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APPLICATION OF SINGULARITY THEORY TO BIFURCATION OF BAND

STRUCTURES IN CRYSTALS

H. TERAMOTO, A. TSUCHIDA, K. KONDO, S. IZUMIYA, M. TODA, T. KOMATSUZAKI

Abstract. Starting from the mean-field Hamiltonian of an electron in a crystal, we briefly
review some known facts about its spectral structures and how singularities come into play

in such spectral structures, and then provide our future perspective. We also estimate lower

bounds of codimensions for the case where more than two bands to cross at a point.

1. Introduction

As in the song by Prof. Goo Ishikawa [10], singularity is everywhere. In this paper, we provide
one example of such singularities appearing in solid-state physics [25]. Let

(1) Ĥ = −1

2
∆ + V (x)

be a Schrödinger operator on L2
(
Rd
)
, where x = (x1, · · · , xd) ∈ Rd, ∆ =

∑d
i=1

∂2

∂x2
i

is the

Laplacian on Rd, and V : Rd → R. We assume there is a basis

(2) {γ1, . . . , γd}

in Rd such that V (x+ γi) = V (x) holds for all x ∈ Rd and i ∈ {1, . . . , d}. This Schrödinger
operator appears in the following situation: an electron moving in a periodic potential in the
bulk of a crystal (d = 3) or on the surface of a crystal (d = 2). A crystal consists of atoms
and electrons interacting with each other. This Schrödinger operator is simplified to study the
behavior of one of the electrons in the crystal; the effect of all the other electrons and atoms
on the electron at x ∈ Rd is approximated by an averaged potential V (x). One can also add a
spin degree of freedom as in [15]. Some of mathematical justifications of this can be found in
[13, 6, 5].

In Sec. 2, we briefly review what is known about spectral structures of the operator Eq. (1).
There, band structures arise in the spectral structures as a consequence of the periodicity of
the potential. Some of the topological features of the bands may be characterized by twisted-
equivariant K-theory. Explaining the theory is beyond the scope of this paper but one of the
established facts is that the bands cannot change their topology unless some of their band gaps
close. Recently, it has become possible to manipulate band structures by changing the material
properties of crystals and let some of the bands collide with each other [9]. To understand how
such collisions trigger their topological changes, it is important to understand band geometries
in neighborhoods of band crossings and their unfoldings. Having this goal in mind, in Sec. 3, we
review our recent results on classification of band geometries in neighborhoods of band crossings
in terms of the theory of singularities [25]. In Sec. 4, we discuss our future perspective along
this direction.
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2. Brief Review of Schrödinger operators with periodic potentials

In this section, we briefly review spectral properties of Schrödinger operators with periodic
potentials by following [20, 16, 17]. For the definitions of terms in this section, see [21, 19, 20].
In this context, the basis in Eq. (2) is determined by the geometric structure of the crystal [2].
The lattice defined by

(3) Γ =

γ ∈ Rd
∣∣∣∣∣∣γ =

d∑
j=1

njγj , (n1, · · · , nd) ∈ Zd


is denoted as the Bravais lattice and its dual lattice

(4) Γ∗ =
{
k ∈ Rd |k · γ ∈ 2πZ, for all γ ∈ Γ

}
is denoted as the inverse Bravais lattice. To fix the notation, we denote the centered fundamental
domain of Γ by

(5) Y =

x ∈ Rd
∣∣∣∣∣∣x =

d∑
j=1

αjγj , for αj ∈
[
−1

2
,

1

2

] ,

and the centered fundamental domain of Γ∗ by

(6) Y ∗ =

k ∈ Rd
∣∣∣∣∣∣k =

d∑
j=1

αjγ
∗
j , for αj ∈

[
−1

2
,

1

2

] ,

where
{
γ∗j
}
j∈{1,··· ,d} is the dual basis to {γj}j∈{1,··· ,d} such that γ∗i · γj = 2πδi,j holds for all

i, j ∈ {1, · · · , d}.
To investigate the spectral structure of the Schrödinger operator Eq. (1) on L2

(
Rd
)
, we show

the operator is unitary equivalent to one decomposable by the direct integral decomposition. To
do that, we introduce the following notation.

2.1. Constant Fiber Direct Integral and Direct Integral Decomposition.

Let H′ = L2
(
Td
)

be a Hilbert space on the torus Td = Rd/Γ with the inner product (·, ·)H′ ,
and let L2 (Y ∗, dk;H′) be the set of measurable functions f on Y ∗ with values in H′ which satisfy∫
Y ∗
‖f (k)‖2H′ dk <∞, where ‖·‖H′ is the norm induced from the inner product (·, ·)H′ . We call

H = L2 (Y ∗, dk;H′) a constant fiber direct integral by following [20] and write

(7) H =

∫ ⊕
Y ∗
H′dk.

Note that H is a Hilbert space equipped with an inner product

(8) (f, g)H =

∫
Y ∗

(f (k) , g (k))H′ dk

for f, g ∈ H.
Next we would like to introduce the direct integral decomposition of an operator associated

with a constant fiber direct integral. Suppose A (·) is a function from Y ∗ to the set of self-
adjoint operators on a Hilbert space H′. The function is measurable if and only if the function
(A (·) + i)

−1
is measurable, where i is the operator multiplied by the imaginary number i. Note

that the spectrum of a self-adjoint operator is on the real line and thus −i is in the resolvent
set of the operator. Therefore, the function (A (·) + i)

−1
is a well-defined function from Y ∗ to
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the set of bounded operators on H′, L (H′). Such a function is called measurable if for each

φ, ψ ∈ H′,
(
φ, (A (·) + i)

−1
ψ
)
H′

is measurable.

Let A (·) be a measurable function from Y ∗ with the Lebesgue measure to the set of self-

adjoint operators on a Hilbert space H′. We define an operator A on H =
∫ ⊕
Y ∗
H′ dk having

A (·) as direct sum components with domain

(9) D (A) =

{
ψ ∈ H

∣∣∣∣ψ (k) ∈ D (A (k)) a.e. k ∈ Y ∗;
∫
Y ∗
‖A (k)ψ (k)‖2H′ dk <∞

}
by (Aψ) (k) = A (k)ψ (k) for all k ∈ Y ∗ and for ψ ∈ D (A), where D (A (k)) ⊂ H′ is the domain

of the operator A (k) for k ∈ Y ∗. If an operator A on H =
∫ ⊕
Y ∗
H′ dk can be decomposed in this

form, we say that the operator A admits direct integral decomposition and write

(10) A =

∫ ⊕
Y ∗
A (k) dk.

Next, let us introduce the modified Bloch-Floquet transformation [28]. By using the trans-
formation, the operator in Eq. (1) is shown to be unitary equivalent to one that admits direct
integral decomposition.

2.2. Modified Bloch-Floquet Transformation. Let S
(
Rd
)

be the set of rapid decreasing

functions on Rd, i.e.,

(11) S
(
Rd
)

=

{
ψ ∈ C∞

(
Rd
) ∣∣∣∣‖ψ‖α,β = sup

x∈Rd

∣∣xαDβψ (x)
∣∣ <∞, for all α, β ∈ Id+

}
,

where Id+ is the set of all d-tuples of nonnegative integers, xα = xα1
1 xα2

2 · · ·x
αd

d and

(12) Dβφ (x) =
∂|β|φ (x)

∂xβ1

1 · · · ∂x
βd

d

|β| = d∑
j=1

βd


for α, β ∈ Id+, and |Y ∗| is the volume of Y ∗. Let L2

loc

(
Rd
)

be the set of locally square-integrable

functions on Rd, i.e.,

(13) L2
loc

(
Rd
)

=

{
ψ : Rd → C

∣∣∣∣∫
K

|ψ|2 dx <∞, for any compact set K ⊂ Rd
}
.

For ψ ∈ S
(
Rd
)
, we define the modified Bloch-Floquet transform

(14) ŨBF : S
(
Rd
)
→ L2

loc

(
Rd, dk;L2

loc

(
Rd
))

as

(15)
(
ŨBFψ

)
(k, x) =

1

|Y ∗|1/2
∑
γ∈Γ

e−ik·(x+γ)ψ (x+ γ)

for x ∈ Rd and k ∈ Rd, where |Y ∗| is the volume of Y ∗. In what follows, we construct

UBF : L2
(
Rd
)
→ H from ŨBF : S

(
Rd
)
→ L2

loc

(
Rd, dk;L2

loc

(
Rd
))

by following [17].
First note that (

ŨBFψ
)

(k, x+ γ′) =
(
ŨBFψ

)
(k, x)(16) (

ŨBFψ
)

(k + γ∗, x) = e−iγ
∗·x
(
ŨBFψ

)
(k, x)(17)

holds for all γ′ ∈ Γ and γ∗ ∈ Γ∗ and the function is periodic in x ∈ Rd, and thus
(
ŨBFφ

)
(k, ·)

can be regarded as an element of H′ for each k ∈ Rd.
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Next, by introducing a unitary representation of the group Γ∗, τ : Γ∗ → U (H′), as
(τ (γ∗)φ) (x) = eiγ

∗·xφ (x) for φ ∈ H′, x ∈ Rd, and γ∗ ∈ Γ∗, the function(
ŨBFψ

)
∈ L2

loc

(
Rd, dk;H′

)
can be regarded as an element of the Hilbert space

(18)
Hτ =

{
ψ ∈ L2

loc

(
Rd, dk;H′

) ∣∣ψ (k − γ∗, ·) = τ (γ∗)ψ (k, ·) , for all γ∗ ∈ Γ∗ for a.e. k ∈ Rd
}
.

Since there is a natural isomorphism between Hτ and L2 (Y ∗, dk;H′) given by restriction from

Rd to Y ∗, we get Hτ ' H =
∫ ⊕
Y ∗
H′ dk.

In addition,
(
ŨBFψ1, ŨBFψ2

)
H

= (ψ1, ψ2)L2(Rd) holds for ψ1, ψ2 ∈ S
(
Rd
)
. This can be shown

as follows: First, note that(
ŨBFψ1, ŨBFψ2

)
H

=

∫
Y ∗

(
ŨBFψ1 (k, ·) , ŨBFψ2 (k, ·)

)
H′

dk

=
1

|Y ∗|

∫
Y ∗

∫
Td

∑
γ′,γ∈Γ

eik·(x+γ′)−ik·(x+γ)ψ1 (x+ γ′)ψ2 (x+ γ) dxdk

holds where · is the complex conjugate of an operand. Since the sum in the integrand converges
uniformly for all x ∈ Td and k ∈ Y ∗ and the domains of the integrations are compact, the sums
and integrals can be interchanged to get

(19)
1

|Y ∗|
∑
γ′,γ∈Γ

∫
Y ∗

∫
Td

eik·(γ
′−γ)ψ1 (x+ γ′)ψ2 (x+ γ) dxdk.

By integrating it with respect to k and using

1

|Y ∗|

∫
Y ∗
eik·(γ

′−γ)dk = δγ′,γ ,

where δγ′,γ =

{
1 (γ′ = γ)
0 (γ′ 6= γ)

, we get

(20)
∑
γ∈Γ

∫
Td

ψ1 (x+ γ)ψ2 (x+ γ) dx.

This is equal to

(21) (ψ1, ψ2)L2(Rd) =

∫
Rd

ψ1 (x)ψ2 (x) dx

and thus proves the claim. Since S
(
Rd
)

is dense in L2
(
Rd
)
, the modified Bloch-Floquet operator

can be extended to be a unitary operator UBF : L2
(
Rd
)
→ H with inverse given by

(22)
(
U−1

BFψ
)

(x) =
1

|Y |1/2

∫
Y ∗
ψ (k, [x]) eik·x dk,

where [·] refers to the decomposition x = γx + [x] with γx ∈ Γ and [x] ∈ Y .
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2.3. Direct Integral Decomposition of Eq. (1). Suppose d = 1, 2, 3 and V : Rd → R is
Γ-periodic and V ∈ L2

loc

(
Rd
)
. Then,

(23) ĤBF = UBFĤU−1
BF =

∫ ⊕
Y ∗
Ĥ (k) dk

holds with fiber operator

(24) Ĥ (k) =
1

2
(−i∇x + k)

2
+ V (x)

for k ∈ Y ∗ acting on the k-independent domain D0 = W 2,2
(
Td
)
⊂ H′, where

(25) W 2,2
(
Td
)

= {ψ ∈ H′ |Dαψ ∈ H′, for all |α| ≤ 2}
is the Sobolev space where Dαψ is the differential of ψ in the weak sense, i.e., one satisfies

(26)

∫
Td

(Dαψ) (x)φ (x) dx = (−1)
|α|
∫
Td

ψ (x) (Dαφ) (x) dx

for all φ ∈ C∞
(
Td
)
.

To prove the claim in Eq. (23), let us show the following:

(27) UBF (−∆)U−1
BF =

∫ ⊕
Y ∗

(−i∇x + k)
2
dk.

Let A be the operator on the right hand side of Eq. (27). The operator A (k) = (−i∇x + k)
2

is self-adjoint for k ∈ Y ∗ acting on the k-independent domain D0 = W 2,2
(
Td
)
⊂ H′ and is

measurable, therefore, Theorem XIII.85 (a) in [20] guarantees that the operator A is self-
adjoint as well. We shall show that if ψ ∈ S

(
Rd
)
, then, UBFψ ∈ D (A) and

UBF (−∆ψ) = A (UBFψ) .

Since −∆ is essentially self-adjoint on S
(
Rd
)

and A is self-adjoint, Eq. (27) follows because this
means that −∆ has the unique self-adjoint extension that should coincide with the self-adjoint
operator U−1

BFAUBF. Take an arbitrary ψ ∈ S
(
Rd
)
. Then,

UBF (−∆ψ) (k, x) =
1

|Y ∗|1/2
∑
γ∈Γ

e−ik·(x+γ) (−∆ψ) (x+ γ)(28)

=
1

|Y ∗|1/2
∑
γ∈Γ

(−i∇x + k) e−ik·(x+γ) (−i∇xψ) (x+ γ)(29)

=
1

|Y ∗|1/2
∑
γ∈Γ

A (k) e−ik·(x+γ)ψ (x+ γ)(30)

holds. Since the sum converges uniformly for x ∈ Y , the sum and differential can be interchanged
and we get

(31) A (k)
1

|Y ∗|1/2
∑
γ∈Γ

e−ik·(x+γ)ψ (x+ γ)

and this equals to (A (UBFψ)) (k, x). For each k ∈ Y ∗,
(32) (A (UBFψ)) (k, x+ γ) = (A (UBFψ)) (k, x)

for all γ ∈ Γ, thus (A (UBFψ)) (k, ·) ∈ H′. This proves UBFψ ∈ D (A). In the same manner, we
can prove

(33) UBFV (x)U−1
BF =

∫ ⊕
Y ∗
V (x) dk.
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Let B be the operator on the right hand side of Eq. (33). By noting that

(34) |(ψ, V ψ)H′ | ≤ ‖V ‖H′ (ψ,ψ)H′ = 0× (ψ,A (k)ψ) + β (ψ,ψ)H′

holds for all k ∈ Y ∗ and ψ ∈W 2,2
(
Td
)

where β = ‖V ‖H′ and using Theorem XIII.85 (g) in

[20], we conclude that ĤBF =
∫ ⊕
Y ∗
Ĥ (k) dk is self-adjoint on W 2,2

(
Td
)

as well and this proves
the claim in Eq. (23).

Note that λ ∈ σ
(
ĤBF

)
if and only if

(35)
∣∣∣{k ∣∣∣σ (Ĥ (k)

)
∩ (λ− ε, λ+ ε) 6= ∅

}∣∣∣ > 0

holds for all ε > 0, where |·| is the Lebesgue measure on Y ∗ by Theorem XIII.85 (d) in [20].

By using this fact, we can restore the spectrum of ĤBF from the spectrum of Ĥ (k) for each
k ∈ Y ∗.

2.4. Spectral Structures of Ĥ (k). Suppose k ∈ Y ∗. We investigate the spectral structures of

the operator Ĥ (k) onH′. To do that, let us investigate the spectral structures of the unperturbed

operator Ĥ0 (k) = 1
2 (−i∇x + k)

2
onH′. This operator is self-adjoint on W 2,2

(
Td
)

bounded from

below, and has the complete set of eigenvectors φn (x) = 1
|Y ∗|1/2 e

i
∑d

j=1 njγ
∗
j ·x with the eigenvalues

1
2

(∑d
j=1 njγ

∗
j + k

)2

for n ∈ Zd. From this information, we deduce the spectral structures of

Ĥ (k) in what follows. First, note that Ĥ0 (k) has a compact resolvent, which can be shown
by using Theorem XIII.64 in [20]. Second, note that V is in L2

(
Td
)

and is symmetric and

satisfies Eq. (34) for all k ∈ Y ∗ and ψ ∈ W 2,2
(
Td
)
. Then, Ĥ (k) = Ĥ0 (k) + V is self-adjoint

and bounded from below as well and has a compact resolvent, which can be shown by using
Theorem XIII.68 in [20]. Then, by using Theorem XIII.64 in [20], we conclude that Ĥ (k)
has a complete set of eigenvectors with eigenvalues E0 (k) ≤ E1 (k) ≤ · · · where Ej (k)→∞ as
j →∞. Since

(36) H (k + γ∗) = τ (γ∗)
−1
H (k) τ (γ∗)

holds for all γ∗ ∈ Γ∗, Ej (k) is Γ∗-periodic function of k for j ∈ N ∪ {0}. In the context of band
theory in solid-state physics, the eigenvalues Ej (k) parametrized by k ∈ Y ∗ for each j ∈ N∪{0}
are called a band and we denote a band as a set of the eigenvalues parametrized by k ∈ Y ∗

having a common index j ∈ N ∪ {0}.

3. Singularities in the spectral structures of the Schrödinger operator

In this section, we review our recent progress on classification of geometric structures of bands
in a neighborhood of a band crossing in the bulk of a crystal (d = 3), under the condition that
either time-reversal symmetry or space-inversion symmetry is broken [25]. Under this condition,
band crossings, i.e, Ej (k) = El (k) for j 6= l, occur only at a finite number of points k ∈ Y ∗ in
general. Among these band crossings, two-band crossings occur most generically and thus we
first focus on a two-band crossing. Such band crossings are important because the band cannot
change its topology unless its band gaps close.

Without loss of generality, we can assume a two-band crossing occurs at the origin k = 0 ∈ R3

in order to analyze the local geometry, and let E± (k) (E− (k) ≤ E+ (k)) be two bands involved
in the crossing. Let σ (k) = {E± (k)} be the set of the eigenvalues. In addition, we assume that
there exists an open neighborhood of the origin U

(
⊂ Rd

)
in which the gap condition

(37) inf
k∈U

d
(
σ (k) , σ

(
Ĥ (k)

)
\ σ (k)

)
> 0
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holds, where d (·, ·) is the Euclidean distance between the two sets. Under the gap condition,
the projection operator P (k) : H′ → H′ can be defined by using the Dunford integral such as

(38) P (k) = − 1

2πi

∫
C

(
Ĥ (k)− z

)−1

dz,

where the integration path C on C is chosen so that it encloses σ (k) (k ∈ U) counterclockwise.
Under this setting, by using Proposition 2.1. in [17], the map k 7→ P (k) is of class C∞

from Rd to L (H′) equipped with the operator norm. This implies that there exists an open
neighborhood U0 ⊂ U in which ‖P (k)− P (0)‖ < 1 holds. In the open neighborhood, we can
use Nagy’s formula [12]

(39) W (k) =
(

1− (P (k)− P (0))
2
)−1/2

(P (k)P (0) + (1− P (k)) (1− P (0)))

to get a smooth orthogonal frame χj (k) = W (k)χj (0) (j = 1, 2) for

(40) Ran P (k) = {ψ ∈ H′ |There exists ψ′ ∈ H′ such that ψ = P (k)ψ′ holds.} (k ∈ U0)

where χj (0) (j = 1, 2) is an orthogonal basis spanning Ran P (0). By defining

Hjl (k) =
(
χj (k) , Ĥ (k)χl (k)

)
for j, l = 1, 2, the map

(41) H : k 7→
(
H11 (k) H12 (k)
H21 (k) H22 (k)

)
is a C∞ map from U0 to the set of 2× 2 Hermite matrices and the two eigenvalues E± (k) can
be written as

(42) E± (k) =
H11 (k) +H22 (k)±

√
(H11 (k)−H22 (k))

2
+H12 (k)H21 (k)

2
.

If we consider the relative difference between the two eigenvalues, the trace part of the matrix

(43)
H11 (k) +H22 (k)

2

(
1 0
0 1

)
is irrelevant and thus we subtract the trace part so that the target image of the map H is in the
set of 2 × 2-traceless Hermite matrix Herm0 (2) for k ∈ U0. Since we assume E+ (0) = E− (0),

the map should satisfy H11 (0) = H22 (0) and H12 (0)H21 (0) = |H21 (0)|2 = 0. In conjunction
with Trace H (0) = H11 (0) +H22 (0) = 0, we get H (0) = O2 where O2 is the 2× 2 zero matrix.
Under this setting, the map H can be written as H :

(
R3, 0

)
→ (Herm0 (2) , O2). Having this

setting in mind, we introduce our framework [25, 11] to classify Hamiltonians in a neighborhood
of a multi-band crossing in the next section.

3.1. Settings. Let Mm (C) be the set of m × m complex matrices, Herm0 (m) be the set of
m×m trace-less Hermite matrices

(44) Herm0 (m) =
{
X ∈Mm (C)

∣∣X† = X,Trace X = 0
}
,

and SU (m) be the set of m×m special unitary matrices

(45) SU (m) =
{
X ∈Mm (C)

∣∣X†X = XX† = Im,detX = 1
}
,

where Im is the m×m unit matrix. Let H,H ′ : (Rn, 0)→ (Herm0 (m) , Om) be C∞ map-germs
where n ∈ N and Om is the m×m zero matrix.
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Definition 3.1. We say that H and H ′ are SU (m)-equivalent if there exists a map-germ
U : (Rn, 0) → (SU (m) , U (0)) and a diffeomorphism-germ s : (Rn, 0) → (Rn, 0) such that
H ◦ s (k) = U (k)H ′ (k)U† (k) holds for all k ∈ Rn.

For example, the case where m = 2 and n = 3 corresponds to the geometric classification of
Hamiltonians in the bulk of a crystal in a neighborhood of a two-band crossing. In this case, a
map-germ H :

(
R3, 0

)
→ (Herm0 (2) , O2) can be written as

H : k 7→
(

δ (k) β (k)− iγ (k)
β (k) + iγ (k) −δ (k)

)
(46)

= β (k)σ1 + γ (k)σ2 + δ (k)σ3(47)

= (β (k) , γ (k) , δ (k)) · σ,(48)

where β, γ, δ :
(
R3, 0

)
→ (R, 0) are map-germs, k = (k1, k2, k3) ∈ R3 a Bloch wavenumber,

(49) σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
,

are three Pauli matrices, σ = (σ1, σ2, σ3), and (β (k) , γ (k) , δ (k)) ·σ is an inner product between
the two vectors (β (k) , γ (k) , δ (k)) and σ. If one considers a map-germ

H ′ : k 7→ U (k)H (k)U† (k)

where U : (Rn, 0) → (SU (m) , U (0)), the image of the map-germ H ′ is also in (Herm0 (2) , O2)
and H ′ (k) and H (k) are unitary equivalent for k ∈ R3. Therefore, it is natural to consider the
two map-germs H ′ and H as equivalent in their geometric classification of bands. Contrastingly,
the role that the diffeomorphism-germ s :

(
R3, 0

)
→
(
R3, 0

)
plays in the definition may be

strange in this context because the source space R3 is spanned by a Bloch wavenumber k and
introducing arbitrary nonlinear transformations to that space is not at all natural. Depending
on which geometrical features one wants to preserve, one can have several other choices:

(1) Restrict a class of s :
(
R3, 0

)
→
(
R3, 0

)
to the set of orthogonal transformations.

(2) Relax a class of s :
(
R3, 0

)
→
(
R3, 0

)
to the set of homeomorphisms.

In case of 1, surely all the details of the graph of the eigenvalues against k are preserved. To
understand a phenomenon such as in [7], in which the star-like shape of the Fermi surface is
essential, it is important not to miss the details. However, if you restrict a class of

s :
(
R3, 0

)
→
(
R3, 0

)
to the set of orthogonal transformations, you will end up with infinitely many classes as many as
all the possible graphs of the eigenvalues against k and this classification may be too fine to be
useful. Contrastingly, if you relax a class of s :

(
R3, 0

)
→
(
R3, 0

)
to the set of homeomorphisms,

you may end up with a finite number of classes up to a certain codimension but you will miss
important information like multiplicity, which tells the maximum possible number of generic
band crossings that can appear if you perturb the Hamiltonians smoothly [25]. Here, we set a
class of s :

(
R3, 0

)
→
(
R3, 0

)
to the set of diffeomorphisms as in the definition so that we can

get a finite number of classes up to a certain codimension and at the same time we do not miss
important quantities like multiplicity and Chern number.

Let En = {f : (Rn, 0)→ (R, f (0))} be the ring of function-germs with the maximal idealMn.
Let En,m = {H : (Rn, 0)→ (Herm0 (m) , H (0))} and

MnEn,m =MnEn,m = {H : (Rn, 0)→ (Herm0 (m) , Om)} .
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For SU (m)-equivalence, we define its tangent space TSU (m) at H ∈ MnEn,m as the set of
infinitesimal actions of map-germs U and s as

(50) TSU (m) (H) =


∂Hε (k)

∂ε

∣∣∣∣
ε=0

∣∣∣∣∣∣∣∣
Hε (k) = Uε (k)H ◦ sε (k)U†ε (k) ,
Uε : (Rn, 0)→ (SU (m) , Uε (0)) ,

sε : (Rn, 0)→ (Rn, 0) ,
Uε=0 = Im, sε=0 = idn

 (⊂ En,m) ,

where idn : (Rn, 0)→ (Rn, 0) is the identity. In a similar manner, we define its extended tangent
space as the set of infinitesimal actions of U and s that may map the origin to a point different
from the origin as

(51) TeSU (m) (H) =


∂Hε (k)

∂ε

∣∣∣∣
ε=0

∣∣∣∣∣∣∣∣
Hε (k) = Uε (k)H ◦ sε (k)U†ε (k) ,
Uε : (Rn, 0)→ (SU (m) , Uε (0)) ,

sε : (Rn, 0)→ (Rn, sε (0)) ,
Uε=0 = Im, sε=0 = idn

 (⊂ En,m) .

Note that the tangent space TSU (m) (H) and the extended tangent space TeSU (m) (H) are

modules over En. We define the codimension of H ∈ MnEn,m as dimR
En,m

TeSU (m) (H)
, which

is the dimension of the quotient module
En,m

TeSU (m) (H)
regarded as a vector space over R. For

example, if n = 3,m = 2 as in the example above and H (k) =
(
k1, k2, k

`
3

)
· σ where ` ∈ N, its

tangent space, extended tangent space, quotient module, and codimension are:

(52) TSU (m) (H) = 〈(−k2, k1, 0) · σ,
(
k`3, 0,−k1

)
· σ,
(
0,−k`3, k2

)
· σ〉En

+Mn〈(1, 0, 0) · σ, (0, 1, 0) · σ,
(
0, 0, `k`−1

3

)
· σ〉En ,

(53) TeSU (m) (H) = 〈(−k2, k1, 0) · σ,
(
k`3, 0,−k1

)
· σ,
(
0,−k`3, k2

)
· σ,

(1, 0, 0) · σ, (0, 1, 0) · σ,
(
0, 0, `k`−1

3

)
· σ〉En ,

(54)
En,m

TeSU (m) (H)
= 〈(0, 0, 1) · σ, (0, 0, k3) · σ, · · · ,

(
0, 0, k`−2

3

)
· σ〉R,

and

dimR
En,m

TeSU (m) (H)
= `− 1,

respectively, where 〈· · · 〉A is the A-module generated by the elements in the bracket. Under this
setting, we get the following classification ofM3E3,2 under SU (m)-equivalence [25]. In [25], the
classes represented by the map-germs

(55)
(
k1, k2k3, k

2
2 ± rk`+2

3

)
· σ (r > 0, ` = 3, 4, 5)

are missing and we correct the result by adding the representatives to Table 1. The detail of the
correction is reported in [26].

3.2. Classification of M3E3,2 under SU (2)-equivalence.

Theorem 3.1 ([25]). If the codimension of a map-germ in M3E2,3 is less than 8, the map-germ
is SU (2)-equivalent to one and only one of the map-germs listed in Table. 1.
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Ĥ (k) ranges mult Ch± codim
(k1, k2, k3) · σ 1 ∓1 0(
k1, k2, k

`
3

)
· σ ` = 2, · · · , 8 `

{
∓1 (`:odd)
0 (`:even)

`− 1(
k1, k

2
2, k

2
3 + rk2

2

)
· σ r ∈ [0,∞) 4 0 5(

k1, k2k3,
r
2

(
k2

2 − k2
3

))
· σ r ∈ (0, 1) 4 ±2 5(

k1, k2k3, k
2
2 + rk`+2

3

)
· σ r ∈ (0,∞) , ` = 1, 3 `+ 4 ±1 `+ 4(

k1, k2k3, k
2
2 + rk4

3

)
· σ r ∈ (0,∞) 6 0 6(

k1, k2k3, k
2
2 − rk4

3

)
· σ r ∈ (0,∞) 6 ±2 6(

k1, k
2
2 − k2

3 + rk3
3, 2k2k3

)
· σ r ∈ (0,∞) 4 ±2 7(

k1, k
2
2 ± k2

3, rk
3
3

)
· σ r ∈ (0,∞) 6 0 7

Table 1. List of map-germs in each class of codimension less than 8 where
“ranges” are possible ranges for the parameters r and `, “mult” multiplic-
ity, “Ch±” Chern numbers of the upper and lower energy levels, and “codim”
SU (2)e-codimension.

Here we define the multiplicity [14] and Chern number [27, 3, 23] as follows: Let

(56) Ĥ (k) = (β (k) , γ (k) , δ (k)) · σ

be a map-germ. Let 〈β, γ, δ〉E3 be the ideal in E3 generated by the matrix elements of the
map-germ. We define the multiplicity of the map-germ as

(57) dimR E3/〈β, γ, δ〉E3 ,

i.e., the dimension of the quotient ring E3/〈β, γ, δ〉E3 regarded as a vector space over R. Next, we

define the Chern number. Here, we assume Ĥ (k) 6= (0, 0, 0)·σ except for the origin k = 0. In this
case, two eigenfunctions of the matrix, ψ(±) (k), can be chosen so that they depend smoothly on
the Bloch wavenumber k

(
∈ R3

)
except for the origin k = 0. Let their corresponding eigenvalues

be

(58) E(±) (k)
(
E(+) (k) ≥ E(−) (k)

)
.

Note that Ĥ (k)ψ(±) (k) = E(±) (k)ψ(±) (k) holds. In terms of the two eigenfunctions, Berry
curvatures are defined as

(59) B(±) (k) = i

3∑
j,j′=1

∂

∂kj

(
ψ(±) (k)

∗ · ∂ψ
(±) (k)

∂kj′

)
dkj ∧ dkj′ ,

for k 6= 0. Note that the Berry curvature is well-defined except for the origin k = 0. Let S be an
arbitrary 2-dimensional sphere enclosing the origin k = 0. Then, the Chern number is defined
as

(60) Ch± =
1

2π

∫
S

B(±) (k) .

This number does not depend on how we choose the sphere S as long as the sphere encloses the
origin. For the calculation of the multiplicity and Chern number, see [25].

In this classification, the class of codimension 0 is the most generic class and its normal form
has a Weyl point at the origin k = 0. Other classes of higher codimension appear on verges of
bifurcations. Bands cannot change their topology without colliding with others and these classes
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are expected to provide invaluable information on which types of geometric changes happen if
two bands collide with each other.

When we presented this result in front of Prof. Goo Ishikawa in a workshop of differential
geometry and singularity theory and their applications in Morioka, Japan, 2017,
Prof. Goo Ishikawa pointed out that band crossings among three or higher number of bands
might be relevant for such a high codimension as 8. To answer Prof. Goo Ishikawa’s question, we
would like to show a list of lower bounds of codimensions of map-germs in En,m under SU (m)-
equivalence. The codimension of a map-germ in En,m having an m-fold degeneracy at the origin
should be larger than this lower bound.

3.3. Lower bound of codimension of map-germs inMnEn,m under SU (m)-equivalence.
Let γj ∈ Herm0 (m)

(
j = 1, · · · ,m2 − 1

)
be bases of Herm0 (m).

Theorem 3.2. Codimension of a C∞ map-germ H ∈MnEn,m is equal to or greater than

(61) max
d∈N∪{0}

{(
m2 − 1

) (n+ d− 1)!

(n− 1)!d!
− n

d∑
d′=0

(n+ d′ − 1)!

(n− 1)!d′!

}
.

Proof. Take an arbitrary H ∈ MnEn,m and d ∈ N ∪ {0}. We estimate the lower bound of its
codimension. First note that

(62) dimR
En,m

TeSU (m) (H)
≥ dimR

En,m
TeSU (m) (H) +Md+1

n En,m

holds.

Second note that
En,m

TeSU (m) (H) +Md+1
n En,m

is isomorphic to

(63)
En,m/Md+1

n En,m(
TeSU (m) (H) +Md+1

n En,m
)
/Md+1

n En,m

by using (2.6) Theorem. (Third isomorphism theorem) in [1]. En,m/Md+1
n En,m is an(

m2 − 1
)(∑d

d′=0

(n+ d′ − 1)!

(n− 1)!d′!

)
-dimensional vector space over R.

(64)
(
TeSU (m) (H) +Md+1

n En,m
)
/Md+1

n En,m

is a vector space over R spanned by

kd11 kd22 · · · kdnn
∂H (k)

∂kj
+Md+1

n En,m

for j = 1, · · · , n and d1 + d2 + · · · + dn ≤ d and kd11 kd22 · · · kdnn [γj , H (k)] + Md+1
n En,m for

j = 1, · · · , n and d1 + d2 + · · · + dn ≤ d − 1 where [A,B] = AB − BA for A,B ∈ Herm0 (m),
which is a vector space in En,m/Md+1

n En,m of dimension at most(m2 − 1
)max{d−1,0}∑

d′=0

(n+ d′ − 1)!

(n− 1)!d′!

+ n

d∑
d′=0

(n+ d′ − 1)!

(n− 1)!d′!

 .
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Therefore,

(65) dimR
En,m/Md+1

n En,m(
TeSU (m) (H) +Md+1

n En,m
)
/MnEn,m

≥
(
m2 − 1

)( d∑
d′=0

(n+ d′ − 1)!

(n− 1)!d′!

)

−

(m2 − 1
)max{d−1,0}∑

d′=0

(n+ d′ − 1)!

(n− 1)!d′!

+ n

d∑
d′=0

(n+ d′ − 1)!

(n− 1)!d′!

 ,

=
(
m2 − 1

) (n+ d− 1)!

(n− 1)!d!
− n

d∑
d′=0

(n+ d′ − 1)!

(n− 1)!d′!

holds. Since d ∈ N ∪ {0} is arbitrary, this proves the theorem. �

If we set n = 3, we get lower bounds of codimensions for m = 2, 3, 4, 5, 6 in Table. 2. The
results in Table 2 imply multiple band crossings may be less generic compared to two band
crossings.

m 2 3 4 5 6
codimension (≥) 0 20 180 840 2783

Table 2. Lower bounds of codimensions relative to SU (m)-equivalence for
n = 3 estimated by Eq. (61).

However, if we consider the codimension of a moduli family of map-germs, it can still have a
small codimension. To investigate it, we need to classify En,m not based on the codimension of
the extended tangent space in [25] but that substracted by the number of moduli parameters.

4. Future Perspectives

So far we have classified local geometric structures of bands in a neighborhood of a two-
band crossing by classifying underlying Hamiltonians in the bulk of a crystal when either time-
reversal symmetry or spacial inversion symmetry is broken. We have also estimated lower bounds
of codimension for multi-band crossings. This should be the first step to understand global
geometric structures of bands and their bifurcations. Steps further along this line of research
are: Classification of local geometric structures of bands in a neighborhood of a multi-band
crossing

(1) relative to a Fermi level.
(2) on a surface.
(3) in the bulk under time-reversal and spacial-inversion symmetries.

Point 1 is important to study the geometry of the Fermi surface, i.e., the intersection between
bands and a Fermi level. For example, the geometry of a Fermi surface determines a type of
semimetails [24]. This requires studying not only relative differences between bands, but also
their differences relative to a Fermi level. We also need to take the trace part of Eq. (43) into
account to classify geometric structures of Fermi surfaces.

Point 2 is important to understand geometric structures of bands on a surface, such as a Dirac-
cone [7, 29, 4] and is also important for studying its engineering [9]. The geometric structures
depend strongly on a crystallographic symmetry and the presence or absence of time-reversal
symmetry and thus it is important to take these symmetries into account. This can be done if
we extend our framework [25, 11] to an equivariant framework.
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If the effective Hamiltonian of a crystal has a spin degree of freedom and symmetry as in
Point 3, every band has two-fold degeneracy such as E0 (k) = E1 (k) ≤ E2 (k) = E3 (k) ≤ · · · for
k ∈ Y ∗ and it is important to take the degeneracy along with symmetries into account. Under
this condition, band crossings that occur most generically are crossings of two pairs of bands.
To classify geometric structures of such crossings, we need to classify 4×4 Hamiltonians instead
of 2 × 2 ones because four bands are involved in the crossings. Such crossings appearing at
time reversal invariant momentum (TRIM) points play a major role for topological properties of
global band structures [8, 18]. Bifurcations occurring at TRIMs are shown to trigger topological
changes in a lattice model in Chapter 3 in [22]. To study such bifurcations in our framework,
we need to extend our framework [25, 11] to a framework in a multi-germ setting.
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