extensively studied as a natural generalization of Morse theory, which studies generic maps into
the real line R. For a Morse function, singular points, or critical points, are isolated and their
positions in the source manifold are not interesting except for their cardinalities or indices. On
the other hand, for a generic map into the plane, the singular point set is a smooth submanifold
of dimension one in the source manifold and its position may be non-trivial. In [14], the author
studied the position of the singular point set and characterized those smooth 1–dimensional
submanifolds which arise as the singular point set of a generic map.

On the other hand, each regular fiber of such a generic map into R
2 is of codimension two

and is disjoint from the singular point set. Therefore, the singular point set and regular fibers
may be non-trivially linked.

In September 20181 Professor David Chillingworth asked the author the following question:
for a generic map f : R3 → R

2, must every component of a regular fiber be linked by at least

one component of the singular point set ?2

In this paper, we concentrate on generic maps of closed (i.e. compact and boundaryless)
3–dimensional manifolds, instead of R3, and study the linking behavior between the singular
point set and regular fibers in the source 3–manifold. More precisely, let M be a closed oriented
3–manifold and f : M → R

2 a generic C∞ map. Generic maps that we consider in this paper
are called excellent maps, as defined in §2, and have fold and cusp singularities. In our 3–
dimensional case, both the singular point set and regular fibers have dimension one, and they
constitute disjoint links in M . We study their relative positions in the 3–manifold M .

For example, let us consider the unit sphere S3 ⊂ R
4 and let π : R4 → R

2 be the standard
projection defined by π(x1, x2, x3, x4) = (x1, x2) for (x1, x2, x3, x4) ∈ R

4. Then,

f0 = π|S3 : S3 → R
2
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For details, the reader is referred to [1, 2, 4, 8].
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Figure 1. Singular point set and a regular fiber for a specific map f0 : S3 → R
2

is an excellent map whose singular point set S(f0) = {(x1, x2, 0, 0) ∈ S3} consists only of definite
fold singularities and is a trivial knot in S3. Furthermore, for y = (y1, y2) with y21 + y22 < 1,
the regular fiber f−1

0 (y) = {(y1, y2, x3, x4) ∈ S3} is an unknotted circle linked with S(f0) (see
Fig. 1). So, in this example, the answer to the above question is positive.

The present paper is organized as follows. In §2, we will first see that regular fibers are
naturally oriented and framed; i.e. they have natural normal framings induced by the generic map
f : M → R

2. Furthermore, they bound compact oriented normally framed surfaces embedded in
M . Conversely, in [13], it has been shown that if an oriented normally framed link in M bounds
a compact oriented normally framed surface, then it is realized as a regular fiber of a generic map
of M into R

2. Then, in Theorem 2.3, given such a framed link L in M , we characterize those
unoriented links in M rL that arise as the singular point set of a generic map f : M → R

2 such
that L coincides with a framed regular fiber of f . The characterization is given in terms of a
relative characteristic class (see [7]) which is the obstruction to extending a certain trivialization
of the tangent bundle of M on a neighborhood of L to the whole M .

In §3, we will study the relative characteristic class which arises as the obstruction as above.
As a consequence, we will show that if a regular fiber has an odd number of components, then it
necessarily links with the singular point set (see Remark 3.5). We will also give a result which
enables us to identify the obstruction for local links that are embedded inside an open 3–disk.

In §4, by utilizing the results obtained in §3, we show that there exist generic maps S3 → R
2

such that a regular fiber, which is a 2–component link, and the singular point set are split; i.e.
they lie inside disjoint 3–disks. We also see that there exists such an example for every closed
oriented 3–manifold M . We also give two explicit examples of generic maps S3 → R

2 which
exhibit non-linking phenomena between regular fibers and the singular point set.

Finally in §5, we address the original question concerning generic maps of R3 into the plane.
By utilizing results obtained in [6] on regular fibers of submersions R3 → R

2, we answer to the
question negatively, by constructing counter examples.

Throughout the paper, manifolds and maps are differentiable of class C∞ unless otherwise
indicated. All (co)homology groups are with Z2–coefficients unless otherwise indicated. The
symbol “∼=” means an appropriate isomorphism between algebraic objects.

2. Main theorem

Let M be a closed oriented 3–dimensional manifold. We say that a map f : M → R
2 is

excellent if its singularities consist only of fold and cusp singularities, where a fold singularity

(or a cusp singularity) is modeled on the map germ

(x, y, z) 7→ (x, y2 ± z2) (resp. (x, y, z) 7→ (x, y3 + xy − z2))
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Figure 2. Framing for a regular fiber

at the origin. We say that a fold singularity is definite (resp. indefinite) if it is modeled on the
map germ (x, y, z) 7→ (x, y2 + z2) (resp. (x, y, z) 7→ (x, y2 − z2)).

It is known that the set of excellent maps is always open and dense in the mapping space
C∞(M,R2) endowed with the Whitney C∞ topology (for example, see [5, 18]).

In the following, for a map f : M → R
2, we denote by S(f) the set of singular points of

f . If f is an excellent map, then we see easily that S(f) is a link in M , i.e. a disjoint union
of finitely many smoothly embedded circles. For a regular value y ∈ R

2, if L = f−1(y) is non-
empty, then we call it a regular fiber, which is also a link in M and is disjoint from S(f). We
fix an orientation of R2 once and for all, and then a regular fiber is naturally oriented, since
M is oriented. Furthermore, L is naturally framed : its framing is given as the pull-back of the
trivial normal framing of the point y in R

2 (see Fig. 2). In other words, taking a small disk
neighborhood of y in R

2 consisting entirely of regular values, let y′ be a point in its boundary,
then f−1(y′) represents the framed longitude of the framed link L.

Lemma 2.1. A framed regular fiber L of an excellent map f : M → R
2 over a regular point

y ∈ R
2 is always framed null-cobordant. In other words, there exists a compact oriented surface

V embedded in M whose boundary coincides with L and which is consistent with the framed

longitude.

Proof. Let ℓ be a half line in R
2 emanating from y. We may assume that it is transverse to the

map f . Then, V = f−1(ℓ) gives the desired surface (see Fig. 3). �

In [13, Proposition 5.1], it has been shown that every null-cobordant oriented framed link L
in M can be realized as an oriented framed regular fiber of an excellent map f : M → R

2. In
this case, the singular point set S(f) is a link disjoint from L. Then, it is natural to ask which
links in M r L appear as the singular point set of such an excellent map.

In order to state our first theorem, let us prepare some notations and terminologies. For a
(unoriented) link J in MrL, we denote by [J ]2 ∈ H1(MrL) the Z2–homology class represented
by J . Let N(L) be a small tubular neighborhood of L in M disjoint from J . Since L is a framed
link, we have a natural 3–framing of M over ∂N(L), i.e. a trivialization of TM |∂N(L). The
obstruction to extending this framing over M r IntN(L) is the relative Stiefel–Whitney class
(see [7]), denoted by w2(M,L), which is an element of the Z2–cohomology group

H2(M r IntN(L), ∂N(L)) ∼= H2(M,N(L)) ∼= H2(M,L),
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Figure 3. Constructing a framed null-cobordism

where the first isomorphism is given by excision and the second one is given by the natural
homotopy equivalence (M,L) → (M,N(L)). Note that by Poincaré–Lefschetz duality, we have

H2(M r IntN(L), ∂N(L)) ∼= H1(M r IntN(L)) ∼= H1(M r L).

Remark 2.2. Let j : (M, ∅) → (M,L) be the inclusion. Then the induced homomorphism
j∗ : H2(M,L) → H2(M) maps w2(M,L) to the second Stiefel–Whitney class w2(M) of M ,
which vanishes. By the cohomology exact sequence

H1(L)
δ

−−−−→H2(M,L)
j∗

−−−−→H2(M),

we see that w2(M,L) = δ(α) for some α ∈ H1(L).

Now, one of the main theorems of this paper is the following.

Theorem 2.3. Let L be an oriented null-cobordant framed link in a closed oriented 3–manifold

M , and J be an unoriented link in M disjoint from L. Then, there exist an excellent map

f : M → R
2 and a regular value y ∈ R

2 such that f−1(y) coincides with L as an oriented framed

link and that S(f) = J if and only if [J ]2 ∈ H1(MrL) is Poincaré dual to w2(M,L) ∈ H2(M,L).

Proof. Suppose that f : M → R
2 is an excellent map such that L coincides with f−1(y) as a

framed link for a regular value y ∈ R
2 and that J = S(f). Then, we have the following, which

is originally due to Thom [16].

Lemma 2.4. If f : M → R
2 is an excellent map and y ∈ R

2 is a regular value, then for

L = f−1(y), [S(f)]2 ∈ H1(M r L) is Poincaré dual to w2(M,L) ∈ H2(M,L).

For the sake of completeness, we include a short proof here.

Proof of Lemma 2.4. Since f is a submersion outside of S(f), we can extend the framing on
N(L) to M r S(f). Then, we see easily that S(f) is exactly the obstruction locus and by
definition of the relative Stiefel–Whitney class, we have the desired conclusion. �

Conversely, suppose that [J ]2 ∈ H1(M r L) is Poincaré dual to w2(M,L). Let g : M → R
2

be an arbitrary excellent map for which there exists a regular value y ∈ R
2 such that g−1(y)

coincides with L as a framed link. Such an excellent map always exists by [13]. Then, we see
that [S(g)]2 ∈ H1(M rL) is Poincaré dual to w2(M,L) by Lemma 2.4. By our assumption, this
implies that J and S(g) are Z2–homologous in M r L. Set S(g) = J0.
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Figure 4. Starting from J0, we get J up to isotopy by a finite iteration of band
operations inside M r L.

Lemma 2.5 ([14]). If [J0]2 = [J ]2 ∈ H1(M r L), then by modifying J0 by a finite iteration of

band operations inside M r L, we can get J , up to isotopy.

Here, a band operation on J0 is defined as follows. Set I1 = I2 = [−1, 1], and let

ϕ : I1 × I2 → M r L

be an embedding of a band such that ϕ(I1 × I2) ∩ J0 = ϕ({−1, 1}× I2). Then a band operation

applied to J0 transforms it to (J0rϕ({−1, 1}×I2))∪ϕ(I1×{−1, 1}) with the corners smoothed.
Lemma 2.5 states that repeating this procedure finitely many times, we get a link isotopic to J
in M r L, starting from J0 (see Fig. 4).

Proof of Lemma 2.5. First, we may assume that both J0 and J are connected, by using band
operations. Here, note that the reverse of a band operation is again a band operation.

Now, we orient J0 and J arbitrarily. Since [J ]2 = [J0]2 in H1(M rL), we have [J ] = [J0]+2γ
for some γ ∈ H1(M r L;Z), where [J ] and [J0] ∈ H1(M r L;Z) are the Z–homology classes
represented by J and J0, respectively. Using a band whose center curve corresponds to γ, we
may assume [J0] = [J ] in H1(M r L;Z) (see the left hand side picture of Fig. 5).

Recall that H1(M r L;Z) is the abelianization of π1(M r L). By realizing commutators in
π1(M r L) by band operations, we may assume J0 and J are freely homotopic (see the right
hand side picture of Fig. 5).

Then, for dimensional reasons, J0 is regularly homotopic to J . This implies that J0 is trans-
formed to J by a finite iteration of “crossing changes” in knot theory, up to isotopy.

Finally, we can realize each “crossing change” by two band operations as depicted in Fig. 6.
This completes the proof of Lemma 2.5. (For more details, the reader is referred to [14].) �

Lemma 2.6 ([14]). Each band operation applied to S(g) can be realized by a generic deformation

of g : M → R
2 which does not modify g−1(N(y)) for a small disk neighborhood N(y) of y in R

2.

In other words, for a link J1 obtained by a band operation to S(g) in M r g−1(y), there exists a

generic 1–parameter deformation from g to g1 in such a way that g1 : M → R
2 is an excellent

map with S(g1) = J1, g
−1
1 (N(y)) = g−1(N(y)) and g1|g−1

1
(N(y)) = g|g−1(N(y)).

The above lemma can be proved by using Levine’s cusp elimination techniques [9] (see Fig. 7).
For details, the reader is referred to [14].
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Figure 5. Modifying J0 appropriately

Figure 6. Realizing a crossing change by two band operations

swallow-

tail
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definite fold image

band
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Figure 7. An example of a cusp elimination along a curve corresponding to a
band operation. The upper row depicts a change of the singular point set in the
source 3–manifold M , while the lower row depicts the corresponding change of
the singular point set image in R

2.

Now let us go back to the proof of Theorem 2.3. Combining Lemmas 2.5 and 2.6, we can
deform g with S(g) = J0 to an excellent map f : M → R

2 with S(f) = J , keeping the condition
g−1(y) = f−1(y) = L. This completes the proof. �
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Remark 2.7. As in [14], suppose J is decomposed as a disjoint union

J = F0 ∪ F1 ∪C,

where F0 and F1 are finite disjoint unions of open arcs and circles, C is a finite set of points,
and each point of C is adjacent to both F0 and F1. If both F0 and F1 are non-empty, then in
Theorem 2.3, we can find an excellent map f such that S(f) = J , F0 is the set of definite fold
singularities, F1 is the set of indefinite fold singularities, and C is the set of cusp singularities.

Remark 2.8. Let g : M → R
2 be an excellent map for which there exists a regular value y

such that g−1(y) coincides with L as a framed link. In the situation of Theorem 2.3, we see that
[J ]2 ∈ H1(M) is Poincaré dual to w2(M), which vanishes, by Remark 2.2. Then, we can apply
the modification techniques developed in [14] without touching L to obtain an excellent map
h : M → R

2 homotopic to g such that S(h) is isotopic to J in M . However, in order to obtain
an excellent map h′ such that S(h′) coincides with J , we need to further modify h. In such
a modification process, the regular fiber over y may change, since in the course of the isotopy,
the link may cross L. In §3, we will see that not every Z2 null-homologous link J in M can be
realized as above, depending on its position relative to L.

Generalizing our Theorem 2.3, we can also obtain the following, which can be proved by the
same argument. Details are left to the reader.

Theorem 2.9. Let M be a closed oriented 3–manifold and L1, L2, . . . , Lℓ, and J be disjoint

links in M . Suppose that L1, L2, . . . , Lℓ are oriented and null-cobordant framed links, and that

they bound disjoint compact oriented framed surfaces. Furthermore, J is an unoriented link.

Then, there exist an excellent map f : M → R
2 and distinct regular values y1, y2, . . . , yℓ ∈ R

2

of f such that f−1(yi) = Li as framed links for i = 1, 2, . . . , ℓ, and J = S(f) if and only if

[J ]2 ∈ H1(M r L) is Poincaré dual to w2(M,L), where L = L1 ∪ L2 ∪ · · · ∪ Lℓ.

For maps into S2, we have a similar result as follows. Recall that, for a closed oriented 3–
dimensional manifold M , the homotopy classes of M into S2 are in one-to-one correspondence
with the framed cobordism classes of closed oriented framed 1–dimensional submanifolds in M
by the Pontrjagin–Thom construction. For the classification of the homotopy set [M,S2] for a
closed oriented 3–manifold M , the reader is referred to [3].

Theorem 2.10. Let M be a closed oriented 3–manifold and fix a homotopy class of a map

g : M → S2. Let L be an oriented framed link in M which corresponds to the homotopy class of

g. Then, for an unoriented link J in MrL, there exist an excellent map f : M → S2 homotopic

to g and a regular value y ∈ S2 of f such that f−1(y) coincides with L as a framed link and

J = S(f) if and only if [J ]2 ∈ H1(M r L) is Poincaré dual to w2(M,L).

The proof of Theorem 2.10 is similar to that of Theorem 2.3 and is left to the reader. Note
that Theorem 2.3 corresponds to the case of a null-homotopic map g in Theorem 2.10 in a certain
sense.

3. Obstruction

In order to apply Theorem 2.3 in practical situations, let us study the obstruction class
w2(M,L) more in detail, where M is a closed oriented 3–manifold and L is a framed link in M .

As we saw in Remark 2.2, there exists an α ∈ H1(L) such that δ(α) = w2(M,L), although
such a cohomology class may not be unique. In fact, such an α can be explicitly given as follows.
Set L = L1 ∪ L2 ∪ · · · ∪ Lt, where Ls are the components of L, s = 1, 2, . . . , t. It is known that
a closed oriented 3–manifold M is always parallelizable, i.e. its tangent bundle is trivial. Let
us fix a framing τ of M , where τ can be identified with a trivialization of the tangent bundle
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TM . Once such a framing τ is fixed, we can compare it with the specific framing given on each
component Ls of the framed link L. This defines a well-defined element as in π1(SO(3)) ∼= Z2.
Then, we have the following.

Lemma 3.1. Let α ∈ H1(L) be the unique cohomology class such that the Kronecker product

〈α, [Ls]2〉 ∈ Z2 coincides with as for each component Ls of L. Then, we have δ(α) = w2(M,L).

Proof. For each component Ls, let Ks be the boundary of a small meridian disk D2
s of Ls. We

may assume that Ks is contained in M rN(L). Then, by using τ , we can extend the framing
over ∂N(L) given by the framed link L to

(M r IntN(L))r
(

∪t
s=1Ks

)

.

If as = 0, then this framing further extends across Ks: otherwise, it does not. Therefore,
w2(M,L) is Poincaré dual to the sum of those [Ks]2 such that as 6= 0.

Let us consider the commutative diagram

H1(L)
δ

−−−−→ H2(M,L)

p





y

q





y

H2(M,M r L)
∂

−−−−→ H1(M r L),

where the first (or the second) row is a part of the cohomology (resp. homology) exact sequence
for the pair (M,L) (resp. (M,M r L)), and the vertical maps are the duality isomorphisms.
By the construction of α, we see that p(α) is represented by the sum of those [D2

s , ∂D
2
s ]2 such

that as 6= 0, where [D2
s , ∂D

2
s ]2 ∈ H2(M,M r L) is the Z2–homology class represented by the

pair (D2
s , ∂D

2
s). Since ∂[D2

s , ∂D
2
s]2 = [Ks]2 ∈ H1(M rL), we have the desired conclusion by the

commutativity of the diagram. �

For example, if the framing on L coincides with τ up to homotopy, then α = 0 and conse-
quently we have w2(M,L) = 0.

Note that the framing τ may not be unique. The set of homotopy classes of such framings
is in one-to-one correspondence with the homotopy set [M,SO(3)]. If we consider the set of
homotopy classes of framings on the 2–skeleton of M , then each such framing up to homotopy
defines a spin structure on M , and the set of spin structures is in one-to-one correspondence
with H1(M) (see [11]).

By the cohomology exact sequence,

H1(M)
i∗

−−−−→H1(L)
δ

−−−−→H2(M,L)
j∗

−−−−→H2(M),

we see that for every element β ∈ Im i∗, we could choose α + β instead of α, where i : L → M
is the inclusion map. The observation in the previous paragraph shows that this corresponds to
choosing another framing, say τ ′, which is “twisted along β”.

Remark 3.2. As we saw in Remark 2.2, w2(M,L) is in the kernel of

j∗ : H2(M,L)−−−−→H2(M),

which coincides with Im δ ∼= H1(L)/ Im i∗. Note that if L is framed null-cobordant, then this
latter group is non-trivial, since L bounds a compact surface in M and hence [L]2 = 0 in H1(M).

If we change the framing of a component Ls of L, then w2(M,L) changes in general. The
difference is described by δ[Ls]

∗
2, where [Ls]

∗
2 is the dual to the homology class [Ls]2 ∈ H1(L)

represented by Ls with respect to the basis of H1(L) consisting of the homology classes repre-
sented by the components of L. This follows from the observation described in [7, pp. 520–521].
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(However, we need to be careful, since if we change the framing of Ls, then the resulting framed
link may not be framed null-cobordant any more.)

Remark 3.3. Let L be an oriented link in a closed oriented 3–manifold M . Then, we can
easily show that it bounds a compact oriented surface in M if and only if L represents zero in
H1(M ;Z).

In order to apply Theorem 2.3 in practical situations, we have the following proposition which
helps to identify the obstruction w2(M,L).

Proposition 3.4. Let L be an oriented framed link which bounds a compact oriented surface V
consistent with the framing. Let α ∈ H1(L) be an element such that δ(α) = w2(M,L). Then,

we have

〈w2(M,L), [V, ∂V ]2〉 = 〈δ(α), [V, ∂V ]2〉

= 〈α, [L]2〉

≡ χ(V ) (mod 2)

≡ ♯L (mod 2),

where 〈· , ·〉 is the Kronecker product, [V, ∂V ]2 ∈ H2(M,L) is the fundamental class of V in

Z2–coefficients, χ(V ) denotes the Euler characteristic of V , and ♯L denotes the number of com-

ponents of L.

The above proposition is similar to the Poincaré–Hopf theorem for vector fields. It can be
proved by decomposing V into simplices, and by computing the contribution of each simplex.
We omit the details.

The above proposition can also be proved as follows. First, we construct an excellent map
f : M → R

2 such that for a regular value y, f−1(y) coincides with L as a framed link and that for
a half line ℓ emanating from y in R

2 transverse to f , we have f−1(ℓ) = V . Such an excellent map
is constructed in [13]. Then, the map f |V : V → ℓ is a Morse function and its number of critical
points coincides with the number of intersection points of V and S(f). As [S(f)]2 is Poincaré
dual to w2(M,L), we see that this number modulo 2 coincides with 〈w2(M,L), [V, ∂V ]2〉. Since
the number of critical points of the Morse function is congruent modulo 2 to χ(V ), we get the
result. The congruence χ(V ) ≡ ♯L (mod 2) is obvious, since V is a compact orientable surface
and ∂V = L.

Remark 3.5. The above proposition shows the following. If f : M → R
2 is an excellent map and

y ∈ R
2 is a regular value such that L = f−1(y) has an odd number of components, then every

compact oriented surface V in M bounded by L compatible with the framing of L intersects
with S(f). If H1(M) = 0, then this implies that the Z2 linking number of L and S(f) in M does
not vanish. Thus, in this case, the regular fiber L necessarily links with S(f) (see Fig. 8). In
particular, if a regular fiber is connected, then it is necessarily linked with at least one component
of S(f).

Let us now consider the case of a local knot component. Suppose that the oriented framed
link L contains a component K that lies in the interior of a closed 3–disk D embedded in M .
Set U = IntD, which is an open set of M diffeomorphic to R

3. In the following, let us identify
U with R

3. In this case, up to homotopy, we may assume that the framing τ for M over U is
given by the standard framing of R3.

Let π : R3 → H be the orthogonal projection onto a generic hyperplane H ∼= R
2 in the sense

that π|K is an immersion with normal crossings. On the other hand, we may assume that the
first vector field defining the framing τ over K is tangent to K consistent with the orientation.
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V = f−1(ℓ)
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y

Figure 8. Regular fiber with an odd number of components links with the
singular point set.

Since π|K is an immersion, we may assume that at each point x of K the remaining two vector
fields give a basis for a 2–plane Nx ⊂ TxR

3 transverse to TxK containing the direction H⊥

perpendicular to H . Then, we count the number of times modulo 2 the 2–framing rotates in Nx

with respect to a fixed positive direction of H⊥ while x ∈ K goes around K once. This number
is denoted by tv(K), which is an element in Z2. Then, we have the following.

Lemma 3.6. Let α ∈ H1(L) be an arbitrary element such that δ(α) = w2(M,L). Then, we have

〈α, [K]2〉 ≡ tv(K) + c(K) + 1 (mod 2),

where c(K) denotes the number of crossings of the immersion π|K : K → H with normal

crossings.

Proof. Since the framing τ is standard on U = R
3, in order for the obstruction to vanish on K,

we need to have that the winding number of π(K) on H is even as long as tv(K) = 0. On the
other hand, by [17], we have that the winding number has the same parity as c(K)+1. Thus,
by the observation in [7, pp. 520–521], we have the conclusion. �

4. Examples

In this section, we give some explicit examples which imply that the answer to the problem
posed in §1 for closed oriented 3–manifolds is negative in general.

Example 4.1. Let L be a 2–component framed link h−1({y1, y2}) in S3 that consists of two
framed fibers of the positive Hopf fibration h : S3 → S2, for y1 6= y2 in S2, where we reverse
the orientation of one of the components and the framings are induced by h. By taking the
inverse image h−1(a) of an embedded arc a in S2 connecting y1 and y2, we see that L is framed
null-cobordant (see Fig. 9). By Lemma 3.6, we have that w2(S

3, L) vanishes. This can also be
proved as follows. Let us take two distinct points p1, p2 ∈ S2

r {y1, y2}. Since S2
r {p1, p2} is
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LS3
S2

y1 y2

a

h

Figure 9. Framed Hopf link which is null-cobordant

diffeomorphic to an open annulus S1×(−1, 1), it has a 2–framing. By pulling back this 2–framing
by the Hopf fibration h, we see that the framing of TS3|L naturally extends to S3

rh−1({p1, p2}).
This means that w2(S

3, L) is Poincaré dual to h−1({p1, p2}). Since

[h−1(p1)]2 = [h−1(p2)]2 ∈ H1(S
3
r L),

we see that w2(S
3, L) vanishes.

Therefore, by Theorem 2.3, an arbitrary link J split from L can be realized as the singular
point set of an excellent map S3 → R

2 with L a framed regular fiber, since [J ]2 = 0 is Poincaré
dual to w2(S

3, L) = 0. In this example, the components of the regular fiber L do not link with
the singular point set!

Note that L has an even number of components. This is consistent with the observation given
in Remark 3.5.

Let M be an arbitrary closed oriented 3–manifold. By considering the above 2–component
link L as embedded in R

3 ⊂ S3 and by embedding it to M , we get the same result for M as well.
This gives counter examples to the question presented in §1 for closed oriented 3–manifolds.

We will give two explicit examples of excellent maps on S3 which give counter examples.

Example 4.2. Let h : S3 → S2 be the (positive) Hopf fibration. Let pN = (0, 0, 1) and
pS = (0, 0,−1) be the north and the south poles of S2, respectively, where we identify S2 with
the unit sphere in R

3. We decompose S2 as S2 = DN ∪DS ∪ A, where DN (or DS) is a small
2–disk neighborhood of pN (resp. pS) in S2 with DN ∩DS = ∅, and A is the annulus obtained
as the closure of S2

r (DN ∪DS).
Note that the fibration h is trivial on each of DN , DS and A. Let us fix a trivialization

(4.1) h−1(A) = S1 ×A = S1 × ([−1, 1]× S1) = (S1 × [−1, 1])× S1,

where we identify A with [−1, 1]×S1 so that {1}×S1 (or {−1}×S1) coincides with ∂DN (resp.
∂DS). We take the trivialization of h−1(A) in such a way that it extends to a trivialization of h
over DN ∪ A. Note that in (4.1), the first S1–factor corresponds to the fibers of h and the last
S1–factor corresponds to the equatorial direction of S2 in the target.

Let k : S1 × [−1, 1] → [1,∞) be a Morse function such that

(1) k−1(1) = S1 × {−1, 1},
(2) k has no critical point in a small neighborhood of S1 × {−1, 1},
(3) k has exactly two critical points in such a way that one of them has index 1 and the

other has index 2.

Using the above ingredients, let us now construct an excellent map f : S3 → R
2 as follows.

On h−1(DN ) (or on h−1(DS)), we define f = iN ◦ h (resp. f = iS ◦ h), where iN : DN → R
2
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h−1(pN )

h−1(pN )

h−1(pS)

S0(f)

S1(f)

h−1([−1,−ε]× {t})
h−1({0} × S1)

Figure 10. Framed regular fiber and the singular point set of the excellent
map f : S3 → R

2 in Example 4.2

(resp. iS : DS → R
2) is an orientation preserving (resp. reversing) embedding onto the unit disk

in R
2 such that iN (pN ) = iS(pS) coincides with the origin 0. Furthermore, we choose iN and

iS such that for each t ∈ S1, iN (1, t) = iS(−1, t) holds for (1, t) and (−1, t) ∈ [−1, 1]× S1 = A.
On h−1(A) = (S1 × [−1, 1]) × S1, we define f by f(x, t) = η(k(x), t) for x ∈ S1 × [−1, 1] and
t ∈ S1, where η : [1,∞) × S1 → R

2 is an embedding such that its image is the complement of
the open unit disk in R

2 and that η({1} × S1) coincides with the unit circle in R
2. We choose

η consistently with iN and iS , i.e. we require the condition that η(1, t) = iN (1, t) = iS(−1, t) for
every t ∈ S1. Then, the map f : S3 → R

2 thus constructed is well-defined.
By modifying f near the attached tori h−1(∂DN ∪ ∂DS) appropriately, we may assume that

f is a smooth excellent map. Furthermore, the origin 0 of R2 is a regular value and f−1(0) is
a framed regular fiber as in Example 4.1. Note that S(f) has two components: one consists of
definite fold singularities and the other of indefinite fold singularities.

The situation is as depicted in Fig. 10. The torus in the top figure represents h−1({0}×S1) for
{0}×S1 ⊂ [−1, 1]×S1 = A, and it separates the regular fiber components h−1(pN ) and h−1(pS)
of f . The annulus depicts h−1([−1,−ε]×{t}) for some small ε > 0 and for some t ∈ S1. We may
assume that the critical points of k on h−1([−1, 1]×{t}) are contained in h−1([−1,−ε]×{t}). As
t varies in S1 in the positive direction, the annulus rotates as depicted in that figure. Therefore,
the critical points of k on the annulus sweep out a 2–component link S(f) = S0(f) ∪ S1(f) as
depicted in the bottom figure, where S0(f) (or S1(f)) is the set of definite (resp. indefinite) fold
singularities of f .

In this example, the regular fiber component h−1(pS) of f does not link with S(f).

Example 4.3. We have yet another example g : S3 → R
2 constructed as follows. In the

following, we use the same notations as in Example 4.2. We define g on h−1(DN ∪ DS) in
exactly the same way as f . On the other hand, we replace f on h−1(A) with the map F defined
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t1

t2

t3

t4

α

α

α

γ

γ

γ

β

β

β

δ

δ

δ

ε ζ

birth of β and δ

death of α and γ

Figure 11. Level sets of kt : S
1× [−1, 1] → [1,∞) for t = t1, t2, t3 and t4 ∈ S1,

which correspond to those in Fig. 12.

by F (x, t) = η(kt(x), t) for x ∈ S1 × [−1, 1] and t ∈ S1, where η : [1,∞) × S1 → R
2 is the

embedding as in the above example, and kt : S1 × [−1, 1] → [1,∞), t ∈ S1, is a generic 1–
parameter family of functions on the annulus whose level sets are as depicted in Fig. 11, where
the green circles depict the boundary components of the annulus and correspond to the level set
k−1
t (1). Note that for t ∈ S1, kt is a Morse function, except for two values where a birth or a

death of a pair of critical points occurs. In the figure, the red points depict critical points of
index 2 and the black ones of index 1. The singular value set of F is as depicted in Fig. 12, and
the critical points in Fig. 11 correspond to the curves α, β, γ, δ, ε and ζ in Fig. 12.

In this way, we get an excellent map g : S3 → R
2 with exactly two cusp singularities such

that S(g) consists of a circle. Furthermore, we see that S(g) bounds a 2–disk in S3 disjoint
from the regular fiber g−1(0). Such a disk can be found by tracing the brown curves in Fig. 11.
Therefore, S(g) is an unknotted circle in S3 and is split from the regular fiber over the origin 0.
This again gives a desired counter example.

Remark 4.4. The above examples show that the answer to the following question (see §1) is,
in general, negative for excellent maps of S3 into R

2: must every component of a regular fiber

be linked by at least one component of the singular point set ?

Remark 4.5. Let f : M → R
2 be an excellent map of a closed oriented 3–manifold M . We

assume that f is C∞ stable, i.e. f |S(f) satisfies certain transversality conditions (for details,
see [5, 10]). Such a C∞ stable map f is simple if it has no cusp singularities and for every



LINKING BETWEEN SINGULAR LOCUS AND REGULAR FIBERS 247

t1

t2

t3

t4

α

α

γ

β

β

δεζ

Figure 12. Singular value set of F , where the green circle in the center corre-
sponds to the image of η({1} × S1), the red curve corresponds to the image of
the definite fold singularities, and the black one to the image of the indefinite
fold singularities. The values t1, t2, t3 and t4 ∈ S1 correspond to those in Fig. 11.

y ∈ f(S(f)), each component of f−1(y) contains at most one singular point. In this case, by
[15], regular fibers, the singular point set, or their unions are all graph links: i.e. their exteriors
are unions of circle bundles over surfaces attached along their torus boundaries. The realization
problem of graph links as regular fibers or the singular point set has been addressed in [15]. See
also [12].

5. Maps of R
3 into R

2

Let us consider the following problem (see §1 and Remark 4.4).

Problem 5.1. For a generic map f : R3 → R
2, must every component of a regular fiber be

linked by at least one component of the singular point set S(f) ?

In order to answer negatively to the above problem, we use the following theorem which is
due to Hector and Peralta-Salas [6].

Theorem 5.2 (Hector and Peralta-Salas, 2012). Let L = L1∪L2∪· · ·∪Lµ ⊂ R
3 be an oriented

link. Then, there exist a submersion f : R
3 → R

2 and a regular value y ∈ R
2 such that

f−1(y) = L if and only if for all i with 1 ≤ i ≤ µ, we have
∑

j 6=i

lk(Li, Lj) ≡ 1 (mod 2),

where lk denotes the linking number.

Now, let L be a link that satisfies the condition as described in Theorem 5.2 (for example,
a Hopf link). Then, there exist a submersion f : R3 → R

2 and a regular value y ∈ R
2 with

L = f−1(y).
Take a point p ∈ R

3
r L and its small 3–disk neighborhood N(p) ⊂ R

3
r L. Then, we can

deform f in N(p) so that the resulting map g : R3 → R
2 is excellent and S(g) is an unknotted

circle in N(p) (use the move called “lip” or “birth”. See [14, Lemma 3.1]). Then, no component
of L = g−1(y) links with S(g).
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This gives a negative answer to Problem 5.1.
We finish this paper by posing some open problems.

Problem 5.3. Can we generalize Theorem 2.3 for generic maps f : M → R
2 for closed non-

orientable 3–manifolds? How about generic maps of general closed n–dimensional manifolds into
R

p with n > p > 1 ?
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