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TOPOLOGY OF COMPLEMENTS TO REAL AFFINE SPACE LINE ARRANGEMENTS

GOO ISHIKAWA AND MOTOKI OYAMA

ABSTRACT. It is shown that the diffeomorphism type of the complement to a real space line arrangement
in any dimensional affine ambient space is determined only by the number of lines and the data on multiple
points.

1. INTRODUCTION

Let A = {`1, `2, . . . , `d} be a real space line arrangement, or a configuration, consisting of affine
d-lines in R3. The different lines `i, ` j(i 6= j) may intersect, so that the union ∪d

i=1`i is an affine real
algebraic curve of degree d in R3 possibly with multiple points. In this paper we determine the topological
type of the complement M(A ) :=R3 \ (∪d

i=1`i) of A , which is an open 3-manifold. We observe that the
topological type M(A ) is determined only by the number of lines and the data on multiple points of A .
Moreover we determine the diffeomorphism type of M(A ).

Set Dn := {x ∈ Rn | ‖x‖ ≤ 1}, the n-dimensional closed disk. The pair (Di×D j,Di× ∂ (D j)) with
i+ j = n, 0≤ i,0≤ j, is called an n-dimensional handle of index j (see [17][1] for instance).

Now take one D3 and, for any non-negative integer g, attach to it g-number of 3-dimensional handles
(D2

k×D1
k ,D

2
k×∂ (D1

k)) of index 1 (1≤ k ≤ g), by an attaching embedding

ϕ :
g⊔

k=1

(D2
k×∂ (D1

k))→ ∂ (D3) = S2

such that the obtained 3-manifold

Bg := D3⋃
ϕ(
⊔g

k=1(D
2
k×D1

k))

is orientable. We call Bg the 3-ball with trivial g-handles of index 1 (Figure 1.)

...
g

...
g~~

FIGURE 1. 3-ball with trivial g-handles of index 1.

Note that the topological type of Bg does not depend on the attaching map ϕ and is uniquely deter-
mined only by the number g. The boundary of Bg is the orientable closed surface Σg of genus g.
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Let A be any d-line arrangement in R3. Let ti = ti(A ) denote the number of multiple points with
multiplicity i, i = 2, . . . ,d. The vector (td , td−1, . . . , t2) provides a degree of degeneration of the line
arrangement A . Set g := d +∑

d
i=2(i−1)ti. In this paper we show the following result:

Theorem 1.1. The complement M(A ) is homeomorphic to the interior of 3-ball with trivial g-handles
of index 1.

Corollary 1.2. M(A ) is homotopy equivalent to the bouquet
∨g

k=1 S1.

The above results are naturally generalised to any line arrangements in Rn(n≥ 3).
Let A = {`1, `2, . . . , `d} be a line arrangement in Rn and set M(A ) := Rn \ (∪d

i=1`i). Again let ti
denote the number of multiple points of A of multiplicity i, i = 2, . . . ,d. Set g := d+∑

d
i=2(i−1)ti. Then

we have

Theorem 1.3. M(A ) is homeomorphic to the interior of n-ball Bg with trivially attached g-handles of
index n−2.

Thus we see that the topology of complements of real space line arrangements is completely de-
termined by the combinational data, the intersection poset in particular. Recall that the intersection
poset P = P(A ) is the partially ordered set which consists of all multiple points, the lines themselves
`1, `2, . . . , `d and T =Rn as elements, endowed with the inclusion order. Then the number ti is recovered
as the number of minimal points x such that #{y ∈ P | x < y,y 6= T}= i and d as the number of maximal
points of P\{T}.

Corollary 1.4. M(A ) is homotopy equivalent to the bouquet
∨g

k=1 Sn−2.

In particular M(A ) is a minimal space, i.e. it is homotopy equivalent to a CW complex such that the
number of i-cells is equal to its i-th Betti number for all i≥ 0.

Even for semi-algebraic open subsets in Rn, homotopical equivalence does not imply topological
equivalence in general. However we see this is the case for complements of real affine line arrangements,
as a result of Theorem 1.3 and Corollary 1.4.

By the uniqueness of smoothing of corners, and by careful arguments at all steps of the proof of
Theorem 1.3, we see that Theorem 1.3 can be proved in differentiable category.

Theorem 1.5. M(A ) is diffeomorphic to the interior of n-ball Bg with trivially attached g-handles of
index n−2.

Note that the relative classification problem of line arrangements (Rn,∪d
i=1`i) is classical but far from

being solved ([6] for instance). Moreover there is a big difference in differentiable category and topo-
logical category. In fact even the local classification near multiple points of high multiplicity i, i≥ n+2
has moduli in differentiable category while it has no moduli in topological category. The classification
of complements turns to be easier and simpler as we observe in this paper.

The real line arrangements on the plane R2 is one of classical and interesting subjects to study. It is
known or easy to show that the number of connected components of the complement to a real plane line
arrangement is given exactly by 1+g using the number g = d +∑

d
i=2(i−1)ti. This can be derived from

Corollary 1.4 by just setting n = 2. For example, it can be shown from known combinatorial results for
line arrangements on projective plane (see [4] for instance). In fact we prove it using our method in the
process of the proof of Theorem 1.3. Therefore Theorem 1.3 and Corollary 1.4 are regarded as a natural
generalisation of the classical fact.

Though our object in this paper is the class of real affine line arrangements, it is natural to consider
also real projective line arrangements consisting of projective lines in the projective space RPn, or corre-
sponding real linear plane arrangements consisting of 2-dimensional linear subspaces in Rn+1. However
the topology of complements in both cases are not determined, in general, by the intersection posets,
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which are defined similarly to the affine case. In fact there exists an example of pairwise transversal lin-
ear plane arrangements B and B′ in R4 with d = 4 such that the complements M(B) and M(B′) have
non-isomorphic cohomology algebras and therefore they are not homotopy equivalent, so, not homeo-
morphic to each other ([19], Theorem 2.1).

A linear plane arrangement in R4 is pairwise transverse if and only if the corresponding projective
line arrangement is non-singular (without multiple points) in RP3. Non-singular line arrangements in
RP3, which are called skew line configurations, are studied in details (see [6, 13, 15, 16] for instance).
Moreover, the topology of non-singular real algebraic curves in RP3 is studied, related to Hilbert’s 16th
problem, by many authors (see [8] for instance). Also refer to the surveys on the study of real algebraic
varieties ([5, 14]).

It is natural to consider also complex line arrangements in Cn = R2n. The topology of complex
subspace arrangements in Cn, in particular, homotopy types of them is studied in detail (see [10, 19] for
instance). Then it is known that the intersection poset turns to have more information in complex cases
than in real cases. Refer to [12, 20], for instance, on the theory on the homotopy types of complements
for general subspace arrangements.

In §2, we define the notion of trivial handle attachments clearly. In §3, we show Theorem 1.3 and
Theorem 1.5 in parallel, using an idea of stratified Morse theory ([3]) in a simple situation. We then
realize a difference of topological features between the complements to line arrangements and to knots,
links, tangles or general space graphs (Remark 3.8). In the last section, related to our results, we discuss
briefly the topology of real projective line arrangements and real linear plane arrangements.

The authors thank Professor Masahiko Yoshinaga for his valuable suggestion to turn authors’ attention
to real space line arrangements. They thank also an anonymous referee for his/her valuable comments.

2. TRIVIAL HANDLE ATTACHMENTS

First we introduce the local model of trivial handle attachments.

Let j < n. Let S j ⊂ Rn be the sphere defined by x2
1 + · · ·+ x2

j + x2
n = 1,x j+1 = 0, . . . ,xn−1 = 0, and

∂ (D j)= S j−1 = S j∩{xn = 0}. Let e` ∈Rn be the vector defined by (e`)i = δ`i. Then define an embedding
Φ̃ : Dn− j×S j→ Rn by

Φ̃(t1, . . . , tn− j−1, tn− j,x) := x+ t1en−1 + · · ·+ tn− j−1e j+1 + tn− jx,

which gives a tubular neighbourhood of S j in Rn. Set

ϕst := Φ̃|Dn− j×∂ (D j) : Dn− j×S j−1→ Rn−1 ⊂ Rn,

which gives a tubular neighbourhood of S j−1 in Rn−1 = {xn = 0}. We call ϕst the standard attaching map
of the handle of index j. Note that the embedding ϕst extends to the standard handle Φ : Dn− j×D j→Rn,
which is defined by

Φ(t1, . . . , tn− j−1, tn− j,x1, . . . ,x j) := Φ̃

(
t1, . . . , tn− j−1, tn− j,x1, . . . ,x j,0, . . . ,0,

√
1−∑

j
i=1 x2

i

)
,

attached to {xn ≤ 0} along ϕst.
Let M be a topological (resp. differentiable) n-manifold with a connected boundary ∂M.
Let p ∈ ∂M. A coordinate neighbourhood (U,ψ), ψ : U → ψ(U) ⊂ Rn−1 ×R around p in M is

called adapted if ψ : U → Rn is a homeomorphism of U and ψ(U)∩{xn ≤ 0} which maps U ∩∂M into
Rn−1 = {xn = 0}.

Now we consider an attaching of several handles of index j to M along ∂M. We call a handle attaching
map ϕ :

⊔`
k=1(D

n− j
k × ∂ (D j

k))→ ∂M trivial if there exist disjoint adapted coordinate neighbourhoods
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(U1,ψ1), . . . ,(U`,ψ`) on M such that ϕ(Dn− j
k ×∂ (D j

k)) ⊂Uk and ψk ◦ϕ : Dn− j
k ×∂ (D j

k)→ Rn−1×R is
the standard attachment for k = 1, . . . , `. (Figure 2)

FIGURE 2. Trivial handle attachments: the cases n = 3, j = 1, `= 1 and n = 4, j = 2, `= 2.

Then M∪ϕ

(⊔`
k=1(D

n− j
k ×D j

k)
)

is called the manifold obtained from M by attaching standard handles
and the topological type of M does not depend on the attaching map ϕ but depends only on j and `.
Moreover if M is a differentiable manifold, then the diffeomorphism type of the attached manifold is
uniquely determined by the smoothing or straightening of corners (see Proposition 2.6.2 of [17] for
instance). Note that the diffeomorphism type of the interior does not change by the smoothing.

Note that, if ϕ is a trivial handle attaching map, then ϕ|0×∂ (D j
k)

: 0× ∂ (D j
k)→ ∂M is unknotted and

ϕ|⊔`
k=1(0×∂ (D j

k))
:
⊔`

k=1(0× ∂ (D j
k))→ ∂M is unlinked (see Figure 4). Therefore we can slide the trivial

attachment mapping
⊔`

k=1(D
n− j
k × ∂ (D j

k)) to an embedding into a disjoint union to an arbitrarily small
neighbourhoods of any disjoint ` number points on ∂M up to isotopy (cf. Homogeneity Lemma [9]).

Remark 2.1. The assumption that ∂M is connected is essential. For example, let

M = {x ∈ Rn | −1≤ xn ≤ 1}.

Then we have at least two non-homeomorphic spaces by different attachments of two trivial handles of
index 1 (Figure 3).

FIGURE 3. Non-homeomorphic attachments of trivial handles n = 3, j = 1, `= 2.

We see that iterative trivial attachments gives a homeomorphic (resp. differentiable) manifold to the
manifold obtained by the simultaneous trivial attachments.

Lemma 2.2. Let M′ be a topological (resp. differentiable) n-manifold with connected boundary ∂M′.
Suppose M′ is homeomorphic (diffeomorphic) to a space M1 := M ∪ϕ

(⊔`
k=1(D

n− j
k ×D j

k)
)

obtained,
from a topological (differentiable) manifold M with connected boundary, by attaching k number of trivial
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handles of index j. Then the space M2 := M′ ∪ϕ ′

(⊔`+m
k=`+1(D

n− j
k ×D j

k)
)

obtained from M′ by attaching
m number of trivial handles of index j is homeomorphic (diffeomorphic) to the space

M3 := M∪ϕ ′′

(
`+m⊔
k=1

(Dn− j
k ×D j

k)

)
obtained from M by attaching `+m number of trivial handles of index j.

See Figure 4 for the case j = 1.

FIGURE 4. Sliding of trivial handle attachments.

Proof of Lemma 2.2. Let f : M1→M′ be a homeomorphism (resp. a diffeomorphism). Then

f
( ⊔̀

k=1

(Dn− j
k ×D j

k)
)

is not contained in ∂M′. Then we slide, up to isotopy, the attaching map ϕ ′ :
⊔`+m

k=`+1(D
n− j
k ×∂D j

k)→ ∂M′

to ϕ ′′′ :
⊔`+m

k=`+1(D
n− j
k ×∂D j

k)→ ∂M′ such that

f

(
ϕ

(⊔̀
k=1

(
Dn− j

k ×∂D j
k

)))
∩ϕ

′′′

(
`+m⊔

k=`+1

(
Dn− j

k ×∂D j
k

))
= /0.

Consider ϕ ′′ := ϕ
⊔

f−1 ◦ϕ ′′′ :
⊔`+m

k=1 (D
n− j
k ×∂D j

k)→ ∂M. Then M2 is homeomorphic (resp. diffeomor-
phic) to M3. 2

3. AFFINE LINE ARRANGEMENTS

Let n≥ 2.
We consider line arrangements in Rn or more generally consider a subset X in Rn which is a union

of finite number of closed line segments and half lines. Then X may be regarded as a finite graph (with
compact and non-compact edges) embedded as a closed set in Rn (Figure 5). Here we admit vertices of
valency 1.

FIGURE 5. A line arrangement and a space graph
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Take a unit vector v ∈ Sn−1 ⊂ Rn and define the height function h : Rn → R by h(x) := x · v using
Euclidean inner product. Choose v so that

(i) v is neither perpendicular to any line segments nor half lines in X .
(ii) For each c, the hyperplane h(x) = c of level c contains at most one vertex of X .
Note that there exists a union Σ of finite number of great hyperspheres such that any unit vector in

Sn−1 \Σ satisfies the conditions (i) and (ii).
After a rotation of Rn, we may suppose h(x) = xn. We write x = (x′,xn), where x′ = (x1, . . . ,xn−1).

Set M = Rn \X and, for any c ∈ R,

M≤c := {x ∈M | xn ≤ c}, M<c := {x ∈M | xn < c}.

Let V ⊂ X be the set of vertices of X . Set V = {u1,u2, . . . ,ur},ci = h(ui) and C = h(V ) = {c1,c2, . . . ,cr}
with c1 < c2 < · · ·< cr.

Though the following lemma is clear intuitively, we give a proof to make sure.

Lemma 3.1. The topological (resp. diffeomorphism) type of M≤c is constant on ci < c < ci+1 and the
topological (diffeomorphism) type of M<c is constant on ci < c ≤ ci+1, i = 0,1, . . . ,r, with
c0 =−∞,cr+1 = ∞. Here M<∞ means M itself.

Proof : First we treat the case i < r. Take a sufficiently large R > 0 such that

{x ∈ X | ci < xn < ci+1,‖x′‖> R/2}= /0.

Consider the cylinder
C := {x ∈ Rn | ci < xn < ci+1,‖x′‖ ≤ R}.

Then C := {IntC \ X ,X ∩C,∂C} is a Whitney stratification of C. The function h : C → (ci,ci+1) is
proper and the restriction of h to each stratum is a submersion. Now we follow the standard method (the
proof of Thom’s first isotopy lemma [11, 7]) to show differentiable triviality of mappings. Note that the
flow used in the proof of isotopy lemma is differentiable in each stratum. For any ε > 0, take a vector
field η over (ci,ci+1) such that η = 0 on (ci,ci + ε/2) and η = ∂/∂y on (ci + ε,ci+1), where y is the
coordinate on R. Then η lifts to a controlled vector field ξ over C such that ξ tangents to each stratum.
We extend ξ |∂c to {x ∈Rn | ci < xn < ci+1,‖x′‖ ≥ R} via the retraction x = (x′,xn) 7→ ( 1

‖x′‖Rx′,xn) and to
{x∈Rn | xn < ci+ε/2} by letting it 0, and we have an integrable vector field ξ on {x∈Rn | xn < ci+1}. By
integrating ξ , we have a homeomorphism of M≤c and M≤c′ for any c,c′ ∈ (ci,ci+1) and a diffeomorphism
of M<c and M<c′ for any c,c′ ∈ (ci,ci+1]. Note that the differentiable flow of the vector field may not be
defined through xn = ci+1 but it gives a diffeomorphism of M<c and M<ci+1 .

Second we treat the case i = r. Consider the quadratic cone ‖x′‖2 − Rx2
n = 0 in Rn. Supposing

cr+1 > 0 after a translation along xn-axis in necessary, and taking R sufficiently large, we have that
X ∩{x ∈ Rn | cr+1 < xn} lies inside of the cone ‖x′‖2−Rx2

n < 0. Now set

D := {x ∈ Rn | cr+1 < xn,‖x′‖2−Rx2
n ≤ 0},

and consider the proper map h : D→ (cr+1,∞) with the Whitney stratification

D := {IntD\X ,X ∩D,∂D}.

For any ε > 0, take a (non-complete) vector field η over (cr+1,∞) such that η = 0 on (cr+1,cr+1 + ε/2)
and η = (1+ y2)∂/∂y on (cr+1,∞). We lift η to a controlled vector filed ξ over D and then over Rn.
Then, using the integration of ξ , we have a diffeomorphism of M≤c and M≤c′ for any c,c′ ∈ (ci,ci+1), and
a diffeomorphism of M<c and M<c′ for any c,c′ ∈ (ci,ci+1]. In particular we have that M<c for cr+1 < c
is diffeomorphic to M itself. 2
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Remark 3.2. The topological (resp. diffeomorphism) type of M≤c (resp. h−1(c)\X) is not necessarily
constant at c = ci+1.

We observe the topological change of M<c when c moves across a critical value ci as follows:

Lemma 3.3. Let u be a vertex of X and let c = h(u). Let s = s(u) denote the number of edges of X which
are adjacent to u from above with respect to h.

Then, for a sufficiently small ε > 0, the open set M<c+ε is diffeomorphic to the interior of

M≤c−ε

⋃
ϕ

(
s−1⊔
i=1

(D2
i ×Dn−2

i )),

obtained by an attaching map

ϕ :
s−1⊔
i=1

D2×∂ (Dn−2)−→ h−1(c− ε)\X = ∂ (M≤c−ε)⊂M≤c−ε ,

of (s−1) number of trivial handles of index n−2, provided s≥ 1.
In particular M<c+ε is diffeomorphic to M<c−ε if s = 1.
If s = 0 then M<c+ε is diffeomorphic to the interior of M≤c−ε

⋃
ϕ(D

1 ×Dn−1) obtained by an at-
taching map ϕ : D1× ∂ (Dn−1)→ h−1(c− ε) \X of a (not necessarily trivial) handle of index n− 1.
(See Figure 6.)

s

r

FIGURE 6. Topological bifurcations.

Remark 3.4. In the case s = 0, the handle attachment is not necessarily trivial since the core of the
attachment does not necessarily bounds a disk. (See Figure 13.)

Remark 3.5. Note that if r = r(u) denotes the number of edges of X which are adjacent to p from below
with respect to h, then the intersection X ∩ h−1(c− ε) consists of r-points in the hyperplane h−1(c− ε)
and thus h−1(c− ε)\X is a punctured hyperplane by r-points.

Remark 3.6. Note that locally in a neighbourhood of each vertex u of X , the topological equivalence
class of the germ of a generic height function h : (Rn,X ,u)→ (R,c) is determined only by s and r, the
numbers of branches. This can be shown by using Thom’s isotopy lemma ([7]).

Proof of Lemma 3.3. For sufficiently small 0 < ε < ε ′, M<c−ε \M≤c−ε ′ is a space

{x ∈ Rn | c− ε
′ < h(x)< c− ε}

deleted r-half-lines. We may suppose the intersection X ∩ h−1(c− ε) lies on a line, up to a diffeomor-
phism of M≤c−ε . We delete r-small tubular neighbourhoods of the half-lines from the half space, then
still we have a diffeomorphic space to M<c−ε \M≤c−ε ′ . Then we connect the r-holes by boring a se-
quence of canals without changing the diffeomorphism type of complements. See Figures 7 and 8. The
boring a canal means, in general dimension, to delete D1×Dn−1 along the line segment connecting the
holes.
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~
~

~
~

~
~

FIGURE 7. No topological changes of complements occur when s = 1.

~
~

FIGURE 8. Boring a canal does not change the topology of ground.

First let s = 1. Then the resulting space is diffeomorphic to M<c+ε \M≤c−ε ′ . The diffeomorphism is
taken to be the identity on M≤c−ε ′ and it extends to a diffeomorphism between M<c−ε and M<c+ε . This
shows Lemma 3.3 in the case s = 1.

Next we teat the case s = 2,r = 0. The topological change from Mc−ε to Mc+ε is give by digging
a tunnel, which is, equivalently, given by a handle attaching of index n− 2. In fact, we examine the
topological change of the complement to

t= {(0,xn−1,xn) ∈ Rn | (−2≤ xn−1 ≤ 2,xn = 0) or (xn−1 =−2,xn ≥ 0) or (xn−1 = 2,xn ≥ 0)},
in Rn when xn goes across xn = c = 0. Take the closed tube T of radius 1 of t. Then for the complement
M = Rn \T , M<ε is diffeomorphic to the interior of the half space {xn ≤ 0} attached the handle

H = {x ∈ Rn | −1≤ xn−1 ≤ 1,
1
2
≤ x2

1 + · · ·+ x2
n−2 + x2

n ≤ 2, xn ≥ 0}.

along

H ∩{xn ≤ 0}= {x ∈ Rn | −1≤ xn−1 ≤ 1,
1
2
≤ x2

1 + · · ·+ x2
n−2 ≤ 2}.

The pair (H,H ∩ {xn ≤ 0}) is diffeomorphic to the pair (D2 ×Dn−2,D2 × ∂Dn−2), where the core
(0×Dn−2,∂Dn−2) corresponds to

{x2
1 + · · ·+ x2

n−2 + x2
n = 1,xn−1 = 0,xn ≥ 0} and {x2

1 + · · ·+ x2
n−2 = 1,xn−1 = 0,xn = 0}.

Note that the latter bounds an n−1-dimensional disk {x2
1 + · · ·+x2

n−2 ≤ 1,xn−1 = 0,xn = 0}, which does
not touch the boundary ∂M<ε . See Figures 9 and 10.

~
~

FIGURE 9. Digging a tunnel is same as bridging for the topology of ground.
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The same argument works for any r. See Figure 10 for the case s = 2,r = 2. Note that complements
to “X” and “H” are diffeomorphic. See Figures 10, 11 and 12.

~~ ~~

FIGURE 10. The case s = 2,r = 2.

~
~

~
~

FIGURE 11. Trivial handle attachment and topological bifurcation.

In general, for any s≥ 2, the topological change is obtained by attaching trivial s−1 handles of index
n−2. See Figure 12.

~~ ~~

s

r

s 1

FIGURE 12. The case s = 3,r = 2.

In the case s = 0, contrarily to above, the change of diffeomorphism type is obtained by an attaching
not necessarily trivial handle. See Figure 13.

FIGURE 13. Topological change in the case s = 0.

When n = 2, the topological bifurcation occurs just as putting s−1 number of disjoint open disks.
Thus we have Lemma 3.3. 2
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First let us apply Lemma 3.1 and Lemma 3.3 to the case n = 2.
For a c ∈ R of sufficiently large |c|, supposing a generic height function is given by h = x2 as above.

Then M≤c (resp. M<c) is diffeomorphic to the half plane {x2 ≤ c} (resp. {xn < c} deleted d number
of half lines. The number of connected components is equal to 1+ d. By passing a multiple point of
multiplicity i, then by Lemma 3.3, we see that the number of connected components of M≤c (resp. M<c)
increases exactly by (i−1). Thus, after passing all multiple points, the number of connected components
of M<c, which is homeomorphic to M(A ), is given by 1+d +∑

d
i=2(i−1)ti.

Proof of Theorem 1.5. For a c ∈ R with c� 0, the space M≤c (resp. M<c) is diffeomorphic to the half
space {xn ≤ c} (resp. {xn < c} deleted d number of half lines. By passing a multiple point of multiplicity
i, for a sufficiently large c, the space M≤c is obtained by attaching i−1 number of trivial handles of index
n− 2, by Lemma 3.3. After passing all multiple points, the space M≤c is diffeomorphic to the space
obtained by attaching ∑

d
i=2(i− 1)ti number of trivial handles of index n− 2 to the half space deleted d

number of half lines. Then M<c is diffeomorphic to the interior of Bg with g = d +∑
d
i=2(i− 1)ti. By

Lemma 3.1, for c ∈ R with 0� c, M<c is diffeomorphic to M(A ). Hence we have Theorem 1.5. 2

Proofs of Theorem 1.3 and Theorem 1.1. Theorem 1.3 follows from Theorem 1.5 and Theorem 1.1
follows from Theorem 1.3 by setting n = 3. 2

Remark 3.7. Let X be a subset of Rn which is a union of finite number of closed line segments and half
lines. Then similarly to the proof of Theorem 1.1 using Lemma 3.3, we see that, if there exists a height
function h : Rn→R satisfying (i)(ii) such that h|X : X →R has no local maximum, then the complement
Rn \X is diffeomorphic to the interior of n-ball with trivially attached g-handles of index n−2, for some
g. If X ⊂Rn is compact, then any height function has a maximum, so non-trivial attachments may occur.

Remark 3.8. The knot complements have more information than line arrangement complements. For
example, it is known that, for knots K,K′ ⊂ S3, if S3 \K and S3 \K′ are homeomorphic, then the pairs
(S3,K) and (S3,K′) are homeomorphic ([2]). Taking account of it, consider (R3,X) for a line arrangement
A = {`1, . . . , `d} in R3 and X :=

⋃d
i=1 `i ⊂ R3 and its one-point compactification (S3,X). Then the

complement S3 \X is homeomorphic to M(A ) and to Bg, which depends only on the number

g = d +
d

∑
i=1

(i−1)ti,

while g does not determine the topological type of the pair (S3,X) in general.

4. PROJECTIVE LINE AND LINEAR PLANE ARRANGEMENTS

Let Ã = { ˜̀1, . . . , ˜̀2, . . . , ˜̀d} be a real projective line arrangement in the projective space RPn and
let B = {L1,L2, . . . ,Ld} be the real linear plane arrangement in Rn+2 corresponding to Ã . Then the
complement M(B) of B is homeomorphic to the link complement Sn ∩M(B) times R>0, where Sn

is a sphere in Rn+1 centred at the origin. Moreover Sn ∩M(B) is a double cover of M(Ã ) for the
corresponding projective line arrangement Ã in RPn.

Take a projective hyperplane H ⊂RPn such that H intersects transversely to all lines ˜̀i,1≤ i≤ d, and
that H does not pass through any multiple point of Ã . Then identify RPn \H with the affine space Rn

and the affine line arrangement A obtained by setting `i := ˜̀i \H ⊂ Rn. Take a ball

Dn = {x ∈ Rn | ‖x‖ ≤ r} ⊂ Rn

for a sufficiently large radius r such that interior of Dn contains all multiple points of A and the boundary
∂ (Dn) = Sn−1 intersects transversally to all lines `i,1 ≤ i ≤ d. Then the closure U of U := RPn \Dn
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is regarded as a tubular neighbourhood of H in RPn. The closure U is homeomorphic to the space
(Sn−1× [−1,1])/∼, where (x, t)∼ (−x,−t). Let a1, . . . ,a2d be disjoint 2d points in Sn−1.

Let W n−1
k ⊂ Sn−1 be a sufficiently small open disk neighbourhood of ak,(1≤ k ≤ 2d). Set

N := Sn−1 \W n−1
k and Ñ := (N× [−1,1])/∼ (⊂ (Sn−1× [−1,1])/∼).

Then Ñ is an n-dimensional manifold with boundary N, which is doubly covered by a “punctured shell”
N× [−1,1] (see Figure 14).

...

...

d

d

FIGURE 14. Punctured shell.

Thus we observe

Proposition 4.1. The intersection U ∩M(Ã ) is homeomorphic to the interior of Ñ. The complement
M(Ã ) ⊂ RPn is homeomorphic to the interior of Bg

⋃
ϕ Ñ for an attaching embedding ϕ : N → ∂ (Bg).

The homeomorphism class of M(Ã ) is determined by the isotopy class of the embedding ϕ . The em-
bedding ϕ is determined by the intersection of M(A ) and a hypersphere of sufficiently large radius in
Rn.

Proof : We see that the intersection of M(A ) and a hypersphere of sufficiently large radius in Rn is
homeomorphic to the sphere deleted 2d-points. Then we have Proposition 4.1 by Theorem 1.3. 2
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