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Abstract. Any ruled surface in R3 is described as a curve of unit dual vectors in the algebra

of dual quaternions (=the even Clifford algebra C`+(0, 3, 1)). Combining this classical frame-
work and A-classification theory of C∞ map-germs (R2, 0) → (R3, 0), we characterize local

diffeomorphic types of singular ruled surfaces in terms of geometric invariants. In particular,

using a theorem of G. Ishikawa, we show that local topological type of singular developable
surfaces is completely determined by vanishing order of the dual torsion τ̌ , that generalizes an

old result of D. Mond for tangent developables of non-singular space curves. This work sug-

gests that Geometric Algebra would be useful for studying singularities of geometric objects
in classical Klein geometries.

1. Introduction

A ruled surface in Euclidean space R3 is a surface formed by a 1-parameter family of straight
lines, called rulings; at least partly, it admits a parametrization of the form F (s, t) = r(s)+te(s)
with |e(s)| = 1, s ∈ I, t ∈ R, where I is an open interval. A developable surface is a ruled surface
which is locally planar (i.e. the Gaussian curvature is constantly zero). The parametrization
map F : I × R → R3 may be singular at some point (s0, t0), that is, the differential dF (s0, t0)
may have rank one, and then the surface (= the image of F ) has a particularly singular shape
around that point. In this paper, we study local diffeomorphic types of the singular surface and
its bifurcations (see Fig.1). All maps and manifolds are assumed to be of class C∞ throughout.

The main feature of this paper is to combine classical line geometry using dual quaternions
[2, 3, 17, 21] and A-classification theory of singularities of (frontal) maps R2 → R3 [15, 5, 9, 8].
Here A denotes a natural equivalence relation in singularity theory of C∞ maps; two map-germs
f, g : (R2, 0)→ (R3, 0) are A-equivalent if there exist diffeomorphism-germs σ : (R2, 0)→ (R2, 0)
and ϕ : (R3, 0)→ (R3, 0) such that g = ϕ ◦ f ◦ σ−1. We simply say the A-type of a map-germ to
mean its A-equivalence class. As a weaker notion, topological A-equivalence is defined by taking
σ and ϕ to be homeomorphism-germs. We also use the A-equivalence with the target changes
being rotations ϕ ∈ SO(3), which is called rigid equivalence throughout the present paper. Our
aim is to classify germs of parametrization maps F of ruled surfaces in R3 up to A-equivalence
and rigid equivalence.

1.1. Ruled surfaces. Geometric Algebra is a neat tool for studying motions in classical geom-
etry; in case of Euclidean 3-space, it is the algebra of dual quaternions (e.g. Selig [21]). As an
application, any ruled surface in R3 is described as a curve of unit dual vectors

v̌ : I → Ǔ ⊂ D3, v̌(s) = v0(s) + εv1(s).
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Figure 1. Deforming Mond’s H2-singularity via a family of ruled surfaces: the sur-
face has two crosscaps and one triple point.

Here D = R⊕ εR with ε2 = 0 is the R-algebra of dual numbers, and D3 = R3 ⊕ εR3 is the space
of dual vectors, and especially, the space of unit dual vectors is given by

Ǔ := {v̌ = v0 + εv1 ∈ D3, |v0| = 1, v0 · v1 = 0},

which is a 4-dimensional submanifold in the 6-dimensional space D3. Obviously, Ǔ is diffeomor-
phic to the total space of the (co)tangent bundle TS2. It is naturally identified with the space of
oriented lines in R3, by assigning to a unit dual vector v̌ an oriented line v0 × v1 + tv0 (t ∈ R),
see §2.1 for the detail. In our context, as the space of ruled surfaces in R3, we consider the space
C∞(I, Ǔ) of all smooth curves in Ǔ endowed with the Whintey C∞-topology.

Assume that our ruled surface is non-cylindrical, i.e., v′0(s) 6= 0 for any s ∈ I, then the curve
v̌ admits the Frenet formula in D3 with complete differential invariants, the dual curvature and
the dual torsion

κ̌(s) = κ0(s) + εκ1(s), τ̌(s) = τ0(s) + ετ1(s) ∈ D.
Here we may take s to be the arclength of the spherical curve v0(s), that is equivalent to
κ0(s) ≡ 1, thus three real functions κ1, τ0, τ1 are essential. In particular, κ1(s0) = 0 if and only
if F is singular at (s0, t0) for some t0; such t0 is unique (Lemma 2.3).

We determine which A-types of singular germs (R2, 0) → (R3, 0) appear in generic families
of ruled surfaces. Assume that F is singular at (s0, t0) = (0, 0) and F (0, 0) = 0, after taking
parallel translations if needed. From the dual Bouquet formula of v̌ at s = 0 in D3, we derive
a canonical Taylor expansion of parameterization map F (§3.2), where o(n) denotes Landau’s
notation of function-germs of order greater than n:

x = t− 1
2 ts

2 + τ1(0)
2 s3 + o(3),

y = ts− τ1(0)
2 s2 − 2τ0(0)κ

′
1(0)+τ

′
1(0)

6 s3 + o(3),

z =
κ′
1(0)
2 s2 + τ0(0)

2 ts2 +
κ′′
1 (0)−2τ0(0)τ1(0)

6 s3 + o(3).

Then we apply to the jet of F the criteria for detecting A-types of map-germs in Mond [14, 15].

Theorem 1.1. The A-classification of singularities of F arising in generic at most 3-parameter
families of non-cylindrical ruled surfaces is given as in Table 1; in particular, for each A-type in
that table, the canonical expansion with the described condition is regarded as a normal form of
the jet of ruled surface-germ under rigid equivalence.
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normal form ` cond. at s = s0 (with κ1(s0) = 0)

S0 (x, y2, xy) 2 κ′1 6= 0

S±1 (x, y2, y3 ± x2y) 3 κ′1 = 0, τ1 6= 0, κ′′1(κ′′1 − 2τ0τ1) ≷ 0

S2 (x, y2, y3 + x3y) 4 κ′1 = κ′′1 = 0, κ
(3)
1 τ0τ1 6= 0

B±2 (x, y2, x2y ± y5) κ′1 = 0, κ′′1 = 2τ0τ1 6= 0, b2 ≷ 0
H2 (x, xy + y5, y3) κ′1 = τ1 = 0, κ′′1 6= 0, h2 6= 0

S±3 (x, y2, y3 ± x4y) 5 κ′1 = κ′′1 = κ
(3)
1 = 0, κ

(4)
1 τ0τ1 ≷ 0

C±3 (x, y2, xy3 ± x3y) κ′1 = κ′′1 = τ0 = 0, τ1 6= 0, κ
(3)
1 (κ

(3)
1 − 2τ ′0τ1) ≷ 0

B±3 (x, y2, x2y ± y7) κ′1 = 0, κ′′1 = 2τ0τ1 6= 0, b2 = 0, b3 ≷ 0
H3 (x, xy + y7, y3) κ′1 = τ1 = 0, κ′′1 6= 0, h2 = 0, h3 6= 0

P3
(x, xy + y3,

xy2 + p4y
4)

κ′1 = κ′′1 = τ1 = 0, τ0τ
′
1 6= 0, p4 6= 0, 1, 12 ,

3
2 .

Table 1. A-types of singularities of ruled surfaces. Assume that κ1(s0) = 0,
then F is singular at a unique point lying on the ruling corresponding to s0.
This table characterizes the A-type of the germ of F at that point. Here,
κ′1, κ

′′
1 , · · · denote derivatives at s = s0 for short, e.g. κ′1 means d

dsκ1(s0), and
b2, b3, h2, h3, p4 are some polynomials of those derivatives (see §3.2). The letters
≶,≷,± are in the same order. In the second column, ` means A-codimension
of the map-germ.

Precisely saying, via a variant of Thom’s transversality theorem (§3.3), we show that there
exists a dense subset O in the mapping space RW consisting of families of non-cylindrical
v̌ : I ×W → Ǔ with parameter space W of dimension ≤ 3 so that for any family belonging to O
and for any λ ∈ W , the germ of the corresponding paramatrization map F (−, λ) : I × R → R3

at every point (s0, t0) is A-equivalent to either an immersion-germ or one of the singular germs
in Table 1.

Obviously, normal forms under rigid equivalence have functional moduli: those are nothing
but κ1(s), τ0(s) and τ1(s) satisfying the prescribed condition on derivatives at s = s0.

Remark 1.2. (Realization) Izumiya-Takeuchi [10] firstly proved in a rigorous way that a
generic singularity of ruled surfaces is only of type crosscap S0, and Martins and Nuño-Ballesteros
[13] showed that any A-simple map-germ (R2, 0)→ (R3, 0) is A-equivalent to a germ of ruled sur-
face. By our theorem, A-types which are not realized by ruled surfaces must have A-codimension
≥ 6. This is sharp: for example, the 3-jet (x, y3, x2y), over which there are A-orbits of codi-
mension 6, is never A3-equivalent to 3-jets of any non-cylindrical nor cylindrical ruled surfaces
(Remark 3.3). The realizability of versal families of A-types via families of ruled surfaces can
also be verified: for each germ in Table 1, an Ae-versal deformation is obtained via deforming
three invariants κ1, τ0, τ1 appropriately (Remark 3.4).

Remark 1.3. (Conformal GA) Our approach would be applicable to other Clifford alge-
bras and corresponding geometries. For instance, Izumiya-Saji-Takahashi [9] classified local
singularities of horospherical flat surfaces in Lorentzian space (conformal spherical geometry); a
horospherical surface is described by a curve in the Lie algebra so(3, 1). Conformal Geometric
Algebra may fit with this setting as well and our approach should work.

Remark 1.4. (Framed curves) Take the space of dual vectors D3 instead of Ǔ. A curve I → D3

corresponds to a framed curve, which describes a 1-parameter family of Euclidean motions of R3;
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normal form ` cond. at s = s0

cE (x, y2, y3) 1 τ0 6= 0, τ1 6= 0
cS0 (x, y2, xy3) 2 τ1 6= 0, τ0 = 0, τ ′0 6= 0
cS+

1 (x, y2, y3(x2 + y2)) 3 τ1 6= 0, τ0 = τ ′0 = 0, τ ′′0 6= 0
cC+

3 (x, y2, y3(x3 + xy2)) 4 τ1 6= 0, τ0 = τ ′0 = τ ′′0 = 0, τ ′′′0 6= 0
Sw (x, xy + 2y3, xy2 + 3y4) 2 τ0 6= 0, τ1 = 0, τ ′1 6= 0
cA4 (x, xy + 5

2y
4, xy2 + 4y5) 3 τ0 6= 0, τ1 = τ ′1 = 0, τ ′′1 6= 0

cA5 (x, xy + 3y5, xy2 + 5y6)† 4 τ0 6= 0, τ1 = τ ′1 = τ ′′1 = 0, τ ′′′1 6= 0
T1 (x, xy + y3, 0) + o(3) 3 τ0 = τ1 = 0, τ ′1 6= 0
T2 (x, xy, 0) + o(3) 4 τ0 = τ1 = τ ′1 = 0

Table 2. A-types of singularities of developable surfaces. An exception is the
type cA5; the condition implies that the germ is topologically A-equivalent to the
normal form † (in this case, the striction curve σ is topologically determinative
in the sense of Ishikawa [5]).

various geometric aspects of framed curves have recently been studied by e.g. Honda-Takahashi
[4]. Since the dual Frenet formula is available for regular framed curves, we may rebuild the
theory by using dual quaternions. That would be useful for singularity analysis in several topics
of applied mathematics such as 3D-interpolation via ruled/developable surfaces, 1-parameter
motions of axes in robotics, and so on (cf. [17, 21]).

1.2. Developable surfaces. For a non-cylindrical ruled surface, it is developable (the Gaussian
curvature is constantly zero) if and only if κ1 = 0 identically, see §2. Thus two real functions
τ0, τ1 are complete invariants of such developables. Izumiya-Takeuchi [10] classified generic
singularities of developable surfaces rigorously, and Kurokawa [12] treated a similar task for 1-
parameter families of developables. We generalize their results systematically using the complete
invariants.

Theorem 1.5. The A-classification of singularities of F arising in generic at most 2-parameter
families of non-cylindrical developable surfaces is given as in Table 2; in particular, for each A-
type in that table, the canonical expansion with the described condition is regarded as a normal
form of the jet of developable-germ under rigid equivalence.

Remark 1.6. (Realization) In our classification process §4.1, we see that non-cylindrical de-
velopables do not admit A-types

cS−1 : (x, y2, y3(x2 − y2)) nor cC−3 : (x, y2, y3(x3 − xy2))

(for the former, it was shown in [12]), while cS+
1 and cC+

3 appear. Furthermore, τ1 6= 0 and
τ0 = τ ′0 = τ ′′0 = 0 if and only if the 5-jet of F is equivalent to (x, y2, 0), and thus, for instance,
we see that frontal singularities of cuspidal S and B-types

cS∗ : (x, y2, y3(y2 + h(x, y2))), cB∗ : (x, y2, y3(x2 + h(x, y2)))

(h(x, y2) = o(2)) never appear in our developable surfaces. Similarly, since τ1 = 0 if and only if
the 2-jet is reduced to (x, xy, 0), wavefronts of cuspidal beaks/lips type A±3 and purse/pyramid
types Dk never appear. Indeed, their 2-jets are equivalent to (x, 0, 0) and (x2 ± y2, xy, 0) re-
spectively (it is obvious to see no appearance of Dk, for the corank of our maps F is at most
one).
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A non-cylindrical developable surface, which is not a cone, is re-parametrized as the tangent
developable of the striction curve σ(s) (Lemma 2.4). Here σ(s) may be singular; recall that for
a possibly singular space curve, its tangent developable is defined by the closure of the union of
tangent lines at smooth points; indeed, it is a frontal surface, see §2.4 (cf. Ishikawa [6]). A space
curve-germ is said to be of type (m,m+ `,m+ `+ r) if it is A-equivalent to the germ

x = sm + o(m), y = sm+` + o(m+ `), z = sm+`+r + o(m+ `+ r)

(the curve is said to be of finite type if m,n, ` < ∞). A type of curve-germ is called smoothly
determinative (resp. topologically determinative) if it determines the A-type (resp. topological
A-type) of the tangent developable. Ishikawa [5, 6] gave the following complete characterization
(Mond [16] for the case of m = 1, i.e. smooth curves):

(i) smoothly determinative types are only (1, 2, 2+r), (2, 3, 4), (1, 3, 4), (3, 4, 5) and (1, 3, 5);
(ii) (m,m+ `,m+ `+ r) is topologically determinative if and only if ` or r is odd, or m = 1

and `, r are both even.

Using this result, we obtain a complete topological A-classification of singularities of non-
cylindrical developable surfaces:

Theorem 1.7. (Topological classification) For a non-cylindrical developable surface, the
germ of its striction curve σ(s) at s = s0 has the type

(m,m+ 1,m+ 1 + r),

where m− 1 and r − 1 are orders of τ1 and τ0 at s = s0, respectively, i.e.,

τ1 = τ ′1 = · · · = τ
(m−2)
1 = τ0 = τ ′0 = · · · = τ

(r−2)
0 = 0,

τ
(m−1)
1 τ

(r−1)
0 6= 0.

In particular, topological A-types of the germ of F at singular points are completely determined
by orders of the dual torsion τ̌ = τ0 + ετ1.

Remark 1.8. Theorem 1.7 is regarded as the dual version of a result of Mond [16] and Ishikawa
[5]: A-type of the tangent developable of a non-singular space curve σ with non-zero curvature
is determined by the vanishing order of its torsion function. This is the case that σ is of type
(1, 2, 2 + r), and then the torsion of σ has the same order of τ0 (Lemma 2.4). Note that in
our theorem above, σ(s) can be singular (i.e., m ≥ 2) and the non-zero curvature condition is
replaced by the non-cylindrical condition.

Remark 1.9. Table 2 is separated into three parts. One is the case of τ1(s0) 6= 0; they are the
tangent developables of non-singular curves of type (1, 2, 2 + r), which are frontal singularities
as mentioned in Remark 1.8. The second is the case of τ0(s0) 6= 0; they are the tangent
developables of singular curves of types (2, 3, 4), (3, 4, 5) and (4, 5, 6), which are wavefronts – the
former two types are smoothly determinative, while the third one is topologically determinative,
by Ishikawa’s characterization. In the remaining part, types T0 and T1 are tangent developable
of curves of type (2, 3, 4 + r) (r ≥ 1). Tangent developables of curves of other types (e.g.,
(1, 3, 3 + r), (2, 4, 4 + r)) are cylindrical at s = s0.

Remark 1.10. Not only striction curves but also several other kind of characteristic curves
on a ruled surface can be discussed. For instance, flecnodal curves are important in projective
differential geometry of surfaces [11, 20].

The rest of this paper is organized as follows. In §2, we briefly review two main ingredients for
non-experts in each subject – the first is the algebra of dual quaternions, which is the most basic
Geometric Algebra, and the second is about useful criteria for detecting A-types in singularity
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theory of maps. In §3, we apply the A-criteria to the canonical Taylor expansion of F at singular
points and prove Theorem 1.1. In §4, we proceed to the case of developable surfaces and prove
Theorems 1.5 and 1.7.

This paper is based on the first author’s master thesis [22]. This work was supported by JSPS
KAKENHI Grant Numbers JP15K13452, JP17H0612818 and JP18K18714.

2. Preliminaries

Geometric Algebra is a new look at Clifford algebras, which is nowadays recognized as a very
neat tool for describing motions in Klein geometries in the context of a variety of applications
to physics, mechanics and computer vision. In §§2.1 and 2.2, we give a very quick summary on
the geometric algebra for 3-dimensional Euclidean motions and its application to the geometry
of ruled surfaces. A good compact reference is the nineth chapter of Selig’s textbook [21] (also
see [2, 10, 7, 17]).

In §§2.3 and 2.4, we briefly describe some basic notions in Singularity Theory, which will be
used in §§3 and 4. We deal with two classes of C∞ maps from a surface into R3; ordinary smooth
maps of corank at most one, i.e. dim ker df ≤ 1 (Mond [15]) and frontal maps (Ishikawa [5],
Izumiya-Saji [8]).

2.1. Dual quaternions. Let H denote the field of quaternions: q = a + bi + cj + dk. The
conjugate of q is q̄ = a − bi − cj − dk and the norm is given by |q| =

√
qq̄. Decompose H into

the real and the imaginary parts, H = R⊕ ImH, where one identifies bi+ cj + dk ∈ ImH with
v = (b, c, d)T ∈ R3 equipped with the standard inner and exterior products. We write q = a+v,
then the multiplication of H is written as

(a+ v)(b+ u) = (ab− v · u) + (au + bv + v × u).

The quaternionic unitary group

H1 = Sp(1) = {q ∈ H, |q| = 1}
is naturally isomorphic to SU(2), that doubly covers SO(3); indeed, ±q ∈ H1 defines the rotation
x 7→ qxq̄. The Lie algebra of H1 is just ImH = R3.

Put D = R[ε]/〈ε2〉, and call it the algebra of dual numbers. A dual number a+ εb is invertible
if a 6= 0, and it has a square root if a > 0. The R-algebra of dual quaternions is defined by

Ȟ := D4 = H⊗R D = { q̌ = q0 + εq1 | q0, q1 ∈ H }.
That is identified with the even Clifford algebra C`+(0, 3, 1) [21, §9.3]. The conjugate of q̌ is
defined by q̌∗ := q̄0+εq̄1, and then q̌q̌∗ = |q0|2+εRe[q1q̄0]. The Lie group of unit dual quaternions
is defined by

Ȟ1 := { q̌ ∈ Ȟ | q̌q̌∗ = 1 }.
This group is isomorphic to the semi-direct product H1 n ImH = Sp(1)nR3 via the correspon-
dance q̌ ↔ (q0, q1q̄0). Then, Ȟ1 doubly covers SE(3) = SO(3) n R3, the group of Euclidean
motions of R3; the action Θ̌ of Ȟ1 on x ∈ R3 is given by

1 + εΘ̌(q̌)x := q̌(1 + εx)q̌∗ = 1 + ε(q0xq̄0 + 2q1q̄0).

That is, q0 and 2q1q̄0 express a rotation and a parallel translation, respectively. The Lie algebra
of Ȟ1 is canonically identified with the space of dual vectors

D3 = ImH⊗R D, v̌ = v0 + εv1 (v0,v1 ∈ ImH = R3),

which is a D-submodule of Ȟ = D4. The standard inner and exterior products of R3 are extended
to D-bilinear operations on D3;

ǔ · v̌ := − 1
2 (ǔv̌ + v̌ǔ) ∈ D, ǔ× v̌ := 1

2 (ǔv̌ − v̌ǔ) ∈ D3.
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A unit dual vector means a dual vector v̌ ∈ D3 with v̌ · v̌ = 1, i.e., |v0| = 1 and v0 · v1 = 0 (it is
also called a 2-blade in the Clifford algebra C`(0, 3, 1) [21, §10.1]). Denote the set of unit dual
vectors by Ǔ, which is identified with the space of oriented lines in R3 in the following way:

oriented lines : v0 × v1 + tv0
1:1←→ unit dual vectors : v̌ = v0 + εv1.

This expression is very useful [21, §9.3]: for instance,

(i) a point a ∈ R3 lies on the line corresponding to a unit dual vector v0 + εv1 if and only
if a× v0 = v1;

(ii) two lines intersect perpendicularly if and only if the corresponding unit dual vectors ǔ
and v̌ satisfy that ǔ · v̌ = 0.

2.2. Ruled and developable surfaces. Using the identification just mentioned above, a ruled
surface is exactly described as a curve of unit dual vectors:

v̌ : I → Ǔ ⊂ D3, v̌(s) = v0(s) + εv1(s)

(I an open interval) with |v0(s)| = 1 and v0(s) · v1(s) = 0 (s ∈ I). Interpreting it as an object
in R3, we have a parametrization

F (s, t) = r(s) + te(s) (r = v0 × v1, e = v0).

Note that |e(s)| = 1 and r · e = 0. Let Rs denote the ruling defined by v̌(s) and put

R = R(v̌) :=
⋃
s∈I

Rs ⊂ R3.

Formally, v̌(s) looks like a D-version of the velocity vector of a space curve. That leads us to
define the curvature κ̌(s) of v̌ by

κ̌(s) = κ0(s) + εκ1(s) :=
√
v̌′(s) · v̌′(s) = |v′0|+ ε

v′0 · v′1
|v′0|

∈ D,

provided v̌ is non-cylindrical, i.e., v′0(s) 6= 0 (s ∈ I). Here ( )′ means d
ds . From now on, we

assume that
|v′0(s)| = 1

by taking s to be the arc-length of v0. Then, κ̌ = 1 + εv′0 · v′1 and thus κ̌−1 = 1− εv′0 · v′1. Put

ň(s) = n0(s) + εn1(s) := κ̌−1v̌′(s),

and
ť(s) = t0(s) + εt1(s) := v̌(s)× ň(s).

Then for every s ∈ I, three dual vectors v̌(s), ň(s) and ť(s) form a basis of the D-module
Im Ȟ = D3 satisfying

v̌ × ň = ť, ť× v̌ = ň, ň× ť = v̌,
v̌ · ň = ň · ť = ť · v̌ = 0, v̌ · v̌ = ň · ň = ť · ť = 1.

From these relations and the property (ii) of unit dual vectors mentioned before, we see that three
lines corresponding to unit dual vectors v̌, ň, ť meet at one point and are mutually perpendicular;
in particular, v0,n0, t0 forms an orthonormal basis of R3.

We define the torsion τ̌(s) of v̌ by

τ̌(s) = τ0(s) + ετ1(s) := ň′(s) · ť(s) ∈ D.
The following theorem is classical:

Theorem 2.1. (cf. Guggenheimmer [2, §8.2], Selig [21, §9.4]) Assume that s is the arc-length
of v0, i.e. κ0(s) = |v′0(s)| = 1.
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(1) (Frenet formula) It holds that

d

ds

[
v̌(s)
ň(s)
ť(s)

]
=

[
0 κ̌(s) 0

−κ̌(s) 0 τ̌(s)
0 −τ̌(s) 0

][
v̌(s)
ň(s)
ť(s)

]
.

(2) The dual curvature κ̌(s) and the dual torsion τ̌(s) are complete invariants of the ruled
surface R up to Euclidean motions. That is, for two curves v̌1 and v̌2, they have the same
invariants κ̌ and τ̌ if and only if ruled surfaces R(v̌1) and R(v̌2) in R3 are transformed
to each other by some Euclidean motion.

(3) R(v̌) is a developable surface (including a cone) if and only if κ1 = 0 identically. In
particular, τ0, τ1 are complete invariants of the developable surface.

The striction curve of a ruled surface R is the curve having minimal length which meets all
the rulings of R. Let F (s, t) = r(s) + te(s) be a canonical parametrization

(r · e = 0, |e| = |e′| = 1),

then the striction curve σ(s) is characterized by the equation σ′ · e′ = 0 (cf. [21, p.218],
[10, Lemma 2.1], [17, §5.3]). We then have the following:

Lemma 2.2. For a non-cylindrical ruled surface, it holds that

(1) σ(s) = r(s)− (r′(s) · e′(s))e(s),
(2) σ × v0 = v1, σ × n0 = n1 and σ × t0 = t1,
(3) σ′(s) = τ1(s)v0(s) + κ1(s)t0(s),
(4) κ1 = det(e, e′, r′), τ0 = det(e, e′, e′′), τ1 = σ′ · e.

From (2) and the property (i) of unit dual vectors in §2.1, it follows that σ(s) lies on each
of three lines corresponding to unit dual vectors v̌(s), ň(s), ť(s), that is, σ(s) is the locus of
the center of moving orthogonal frames. For completeness we prove the lemma, although it is
elementary.

Proof : It is easy to see (1) by differentiating σ(s) = r(s) + t(s)e(s). We show (2). First, by
ň · v̌ = 0, we see that n1 ·v0 = −v1 ·n0, and similarly n1 · t0 = −t1 ·n0. By the Frenet formula,
v′0 = n0, t′0 = −τ0n0, v′1 = κ1n0 + n1 and t′1 = −τ0n1 − τ1n0. Since r = v0 × v1 and e = v0,
it follows from (1) that

σ = −(t1 · n0)v0 − (v1 · t0)n0 − (n1 · v0)t0.

Thus σ×v0 = −(v1 · t0)n0×v0− (n1 ·v0)t0×v0 = (v1 · t0)t0 +(v1 ·n0)n0 = v1, for v1 ·v0 = 0.
That yields (2). Differentiating the first one of (2),

0 = (σ × v0)′ − v′1 = (σ′ × v0 + σ × n0)− (κ1n0 + n1) = σ′ × v0 − κ1n0

and similarly σ′× t0 + τ1n0 = 0. Substitute σ′ = av0 + bn0 + ct0 for those equalities, we obtain
a = τ1, b = 0, c = κ1, that is (3). Finally, (4) is easy, e.g., κ1 = v′0·v′1 = e′·(r′×e) = det(e, e′, r′).
�

Lemma 2.3. (cf. Izumiya et al [10, Lemma 2.2], [7, §1]) For a non-cylindrical ruled surface,
F is singular at (s0, t0) if and only if κ1(s0) = 0 and t0 = −r′(s0) · e′(s0). The singular value
F (s0, t0) is the point σ(s0) where the curve σ(s) is tangent to the ruling Rs0 or σ′(s0) = 0.

Proof : ∂F
∂s (s0)× ∂F

∂t (s0) = (r′(s0) + t0e
′(s0))×e(s0) = 0⇔ r′(s0) = αe(s0)− t0e′(s0) for some

α 6= 0 ⇔ det(e(s0), e′(s0), r′(s0)) = 0 and t0 = −r′(s0) · e′(s0). The second claim follows from
(3) in Lemma 2.2. �
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In case of κ1 = 0 identically, Lemmas 2.2 and 2.3 imply that singular points of F form a
non-singular curve s 7→ (s,−r′(s) ·e′(s)) ∈ I×R and the image of this curve is just the striction
curve σ(s). Note that σ(s) is a non-singular space curve, if τ1 6= 0; especially, F is written by
σ(s) + t̃σ′(s) with t̃ = (t+ r′(s) · e′(s))/τ1.

Lemma 2.4. (Izumiya et al [7, §1]) A non-cylindrical developable surface, which is not a cone,
is re-parametrized as the tangent developable of the striction curve σ(s). The curve σ is non-
singular whenever τ1 6= 0, and then the curvature κσ and the torsion τσ of σ are given respectively
by

κσ =
|σ′ × σ′′|
|σ′|3

=
1

τ1
, τσ =

det(σ′, σ′′, σ′′′)

|σ′ × σ′′|2
=
τ0
τ1
.

2.3. A-classification of map-germs. A singular point of f : M → N between manifolds means
a point p ∈ M where dfp is neither injective nor surjective (then f(p) ∈ N is called a singular

value of f); we denote by S(f) ⊂ M the set of singular points of f . Two maps f̃ : U → N and
g̃ : V → N on neighborhoods U and V of p ∈ M define the same map-germ at p if there is a
neighborbood W ⊂ U ∩ V of p so that f̃ |W ≡ g̃|W ; a map-germ at p is an equivalence class of
maps under this relation, denoted by f : (M,p)→ (N, f(p)). Two map-germs at p have the same
k-jet if they have the same Taylor polynomials at p of order k in some local coordinates; a k-jet is
such an equivalence class of map-germs, denoted by jkf(p). Two germs f : (M,p)→ (N, q) and
g : (M ′, p′)→ (N ′, q′) are A-equivalent if they commute each other via diffeomorphism-germs σ
and τ :

(M,p)
f //

σ '
��

(N, q)

τ'
��

(M ′, p′)
g
// (N ′, q′)

For simplicity, we consider map-germs (Rm, 0) → (Rn, 0) and the A-equivalence by the action
of diffeomorphisms σ and τ preserving the origins. At the k-jet level, Ak-equivalence is defined.
A germ f : (Rm, 0) → (Rn, 0) is said to be k-A-determined if any germs g : (Rm, 0) → (Rn, 0)
with jkg(0) = jkf(0) is A-equivalent to f ; such germs are collectively referred to as finitely
A-determined germs. For instance, the germ (x, y2, xy) is 2-determined. Let Jk(m,n) be the
jet space consisting of all k jets of (Rm, 0)→ (Rn, 0), which is identified with the affine space of
Taylor coefficients of order r (1 ≤ r ≤ k) in a fixed system of local coordinates. The codimension
of the A-orbit of a germ f in the space of all map-germs (Rm, 0) → (Rn, 0) is called the A-
codimension of f ; the A-codimension of f is finite if and only if f is finitely A-determined (see
e.g. [1]).

Thanks to finite determinacy, the process of A-classification is reduced to a finite dimensional
problem: we stratify Jk(m,n) invariantly under the Ak-equivalence step by step from low order
k and low codimension. For instance, using several determinacy criteria, A-classification of map-
germs (R2, 0)→ (R3, 0) up to certain codimension has been established in Mond [14, 15]. In §3,
we will follow Mond’s classification process.

Furthermore, in Mond [14, 16], a special class of map-germs (R2, 0) → (R3, 0) is considered.
A map germ f : (R2, 0) → (R3, 0) is of class CE (i.e. cuspidal edge), if rank df(0) = 1 and the
singular point set S(f) is non-singular. A germ f in CE is k-A-determined in CE if any germ g
in CE with the same k-jet as jkf(0) is A-equivalent to f . In §4, we will use the following criteria
of determinacy in CE [16, Lem.1.1, Prop.1.2].
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Proposition 2.5 (Mond [16]). It holds that
i) If f ∈ CE and j2f(0) = (x, y2, 0), then f is A-equivalent to the germ

g(x, y) = (x, y2, y3p(x, y2))

for some smooth function p(u, v);
ii) f(x, y) = (x, y2, y3) is 3-determined in CE;
iii) f(x, y) = (x, y2, yp(x, y2)) and g(x, y) = (x, y2, yq(x, y2)) are A-equivalent if and only if

f̃(x, y) = (x, y2, y3p(x, y2)) and g̃(x, y) = (x, y2, y3q(x, y2)) are A-equivalent. In particular, f is

(k − 2)-determined if and only if f̃ is k-determined in CE.

2.4. Singularities of frontal surfaces. There is a special class of surfaces, called frontal sur-
faces. Let ST ∗R3 be the spherical cotangent bundle with respect to the standard metric of R3

equipped with the standard contact structure. Let U be an open set of R2. A map ι : U → ST ∗R3

is called isotropic if it satisfies that the image dι(TpU) is contained in the contact plane Kι(p) for

any p ∈ U . A frontal map is the composed map f = π ◦ ι : U → R3 of an isotropic map ι and the
projection π : ST ∗R3 → R3. The image (possibly singular) surface is called to be frontal. An
isotropic immersion ι is usually called a Lagrange immersion, and π ◦ ι and its image are called a
Lagrange map and a wavefront, respectively. Let f : U → R3 be a frontal map with ν : U → S2

so that ι = (f, ν) : U → ST ∗R3 = R3×S2 is an isotropic map. We identifies TR3 ' T ∗R3 using
the standard metric, then the unit vector ν is always orthogonal to the subspace df(TpU) at any

p ∈ U . Let x, y be coordinates of U and put λ(x, y) = det
[
∂f
∂x ,

∂f
∂y , ν

]
(x, y); then the singular

point set S(f) is defined by λ(x, y) = 0. If dλ(p) 6= 0, then p is called a non-degenerate singular
point. In particular, if p is non-degenerate and rank dfp = 1, the germ f at p is of class CE.

For a developable surface with e× e′ 6= 0, set f : U → R3 to be f(s, t) := r(s) + te(s). Then

f is a frontal map; in fact, it suffices to put ν = e × e′/|e × e′| (then ∂f
∂t · ν = e · ν = 0 and

∂f
∂s · ν = (r′ + te′) · ν = det(r′, e, e′) = 0). Note that any singularities of f are non-degenerate
and have corank one (see the comment before Lemma 2.4). There are two cases:

If ι = (f, ν) is singular, then it is easy to see that the 2-jet of f is A2-equivalent to (x, y2, 0),
and hence Mond’s criteria for map-germs of class CE (Proposition 2.5) can be applied.

If ι is non-singular, i.e. ι is a Legendre immersion, then the 2-jet is equivalent to (x, xy, 0),
and thus Proposition 2.5 is useless. In this case, we employ the Legendre singularity theory.
There are known useful criteria of [8] (precisely saying, the topological type cA5 is not dealt in
[8] but the same argument as in Appendix of [8] works as well):

Proposition 2.6. (Izumiya-Saji [8, Theorem 8.1]) Let f : U → R3 be a Legendre map, and p
a non-degenerate singular point with rank dfp = 1. Let η be an arbitrary vector field around p so
that η(q) spans ker dfq at any q ∈ S(f). Then f is A-equivalent to cE, Sw, cA4 or cA5 if the
following condition holds:

cE ηλ(p) 6= 0,
Sw ηλ(p) = 0, ηηλ(p) 6= 0,
cA4 ηλ(p) = ηηλ(p) = 0, ηηηλ(p) 6= 0,
cA5 ηλ(p) = ηηλ(p) = ηηηλ(p) = 0, ηηηηλ(p) 6= 0.

Through the theory of frontal maps and generating functions, Ishikawa [5, 6] showed that the
tangent developable of a curve of type

(m,m+ `,m+ `+ r)
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has a parametrization F : (R2, 0)→ (R3, 0) defined by

x = t,

y = sm+` + sm+`+1ϕ(s) + t(s` + s`+1φ(s)),

z = (`+ r)(m+ `+ r)

∫ s

0

ur
∂y(u, t)

∂u
du

= (`+ r)(m+ `)sm+`+r + · · ·+ t(`(m+ `+ r)s`+r + · · · )
with some C∞ functions ϕ(s) and φ(s). These two function must be related to invariants τ0
and τ1. It is also shown [5, Thm 2.1] that the topological type of the tangent developable of a
space curve is determined by type (m,m+ `,m+ `+ r) of the curve, unless both `, r are even,
as mentioned in Introduction.

3. Singularities of ruled surfaces

In this section, we prove Theorem 1.1 (2); first we give a certain stratification of the jet space
of triples of functions (κ1, τ0, τ1), and then discuss a variant of Thom’s transversality theorem.

3.1. Dual Bouquet formula. Consider a curve v̌ : I → D3, v̌(s) = v0(s) + εv1(s), with
v̌ · v̌ = 1 and |v′0(s)| = 1 as in §2.2. We are concerned with the germ of v̌ at the origin (s0 = 0).
Throughout this section, let κ̌, τ̌ , κ̌′, τ̌ ′, · · · denote their values at s = 0 for short, e.g. κ̌′ = κ̌′(0),
unless specifically mentioned.

By iterated uses of the Frenet formula (Theorem 2.1 (1)), we obtain the “Bouquet formula”
of the curve in D3 at s = 0;

v̌(s) =

r∑
n=0

v̌(n)(0)

n!
sn + o(r) ∈ D3

with

v̌′(0) = κ̌ ň(0),

v̌′′(0) = −κ̌2 v̌(0) + κ̌′ ň(0) + κ̌τ̌ ť(0),

v̌(3)(0) = −3κ̌κ̌′ v̌(0) + (κ̌′′ − κ̌3 − κ̌τ̌2) ň(0) + (2κ̌′τ̌ + κ̌τ̌ ′) ť(0),

v̌(4)(0) = (κ̌4 + κ̌2τ̌2 − 4κ̌κ̌′′)v̌(0) + (κ̌(3) − 6κ̌2κ̌′ − 3κ̌′τ̌2 − 3κ̌τ̌ τ̌ ′)ň(0)

+(3κ̌′′τ̌ + 3κ̌′τ̌ ′ − κ̌3τ̌ + κ̌τ̌ ′′ − κ̌τ̌3)ť(0),

v̌(5)(0) = (10κ̌3κ̌′ + 5κ̌κ̌′τ̌2 + 5κ̌2τ̌ τ̌ ′ − 5κ̌κ̌(3))v̌(0) + (κ̌(4) − 6κ̌2κ̌′′ − 6κ̌′′τ̌2

−12κ̌′τ̌ τ̌ ′ − 3κ̌(τ̌ ′)2 − 4κ̌τ̌ τ̌ ′′ + κ̌3τ̌2 + κ̌τ̌4)ň(0) + (4κ̌(3)τ̌ + 6κ̌′′τ̌ ′

+3κ̌′τ̌ ′′ − 9κ̌2κ̌′τ̌ − κ̌3τ̌ ′ + κ̌′τ̌ ′′ + κ̌τ̌ (3) − 4κ̌′τ̌3 − 6κ̌τ̌2τ̌ ′)ť(0),

and so on. A similar but more näıve expansion written by Plücker coordinates, instead of dual
quaternions, can be found in a classical book of Hlavatý [3].

Since dual vectors {v̌(0), ň(0), ť(0)} form a D-basis of Im Ȟ = D3, we may write

v̌(s) = [ v̌(0), ň(0), ť(0) ] w̌(s),

and by the above derivatives v̌(k)(0), one computes

w̌(s) = [1− 1
2 κ̌

2s+ · · · , κ̌s+ 1
2 κ̌
′s+ · · · , 12 κ̌τ̌ s

2 + · · · ]T ∈ D3.

Recall that three oriented lines in R3 determined by unit dual vectors v̌(0), ň(0), ť(0) meet at
one point, which is nothing but the striction point σ(0), as mentioned just after Lemma 2.2.
By an Euclidean motion, the triple of lines can be transformed to standard coordinate axises of
R3, i.e., v0(0),n0(0), t0(0) are sent to the standard basis i, j, k of ImH = R3, respectively, and
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v1(0) = n1(0) = t1(0) = 0 ∈ R3. Namely, we may assume that the 3× 3 matrix (with entries in
D) [ v̌(0), ň(0), ť(0) ] is the identity matrix, so v̌(s) = w̌(s). Then

v̌(s) = v0(s) + εv1(s) =

 1
s
0

+ ε

 0
κ1s
0

+ o(1).

At a point (0, t0) ∈ I×R, the Taylor expansion of F (s, t) = v0(s)×v1(s)+ tv0(s) is immediately
obtained; in particular, F (0, t0) = [t0, 0, 0]T and

dF (0, t0) =

 0 1
t0 0
κ1 0

 .
This gives an alternative proof of Lemma 2.3: F is singular at (0, t0) if and only if κ1(0) = t0 = 0
(t0 = 0 means that the point is just the striction point σ(0) lying on the ruling). Assume that
F is singular at the origin. Then we obtain a canonical Taylor expansion of F :

F (s, t) =(1) (
t− 1

2 ts
2 + τ1

2 s
3, ts− τ1

2 s
2 − 2τ0κ

′
1+τ

′
1

6 s3,
κ′
1

2 s
2 + τ0

2 ts
2 +

κ′′
1−2τ0τ1

6 s3
)

+ o(3).

Remark 3.1. (Truncated polynomial maps) Let F (s, t) be as in (1), and set

F̄ (s, t) = (v̄0(s)× v̄1(s)) + tv̄0(s)

to be a polynomial map of order k with jkF̄ (0) = jkF (0). Denote by s̄ the arc-length of the
curve v̄0(s), then s̄ := s+o(k), and thus k-jets at 0 of the dual curvature and the dual torsion do
not change from those of F . That gives examples of polynomial ruled surfaces with prescribed
k-jets of κ̌ and τ̌ at a point.

3.2. Recognition of singularity types. Now our task is to find appropriate diffeomorphism-
germs of the source and the target for reducing jets of F (s, t) to normal forms in A-classification
step by step; for such computations, we have used the software Mathematica.

Let (X,Y, Z) be the coordinates of the target R3. Below, κ1, κ
′
1, · · · denote their values at

s = 0 unless specifically mentioned. From now on, assume that κ1(= κ1(0)) = 0. Put y = s and
x = t − 1

2 ts
2 + τ1

2 s
3 + · · · which is the first component of F in the form (1) above. With this

new coordinates (x, y) of the source R2, we set

f(x, y) := F (y, t(x, y)) = (x, f2(x, y), f3(x, y))(2)

=
(
x, xy − 1

2τ1y
2 − 1

6τ
′
1y

3, 1
2κ
′
1y

2 + 1
2τ0xy

2 + 1
6 (κ′′1 − 2τ0τ1)y3

)
+ o(3).

Note that f(x, y) is still of the form r̃(y) + xẽ(y). Now, we apply to this germ f(x, y) the
recognition trees in Mond’s classification [15, Figs.1, 2]. Below, S±k , B±k , C±k , Hk and F4 denote
Mond’s notations of A-simple germs [15].

• 2-jet: Crosscap S0 is 2-determined, thus it follows from (2) that

f ∼A S0 : (x, xy, y2) ⇐⇒ κ1 = 0, κ′1 6= 0.
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Let κ′1 = 0. Then the 2-jet is equivalent to either of (x, xy, 0) or (x, y2, 0), according to whether
τ1 = 0 or not. We compute the second and third component of f as

f2 = xy − 1
2τ1y

2 − 1
6τ
′
1y

3

+ 1
24 ((8− 4τ20 )xy3 + (−5τ1 + 3τ20 τ1 − 3τ0κ

′′
1 − τ ′′1 )y4)

+ 1
120 (−15τ0τ

′
0xy

4 + (12τ0τ
′
0τ1 − 9τ ′1 + 6τ20 τ

′
1 − 6τ ′0κ

′′
1 − 4τ0κ

(3)
1 − τ

(3)
1 )y5)

+o(5),

f3 = 1
6 (3τ0xy

2 + (κ′′1 − 2τ0τ1)y3)

+ 1
24 (4τ ′0xy

3 + (−3τ1τ
′
0 − 3τ0τ

′
1 + κ

(3)
1 )y4)

+ 1
120 ((25τ0 − 5τ30 + 5τ ′′0 )xy4 + (−16τ0τ1 + 4τ30 τ1 − 6τ ′0tau

′
1 − 6τ20κ

′′
1

−4y5τ1τ
′′
0 − 4y5τ0τ

′′
1 + κ

(4)
1 )y5) + o(5).

• 3-jet: Let κ1 = κ′1 = 0 and τ1 6= 0. First, let us remove the term xy from f2; take x̄ = x and
ȳ = y − 1

τ1
x, then we see that

(3) j3f(0) ∼ (x, y2 +
τ ′
1

τ3
1
x2y +

τ ′
1

3τ1
y3, κ′′1x

2y + 1
3τ

2
1 (κ′′1 − 2τ0τ1)y3).

The first two components can be transformed to (x, y2) by a coordinate change of (x, y) with
identical linear part and by a target coordinate change of (X,Y ), since the plane-to-plane germ
(x, y2) is 2-determined (stable germ). Hence j3f(0) is equivalent to one of the following:

(4)


(x, y2, y3 ± x2y) κ′′1(κ′′1 − 2τ0τ1) ≷ 0, τ1 6= 0 · · ·S±1 ,
(x, y2, y3) κ′′1 = 0, τ0τ1 6= 0 · · ·S,
(x, y2, x2y) κ′′1 = 2τ0τ1 6= 0 · · ·B,
(x, y2, 0) κ′′1 = τ0 = 0, τ1 6= 0 · · ·C.

Note that S±1 is 3-determined, thus this case is clarified.
Let τ1 = 0. Then from (2), we have

j3f(0) ∼
(
x, xy − 1

6τ
′
1y

3, 12τ0xy
2 + 1

6κ
′′
1y

3
)
.

In the same way as above, j3f(0) is reduced to one of the following:

(5)


(x, xy, y3) κ′′1 6= 0, τ1 = 0 · · ·H,
(x, xy + y3, xy2) κ′′1 = τ1 = 0, τ0τ

′
1 6= 0 · · ·P,

(x, xy, xy2) κ′′1 = τ1 = τ ′1 = 0, τ0 6= 0,
(x, xy + y3, 0) κ′′1 = τ0 = τ1 = 0, τ ′1 6= 0,
(x, xy, 0) κ′′1 = τ0 = τ1 = τ ′1 = 0.

Each of last three types has codimension ≥ 6, so we omit them here. Below, for types S,B, · · · , P
in (4) and (5), we detect A-types with codimension ≤ 5 by checking higher jets and the deter-
minacy.

• S-type: Let κ1 = κ′1 = 0 and τ0τ1 6= 0. Then a computation shows that

κ′′1 = 0 =⇒ j4f(0) ∼
(
x, y2, y3 − κ

(3)
1

2τ0τ4
1
x3y

)
,

κ′′1 = κ
(3)
1 = 0 =⇒ j5f(0) ∼

(
x, y2, y3 − κ

(4)
1

8τ0τ5
1
x4y

)
,

κ′′1 = κ
(3)
1 = κ

(4)
1 = 0 =⇒ j6f(0) ∼

(
x, y2, y3 − κ

(5)
1

40τ0τ6
1
x5y

)
.
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Note that Sk is (k + 2)-determined (its codimension is k + 2), thus f is of type S±k (k = 2, 3, 4)

if and only if κ1 = κ′1 = · · · = κ
(k)
1 = 0 and κ

(k+1)
1 τ0τ1 ≶ 0 (seemingly, it is so for any k).

• B-type: Let κ1 = κ′1 = κ′′1−2τ0τ1 = 0 and κ′′1 6= 0. Then it would be A-equivalent to Bk-type
[15, 4.1:17, Table 3]. For instance,

j5f(0) ∼ (x, y2, x2y + b2y
5)

with
b2 = 48τ20 τ

2
1 (τ20 − 2)− 20(τ20 (τ ′1)2 + τ21 (τ ′0)2)− 56τ0τ1τ

′
0τ
′
1

−24τ0τ1(τ0τ
′′
1 + τ1τ

′′
0 ) + 20κ

(3)
1 (τ0τ

′
1 + τ1τ

′
0)− 5(κ

(3)
1 )2 + 6κ

(4)
1 τ0τ1.

Since B2 is 5-determined,

f ∼A B±2 : (x, y2, x2y ± y5) ⇐⇒ b2 ≷ 0.

Let b3 be the coefficient of y7 in the last component of j7f(0), which is written as a polynomial
in derivatives of invariants at s = 0, then B±3 : (x, y2, x2y± y7) is detected by the condition that
b2 = 0 and b3 6= 0. Here B3 is of codimension 5.

• C-type: Let κ1 = κ′1 = κ′′1 = τ0 = 0, τ1 6= 0. Through

ψ(X,Y, Z) =
(

1
τ1
X, Y, 1

τ1

(
Z − aY 2 − bX2Y

))
with a = 1

4 (κ
(3)
1 − 3τ1τ

′
0), b = 3

2τ2
1

(κ
(3)
1 − τ1τ ′0), we see that

j4f(0) ∼
(
x, y2, κ

(3)
1 x3y + (κ

(3)
1 − 2τ1τ

′
0)xy3

)
.

Since C3 is 4-determined (of codimension 5),

f ∼A C±3 : (x, y2, xy3 ± x3y) ⇐⇒ κ
(3)
1 (κ

(3)
1 − 2τ1τ

′
0) ≷ 0.

• H-type: Let κ1 = κ′1 = τ1 = 0 and κ′′1 6= 0. Then it would be A-equivalent to Hk-type
[15, 4.2.1:2]. A lengthy computation shows that

j5f(0) ∼
(
x, xy + h2y

5, y3
)

with
h2 = −15τ20 (τ ′1)3 − 24τ ′0(τ ′1)2κ′′1 − 36τ ′1(κ′′1)2 − 15τ20 τ

′
1(κ′′1)2 − 24τ ′0(κ′′1)3

−21τ0τ
′
1κ
′′
1τ
′′
1 + 20τ0(τ ′1)2κ

(3)
1 − τ0(κ′′1)2κ

(3)
1 + 5κ′′1τ

′′
1 κ

(3)
1 − 5τ ′1(κ

(3)
1 )2

−4(κ′′1)2τ
(3)
1 + 4τ ′1κ

′′
1κ

(4)
1 .

Since H2 is 5-determined,

f ∼A H±2 : (x, xy ± y5, y3) ⇐⇒ h2 ≷ 0.

Let h3 be the coefficient of y8 in the middle component of j8f(0), then H3 : (x, xy + y8, y3) is
detected by h2 = 0 and h3 6= 0 (H3 is of codimension 5).

• P -type: Let κ1 = κ′1 = κ′′1 = τ1 = 0 and τ0τ
′
1 6= 0. Then we see that there is a polynomial p4

in derivatives of κ1, τ0, τ1 so that

f ∼A P3 : (x, xy + y3, xy2 + p4y
4)

for p4 6= 0, 12 , 1,
3
2 [15, §4.2].
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Remark 3.2. (Characterization of Ck and F4) Among A-simple germs obtained in Mond
[15], we have just discussed germs of type S±k , B±k and Hk. So there remain Ck (k ≥ 4) and F4,

which are the next to C3-type above. Suppose that κ
(3)
1 (κ

(3)
1 − 2τ1τ

′
0) = 0. Then we have the

following condition for each of them.

• If κ
(3)
1 = 0 and τ1τ

′
0 6= 0, then j4f(0) ∼ (x, y2, xy3) and

κ
(3)
1 = 0 =⇒ j5f(0) ∼

(
x, y2, xy3 − κ

(4)
1

8τ ′
0τ

4
1
x4y

)
,

κ
(3)
1 = κ

(4)
1 = 0 =⇒ j6f(0) ∼

(
x, y2, xy3 − κ

(5)
1

40τ ′
0τ

5
1
x5y

)
.

Since C±k : (x, y2, xy3 ± xky) is (k+ 1)-determined, we see that f is of type C±k (k = 4, 5) if and

only if τ0 = κ1 = κ′1 = · · · = κ
(k−1)
1 = 0 and κ

(k)
1 τ ′0τ1 ≶ 0 (seemingly, it is so for any k).

• If κ
(3)
1 = 2τ1τ

′
0 6= 0, we have j4f(0) ∼ (x, y2, x3y) and

f ∼A F4 : (x, y2, x3y + y5)⇐⇒ 3κ
(4)
1 − 8τ ′0τ

′
1 − 12τ1τ

′′
0 6= 0.

Remark 3.3. (Non-realizable jets) Let us continue the argument in Remark 3.2. If

κ
(3)
1 = τ ′0 = 0, then f should be of codimension ≥ 7 and a computation shows that

j5f(0) ∼
(
x, y2, κ

(4)
1 x4y + (κ

(4)
1 − 4τ1τ

′′
0 )y5 + 2

√
5(κ

(4)
1 − 2τ1τ

′′
0 )x2y3

)
.

In particular, if two of three coefficients κ
(4)
1 , κ

(4)
1 − 4τ1τ

′′
0 , κ

(4)
1 − 2τ1τ

′′
0 are zero, then all are

zero. Thus, for instance, the following 5-jets are not equivalent to jets of any non-cylindrical
ruled surface:

(x, y2, x4y), (x, y2, x2y3), (x, y2, y5).

The 5-jet (x, y2, y5) is obviously realizable by a cylinder, while the 5-jets

(x, y2, x4y) and (x, y2, x2y3)

are not equivalent to jets of any ruled surfaces, even if we drop the condition e′(0) 6= 0. In fact,
put F = r(s)+te(s) with r(s)·e(s) = 0 and e(s) = (1, 0, 0)+o(s). If F is singular at (s, t) = (0, 0)
and r(0) = 0, then r(s) = o(s). It is easy to see that F ∼A f = (x, y2h(x, y), y3g(x, y)) with
some functions h, g of the form p(y) + xq(y), and thus the 5-jet of F is never equivalent to
those two jets mentioned above. By the same reason, the A3-orbit of the 3-jet (x, y3, x2y) is not
realized by jets of any ruled surfaces (the 2-jet (x, 0, 0) never appears in non-cylindrical ruled
surfaces as seen before, and the 3-jet is not realizable by ruled surfaces with e′(0) = 0, that is
shown in the same way as above).

3.3. Transversality. To precisely state genericity of ruled surfaces, we need an appropriate
mapping space (moduli space) equipped with a certain topology. By the definition, a residual
subset of a mapping space is a union of countably many open dense subsets. When maps having
a prescribed condition form a residual subset, we often say that such a map is generic, abusing
words. Let I be an open interval containing 0 ∈ R and let u denote the coordinate of I. As the
mapping space of non-cylindrical ruled surfaces, we take

R := { v̌ = v0 + εv1 ∈ C∞(I, Ǔ) |v′0(u) 6= 0 (u ∈ I) }

equipped with Whitney C∞ topology. As a remark, Izumiya and Takeuchi [10] and Martins and
Nuño-Ballesteros [13] took the space C∞(I,R3×S2) instead of C∞(I, Ǔ), but the difference does
not affect the matter of genericity arguments – given a pair (r, e) of base and director curves,
we simply assign a curve v̌ : I → Ǔ with v0 = e and v1 = r × e.
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Also we put

M := C∞(I,R>0 × R3)

of quadruples (κ0, κ1, τ0, τ1) of real-valued functions with κ0(u) > 0 equipped with Whitney C∞

topology. Any curve v̌(u) in R defines D-valued functions, κ̌(u) and τ̌(u) (parameterized by
a general parameter u ∈ I), that produces a continuous map Φ : R → M. Obviously, Φ is
surjective. In fact, given a quadruple of functions (κ0(u), κ1(u), τ0(u), τ1(u)) ∈ M, put a new
parameter s := s(u) =

∫ u
0
κ0(u)du and define κ1(s) := κ1(u(s)), etc. Then, three functions

κ1(s), τ0(s), τ1(s) determines, up to Euclidean motions, the curve v̌(s) = v0(s) + εv1(s) by
solving the ordinary differential equation determined by the Frenet formula. The ambiguity is
fixed by the initial values v̌(0), ň(0), ť(0), which corresponds to the initial orthogonal axes in
R3 at u = 0. Put v̌(u) := v̌(s(u)) ∈ R; the set of such cruves is exactly the preimage via Φ of
the given quadruple of functions. That implies that for a dense subset O ⊂ M, the preimage
Φ−1(O) is also dense in R.

The above construction is extended for a parametric version. Let W be an open subset
of Rp (0 ≤ p ≤ 3), and consider the subspace RW of C∞(I × W, Ǔ) which consists of maps
v̌(u, λ) = v0(u, λ) + εv1(u, λ) with parameter λ ∈ W satisfying ∂v0/∂u 6= 0 at any (u, λ). Put
MW to be the mapping space of I ×W → R>0 × R3, and then a surjective continuous map
Φ : RW →MW is defined in entirely the same way as above. For a dense subset O ⊂MW , the
preimage Φ−1(O) is also in RW .

As seen in the previous section, we have obtained a semi-algebraic stratification of the jet
space Jr := R3 × Jr(1, 3) up to codimension 4 (r sufficiently large). In fact, any strata are

defined by the conditions in Table 1 of (in)equalities in Taylor coefficients {κ(k)1 , τ
(k)
0 , τ

(k)
1 }0≤k≤r,

which form a system of coordinates of the affine space Jr. Notice that these Taylor coefficients
are with respect to the arclength parameter s. For each quadruple (κ0, κ1, τ0, τ1) ∈MW , we put

s = s(u, λ) :=

∫ u

0

κ0(u, λ)du, ϕ(u, λ) = (κ1(u, λ), τ0(u, λ), τ1(u, λ)).

By the assumption that ∂s/∂u = κ0 > 0, let ϕ̄(s, λ) := ϕ(u(s, λ), λ). Then we define

Ψ : I ×W ×MW → Jr, Ψ(u, λ, (κ0, ϕ)) := jrs ϕ̄(s(u, λ), λ),

where jrs ϕ̄ means the r-jet respect to the parameter s. By a version of Thom’s transversality
theorem (Lemma 4.6 in [1]), there is a dense subset O of MW so that for any ϕ ∈ O, the jet
extension Ψκ0,ϕ : I ×W → Jr is transverse to every stratum of our stratification of Jr. Hence,
Φ−1(O) is dense in RW , and for any element of Φ−1(O), only A-singularity types listed in Table
1 appears. This completes the proof of (2) in Theorem 1.1. �

Remark 3.4. (Ae-versal deformations) For each type in Table 1, an Ae-versal deformation
of the germ is realized by a generic family of non-cylindrical ruled surfaces. This is directly
checked by computations. For instance, as in Table 1, the S±1 -singularity of ruled surface at
s = 0 is characterized by κ1(0) = κ′1(0) = 0, κ′′1(0) 6= 0, 2τ0(0)τ1(0) and τ1(0) 6= 0. Suppose
that ϕ = (κ1(s), τ0(s), τ1(s)) : I → R3 satisfies this condition. Define a 1-parameter family
I × R → R3 by ϕ(s, λ) := ϕ(s) + (λ, 0, 0), then obviously, its 1-jet extension j1sϕ is transverse
at (0, 0) to the stratum defined by κ1 = κ′1 = 0 in J1 = R3 × J1(1, 3). This family yields a
1-parameter family F (s, t, λ) = (t, ts− τ1

2 s
2, λs) + o(2) of ruled surfaces. By using a coordinate

change of x = t + · · · (= first component of F (s, t, λ)) and y = s and some target changes, we
see that the germ of F (s, t, λ) is equivalent to (x, y2, y3 ± x2y + λy), which is an Ae-miniversal
deformation of S±1 -singularity.
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4. Singularities of developable surfaces

4.1. Recognition of singularity types. For non-cylindrical developable surfaces, κ1(s) ≡ 0

identically. Hence the Taylor expansion of f is (2) with κ
(k)
1 = 0 for all k:

f(x, y) := F (y, t(x, y)) = (x, xy − 1
2τ1y

2 − 1
6τ
′
1y

3, 12τ0xy
2 + 1

3τ0τ1y
3) + o(3).

Using the A-criteria mentioned in §2, we classify singularities arising in generic families of de-
velopable surfaces. Notice that there are two different aspects; singularities of frontal surfaces
correspond to the case of τ1 6= 0, while singularities of wavefronts correspond to the case of
τ1 = 0. Below we prove Theorem 1.5.

• Case of τ1 6= 0: By s = y + τ−11 x and some linear change of the target, we have

f = (x, y2 + o(2), f3(x, y)) with f3 = τ0y
3 + o(3).

Note that (x, y2) is 2-determined and that each term xky2l in f3 can be removed by a coordi-
nate change of the target (X,Y, Z) 7→ (X,Y, Z − XkY l). Use Proposition 2.5 in §2 ([16]) for
determinacy in CE.

(i) If τ0 6= 0, then f ∼A (x, y2, y3), since it is 3-determined in CE.
(ii) Let τ0 = 0. Computing the 4-jet, we see

f3 = τ ′0(6x2y2 + 8τ1xy
3 + 3τ21 y

4) + o(4).

If τ ′0 6= 0, then f ∼A (x, y2, xy3), for the germ is 4-determined in CE. Hence f is of type
cuspidal crosscap.

(iii) Let τ0 = τ ′0 = 0. Computing the 5-jet, we see

f3 = τ ′′0 (10x3y2 + 20τ1x
2y3 + 15τ21xy

4 + 4τ31 y
5) + o(5).

If τ ′′0 6= 0, by target changes using X = x and Y = y2, terms x3y2 and xy4 can be
removed from Z = f3, thus we see that f ∼A (x, y2, y3(x2 + y2)), for this germ is
5-determined in CE. That is cuspidal S+

1 -type. Note that cuspidal S−1 never appears.
(iv) Let τ0 = τ ′0 = τ ′′0 = 0. Computing the 6-jet, we see

f3 = τ ′′′0 (15x4y2 + 40τ1x
3y3 + 45τ21x

2y4 + 24τ31xy
5 + 5τ41 y

6) + o(6).

If τ ′′′0 6= 0, then f ∼A (x, y2, y3(x3 + xy2)), for the germ is 6-determined in CE. That is
cuspidal C+

3 -type, while cuspidal C−3 does not appear. Note that τ0 = τ ′0 = τ ′′0 = 0 if
and only if the 5-jet of f is equivalent to (x, y2, 0), thus cuspidal S and B-types never
appear, as mentioned in Remark 1.6.

• Case of τ1 = 0: Then f = (x, xy− 1
6τ
′
1y

3, 12τ0xy
2) + o(3). Note that j2f(0) ∼ (x, xy, 0), thus

types A±3 and Dk never appear (Remark 1.6).
If τ0 = 0, j3f(0) is equivalent to either (x, xy + y3, 0) or (x, xy, 0), that is of type T1 or T2

(codimension 3, 4) in Table 2. Now assume that τ0 6= 0. Write

f = (x, f2(x, y), f3(x, y)) = (x, xy − 1
6τ
′
1y

3, xy2) + o(3).

The singular point set S(F ) is defined by (f2)y = (f3)y = 0, and through a computation, it is
simplified as λ = 0 with

λ = x− 1
2τ
′
1y

2 − 1
6τ
′′
1 y

3 − 1
24 (τ ′′′1 − 3τ ′1)y4 + o(4).

We may take η = ∂/∂y as a vector field which generates ker dF along S(F ). Then, ηλ(0) = 0,
ηηλ(0) = −τ ′1, ηηηλ(0) = −τ ′′1 and ηηηηλ(0) = −(τ ′′′1 − 3τ ′1). Hence, by Izumiya-Saji’s criteria
in §2.5, we have the conditions for detecting Sw, cA4 and cA5.
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4.2. Topological classification. We prove Theorem 1.7. Let σ(s) be the striction curve of
a non-cylindrical developable surface. Assume that σ(0) = 0 ∈ R3, and consider the germ
σ : (R, 0)→ (R3, 0). Since {v0(s),n0(s), t0(s)} form a basis of R3 for each s, we denote the k-th
derivative by

σ(k)(s) = Ak(s)v0(s) +Bk(s)n0(s) + Ck(s)t0(s) (k ≥ 1)

whereAk(s), Bk(s), Ck(s) are some functions. Then, with respect to the basis {v0(0),n0(0), t0(0)},
the expansion of σ at s = 0 is given by

σ(s) = (A1(0)s+ 1
2A2(0)s2 + · · · , B1(0)s+ 1

2B2(0)s2 + · · · , C1(0)s+ 1
2C2(0)s2 + · · · ).

Now assume that σ is of type (m,n1, n2), i.e.,
A1(0) = · · · = Am−1(0) = 0, Am(0) 6= 0,

B1(0) = · · · = Bn1−1(0) = 0, Bn1(0) 6= 0,

C1(0) = · · · = Cn2−1(0) = 0, Cn2
(0) 6= 0.

Since σ′(s) = τ1(s)v0(s) for a developable surface (Lemma 2.2 (iii)), we see that A1(s) = τ1(s)
and B1(s) ≡ C1(s) ≡ 0. By the Frenet formula (Theorem 2.1 (1)),

σ(k+1) = (σ(k))′ = {Akv0 +Bkn0 + Ckt0}′

= (A′k −Bk)v0 + (B′k +Ak − Ckτ0)n0 + (C ′k +Bkτ0)t0

= Ak+1v0 +Bk+1n0 + Ck+1t0.

Thus for k = 1, we have A2(s) = τ ′1(s), B2(s) = τ1(s), C2(s) ≡ 0, and for k = 2,
A3(s) = τ ′′1 (s) − τ1(s), B3(s) = 2τ ′1(s) and C3(s) = τ0(s)τ1(s). For k ≥ 3, there are some
smooth functions ak,∗(s), bk,∗(s), ck,∗,∗(s) and positive numbers βk, γk,0, · · · , γk,k−3 > 0 such
that

Ak(s) = ak,0(s)τ1(s) + · · ·+ ak,k−2(s)τ
(k−2)
1 (s) + τ

(k−1)
1 (s),

Bk(s) = bk,0(s)τ1(s) + · · ·+ bk,k−3(s)τ
(k−3)
1 (s) + βkτ

(k−2)
1 (s),

Ck(s) = {ck,0,0(s)τ0(s) + · · ·+ γk,0τ
(k−4)
0 (s)}τ1(s)

+ {ck,1,0(s)τ0(s) + · · ·+ γk,1τ
(k−5)
0 (s)}τ ′1(s) + · · ·

+ {ck,k−4,0(s)τ0(s) + γk,k−4τ
′
0(s)}τ (k−4)1 (s) + γk,k−3τ0(s)τ

(k−3)
1 (s).

Hence, by the assumption on Ak(0), we have

τ1(0) = · · · = τ
(m−2)
1 (0) = 0, τ

(m−1)
1 (0) 6= 0,

and thus

B1(0) = · · · = Bm(0) = 0, Bm+1(0) 6= 0, C1(0) = · · · = Cm+2(0) = 0.

In particular,

n1 = m+ 1, n2 = m+ 1 + r (r ≥ 1).

By the above formula of Ck(s) with k = m+ 1 + r, we see

τ0(0) = · · · = τ
(r−2)
0 (0) = 0, τ

(r−1)
0 (0) 6= 0.

Conversely, if the order of τ0 and τ1 are r and m− 1, respectively, then the type of σ is

(m,m+ 1,m+ 1 + r).

This completes the proof. �
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