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CHAOS IN PERIODICALLY FORCED REVERSIBLE VECTOR FIELDS

ISABEL S. LABOURIAU AND ELISA SOVRANO

Abstract. We discuss the appearance of chaos in time-periodic perturbations of reversible
vector fields in the plane. We use the normal forms of codimension 1 reversible vector fields
and discuss the ways a time-dependent periodic forcing term of pulse form may be added to
them to yield topological chaotic behaviour. Chaos here means that the resulting dynamics is
semiconjugate to a shift in a finite alphabet. The results rely on the classification of reversible
vector fields and on the theory of topological horseshoes. This work is part of a project of
studying periodic forcing of symmetric vector fields.

1. Introduction

A standard classification of continuous dynamical systems defined by a set of first order ordi-
nary differential equations distinguishes between conservative systems and dissipative ones [9].
On the one hand, conservative systems can be described by a Hamiltonian function. By varying
the initial conditions, these systems can exhibit regions of regular motions surrounded by a sea
of chaotic ones. Instead, dealing with dissipative systems, conserved quantities are no longer
guaranteed, and chaotic regions could coexist with stable equilibria, limit cycles, and strange
attractors.

In between conservative and dissipative systems, there are systems with reversing symmetries.
By reversible dynamical systems we mean those admitting an involution in phase space which
reverses the direction of time (see [1, 4, 10, 13]). It is shown that these systems despite having
similar features to Hamiltonian ones (e.g., at an elliptic equilibrium can possess the same struc-
ture), yet they are different because they can also have attractors and repellers. The additional
structure given by reversing symmetries allows exhibiting complex behaviors for codimension
one bifurcations, and so, it can be responsible for chaotic dynamics.

The goal of this paper is to find chaos for a class of planar periodically perturbed reversible
systems whose normal form analysis is studied in [13]. We take into account the local bifurcations
of low codimension by arguing what dynamical behaviors we can expect. Our main result is the
following.

Theorem 1.1. Let Xλ(x, y) be a fixed type of normal form for a one-parameter family of codi-
mension 1 reversible vector fields, of either saddle type or of cusp type. Let λ1 and λ2 be two
real distinct values. Suppose that the dynamical system Ẋ = X(x, y) switches in a T -periodic
manner between

Ẋ = Xλ1(x, y) for t ∈ [0, τ1) and Ẋ = Xλ2(x, y) for t ∈ [τ1, τ1 + τ2)

with τ1 + τ2 = T . Then for open sets of the parameters (λ1, λ2) and for τ1 and τ2 in open
intervals there exist infinitely many T -periodic solutions as well as chaotic-like dynamics for the
problem Ẋ = X(x, y).
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The paper is organized as follows. In Section 2 we discuss the classification of plane reversible
vector fields of codimension 0 and 1. In Section 3 we give a review of the concept of symbolic
dynamics and topological horseshoes. We collect preliminary topological results in the phase-
plane that can produce chaotic dynamics. In Section 4 we prove Theorem 1.1 for the two of the
four normal forms of codimension 1 reversible vector fields: i) saddle type and ii) cusp type. We
conjecture that the other two possible normal forms, namely iii) nodal type and iv) focal type,
may also be amenable to the same treatment.

2. Planar reversible systems

In [13], M. A. Teixeira has provided a local classification of 2D reversible systems of codimen-
sion less than or equal to two. A dynamical system Ẋ = V (X) is called reversible if there is a
phase space involution h (i.e., h2 = Id) such that Dh(p)V (p) = −V (h(p)) for p ∈ R2. We deal
with reversible planar systems where the involution is h(x, y) = (x,−y). Hence, we consider a
dynamical system of the following form

(2.1)
{
ẋ = yf(x, y2),
ẏ = g(x, y2),

where the functions f and g are smooth. We consider the behaviour of (2.1) near the origin,
often making the assumption that it has an equilibrium at the origin. In the half-plane y > 0,
by using the transformation u = x and v = y2, we can write system (2.1) equivalently as follows{

u̇ =
√
v f(u, v),

v̇ = 2
√
v g(u, v).

Through the symmetry properties of the vector field X(x, y) associated with (2.1), the behavior
of X near (0, 0) may be described by the analysis in the half-plane {(u, v) ∈ R2 : v ≥ 0} of the
vector field Y (u, v) = (f(u, v), g(u, v)).

2.1. Normal forms. Following the work in [13], the generic equilibria of reversible ODEs near
the origin are either centers and saddles on the line of symmetry or a couple of repellers and
attractors, as in Figure 1.

Figure 1. Phase-portraits of equilibria occurring in generic 2D reversible fields.
The local geometry may be of a center (left), a saddle (middle), or a pair of
attractor and repeller (right).

Let S be the line {(x, 0) : x ∈ R}, the set of fixed points for h. An equilibrium point of V that
lies on S is called a symmetric equilibrium.
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Theorem 2.1 ([13]). The normal forms around a symmetric equilibrium at (0, 0) of a struc-
turally stable reversible vector field X are:

• X(x, y) = (y, x),
• X(x, y) = (y,−x).

In the first case the origin is a center, and in the second one it is a saddle. The next result
classifies one parameter families Xλ of reversible vector fields such that X0 has a symmetric
equilibrium at the origin.

Theorem 2.2 ([13]). The normal forms of one-parameter families of structurally stable re-
versible vector fields Xλ near a symmetric equilibrium at (0, 0) are:
i) saddle type: Xλ(x, y) = (xy, x− y2 + λ),
ii) cusp type: Xλ(x, y) = (y, x2 + λ),
iii) nodal type: Xλ(x, y) = (xy, x+ 2y2 + λ) or Xλ(x, y) = (−xy, x− 2y2 + λ),
iv) focal type: Xλ(x, y) = (xy + y3,−x+ y2 + λ).

Depending on λ, the phase-portraits of the above normal forms can be described as follows.

x x x

y y y

λ<0 λ=0 λ>0

Figure 2. Phase-portraits reversible vector fields of saddle type.

Figure 2 shows the phase portraits of the saddle type. When λ ≤ 0 there is an equilibrium at
(−λ, 0) which is a saddle. When λ > 0 there are three equilibria: a center and two saddles at
(−λ, 0), (0,−

√
λ) and (0,

√
λ), respectively. The saddle points are connected through heteroclinic

trajectories which surround periodic orbits.

x x x

y y y

λ<0 λ=0 λ>0

Figure 3. Phase-portraits reversible vector fields of cusp type.

Concerning the cusp type when λ < 0 there are two equilibria: a center and a saddle which
are at (−

√
−λ, 0) and (

√
−λ, 0), respectively. Due to the reversibility, the only periodic orbits

are the ones that meet the points (x, 0) with −2
√
−λ < x <

√
−λ, as in Figure 3. Moreover,

these orbits are located inside the homoclinic trajectory that passes through (−2
√
−λ, 0). When
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λ = 0 there is only an equilibrium which is a degenerate saddle at (0, 0) and all the orbits are
unbounded. When λ > 0 there are no equilibria.

x x x

y y y

λ<0 λ=0 λ>0

Figure 4. Phase-portraits reversible vector fields of nodal type (first case).

For the nodal type (first case, shown in Figure 4) when λ < 0 there are three equilibria: an
attractor, a repeller and a saddle, located respectively at (0,−

√
−λ/2), (0,

√
−λ/2) and (−λ, 0).

When λ = 0 there is only an equilibrium at (0, 0). When λ > 0 there is only an equilibrium at
(−λ, 0) which is a center and in the half-plane x < 0 all the orbits are periodic. In the second
case there is always an equilibrium at (−λ, 0) and for λ > 0 there is also a pair of equilibria at
(0,±

√
λ/2).

x x x

y y y

λ<0 λ=0 λ>0

Figure 5. Phase-portraits reversible vector fields of focal type.

For the focal type when λ < 0 there are three equilibria: a saddle and two foci at (λ, 0),
(λ/2,−

√
−λ/2) and (λ/2,

√
−λ/2), respectively. When λ ≥ 0 there is only an equilibrium at

(λ, 0) which is a center and all the orbits are periodic as in Figure 5.

3. Background on chaotic dynamics and preliminary results

3.1. Symbolic dynamics and chaos. To review the topological approach exploited through-
out the paper, we start by introducing some notation and definitions of symbolic dynamics.
General information on the subject may be found in the book by Guckenheimer and Holmes [2],
with examples in Chapter 2 and a more general case in Chapter 5. A more detailed treatment
is given by Wiggins and Ottino [14]. The point of view used here is similar to that of Kennedy
and Yorke in [3] of Margheri et al in [5] and of Medio et al in [6].

Let Σm := {0, . . . ,m − 1}Z be the set of all two-sided sequences S = (si)i∈Z with
si ∈ {0, . . . ,m − 1} for each i ∈ Z endowed with a standard metric that makes Σm a compact
space with the product topology. We define the shift map σ : Σm → Σm by σ(S) = S′ = (s′i)i∈Z
with s′i = si+1 for all i ∈ Z.We say that a map h on a metric space is semiconjugate (respectively,
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conjugate) to the shift map on m symbols if there exists a compact invariant set Λ and a con-
tinuous and surjective (respectively, bijective) map Π: Λ→ Σm such that Π ◦ h(w) = σ ◦Π(w),
for all w ∈ Λ.

The deterministic chaos is usually associated with the possibility to reproduce all the possible
outcomes of a coin-tossing experiment, by varying the initial conditions within the dynamical
system. We can express this concept using the symbolic dynamics of the shift map on the
sets of two-sided sequences of 2 symbols. However, by considering a finite alphabet made by m
symbols the possible dynamics can be more complex. Hence, in the sequel we adopt the following
definition of chaos (cf., [5, 6]).

Definition 3.1 (Symbolic dynamics). Let h : dom h ⊆ R2 → R2 be a map and let D ⊆ dom h be
a nonempty set. We say that h induces chaotic dynamics on m ≥ 2 symbols on a set D if there
exist m nonempty pairwise disjoint compact sets K0, . . . ,Km−1 ⊆ D such that for each two-sided
sequence (si)i∈Z ∈ Σm there exists a corresponding sequence (wi)i∈Z ∈ DZ such that
(3.1) wi ∈ Ksi

and wi+1 = h(wi) for all i ∈ Z,

and, whenever (si)i∈Z ∈ Σm is a k-periodic sequence for some k ≥ 1 there exists a k-periodic
sequence (wi)i∈Z ∈ DZ satisfying (3.1).

For a one-to-one map h, Definition 3.1 ensures the existence of a nonempty compact invariant
set Λ ⊆ ∪m−1

i=0 Ki ⊆ D and a continuous surjection Π such that h|Λ is semiconjugate to the
Bernoulli shift map on m ≥ 2 symbols. Moreover, it guarantees that the set of the periodic
points of h is dense in Λ and, for all two-sided periodic sequences S ∈ Σm, the preimage Π−1(S)
contains a periodic point of h with the same period (cf. [6, Th. 2.2]). In this respect Definition 3.1
is related, by means of [6, Th. 2.3], to the concept of topological horseshoe introduced in [3].
This is a weaker notion of chaos than the Smale’s horseshoe (see [2, ch. 5]) because the latter
requires the full conjugacy between h|Λ and the shift map on m symbols.

We introduce the notion of an oriented topological rectangle and the stretching along the
path property by borrowing the notations and definitions from [5, 7]. The pair R̂ := (R,R−)
is called oriented topological rectangle if R ⊆ R2 is a set homeomorphic to [0, 1] × [0, 1], and
R− = R−l ∪R−r , where R

−
l and R−r are two disjoint compact arcs contained in ∂R.

Definition 3.2 (SAP property). Given two topological oriented rectangles R̂1 := (R1,R−1 ),
R̂2 := (R2,R−2 ) and a continuous map h : dom h ⊆ R2 → R2, we say that h stretches R̂1 to R̂2
along the paths if there exists a compact subset K of R1 ∩dom h and for each path γ : [0, 1]→ R1
such that γ(0) ∈ R−1,l and γ(1) ∈ R−1,r (or vice-versa), there exists [t0, t1] ⊆ [0, 1] such that

• γ(t) ∈ K for all t ∈ [t0, t1],
• h(γ(t)) ∈ R2 for all t ∈ [t0, t1],
• h(γ(t0)) and h(γ(t1)) belong to different components of R−2 .

In this case, we write
(K, h) : R̂1 m−→ R̂2.

Given a positive integer m, we say that h stretches R̂1 to R̂2 along the paths with crossing
number m and we write

h : R̂1 m−→m R̂2

if there exist m pairwise disjoint compact sets
K0, . . . ,Km−1 ⊆ R1 ∩ dom h

such that (Ki, h) : R̂1 m−→ R̂2 for each i ∈ {0, . . . ,m− 1}.
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Finally, in order to detect chaos, a useful topological tool is the Stretching Along the Paths
(SAP) method introduced in [6]. In our framework, it can be stated as follows (cf., [5, Th. 2.1]).

Theorem 3.1 (SAP method). Let h1 : dom ν ⊆ R2 → R2 and h2 : dom η ⊆ R2 → R2 be
continuous maps. Let R̂1 = (R1,R−1 ) and R̂2 = (R2,R−2 ) be two oriented rectangles in R2.
Suppose that

• there exist n ≥ 1 pairwise disjoint compact subsets of R1 ∩ dom ν, Q0, . . . , Qn−1, such
that (Qi, h1) : R̂1 m−→ R̂2 for i = 0, . . . , n− 1,

• there exist m ≥ 1 pairwise disjoint compact subsets of R2 ∩ dom η, K0, . . . , Km−1, such
that (Ki, h2) : R̂2 m−→ R̂1 for i = 0, . . . ,m− 1.

If at least one between n and m is greater than or equal to 2, then the map h = h2 ◦ h1 induces
chaotic dynamics on n×m symbols on

Q∗ =
⋃

i=0,...,n−1
j=0,...,m−1

Qi ∩ ν−1(Kj).

For the proof of Theorem 3.1 we refer to [5, Th. 2.1].

3.2. Topological tools in the phase-plane. The geometry associated to the phase-portrait
of (2.1) exhibits unbounded solutions and periodic trajectories. These configurations guarantee
the existence of two types of invariant regions: topological strips and topological annuli confined
between unbounded and bounded solutions, respectively. In this section we will give some pre-
liminary topological results on the phase-plane (x, y) needed to establish the dynamics induced
by (2.1).

By a topological strip S we mean the image of a straight strip of finite width
S := {(x, y) ∈ R2 : x1 < x < x2, −1 ≤ y ≤ 1}

through a locally defined homeomorphism
hS : (x1, x2)× [−1, 1]→ S.

Let a bridge in S be the image by hS of any simple continuous curve γ : [a, b] → S such that
γ(a) = (x̂,−1) and γ(b) = (x̌, 1) for some x̂, x̌ ∈ (x1, x2) or, viceversa, γ(a) = (x̌, 1) and
γ(b) = (x̂,−1).

A topological annulus A is defined as the image of a rectangular region
A := {(x, y) ∈ R2 : 1 ≤ x ≤ 2, −1 ≤ y ≤ 1}

through a continuous map
hA : [1, 2]× [−1, 1]→ A,

such that the restriction of hA to (1, 2)× [−1, 1] is a homeomorphism and hA(1, y) = hA(2, y).
We notice that the restriction to (1, 2) × [−1, 1] yields a strip. Moreover, the boundary of the
topological annulus ∂A is the union of two Jordan curves ∂iA := hA(x,−1) and ∂eA := hA(x, 1).
We denote the portion of the plane outside a generic Jordan curve Γ by out(Γ) and the one
inside by in(Γ). For identification purposes, let ∂iA ⊂ in(∂eA). In this manner, we can identify
two connected sets, one bounded and another one unbounded given by in(∂iA) and out(∂eA),
respectively. Let a ray in A be any simple continuous curve γ : [a, b]→ A such that γ(a) ∈ ∂iA
and γ(b) ∈ ∂eA or, viceversa, γ(a) ∈ ∂eA and γ(b) ∈ ∂iA.

We are interested in crossing configurations between either an annulus and a strip or two
annuli. In particular we are looking for similarities with the geometry of the linked-twist maps
(see [8, 14]). Hence, we introduce the following definition and in Figure 6 we provide a visual
representation of the linkage condition between an annulus and a strip.
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Definition 3.3 (Linkage condition). Let A be a topological annulus and S be a topological strip.
We say that A is linked with S if there exist a bridge γ1 in S, a ray γ2 in A, and a topological
ball B containing A such that:

• γ1 ⊂ in(∂iA);
• γ2 ∩ S = ∅;
• (S \ γ1) ∩ ∂B consists of exactly two disjoint bridges.

From Definition 3.3 we observe that when A is linked with S, then the topological ball B is
cut into two connected components B+ and B−.

A
S

γ1

γ2

B

Figure 6. Linkage condition. The figure represents an example of a topological
annulus (red) linked with a topological strip (blue) through the existence of a
bridge (black) and a ray (green).

Notice that Definition 3.3 involves only the geometry inside a topological ball B. Therefore it
could include the case when the strip S is the intersection of an annulus A2 with the ball B. In
this manner we are generalizing the definition of the linkage between two annuli A1, A2 given in
[7, Definition 3.2]. In the following proposition we also recover some of the properties collected
in [7, Proposition 3.1] for the linkage of two annuli.

From the third requirement of Definition 3.3 it follows that the set B \ S has two connected
components that will be denoted B+ and B−.

Proposition 3.2. If the topological strip S is linked with the topological annulus A, then
there exists a topological ball B containing A, a bridge γ3 in S and a ray γ4 in A such that
γ3 ⊂ B \ in(∂eA), and denoting by B+ the component of B \ S that contains γ2 ⊂ B+, then
γ4 ⊂ B−.

Proof. First of all we observe that the existence of a bridge γ3 ⊂ B\in(∂eA) follows immediately
from Definition 3.3. Indeed, we can choose γ3 between one of the two components of (S\γ1)∩∂B
and one of the bridges in (S \ γ1) ∩ ∂B.

The proof of the existence of the ray γ4 is entirely analogous to that of [7, Proposition 3.1]
and is omitted. �
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In the sequel, we deal with the study of the dynamics in a strip S and in an annulus A. If
they are linked, then there exist two disjoint topological rectangular regions R1 ⊂ A ∩ S ∩ B
and R2 ⊂ A ∩ S ∩B.

Firstly, we consider the following continuous map

(3.2) φS : S → S.

Without loss of generality, we can assume that R1, R2 are homeomorphic to

R1 = [−2,−1]× [−1, 1] and R2 = [1, 2]× [−1, 1],

respectively. We suppose that the map φS in (3.2) admits a lift φ̃S to the covering space
[a, b]× [−1, 1], with a < −2 and b > 2, defined as

φ̃S : (x, y) 7→ (x+ Ξ(x, y), ζ(x, y))

where ζ, Ξ are continuous functions.

Definition 3.4 (Strip boundary invariance condition). The condition holds for the map φS if
the second coordinate of its lift φ̃S satisfies ζ(x,−1) ≡ −1 and ζ(x, 1) ≡ 1.

-2 -1 1 2 ba

R1 R2

(a) Image of [1, 2] × {−1} and [1, 2] × {1} under a twist condition with
respect to the rectangle R1.

-2 -1 1 2 ba

R1 R2R2R1

(b) Image of the rectangle R2 under a twist condition with respect to
the rectangle R1.

Figure 7. Example of strip twist condition.

Definition 3.5 (Strip twist condition). The condition holds with respect to R1 for x ∈ [1, 2] if
either

Ξ(x,−1) ≤ −4 and Ξ(x, 1) ≥ −2,
or

Ξ(x,−1) ≥ −2 and Ξ(x, 1) ≤ −4.
The condition holds with respect to R2 for x ∈ [−2,−1] if either

Ξ(x,−1) ≤ 2 and Ξ(x, 1) ≥ 4,
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or
Ξ(x,−1) ≥ 4 and Ξ(x, 1) ≤ 2.

Secondly, we consider the following continuous map

(3.3) φA : A → A.

We suppose that the map φA in (3.3) admits a lift φ̃A to the covering space R× [−1, 1] defined
as

φ̃A : (θ, ρ) 7→ (θ + Θ(θ, ρ), ω(θ, ρ)),

where θ, ρ are generalized polar coordinates, and Θ, ω are continuous functions 1-periodic in
the θ-variable. Without loss of generality, we can assume that R1 and R2 are represented in the
covering by R1 = [2k, 2k + 1

2 ]× [−1, 1] and R2 = [2k + 1, 2k + 3
2 ]× [−1, 1], respectively.

-1 -1/2 0 1/2 1 3/2 3/22

R2 R1 R2 R1

(a) Image of [1, 1/2] × {−1} and [1, 1/2] × {1} under a twist condition
with respect to the rectangle R1.

R2 R1 R2 R1

-1 -1/2 0 1/2 1 3/2 3/22

(b) Image of the rectangle R1 under a twist condition it goes across a
copy of R2. Here j−1 = j1 = 0.

Figure 8. Example of an annular twist condition.

Definition 3.6 (Annular boundary invariance condition). The condition holds for the map φA
if the second coordinate of its lift φ̃A satisfies ω(θ,−1) ≡ −1 and ω(θ, 1) ≡ 1.

Definition 3.7 (Annular twist condition). There exist integers j−1 and j1 such that the condition
holds with respect to R1 for θ ∈ [0, 1/2] if either

Θ(θ,−1) ≤ 2j−1 + 1
2 and Θ(θ, 1) ≥ 2j1 + 3

2 , with j1 + 1− j−1 > 0

or
Θ(θ,−1) ≥ 2j−1 + 3

2 and Θ(θ, 1) ≤ 2j1 + 1
2 , with j−1 + 1− j1 > 0

hold.

We notice that when the annular twist condition holds with respect to R1 then the rectangle
R1 is stretched across R2 a number of times which is given by |j−1 − j1|+ 1.
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Theorem 3.3. Let A be a topological annulus linked with a topological strip S. Let Ri for
i = 1, 2 be two disjoint oriented topological rectangles given through the linkage. Let φA : A → A
and φS : S → S, be two continuous maps that satisfy the boundary invariance conditions, and
the twist conditions. Then,

φA ◦ φS : R̂j m−→m−1 R̂j and φS ◦ φA : R̂j+1 m−→m−1 R̂j+1

for some j (mod 2) with m = |j−1 − j1|+ 1.

We notice that [7, Theorem 3.1] becomes a corollary of Theorem 3.3. For the proof we use
the following lemma.

Lemma 3.4. Consider
K` = φ̃A ([2`+ 1, 2`+ 3/2]× [−1, 1]) ∩R1,0, ` ∈ Z

where R1,0 = [0, 1/2]× [−1, 1]. If φA satisfies the annular twist condition then at least m− 1 of
the K` are non empty with m = |j1 − j−1|+ 1.

Proof. We will prove the lemma in the case of the first annular strip condition, the proof for the
second condition being similar.

Let θ0 ∈ [0, 1/2] be fixed. The vertical segment (θ0, ρ), ρ ∈ [−1, 1] is mapped by φ̃A in to a
curve. Its end points satisfy

φ̃A(θ0,−1) = (θ−1,−1) where θ−1 ≤ θ0 + 2j−1 + 1
2 ,

φ̃A(θ0, 1) = (θ1, 1) where θ1 ≥ θ0 + 2j−1 + 1
2 + 2m− 1.

Hence, |θ−1 − θ1| ≥ 2m− 1| and K` 6= ∅ for ` = j−1, . . . , j−1 +m− 1. �

Proof of Theorem 3.3. First of all without loss of generality we assume that φS maps R2 across
R1 thanks to the strip twist condition. Hence we prove that φS ◦ φA : R̂1 m−→m R̂1. The other
situations are just an adaptation of this proof.

We want to find disjoint compact subsets K1, . . . ,Km−1 ⊂ R1 such that for any continuous
path γ acrossR1 with γ(0), γ(1) in different components of ∂R1, the restriction φA(γ(t))|K`

goes
across R2. In order to do this we work on the covering space, where the K` will be represented by
the K` of Lemma 3.4. The K` are pairwise disjoint because the K` lie in a single representative
R1,0 of R1.

The arguments used in the proof of Lemma 3.4 ensure that the curve γ̃(t) in the covering,
satisfying γ̃(0) = (θ0,−1), and γ̃(1) = (θ1, 1) with θ0, θ1 ∈ [0, 1/2] goes across all the K`, and
that the restriction of γ̃ to each K` goes across some copy, [2`+ 1, 2`+ 3/2]× [−1, 1], of R2. �

4. Application to codimension 1 reversible vector fields

To detect chaotic dynamics, we apply the topological results of the previous section to some
periodically forced reversible ODEs. In particular, we consider a T -periodic step-wise forcing
term p(t) that switches between two different values as follows

p(t) :=
{
λ1 for t ∈ [0, τ1),
λ2 for t ∈ [τ1, τ1 + τ2),

where λ1 6= λ2 and 0 < τ1 < τ2 < T with τ1 + τ2 = T . We investigate the T -periodic problem
associated with the system

(4.1)
{
ẋ = yf(x, y2),
ẏ = g(x, y2) + p(t),
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where f and g are smooth functions that identify the normal forms of codimension 1 reversible
systems introduced in [13].

Our goal is to prove the existence of chaotic dynamics for system (4.1). First, we look at
the flow of the vector field X(x, y) associated with (4.1) which is given by the unique solution
(x(t), y(t)) = ϕ(t, x0, y0) of Ẋ = X(x, y) satisfying x(0) = x0 and y(0) = y0. We study the
Poincaré map Φ: R2 → R2 defined by Φ(x0, y0) = ϕ(T, x0, y0) for every point (x0, y0) ∈ R2.
Second, we notice that the full dynamics of the problem can be broken into two sub-systems

(4.2)
{
ẋ = yf(x, y2),
ẏ = g(x, y2) + λ1,

and

(4.3)
{
ẋ = yf(x, y2),
ẏ = g(x, y2) + λ2.

Hence, we have that the Poincaré map Φ may be decomposed as Φ = Φλ2 ◦Φλ1 , where, for any
(x0, y0) ∈ R2, Φλ1(x0, y0) = ϕλ1(τ1, x0, y0) and Φλ2(x0, y0) = ϕλ2(τ2, x0, y0) are the Poincaré
maps associated with (4.2) and (4.3), respectively. We outline here the structure of the proof
for the saddle case, done by applying Theorem 3.3.

1) Locate a flow invariant line Γ1,∗ for, say λ1 and a closed flow invariant line Γ2,∗ for λ2,
making sure they intersect in at least two points. Then Γ2,∗ is going to be ∂eA and Γ1,∗
will be of one component of ∂S.

2) Take τ1 to be the time it takes for ϕλ1 to move one intersection point to the next one.
3) Look at a curve γ1 ending at the first intersection point as a candidate for a bridge and

make sure Φλ1 maps it to in (Γ2,∗). Take P to be the other end point of γ1.
4) Take the ϕλ1 trajectory through P to be the other component of ∂S and take the

(closed) ϕλ2 trajectory through P to be ∂iA. This ensures that the strip twist condition
(Definition 3.5) holds.

5) Obtain the time τ2 for the annular-strip condition (Definition 3.7).
In this way we can prove that the dynamics of (4.1) is semiconjugate to a shift in a finite alphabet.

4.1. Saddle case. We assume that system (4.1) has a saddle structure by considering

(4.4)
{
ẋ = xy,

ẏ = x− y2 + p(t).

Depending on p(t), the phase-portrait of system (4.4) switches between different configurations
as described in Section 2.

Theorem 4.1. Let Φ be the Poincaré map associated with system (4.4). Then for each λ1 > 0
and each λ2 with λ1 > λ2 and for an open set of values of τ1 and τ2 the map Φ induces chaotic
dynamics on m symbols, for some m ≥ 2.

Proof. First of all we notice that the following two cases can occur: λ1 > λ2 > 0 or λ1 > 0 ≥ λ2.
Let us suppose that λ1 and λ2 are two fixed positive values satisfying the first case. Then for

both systems (4.2) and (4.3) there exist three equilibria. In particular, there exists a heteroclinic
cycle around the center (−λi, 0) which joins the two saddles (0,−

√
λi) and (0,

√
λi), for i = 1, 2.

Let (x∗, 0) be the point where the heteroclinic cycle of system (4.3) crosses the negative part
of the x-axis. Then two configurations are possible: −λ1 < x∗ < −λ2 or x∗ < −λ1. It will be not
restrictive to consider the first configuration since the other situation can be treated similarly.
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Figure 9. Construction of the annulus A and the strip S in the saddle case.
Left: 0 < λ2 < λ1; right: λ2 ≤ 0 < λ1.

We proceed with the construction of an annulus A and a strip S which satisfy the topological
conditions required to apply Theorem 3.3.

For any (x, y) ∈ R2, we call Γ1(x, y) and Γ2(x, y) the trajectories through the point (x, y) of
system (4.2) and (4.3), respectively. Let Γ2(x∗, 0) be the heteroclinic trajectory through (x∗, 0),
then we define the outer component of ∂A as

∂eA := Γ2(x∗, 0) ∪ {(0,−
√
λ2)} ∪ Γ2(0, 0) ∪ {(0,

√
λ2)}.

Let α < 0 with −λ2 < α be any number so the trajectory Γ1(α, 0) through (α, 0) will cross the
heteroclinic connection Γ2(x∗, 0). We take Γ1(α, 0)∩ {x∗ ≤ x ≤ 0} to be one of the components
of ∂S, and we construct the other two boundary pieces of the annulus and the strip so as to
satisfy the linkage condition and the twist conditions.

Let τ1 be the minimum positive time such that, if r(t) is a solution of (4.2) through (α, 0)
with r(0) ∈ Γ2(x∗, 0) ∩ {y < 0}, then r(τ1) ∈ Γ2(x∗, 0) ∩ {y > 0}. For any point

(x, y) ∈ Γ2(x∗, 0) ∩ {y < 0}
close to r(0) the points ϕλ1(τ1, x, y) form a curve through r(τ1). Generically this curve goes across
Γ2(x∗, 0) (otherwise, make a small change in α). Suppose that the curve is below Γ2(x∗, 0) to
the left of r(τ1) (otherwise the arguments are similar). Take β < 0 with −λ2 < β < α < 0 such
that the points in the trajectory Γ1(β, 0) of system (4.2) through (β, 0) satisfy the condition on
the curve. Then we take the other component of ∂S as Γ1(β, 0) ∩ {x∗ ≤ x ≤ 0}. It remains to
obtain the inner component of ∂A.

Let Π: R2 → R2 be the projection on the second component, namely Π(x, y) = y. For any
(x, y) ∈ R2 let ψ(x, y) = Π(ϕλ1(τ1, x, y)) and let ψ(x, y) = ψ(x, y) +Π(x, y), so ψ(x, y) compares
the height of ϕλ1(τ1, x, y) to that of the symmetric point of (x, y).

Let q(t) be the solution of (4.2) through (β, 0) with q(0) ∈ Γ2(x∗, 0) ∩ {y < 0}. Then
ψ(q(0)) < 0. Also there exists a σ > 0 such that q(σ) ∈ Γ2(x∗, 0) ∩ {y > 0}. By construction,
ψ(q(σ)) > 0. Therefore, there exists σ̂ ∈ (0, σ) such that ψ(q(σ̂)) = 0. This means that
ϕλ1(τ1, q(τ1)) is symmetric to q(τ1). The trajectory Γ2(q(σ̂)) will go through both q(σ̂) and
ϕλ1(τ1, q(σ̂)). We define the inner component of ∂A as ∂iA := Γ2(q(σ̂)).

In this manner, the topological annulus A and the topological strip S are linked by construc-
tion (see Figure 9). The linkage condition gives two symmetric topological rectangles R1 and
R2 (in the lower and upper half-plane, respectively) that satisfy the twist conditions. Indeed,
a strip-twist condition holds for Φλ1 : S → S because the rectangle R1 ⊂ A ∩ S ∩ {y < 0} is
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stretched across R2 ⊂ A ∩ S ∩ {y > 0}. Since Γ2(x∗, 0) is a heteroclinic connection then for
every m ≥ 2 there exists τ2 large enough such that an annulus-twist condition also holds for
Φλ2 : A → A because R2 is stretched across R1 m-times (depending on τ2). The result follows
by an application of Theorem 3.3 to the Poincaré map Φ = Φλ2 ◦ Φλ1 . This concludes the first
case.

The proof above holds for a fixed value of τ1 and for sufficiently large τ2. However, we may
obtain the result for τ1 in an open interval by taking different values of α.

The arguments above yield a proof for the case λ1 > 0 ≥ λ2, we just indicate where it needs
to be adapted. The outer component of ∂A may be taken as

∂eA := Γ1(x∗, 0) ∪ {(0,−
√
λ1)} ∪ Γ1(0, 0) ∪ {(0,

√
λ1)},

where Γ1(x∗, 0) is the heteroclinic trajectory of ϕλ1 going through (x∗, 0). One of the components
of ∂S will be Γ2(α, 0) with −λ1 < α < 0.

Then take τ2 to be the least positive time to go from Γ2(α, 0) ∩ Γ1(x∗, 0) ∩ {y > 0} to
Γ1(x∗, 0) ∩ {y < 0}. Apply the arguments above to obtain the other component of ∂S as a
ϕλ2 trajectory that starting at Γ1(x∗, 0) ∩ {y > 0} arrives above Γ1(x∗, 0) ∩ {y < 0} in time τ2.
Then find a point q in this trajectory and in the upper half-plane, such that Φλ2 maps q to its
symmetric h(q). Take ∂iA := Γ2(q) to complete the construction. �

In the case when both λ1 and λ2 are negative there are no annular invariant regions, so the
results cannot be applied. Moreover, in this case there are no non-trivial periodic orbits, so we
do not expect periodic forcing to yield chaos. The same holds for the cusp case below, when
both λ1 and λ2 are positive.

4.2. Cusp case. When system (4.1) has the following form

(4.5)
{
ẋ = y,

ẏ = x2 + p(t).

then its phase-portrait is of cusp type. We notice that system (4.5) has also a Hamiltonian
structure, and at this juncture, when λ1 < 0 and λ2 ≤ 0 the geometry is similar to the one
investigated in [11, 12]. Hence, we expect that chaotic dynamics occurs for τ1 and τ2 large
enough. For Theorem 4.1 we have used a heteroclinic connection to obtain an annulus twist
condition. Here the existing homoclinic connection may be used for the same purpose and, by
applying the procedure exploited for Theorem 4.1, we can prove what follows.

Theorem 4.2. Let Φ be the Poincaré map associated with system (4.5). Then for each λ1 ≤ 0
and each λ2 with λ1 < λ2 and for an open set of values of τ1 and τ2 the map Φ induces chaotic
dynamics on m ≥ 2 symbols.

The case λ1 < λ2 < 0 of Theorem 4.2 may also be obtained as a corollary to [5, Theorem 4.1].
Our methods provide an alternative proof and extend the result to the case λ1 < 0, λ2 > 0. In
the latter case there is no invariant annulus for λ2 > 0 and for the proof we need to use a strip
condition.
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