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LOOPS IN GENERALIZED REEB GRAPHS ASSOCIATED TO STABLE

CIRCLE-VALUED FUNCTIONS

ERICA BOIZAN BATISTA, JOÃO CARLOS FERREIRA COSTA, AND JUAN J. NUÑO-BALLESTEROS

Abstract. Let N be a smooth compact, connected and orientable 2-manifold with or without
boundary. Given a stable circle-valued function γ : N → S1, we introduced a topological

invariant associated to γ, called generalized Reeb graph. It is a generalized version of the
classical and well known Reeb graph. The purpose of this paper is to investigate the number

of loops in generalized Reeb graphs associated to stable circle-valued functions γ : N → S1.

We show that the number of loops depends on the genus of N , the number of boundary
components of N , and the number of open saddles of γ. In particular, we show a class of

functions whose generalized Reeb graphs have the maximal number of loops.

1. Introduction

The Reeb graph was introduced by Reeb in [13] and it is well known that it is a complete
topological invariant for Morse functions from S2 to R, where S2 is the standard sphere in R3

(see [1, 14]).
Although originally introduced as a tool in Morse theory, the Reeb graphs have several appli-

cations in Computational Geometry, Computer Graphics, Engineering, Applied Mathematics,
etc. A more extensive discussion of Reeb graphs and their variations in geometric modeling and
visualization applications can be found in [4, 7].

An interesting problem related to Reeb graphs in the context of computational geometry is
to investigate the number of loops of such graphs. The number of loops in a Reeb graph of a
Morse function over a 2-manifold (orientable or non-orientable) with and without boundary was
investigated in [5]. Later, some of these results were generalized in [8].

In this paper we study a similar problem. We investigate the number of loops in a graph as-
sociated to a stable circle-valued function γ : N → S1, where N is a smooth compact, connected
and orientable 2-manifold with or without boundary and S1 is the standard sphere in R2. The
study of stable circle-valued functions was initiated by S.P. Novikov in the early 1980’s related
with a hydrodynamic problem [11, 12]. Today we can find applications and connections to many
geometrical problems. Recently, an interesting connection with Singularity theory was obtained
by the authors related to the topological classification of finitely determined map germs from
(R3, 0) to (R2, 0) (see [2, 3]).

A stable circle-valued function is defined as follows:

Definition 1.1. Let N be a smooth compact, connected and orientable 2-manifold with bound-
ary ∂N (including the case when ∂N = ∅), and let P be a smooth 1-manifold. We say that
γ : N → P is stable if:
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(1) γ is Morse with distinct critical values;
(2) γ does not have critical points in ∂N ;
(3) γ|∂N is regular.

If P = R and γ : N → R is stable, we can consider the following equivalence relation in N :
given x, y ∈ N , x ∼ y if and only if γ(x) = γ(y) and furthermore, x and y are in the same
connected component of γ−1(γ(x)). Reeb [13] showed that the quotient set N/ ∼ admits a graph
structure which is called Reeb graph associated to γ.

Intuitively, the Reeb graph associated to γ is obtained by contracting each connected compo-
nent of the level curves of γ to points, where the vertices correspond to connected components
of level curves containing critical points. Consider the following example, where γ : N → R is
the height function and N is a closed 2-manifold:
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Figure 1. Reeb graph associated to the height function

When N is diffeomorphic to the sphere S2, the Reeb graph is a tree (see [13]).
Since the Reeb graph gives the topological information about N , it is interesting to investigate

the relation of its structure with topological elements such as Euler characteristic, Betti numbers,
genus, etc. For instance, as motivation for this work, we can cite the following results:

Proposition 1.2. ([5, 8]) The Reeb graph of a Morse function over a connected orientable
2-manifold of genus g without boundary has g loops.

Proposition 1.3. ([5, 8]) The Reeb graph of a Morse function over a connected orientable
2-manifold of genus g with h > 1 boundary components has between g and 2g + h− 1 loops.

Notice that the number of loops in the Reeb graph is given by the first Betti number of the
graph, which is the rank of the first homology group. Also, it follows that the first Betti number
of the 2-manifold N bounds from above the first Betti number of the graph, i.e.,

number of loops ≤ β1(N).

Figure 2 provides an example of a Reeb graph associated to γ : N → S1, where N is a
2-manifold with h = 4 boundary components and genus g = 1. The Reeb graph in this case has
3 loops, with 3 ≤ 2g + h− 1 = 5 = β1(N).

Remark 1.4. In the Reeb graph given in Figure 2, the slim traces indicate circle fibers and the
bold traces arc fibers of γ, respectively. In Section 2, these different kind of traces in a Reeb
graph are defined with more details.
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�

Figure 2. Reeb graph of a circle-valued Morse function γ.

In this work we obtain a similar relation to the number of loops, but now in a more general
context, using stable circle-valued functions γ : N → S1 and the notion of generalized Reeb
graphs.

2. The generalized Reeb graph

The generalized Reeb graph was introduced by the authors in [2, 3]. It is a generalized version
of the classical Reeb graph, and it was inspired in Maksymenko’s work [10].

Let γ : N → S1 be a stable circle-valued function, where N is a smooth connected, compact
and orientable 2-manifold with or without boundary. Consider the following equivalence relation
in N , analogous to the one given in the previous Section: given x, y ∈ N , x ∼ y if and only if
γ(x) = γ(y), where x and y are in the same connected component of γ−1(γ(x)). The following
result shows the structure of N/ ∼:

Proposition 2.1. Let N be a smooth connected, compact and orientable 2-manifold with or
without boundary. Let γ : N → S1 be a stable circle-valued function. Then, the quotient space
N/ ∼ admits a graph structure as follows:

(1) The vertices are the connected components of level curves γ−1(v), where v ∈ S1 is a
critical value;

(2) Each edge is formed by points that correspond to connected components of level curves
γ−1(v), where v ∈ S1 is a regular value.

Proof. Since γ is stable its critical points are isolated and N being compact, γ has a finite number
of critical points. Moreover, N connected implies N/ ∼ connected.

Let v1, . . . , vr be the critical values of γ. Then,

γ|N − γ−1({v1, . . . , vr}) : N − γ−1({v1, . . . , vr})→ S1 − {v1, . . . , vr}

is regular, and the induced map

γ̃ : (N − γ−1({v1, . . . , vr}))/ ∼→ S1 − {v1, . . . , vr}

is a local homeomorphism. Each connected component of S1−{v1, . . . , vr} is homeomorphic to an
open interval, so each connected component of (N−γ−1({v1, . . . , vr}))/ ∼ is also homeomorphic
to an open interval.

�
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Remark 2.2. (1) Let Ci be the connected components of ∂N , with i = 1, . . . , n. Then
γ|Ci : Ci → S1 is a diffeomorphism.

(2) The level curves of γ intersect ∂N transversely.

The possible topological types of the level curves of γ : N → S1 are:

(a) circle (b) saddle (c) max/min (d) line (e) half
open saddle

(f) open
saddle

Figure 3. Topological types of level curves

By Remark 2.2 item (2), the level curves of γ that can intersect ∂N are only the types (d), (e)
and (f). Furthermore, by item (1), each level curve of γ can intersects at most once a connected
component Ci of ∂N , and these intersections happen in regular points.

The graph structure of N/ ∼ given in Proposition 2.1 associated to a stable function
γ : N → S1 will be denoted by Γγ . Each edge of Γγ can be of two types: one corresponds
to connected components of circle type and will be denoted by a slim trace; another corresponds
to connected components of interval type and will be denoted by a bold trace. We denote by Γ
the subgraph of Γγ given by the slim edges with their respective vertices, and by Γ′ the subgraph
of Γγ given by the bold edges with their respective vertices (i.e., Γγ = Γ ∪ Γ′).

Each vertex of the graph can be of six types, depending if the connected component has a
maximum/minimum critical point, a saddle point, a half open saddle point, an open saddle point
or a regular point. Then, the possible incidence rules of edges and vertices when γ : N → S1 is
stable are given in Figure 4.

d e f

Figure 4. Incidence rules

We denote by S, S′, S′′, M , C and I the number of vertices of type (a) through (f), respectively.
Figure 5 represents some possible structures of the graph N/ ∼ for stable maps from N to

S1. Notice that Γ and Γ′ are not necessarily connected graphs.



108 E.B. BATISTA, J.C.F. COSTA, AND J.J. NUÑO-BALLESTEROS
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Figure 5. Graphs N/ ∼ for stable maps γi : N → S1, i = 1, 2, 3

Let v1, . . . , vk ∈ S1 be the critical values of γ : N → S1. We choose a base point v0 ∈ S1 and
an orientation. We can reorder the critical values such that v0 < v1 < . . . < vk and we label
each vertex with values i ∈ {1, . . . , k}, if it corresponds to critical values vi.

Definition 2.3. Let γ : N → S1 be a stable circle-valued function. The graph given by N/ ∼
together with the types of edges and the labels of the vertices, as previously defined is called the
generalized Reeb graph associated to γ.

Example 2.4. Consider the stable circle-valued functions γ1 : S2 → S1, γ2 : N → S1, where N
is a 2-manifold with boundary, as appear in Figure 5. The respective generalized Reeb graphs,
Γγ1 and Γγ2 , are exhibited in Figure 6.
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Figure 6. Generalized Reeb graphs

As previously stated, the main goal of this work is to investigate the number of loops in
generalized Reeb graphs. This number is defined as follows:

Definition 2.5. Let Γγ be the generalized Reeb graph associated to the stable function
γ : N → S1. The first Betti number of Γγ , denoted by β1(Γγ), is called the number of loops of
Γγ .

In what follows, the notation βi will indicate the ith Betti number.
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3. Number of loops and other properties of Γγ

In this section we investigate the number of loops in generalized Reeb graphs and present
some other properties of these graphs.

From now on, N will be a smooth connected, orientable and closed 2-manifold or N will be a
2-manifold with boundary obtained by taking a closed 2-manifold and removing h-disks. In the
last case, by simplicity, we will simply say that N is a 2-manifold with boundary.

Theorem 3.1. Let N be a closed 2-manifold of genus g and let γ : N → S1 be a non regular
stable circle-valued function. Then the generalized Reeb graph Γγ of γ has g loops.

Proof. First notice that Γγ is connected and χ(Γγ) = V − E, where V,E denote the number of
vertices and edges of Γγ , respectively.

On one hand, V = M + S + I where M,S, I are the numbers of vertices of type: max/min,
saddle or regular, respectively. Since γ is non regular, V 6= 0.

On the other hand, by Euler’s formula E = 1
2

∑V
i=1 deg(vi) where vi ∈ V and deg(vi) (the

degree of vi) is the number of edges incident to vi. As γ is stable, the degree of each vertex of
max/min type is 1, while of regular type is 2 and of saddle type is 3. Hence,

χ(Γγ) = V − E = M + S + I − 1

2
(M + 2I + 3S) =

M − S

2
=

2− 2g

2
= 1− g.

Since Γγ is connected, it follows that β1(Γγ) = g, i.e., Γγ has g loops.
�

Remark 3.2. If γ : N → S1 is a stable circle-valued function, where N is a closed 2-manifold
with χ(N) 6= 0, then γ is always non regular. In fact, suppose γ is regular. Then, γ should be
surjective and from Ehresmann’s fibration theorem [6], γ should be a locally trivial fibration. In
particular, since F is a fiber of this fibration, it should happen that 0 6= χ(N) = χ(S1)χ(F ) = 0,
which is an absurd.

Corollary 3.3. (Proposition 3.4 [2]) Let γ : S2 → S1 be a stable circle-valued function. Then
the generalized Reeb graph of γ is a tree.

Remark 3.4. (1) Notice that the definition of generalized Reeb graph differs from the classical
Reeb graph with respect to the vertices. In the classical case, the vertices are related just with
the connected components of level curves γ−1(v) which contain a critical point. Hence, our
generalized Reeb graph contains some extra vertices corresponding to the regular connected
components of γ−1(v), where v is a critical value. Of course the classical Reeb graph can be
obtained from the generalized one just by eliminating the extra vertices and joining the two
adjacent edges. But in general, the generalized Reeb graph provides more information.

(2) The Figure 7 shows two stable functions γ1, γ2 : S2 → S1 with their respective generalized
Reeb graphs. Both functions share the same classical Reeb graph, but the generalized Reeb
graphs are different. The stable function γ1 is non surjective while γ2 is surjective. Then γ1
and γ2 could not be topologically equivalent, i.e., there are no homeomorphisms φ : S2 → S2

and ψ : S1 → S1 such that γ1 = ψ ◦ γ2 ◦ φ−1. This shows that the classical Reeb graph is not
sufficient to distinguish between these two examples.

(3) If γ : S2 → S1 is not surjective, then γ may be regarded as a Morse function from S2 to
R (via stereographic projection). In this case, the generalized Reeb graph can be obtained from
the classical one just by adding the extra vertices each time that one passes through a critical
value.
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Figure 7. Stable functions and their generalized Reeb graphs

It is obvious that the labeling of vertices of the generalized Reeb graph is not uniquely
determined, since it depends on the chosen orientations and the base points on each S1. Different
choices will produce either a cyclic permutation or a reversal of the labeling in the generalized
Reeb graph.

The following result shows that the number of open saddles together with the genus and the
number of boundary components of N , determine the number of loops in the generalized Reeb
graph associated to γ : N → S1:

Theorem 3.5. Let N be a 2-manifold with boundary and let γ : N → S1 be a stable circle-valued

function. Then, the number of loops in Γγ is given by g+
h+ S′′

2
, where g is the genus of N , h

is the number of connected components of ∂N and S′′ is the number of vertices of open saddle
type.

Proof. Since Γγ is connected we have β0(Γγ) = 1. The Euler characteristic of Γγ is given by
χ(Γγ) = β0(Γγ)− β1(Γγ) = 1− β1(Γγ), where β1(Γγ) represents the number of loops in Γγ .

We also have that χ(Γγ) = V − E, where V , E denote the number of vertices and edges of
Γγ , respectively. Moreover, V = M + S + S′ + S′′ + C + I where M,S, S′, S′′, C, I denote
the numbers of vertices of each type listed in Section 2. On the other hand, by Euler’s formula

E =
1

2

V∑
i=1

deg(vi)

where vi ∈ V .
Since γ is stable, the degree of each vertex of max/min type is 1, while of regular type is 2

and saddle type is 3. Hence,

χ(Γγ) = V − E = M + S + S′ + S′′ + C + I − 1

2
(M + 2C + 2I + 3S + 3S′ + 4S′′)

⇒ χ(Γγ) =
M − S − S′ − 2S′′

2
=
χ(N)− S′′

2
= 1− g − (S′′ + h)

2
.

Therefore, the number of loops is given by β1(Γγ) = g +
(h+ S′′)

2
.

�
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The next proposition shows that the first Betti number of N bounds the number of loops in a
generalized Reeb graph, similar to what happens with the classical Reeb graph (see Section 1):

Proposition 3.6. Let N be a 2-manifold with boundary and let γ : N → S1 be a stable circle-
valued function. Then, the number of loops = β1(Γγ) ≤ β1(N).

Proof. In the proof of Theorem 3.5 we showed that 2χ(Γγ) = χ(N)− S′′. Then,

β1(N) = 2β1(Γγ)− 1− S′′.

Note that

χ(Γγ) = χ(Γ ∪ Γ′) = χ(Γ) + χ(Γ′)− χ(Γ ∩ Γ′) = χ(Γ)− S′′ − S′,

because

χ(Γ′) = V − E = S′ + S′′ + I − 1

2
(2S′ + 4S′′ + 2I) = −S′′

and χ(Γ ∩ Γ′) = S′.
However, since N is a 2-manifold with boundary, the number of connected components of Γ

is at most S′, which means that χ(Γ) ≤ S′ − β1(Γ).
Then,

χ(Γγ) = χ(Γ)− S′′ − S′ ≤ −β1(Γ)− S′′ ≤ −S′′.
Therefore,

β0(Γγ)− β1(Γγ) = χ(Γγ) ≤ −S′′ ⇔ β1(Γγ) ≥ 1 + S′′.

Consequently,

β1(N) = 2β1(Γγ)− (1 + S′′) ≥ β1(Γγ) ⇒ β1(Γγ) ≤ β1(N).

�

A consequence of Theorem 3.5 and Proposition 3.6 is the following relation

g +
(h+ S′′)

2
≤ 2g + h− 1 ⇒ S′′ ≤ 2g + h− 2.

The next result shows a class of functions whose generalized Reeb graphs have the maximal
number of loops:

Theorem 3.7. Let N be a 2-manifold with boundary and let γ : N → S1 be a stable circle-valued
function. If β0(Γ) = S′ then Γγ has the maximal number of loops, i.e., β1(Γγ) = 2g + h− 1.

Proof. Since γ is stable and h 6= 0, then Γ′ 6= ∅. We divide the proof in two cases:

Case 1: S′ = 0.

Since Γγ = Γ ∪ Γ′ is connected, Γ ∩ Γ′ is the set of vertices that correspond to the half open
saddles type and Γ′ 6= ∅, we have that Γ = ∅.

Consequently, M = 0 and S = 0. By the Poincaré-Hopf Theorem it follows that

2− 2g − h = M − S − S′ − S′′ = −S′′ ⇒ S′′ = 2g + h− 2.

As

1− β1(Γγ) = χ(Γγ) = χ(Γ′) = −S′′ = −(2g + h− 2),

then β1(Γγ) = 2g + h− 1.

Case 2: S′ 6= 0.
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Notice that the level curves of half open saddle type divide N in two connected components.
Consider α1, . . . , αS′ the level curves of half open saddle type, and let vi be the vertex corre-
sponding to αi in Γγ = Γ ∪ Γ′, with i = 1, . . . , S′. Then, for each vertex vi there are 3 incident
edges, 2 bold traced edges and 1 slim traced edge.

Let Bi be the connected component of N determined by αi that contains the level curves
corresponding to the slim traced edges arriving at vi. Since Γ ∩ Γ′ = {vi, i = 1, . . . , S′},
Γγ = Γ ∪ Γ′ is connected and β0(Γ) = S′, then each connected component of Γ contains exactly
one vertex vi, i = 1, . . . , S′.

Assume that Bi ∩ ∂N 6= ∅ for some i = 1, . . . , S′. Then, Bi contains the level curves of
interval type. Consequently, it contains a level curve of half open saddle type. Hence, there is a
connected component of Γ which contains two vertices corresponding to half open saddles. But
this is a contradiction, therefore Bi ∩ ∂N = ∅.

Since γ|Bi is Morse for every i = 1, . . . , S′, it follows thatBi contains only level curves of saddle
type, circle type and max/min type. Also, the subgraph Γγ|Bi

satisfies 1− β1(Γγ|Bi
) = Mi−Si,

where Mi is the number of vertices of max/min type and Si is the number of vertices of saddle
type of Γγ|Bi

, respectively. It follows that

S′∑
i=1

(
1− β1(Γγ|Bi

)
)

=

S′∑
i=1

(Mi − Si)⇒ S′ − β1(Γ) = M − S ⇒ β1(Γ) = −M + S + S′.

Also, notice that β0(Γ) = S′ implies β0(Γ′) = 1, then

χ(Γ′) = −S′′ ⇒ β1(Γ′) = 1 + S′′.

Consequently,

χ(Γγ) = χ(Γ) + χ(Γ′)− χ(Γ ∩ Γ′) = β0(Γ)− β1(Γ) + β0(Γ′)− β1(Γ′)− S′
= S′ − (−M + S + S′) + 1− (1 + S′′)− S′ = M − S − S′ − S′′ = χ(N).

Therefore, β1(Γγ) = 2g + h− 1.
�

The next picture illustrates a stable circle-valued function under the conditions of Theorem 3.7.

Ν

Figure 8. Stable circle-valued function with maximal number of loops in the
generalized Reeb graph
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Remark 3.8. Consider γ : N → S1 a stable circle-valued function, where N is a 2-manifold
with boundary and genus zero. Notice that since β0(Γ) ≤ S′, if β0(Γ′) = 1 then β0(Γ) = S′.
Consequently, the number of loops of Γγ is maximal.
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