FINITE TYPE ξ-ASYMPTOTIC LINES OF PLANE FIELDS IN \mathbb{R}^{3}

DOUGLAS H. DA CRUZ AND RONALDO A. GARCIA

Abstract

We prove that a finite type curve is a ξ-asymptotic line (without parabolic points) of a suitable plane field. It is also given an explicit example of a hyperbolic closed finite type ξ-asymptotic line. These results obtained here are generalizations, for plane fields, of the results of V. Arnold.

1. Introduction

A regular plane field in \mathbb{R}^{3} is usually defined by the kernel of a differential one form or a unit vector field $\xi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. In this last case $\xi(p)$ is the normal vector to the plane at point p. The classical and germinal work about plane fields in \mathbb{R}^{3} is [14].

The normal curvature of a plane field is defined by (see [2] and [5])

$$
k_{n}(p, d r)=-\frac{\langle d \xi(p), d r\rangle}{\langle d r, d r\rangle}
$$

For integrable plane fields the normal curvature is the usual concept of curves on surfaces.
The regular curves $\gamma: I \rightarrow \mathbb{R}^{3}$ such that $k_{n}\left(\gamma(t), \gamma^{\prime}(t)\right)=0$ are called ξ-asymptotic lines and the directions $d r$ such $k_{n}(p, d r)=0$ are called ξ-asymptotic directions.

Recall that asymptotic lines on surfaces are regular curves γ such that $k_{n}\left(\gamma(t), \gamma^{\prime}(t)\right)=0$. Also, asymptotic lines are the curves γ such that the osculating plane of γ coincides with the tangent plane of the surface along it, so asymptotic lines are of extrinsic nature.

The local study, and singular aspects of asymptotic lines on surfaces in \mathbb{R}^{3}, near parabolic points, is a very classical subject, see $[3,6,7,8],[9]$ and references therein.

The study of closed asymptotic lines of surfaces in \mathbb{R}^{3} under the viewpoint of qualitative theory of differential equations is more recent, see $[6,7,8]$. It is worth to mention that existence of closed asymptotic lines on the tubes of "T-surfaces" is still an open problem. See [1, page 107] and [11].

Also, it is not known if there is a surface in \mathbb{R}^{3} having a cylindrical region foliated by closed asymptotic lines (see [13, page 110]). In \mathbb{S}^{3}, all asymptotic lines of the Clifford torus are globally defined, and they are the Villarceau circles.
V. Arnold in [4] studied the topology of asymptotic lines being curves of type $\left(t, t^{m}, t^{n}\right)$ near $t=0$, which are called of finite type. Also, it was shown in [4] that the projection of a closed asymptotic line of a hyperbolic surface of graph type $(x, y, h(x, y))$ in the horizontal plane (x, y) cannot be a starlike curve.

The main results of this work are the following.
The Theorem 3.1 states that any finite type curve is a ξ-asymptotic line (without parabolic points) of a suitable plane field in \mathbb{R}^{3}.

The Theorem 4.3 gives an example of a hyperbolic closed finite type ξ-asymptotic line of a plane field in \mathbb{R}^{3}.

2. Preliminaries and Previous Results

In this paper, the space \mathbb{R}^{3} is endowed with the Euclidean norm $|\cdot|=\langle\cdot, \cdot\rangle^{\frac{1}{2}}$.
Definition 2.1 ([10, Definition 5.15]). A subset $\Omega \subset \mathbb{R}^{2}$ is called a starlike convex set if there is a point $p \in \Omega$, called the star point, such that, for every $q \in \Omega$, the segment $\overline{p q}$ lies in Ω. The boundary of a starlike convex set is called a starlike curve.

Theorem 2.2 (D. Panov, see [4]). The projection of a closed asymptotic line of a surface $z=\varphi(x, y)$ to the plane $\{z=0\}$ cannot be a starlike curve (in particular, this projection cannot be a convex curve).
Definition 2.3 ([4]). A smoothly immersed curve $\gamma: I \rightarrow \mathbb{R}^{3}$ is said to be of finite type at a point x, if $\left\{\gamma^{\prime}(x), \gamma^{\prime \prime}(x), \ldots, \gamma^{(k)}(x)\right\}$ generate all the tangent space $T_{\gamma(x)} \mathbb{R}^{3}$ for some $k \in \mathbb{N}$. Here $\gamma^{(k)}(x)$ denotes the derivative of order k of γ. In a neighborhood of this point, the curve is parametrized locally by $\gamma(x)=\left(x, a_{m} x^{m}+\mathcal{O}^{m+1}(x), b_{n} x^{n}+\mathcal{O}^{n+1}(x)\right)$, where $m, n \in \mathbb{N}$, $a_{m} b_{n} \neq 0$ and $1<m<n$.

The set $\{1, m, n\},(1<m<n)$, of the degrees of γ is called the symbol of the point. If $n=m+1$, then γ is said to be of rotating type at the point.

If a curve is of finite type (resp. rotating type) at every point, then it is called of finite type curve (resp. rotating type curve).

A finite type curve γ can have inflection points, i.e., points where the curvature of γ vanishes.
Arnold's Theorem (See [4]). An asymptotic curve of finite type on a hyperbolic surface is a rotating curve.

Every rotating space curve of finite type is an asymptotic line on a suitable hyperbolic surface.
A new proof of Arnold's Theorem will be given in the appendix.
2.1. Plane fields in \mathbb{R}^{3}. Let $\xi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a vector field of class C^{k}, where $k \geq 3$.

Definition 2.4. A plane field ξ in \mathbb{R}^{3}, orthogonal to the vector field ξ, is defined by the 1 -form $\langle\xi, d r\rangle=0$, where $d r$ is a direction in \mathbb{R}^{3}. See Fig. 1.

Theorem 2.5 ([2, Jacobi Theorem, p.2]). There exists a family of surfaces orthogonal to ξ if, and only if, $\langle\xi, \operatorname{curl}(\xi)\rangle \equiv 0$.

A plane field ξ is said to be completely integrable if $\langle\xi, \operatorname{curl}(\xi)\rangle \equiv 0$. A surface of the family of surfaces orthogonal to ξ is called an integral surface.

2.2. Normal curvature of a plane field.

Definition 2.6 ([2, p. 8]). The normal curvature k_{n} of a plane field in the direction $d r$ orthogonal to ξ is defined by

$$
k_{n}=\frac{\left\langle\xi, d^{2} r\right\rangle}{\langle d r, d r\rangle}=-\frac{\langle d \xi, d r\rangle}{\langle d r, d r\rangle}
$$

This definition agrees with the classical one given by L. Euler, see [5].
The geometric interpretation of k_{n} is given by means of the curvature of a plane curve, which we shall now describe.

In the plane $\pi\left(p_{0}, d r\right)$ generated by $\xi\left(p_{0}\right)$ and $d r$ (direction orthogonal to $\left.\xi\left(p_{0}\right)\right)$ we have a line field $\ell(p)$ orthogonal to vector $\bar{\xi}(p) \in \pi\left(p_{0}, d r\right)$ obtained projecting $\xi(p)$ in the plane $\pi\left(p_{0}, d r\right)$, with $p \in \pi\left(p_{0}, d r\right)$. The integral curves $\varphi_{p}(t)$ of the line field ℓ are regular curves and $k_{n}\left(p_{0}, d r\right)$ is the plane curvature of $\varphi_{p_{0}}(t)$ at $t=0$. See Fig. 2.

Figure 1. Plane field ξ in \mathbb{R}^{3} defined by the 1-form $\langle\xi, d r\rangle=d z-y d x=0$, where $\xi(x, y, z)=(-y, 0,1)$ and $d r=(d x, d y, d z)$.

Figure 2. Line field and normal curvature $k_{n}\left(p_{0}, d r\right)$.
2.3. ξ-asymptotic lines and parabolic points of a plane field. The ξ-asymptotic directions of a plane field ξ are defined by the following implicit differential equation

$$
\begin{equation*}
\langle\xi, d r\rangle=0, \quad\langle d \xi, d r\rangle=0 \tag{2.1}
\end{equation*}
$$

and will referred as the implicit differential equation of the ξ-asymptotic lines.
A solution $d r$ of equation (2.1) is called a ξ-asymptotic direction. A curve γ in \mathbb{R}^{3} is a ξ asymptotic line if γ is an integral curve of equation (2.1). Analogously to the case of asymptotic lines on surfaces, for plane fields the osculating plane of a ξ-asymptotic line coincides with the plane of the distribution of planes passing through the point of the curve. See also [2, page 29].
Definition 2.7. If at a point r there exists two real distinct ξ-asymptotic directions (resp. two complex ξ-asymptotic directions), then r is called a hyperbolic point (resp. elliptic point).
Definition 2.8. If at r the two ξ-asymptotic directions coincide or all the directions are ξ asymptotic directions then r is called a parabolic point.

Example 2.9. The circle in \mathbb{R}^{3} given by $x^{2}+y^{2}=1, z=0$, is a ξ-asymptotic line without parabolic points of the plane field ξ defined by the orthogonal vector field $\xi=(\rho, \varrho, \sigma)$, where $\rho=x^{2} y z+y^{3} z-x^{2} y-y^{3}+x z-2 y z+y, \varrho=x^{3}-x^{3} z-x y^{2} z+x y^{2}+2 x z+y z-x$ and $\sigma=-x^{2}-y^{2}$. See Fig. 3. The plane field ξ is not completely integrable. By the Theorem 2.2, this circle cannot be an asymptotic line of a regular surface $z=\varphi(x, y)$.

Figure 3. The circle is a ξ-asymptotic line without parabolic points of the plane field defined by the orthogonal vector field $\xi=(\rho, \varrho, \sigma)$, where $\rho=x^{2} y z+y^{3} z-x^{2} y-y^{3}+x z-2 y z+y$, $\varrho=x^{3}-x^{3} z-x y^{2} z+x y^{2}+2 x z+y z-x$ and $\sigma=-x^{2}-y^{2}$.

Proposition 2.10. Given a plane field ξ, let $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a differentiable nonvanishing function. Then a curve γ is a ξ-asymptotic line if, and only if, γ is a ξ-asymptotic line of the plane field $\widetilde{\xi}$ orthogonal to the vector field $\widetilde{\xi}=\varphi \xi$.
Proof. The implicit differential equation of ξ-asymptotic lines of $\widetilde{\xi}$ is given by

$$
\langle\widetilde{\xi}, d r\rangle=\varphi\langle\xi, d r\rangle=0, \quad\langle d \widetilde{\xi}(d r), d r\rangle=d \varphi(d r)\langle\xi, d r\rangle+\varphi\langle d \xi(d r), d r\rangle=0
$$

Then γ is a ξ-asymptotic line of ξ if, and only if, γ is a ξ-asymptotic line of the plane field $\widetilde{\xi}$.
2.4. Tubular neighborhood of an integral curve of a plane field. Let ξ be a plane field orthogonal to a vector field $\xi(x, y, z)$. Then $d \xi=\xi_{x} d x+\xi_{y} d y+\xi_{z} d z$. Let

$$
\gamma(x)=\left(\gamma_{1}(x), \gamma_{2}(x), \gamma_{3}(x)\right)
$$

be a curve such that $\left(\gamma_{1}^{\prime}(x), \gamma_{2}^{\prime}(x)\right) \neq(0,0)$ for all x. Set $X(x)=\gamma^{\prime}(x), Y(x)=\left(\gamma_{2}^{\prime}(x),-\gamma^{\prime}(x), 0\right)$, $Z(x)=(X \wedge Y)(x)$ and $\alpha: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$,

$$
\begin{equation*}
\alpha(x, y, z)=\gamma(x)+y Y(x)+z Z(x) \tag{2.2}
\end{equation*}
$$

The map (2.2) is a parametrization of a tubular neighborhood of γ. At this neighborhood, the position point is given by $r=\alpha(x, y, z)$ and then $d r=d \alpha=\alpha_{x} d x+\alpha_{y} d y+\alpha_{z} d z$. It follows that the implicit differential equation (2.1) of the ξ-asymptotic lines is given by

$$
\begin{align*}
& \langle\xi, d \alpha\rangle=a d x+b d y+c d z=0 \\
& \langle d \xi, d \alpha\rangle=L_{1} d x^{2}+L_{2} d x d y+L_{3} d y^{2}+L_{4} d x d z+L_{5} d y d z+L_{6} d z^{2}=0 \tag{2.3}
\end{align*}
$$

where,

$$
a=\left\langle\xi, \alpha_{x}\right\rangle, \quad b=\left\langle\xi, \alpha_{y}\right\rangle, \quad c=\left\langle\xi, \alpha_{z}\right\rangle
$$

and

$$
\begin{aligned}
& L_{1}=\left\langle\xi_{x}, \alpha_{x}\right\rangle, \quad L_{2}=\left\langle\xi_{x}, \alpha_{y}\right\rangle+\left\langle\xi_{y}, \alpha_{x}\right\rangle, \quad L_{3}=\left\langle\xi_{y}, \alpha_{y}\right\rangle \\
& L_{4}=\left\langle\xi_{x}, \alpha_{z}\right\rangle+\left\langle\xi_{z}, \alpha_{x}\right\rangle, \quad L_{5}=\left\langle\xi_{y}, \alpha_{z}\right\rangle+\left\langle\xi_{z}, \alpha_{y}\right\rangle, \quad L_{6}=\left\langle\xi_{z}, \alpha_{z}\right\rangle
\end{aligned}
$$

Proposition 2.11. Let $\gamma(x)=\left(\gamma_{1}(x), \gamma_{2}(x), \gamma_{3}(x)\right)$ be a curve such that, for all x,

$$
\left(\gamma_{1}^{\prime}(x), \gamma_{2}^{\prime}(x)\right) \neq(0,0)
$$

Consider a tubular neighborhood of γ parametrized by equation (2.2). If ξ is a plane field such that $\frac{a}{c}$ and $\frac{b}{c}$ are well defined in a neighborhood of γ, where a, b, c are given by (2.3), then the implicit differential equation of the ξ-asymptotic lines, in this neighborhood, is given by

$$
\begin{equation*}
d z=-\left(\frac{a}{c}\right) d x-\left(\frac{b}{c}\right) d y, \quad e d x^{2}+2 f d x d y+g d y^{2}=0 \tag{2.4}
\end{equation*}
$$

where,

$$
e=L_{1}-\frac{a L_{4}}{c}+\frac{a^{2} L_{6}}{c^{2}}, \quad g=L_{3}-\frac{b L_{5}}{c}+\frac{b^{2} L_{6}}{c^{2}}, \quad f=\frac{L_{2}}{2}-\frac{\left(a L_{5}+b L_{4}\right)}{2 c}+\frac{a b L_{6}}{2 c^{2}} .
$$

Furthermore, in this neighborhood, the parabolic set of ξ is given by eg $-f^{2}=0$.
Proof. In a neighborhood of γ, solve the first equation of (2.3) in the variable $d z$ to get the first equation of (2.4). Replace this $d z$ in the second equation of (2.3) to get the second equation of (2.4).

If $e g-f^{2}<0$ at a point (resp. $e g-f^{2}>0$), then the equations (2.4) define two distinct ξ-asymptotic directions at this point (resp. two complex ξ-asymptotic directions).

If $e g-f^{2}=0$ at a point, then at it the ξ-asymptotic directions coincide or, if $e=g=f=0$, all directions are ξ-asymptotic directions.

Definition 2.12 ([2, p. 11]). Let ξ be a plane field satisfying the assumptions of Lemma 2.11. The function defined by $\mathcal{K}=e g-f^{2}$ is called the Gaussian curvature of ξ.
Lemma 2.13. Let $\gamma(x)=\left(\gamma_{1}(x), \gamma_{2}(x), \gamma_{3}(x)\right)$ be a ξ-asymptotic line of a plane field ξ, such that $\left(\gamma_{1}^{\prime}(x), \gamma_{2}^{\prime}(x)\right) \neq(0,0)$ for all x. Consider a tubular neighborhood of γ parametrized by equation (2.2). Then, in a neighborhood of γ, the vector field ξ is given by

$$
\begin{align*}
& \xi(x, y, z)=l_{0}(x) Y(x)+k_{0}(x) Z(x) \\
& +\left(y k_{1}(x)+z l_{1}(x)+\left(\frac{y^{2}}{2}\right) \widetilde{k}_{1}(x)+y z \widetilde{j}_{1}(x)+\left(\frac{z^{2}}{2}\right) \widetilde{l}_{1}(x)+\widetilde{A}(x, y, z)\right) X(x) \\
& +\left(y k_{2}(x)+z l_{2}(x)+\left(\frac{y^{2}}{2}\right) \widetilde{k}_{2}(x)+y z \widetilde{j}_{2}(x)+\left(\frac{z^{2}}{2}\right) \widetilde{l}_{2}(x)+\widetilde{B}(x, y, z)\right) Y(x) \tag{2.5}\\
& +\left(y k_{3}(x)+z l_{3}(x)+\left(\frac{y^{2}}{2}\right) \widetilde{k}_{3}(x)+y z \widetilde{j}_{3}(x)+\left(\frac{z^{2}}{3}\right) \widetilde{l}_{3}(x)+\widetilde{C}(x, y, z)\right) Z(x)
\end{align*}
$$

where

$$
\begin{gathered}
X(x)=\gamma^{\prime}(x), Y(x)=\left(\gamma_{2}^{\prime}(x),-\gamma_{1}^{\prime}(x), 0\right), Z(x)=(X \wedge Y)(x) \\
\widetilde{A}(x, 0,0)=\widetilde{B}(x, 0,0)=\widetilde{C}(x, 0,0)=0
\end{gathered}
$$

and

$$
\begin{equation*}
\left[\left(\gamma_{3}^{\prime} \gamma_{1}^{\prime \prime}-\gamma_{1}^{\prime} \gamma_{3}^{\prime \prime}\right) \gamma_{1}^{\prime}+\left(\gamma_{3}^{\prime} \gamma_{2}^{\prime \prime}-\gamma_{2}^{\prime} \gamma_{3}^{\prime \prime}\right) \gamma_{2}^{\prime}\right] k_{0}-\left(\gamma_{1}^{\prime} \gamma_{2}^{\prime \prime}-\gamma_{2}^{\prime} \gamma_{1}^{\prime \prime}\right) l_{0}=0 \tag{2.6}
\end{equation*}
$$

Furthermore, if

$$
\begin{equation*}
k_{0}=\gamma_{1}^{\prime} \gamma_{2}^{\prime \prime}-\gamma_{2}^{\prime} \gamma_{1}^{\prime \prime}, \quad l_{0}=\left(\gamma_{3}^{\prime} \gamma_{1}^{\prime \prime}-\gamma_{1}^{\prime} \gamma_{3}^{\prime \prime}\right) \gamma_{1}^{\prime}+\left(\gamma_{3}^{\prime} \gamma_{2}^{\prime \prime}-\gamma_{2}^{\prime} \gamma_{3}^{\prime \prime}\right) \gamma_{2}^{\prime} \tag{2.7}
\end{equation*}
$$

and $\gamma_{1}^{\prime}(x) \gamma_{2}^{\prime \prime}(x)-\gamma_{2}^{\prime}(x) \gamma_{1}^{\prime \prime}(x) \neq 0$ for all x, then the implicit differential equation of the ξ asymptotic lines is given by (2.4).

Proof. The expression (2.5) holds, since γ is an integral curve of the plane field defined by ξ. Also, as γ is a ξ-asymptotic line, $\left\langle\xi(x), \gamma^{\prime \prime}(x)\right\rangle=0$ for all x, which gives the equation (2.6).

If $\gamma_{1}^{\prime}(x) \gamma_{2}^{\prime \prime}(x)-\gamma_{2}^{\prime}(x) \gamma_{1}^{\prime \prime}(x) \neq 0$, then $c(x, 0,0) \neq 0$. The conclusion then follows from Proposition 2.11.

3. Finite type ξ-asymptotic lines of plane fields

In this section the following result is established.
Theorem 3.1. Any finite type curve is a ξ-asymptotic line (without parabolic points) of a suitable plane field.
Proof. Let $\gamma(x)=\left(\gamma_{1}(x), \gamma_{2}(x), \gamma_{3}(x)\right)=\left(x, a_{m} x^{m}+\mathcal{O}^{m+1}(x), a_{n} x^{n}+\mathcal{O}^{n+1}(x)\right)$ be a finite type curve. Consider a tubular neighborhood of γ parametrized by equation (2.2) and the vector field ξ given by (2.5). Set $k_{0}(x) \equiv 1$ and solve (2.6) for $l_{0}(x)$. Then γ is a ξ-asymptotic line of the plane field orthogonal to ξ.

We have that

$$
a(x, 0,0)=0, \quad b(0,0,0)=0, \quad \text { and } \quad c(0,0,0)=a_{m} m(m-1) \neq 0
$$

By Proposition 2.11, in a neighborhood of $(0,0,0)$, the equation of ξ-asymptotic lines are given by (2.4).

Set $l_{1}(x) \equiv 0$ and define $k_{1}(x)$ by

$$
\begin{aligned}
k_{1} & =\frac{\left(\left(\gamma_{1}^{\prime}\right)^{2}+\left(\gamma_{2}^{\prime}\right)^{2}\right)^{2}\left[\left(\gamma_{2}^{\prime \prime} \gamma_{3}^{\prime \prime \prime}-\gamma_{3}^{\prime \prime} \gamma_{2}^{\prime \prime \prime}\right) \gamma_{1}^{\prime}+\left(\gamma_{3}^{\prime \prime} \gamma_{1}^{\prime \prime}-\gamma_{1}^{\prime \prime} \gamma_{3}^{\prime \prime \prime}\right) \gamma_{2}^{\prime}+\left(\gamma_{1}^{\prime \prime} \gamma_{2}^{\prime \prime \prime}-\gamma_{2}^{\prime \prime} \gamma_{1}^{\prime \prime \prime}\right) \gamma_{3}^{\prime}\right]}{\left(\left(\gamma_{1}^{\prime}\right)^{2}+\left(\gamma_{2}^{\prime}\right)^{2}+\left(\gamma_{3}^{\prime}\right)^{2}\right)\left(\gamma_{1}^{\prime} \gamma_{2}^{\prime \prime}-\gamma_{2}^{\prime} \gamma_{1}^{\prime \prime}\right)} \\
& +\frac{2\left(\gamma_{1}^{\prime} \gamma_{2}^{\prime \prime}-\gamma_{2}^{\prime} \gamma_{1}^{\prime \prime}\right)}{\left(\left(\gamma_{1}^{\prime}\right)^{2}+\left(\gamma_{2}^{\prime}\right)^{2}+\left(\gamma_{3}^{\prime}\right)^{2}\right)} .
\end{aligned}
$$

Then $\mathcal{K}(x, 0,0)=-1$.

4. Hyperbolic closed finite type ξ-ASymptotic line

Examples of hyperbolic asymptotic lines on surfaces are given in $[6,7,8]$.
In this section it will be given an example of a hyperbolic closed ξ-asymptotic line of finite type for a suitable plane field.

Proposition 4.1. Let $\gamma, \gamma(x)=\left(\gamma_{1}(x), \gamma_{2}(x), \gamma_{3}(x)\right)$, be a curve such that

$$
\left(\gamma_{1}^{\prime}(x), \gamma_{2}^{\prime}(x)\right) \neq(0,0), \quad \gamma_{1}^{\prime}(x) \gamma_{2}^{\prime \prime}(x)-\gamma_{2}^{\prime}(x) \gamma_{1}^{\prime \prime}(x) \neq 0
$$

for all x. Consider the tubular neighborhood α given by (2.2) and the vector field ξ given by (2.5), with $k_{0}(x), l_{0}(x)$ given by (2.7). Let $H(x)$ be a nonvanishing function and define $k_{1}(x)$ by

$$
\begin{align*}
k_{1} & =\frac{\left(\left(\gamma_{1}^{\prime}\right)^{2}+\left(\gamma_{2}^{\prime}\right)^{2}\right)^{2}\left[\left(\gamma_{2}^{\prime \prime} \gamma_{3}^{\prime \prime \prime}-\gamma_{3}^{\prime \prime} \gamma_{2}^{\prime \prime \prime}\right) \gamma_{1}^{\prime}+\left(\gamma_{3}^{\prime \prime} \gamma_{1}^{\prime \prime}-\gamma_{1}^{\prime \prime} \gamma_{3}^{\prime \prime \prime}\right) \gamma_{2}^{\prime}+\left(\gamma_{1}^{\prime \prime} \gamma_{2}^{\prime \prime \prime}-\gamma_{2}^{\prime \prime} \gamma_{1}^{\prime \prime \prime}\right) \gamma_{3}^{\prime}\right]}{\left(\left(\gamma_{1}^{\prime}\right)^{2}+\left(\gamma_{2}^{\prime}\right)^{2}+\left(\gamma_{3}^{\prime}\right)^{2}\right)\left(\gamma_{1}^{\prime} \gamma_{2}^{\prime \prime}-\gamma_{2}^{\prime} \gamma_{1}^{\prime \prime}\right)} \tag{4.1}\\
& +\frac{\left[\left(\gamma_{1}^{\prime} \gamma_{1}^{\prime \prime}+\gamma_{2}^{\prime} \gamma_{2}^{\prime \prime}\right) \gamma_{3}^{\prime}-\left(\left(\gamma_{1}\right)^{2}+\left(\gamma_{2}\right)^{2}\right) \gamma_{3}^{\prime \prime} l_{1}+2\left(\gamma_{1}^{\prime} \gamma_{2}^{\prime \prime}-\gamma_{2}^{\prime} \gamma_{1}^{\prime \prime}\right) H\right.}{\left(\left(\gamma_{1}^{\prime}\right)^{2}+\left(\gamma_{2}^{\prime}\right)^{2}+\left(\gamma_{3}^{\prime}\right)^{2}\right)\left(\gamma_{1}^{\prime} \gamma_{2}^{\prime \prime}-\gamma_{2}^{\prime} \gamma_{1}^{\prime \prime}\right)} .
\end{align*}
$$

Then, γ is a ξ-asymptotic line, without parabolic points, of the plane field orthogonal to the vector field ξ.

Furthermore, $\mathcal{K}(x, 0,0)=-(H(x))^{2}$.
Proof. By direct calculations, we can see that γ is a ξ-asymptotic line. The implicit differential equation of the ξ-asymptotic lines are given by (2.4) and $e(x, 0,0)=0, f(x, 0,0)=H(x)$. Since $e(x, 0,0)=0$, then $\mathcal{K}(x, 0,0)=-(H(x))^{2}$ for all x.
4.1. Poincaré map associated to a closed ξ-asymptotic line. Let $\gamma:[0, l] \rightarrow \mathbb{R}^{3}$, $\gamma(x)=\left(\gamma_{1}(x), \gamma_{2}(x), \gamma_{3}(x)\right)$, be a closed ξ-asymptotic line, without parabolic points, of a plane field ξ, such that $\gamma(0)=\gamma(l),\left(\gamma_{1}^{\prime}(x), \gamma_{2}^{\prime}(x)\right) \neq(0,0), \gamma_{1}^{\prime}(x) \gamma_{2}^{\prime \prime}(x)-\gamma_{2}^{\prime}(x) \gamma_{1}^{\prime \prime}(x) \neq 0$ for all x, and consider the tubular neighborhood α given by (2.2).

This means that γ is a regular curve having a projection in a plane which is a strictly locally convex curve.

By the Proposition $2.13, \xi$ is given by (2.5) and the implicit differential equations of the ξ-asymptotic lines is given by (2.4).

Let $\Sigma_{x_{0}}=\left\{\left(x_{0}, y, z\right)\right\}$ be a transversal section. Then $\alpha\left(\Sigma_{x_{0}}\right)$ is the plane spanned by $Y\left(x_{0}\right)$ and $Z\left(x_{0}\right)$. By Lemma 2.13, in a neighborhood of γ, the ξ-asymptotic line passing through $\alpha\left(x_{0}, y_{0}, z_{0}\right)$ intersects $\alpha\left(\Sigma_{x_{0}}\right)$ again at the point

$$
\alpha\left(x_{0}+l, y\left(x_{0}+l, y_{0}, z_{0}\right), z\left(x_{0}+l, y_{0}, z_{0}\right)\right),
$$

where $\left(y\left(x, y_{0}, z_{0}\right), z\left(x, y_{0}, z_{0}\right)\right)$ is solution of the following Cauchy problem

$$
\begin{align*}
& \frac{d z}{d x}=-\frac{a}{c}-\left(\frac{b}{c}\right) \frac{d y}{d x}=A+B \frac{d y}{d x} \\
& e+2 f \frac{d y}{d x}+g\left(\frac{d y}{d x}\right)^{2}=0 \tag{4.2}\\
& \left(y\left(x_{0}, y_{0}, z_{0}\right), z\left(x_{0}, y_{0}, z_{0}\right)\right)=\left(y_{0}, z_{0}\right)
\end{align*}
$$

The Poincaré map \mathcal{P}, also called first return map, associated to γ is defined by $\mathcal{P}: \mathcal{U} \subset \Sigma \rightarrow \Sigma$, $\mathcal{P}\left(y_{0}, z_{0}\right)=\left(y\left(l, y_{0}, z_{0}\right), z\left(l, y_{0}, z_{0}\right)\right)$. See Fig. 4.

A closed ξ-asymptotic line γ is said to be hyperbolic if the eigenvalues of $d \mathcal{P}_{(0,0)}$ does not belong to \mathbb{S}^{1}. See [12] for the generic properties of the Poincaré map associated to closed orbits of vector fields.

We will denote by $d \mathcal{P}_{(0,0)}$ the matrix of the first derivative of the Poincaré map evaluated at $\left(y_{0}, z_{0}\right)=(0,0)$.

Figure 4. Poincaré return map.

Proposition 4.2. Let $\gamma:[0, l] \rightarrow \mathbb{R}^{3}, \gamma(x)=\left(\gamma_{1}(x), \gamma_{2}(x), \gamma_{3}(x)\right)$, be a closed ξ-asymptotic line, having a projection in a plane which is a locally strictly convex curve.

Let \mathcal{P} be the Poincaré map associated to γ. Then $d \mathcal{P}_{(0,0)}=\mathcal{Q}(l)$, where $\mathcal{Q}(x)$ is solution of the following Cauchy problem:

$$
\begin{equation*}
\frac{d}{d x}(\mathcal{Q}(x))=\mathcal{M}(x) \mathcal{Q}(x), \quad \mathcal{Q}(0)=\mathcal{I} \tag{4.3}
\end{equation*}
$$

where \mathcal{I} is the identity matrix, and $\mathcal{M}(x), \mathcal{Q}(x)$ are the matrices given by

$$
\mathcal{M}(x)=\left(\begin{array}{cc}
-\frac{e_{y}(x, 0,0)}{2 f(x, 0,0)} & -\frac{e_{z}(x, 0,0)}{2 f(x, 0,0)} \\
(A)_{y}(x, 0,0) & (A)_{z}(x, 0,0)
\end{array}\right), \mathcal{Q}(x)=\left(\begin{array}{cc}
\frac{d y}{d d_{0}}(x, 0,0) & \frac{d y}{d z_{0}}(x, 0,0) \\
\frac{d z}{d y_{0}}(x, 0,0) & \frac{d z}{d z_{0}}(x, 0,0)
\end{array}\right),
$$

where $A=-\frac{a}{c}$.
Proof. To fix the notation suppose that

$$
\gamma(0)=\gamma(l), \quad\left(\gamma_{1}^{\prime}(x), \gamma_{2}^{\prime}(x)\right) \neq(0,0), \quad \text { and } \quad \gamma_{1}^{\prime}(x) \gamma_{2}^{\prime \prime}(x)-\gamma_{2}^{\prime}(x) \gamma_{1}^{\prime \prime}(x) \neq 0 \text { for all } x
$$

Let $\left(y\left(x, y_{0}, z_{0}\right), z\left(x, y_{0}, z_{0}\right)\right)$ be solution of the Cauchy problem given by equation (4.2). Then, at $(y, z)=(0,0), \frac{d y}{d x}(x, 0,0)=\frac{d z}{d x}(x, 0,0)=0$.

Differentiating the first equation of (4.2) with respect to y_{0} (resp. z_{0}), it results that:

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{d z}{d y_{0}}\right)=A_{y} \frac{d y}{d y_{0}}+A_{z} \frac{d z}{d y_{0}}+B \frac{d}{d x}\left(\frac{d y}{d y_{0}}\right)+\left(B_{y} \frac{d y}{d y_{0}}+B_{z} \frac{d z}{d y_{0}}\right) \frac{d y}{d x} \tag{4.4}
\end{equation*}
$$

respectively,

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{d z}{d z_{0}}\right)=A_{y} \frac{d y}{d z_{0}}+A_{z} \frac{d z}{d z_{0}}+B \frac{d}{d x}\left(\frac{d y}{d z_{0}}\right)+\left(B_{y} \frac{d y}{d z_{0}}+B_{z} \frac{d z}{d z_{0}}\right) \frac{d y}{d x} \tag{4.5}
\end{equation*}
$$

Differentiating the second equation of (4.2) with respect to y_{0} (resp. z_{0}), it results that:

$$
\begin{align*}
& e_{y} \frac{d y}{d y_{0}}+e_{z} \frac{d z}{d y_{0}}+2 f \frac{d}{d x}\left(\frac{d y}{d y_{0}}\right)+2\left(f_{y} \frac{d y}{d y_{0}}+f_{z} \frac{d z}{d y_{0}}+g \frac{d}{d x}\left(\frac{d y}{d y_{0}}\right)\right) \frac{d y}{d x} \\
& +\left(g_{y} \frac{d y}{d y_{0}}+g_{z} \frac{d z}{d y_{0}}\right)\left(\frac{d y}{d x}\right)^{2}=0 \tag{4.6}
\end{align*}
$$

respectively,

$$
\begin{align*}
& e_{y} \frac{d y}{d z_{0}}+e_{z} \frac{d z}{d z_{0}}+2 f \frac{d}{d x}\left(\frac{d y}{d z_{0}}\right)+2\left(f_{y} \frac{d y}{d z_{0}}+f_{z} \frac{d z}{d z_{0}}+g \frac{d}{d x}\left(\frac{d y}{d z_{0}}\right)\right) \frac{d y}{d x} \\
& +\left(g_{y} \frac{d y}{d z_{0}}+g_{z} \frac{d z}{d z_{0}}\right)\left(\frac{d y}{d x}\right)^{2}=0 \tag{4.7}
\end{align*}
$$

Evaluating (4.4), (4.5), (4.6), (4.7) at $(y, z)=(0,0)$, it follows that:

$$
\begin{aligned}
& A_{y} \frac{d y}{d y_{0}}+A_{z} \frac{d z}{d y_{0}}=\frac{d}{d x}\left(\frac{d z}{d y_{0}}\right), \quad e_{y} \frac{d y}{d y_{0}}+e_{z} \frac{d z}{d y_{0}}+2 f \frac{d}{d x}\left(\frac{d y}{d y_{0}}\right)=0 \\
& A_{y} \frac{d y}{d z_{0}}+A_{z} \frac{d z}{d z_{0}}=\frac{d}{d x}\left(\frac{d z}{d z_{0}}\right), \quad e_{y} \frac{d y}{d z_{0}}+e_{z} \frac{d z}{d z_{0}}+2 f \frac{d}{d x}\left(\frac{d y}{d z_{0}}\right)=0
\end{aligned}
$$

Then $\frac{d}{d x}(\mathcal{Q}(x))=\mathcal{M}(x) \mathcal{Q}(x)$. Since $\left(y\left(0, y_{0}, z_{0}\right), z\left(0, y_{0}, z_{0}\right)\right)=\left(y_{0}, z_{0}\right)$, it follows that $\mathcal{Q}(0)=\mathcal{I}$.
Since $\mathcal{P}\left(y_{0}, z_{0}\right)=\left(y\left(l, y_{0}, z_{0}\right), z\left(l, y_{0}, z_{0}\right)\right)$, the first derivative $d \mathcal{P}_{(0,0)}$ is given by $\mathcal{Q}(l)$.
4.2. Example of a hyperbolic closed finite type ξ-asymptotic line. An explicit example of a hyperbolic closed ξ-asymptotic line is given in the next result.

Theorem 4.3. Let $\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{3}, \gamma(x)=\left(\sin (x), \cos (x), \sin ^{3}(x)\right)$, see Fig. 5. Then it is a hyperbolic finite type ξ-asymptotic line of a suitable plane field.

Proof. Let ξ be a plane field orthogonal to the vector field ξ given by (2.5), where $k_{0}(x)$ and $l_{0}(x)$ are given by (2.7). Let $k_{1}(x)$ given by (4.1), with $H(x) \equiv 1$. Then

$$
k_{1}(x)=\frac{3\left(3 \cos ^{2}(x)-1\right) \sin (x) l_{1}(x)+24 \cos ^{3}(x)-18 \cos (x)-2}{9 \cos ^{6}(x)-18 \cos ^{4}(x)+9 \cos ^{2}(x)+1}
$$

By Proposition 4.1, γ is a ξ-asymptotic line without parabolic points and $\mathcal{K}(x, 0,0)=-1$. Performing the calculations, $e_{z}(x, 0,0)=\mathcal{E}(x)+l_{2}(x)$. Solve $e_{z}(x, 0,0)=0$ for $l_{2}(x)$. This vanishes the entry $\left(-\frac{e_{z}(x, 0,0)}{2 f(x, 0,0)}\right)$ of $\mathcal{M}(x)$ given by Theorem 4.2. From (4.3), it follows that the eigenvalues of $d \mathcal{P}_{(0,0)}$ are given by

$$
\exp \left(\int_{0}^{2 \pi}-\frac{e_{y}(x, 0,0)}{2 f(x, 0,0)} d x\right) \text { and } \exp \left(\int_{0}^{2 \pi} A_{z}(x, 0,0) d x\right)
$$

Set $l_{1}(x)=\cos (x)$. Then

$$
\begin{aligned}
A_{z}(x, 0,0) & =9 \sin (x) \cos ^{8}(x)+54 \sin (x) \cos ^{6}(x)-9 \cos ^{6}(x)-117 \sin (x) \cos ^{4}(x) \\
& +18 \cos ^{4}(x)+55 \cos ^{2}(x) \sin (x)-9 \cos ^{2}(x)-1
\end{aligned}
$$

It follows that $\int_{0}^{2 \pi} A_{z}(x, 0,0) d x=-\frac{25 \pi}{8}$. Let $k_{3}(x)=0$ and $k_{2}(x)$ a solution of the equation $e_{y}(x, 0,0)+2 f(x, 0,0)=0$. It follows that

$$
\int_{0}^{2 \pi}\left(-\frac{e_{y}(x, 0,0)}{2 f(x, 0,0)}\right) d x=2 \pi
$$

Figure 5. Finite type curve $\gamma(x)=\left(\sin (x), \cos (x), \sin ^{3}(x)\right)$.

Acknowledgments

The second author is fellow of CNPq. This work was partially supported by Pronex FAPEG/CNPq Proc. 201710267000 508. The authors are grateful to the anonymous referee for careful reading and helpful comments.

References

[1] Geometry. II, volume 29 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 1993. Spaces of constant curvature, A translation of Geometriya. II, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988, Translation by V. Minachin [V. V. Minakhin], Translation edited by È. B. Vinberg.
[2] Y. Aminov. The geometry of vector fields. Gordon and Breach Publishers, Amsterdam, 2000.
[3] Y. Aminov. The geometry of submanifolds. Gordon and Breach Science Publishers, Amsterdam, 2001.
[4] V. I. Arnold. Topological problems in the theory of asymptotic curves. Tr. Mat. Inst. Steklova, 225(Solitony Geom. Topol. na Perekrest.):11-20, 1999.
[5] L. Euler. Recherches sur la courbure des surfaces. Mémoires de l'Académie des Sciences de Berlin, 16(119143):9, 1760.
[6] R. Garcia, C. Gutierrez, and J. Sotomayor. Structural stability of asymptotic lines on surfaces immersed in \mathbb{R}^{3}. Bull. Sci. Math., 123(8):599-622, 1999. DOI: 10.1016/S0007-4497(99)00116-5
[7] R. Garcia and J. Sotomayor. Structural stability of parabolic points and periodic asymptotic lines. Mat. Contemp., 12:83-102, 1997.
[8] R. Garcia and J. Sotomayor. Differential equations of classical geometry, a qualitative theory. Publicações Matemáticas do IMPA. [IMPA Mathematical Publications]. Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2009.
[9] S. Izumiya, M. d. C. Romero Fuster, M. A. S. Ruas, and F. Tari. Differential geometry from a singularity theory viewpoint. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016. DOI: 10.1142/9108
[10] S. G. Krantz. Convex analysis. CRC Press, 2015.
[11] L. Nirenberg. Rigidity of a class of closed surfaces. In Nonlinear Problems (Proc. Sympos., Madison, Wis., 1962), pages 177-193. Univ. of Wisconsin Press, Madison, Wis., 1963.
[12] J. Palis, Jr. and W. de Melo. Geometric theory of dynamical systems. Springer-Verlag, New York-Berlin, 1982. An introduction, Translated from the Portuguese by A. K. Manning.
[13] E. R. Rozendorn. Surfaces of negative curvature. In Current problems in mathematics. Fundamental directions, Vol. 48 (Russian), Itogi Nauki i Tekhniki, pages 98-195. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989.
[14] A. Voss. Geometrische Interpretation der Differentialgleichung $P d x+Q d y+R d z=0$. Math. Ann., 16(4):556559, 1880. DOI: $10.1007 /$ bf01446224

Appendix

A new proof of Arnold's Theorem

The proof of Arnold's Theorem [4] is given on graph surfaces $z=z(x, y)$. Using affine coordinates, the surface takes the form $z=x y+\ldots$, where the dots denote the terms of higher order. Arnold showed that an asymptotic line $x=x(t), y=y(t), z=z(t)$ of finite type is a rotating curve.

After that, he proves that given a rotating curve $x=x(t), y=y(t), z=z(t)$ then there exists an appropriated function $H(x, y)$ such that the rotating curve is an asymptotic line of the surface $z=H(x, y)$.

Below, will be given a geometric proof of Arnold's Theorem, with an explicit parametrization of the surface.

Proof. Let γ be a curve of finite type $\left(u, u^{m}, u^{n}\right), n \geq m$. Set $N(u)=\left(\gamma_{2}^{\prime}(u),-\gamma_{1}^{\prime}(u), 0\right)$. Consider the local surface parametrized by

$$
\alpha(u, v)=\gamma(u)+v N(u)+\left(k_{1}(u) v+k_{2}(u) v^{2}+k_{3}(u) v^{3}+\mathcal{O}^{4}(v)\right)\left(\gamma^{\prime} \wedge N\right)(u)
$$

Let N_{α} be the unit normal vector

$$
N_{\alpha}=\frac{\alpha_{u} \wedge \alpha_{v}}{\left|\alpha_{u} \wedge \alpha_{v}\right|}
$$

The implicit differential equation of the asymptotic lines of α is given by

$$
e d u^{2}+2 f d u d v+g d v^{2}=0
$$

where $e=\left\langle\alpha_{u u}, N_{\alpha}\right\rangle, f=\left\langle\alpha_{u v}, N_{\alpha}\right\rangle$ and $g=\left\langle\alpha_{v v}, N_{\alpha}\right\rangle$.
Supposing that γ is an asymptotic line of α, and parametrized by $v=0$, we have that $e(u, 0)=0$. Then by equation (4.1) it follows that

$$
\begin{equation*}
k_{1}(u)=\frac{\left[(n-m) m^{2} u^{2(m-1)}+n-1\right] n u^{n-m}}{\left[1+m^{2} u^{2(m-1)}+n^{2} u^{2(n-1)}\right](m-1) m} . \tag{A.8}
\end{equation*}
$$

Direct calculations show that

$$
f(u, 0)=\frac{(n-m)(n-1) n\left(1+m^{2} u^{2(m-1)}\right)^{2} u^{n-m-1}}{(m-1) m}
$$

It follows that $f(0,0) \neq 0$ if, and only if, $n=m+1$, i.e., γ is a rotating curve.
If γ is a rotating space curve of finite type $\left(u, u^{m}, u^{m+1}\right), m \geq 2$, set $N(u)=\left(\gamma_{2}^{\prime}(u),-\gamma_{1}^{\prime}(u), 0\right)$ and let

$$
\beta(u, v)=\gamma(u)+v N(u)+k_{1}(u) v\left(\gamma^{\prime} \wedge N\right)(u)
$$

where $k_{1}(u)$ is given by (A.8) with $n=m+1$. Therefore, $e(u, 0)=\left[\beta_{u}, \beta_{v}, \beta_{u u}\right](0,0)=0$ and $f(0,0)=\left[\beta_{u}, \beta_{v}, \beta_{u v}\right](0,0)=\frac{m+1}{m-1} \neq 0$. Then γ is an asymptotic line, without parabolic points, of the surface parametrized by β in a neighborhood of $(u, v)=(0,0)$.

Douglas H. da Cruz, Instituto de Matemática e Estatística, Universidade Federal de Goiás, Campus Samambaia, 74690-900 - GoiÂnia -G0 - Brazil

Email address: douglashilariodacruz@gmail.com
Ronaldo A. Garcia, Instituto de Matemática e Estatística, Universidade Federal de Goiás, Campus Samambaia, 74690-900 - GoiÂnia -G0 - Brazil

Email address: ragarcia@ufg.br

