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ON THE INDEX OF PRINCIPAL FOLIATIONS OF SURFACES IN R3

WITH CORANK 1 SINGULARITIES

J. C. F. COSTA, L. F. MARTINS, AND J. J. NUÑO-BALLESTEROS

Abstract. It is well known that the index associated to the principal foliations at a cross-cap
point is 1

2
. In this work we study the index for other corank 1 singularities from (R2, 0) to

(R3, 0) which either are simple or are non-simple but included in strata of Ae-codimension

≤ 3. We show that the index, under certain conditions, is always 0 or 1, bearing out that the
Loewner conjecture could be true for all corank 1 singularities.

1. Introduction

The classical Loewner conjecture states that the index of the binary differential equation
(BDE) which represents the equation of the principal directions of a smooth immersed surface
in R3 at an isolated umbilic point is always less than or equal to 1. The Loewner conjecture
is a stronger version of the famous Carathéodory conjecture, which claims that every smooth
convex embedding of a 2-sphere in R3 must have at least two umbilics. In fact, since the sum
of the indices of the umbilics of a compact immersed surface is equal to its Euler-Poincaré
characteristic (according to the Poincaré-Hopf formula) it follows that the Loewner conjecture
implies the Carathéodory conjecture, not only for a convex embedding of a 2-sphere, but for any
immersion. The Loewner conjecture is true in the analytic case (cf. [19, 30]) but the smooth
case is still open, as far as we know.

A natural question is whether or not the Loewner conjecture is still true when we consider
a singular surface parametrised as the image of a smooth non-immersive map germ
f : (R2,0) → (R3,0). In fact, if the non-immersive point is isolated then we have a well
defined BDE for the principal directions outside the origin and it makes sense to consider the
index of the singular point of the BDE. By definition, the corank of f is the dimension of the
kernel of its differential at the origin. When f has corank 2, then it is known that this conjecture
is false, since it is not difficult to construct a surface with an isolated singular point of index
two (see [11], Remark 4.7). However, we believe that if f has corank 1, then the index is always
less than or equal to one and hence, the Loewner conjecture is also true in this case. The main
purpose of this paper is to analyse many examples which support this conjecture.

The family of examples we consider here is taken from Mond’s classification in [23], where
he gives a classification under A-equivalence (that is, changes of coordinates in the source and
target) of all smooth germs f : (R2,0)→ (R3,0) which either are simple or are non-simple but
included in strata of Ae-codimension ≤ 3. All map germs in this list have corank 1, so we can
use them to test our conjecture. Of course this list is far from being a complete classification,
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but they are the most natural examples to begin with the analysis. Our main result is that the
index, under certain conditions, is always 0 or 1 in all these examples (Theorem 3.4).

In final of the paper we also consider generic deformations of the singular surface. Let

fλ : (R2,0)→ (R3,0), λ ∈ (−ε, ε),

be a generic deformation of a corank 1 map germ f , i.e. f0 = f , fλ is generic for λ 6= 0 and the
map (λ, t) 7→ fλ(t) is smooth. D. Mond showed in [24] how to count the number of cross-caps
in fλ. Using his result, we estimate the number of umbilic points that appear on the image of
fλ in a neighbourhood of its singular point (Proposition 5.3).

Some references for index of BDE’s are [4, 6, 7, 8, 20].

2. Surfaces with corank 1 singularities

We shall consider surfaces in R3 defined as the image of a corank 1 smooth map f : U → R3,
where U is an open subset of R2. The differential geometry of singular surfaces has been an
object of interest in the past decades and it can be considered with different approaches (cross-
caps or Whitney umbrellas, cuspidal edges, swallowtails or more general types of fronts, etc.)
For example, see [3, 10, 14, 16, 17, 22, 25, 26, 27, 28]. See also [21], where the authors studied
in depth the geometry of surfaces in R3 with corank 1 singularities.

From the Singularity Theory point of view, if we are concerned in corank 1 map germs
(R2,0) → (R3,0) up to A-equivalence then we have a classification list given by D. Mond in
[23]. The Mond’s classification is summarized in Table 1 for either simple map germs or non-
simple but included in strata of Ae-codimension ≤ 3. When k is even, S+

k is equivalent to S−k ,

and C+
k to C−k .

We recall that two map germs f, g : (R2,0) → (R3,0) are said to be A-equivalent, denoted
by f ∼ g, if there exist germs of diffeomorphims h : (R2,0)→ (R2,0) and k : (R3,0)→ (R3,0)
such that g = k ◦ f ◦ h−1. For more details about definitions and notations from Singularity
theory used in this work (such as, Ae-codimension, simple germs, etc.), see [31].

Table 1: A-classes of corank 1 map germs (R2,0)→ (R3,0) either
simple or non-simple but included in strata of Ae-codimension ≤ 3 (cf. [23]).

Germ Ae-codimension Name
(x, y2, xy) 0 Cross-cap (S0)
(x, y2, y3 ± xk+1y), k ≥ 1 k S±k
(x, y2, x2y ± y2k+1), k ≥ 2 k B±k
(x, y2, xy3 ± xky), k ≥ 3 k C±k
(x, y2, x3y + y5) 4 F4

(x, xy + y3k−1, y3), k ≥ 2 k Hk

(x, xy + y3, xy2 + ay4), a 6= 0, 12 , 1,
3
2 3 P3

Surfaces in the same A-orbit clearly have diffeomorphic image but not necessarily they have
the same local differential geometry. So, we cannot take f as one of the normal forms in the
above table. We need parametrisations for corank 1 surfaces in R3 obtained with changes of
coordinates at source and target which preserve the geometry of the image.

The geometry of singular surfaces parametrised locally by a germ of a smooth function A-
equivalent to one of those in Table 1 is considered, for instance, in [10, 15, 26].

We summarize in the next result the partition of the set of all corank 1 map germs
f : (R2,0) → (R3,0) according to their 2-jets under the action of the group A2 (i.e., the
group of 2-jets of diffeomorphisms in the source and target). We denote by J2(2, 3) the space of
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2-jets j2f(0) of map germs f : (R2,0)→ (R3,0) and by Σ1J2(2, 3) the subset of 2-jets of corank
1.

Proposition 2.1. (Classification of 2-jets [23]) There exist four orbits in Σ1J2(2, 3) under the
action of A2, which are

(x, y2, xy), (x, y2, 0), (x, xy, 0), (x, 0, 0).

The following result gives relevant parametrisations for corank 1 surfaces in R3 according to
the classification given in Proposition 2.1. The cross-cap case, that is, when j2f(0) ∼ (x, y2, xy)
is done in [10, 32], and the case j2f(0) ∼ (x, 0, 0) is not of our interest here because f is a non-
simple wich is included in a stratum of Ae-codimension > 3.

Proposition 2.2. ([15]) Let f : (R2,0) → (R3,0) be a corank 1 map germ. Then, after using
smooth changes of coordinates in the source and isometries in the target, we can reduce jkf(0)
to the form

(1) (x, y) 7→

x , 1

2
y2 +

k∑
i=2

bi
i!
xi ,

1

2
a20x

2 +

k∑
i+j=3

aij
i!j!

xiyj

 ,

if j2f(0) is A-equivalent to (x, y2, 0), or

(2) (x, y) 7→

x , xy +

k∑
i=3

bi
i!
yi ,

1

2
a20x

2 +

k∑
i+j=3

aij
i!j!

xiyj

 ,

if j2f(0) is A-equivalent to (x, xy, 0), where bi, aij are constants.

Let f : (R2,0) → (R3,0) be a map germ of corank 1 and let jkf(0) be given by (1) in
Proposition 2.2. Then, the conditions for f to be A-equivalent to Sk, Bk, Ck or F4 are as follows
(see [15, 26]):

(3)

S1 : a03 6= 0, a21 6= 0,
Sk≥2 : a03 6= 0, a21 = · · · = ak1 = 0, a(k+1)1 6= 0,
B2 : a03 = 0, a21 6= 0, 3a05a21 − 5a213 6= 0,
Bk≥3 : a03 = 0, a21 6= 0, 3a05a21 − 5a213 = 0,

ξ3 = · · · = ξk−1 = 0, ξk 6= 0,
Ck≥3 : a03 = 0, a21 = · · · = a(k−1)1 = 0, ak1 6= 0, a13 6= 0,
F4 : a03 = 0, a21 = 0, a31 6= 0, a13 = 0, a05 6= 0,

where ξm depends on the (2m+1)-jet of the third component of (1) in Proposition 2.2 (see [15]).
If f is such that the jkf(0) is given by (2) in Proposition 2.2, then the conditions for f to be

A-equivalent to Hk or P3 can be deduced in a similar way (see for instance [26]). In particular,
we distinguish between the Hk and P3 singularities by looking at the coefficient a03. We have:

(4)
Hk≥2 : a03 6= 0,
P3 : a03 = 0.

In order to characterize completely the Hk and P3 singularities some more conditions are
necessary (see [26]). Since these other conditions are not used here in our calculations, we will
omit them except for the condition a04−3a12b3 6= 0 for P3-singularity which we show now. In fact,
let f be A-equivalent to P3. We compute the double point curve of f(x, y) = (x, p(x, y), q(x, y)),
which is defined by equations:

p(x, y)− p(x, u)

y − u
=
q(x, y)− q(x, u)

y − u
= 0.
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This gives us the two following equations:

24x+ 4b3(u2 + uy + y2) + b4(u3 + u2y + uy2 + y3) + h.o.t. = 0,

a04(u3 + u2y + uy2 + y3) + 4xa13(u2 + uy + y2)

+ 6x(a22x+ 2a12)(u+ y) + 12a21x
2 + 4a31x

3 + h.o.t. = 0,

where h.o.t. means “higher-order terms”.
Now, using the first equation to eliminate the variable x, one obtains a curve in the plane

(y, u) which is isomorphic to the double point curve:

W = 1/24(u+ y)(a04(u2 + y2)− 2a12b3(u2 + uy + y2) + h.o.t. = 0.

We know from [24] that if f is A-equivalent to P3, then the Milnor number of W at the
origin must be equal to 4. This implies that W is 3-determined and thus, its 3-jet has to be
nondegenerate. In other words, the discriminant of j3W(0) must be different of 0, that is,

(a04 − 3a12b3)(a04 − a12b3) 6= 0

holds. In particular, a04 − 3a12b3 6= 0.

3. Index of lines of curvature

Let f : U ⊂ R2 → R3 be a smooth map given by f(x, y) = (f1(x, y), f2(x, y), f3(x, y)). The
first and the second fundamental forms for f are given, respectively, by

I = E dx2 + 2F dxdy +Gdy2 and II = Ldx2 + 2M dxdy +N dy2

where

E = 〈fx, fx〉 , F = 〈fx, fy〉 , G = 〈fy, fy〉 ,

L =
det(fx, fy, fxx)√

EG− F 2
, M =

det(fx, fy, fxy)√
EG− F 2

, N =
det(fx, fy, fyy)√

EG− F 2
,

and the subscripts denote partial derivatives. It follows that L,M,N are only defined if the
denominator does not vanish; that is, at the regular points of f because EG−F 2 = ‖fx×fy‖ 6= 0
only in these points. For situations which include the case where f may have singularities, we
can define

(5) L′ = det(fx, fy, fxx) , M ′ = det(fx, fy, fxy) , N ′ = det(fx, fy, fyy) ,

and work with this functions instead of L,M,N .
We recall that umbilics points are regular points of f in which the second fundamental form

is proportional to the first. Then, the rank of the matrix

(6)

(
E F G
L′ M ′ N ′

)
is not maximal either at an umbilic or at a singular point of f .

Suppose that (x, y) is a regular point of f which is not umbilic. Then the principal directions of
f at (x, y) are defined as the directions determined by the eigenvectors of the second fundamental
form at (x, y). The equation of the principal directions of f is given by the binary differential
equation (BDE)

(7) (FN ′ −GM ′) dy2 + (EN ′ −GL′) dxdy + (EM ′ − FL′) dx2 = 0 .

Thus, the principal directions define a pair of orthogonal line fields on the surface, which are
singular either at an umbilic or at a singular point of f .
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The equation (7) can be seen as a particular case of a positive quadratic differential form
(PQD) on M = f(U) in the sense of [13], that is, as a quadratic differential form ω such that for
every point p in M the subset ω(p)−1(0) of the tangent plane TpM of M at p is either: (i) the
union of two transversal lines (in this case p is called a regular point of ω), or (ii) all TpM (in
this case p is called a singular point of ω). In local coordinates (x, y), a PQD form is given by

(8) ω = A(x, y)dy2 +B(x, y)dxdy + C(x, y)dx2,

where A,B,C are smooth functions, called the coefficients of the PQD, such that
B2 − 4AC ≥ 0. Because (8) is a PQD, B2 − 4AC = 0 if and only if A = B = C = 0
([13]). The points where A = B = C = 0 are the singular points of ω and the set

∆ = {(x, y) ∈ U ;B2 − 4AC(x, y) = 0}
which is called the discriminant of the PQD coincides with its singular set. (For a general
quadratic differential equation which is not necessarily a PQD, the discriminant ∆ is different
from the set of singular points of the equation; see for example the survey paper [29].)

Therefore, if ω is the PQD (7) associated to f then (x, y) ∈ 4 if and only if (x, y) is an
umbilic or singular point of f (and hence a singular point of ω), which can be easily seen from
the matrix (6). Then, all important features of the equation (8) occur on the discriminant.
Taking an isolated singular point p of ω, we can consider the index at p associated with any of
the lines of principal curvature determined by ω, which is denoted in the literature by ind(ω, p)
but we shall denote here by indP(f, p) in order to specify f and with P indicating principal,
as a reference for the equation (7). This means the number of turns of the line field when we
run through a small circle centered at p. For instance, we can easily to compute the index
of the three types of generic umbilics classified by Darboux (see, for instance, [2, 9, 12, 14]):
the lemon (or D1), the monster (or D2) and the star (or D3), which are 1/2, 1/2 and −1/2,
respectively. Moreover, from the description for the principal lines at a cross-cap point p of f ,
whose configuration can be found in [12], for example, we deduce that the index indP(f, p) is
1/2 (see Figure 1).

L M S WD D2 3D1

Figure 1. From left to right: configuration of integral curves of the principal
directions at generic umbilics D1, D2 and D3, and of the principal lines at a
cross-cap point of f , W .

In order to consider the index indP(f, p) it is necessary to have p as an isolated singular point
of ω (for example, we should eliminate the possibility of the existence of a sequence of umbilic
points on the smooth part of the surface that converges to p ). We shall consider this question.
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For this, we use the following lemma which shows that the index of an isolated singular point of
a PQD is related to the mapping degree, given in terms of the coefficients of ω.

Lemma 3.1. ([18], Part 2, VIII, 2.3) Let p be an isolated singular point of the positive quadratic
differential form ω = A(x, y) dy2 +B(x, y) dxdy + C(x, y) dx2. Then,

ind(ω, p) = −1

2
deg((A,B), p) = −1

2
deg((B,C), p)

where deg((A,B), p) and deg((B,C), p) denote the mapping degrees of the maps (A,B) and
(B,C), respectively, at p.

Let h : (Rn,0)→ (Rn,0) be a continuous map such that 0 is isolated in h−1(0). The degree
deg(h,0) of h at 0 is defined as follows: choose a ε-ball Bnε centered at 0 in Rn so small that
h−1(0)∩Bnε = {0} and let Sn−1ε be the (n−1)-sphere centered at the origin of radius ε. Choose
an orientation of each copy of Rn. Then the degree of h at 0 is the degree of the mapping
h
‖h‖ : Sn−1ε → Sn−1 (Sn−1 ⊂ Rn is the unit standard sphere), where the spheres are oriented

as (n − 1)-spheres in Rn. If h is differentiable, this degree can be computed as the sum of the
signs of the Jacobian determinant of h (i.e., of its derivative) at all the h-preimages near 0 of a
regular value of h near 0.

We also recall that h : (Rn,0) → (Rn,0) is a quasi-homogeneous map germ with weight
a = (a1, . . . , an) ∈ Nn and quasi-degree d = (d1, . . . , dn) ∈ Nn if

hi(λ
a1x1, λ

a2x2, . . . , λ
anxn) = λdihi(x1, x2, . . . , xn)

for each i = 1, 2, . . . , n and all λ > 0. We say that a smooth function has quasi-order m if
all monomials in its Taylor expression have quasi-degree greater than or equal to m. We say
that h is a semi-quasi-homogeneous map with weight a and quasi-degree d if h = g + G with
g a quasi-homogeneous map germ with weight a and quasi-degree d such that 0 is isolated in
g−1(0), and each component Gi of G has quasi-order greater than di, i = 1, 2, . . . , n.

The following theorem shows that for semi-quasi-homogeneous map germs, the degree at a
zero coincides with the degree at this zero of its quasi-semi-homogeneous part.

Theorem 3.2. ([5]) With the above notations, let h = g+G be a semi-quasi-homogeneous map
germ. Then 0 is isolated in h−1(0) and

deg(h,0) = deg(g,0).

Before giving the results about the index of the lines of curvature for a corank 1 surface, we
present an illustrative example explaining all our calculations.

Example 3.3. Let S+
1 -standard be the map germ given by (x, y2, y3 + x2y) as in Table 1. The

coefficients of its first and second fundamental forms are, respectively:

E = 1 + 4x2y2, F = 2xy(x2 + 3y2), G = 4y2 + (x2 + 3y2)2

and

L′ = 4y2, M ′ = 4xy, N ′ = −2x2 + 6y2.

Let Ady2 + Bdxdy + Cdx2 = 0 the BDE of the principal directions of S+
1 -standard. Then,

from (7) we have that

A = −8x5y−16xy3−24x3y3, B = −2x2+6y2−12x4y2−16y4−36y6, C = 4xy+8x3y3−24xy5.

Consider the map germ h = (B,C) : (R2,0)→ (R2,0) given by h = g +G taking

g(x, y) = (−2x2 + 6y2, 4xy) and G(x, y) = (−12x4y2 − 16y4 − 36y6, 8x3y3 − 24xy5).
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In this case, g is a homogeneous map germ, 0 is isolated in g−1(0) and each component Gi of
G has quasi-order greater than 2. Then, by Theorem 3.2, the degree of h in 0 coincides with the
degree of g in 0. It is easy to calculate the degree of g in 0, which is -2. Hence, by Lemma 3.1,
the index of the BDE associated to S+

1 -standard is 1.
The case S−1 -standard is analogous. Repeating this same sketch of calculations, we can con-

clude that the index of the BDE associated to S−1 -standard is 0. Figure 2 shows S−1 and S+
1 -

standards surfaces with their lines of curvatures.

Figure 2. Standards S+
1 and S−

1 surfaces and their lines of curvature.

In Proposition 2.1 are listed four orbits in Σ1J2(2, 3) under the action of group A2, with
the first one corresponding the known case of the cross-cap (cf. [10, 32]) and the fourth orbit
listed corresponding to a non-simple germ wich is included in a stratum of Ae-codimension
> 3. Then it is just remaining to consider two cases in the 2-jet classification: (x, y2, 0) and
(x, xy, 0). The next theorem complete the study of the index of an isolated singular point of a
BDE which represents the equation of the principal directions of a corank 1 simple map germ
f : (R2,0)→ (R3,0) or non simple but in strata of Ae-codimension ≤ 3.

Theorem 3.4. Let f : (R2,0) → (R3,0) be a corank 1 simple map germ or non-simple strata
of Ae-codimension ≤ 3. Consider jkf(0) as in Proposition 2.2. If a212− a21a03 6= 0 then 0 ∈ R2

is an isolated singular point of the BDE associated to f given in (7) and

indP(f,0) =

 0 if a21a03 < 0
0 if a212 > a21a03
1 if a212 < a21a03

if j2f(0) has type (x, y2, 0) and

indP(f,0) =

{
0 if a21a03 ≤ 0
1 if a21a03 > 0

if j2f(0) has type (x, xy, 0).

Proof. Under hypothesis, we just need to consider map germs which are A-equivalent to one of
those given in Table 1 and such that the 2-jet has the type (x, y2, 0) or (x, xy, 0). We divide the
proof in three parts. In all of them, we start with the following procedure:

Given f : (R3,0) → (R2,0), we first calculate the coefficients E,F,G, L′,M ′, N ′ associated
to f ; second we get the BDE expression of the principal directions of f given by (7), denoted
here by Ady2 +Bdxdy + Cdx2 = 0.

These calculations can be done quickly using for instance the Mathematica software. Thus,
they will be omitted here.
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Part 1. j2f(0) ∼ (x, y2, 0).

• Consider f A-equivalent to S1 given in Table 1 (this means f is A-equivalent to S+
1 or

S−1 ). The conditions on the coefficients of a S1-singularity are a03 6= 0 and a21 6= 0. We use the
same procedure given in Example 3.3. After calculating the coefficients of the first and second
fundamental forms associated to f and getting the BDE expression of the principal directions of
f , let us take the semi-quasi-homogeneous map h = (B,C) : (R2,0)→ (R2,0). So, in this case
we can consider h = g +G, where

g(x, y) = (−a21
2
x2 +

a03
2
y2, a21xy + a12y

2)

is quasi-homogeneous (in fact homogeneous) and G has higher order terms. We call resultant
of g to the resultant of the two components of g (with respect to one of the variables). The
resultant of g is given by the expression a212 − a21a03 (which is not zero by hypothesis) then we
can conclude that 0 is isolated in g−1(0). Therefore, by Theorem 3.2, 0 is isolated in h−1(0) and
the degree of h in 0 coincides with the degree of g in 0. Now we apply Lemma 3.1 to calculate
the index indP(f,0). To do this, let us calculate the degree of g at 0. Since a03, a21 6= 0, it may
occur:

(i) a21a03 < 0 or (ii) a21a03 > 0.

Taking the following change of coordinates in the source of g{
X = a21x+ a12y
Y = y

it holds that

g ∼ (− 1

2a21
(X2 − 2a12XY + (a212 − a21a03)Y 2), XY ).

Taking now the change of coordinates in the target k1(u, v) = (−2a21u, v), we have

g ∼ (X2 − 2a12XY + (a212 − a21a03)Y 2), XY ).

After one more change of coordinates in the target given by k2(u, v) = (u+ 2a12v, v), it holds
that

g ∼ (X2 + (a212 − a21a03)Y 2, XY ) = g̃(X,Y ).

Due the previous change of coordinates, it follows that

deg (g,0) = −sgn(2X2 − 2(a212 − a21a03)Y 2) deg (g̃,0),

where sgn denotes the sign of a function.
If a21a03 < 0 then a212 − a21a03 > 0. So, g̃ is not surjective and thus deg (g̃,0) = 0. Hence

deg (g,0) = 0 and thus indP(f,0) = 0.
If a21a03 > 0, we have two possibilities: a212 > a21a03 or a212 < a21a03. If a212 > a21a03 then

a212 − a21a03 > 0 and as already done, indP(f,0) = 0. If a212 < a21a03 then a212 − a21a03 < 0. In
this case, the Jacobian determinant of g̃ is equal to

2X2 − 2(a212 − a21a03)Y 2 > 0

for any (X,Y ).
Taking any regular value of g̃, there always exist two g̃-preimages for which the signs of the

Jacobian determinants are 1. Hence deg (g̃,0) = 2, which implies that deg (g,0) = −2 and thus
indP(f,0) = 1.
• Consider f A-equivalent to Sk given in Table 1, for any k ≥ 2. By conditions on the

coefficients of a Sk-singularity given in (3) and by hypothesis a212 − a21a03 6= 0, one has that
a12 6= 0.
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We reproduce the same steps as in the previous case. From the coefficients B and C of (7) for
f , we can take, for all k ≥ 2, the semi-quasi-homogeneous map h = (B,C) : (R2,0) → (R2,0)
given by h = g +G, where

(9) g(x, y) =

(
−
a(k+1)1

(k + 1)!
xk+1 +

a03
2
y2, a12y

2

)
is quasi-homogeneous and G has higher-order terms. In the expression of the resultant of g
appears just a12, which is not zero in this case. Therefore, for all k ≥ 2, the map germ g in (9)
is clearly not surjective and hence its degree is 0. By Theorem 3.2, deg(h,0) = deg(g,0) = 0.
As consequence, by Lemma 3.1, the indP(f,0) = 0.
• Consider f A-equivalent to Bk given in Table 1, for any k ≥ 2. A Bk-singularity is

characterized by conditions which appear in (3). Since a03 = 0, the general hypothesis reduces
to a12 6= 0. We proceed in the same way as in the previous cases, following the same steps.

In this case, for all k ≥ 2, we can take the semi-quasi-homogeneous map

h = (B,C) : (R2,0)→ (R2,0)

given by h = g +G, where

(10) g(x, y) =

(
−1

2
a21x

2, a12y
2 + a21xy

)
is homogeneous and G has higher-order terms. The resultant of g is given by a212a21 which is
not zero. Therefore, for all k ≥ 2, the map germ g in (10) clearly is not surjective and hence its
degree is 0. Then, again we have that indP(f,0) = 0.
• Consider f A-equivalent to Ck given in Table 1, for any k ≥ 3. A Ck-singularity is charac-

terized by conditions

a03 = 0, a21 = a31 = · · · = a(k−1)1 = 0, ak1 6= 0 and a13 6= 0.

Then, the general hypothesis again reduces to a12 6= 0. Proceeding in the same way as in the
previous cases, for all k ≥ 3, we can take the semi-quasi-homogeneous map

h = (B,C) : (R2,0)→ (R2,0)

such that h = g +G, where

(11) g(x, y) =

(
− 1

k!
ak1x

k, a12y
2

)
,

is quasi-homogeneous and G has higher-order terms.
In the expression of the resultant of g just appears a12, which is not zero. Therefore, for all

k ≥ 3, the map germ g in (11) clearly is not surjective and hence its degree is 0 from which one
concludes that indP(f,0) = 0.
• Consider f A-equivalent to F4 given in Table 1. The F4-singularity is characterized by

conditions

a03 = a21 = a13 = 0, a31 6= 0 and a05 6= 0.

Then, the general hypothesis again reduces for a12 6= 0. In this case, we can take the semi-
quasi-homogeneous map h = (B,C) : (R2,0)→ (R2,0) given by h = g +G, where

(12) g(x, y) =

(
−1

6
a31x

3, a12y
2

)
is quasi-homogeneous and G has higher-order terms.

The resultant of g is given by a12 which is not zero. Therefore, the map germ g in (12) is also
non surjective and hence its degree is 0. Thus indP(f,0) = 0.
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Part 2. j2f(0) ∼ (x, xy, 0) and f is a simple map germ.

In this case f is A-equivalent to Hk given in Table 1, with k ≥ 2. We have already seen in
Section 2 that a necessary condition to Hk-singularity occurs is a03 6= 0.

In this case, we can take the semi-quasi-homogeneous map h = (B,C) : (R2,0) → (R2,0),
h = g +G, where

(13) g(x, y) =

(
a12x

2 + a03xy,
1

2
a21x

2 − 1

2
a03y

2

)
is homogeneous and G has higher-order terms.

The resultant of g is given by the expression −a203(a212 − a21a03), which is not zero. Then 0
is isolated in g−1(0).

Consider the following change of coordinates in the source of g:{
X = x
Y = a12x+ a03y .

Then

g ∼
(
XY,

1

2a03

(
−(a212 − a21a03)X2 + 2a12XY − Y 2

))
.

Taking another change of coordinates k1(u, v) = (u, 2a03v), now in the target, it holds that

g ∼ (XY,−(a212 − a21a03)X2 + 2a12XY − Y 2).

After one more change of coordinates in the target given by k2(u, v) = (u, v−2a12u), we have

g ∼ (XY,−(a212 − a21a03)X2 + 2a12XY − Y 2) = g̃(X,Y ).

Due the previous changes of coordinates applied in g, it follows that deg (g,0) = deg (g̃,0),
which does not depend on the sign of a03.

If a212 − a21a03 > 0 then g̃ is not surjective. In fact, take for instance (0, ε) ∈ R2, ε > 0 small
enough. Then there is not (X,Y ) such that g̃(X,Y ) = (0, ε). Suppose by absurd that

XY = 0 and − (a212 − a21a03)X2 + 2a12XY − Y 2 = ε.

From the first expression, X = 0 or Y = 0. If X = 0, then the second equation reduces
to −Y 2 = ε > 0. Otherwise, if Y = 0, then we obtain −(a212 − a21a03)X2 = ε > 0 while
(a212 − a21a03) > 0.

Thus, g̃ is not surjective and deg (g̃,0) = 0 = deg (g,0). Hence, indP(f,0) = 0.
If a212 − a21a03 < 0, the Jacobian determinant of g̃ is equal to

−2Y 2 + 2(a212 − a21a03)X2 < 0.

For any regular value of g̃, there always exist two g̃-preimages for which the sign of the
Jacobian determinants of g̃ are −1. Hence deg(g̃,0) = −2, which implies that deg(g,0) = −2
and thus indP(f,0) = 1.

Part 3. j2f(0) ∼ (x, xy, 0) and f is a non-simple strata of Ae-codimension ≤ 3.

In this case f is A-equivalent to P3 given in Table 1. We have already seen in Section 2 that
necessary conditions to P3-singularity occurs are a03 = 0 and a04 − 3a12b3 6= 0.

In this case, we can take the semi-quasi-homogeneous map h = (A,B) : (R2,0) → (R2,0)
given by h = g +G, where

g(x, y) =

(
1

2
a21x

2 +

(
−1

6
a04 +

1

2
a12b3

)
y3, a12x

2

)
,

is quasi-homogeneous with weight (3, 2) and quasi-degree (6, 6) and G has only higher-order
terms. Moreover, since a12 6= 0 and a04−3a12b3 6= 0, the resultant of g given by a212(a04−3a12b3)2
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is not zero. Therefore g−1(0) = 0. In particular, h is semi-quasi-homogeneous and deg(h) =
deg(g) = 0 because g is not surjective. So, indP(f,0) = 0. �

From Theorem 3.4 it holds that:

Corollary 3.5. Let f be a map germ in the A-class of one of the map germs given in Table 1,
with jkf(0) as in Proposition 2.2. Suppose that a212 − a21a03 6= 0.
(i) If f ∼ S±1 or Hk then indP(f,0) = 0 or 1.
(ii) If f ∼ S±k≥2, B

±
k , C

±
k , F4 or P3 then indP(f,0) = 0.

Remark 3.6. It follows from Theorem 3.4 that for any corank 1 map germ f satisfying its
hypothesis, the singularity of the BDE of the principal directions of f is an isolated point, i.e.
there is not sequence of umbilic points on the smooth part of the surface that converges to the
singular point of the surface.

4. Geometric interpretation of the condition a212 − a21a03 6= 0

Let f : (R2,0)→ (R3,0) be a corank 1 map germ whose 2-jet has A2-type either (x, y2, 0) or
(x, xy, 0). We want to analyze the circles which have a special contact with f at the origin. To
do this, we need to look at the singularity type of the contact map germ Cv,u : (R2,0)→ (R2,0)
given by

Cv,u(x, y) = (〈f(x, y),v〉, ‖f(x, y)− u‖2 − ‖u‖2),

where v,u ∈ R3, ‖v‖ = 1 is the unit normal vector of the circle and u is its centre. Note that
the first component is nothing but the height function which measures the contact of f with the
normal plane to v and the second component the squared distance function which measures the
contact of f with the sphere of centre u.

In order to consider the desired contact we use the umbilic curvature, the binormal and
asymptotic directions defined in [21], which are related to contact properties of the surface given
by f with planes and spheres. The umbilic curvature κu is an important second-order invariant
of the f : when it is non-zero, then 1/κu is the radius of the unique sphere with umbilical contact
(that is, contact of type Σ2,2 in Thom-Boardman terminology) with the surface at the singular
point. See [21] for details.

We recall that a map germ g : (R2,0) → (R2,0) has type Σ2,1 if and only if its 2-jet is
equivalent to (x2, 0).

Lemma 4.1. Let f : (R2,0) → (R3,0) be a corank 1 map germ with jkf(0) as in Proposition
2.2 and with non-zero umbilic curvature κu at the origin.

(i) If j2f(0) ∼ (x, y2, 0), there are exactly two circles with contact of type Σ2,1 with f at the

origin, given by u = (0, 0, 1/a20) and v = (0, 0, 1) or v = (0,−a20, b2)/
√
a220 + b22.

(ii) If j2f(0) ∼ (x, xy, 0), there is exactly one circle with contact of type Σ2,1 with f at the
origin, given by u = (0, 0, 1/a20) and v = (0, 0, 1).

Proof. Notice that the circle determined by u,v has contact of type Σ2,1 if and only if the sphere
of centre u has umbilical contact and the plane normal to v is binormal (i.e., it has a degenerate
contact Σ2,1). Then, our results follow from the analysis of contacts with spheres and planes in
[21], where the umbilic curvature at the origin is κu(0) = |a20|. �

We observe that if j2f(0) ∼ (x, y2, xy) then there is not circle with contact of type Σ2,1 with
f at the origin (because there is not sphere with contact of type Σ2,2 with f , see [21] for details).
The circles with contact of type Σ2,1 with f given in the above lemma will be called Σ2,1-circles
for simplicity.
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Definition 4.2. Let g : (R2,0) → (R2,0) be a map germ of type Σ2,1. We say that g is
Σ2,1-generic if it is A-equivalent to a finitely determined map germ of the form

(x2, c0x
3 + 3c1x

2y + 3c2xy
2 + c3y

3),

for some c0, c1, c2, c3 ∈ R.

Remark 4.3. It follows from the definition that if j3g(0) = (x2, c0x
3 + 3c1x

2y+ 3c2xy
2 + c3y

3),
then a necessary condition for g being Σ2,1-generic is that c22 − c1c3 6= 0. In fact, a necessary
condition for finite determinacy for map germs (R2,0)→ (R2,0) is that its Jacobian determinant
has to be non-degenerate. A simple computation shows that the Jacobian determinant of j3g(0)
is 6x(c1x

2 + 2c2xy + c3y
2), so we must have c3 6= 0 and c22 − c1c3 6= 0.

Corollary 4.4. Let f : (R2,0)→ (R3,0) be a corank 1 map germ with jkf(0) as in Proposition
2.2 and with non-zero umbilic curvature κu at the origin. Assume that the Σ2,1-circles of f have
Σ2,1-generic contact. Then, a212 − a21a03 6= 0.

Proof. It is easy to show that for u = (0, 0, 1/a20) and v = (0, 0, 1), we have:

j3Cv,u(0) =

(
1

2
a20x

2,− 1

3a20
(a30x

3 + 3a21x
2y + 3a12xy

2 + a03y
3)

)
.

When j2f(0) ∼ (x, y2, 0) and we consider u = (0, 0, 1/a20) and v = (0,−a20, b2)/
√
a220 + b22,

we get

j3Cv,u(0) =

(
− 1

2
√
a220 + b22

a20y
2,− 1

3a20
(a30x

3 + 3a21x
2y + 3a12xy

2 + a03y
3)

)
.

So the result follows from Remark 4.3.
�

5. Umbilics and cross-caps of generic deformations

Let f : U ⊂ R2 → R3 be a smooth map. It was shown in [12] that f is principally structurally
stable at an umbilic point if and only if it is one of the Darbouxian umbilics Di, i = 1, 2, 3 (see
also [2]). Furthermore, the unique stable singularity for f is a cross-cap point.

The map f is said to be generic if the ulfoldings

D : R3 × U → R3 × R, (u, (x, y)) 7→ (u, du(x, y)), du(x, y) =
1

2
‖f(x, y)− u‖2

and

H : S2 × U → S2 × R, (v, (x, y)) 7→ (v, hv(x, y)), hv(x, y) = 〈f(x, y),v〉

are generic in the Thom-Boardman sense (see [11] for details). So, if the map f is not generic,
we can take a generic deformation fλ : U0 ⊂ U → R3, λ ∈ (−ε, ε), of f , i.e. f0 = f , fλ is
generic for λ 6= 0 and the map (λ, t) 7→ fλ(t) is smooth, and the index indP(f, p) is equal to
(D1 +D2 −D3 +W )/2, where D1, D2, D3 also denote the number of umbilics of each type and
W the number of cross-caps points that appear in fλ near p, for λ 6= 0 small enough.

When f : (R2,0) → (R3,0) is a corank 1 map germ and fλ, λ ∈ (−ε, ε), is a generic
deformation of f , D. Mond showed in [24] how to count the number of cross-caps in fλ. More
precisely, it is showed the following possibilities for W in fλ according the A-types of f given in
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Table 1:

S±k , k ≥ 1 : W =

{
2n ; n = 0, 1, . . . , k+1

2 if k is odd
2n+ 1 ; n = 0, 1, . . . , k2 if k is even

B±k , Hk, k ≥ 2 : W = 0, 2

C±k , k ≥ 3 : W =

{
2n+ 1 ; n = 0, 1, . . . , k−12 if k is odd
2n ; n = 0, 1, . . . , k2 if k is even

F4, P3 : W = 1, 3.

As an immediate consequence of this, we obtain some information about the number of umbilic
points in fλ. In fact, this number is equal to D1 + D2 + D3 = 2(indP(f,0) + D3) −W . So, if
W is even (respec. odd), the number of umbilic points that appear in fλ is even (resp. odd).
Consequently, we have:

Lemma 5.1. Let f : (R2,0) → (R3,0) be a corank 1 map germ simple or non-simple but
including in strata of Ae-codimension ≤ 3. If fλ : (R2,0) → (R3,0) is a generic deformation
of f then the number of umbilic points that appear in fλ near 0, for λ small enough, is:

(i) even if f ∼ S±k (with k odd), B±k , C±k (with k even) or Hk;

(ii) odd if f ∼ S±k (with k even), C±k (with k odd), F4 or P3.

We shall give more precise information about the number of umbilic points in fλ. Before
stating the result and proving it, we need recall some facts about multiplicity for special types
of singular points of a map.

Given a smooth map germ f : (R2,0) → (R3,0), we say that 0 is a 2-rounding of f if 0 is
either a 2-flattening (that is, there is a unit vector v ∈ R3 such that 0 is a singularity of type
Σ2,2 of hv) or a non-flat 2-rounding (that is, it is not a 2-flattening and there is u ∈ R3 such
that 0 is a singularity of type Σ2,2 of du). It is known that a regular (resp. singular) point of f
is a 2-rounding if and only if it is an umbilic point (resp. it is not a cross-cap point). See [11]
for details. So, since a generic deformation of f only has umbilics of type Di, i = 1, 2, 3, and
cross-caps, and since cross-caps are not 2-roundings, then in order to estimate the number of
umbilic points in fλ it is enough to estimate the number of its 2-roundings, which is denoted by
nR(fλ,0).

The number nR(fλ,0) is related with the multiplicity of 0 as a rounding of f , µR(f,0), as
follows:

nR(fλ,0) ≤ µR(f,0) and nR(fλ,0) ≡ µR(f,0) (mod 2),

for λ small enough, if µR(f,0) is finite (see Theorem 2.9 of [11]), where

µR(f,0) = dimR
C∞(R2,0)

R(f,0)
,

with C∞(R2,0) being the ring of germs at 0 of smooth real-valued functions on R2 and R(f,0)
the ideal generated by the germs at 0 of the 4-minors of the matrix given by

f1x f2x f3x 0
f1y f2y f3y 0
f1xx f2xx f3xx E
f1xy

f2xy
f3xy

F
f1yy

f2yy
f3yy

G

 ,

where f = (f1, f2, f3). See [11] for details.
We also recall that if h : (Rn,0)→ (Rn,0) is a smooth map germ with 0 isolated in h−1(0),

then the multiplicity µ(h,0) of h at 0 is defined by

µ(h,0) = dimR
C∞(Rn,0)

〈h〉
,
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where 〈h〉 is the ideal generated by the components of h. It is known that µ(h,0) is the number
of complex h-preimages near 0 of a regular value of h near 0. If h = (h1, . . . , hn), with each
hi being a homogeneous polynomial such that 0 is isolated in h−1(0), it is well known that
µ(h,0) = d1 · · · dn, where di is the degree of each hi. On the other hand, writing h = g + G,
where g = (g1, . . . , gn) with gi being the first non-zero jet of hi, then µ(h,0) = µ(g,0), if 0 is
isolated in g−1(0). When 0 is not isolated in g−1(0) in the above construction, we can take a
suitable selection of weights associated with any variable in order to make possible a different
decomposition h = g′+G′ satisfying µ(h,0) = µ(g′,0). In fact, it is valid the same statement of
Theorem 3.2, with multiplicity instead of index (see Remark 3.1 of [5]). Furthermore, one shall
use the following result:

Proposition 5.2. ([1, 5]) Using the above notations, let h = g+G be a semi-quasi-homogeneous
map germ with weight a = (a1, . . . , an) and quasi-degree d = (d1, . . . , dn). Suppose that
µ(h,0) <∞. Then

µ(h,0) = µ(g,0) =
d1 · · · dn
a1 · · · an

.

Let us denote by ΣDi the number of umbilic points of fλ, that is, ΣDi = D1 +D2 +D3. So,
one gets the following result:

Proposition 5.3. Under the same assumptions in Theorem 3.4, if the umbilic curvature of f is
non-zero at the origin and fλ is a generic deformation of f , then the number of umbilic points
of fλ, for λ small enough, if finite, satifies:

(i) f ∼ S±k , k ≥ 1: ΣDi ≤ k + 1 with ΣDi ≡ k + 1 (mod 2).

(ii) f ∼ C±k , k ≥ 3: ΣDi ≤ k with ΣDi ≡ k (mod 2).

(iii) f ∼ B±k or Hk, k ≥ 2: ΣDi = 0 or 2.
(iv) f ∼ F4 or P3: ΣDi = 1 or 3.

Furthermore, D3 ≥W when indP(f,0) = 0, and D3 ≥ W
2 when indP(f,0) = 1.

Proof. We shall count the number nR(fλ,0) of 2-roundings of fλ. Let us take f = (x, f2, f3) as
in Proposition 2.2.

Since f is not a cross-cap and κu(0) = |a20| 6= 0, it follows from Corollary 2.17 of [21] that 0 is
a non-flat 2-rounding of f . From [11] we conclude that R(f,0) = 〈Py, Pxy〉 if j2f(0) ∼ (x, y2, 0)
and R(f,0) = 〈Py, Pyy〉 if j2f(0) ∼ (x, xy, 0), where

Py =

∣∣∣∣∣∣∣∣
fx 0
fxx E
fxy F
fyy G

∣∣∣∣∣∣∣∣, Pxy =

∣∣∣∣∣∣∣∣
fx 0
fy 0
fxx E
fyy G

∣∣∣∣∣∣∣∣ and Pyy =

∣∣∣∣∣∣∣∣
fx 0
fy 0
fxx E
fxy F

∣∣∣∣∣∣∣∣.
Let h : (R2,0)→ (R2,0) given by h = (Py, Pxy) or (Py, Pyy). Then

µR(f,0) = dimR
C∞(R2,0)

〈h〉
= µ(h,0).

• Let us suppose that j2f(0) ∼ (x, y2, 0).
If f ∼ S±1 or B±k then a21 6= 0. After some calculations we take h = g +G, where

g(x, y) = (−a21x− a12y,
1

2
a21x

2 − 1

2
a03y

2)

and G has higher-order terms. Since the resultant of g is given by the expression
1
2a21(a212− a21a03) and a212− a21a03 6= 0 by hypothesis, we have that 0 is isolated in g−1(0) and
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it holds that
nR(fλ,0) ≤ µR(f,0) = µ(g,0) = 2 .

By Lemma 5.1, ΣDi is even for S±1 and B±k and, therefore, ΣDi = 0, 2 .

If f ∼ Sk≥2, C±k or F4 then we reproduce the same steps as in previous case, taking an
apropriated g such that h = g + G satisfies the Corollary 5.2, getting after calculations the
desired results.
• Let us suppose now that j2f(0) ∼ (x, xy, 0). We take f ∼ Hk or P3, depending on a03 is

non-zero or zero, respectively. Since h = (Py, Pyy), we take h = g +G, where

g(x, y) =

(
a12x+ a03y,−

1

2
a21x

2 +
1

2
a03y

2

)
when f is of Hk type, or g(x, y) = (a12x+( 1

2a04−a12b3)y2,− 1
2a21x

2), when f is of P3 type with

a21 6= 0, or g(x, y) = (a12x + ( 1
2a04 − a12b3)y2, ( 1

6a04 −
1
2a12b3)y3), when f is of P3 type with

a21 = 0, with G having higher-order terms. Since a12 6= 0 from hypothesis, and a04− 3a12b3 6= 0
when f is of P3 type, which appear in the expression of the resultant of g, then we conclude
that h is semi-quasi-homogeneous and so, it follows that µ(h,0) = µ(g,0) = 2 if f ∼ Hk, and
µ(h,0) = µ(g,0) = 4 if f ∼ P3 type. So, the result on ΣDi follows from Lemma 5.1.

For the second part of the proposition, it is enough to use the relation

D1 +D2 −D3 = 2 indP(f,0) +W.

�
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[13] V. Guiñez, Positive quadratic differential forms and foliations with singularities on surfaces, Trans. Amer.

Math. Soc. 309 (1988), 477-502. DOI: 10.1090/s0002-9947-1988-0961601-4

[14] C. Gutierrez and J. Sotomayor, Lines of principal curvature for mappings with Whitney umbrella singular-
ities, Tohoku Math. J. (2) 38 (1986), 551-559. DOI: 10.2748/tmj/1178228407

https://doi.org/10.1006/jdeq.1998.3454
https://doi.org/10.1112/s0024610798006188
https://doi.org/10.1090/conm/459/08970
https://doi.org/10.1007/s10883-009-9066-z
https://doi.org/10.5427/jsing.2012.4c
https://doi.org/10.2748/tmj/1140727069
https://doi.org/10.2748/tmj/1178224605
https://doi.org/10.1090/s0002-9947-1988-0961601-4
https://doi.org/10.2748/tmj/1178228407


16 J. C. F. COSTA, L. F. MARTINS, AND J. J. NUÑO-BALLESTEROS
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