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Abstract. The multiplication of monic polynomials of degrees n and m defines a mapping
Rn+m → Rn+m. Singularities of this mapping at a point corresponding to two polynomials

(P,Q) appear when the two polynomials have a common root. In [Ch-LdM] it was shown

that, when every such common root is simple in one of the polynomials, the singularity type
can be described using swallowtail singularities whose geometry is well understood. In this

paper we consider the case where there are common double roots. We start with the minimal

possible situation where both polynomials are of degree 2, and give a normal form for the
singularity that allows us to describe its geometry quite thoroughly. This normal form is then

extended to other polynomial pairs with only one common multiple root which is a double

root in one of them. Finally we give a general statement for pairs whose greater common
divisor has only single or double roots.

Introduction.

Let MP(K, n) be the space of monic polynomials of degree n with coefficients in a field K.
We will consider only cases where K is either the real or the complex field. A polynomial in
MP(K, n) is given by n coefficients, so the space MP(K, n) can be identified with Kn.

Multiplication of polynomials gives a mapping:

Mult : MP(K, n)×MP(K,m)→ MP(K, n+m),

which can then be identified as a mapping from Kn+m to itself.
We are interested in understanding the properties of this differentiable map: at which pairs

(P,Q) of polynomials is it a local diffeomorphism? When it is not so, can we describe the type
of singularities that may appear, starting with the most simple situations?

In [Ch-LdM] these questions were given some first answers (which were then applied to the
theory of deformations of linear operators):

(i) The points (P,Q) where the mapping Mult is a local diffeomorphism are characterized as
those where the two polynomials are relatively prime.

(ii) The singularity type is given at the pairs where the greatest common divisor of them has
only simple roots (see Theorem 1 below).

(iii) A general normal form for every type of singularity appearing in Mult.
It is the purpose of this article to study the singularity type of Mult when P and Q have

a common double root. First, we give a new normal form for the simplest case that allows us
to describe the geometry of its singularity type in the real and complex cases. Surprisingly, in
the real case the critical set is not equivalent to, but still related to a well-known swallowtail
singularity, typical of the cases where the greatest common divisor has only simple roots.

In the interesting paper [L-W] the Thom-Boardman symbol of the singularities of the mapping
Mult at all points (P,Q) is computed. Our approach, following [Ch-LdM], is different: we search
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for a simple normal form and a complete topological description of the singularity. This objective
looks difficult to achieve except in the simplest cases.

1. Known results.

The main result of [Ch-LdM] is the following:
Theorem 1. For (P0, Q0) ∈ MP(K, n)×MP(K,m):

(i) The corank of the differential DMult(P0, Q0) is the degree of gcd(P0, Q0).
(ii) In particular, Mult is a local diffeomorphism at (P0, Q0) if and only if gcd(P0, Q0) = 1.
(iii) The mapping Mult is a (k + 1)–swallowtail at (P0, Q0) for some positive integer k if,

and only if, deg gcd(P0, Q0) = 1, the integer k being the maximum of the multiplicities
in P0 and Q0 of their common root.

(iv) If K = R, the mapping Mult is a complex (k + 1)–swallowtail at (P0, Q0) for some
positive integer k if, and only if, gcd(P0, Q0) is an irreducible polynomial of degree 2, k
being the maximum of the multiplicities in P0 and Q0 of their complex conjugate common
roots.

The proof consists in giving a simple normal form for such mappings. All these mappings
are well-known and so is the general description of their singular and critical sets. A reduction
lemma shows that the singularity type of Mult at a point (P0, Q0) splits into a product of the
singularity types of the factors of the polynomials corresponding to the different roots:

Lemma 1. The singularity type of Mult at a pair of polynomials with several common roots
is the set-theoretical product of the singularity types ot Mult at each of the pairs consisting of
the factors of the polynomials involving only one of those roots.

This is because the multiplication of factors involving different roots is locally invertible by
(ii) and so the product can be factored, multiplied separately and then multiplied together again,
all the complementary multiplications being local bijections.

Another argument given in [Ch-LdM] can be formulated in general as follows:
Lemma 2. Assume P0 ∈ MP(R, 2k) has no real roots and let P0 = P01P̄01 be a decom-

position of P0 such that P01 and P̄01 have no common roots. Then the mapping P1 7→ P1P̄1

is a diffeomorphism between a neighborhood of P01 in MP(C, k) and a neighborhood of P0 in
MP(R, 2k).

This is because in a neighborhood of P0 in MP(C, 2k) every polynomial P can be written
in a unique way as P1P2 with P1, P2 in neighborhoods of P01 and P̄01, respectively. When
P ∈ MP(2k,R) then P = P̄ = P̄1P̄2. The uniqueness of the decomposition implies that P2 = P̄1

and P = P1P̄1 so the mapping P 7→ P1 is a local inverse of P1 7→ P1P̄1.
Also, in [Ch-LdM], Proposition 2, there are normal forms for all possible singularity types

of Mult at pairs with only one root which is common. We still do not know how to use these
normal forms to obtain a geometric description of the singularity types, so we looked for new
normal forms in the cases we study.

2. Polynomials with common double roots.

We will start by describing the minimal case: two polynomials of degree 2 with one single root
which is common and double in both of them. We will give a new normal form of the mapping
Mult in the neighborhood of such a pair and a detailed description of its singularity type in the
case K = R. Section 2.4 treats the case of two real polynomials with a double common complex
root.

In section 2.5 we give a new normal form for the case of two polynomials with only one root
which is common, double in one of them and of multiplicity k ≥ 2 in the other one.
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In section 2.6 we will combine all the cases known to give a statement about pairs of polyno-
mials whose greater common divisor has only simple and double roots.

2.1. The minimal case for general K. We consider now the case where both polynomials
are of degree 2 with a common double root α which is in K.

A change of variable x = y + α in those polynomials is an automorphism of MP (K, 2) that
preserves the multiplication and gives us two polynomials in y whose common double root is
zero. So we can assume that both P0(x) and Q0(x) are equal to x2 and Mult(P0, Q0) = x4.
A variation of the pair (P0, Q0) is given by the pair (P,Q) where P (x) = x2 + sx + t and
Q(x) = x2 + ux+ v. Their product is then

P (x)Q(x) = x4 + ux3 + sx3 + vx2 + sux2 + tx2 + svx+ tux+ tv.

In terms of the parameters s, t, u, v the mapping is

F (s, t, u, v) = (u+ s, v + su+ t, sv + tu, tv).

This is a simple mapping of degree 2, but this fact does not give us an idea of its geometry.
In several steps we will simplify this map through invertible changes of variables, obtaining a
map of degree 4 that can be much better understood.

We begin by taking the first two components of F as new independent variables, through
changes of coordinates:

s = s1 − u, t = t1 − s1u− v + u2

to obtain the equivalent map

F1(s1, t1, u, v)
(
s1, t1, vs1 − 2vu+ ut1 − s1u

2 + u3, (t1 − s1u− v + u2)v
)
.

To simplify the third component we use the changes of coordinates:

v =
t1
2
− s1u

2
+
u2

2
− v1

2
, u = u1 +

s1

2
giving the new equivalent function

F2(s1, t1, u1, v1) =

(
s1, t1,

−s3
1 + (4u2

1 + 4t1)s1

8
+ u1v1,

(s2
1 − 4u2

1 − 4t1 − 4v1)2

64

)
.

Now we operate on the target space by substracting two functions of the first two components:

− s31
8 + s1t1

2 from the third component and (− s21
8 + t1

2 )2 from the fourth one.
Another change of variables finishes the simplification of the third coordinate:

v1 = v2 −
s1u1

2
,

F3(s1, t1, u1, v2) =

(
s1, t1, u1v2,

u4
1 + s1u1v2 − v2

2

4
+

(−3s2
1 + 8t1)u2

1

16

)
.

Now it is time to simplify the fourth coordinate through the substitutions

t1 =
t2
2

+
3s2

1

8
, s1 = 4s2,

F4(s2, t2, u1, v2) =

(
4s2,

t2
2

+ 6s2
2, u1v2,

1

4
u4

1 + s2u1v2 +
1

4
t2u

2
1 −

1

4
v2

2

)
.

We have messed with the first two components, but we can fix them back easily by acting on
the target: divide the first component by 4 and then substract from the second one the function
6s2

2 of the first one. Then multiply the second component by 2 to make it again equal to t2.
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Finally, one can substract the product of the first and third components from the last one to
obtain a remarkable simplification of the original mapping1:

F5(s2, t2, u1, v2) =

(
s2, t2, u1v2,

1

4
(u4

1 + t2u
2
1 − v2

2)

)
.

Seen as an unfolding, we observe that the coordinate s2 plays no role in the deformation of the
mapping, so we can omit it from both sides and need only study the one-parameter unfolding,
which in new coordinates can be written as:

f(a, x, y) =
(
a, xy, x4 + ax2 − y2

)
.

So Mult at (P0, P0) is equivalent to the suspension of f .

f is an unfolding of the mapping

f0(x, y) = (xy, x4 − y2),

which for K = R reminds us of the square of a complex variable mapping (x, y) 7→ (x2−y2, 2xy)
and, actually, the two mappings are topologically equivalent (see section 2.3).

The unfolding f(a, x, y) is based on the deformation

fa(x, y) =
(
xy, x4 + ax2 − y2

)
.

To obtain the singular points of f we compute its Jacobian matrix: 1 0 0
0 y x
x2 4x3 + 2ax −2y


so the singular set is given by:

J = −4x4 − 2ax2 − 2y2 = 0,

which gives also the singular set of fa for each fixed a.

2.2. The minimal case for K = C. When K = C it turns out that for all a 6= 0, the
deformations fa are equivalent: the substitutions x =

√
aX, y = aY , followed by multiplication

of the components by adequate constants, gives
(
XY,X4 +X2 − Y 2

)
, which is the case a = 1.

However, f0 is not equivalent to fa for a 6= 0. The jacobian determinant of fa is in general
−4x4 − 2ax2 − 2y2, so the origin is always a zero and a singular point of J . Under those
circumstances, equivalent maps must have jacobians with equivalent 2-jets, but for a = 0 the
2-jet of the jacobian determinant is degenerate, which is not the case for a 6= 0. Also, the singular
sets are not equivalent.

In this case fa is, for all a, surjective and, generically, four-to-one, since the corresponding
equations have always a solution and generically four different ones (cf. the computations in the
next section).

1For the record, it will be useful for section 2.5 to take note now of the global substitution suffered by the

coordinates s, t:

s = 2s2 − u1, t = s22 − s2u1 +
1

2
u2
1 +

1

4
t2 +

1

2
v2.
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2.3. The minimal case for K = R. In the case K = R at polynomials of degree 2 with two
common double real roots, the computation in section 2.1 gives again that Mult is equivalent to
the suspension of the mapping

f(a, x, y) =
(
a, xy, x4 + ax2 − y2

)
,

which is an unfolding of
f0(x, y) =

(
xy, x4 − y2

)
.

The mapping f0 appears in Mather’s classification of stable germs as being of the type II2,4
with algebra R[[x, y]]/(xy, x2 − y4). See [M], p. 240. Its jacobian determinant is −4x4 − 2y2; so
the origin is the only critical point of f0.

Consider now f0 as a (non-holomorphic) function of the complex variable z = x + iy. Since
this function takes the same values for z and −z, it can be written as a function of z2; so we can
express f0 as a composition

f0(x, y) = g0(x2 − y2, 2xy),

where g0 is a differentiable function outside the origin. It follows from the computations below
that g0 is a homeomorphism of R2 which is a diffeomorphism outside the origin.

As for fa, its differentiable type now depends on the sign of a: For a > 0, the substitutions
in the previous section show that fa is equivalent to f1. For a < 0 we have to use instead the
substitutions x =

√
−aX, y = aY to obtain in the same way that fa is equivalent to f−1.

By the same argument as in the case K = C we obtain that f0 is not equivalent to fa for any
a 6= 0.

We shall prove now that fa is 2 to 1 outside the origin for a ≥ 0 and surjective for all a:

If a ≥ 0, take a point (x, y) and another point (x1, y1) with the same image:

fa(x, y) = fa(x1, y1);

so
xy = x1y1, x4 + ax2 − y2 = x4

1 + ax2
1 − y2

1 .

If x = 0 then one of x1, y1 is zero.

If x1 = 0 then y1 = ±y and there is only one more point with the same image as (x, y).

If x = 0 and y1 = 0 then the second equation gives

−y2 = x4
1 + ax2

1,

which is only possible for y = x1 = 0 and there is no other point with the same image as (x, y).

If x 6= 0 we can solve for y in the first equation and substitute its value in the second one.
After multiplying by x2 and factoring the resulting polynomial we get

(x− x1)(x+ x1)(x4 + x2
1x

2 + ax2 + y2
1) = 0.

The third factor must be positive since x 6= 0 and a ≥ 0 so we must have x1 = ±x and
therefore y1 = ±y, with the same sign. So there is only one more point with the same image as
(x, y). So fa is 2-to-1 outside the origin.

To see that fa is surjective for every a, we need to solve the equations

xy = χ, x4 + ax2 − y2 = η

for a given (χ, η) ∈ R2.

If χ = 0 there is always a solution: x = 0, y =
√
−η for η ≤ 0; y = 0 and x a solution

x4 + ax2 = η for η > 0.
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If χ 6= 0 then x and y are non-zero. Then we can proceed as before: solve for y in the first
equation, substitute its value in the second one and multiply by x2. We obtain:

x6 + ax4 − ηx2 − χ2 = 0.

For x = 0 this polynomial is negative, while it tends to +∞ when x tends to +∞. Therefore
there is a positive solution of this equation (and a negative one, too).

So we have shown that fa is surjective for all a.

For a > 0 the jacobian determinant is again 0 only at the origin.

For a < 0 we can see the singular set as follows: Substituting X = x2 and Y = y2 in the
jacobian determinant we obtain a parabola:

4X2 − 2aX − 2Y = 0

The singular set is then the pre-image of the part of this parabola in the first quadrant under
the mapping (x, y) 7→ (x2, y2) so it is the lemniscate:

This lemniscate is actually, up to linear changes of coordinates, the variant known as Geromo’s
lemniscate:

x4 − x2 + y2 = 0.

A parametrization of this lemniscate is known (see [Wik]), which adapted to ours becomes

γ(φ) = (
√
−a/2 cos(φ), a sin(φ) cos(φ)/

√
2)

as can be directly verified. We will use this parametrization to obtain the image of the singular
set:

σ(φ) = (a
√
−a cos(φ)2 sin(φ)/2, a2 cos(φ)4/4− a2 cos(φ)2/2− a2 sin(φ)2 cos(φ)2/2)
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This figure has three singular points, two simple cusps (as can easily verified) at the lower
level and a strange angle at the origin.

Let us call U, V the coordinates in the target plane containing this critical set. One can find
the equations satisfied by the critical set by using the parameters X = x2, Y = y2 as before
and eliminating the variables X,Y from the components of the mapping and the equation of the
singular set. Alternatively, one can parametrize algebraically the intersections of the lemniscate
with the four quadrants to carry out this elimination.

In any case, it can be verified directly that the points in the critical set satisfy the following
equation:

108 a3U2 − 729U4 + 486 aU2V + 27 a2V 2 + 108V 3 = 0

Drawing the zero set of this polynomial for a negative value of a, one obtains the following
figure:

So the critical set of our mapping is just a semi-algebraic subset of this well-known swallowtail
curve! (And this explains the angle).

We can also draw the unfolding of the critical set by considering all values of a: for negative
values of a it is the previous figure, where the triangular lower part shrinks to a single point
when a approaches 0 and continues to be a single point when a is positive (we have highlighted
the a axis):
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Again, this is only the lower part of the swallowtail unfolding:

It is a curious fact that the complementary upper part of the swallowtail:

appears also as the singularity of a minimax solution of a Hamilton-Jacobi partial differential
equation. See [Ch2] section 2.5 for the theory and [Ch1], appendix, for a specific example (the
explicit figure appears in page 431).

2.4. The minimal case of two real polynomials with a double complex root. In this
case we will have actually two conjugate double roots α, ᾱ.

Here we apply Lemma 2 of section 1 to obtain that at such point Mult is equivalent to the
suspension of the complex mapping

f : C2 → C2,

f(a, x, y) =
(
a, xy, x4 + ax2 − y2

)
.

This is an unfolding of the mapping, in real variables:

f(x1, x2, y1, y2) = (x1y1 − x2y2, x1y2 + x2y1, x
4
1 − 6x2

1x
2
2 + x4

2 − y2
1 + y2

2 , 4x
3
1x2 − 4x1x

3
2 − 2y1y2).
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2.5. The case P0(x) = (x− a)2, Q0(x) = (x− a)k. We give now a formula for the general case
of two polynomials with a single root which is common, double in one of them and of degree
k ≥ 2 in the other one. So we can assume as before that P0(x) = x2, Q0(x) = xk. The method
consists in applying the same changes of variables as in the minimal case k = 2 and is valid for
any field K. This gives a reasonable closed normal form, while other methods we have tried do
not seem to produce one.

First, we illustrate it with small values of k. For k = 3 the mapping is given by the coefficients
of (x2 + sx+ t)(x3 +ux2 + vx+w). After applying the sequence of changes of variable of section
2.1, adjusting factors and renaming the variables, one obtains the following normal form:

(a, b, x, y, w) 7→
(
a, b, xy + w, x4 + bx2 − y2 + (2a− x)w, (4a2 − 4ax+ 2x2 + b+ 2y)w

)
.

One could also linearize the third component by using the coordinate w1 = xy + w, thus
obtaining a normal form which would be an unfolding of f0. This would, however, increase the
complexity of the expressions of the following components (without much hope of simplification).

Observe that here both parameters a, b appear in the formula, so there are no mute parameters.
Also, that the new coordinate w appears only with degree 1 multiplied by factors of degrees 0
to 2 and increasing complexity. It does not seem easy to simplify them with new changes of
coordinates.

The good news is that for greater values of k the coefficients of the new coordinates not only
do not increase in complexity, but are actually exactly the same as for k = 3. It will be therefore
convenient to use a short notation for them:

σ(a, x) = 2a− x, τ(a, b, x, y) = 4a2 − 4ax+ 2x2 + b+ 2y.

Then, for k = 4 we get by the same method the following map:

(a, b, x, y, w3, w4) 7→ (a, b, xy + w3, x
4 + bx2 − y2 + σw3 + w4, τw3 + σw4, τw4).

For w = 0 we obtain essentially the normal form for k = 2. This shows that this mapping is
a deformation of the mapping f0 we studied before, and is the basis of the proof by induction of
the general normal form for every k:

Let P (x) = x2+sx+t and Qk(x) = xk+uxk−1+vxk−2+Σk
i=3wix

k−i and Fk(x) = P (x)Qk(x).
Then, clearly

Fk+1(x) = xFk(x) + P (x)wk+1.

In terms of the coordinates (s, t, u, v, w3, . . . , wk, wk+1), this is expressed as

Fk+1(s, t, u, v, w3, . . . , wk, wk+1) = (Fk(s, t, u, v, w3, . . . , wk), 0) + (0, . . . , 0, wk+1, wk+1s, wk+1t).

Passing to the coordinates (s2, t2, u1, v2) as in section 2.1, we obtain

Fk+1(s2, t2, u1, v2, w3, . . . , wk, wk+1) =(
Fk(s2, t2, u1, v2, w3, . . . , wk), 0

)
+(

0, . . . , 0, wk+1, (2s2 − u1)wk+1,
(
s2

2 − s2u1 + 1
2u

2
1 + 1

4 t2 + 1
2v2

)
wk+1

)
,

since the coefficients of wk+1 are precisely the results of applying the coordinate changes of
section 2.1 to the variables s, t (cf. footnote 1).

Starting with k = 2 this gives the inductive proof that the mapping Mult at P, Pk is equivalent
to the mapping (in new coordinates):

Gk(a, b, x, y, w3, . . . , wk) =

(a, b, xy, x4 + bx2 − y2, 0, . . . , 0)+

(0, 0, τ(a, b, x, y)w1 + σ(a, x)w2 + w3, . . . , τ(a, b, x, y)wk + σ(a, x)wk+1 + wk+2),
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where σ and τ are as above and it is understood that w1 = w2 = wk+1 = wk+2 = 0.
As before, the components τ(a, b, x, y)wi + σ(a, x)wi+1 +wi+2 can, in principle, be linearized

for i = 3 to k − 2 to present G as an unfolding of f0(x, y) = (xy, x4 − y2) with k parameters.

2.6. The general result. Putting together the previous results we can conclude that:

If P0 ∈ MP(K, n) and Q0 ∈ MP(K,m) are two polynomials such that their greatest common
divisor has only simple and double roots then:

1)If K = C then at (P0, Q0), Mult is equivalent to the suspension of a product of complex
swallowtails and complex mappings Gk.

2)If K = R then at (P0, Q0), Mult is equivalent to the suspension of a product of real complex
swallowtails and real and complex mappings Gk.
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